xref: /freebsd/sys/vm/vm_map.c (revision 79e53838)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/sysctl.h>
82 #include <sys/sysent.h>
83 #include <sys/shm.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/uma.h>
97 
98 /*
99  *	Virtual memory maps provide for the mapping, protection,
100  *	and sharing of virtual memory objects.  In addition,
101  *	this module provides for an efficient virtual copy of
102  *	memory from one map to another.
103  *
104  *	Synchronization is required prior to most operations.
105  *
106  *	Maps consist of an ordered doubly-linked list of simple
107  *	entries; a self-adjusting binary search tree of these
108  *	entries is used to speed up lookups.
109  *
110  *	Since portions of maps are specified by start/end addresses,
111  *	which may not align with existing map entries, all
112  *	routines merely "clip" entries to these start/end values.
113  *	[That is, an entry is split into two, bordering at a
114  *	start or end value.]  Note that these clippings may not
115  *	always be necessary (as the two resulting entries are then
116  *	not changed); however, the clipping is done for convenience.
117  *
118  *	As mentioned above, virtual copy operations are performed
119  *	by copying VM object references from one map to
120  *	another, and then marking both regions as copy-on-write.
121  */
122 
123 static struct mtx map_sleep_mtx;
124 static uma_zone_t mapentzone;
125 static uma_zone_t kmapentzone;
126 static uma_zone_t mapzone;
127 static uma_zone_t vmspace_zone;
128 static struct vm_object kmapentobj;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static void vmspace_zfini(void *mem, int size);
131 static int vm_map_zinit(void *mem, int ize, int flags);
132 static void vm_map_zfini(void *mem, int size);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 #ifdef INVARIANTS
138 static void vm_map_zdtor(void *mem, int size, void *arg);
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 
142 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
143     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
144      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
145 
146 /*
147  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
148  * stable.
149  */
150 #define PROC_VMSPACE_LOCK(p) do { } while (0)
151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
152 
153 /*
154  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
155  *
156  *	Asserts that the starting and ending region
157  *	addresses fall within the valid range of the map.
158  */
159 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
160 		{					\
161 		if (start < vm_map_min(map))		\
162 			start = vm_map_min(map);	\
163 		if (end > vm_map_max(map))		\
164 			end = vm_map_max(map);		\
165 		if (start > end)			\
166 			start = end;			\
167 		}
168 
169 /*
170  *	vm_map_startup:
171  *
172  *	Initialize the vm_map module.  Must be called before
173  *	any other vm_map routines.
174  *
175  *	Map and entry structures are allocated from the general
176  *	purpose memory pool with some exceptions:
177  *
178  *	- The kernel map and kmem submap are allocated statically.
179  *	- Kernel map entries are allocated out of a static pool.
180  *
181  *	These restrictions are necessary since malloc() uses the
182  *	maps and requires map entries.
183  */
184 
185 void
186 vm_map_startup(void)
187 {
188 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
189 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
190 #ifdef INVARIANTS
191 	    vm_map_zdtor,
192 #else
193 	    NULL,
194 #endif
195 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	uma_prealloc(mapzone, MAX_KMAP);
197 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
198 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
199 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
200 	uma_prealloc(kmapentzone, MAX_KMAPENT);
201 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203 }
204 
205 static void
206 vmspace_zfini(void *mem, int size)
207 {
208 	struct vmspace *vm;
209 
210 	vm = (struct vmspace *)mem;
211 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
212 }
213 
214 static int
215 vmspace_zinit(void *mem, int size, int flags)
216 {
217 	struct vmspace *vm;
218 
219 	vm = (struct vmspace *)mem;
220 
221 	vm->vm_map.pmap = NULL;
222 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
223 	return (0);
224 }
225 
226 static void
227 vm_map_zfini(void *mem, int size)
228 {
229 	vm_map_t map;
230 
231 	map = (vm_map_t)mem;
232 	mtx_destroy(&map->system_mtx);
233 	sx_destroy(&map->lock);
234 }
235 
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239 	vm_map_t map;
240 
241 	map = (vm_map_t)mem;
242 	map->nentries = 0;
243 	map->size = 0;
244 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
245 	sx_init(&map->lock, "user map");
246 	return (0);
247 }
248 
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 	struct vmspace *vm;
254 
255 	vm = (struct vmspace *)mem;
256 
257 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 	vm_map_t map;
263 
264 	map = (vm_map_t)mem;
265 	KASSERT(map->nentries == 0,
266 	    ("map %p nentries == %d on free.",
267 	    map, map->nentries));
268 	KASSERT(map->size == 0,
269 	    ("map %p size == %lu on free.",
270 	    map, (unsigned long)map->size));
271 }
272 #endif	/* INVARIANTS */
273 
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  */
278 struct vmspace *
279 vmspace_alloc(min, max)
280 	vm_offset_t min, max;
281 {
282 	struct vmspace *vm;
283 
284 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
285 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 void
304 vm_init2(void)
305 {
306 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
307 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
308 	     maxproc * 2 + maxfiles);
309 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
310 #ifdef INVARIANTS
311 	    vmspace_zdtor,
312 #else
313 	    NULL,
314 #endif
315 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
316 }
317 
318 static void
319 vmspace_container_reset(struct proc *p)
320 {
321 
322 #ifdef RACCT
323 	PROC_LOCK(p);
324 	racct_set(p, RACCT_DATA, 0);
325 	racct_set(p, RACCT_STACK, 0);
326 	racct_set(p, RACCT_RSS, 0);
327 	racct_set(p, RACCT_MEMLOCK, 0);
328 	racct_set(p, RACCT_VMEM, 0);
329 	PROC_UNLOCK(p);
330 #endif
331 }
332 
333 static inline void
334 vmspace_dofree(struct vmspace *vm)
335 {
336 
337 	CTR1(KTR_VM, "vmspace_free: %p", vm);
338 
339 	/*
340 	 * Make sure any SysV shm is freed, it might not have been in
341 	 * exit1().
342 	 */
343 	shmexit(vm);
344 
345 	/*
346 	 * Lock the map, to wait out all other references to it.
347 	 * Delete all of the mappings and pages they hold, then call
348 	 * the pmap module to reclaim anything left.
349 	 */
350 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
351 	    vm->vm_map.max_offset);
352 
353 	pmap_release(vmspace_pmap(vm));
354 	vm->vm_map.pmap = NULL;
355 	uma_zfree(vmspace_zone, vm);
356 }
357 
358 void
359 vmspace_free(struct vmspace *vm)
360 {
361 
362 	if (vm->vm_refcnt == 0)
363 		panic("vmspace_free: attempt to free already freed vmspace");
364 
365 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
366 		vmspace_dofree(vm);
367 }
368 
369 void
370 vmspace_exitfree(struct proc *p)
371 {
372 	struct vmspace *vm;
373 
374 	PROC_VMSPACE_LOCK(p);
375 	vm = p->p_vmspace;
376 	p->p_vmspace = NULL;
377 	PROC_VMSPACE_UNLOCK(p);
378 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
379 	vmspace_free(vm);
380 }
381 
382 void
383 vmspace_exit(struct thread *td)
384 {
385 	int refcnt;
386 	struct vmspace *vm;
387 	struct proc *p;
388 
389 	/*
390 	 * Release user portion of address space.
391 	 * This releases references to vnodes,
392 	 * which could cause I/O if the file has been unlinked.
393 	 * Need to do this early enough that we can still sleep.
394 	 *
395 	 * The last exiting process to reach this point releases as
396 	 * much of the environment as it can. vmspace_dofree() is the
397 	 * slower fallback in case another process had a temporary
398 	 * reference to the vmspace.
399 	 */
400 
401 	p = td->td_proc;
402 	vm = p->p_vmspace;
403 	atomic_add_int(&vmspace0.vm_refcnt, 1);
404 	do {
405 		refcnt = vm->vm_refcnt;
406 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
407 			/* Switch now since other proc might free vmspace */
408 			PROC_VMSPACE_LOCK(p);
409 			p->p_vmspace = &vmspace0;
410 			PROC_VMSPACE_UNLOCK(p);
411 			pmap_activate(td);
412 		}
413 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
414 	if (refcnt == 1) {
415 		if (p->p_vmspace != vm) {
416 			/* vmspace not yet freed, switch back */
417 			PROC_VMSPACE_LOCK(p);
418 			p->p_vmspace = vm;
419 			PROC_VMSPACE_UNLOCK(p);
420 			pmap_activate(td);
421 		}
422 		pmap_remove_pages(vmspace_pmap(vm));
423 		/* Switch now since this proc will free vmspace */
424 		PROC_VMSPACE_LOCK(p);
425 		p->p_vmspace = &vmspace0;
426 		PROC_VMSPACE_UNLOCK(p);
427 		pmap_activate(td);
428 		vmspace_dofree(vm);
429 	}
430 	vmspace_container_reset(p);
431 }
432 
433 /* Acquire reference to vmspace owned by another process. */
434 
435 struct vmspace *
436 vmspace_acquire_ref(struct proc *p)
437 {
438 	struct vmspace *vm;
439 	int refcnt;
440 
441 	PROC_VMSPACE_LOCK(p);
442 	vm = p->p_vmspace;
443 	if (vm == NULL) {
444 		PROC_VMSPACE_UNLOCK(p);
445 		return (NULL);
446 	}
447 	do {
448 		refcnt = vm->vm_refcnt;
449 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
450 			PROC_VMSPACE_UNLOCK(p);
451 			return (NULL);
452 		}
453 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
454 	if (vm != p->p_vmspace) {
455 		PROC_VMSPACE_UNLOCK(p);
456 		vmspace_free(vm);
457 		return (NULL);
458 	}
459 	PROC_VMSPACE_UNLOCK(p);
460 	return (vm);
461 }
462 
463 void
464 _vm_map_lock(vm_map_t map, const char *file, int line)
465 {
466 
467 	if (map->system_map)
468 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
469 	else
470 		sx_xlock_(&map->lock, file, line);
471 	map->timestamp++;
472 }
473 
474 static void
475 vm_map_process_deferred(void)
476 {
477 	struct thread *td;
478 	vm_map_entry_t entry;
479 	vm_object_t object;
480 
481 	td = curthread;
482 	while ((entry = td->td_map_def_user) != NULL) {
483 		td->td_map_def_user = entry->next;
484 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
485 			/*
486 			 * Decrement the object's writemappings and
487 			 * possibly the vnode's v_writecount.
488 			 */
489 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
490 			    ("Submap with writecount"));
491 			object = entry->object.vm_object;
492 			KASSERT(object != NULL, ("No object for writecount"));
493 			vnode_pager_release_writecount(object, entry->start,
494 			    entry->end);
495 		}
496 		vm_map_entry_deallocate(entry, FALSE);
497 	}
498 }
499 
500 void
501 _vm_map_unlock(vm_map_t map, const char *file, int line)
502 {
503 
504 	if (map->system_map)
505 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
506 	else {
507 		sx_xunlock_(&map->lock, file, line);
508 		vm_map_process_deferred();
509 	}
510 }
511 
512 void
513 _vm_map_lock_read(vm_map_t map, const char *file, int line)
514 {
515 
516 	if (map->system_map)
517 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
518 	else
519 		sx_slock_(&map->lock, file, line);
520 }
521 
522 void
523 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
524 {
525 
526 	if (map->system_map)
527 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
528 	else {
529 		sx_sunlock_(&map->lock, file, line);
530 		vm_map_process_deferred();
531 	}
532 }
533 
534 int
535 _vm_map_trylock(vm_map_t map, const char *file, int line)
536 {
537 	int error;
538 
539 	error = map->system_map ?
540 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
541 	    !sx_try_xlock_(&map->lock, file, line);
542 	if (error == 0)
543 		map->timestamp++;
544 	return (error == 0);
545 }
546 
547 int
548 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
549 {
550 	int error;
551 
552 	error = map->system_map ?
553 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
554 	    !sx_try_slock_(&map->lock, file, line);
555 	return (error == 0);
556 }
557 
558 /*
559  *	_vm_map_lock_upgrade:	[ internal use only ]
560  *
561  *	Tries to upgrade a read (shared) lock on the specified map to a write
562  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
563  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
564  *	returned without a read or write lock held.
565  *
566  *	Requires that the map be read locked.
567  */
568 int
569 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
570 {
571 	unsigned int last_timestamp;
572 
573 	if (map->system_map) {
574 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
575 	} else {
576 		if (!sx_try_upgrade_(&map->lock, file, line)) {
577 			last_timestamp = map->timestamp;
578 			sx_sunlock_(&map->lock, file, line);
579 			vm_map_process_deferred();
580 			/*
581 			 * If the map's timestamp does not change while the
582 			 * map is unlocked, then the upgrade succeeds.
583 			 */
584 			sx_xlock_(&map->lock, file, line);
585 			if (last_timestamp != map->timestamp) {
586 				sx_xunlock_(&map->lock, file, line);
587 				return (1);
588 			}
589 		}
590 	}
591 	map->timestamp++;
592 	return (0);
593 }
594 
595 void
596 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
597 {
598 
599 	if (map->system_map) {
600 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
601 	} else
602 		sx_downgrade_(&map->lock, file, line);
603 }
604 
605 /*
606  *	vm_map_locked:
607  *
608  *	Returns a non-zero value if the caller holds a write (exclusive) lock
609  *	on the specified map and the value "0" otherwise.
610  */
611 int
612 vm_map_locked(vm_map_t map)
613 {
614 
615 	if (map->system_map)
616 		return (mtx_owned(&map->system_mtx));
617 	else
618 		return (sx_xlocked(&map->lock));
619 }
620 
621 #ifdef INVARIANTS
622 static void
623 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
624 {
625 
626 	if (map->system_map)
627 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
628 	else
629 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
630 }
631 
632 #define	VM_MAP_ASSERT_LOCKED(map) \
633     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
634 #else
635 #define	VM_MAP_ASSERT_LOCKED(map)
636 #endif
637 
638 /*
639  *	_vm_map_unlock_and_wait:
640  *
641  *	Atomically releases the lock on the specified map and puts the calling
642  *	thread to sleep.  The calling thread will remain asleep until either
643  *	vm_map_wakeup() is performed on the map or the specified timeout is
644  *	exceeded.
645  *
646  *	WARNING!  This function does not perform deferred deallocations of
647  *	objects and map	entries.  Therefore, the calling thread is expected to
648  *	reacquire the map lock after reawakening and later perform an ordinary
649  *	unlock operation, such as vm_map_unlock(), before completing its
650  *	operation on the map.
651  */
652 int
653 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
654 {
655 
656 	mtx_lock(&map_sleep_mtx);
657 	if (map->system_map)
658 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
659 	else
660 		sx_xunlock_(&map->lock, file, line);
661 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
662 	    timo));
663 }
664 
665 /*
666  *	vm_map_wakeup:
667  *
668  *	Awaken any threads that have slept on the map using
669  *	vm_map_unlock_and_wait().
670  */
671 void
672 vm_map_wakeup(vm_map_t map)
673 {
674 
675 	/*
676 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
677 	 * from being performed (and lost) between the map unlock
678 	 * and the msleep() in _vm_map_unlock_and_wait().
679 	 */
680 	mtx_lock(&map_sleep_mtx);
681 	mtx_unlock(&map_sleep_mtx);
682 	wakeup(&map->root);
683 }
684 
685 void
686 vm_map_busy(vm_map_t map)
687 {
688 
689 	VM_MAP_ASSERT_LOCKED(map);
690 	map->busy++;
691 }
692 
693 void
694 vm_map_unbusy(vm_map_t map)
695 {
696 
697 	VM_MAP_ASSERT_LOCKED(map);
698 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
699 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
700 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
701 		wakeup(&map->busy);
702 	}
703 }
704 
705 void
706 vm_map_wait_busy(vm_map_t map)
707 {
708 
709 	VM_MAP_ASSERT_LOCKED(map);
710 	while (map->busy) {
711 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
712 		if (map->system_map)
713 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
714 		else
715 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
716 	}
717 	map->timestamp++;
718 }
719 
720 long
721 vmspace_resident_count(struct vmspace *vmspace)
722 {
723 	return pmap_resident_count(vmspace_pmap(vmspace));
724 }
725 
726 long
727 vmspace_wired_count(struct vmspace *vmspace)
728 {
729 	return pmap_wired_count(vmspace_pmap(vmspace));
730 }
731 
732 /*
733  *	vm_map_create:
734  *
735  *	Creates and returns a new empty VM map with
736  *	the given physical map structure, and having
737  *	the given lower and upper address bounds.
738  */
739 vm_map_t
740 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
741 {
742 	vm_map_t result;
743 
744 	result = uma_zalloc(mapzone, M_WAITOK);
745 	CTR1(KTR_VM, "vm_map_create: %p", result);
746 	_vm_map_init(result, pmap, min, max);
747 	return (result);
748 }
749 
750 /*
751  * Initialize an existing vm_map structure
752  * such as that in the vmspace structure.
753  */
754 static void
755 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
756 {
757 
758 	map->header.next = map->header.prev = &map->header;
759 	map->needs_wakeup = FALSE;
760 	map->system_map = 0;
761 	map->pmap = pmap;
762 	map->min_offset = min;
763 	map->max_offset = max;
764 	map->flags = 0;
765 	map->root = NULL;
766 	map->timestamp = 0;
767 	map->busy = 0;
768 }
769 
770 void
771 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
772 {
773 
774 	_vm_map_init(map, pmap, min, max);
775 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
776 	sx_init(&map->lock, "user map");
777 }
778 
779 /*
780  *	vm_map_entry_dispose:	[ internal use only ]
781  *
782  *	Inverse of vm_map_entry_create.
783  */
784 static void
785 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
786 {
787 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
788 }
789 
790 /*
791  *	vm_map_entry_create:	[ internal use only ]
792  *
793  *	Allocates a VM map entry for insertion.
794  *	No entry fields are filled in.
795  */
796 static vm_map_entry_t
797 vm_map_entry_create(vm_map_t map)
798 {
799 	vm_map_entry_t new_entry;
800 
801 	if (map->system_map)
802 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
803 	else
804 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
805 	if (new_entry == NULL)
806 		panic("vm_map_entry_create: kernel resources exhausted");
807 	return (new_entry);
808 }
809 
810 /*
811  *	vm_map_entry_set_behavior:
812  *
813  *	Set the expected access behavior, either normal, random, or
814  *	sequential.
815  */
816 static inline void
817 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
818 {
819 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
820 	    (behavior & MAP_ENTRY_BEHAV_MASK);
821 }
822 
823 /*
824  *	vm_map_entry_set_max_free:
825  *
826  *	Set the max_free field in a vm_map_entry.
827  */
828 static inline void
829 vm_map_entry_set_max_free(vm_map_entry_t entry)
830 {
831 
832 	entry->max_free = entry->adj_free;
833 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
834 		entry->max_free = entry->left->max_free;
835 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
836 		entry->max_free = entry->right->max_free;
837 }
838 
839 /*
840  *	vm_map_entry_splay:
841  *
842  *	The Sleator and Tarjan top-down splay algorithm with the
843  *	following variation.  Max_free must be computed bottom-up, so
844  *	on the downward pass, maintain the left and right spines in
845  *	reverse order.  Then, make a second pass up each side to fix
846  *	the pointers and compute max_free.  The time bound is O(log n)
847  *	amortized.
848  *
849  *	The new root is the vm_map_entry containing "addr", or else an
850  *	adjacent entry (lower or higher) if addr is not in the tree.
851  *
852  *	The map must be locked, and leaves it so.
853  *
854  *	Returns: the new root.
855  */
856 static vm_map_entry_t
857 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
858 {
859 	vm_map_entry_t llist, rlist;
860 	vm_map_entry_t ltree, rtree;
861 	vm_map_entry_t y;
862 
863 	/* Special case of empty tree. */
864 	if (root == NULL)
865 		return (root);
866 
867 	/*
868 	 * Pass One: Splay down the tree until we find addr or a NULL
869 	 * pointer where addr would go.  llist and rlist are the two
870 	 * sides in reverse order (bottom-up), with llist linked by
871 	 * the right pointer and rlist linked by the left pointer in
872 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
873 	 * the two spines.
874 	 */
875 	llist = NULL;
876 	rlist = NULL;
877 	for (;;) {
878 		/* root is never NULL in here. */
879 		if (addr < root->start) {
880 			y = root->left;
881 			if (y == NULL)
882 				break;
883 			if (addr < y->start && y->left != NULL) {
884 				/* Rotate right and put y on rlist. */
885 				root->left = y->right;
886 				y->right = root;
887 				vm_map_entry_set_max_free(root);
888 				root = y->left;
889 				y->left = rlist;
890 				rlist = y;
891 			} else {
892 				/* Put root on rlist. */
893 				root->left = rlist;
894 				rlist = root;
895 				root = y;
896 			}
897 		} else if (addr >= root->end) {
898 			y = root->right;
899 			if (y == NULL)
900 				break;
901 			if (addr >= y->end && y->right != NULL) {
902 				/* Rotate left and put y on llist. */
903 				root->right = y->left;
904 				y->left = root;
905 				vm_map_entry_set_max_free(root);
906 				root = y->right;
907 				y->right = llist;
908 				llist = y;
909 			} else {
910 				/* Put root on llist. */
911 				root->right = llist;
912 				llist = root;
913 				root = y;
914 			}
915 		} else
916 			break;
917 	}
918 
919 	/*
920 	 * Pass Two: Walk back up the two spines, flip the pointers
921 	 * and set max_free.  The subtrees of the root go at the
922 	 * bottom of llist and rlist.
923 	 */
924 	ltree = root->left;
925 	while (llist != NULL) {
926 		y = llist->right;
927 		llist->right = ltree;
928 		vm_map_entry_set_max_free(llist);
929 		ltree = llist;
930 		llist = y;
931 	}
932 	rtree = root->right;
933 	while (rlist != NULL) {
934 		y = rlist->left;
935 		rlist->left = rtree;
936 		vm_map_entry_set_max_free(rlist);
937 		rtree = rlist;
938 		rlist = y;
939 	}
940 
941 	/*
942 	 * Final assembly: add ltree and rtree as subtrees of root.
943 	 */
944 	root->left = ltree;
945 	root->right = rtree;
946 	vm_map_entry_set_max_free(root);
947 
948 	return (root);
949 }
950 
951 /*
952  *	vm_map_entry_{un,}link:
953  *
954  *	Insert/remove entries from maps.
955  */
956 static void
957 vm_map_entry_link(vm_map_t map,
958 		  vm_map_entry_t after_where,
959 		  vm_map_entry_t entry)
960 {
961 
962 	CTR4(KTR_VM,
963 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
964 	    map->nentries, entry, after_where);
965 	VM_MAP_ASSERT_LOCKED(map);
966 	map->nentries++;
967 	entry->prev = after_where;
968 	entry->next = after_where->next;
969 	entry->next->prev = entry;
970 	after_where->next = entry;
971 
972 	if (after_where != &map->header) {
973 		if (after_where != map->root)
974 			vm_map_entry_splay(after_where->start, map->root);
975 		entry->right = after_where->right;
976 		entry->left = after_where;
977 		after_where->right = NULL;
978 		after_where->adj_free = entry->start - after_where->end;
979 		vm_map_entry_set_max_free(after_where);
980 	} else {
981 		entry->right = map->root;
982 		entry->left = NULL;
983 	}
984 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
985 	    entry->next->start) - entry->end;
986 	vm_map_entry_set_max_free(entry);
987 	map->root = entry;
988 }
989 
990 static void
991 vm_map_entry_unlink(vm_map_t map,
992 		    vm_map_entry_t entry)
993 {
994 	vm_map_entry_t next, prev, root;
995 
996 	VM_MAP_ASSERT_LOCKED(map);
997 	if (entry != map->root)
998 		vm_map_entry_splay(entry->start, map->root);
999 	if (entry->left == NULL)
1000 		root = entry->right;
1001 	else {
1002 		root = vm_map_entry_splay(entry->start, entry->left);
1003 		root->right = entry->right;
1004 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1005 		    entry->next->start) - root->end;
1006 		vm_map_entry_set_max_free(root);
1007 	}
1008 	map->root = root;
1009 
1010 	prev = entry->prev;
1011 	next = entry->next;
1012 	next->prev = prev;
1013 	prev->next = next;
1014 	map->nentries--;
1015 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1016 	    map->nentries, entry);
1017 }
1018 
1019 /*
1020  *	vm_map_entry_resize_free:
1021  *
1022  *	Recompute the amount of free space following a vm_map_entry
1023  *	and propagate that value up the tree.  Call this function after
1024  *	resizing a map entry in-place, that is, without a call to
1025  *	vm_map_entry_link() or _unlink().
1026  *
1027  *	The map must be locked, and leaves it so.
1028  */
1029 static void
1030 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1031 {
1032 
1033 	/*
1034 	 * Using splay trees without parent pointers, propagating
1035 	 * max_free up the tree is done by moving the entry to the
1036 	 * root and making the change there.
1037 	 */
1038 	if (entry != map->root)
1039 		map->root = vm_map_entry_splay(entry->start, map->root);
1040 
1041 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1042 	    entry->next->start) - entry->end;
1043 	vm_map_entry_set_max_free(entry);
1044 }
1045 
1046 /*
1047  *	vm_map_lookup_entry:	[ internal use only ]
1048  *
1049  *	Finds the map entry containing (or
1050  *	immediately preceding) the specified address
1051  *	in the given map; the entry is returned
1052  *	in the "entry" parameter.  The boolean
1053  *	result indicates whether the address is
1054  *	actually contained in the map.
1055  */
1056 boolean_t
1057 vm_map_lookup_entry(
1058 	vm_map_t map,
1059 	vm_offset_t address,
1060 	vm_map_entry_t *entry)	/* OUT */
1061 {
1062 	vm_map_entry_t cur;
1063 	boolean_t locked;
1064 
1065 	/*
1066 	 * If the map is empty, then the map entry immediately preceding
1067 	 * "address" is the map's header.
1068 	 */
1069 	cur = map->root;
1070 	if (cur == NULL)
1071 		*entry = &map->header;
1072 	else if (address >= cur->start && cur->end > address) {
1073 		*entry = cur;
1074 		return (TRUE);
1075 	} else if ((locked = vm_map_locked(map)) ||
1076 	    sx_try_upgrade(&map->lock)) {
1077 		/*
1078 		 * Splay requires a write lock on the map.  However, it only
1079 		 * restructures the binary search tree; it does not otherwise
1080 		 * change the map.  Thus, the map's timestamp need not change
1081 		 * on a temporary upgrade.
1082 		 */
1083 		map->root = cur = vm_map_entry_splay(address, cur);
1084 		if (!locked)
1085 			sx_downgrade(&map->lock);
1086 
1087 		/*
1088 		 * If "address" is contained within a map entry, the new root
1089 		 * is that map entry.  Otherwise, the new root is a map entry
1090 		 * immediately before or after "address".
1091 		 */
1092 		if (address >= cur->start) {
1093 			*entry = cur;
1094 			if (cur->end > address)
1095 				return (TRUE);
1096 		} else
1097 			*entry = cur->prev;
1098 	} else
1099 		/*
1100 		 * Since the map is only locked for read access, perform a
1101 		 * standard binary search tree lookup for "address".
1102 		 */
1103 		for (;;) {
1104 			if (address < cur->start) {
1105 				if (cur->left == NULL) {
1106 					*entry = cur->prev;
1107 					break;
1108 				}
1109 				cur = cur->left;
1110 			} else if (cur->end > address) {
1111 				*entry = cur;
1112 				return (TRUE);
1113 			} else {
1114 				if (cur->right == NULL) {
1115 					*entry = cur;
1116 					break;
1117 				}
1118 				cur = cur->right;
1119 			}
1120 		}
1121 	return (FALSE);
1122 }
1123 
1124 /*
1125  *	vm_map_insert:
1126  *
1127  *	Inserts the given whole VM object into the target
1128  *	map at the specified address range.  The object's
1129  *	size should match that of the address range.
1130  *
1131  *	Requires that the map be locked, and leaves it so.
1132  *
1133  *	If object is non-NULL, ref count must be bumped by caller
1134  *	prior to making call to account for the new entry.
1135  */
1136 int
1137 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1138 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1139 	      int cow)
1140 {
1141 	vm_map_entry_t new_entry;
1142 	vm_map_entry_t prev_entry;
1143 	vm_map_entry_t temp_entry;
1144 	vm_eflags_t protoeflags;
1145 	struct ucred *cred;
1146 	vm_inherit_t inheritance;
1147 	boolean_t charge_prev_obj;
1148 
1149 	VM_MAP_ASSERT_LOCKED(map);
1150 
1151 	/*
1152 	 * Check that the start and end points are not bogus.
1153 	 */
1154 	if ((start < map->min_offset) || (end > map->max_offset) ||
1155 	    (start >= end))
1156 		return (KERN_INVALID_ADDRESS);
1157 
1158 	/*
1159 	 * Find the entry prior to the proposed starting address; if it's part
1160 	 * of an existing entry, this range is bogus.
1161 	 */
1162 	if (vm_map_lookup_entry(map, start, &temp_entry))
1163 		return (KERN_NO_SPACE);
1164 
1165 	prev_entry = temp_entry;
1166 
1167 	/*
1168 	 * Assert that the next entry doesn't overlap the end point.
1169 	 */
1170 	if ((prev_entry->next != &map->header) &&
1171 	    (prev_entry->next->start < end))
1172 		return (KERN_NO_SPACE);
1173 
1174 	protoeflags = 0;
1175 	charge_prev_obj = FALSE;
1176 
1177 	if (cow & MAP_COPY_ON_WRITE)
1178 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1179 
1180 	if (cow & MAP_NOFAULT) {
1181 		protoeflags |= MAP_ENTRY_NOFAULT;
1182 
1183 		KASSERT(object == NULL,
1184 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1185 	}
1186 	if (cow & MAP_DISABLE_SYNCER)
1187 		protoeflags |= MAP_ENTRY_NOSYNC;
1188 	if (cow & MAP_DISABLE_COREDUMP)
1189 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1190 	if (cow & MAP_VN_WRITECOUNT)
1191 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1192 	if (cow & MAP_INHERIT_SHARE)
1193 		inheritance = VM_INHERIT_SHARE;
1194 	else
1195 		inheritance = VM_INHERIT_DEFAULT;
1196 
1197 	cred = NULL;
1198 	KASSERT((object != kmem_object && object != kernel_object) ||
1199 	    ((object == kmem_object || object == kernel_object) &&
1200 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1201 	    ("kmem or kernel object and cow"));
1202 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1203 		goto charged;
1204 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1205 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1206 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1207 			return (KERN_RESOURCE_SHORTAGE);
1208 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1209 		    object->cred == NULL,
1210 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1211 		cred = curthread->td_ucred;
1212 		crhold(cred);
1213 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1214 			charge_prev_obj = TRUE;
1215 	}
1216 
1217 charged:
1218 	/* Expand the kernel pmap, if necessary. */
1219 	if (map == kernel_map && end > kernel_vm_end)
1220 		pmap_growkernel(end);
1221 	if (object != NULL) {
1222 		/*
1223 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1224 		 * is trivially proven to be the only mapping for any
1225 		 * of the object's pages.  (Object granularity
1226 		 * reference counting is insufficient to recognize
1227 		 * aliases with precision.)
1228 		 */
1229 		VM_OBJECT_LOCK(object);
1230 		if (object->ref_count > 1 || object->shadow_count != 0)
1231 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1232 		VM_OBJECT_UNLOCK(object);
1233 	}
1234 	else if ((prev_entry != &map->header) &&
1235 		 (prev_entry->eflags == protoeflags) &&
1236 		 (prev_entry->end == start) &&
1237 		 (prev_entry->wired_count == 0) &&
1238 		 (prev_entry->cred == cred ||
1239 		  (prev_entry->object.vm_object != NULL &&
1240 		   (prev_entry->object.vm_object->cred == cred))) &&
1241 		   vm_object_coalesce(prev_entry->object.vm_object,
1242 		       prev_entry->offset,
1243 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1244 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1245 		/*
1246 		 * We were able to extend the object.  Determine if we
1247 		 * can extend the previous map entry to include the
1248 		 * new range as well.
1249 		 */
1250 		if ((prev_entry->inheritance == inheritance) &&
1251 		    (prev_entry->protection == prot) &&
1252 		    (prev_entry->max_protection == max)) {
1253 			map->size += (end - prev_entry->end);
1254 			prev_entry->end = end;
1255 			vm_map_entry_resize_free(map, prev_entry);
1256 			vm_map_simplify_entry(map, prev_entry);
1257 			if (cred != NULL)
1258 				crfree(cred);
1259 			return (KERN_SUCCESS);
1260 		}
1261 
1262 		/*
1263 		 * If we can extend the object but cannot extend the
1264 		 * map entry, we have to create a new map entry.  We
1265 		 * must bump the ref count on the extended object to
1266 		 * account for it.  object may be NULL.
1267 		 */
1268 		object = prev_entry->object.vm_object;
1269 		offset = prev_entry->offset +
1270 			(prev_entry->end - prev_entry->start);
1271 		vm_object_reference(object);
1272 		if (cred != NULL && object != NULL && object->cred != NULL &&
1273 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1274 			/* Object already accounts for this uid. */
1275 			crfree(cred);
1276 			cred = NULL;
1277 		}
1278 	}
1279 
1280 	/*
1281 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1282 	 * in things like the buffer map where we manage kva but do not manage
1283 	 * backing objects.
1284 	 */
1285 
1286 	/*
1287 	 * Create a new entry
1288 	 */
1289 	new_entry = vm_map_entry_create(map);
1290 	new_entry->start = start;
1291 	new_entry->end = end;
1292 	new_entry->cred = NULL;
1293 
1294 	new_entry->eflags = protoeflags;
1295 	new_entry->object.vm_object = object;
1296 	new_entry->offset = offset;
1297 	new_entry->avail_ssize = 0;
1298 
1299 	new_entry->inheritance = inheritance;
1300 	new_entry->protection = prot;
1301 	new_entry->max_protection = max;
1302 	new_entry->wired_count = 0;
1303 
1304 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1305 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1306 	new_entry->cred = cred;
1307 
1308 	/*
1309 	 * Insert the new entry into the list
1310 	 */
1311 	vm_map_entry_link(map, prev_entry, new_entry);
1312 	map->size += new_entry->end - new_entry->start;
1313 
1314 	/*
1315 	 * It may be possible to merge the new entry with the next and/or
1316 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1317 	 * panic can result from merging such entries.
1318 	 */
1319 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1320 		vm_map_simplify_entry(map, new_entry);
1321 
1322 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1323 		vm_map_pmap_enter(map, start, prot,
1324 				    object, OFF_TO_IDX(offset), end - start,
1325 				    cow & MAP_PREFAULT_PARTIAL);
1326 	}
1327 
1328 	return (KERN_SUCCESS);
1329 }
1330 
1331 /*
1332  *	vm_map_findspace:
1333  *
1334  *	Find the first fit (lowest VM address) for "length" free bytes
1335  *	beginning at address >= start in the given map.
1336  *
1337  *	In a vm_map_entry, "adj_free" is the amount of free space
1338  *	adjacent (higher address) to this entry, and "max_free" is the
1339  *	maximum amount of contiguous free space in its subtree.  This
1340  *	allows finding a free region in one path down the tree, so
1341  *	O(log n) amortized with splay trees.
1342  *
1343  *	The map must be locked, and leaves it so.
1344  *
1345  *	Returns: 0 on success, and starting address in *addr,
1346  *		 1 if insufficient space.
1347  */
1348 int
1349 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1350     vm_offset_t *addr)	/* OUT */
1351 {
1352 	vm_map_entry_t entry;
1353 	vm_offset_t st;
1354 
1355 	/*
1356 	 * Request must fit within min/max VM address and must avoid
1357 	 * address wrap.
1358 	 */
1359 	if (start < map->min_offset)
1360 		start = map->min_offset;
1361 	if (start + length > map->max_offset || start + length < start)
1362 		return (1);
1363 
1364 	/* Empty tree means wide open address space. */
1365 	if (map->root == NULL) {
1366 		*addr = start;
1367 		return (0);
1368 	}
1369 
1370 	/*
1371 	 * After splay, if start comes before root node, then there
1372 	 * must be a gap from start to the root.
1373 	 */
1374 	map->root = vm_map_entry_splay(start, map->root);
1375 	if (start + length <= map->root->start) {
1376 		*addr = start;
1377 		return (0);
1378 	}
1379 
1380 	/*
1381 	 * Root is the last node that might begin its gap before
1382 	 * start, and this is the last comparison where address
1383 	 * wrap might be a problem.
1384 	 */
1385 	st = (start > map->root->end) ? start : map->root->end;
1386 	if (length <= map->root->end + map->root->adj_free - st) {
1387 		*addr = st;
1388 		return (0);
1389 	}
1390 
1391 	/* With max_free, can immediately tell if no solution. */
1392 	entry = map->root->right;
1393 	if (entry == NULL || length > entry->max_free)
1394 		return (1);
1395 
1396 	/*
1397 	 * Search the right subtree in the order: left subtree, root,
1398 	 * right subtree (first fit).  The previous splay implies that
1399 	 * all regions in the right subtree have addresses > start.
1400 	 */
1401 	while (entry != NULL) {
1402 		if (entry->left != NULL && entry->left->max_free >= length)
1403 			entry = entry->left;
1404 		else if (entry->adj_free >= length) {
1405 			*addr = entry->end;
1406 			return (0);
1407 		} else
1408 			entry = entry->right;
1409 	}
1410 
1411 	/* Can't get here, so panic if we do. */
1412 	panic("vm_map_findspace: max_free corrupt");
1413 }
1414 
1415 int
1416 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1417     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1418     vm_prot_t max, int cow)
1419 {
1420 	vm_offset_t end;
1421 	int result;
1422 
1423 	end = start + length;
1424 	vm_map_lock(map);
1425 	VM_MAP_RANGE_CHECK(map, start, end);
1426 	(void) vm_map_delete(map, start, end);
1427 	result = vm_map_insert(map, object, offset, start, end, prot,
1428 	    max, cow);
1429 	vm_map_unlock(map);
1430 	return (result);
1431 }
1432 
1433 /*
1434  *	vm_map_find finds an unallocated region in the target address
1435  *	map with the given length.  The search is defined to be
1436  *	first-fit from the specified address; the region found is
1437  *	returned in the same parameter.
1438  *
1439  *	If object is non-NULL, ref count must be bumped by caller
1440  *	prior to making call to account for the new entry.
1441  */
1442 int
1443 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1444 	    vm_offset_t *addr,	/* IN/OUT */
1445 	    vm_size_t length, int find_space, vm_prot_t prot,
1446 	    vm_prot_t max, int cow)
1447 {
1448 	vm_offset_t start;
1449 	int result;
1450 
1451 	start = *addr;
1452 	vm_map_lock(map);
1453 	do {
1454 		if (find_space != VMFS_NO_SPACE) {
1455 			if (vm_map_findspace(map, start, length, addr)) {
1456 				vm_map_unlock(map);
1457 				return (KERN_NO_SPACE);
1458 			}
1459 			switch (find_space) {
1460 			case VMFS_ALIGNED_SPACE:
1461 				pmap_align_superpage(object, offset, addr,
1462 				    length);
1463 				break;
1464 #ifdef VMFS_TLB_ALIGNED_SPACE
1465 			case VMFS_TLB_ALIGNED_SPACE:
1466 				pmap_align_tlb(addr);
1467 				break;
1468 #endif
1469 			default:
1470 				break;
1471 			}
1472 
1473 			start = *addr;
1474 		}
1475 		result = vm_map_insert(map, object, offset, start, start +
1476 		    length, prot, max, cow);
1477 	} while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE
1478 #ifdef VMFS_TLB_ALIGNED_SPACE
1479 	    || find_space == VMFS_TLB_ALIGNED_SPACE
1480 #endif
1481 	    ));
1482 	vm_map_unlock(map);
1483 	return (result);
1484 }
1485 
1486 /*
1487  *	vm_map_simplify_entry:
1488  *
1489  *	Simplify the given map entry by merging with either neighbor.  This
1490  *	routine also has the ability to merge with both neighbors.
1491  *
1492  *	The map must be locked.
1493  *
1494  *	This routine guarentees that the passed entry remains valid (though
1495  *	possibly extended).  When merging, this routine may delete one or
1496  *	both neighbors.
1497  */
1498 void
1499 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1500 {
1501 	vm_map_entry_t next, prev;
1502 	vm_size_t prevsize, esize;
1503 
1504 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1505 		return;
1506 
1507 	prev = entry->prev;
1508 	if (prev != &map->header) {
1509 		prevsize = prev->end - prev->start;
1510 		if ( (prev->end == entry->start) &&
1511 		     (prev->object.vm_object == entry->object.vm_object) &&
1512 		     (!prev->object.vm_object ||
1513 			(prev->offset + prevsize == entry->offset)) &&
1514 		     (prev->eflags == entry->eflags) &&
1515 		     (prev->protection == entry->protection) &&
1516 		     (prev->max_protection == entry->max_protection) &&
1517 		     (prev->inheritance == entry->inheritance) &&
1518 		     (prev->wired_count == entry->wired_count) &&
1519 		     (prev->cred == entry->cred)) {
1520 			vm_map_entry_unlink(map, prev);
1521 			entry->start = prev->start;
1522 			entry->offset = prev->offset;
1523 			if (entry->prev != &map->header)
1524 				vm_map_entry_resize_free(map, entry->prev);
1525 
1526 			/*
1527 			 * If the backing object is a vnode object,
1528 			 * vm_object_deallocate() calls vrele().
1529 			 * However, vrele() does not lock the vnode
1530 			 * because the vnode has additional
1531 			 * references.  Thus, the map lock can be kept
1532 			 * without causing a lock-order reversal with
1533 			 * the vnode lock.
1534 			 *
1535 			 * Since we count the number of virtual page
1536 			 * mappings in object->un_pager.vnp.writemappings,
1537 			 * the writemappings value should not be adjusted
1538 			 * when the entry is disposed of.
1539 			 */
1540 			if (prev->object.vm_object)
1541 				vm_object_deallocate(prev->object.vm_object);
1542 			if (prev->cred != NULL)
1543 				crfree(prev->cred);
1544 			vm_map_entry_dispose(map, prev);
1545 		}
1546 	}
1547 
1548 	next = entry->next;
1549 	if (next != &map->header) {
1550 		esize = entry->end - entry->start;
1551 		if ((entry->end == next->start) &&
1552 		    (next->object.vm_object == entry->object.vm_object) &&
1553 		     (!entry->object.vm_object ||
1554 			(entry->offset + esize == next->offset)) &&
1555 		    (next->eflags == entry->eflags) &&
1556 		    (next->protection == entry->protection) &&
1557 		    (next->max_protection == entry->max_protection) &&
1558 		    (next->inheritance == entry->inheritance) &&
1559 		    (next->wired_count == entry->wired_count) &&
1560 		    (next->cred == entry->cred)) {
1561 			vm_map_entry_unlink(map, next);
1562 			entry->end = next->end;
1563 			vm_map_entry_resize_free(map, entry);
1564 
1565 			/*
1566 			 * See comment above.
1567 			 */
1568 			if (next->object.vm_object)
1569 				vm_object_deallocate(next->object.vm_object);
1570 			if (next->cred != NULL)
1571 				crfree(next->cred);
1572 			vm_map_entry_dispose(map, next);
1573 		}
1574 	}
1575 }
1576 /*
1577  *	vm_map_clip_start:	[ internal use only ]
1578  *
1579  *	Asserts that the given entry begins at or after
1580  *	the specified address; if necessary,
1581  *	it splits the entry into two.
1582  */
1583 #define vm_map_clip_start(map, entry, startaddr) \
1584 { \
1585 	if (startaddr > entry->start) \
1586 		_vm_map_clip_start(map, entry, startaddr); \
1587 }
1588 
1589 /*
1590  *	This routine is called only when it is known that
1591  *	the entry must be split.
1592  */
1593 static void
1594 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1595 {
1596 	vm_map_entry_t new_entry;
1597 
1598 	VM_MAP_ASSERT_LOCKED(map);
1599 
1600 	/*
1601 	 * Split off the front portion -- note that we must insert the new
1602 	 * entry BEFORE this one, so that this entry has the specified
1603 	 * starting address.
1604 	 */
1605 	vm_map_simplify_entry(map, entry);
1606 
1607 	/*
1608 	 * If there is no object backing this entry, we might as well create
1609 	 * one now.  If we defer it, an object can get created after the map
1610 	 * is clipped, and individual objects will be created for the split-up
1611 	 * map.  This is a bit of a hack, but is also about the best place to
1612 	 * put this improvement.
1613 	 */
1614 	if (entry->object.vm_object == NULL && !map->system_map) {
1615 		vm_object_t object;
1616 		object = vm_object_allocate(OBJT_DEFAULT,
1617 				atop(entry->end - entry->start));
1618 		entry->object.vm_object = object;
1619 		entry->offset = 0;
1620 		if (entry->cred != NULL) {
1621 			object->cred = entry->cred;
1622 			object->charge = entry->end - entry->start;
1623 			entry->cred = NULL;
1624 		}
1625 	} else if (entry->object.vm_object != NULL &&
1626 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1627 		   entry->cred != NULL) {
1628 		VM_OBJECT_LOCK(entry->object.vm_object);
1629 		KASSERT(entry->object.vm_object->cred == NULL,
1630 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1631 		entry->object.vm_object->cred = entry->cred;
1632 		entry->object.vm_object->charge = entry->end - entry->start;
1633 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1634 		entry->cred = NULL;
1635 	}
1636 
1637 	new_entry = vm_map_entry_create(map);
1638 	*new_entry = *entry;
1639 
1640 	new_entry->end = start;
1641 	entry->offset += (start - entry->start);
1642 	entry->start = start;
1643 	if (new_entry->cred != NULL)
1644 		crhold(entry->cred);
1645 
1646 	vm_map_entry_link(map, entry->prev, new_entry);
1647 
1648 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1649 		vm_object_reference(new_entry->object.vm_object);
1650 		/*
1651 		 * The object->un_pager.vnp.writemappings for the
1652 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1653 		 * kept as is here.  The virtual pages are
1654 		 * re-distributed among the clipped entries, so the sum is
1655 		 * left the same.
1656 		 */
1657 	}
1658 }
1659 
1660 /*
1661  *	vm_map_clip_end:	[ internal use only ]
1662  *
1663  *	Asserts that the given entry ends at or before
1664  *	the specified address; if necessary,
1665  *	it splits the entry into two.
1666  */
1667 #define vm_map_clip_end(map, entry, endaddr) \
1668 { \
1669 	if ((endaddr) < (entry->end)) \
1670 		_vm_map_clip_end((map), (entry), (endaddr)); \
1671 }
1672 
1673 /*
1674  *	This routine is called only when it is known that
1675  *	the entry must be split.
1676  */
1677 static void
1678 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1679 {
1680 	vm_map_entry_t new_entry;
1681 
1682 	VM_MAP_ASSERT_LOCKED(map);
1683 
1684 	/*
1685 	 * If there is no object backing this entry, we might as well create
1686 	 * one now.  If we defer it, an object can get created after the map
1687 	 * is clipped, and individual objects will be created for the split-up
1688 	 * map.  This is a bit of a hack, but is also about the best place to
1689 	 * put this improvement.
1690 	 */
1691 	if (entry->object.vm_object == NULL && !map->system_map) {
1692 		vm_object_t object;
1693 		object = vm_object_allocate(OBJT_DEFAULT,
1694 				atop(entry->end - entry->start));
1695 		entry->object.vm_object = object;
1696 		entry->offset = 0;
1697 		if (entry->cred != NULL) {
1698 			object->cred = entry->cred;
1699 			object->charge = entry->end - entry->start;
1700 			entry->cred = NULL;
1701 		}
1702 	} else if (entry->object.vm_object != NULL &&
1703 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1704 		   entry->cred != NULL) {
1705 		VM_OBJECT_LOCK(entry->object.vm_object);
1706 		KASSERT(entry->object.vm_object->cred == NULL,
1707 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1708 		entry->object.vm_object->cred = entry->cred;
1709 		entry->object.vm_object->charge = entry->end - entry->start;
1710 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1711 		entry->cred = NULL;
1712 	}
1713 
1714 	/*
1715 	 * Create a new entry and insert it AFTER the specified entry
1716 	 */
1717 	new_entry = vm_map_entry_create(map);
1718 	*new_entry = *entry;
1719 
1720 	new_entry->start = entry->end = end;
1721 	new_entry->offset += (end - entry->start);
1722 	if (new_entry->cred != NULL)
1723 		crhold(entry->cred);
1724 
1725 	vm_map_entry_link(map, entry, new_entry);
1726 
1727 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1728 		vm_object_reference(new_entry->object.vm_object);
1729 	}
1730 }
1731 
1732 /*
1733  *	vm_map_submap:		[ kernel use only ]
1734  *
1735  *	Mark the given range as handled by a subordinate map.
1736  *
1737  *	This range must have been created with vm_map_find,
1738  *	and no other operations may have been performed on this
1739  *	range prior to calling vm_map_submap.
1740  *
1741  *	Only a limited number of operations can be performed
1742  *	within this rage after calling vm_map_submap:
1743  *		vm_fault
1744  *	[Don't try vm_map_copy!]
1745  *
1746  *	To remove a submapping, one must first remove the
1747  *	range from the superior map, and then destroy the
1748  *	submap (if desired).  [Better yet, don't try it.]
1749  */
1750 int
1751 vm_map_submap(
1752 	vm_map_t map,
1753 	vm_offset_t start,
1754 	vm_offset_t end,
1755 	vm_map_t submap)
1756 {
1757 	vm_map_entry_t entry;
1758 	int result = KERN_INVALID_ARGUMENT;
1759 
1760 	vm_map_lock(map);
1761 
1762 	VM_MAP_RANGE_CHECK(map, start, end);
1763 
1764 	if (vm_map_lookup_entry(map, start, &entry)) {
1765 		vm_map_clip_start(map, entry, start);
1766 	} else
1767 		entry = entry->next;
1768 
1769 	vm_map_clip_end(map, entry, end);
1770 
1771 	if ((entry->start == start) && (entry->end == end) &&
1772 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1773 	    (entry->object.vm_object == NULL)) {
1774 		entry->object.sub_map = submap;
1775 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1776 		result = KERN_SUCCESS;
1777 	}
1778 	vm_map_unlock(map);
1779 
1780 	return (result);
1781 }
1782 
1783 /*
1784  * The maximum number of pages to map
1785  */
1786 #define	MAX_INIT_PT	96
1787 
1788 /*
1789  *	vm_map_pmap_enter:
1790  *
1791  *	Preload read-only mappings for the given object's resident pages into
1792  *	the given map.  This eliminates the soft faults on process startup and
1793  *	immediately after an mmap(2).  Because these are speculative mappings,
1794  *	cached pages are not reactivated and mapped.
1795  */
1796 void
1797 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1798     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1799 {
1800 	vm_offset_t start;
1801 	vm_page_t p, p_start;
1802 	vm_pindex_t psize, tmpidx;
1803 
1804 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1805 		return;
1806 	VM_OBJECT_LOCK(object);
1807 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1808 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1809 		goto unlock_return;
1810 	}
1811 
1812 	psize = atop(size);
1813 
1814 	if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT &&
1815 	    object->resident_page_count > MAX_INIT_PT)
1816 		goto unlock_return;
1817 
1818 	if (psize + pindex > object->size) {
1819 		if (object->size < pindex)
1820 			goto unlock_return;
1821 		psize = object->size - pindex;
1822 	}
1823 
1824 	start = 0;
1825 	p_start = NULL;
1826 
1827 	p = vm_page_find_least(object, pindex);
1828 	/*
1829 	 * Assert: the variable p is either (1) the page with the
1830 	 * least pindex greater than or equal to the parameter pindex
1831 	 * or (2) NULL.
1832 	 */
1833 	for (;
1834 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1835 	     p = TAILQ_NEXT(p, listq)) {
1836 		/*
1837 		 * don't allow an madvise to blow away our really
1838 		 * free pages allocating pv entries.
1839 		 */
1840 		if ((flags & MAP_PREFAULT_MADVISE) &&
1841 		    cnt.v_free_count < cnt.v_free_reserved) {
1842 			psize = tmpidx;
1843 			break;
1844 		}
1845 		if (p->valid == VM_PAGE_BITS_ALL) {
1846 			if (p_start == NULL) {
1847 				start = addr + ptoa(tmpidx);
1848 				p_start = p;
1849 			}
1850 		} else if (p_start != NULL) {
1851 			pmap_enter_object(map->pmap, start, addr +
1852 			    ptoa(tmpidx), p_start, prot);
1853 			p_start = NULL;
1854 		}
1855 	}
1856 	if (p_start != NULL)
1857 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1858 		    p_start, prot);
1859 unlock_return:
1860 	VM_OBJECT_UNLOCK(object);
1861 }
1862 
1863 /*
1864  *	vm_map_protect:
1865  *
1866  *	Sets the protection of the specified address
1867  *	region in the target map.  If "set_max" is
1868  *	specified, the maximum protection is to be set;
1869  *	otherwise, only the current protection is affected.
1870  */
1871 int
1872 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1873 	       vm_prot_t new_prot, boolean_t set_max)
1874 {
1875 	vm_map_entry_t current, entry;
1876 	vm_object_t obj;
1877 	struct ucred *cred;
1878 	vm_prot_t old_prot;
1879 
1880 	vm_map_lock(map);
1881 
1882 	VM_MAP_RANGE_CHECK(map, start, end);
1883 
1884 	if (vm_map_lookup_entry(map, start, &entry)) {
1885 		vm_map_clip_start(map, entry, start);
1886 	} else {
1887 		entry = entry->next;
1888 	}
1889 
1890 	/*
1891 	 * Make a first pass to check for protection violations.
1892 	 */
1893 	current = entry;
1894 	while ((current != &map->header) && (current->start < end)) {
1895 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1896 			vm_map_unlock(map);
1897 			return (KERN_INVALID_ARGUMENT);
1898 		}
1899 		if ((new_prot & current->max_protection) != new_prot) {
1900 			vm_map_unlock(map);
1901 			return (KERN_PROTECTION_FAILURE);
1902 		}
1903 		current = current->next;
1904 	}
1905 
1906 
1907 	/*
1908 	 * Do an accounting pass for private read-only mappings that
1909 	 * now will do cow due to allowed write (e.g. debugger sets
1910 	 * breakpoint on text segment)
1911 	 */
1912 	for (current = entry; (current != &map->header) &&
1913 	     (current->start < end); current = current->next) {
1914 
1915 		vm_map_clip_end(map, current, end);
1916 
1917 		if (set_max ||
1918 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1919 		    ENTRY_CHARGED(current)) {
1920 			continue;
1921 		}
1922 
1923 		cred = curthread->td_ucred;
1924 		obj = current->object.vm_object;
1925 
1926 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1927 			if (!swap_reserve(current->end - current->start)) {
1928 				vm_map_unlock(map);
1929 				return (KERN_RESOURCE_SHORTAGE);
1930 			}
1931 			crhold(cred);
1932 			current->cred = cred;
1933 			continue;
1934 		}
1935 
1936 		VM_OBJECT_LOCK(obj);
1937 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1938 			VM_OBJECT_UNLOCK(obj);
1939 			continue;
1940 		}
1941 
1942 		/*
1943 		 * Charge for the whole object allocation now, since
1944 		 * we cannot distinguish between non-charged and
1945 		 * charged clipped mapping of the same object later.
1946 		 */
1947 		KASSERT(obj->charge == 0,
1948 		    ("vm_map_protect: object %p overcharged\n", obj));
1949 		if (!swap_reserve(ptoa(obj->size))) {
1950 			VM_OBJECT_UNLOCK(obj);
1951 			vm_map_unlock(map);
1952 			return (KERN_RESOURCE_SHORTAGE);
1953 		}
1954 
1955 		crhold(cred);
1956 		obj->cred = cred;
1957 		obj->charge = ptoa(obj->size);
1958 		VM_OBJECT_UNLOCK(obj);
1959 	}
1960 
1961 	/*
1962 	 * Go back and fix up protections. [Note that clipping is not
1963 	 * necessary the second time.]
1964 	 */
1965 	current = entry;
1966 	while ((current != &map->header) && (current->start < end)) {
1967 		old_prot = current->protection;
1968 
1969 		if (set_max)
1970 			current->protection =
1971 			    (current->max_protection = new_prot) &
1972 			    old_prot;
1973 		else
1974 			current->protection = new_prot;
1975 
1976 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1977 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1978 		    (current->protection & VM_PROT_WRITE) != 0 &&
1979 		    (old_prot & VM_PROT_WRITE) == 0) {
1980 			vm_fault_copy_entry(map, map, current, current, NULL);
1981 		}
1982 
1983 		/*
1984 		 * When restricting access, update the physical map.  Worry
1985 		 * about copy-on-write here.
1986 		 */
1987 		if ((old_prot & ~current->protection) != 0) {
1988 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1989 							VM_PROT_ALL)
1990 			pmap_protect(map->pmap, current->start,
1991 			    current->end,
1992 			    current->protection & MASK(current));
1993 #undef	MASK
1994 		}
1995 		vm_map_simplify_entry(map, current);
1996 		current = current->next;
1997 	}
1998 	vm_map_unlock(map);
1999 	return (KERN_SUCCESS);
2000 }
2001 
2002 /*
2003  *	vm_map_madvise:
2004  *
2005  *	This routine traverses a processes map handling the madvise
2006  *	system call.  Advisories are classified as either those effecting
2007  *	the vm_map_entry structure, or those effecting the underlying
2008  *	objects.
2009  */
2010 int
2011 vm_map_madvise(
2012 	vm_map_t map,
2013 	vm_offset_t start,
2014 	vm_offset_t end,
2015 	int behav)
2016 {
2017 	vm_map_entry_t current, entry;
2018 	int modify_map = 0;
2019 
2020 	/*
2021 	 * Some madvise calls directly modify the vm_map_entry, in which case
2022 	 * we need to use an exclusive lock on the map and we need to perform
2023 	 * various clipping operations.  Otherwise we only need a read-lock
2024 	 * on the map.
2025 	 */
2026 	switch(behav) {
2027 	case MADV_NORMAL:
2028 	case MADV_SEQUENTIAL:
2029 	case MADV_RANDOM:
2030 	case MADV_NOSYNC:
2031 	case MADV_AUTOSYNC:
2032 	case MADV_NOCORE:
2033 	case MADV_CORE:
2034 		modify_map = 1;
2035 		vm_map_lock(map);
2036 		break;
2037 	case MADV_WILLNEED:
2038 	case MADV_DONTNEED:
2039 	case MADV_FREE:
2040 		vm_map_lock_read(map);
2041 		break;
2042 	default:
2043 		return (KERN_INVALID_ARGUMENT);
2044 	}
2045 
2046 	/*
2047 	 * Locate starting entry and clip if necessary.
2048 	 */
2049 	VM_MAP_RANGE_CHECK(map, start, end);
2050 
2051 	if (vm_map_lookup_entry(map, start, &entry)) {
2052 		if (modify_map)
2053 			vm_map_clip_start(map, entry, start);
2054 	} else {
2055 		entry = entry->next;
2056 	}
2057 
2058 	if (modify_map) {
2059 		/*
2060 		 * madvise behaviors that are implemented in the vm_map_entry.
2061 		 *
2062 		 * We clip the vm_map_entry so that behavioral changes are
2063 		 * limited to the specified address range.
2064 		 */
2065 		for (current = entry;
2066 		     (current != &map->header) && (current->start < end);
2067 		     current = current->next
2068 		) {
2069 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2070 				continue;
2071 
2072 			vm_map_clip_end(map, current, end);
2073 
2074 			switch (behav) {
2075 			case MADV_NORMAL:
2076 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2077 				break;
2078 			case MADV_SEQUENTIAL:
2079 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2080 				break;
2081 			case MADV_RANDOM:
2082 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2083 				break;
2084 			case MADV_NOSYNC:
2085 				current->eflags |= MAP_ENTRY_NOSYNC;
2086 				break;
2087 			case MADV_AUTOSYNC:
2088 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2089 				break;
2090 			case MADV_NOCORE:
2091 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2092 				break;
2093 			case MADV_CORE:
2094 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2095 				break;
2096 			default:
2097 				break;
2098 			}
2099 			vm_map_simplify_entry(map, current);
2100 		}
2101 		vm_map_unlock(map);
2102 	} else {
2103 		vm_pindex_t pindex;
2104 		int count;
2105 
2106 		/*
2107 		 * madvise behaviors that are implemented in the underlying
2108 		 * vm_object.
2109 		 *
2110 		 * Since we don't clip the vm_map_entry, we have to clip
2111 		 * the vm_object pindex and count.
2112 		 */
2113 		for (current = entry;
2114 		     (current != &map->header) && (current->start < end);
2115 		     current = current->next
2116 		) {
2117 			vm_offset_t useStart;
2118 
2119 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2120 				continue;
2121 
2122 			pindex = OFF_TO_IDX(current->offset);
2123 			count = atop(current->end - current->start);
2124 			useStart = current->start;
2125 
2126 			if (current->start < start) {
2127 				pindex += atop(start - current->start);
2128 				count -= atop(start - current->start);
2129 				useStart = start;
2130 			}
2131 			if (current->end > end)
2132 				count -= atop(current->end - end);
2133 
2134 			if (count <= 0)
2135 				continue;
2136 
2137 			vm_object_madvise(current->object.vm_object,
2138 					  pindex, count, behav);
2139 			if (behav == MADV_WILLNEED) {
2140 				vm_map_pmap_enter(map,
2141 				    useStart,
2142 				    current->protection,
2143 				    current->object.vm_object,
2144 				    pindex,
2145 				    (count << PAGE_SHIFT),
2146 				    MAP_PREFAULT_MADVISE
2147 				);
2148 			}
2149 		}
2150 		vm_map_unlock_read(map);
2151 	}
2152 	return (0);
2153 }
2154 
2155 
2156 /*
2157  *	vm_map_inherit:
2158  *
2159  *	Sets the inheritance of the specified address
2160  *	range in the target map.  Inheritance
2161  *	affects how the map will be shared with
2162  *	child maps at the time of vmspace_fork.
2163  */
2164 int
2165 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2166 	       vm_inherit_t new_inheritance)
2167 {
2168 	vm_map_entry_t entry;
2169 	vm_map_entry_t temp_entry;
2170 
2171 	switch (new_inheritance) {
2172 	case VM_INHERIT_NONE:
2173 	case VM_INHERIT_COPY:
2174 	case VM_INHERIT_SHARE:
2175 		break;
2176 	default:
2177 		return (KERN_INVALID_ARGUMENT);
2178 	}
2179 	vm_map_lock(map);
2180 	VM_MAP_RANGE_CHECK(map, start, end);
2181 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2182 		entry = temp_entry;
2183 		vm_map_clip_start(map, entry, start);
2184 	} else
2185 		entry = temp_entry->next;
2186 	while ((entry != &map->header) && (entry->start < end)) {
2187 		vm_map_clip_end(map, entry, end);
2188 		entry->inheritance = new_inheritance;
2189 		vm_map_simplify_entry(map, entry);
2190 		entry = entry->next;
2191 	}
2192 	vm_map_unlock(map);
2193 	return (KERN_SUCCESS);
2194 }
2195 
2196 /*
2197  *	vm_map_unwire:
2198  *
2199  *	Implements both kernel and user unwiring.
2200  */
2201 int
2202 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2203     int flags)
2204 {
2205 	vm_map_entry_t entry, first_entry, tmp_entry;
2206 	vm_offset_t saved_start;
2207 	unsigned int last_timestamp;
2208 	int rv;
2209 	boolean_t need_wakeup, result, user_unwire;
2210 
2211 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2212 	vm_map_lock(map);
2213 	VM_MAP_RANGE_CHECK(map, start, end);
2214 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2215 		if (flags & VM_MAP_WIRE_HOLESOK)
2216 			first_entry = first_entry->next;
2217 		else {
2218 			vm_map_unlock(map);
2219 			return (KERN_INVALID_ADDRESS);
2220 		}
2221 	}
2222 	last_timestamp = map->timestamp;
2223 	entry = first_entry;
2224 	while (entry != &map->header && entry->start < end) {
2225 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2226 			/*
2227 			 * We have not yet clipped the entry.
2228 			 */
2229 			saved_start = (start >= entry->start) ? start :
2230 			    entry->start;
2231 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2232 			if (vm_map_unlock_and_wait(map, 0)) {
2233 				/*
2234 				 * Allow interruption of user unwiring?
2235 				 */
2236 			}
2237 			vm_map_lock(map);
2238 			if (last_timestamp+1 != map->timestamp) {
2239 				/*
2240 				 * Look again for the entry because the map was
2241 				 * modified while it was unlocked.
2242 				 * Specifically, the entry may have been
2243 				 * clipped, merged, or deleted.
2244 				 */
2245 				if (!vm_map_lookup_entry(map, saved_start,
2246 				    &tmp_entry)) {
2247 					if (flags & VM_MAP_WIRE_HOLESOK)
2248 						tmp_entry = tmp_entry->next;
2249 					else {
2250 						if (saved_start == start) {
2251 							/*
2252 							 * First_entry has been deleted.
2253 							 */
2254 							vm_map_unlock(map);
2255 							return (KERN_INVALID_ADDRESS);
2256 						}
2257 						end = saved_start;
2258 						rv = KERN_INVALID_ADDRESS;
2259 						goto done;
2260 					}
2261 				}
2262 				if (entry == first_entry)
2263 					first_entry = tmp_entry;
2264 				else
2265 					first_entry = NULL;
2266 				entry = tmp_entry;
2267 			}
2268 			last_timestamp = map->timestamp;
2269 			continue;
2270 		}
2271 		vm_map_clip_start(map, entry, start);
2272 		vm_map_clip_end(map, entry, end);
2273 		/*
2274 		 * Mark the entry in case the map lock is released.  (See
2275 		 * above.)
2276 		 */
2277 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2278 		/*
2279 		 * Check the map for holes in the specified region.
2280 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2281 		 */
2282 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2283 		    (entry->end < end && (entry->next == &map->header ||
2284 		    entry->next->start > entry->end))) {
2285 			end = entry->end;
2286 			rv = KERN_INVALID_ADDRESS;
2287 			goto done;
2288 		}
2289 		/*
2290 		 * If system unwiring, require that the entry is system wired.
2291 		 */
2292 		if (!user_unwire &&
2293 		    vm_map_entry_system_wired_count(entry) == 0) {
2294 			end = entry->end;
2295 			rv = KERN_INVALID_ARGUMENT;
2296 			goto done;
2297 		}
2298 		entry = entry->next;
2299 	}
2300 	rv = KERN_SUCCESS;
2301 done:
2302 	need_wakeup = FALSE;
2303 	if (first_entry == NULL) {
2304 		result = vm_map_lookup_entry(map, start, &first_entry);
2305 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2306 			first_entry = first_entry->next;
2307 		else
2308 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2309 	}
2310 	entry = first_entry;
2311 	while (entry != &map->header && entry->start < end) {
2312 		if (rv == KERN_SUCCESS && (!user_unwire ||
2313 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2314 			if (user_unwire)
2315 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2316 			entry->wired_count--;
2317 			if (entry->wired_count == 0) {
2318 				/*
2319 				 * Retain the map lock.
2320 				 */
2321 				vm_fault_unwire(map, entry->start, entry->end,
2322 				    entry->object.vm_object != NULL &&
2323 				    (entry->object.vm_object->type == OBJT_DEVICE ||
2324 				    entry->object.vm_object->type == OBJT_SG));
2325 			}
2326 		}
2327 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2328 			("vm_map_unwire: in-transition flag missing"));
2329 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2330 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2331 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2332 			need_wakeup = TRUE;
2333 		}
2334 		vm_map_simplify_entry(map, entry);
2335 		entry = entry->next;
2336 	}
2337 	vm_map_unlock(map);
2338 	if (need_wakeup)
2339 		vm_map_wakeup(map);
2340 	return (rv);
2341 }
2342 
2343 /*
2344  *	vm_map_wire:
2345  *
2346  *	Implements both kernel and user wiring.
2347  */
2348 int
2349 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2350     int flags)
2351 {
2352 	vm_map_entry_t entry, first_entry, tmp_entry;
2353 	vm_offset_t saved_end, saved_start;
2354 	unsigned int last_timestamp;
2355 	int rv;
2356 	boolean_t fictitious, need_wakeup, result, user_wire;
2357 	vm_prot_t prot;
2358 
2359 	prot = 0;
2360 	if (flags & VM_MAP_WIRE_WRITE)
2361 		prot |= VM_PROT_WRITE;
2362 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2363 	vm_map_lock(map);
2364 	VM_MAP_RANGE_CHECK(map, start, end);
2365 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2366 		if (flags & VM_MAP_WIRE_HOLESOK)
2367 			first_entry = first_entry->next;
2368 		else {
2369 			vm_map_unlock(map);
2370 			return (KERN_INVALID_ADDRESS);
2371 		}
2372 	}
2373 	last_timestamp = map->timestamp;
2374 	entry = first_entry;
2375 	while (entry != &map->header && entry->start < end) {
2376 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2377 			/*
2378 			 * We have not yet clipped the entry.
2379 			 */
2380 			saved_start = (start >= entry->start) ? start :
2381 			    entry->start;
2382 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2383 			if (vm_map_unlock_and_wait(map, 0)) {
2384 				/*
2385 				 * Allow interruption of user wiring?
2386 				 */
2387 			}
2388 			vm_map_lock(map);
2389 			if (last_timestamp + 1 != map->timestamp) {
2390 				/*
2391 				 * Look again for the entry because the map was
2392 				 * modified while it was unlocked.
2393 				 * Specifically, the entry may have been
2394 				 * clipped, merged, or deleted.
2395 				 */
2396 				if (!vm_map_lookup_entry(map, saved_start,
2397 				    &tmp_entry)) {
2398 					if (flags & VM_MAP_WIRE_HOLESOK)
2399 						tmp_entry = tmp_entry->next;
2400 					else {
2401 						if (saved_start == start) {
2402 							/*
2403 							 * first_entry has been deleted.
2404 							 */
2405 							vm_map_unlock(map);
2406 							return (KERN_INVALID_ADDRESS);
2407 						}
2408 						end = saved_start;
2409 						rv = KERN_INVALID_ADDRESS;
2410 						goto done;
2411 					}
2412 				}
2413 				if (entry == first_entry)
2414 					first_entry = tmp_entry;
2415 				else
2416 					first_entry = NULL;
2417 				entry = tmp_entry;
2418 			}
2419 			last_timestamp = map->timestamp;
2420 			continue;
2421 		}
2422 		vm_map_clip_start(map, entry, start);
2423 		vm_map_clip_end(map, entry, end);
2424 		/*
2425 		 * Mark the entry in case the map lock is released.  (See
2426 		 * above.)
2427 		 */
2428 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2429 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2430 		    || (entry->protection & prot) != prot) {
2431 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2432 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2433 				end = entry->end;
2434 				rv = KERN_INVALID_ADDRESS;
2435 				goto done;
2436 			}
2437 			goto next_entry;
2438 		}
2439 		if (entry->wired_count == 0) {
2440 			entry->wired_count++;
2441 			saved_start = entry->start;
2442 			saved_end = entry->end;
2443 			fictitious = entry->object.vm_object != NULL &&
2444 			    (entry->object.vm_object->type == OBJT_DEVICE ||
2445 			    entry->object.vm_object->type == OBJT_SG);
2446 			/*
2447 			 * Release the map lock, relying on the in-transition
2448 			 * mark.  Mark the map busy for fork.
2449 			 */
2450 			vm_map_busy(map);
2451 			vm_map_unlock(map);
2452 			rv = vm_fault_wire(map, saved_start, saved_end,
2453 			    fictitious);
2454 			vm_map_lock(map);
2455 			vm_map_unbusy(map);
2456 			if (last_timestamp + 1 != map->timestamp) {
2457 				/*
2458 				 * Look again for the entry because the map was
2459 				 * modified while it was unlocked.  The entry
2460 				 * may have been clipped, but NOT merged or
2461 				 * deleted.
2462 				 */
2463 				result = vm_map_lookup_entry(map, saved_start,
2464 				    &tmp_entry);
2465 				KASSERT(result, ("vm_map_wire: lookup failed"));
2466 				if (entry == first_entry)
2467 					first_entry = tmp_entry;
2468 				else
2469 					first_entry = NULL;
2470 				entry = tmp_entry;
2471 				while (entry->end < saved_end) {
2472 					if (rv != KERN_SUCCESS) {
2473 						KASSERT(entry->wired_count == 1,
2474 						    ("vm_map_wire: bad count"));
2475 						entry->wired_count = -1;
2476 					}
2477 					entry = entry->next;
2478 				}
2479 			}
2480 			last_timestamp = map->timestamp;
2481 			if (rv != KERN_SUCCESS) {
2482 				KASSERT(entry->wired_count == 1,
2483 				    ("vm_map_wire: bad count"));
2484 				/*
2485 				 * Assign an out-of-range value to represent
2486 				 * the failure to wire this entry.
2487 				 */
2488 				entry->wired_count = -1;
2489 				end = entry->end;
2490 				goto done;
2491 			}
2492 		} else if (!user_wire ||
2493 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2494 			entry->wired_count++;
2495 		}
2496 		/*
2497 		 * Check the map for holes in the specified region.
2498 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2499 		 */
2500 	next_entry:
2501 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2502 		    (entry->end < end && (entry->next == &map->header ||
2503 		    entry->next->start > entry->end))) {
2504 			end = entry->end;
2505 			rv = KERN_INVALID_ADDRESS;
2506 			goto done;
2507 		}
2508 		entry = entry->next;
2509 	}
2510 	rv = KERN_SUCCESS;
2511 done:
2512 	need_wakeup = FALSE;
2513 	if (first_entry == NULL) {
2514 		result = vm_map_lookup_entry(map, start, &first_entry);
2515 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2516 			first_entry = first_entry->next;
2517 		else
2518 			KASSERT(result, ("vm_map_wire: lookup failed"));
2519 	}
2520 	entry = first_entry;
2521 	while (entry != &map->header && entry->start < end) {
2522 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2523 			goto next_entry_done;
2524 		if (rv == KERN_SUCCESS) {
2525 			if (user_wire)
2526 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2527 		} else if (entry->wired_count == -1) {
2528 			/*
2529 			 * Wiring failed on this entry.  Thus, unwiring is
2530 			 * unnecessary.
2531 			 */
2532 			entry->wired_count = 0;
2533 		} else {
2534 			if (!user_wire ||
2535 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2536 				entry->wired_count--;
2537 			if (entry->wired_count == 0) {
2538 				/*
2539 				 * Retain the map lock.
2540 				 */
2541 				vm_fault_unwire(map, entry->start, entry->end,
2542 				    entry->object.vm_object != NULL &&
2543 				    (entry->object.vm_object->type == OBJT_DEVICE ||
2544 				    entry->object.vm_object->type == OBJT_SG));
2545 			}
2546 		}
2547 	next_entry_done:
2548 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2549 			("vm_map_wire: in-transition flag missing"));
2550 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED);
2551 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2552 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2553 			need_wakeup = TRUE;
2554 		}
2555 		vm_map_simplify_entry(map, entry);
2556 		entry = entry->next;
2557 	}
2558 	vm_map_unlock(map);
2559 	if (need_wakeup)
2560 		vm_map_wakeup(map);
2561 	return (rv);
2562 }
2563 
2564 /*
2565  * vm_map_sync
2566  *
2567  * Push any dirty cached pages in the address range to their pager.
2568  * If syncio is TRUE, dirty pages are written synchronously.
2569  * If invalidate is TRUE, any cached pages are freed as well.
2570  *
2571  * If the size of the region from start to end is zero, we are
2572  * supposed to flush all modified pages within the region containing
2573  * start.  Unfortunately, a region can be split or coalesced with
2574  * neighboring regions, making it difficult to determine what the
2575  * original region was.  Therefore, we approximate this requirement by
2576  * flushing the current region containing start.
2577  *
2578  * Returns an error if any part of the specified range is not mapped.
2579  */
2580 int
2581 vm_map_sync(
2582 	vm_map_t map,
2583 	vm_offset_t start,
2584 	vm_offset_t end,
2585 	boolean_t syncio,
2586 	boolean_t invalidate)
2587 {
2588 	vm_map_entry_t current;
2589 	vm_map_entry_t entry;
2590 	vm_size_t size;
2591 	vm_object_t object;
2592 	vm_ooffset_t offset;
2593 	unsigned int last_timestamp;
2594 
2595 	vm_map_lock_read(map);
2596 	VM_MAP_RANGE_CHECK(map, start, end);
2597 	if (!vm_map_lookup_entry(map, start, &entry)) {
2598 		vm_map_unlock_read(map);
2599 		return (KERN_INVALID_ADDRESS);
2600 	} else if (start == end) {
2601 		start = entry->start;
2602 		end = entry->end;
2603 	}
2604 	/*
2605 	 * Make a first pass to check for user-wired memory and holes.
2606 	 */
2607 	for (current = entry; current != &map->header && current->start < end;
2608 	    current = current->next) {
2609 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2610 			vm_map_unlock_read(map);
2611 			return (KERN_INVALID_ARGUMENT);
2612 		}
2613 		if (end > current->end &&
2614 		    (current->next == &map->header ||
2615 			current->end != current->next->start)) {
2616 			vm_map_unlock_read(map);
2617 			return (KERN_INVALID_ADDRESS);
2618 		}
2619 	}
2620 
2621 	if (invalidate)
2622 		pmap_remove(map->pmap, start, end);
2623 
2624 	/*
2625 	 * Make a second pass, cleaning/uncaching pages from the indicated
2626 	 * objects as we go.
2627 	 */
2628 	for (current = entry; current != &map->header && current->start < end;) {
2629 		offset = current->offset + (start - current->start);
2630 		size = (end <= current->end ? end : current->end) - start;
2631 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2632 			vm_map_t smap;
2633 			vm_map_entry_t tentry;
2634 			vm_size_t tsize;
2635 
2636 			smap = current->object.sub_map;
2637 			vm_map_lock_read(smap);
2638 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2639 			tsize = tentry->end - offset;
2640 			if (tsize < size)
2641 				size = tsize;
2642 			object = tentry->object.vm_object;
2643 			offset = tentry->offset + (offset - tentry->start);
2644 			vm_map_unlock_read(smap);
2645 		} else {
2646 			object = current->object.vm_object;
2647 		}
2648 		vm_object_reference(object);
2649 		last_timestamp = map->timestamp;
2650 		vm_map_unlock_read(map);
2651 		vm_object_sync(object, offset, size, syncio, invalidate);
2652 		start += size;
2653 		vm_object_deallocate(object);
2654 		vm_map_lock_read(map);
2655 		if (last_timestamp == map->timestamp ||
2656 		    !vm_map_lookup_entry(map, start, &current))
2657 			current = current->next;
2658 	}
2659 
2660 	vm_map_unlock_read(map);
2661 	return (KERN_SUCCESS);
2662 }
2663 
2664 /*
2665  *	vm_map_entry_unwire:	[ internal use only ]
2666  *
2667  *	Make the region specified by this entry pageable.
2668  *
2669  *	The map in question should be locked.
2670  *	[This is the reason for this routine's existence.]
2671  */
2672 static void
2673 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2674 {
2675 	vm_fault_unwire(map, entry->start, entry->end,
2676 	    entry->object.vm_object != NULL &&
2677 	    (entry->object.vm_object->type == OBJT_DEVICE ||
2678 	    entry->object.vm_object->type == OBJT_SG));
2679 	entry->wired_count = 0;
2680 }
2681 
2682 static void
2683 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2684 {
2685 
2686 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2687 		vm_object_deallocate(entry->object.vm_object);
2688 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2689 }
2690 
2691 /*
2692  *	vm_map_entry_delete:	[ internal use only ]
2693  *
2694  *	Deallocate the given entry from the target map.
2695  */
2696 static void
2697 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2698 {
2699 	vm_object_t object;
2700 	vm_pindex_t offidxstart, offidxend, count, size1;
2701 	vm_ooffset_t size;
2702 
2703 	vm_map_entry_unlink(map, entry);
2704 	object = entry->object.vm_object;
2705 	size = entry->end - entry->start;
2706 	map->size -= size;
2707 
2708 	if (entry->cred != NULL) {
2709 		swap_release_by_cred(size, entry->cred);
2710 		crfree(entry->cred);
2711 	}
2712 
2713 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2714 	    (object != NULL)) {
2715 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2716 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2717 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2718 		count = OFF_TO_IDX(size);
2719 		offidxstart = OFF_TO_IDX(entry->offset);
2720 		offidxend = offidxstart + count;
2721 		VM_OBJECT_LOCK(object);
2722 		if (object->ref_count != 1 &&
2723 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2724 		    object == kernel_object || object == kmem_object)) {
2725 			vm_object_collapse(object);
2726 
2727 			/*
2728 			 * The option OBJPR_NOTMAPPED can be passed here
2729 			 * because vm_map_delete() already performed
2730 			 * pmap_remove() on the only mapping to this range
2731 			 * of pages.
2732 			 */
2733 			vm_object_page_remove(object, offidxstart, offidxend,
2734 			    OBJPR_NOTMAPPED);
2735 			if (object->type == OBJT_SWAP)
2736 				swap_pager_freespace(object, offidxstart, count);
2737 			if (offidxend >= object->size &&
2738 			    offidxstart < object->size) {
2739 				size1 = object->size;
2740 				object->size = offidxstart;
2741 				if (object->cred != NULL) {
2742 					size1 -= object->size;
2743 					KASSERT(object->charge >= ptoa(size1),
2744 					    ("vm_map_entry_delete: object->charge < 0"));
2745 					swap_release_by_cred(ptoa(size1), object->cred);
2746 					object->charge -= ptoa(size1);
2747 				}
2748 			}
2749 		}
2750 		VM_OBJECT_UNLOCK(object);
2751 	} else
2752 		entry->object.vm_object = NULL;
2753 	if (map->system_map)
2754 		vm_map_entry_deallocate(entry, TRUE);
2755 	else {
2756 		entry->next = curthread->td_map_def_user;
2757 		curthread->td_map_def_user = entry;
2758 	}
2759 }
2760 
2761 /*
2762  *	vm_map_delete:	[ internal use only ]
2763  *
2764  *	Deallocates the given address range from the target
2765  *	map.
2766  */
2767 int
2768 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2769 {
2770 	vm_map_entry_t entry;
2771 	vm_map_entry_t first_entry;
2772 
2773 	VM_MAP_ASSERT_LOCKED(map);
2774 
2775 	/*
2776 	 * Find the start of the region, and clip it
2777 	 */
2778 	if (!vm_map_lookup_entry(map, start, &first_entry))
2779 		entry = first_entry->next;
2780 	else {
2781 		entry = first_entry;
2782 		vm_map_clip_start(map, entry, start);
2783 	}
2784 
2785 	/*
2786 	 * Step through all entries in this region
2787 	 */
2788 	while ((entry != &map->header) && (entry->start < end)) {
2789 		vm_map_entry_t next;
2790 
2791 		/*
2792 		 * Wait for wiring or unwiring of an entry to complete.
2793 		 * Also wait for any system wirings to disappear on
2794 		 * user maps.
2795 		 */
2796 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2797 		    (vm_map_pmap(map) != kernel_pmap &&
2798 		    vm_map_entry_system_wired_count(entry) != 0)) {
2799 			unsigned int last_timestamp;
2800 			vm_offset_t saved_start;
2801 			vm_map_entry_t tmp_entry;
2802 
2803 			saved_start = entry->start;
2804 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2805 			last_timestamp = map->timestamp;
2806 			(void) vm_map_unlock_and_wait(map, 0);
2807 			vm_map_lock(map);
2808 			if (last_timestamp + 1 != map->timestamp) {
2809 				/*
2810 				 * Look again for the entry because the map was
2811 				 * modified while it was unlocked.
2812 				 * Specifically, the entry may have been
2813 				 * clipped, merged, or deleted.
2814 				 */
2815 				if (!vm_map_lookup_entry(map, saved_start,
2816 							 &tmp_entry))
2817 					entry = tmp_entry->next;
2818 				else {
2819 					entry = tmp_entry;
2820 					vm_map_clip_start(map, entry,
2821 							  saved_start);
2822 				}
2823 			}
2824 			continue;
2825 		}
2826 		vm_map_clip_end(map, entry, end);
2827 
2828 		next = entry->next;
2829 
2830 		/*
2831 		 * Unwire before removing addresses from the pmap; otherwise,
2832 		 * unwiring will put the entries back in the pmap.
2833 		 */
2834 		if (entry->wired_count != 0) {
2835 			vm_map_entry_unwire(map, entry);
2836 		}
2837 
2838 		pmap_remove(map->pmap, entry->start, entry->end);
2839 
2840 		/*
2841 		 * Delete the entry only after removing all pmap
2842 		 * entries pointing to its pages.  (Otherwise, its
2843 		 * page frames may be reallocated, and any modify bits
2844 		 * will be set in the wrong object!)
2845 		 */
2846 		vm_map_entry_delete(map, entry);
2847 		entry = next;
2848 	}
2849 	return (KERN_SUCCESS);
2850 }
2851 
2852 /*
2853  *	vm_map_remove:
2854  *
2855  *	Remove the given address range from the target map.
2856  *	This is the exported form of vm_map_delete.
2857  */
2858 int
2859 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2860 {
2861 	int result;
2862 
2863 	vm_map_lock(map);
2864 	VM_MAP_RANGE_CHECK(map, start, end);
2865 	result = vm_map_delete(map, start, end);
2866 	vm_map_unlock(map);
2867 	return (result);
2868 }
2869 
2870 /*
2871  *	vm_map_check_protection:
2872  *
2873  *	Assert that the target map allows the specified privilege on the
2874  *	entire address region given.  The entire region must be allocated.
2875  *
2876  *	WARNING!  This code does not and should not check whether the
2877  *	contents of the region is accessible.  For example a smaller file
2878  *	might be mapped into a larger address space.
2879  *
2880  *	NOTE!  This code is also called by munmap().
2881  *
2882  *	The map must be locked.  A read lock is sufficient.
2883  */
2884 boolean_t
2885 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2886 			vm_prot_t protection)
2887 {
2888 	vm_map_entry_t entry;
2889 	vm_map_entry_t tmp_entry;
2890 
2891 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2892 		return (FALSE);
2893 	entry = tmp_entry;
2894 
2895 	while (start < end) {
2896 		if (entry == &map->header)
2897 			return (FALSE);
2898 		/*
2899 		 * No holes allowed!
2900 		 */
2901 		if (start < entry->start)
2902 			return (FALSE);
2903 		/*
2904 		 * Check protection associated with entry.
2905 		 */
2906 		if ((entry->protection & protection) != protection)
2907 			return (FALSE);
2908 		/* go to next entry */
2909 		start = entry->end;
2910 		entry = entry->next;
2911 	}
2912 	return (TRUE);
2913 }
2914 
2915 /*
2916  *	vm_map_copy_entry:
2917  *
2918  *	Copies the contents of the source entry to the destination
2919  *	entry.  The entries *must* be aligned properly.
2920  */
2921 static void
2922 vm_map_copy_entry(
2923 	vm_map_t src_map,
2924 	vm_map_t dst_map,
2925 	vm_map_entry_t src_entry,
2926 	vm_map_entry_t dst_entry,
2927 	vm_ooffset_t *fork_charge)
2928 {
2929 	vm_object_t src_object;
2930 	vm_map_entry_t fake_entry;
2931 	vm_offset_t size;
2932 	struct ucred *cred;
2933 	int charged;
2934 
2935 	VM_MAP_ASSERT_LOCKED(dst_map);
2936 
2937 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2938 		return;
2939 
2940 	if (src_entry->wired_count == 0) {
2941 
2942 		/*
2943 		 * If the source entry is marked needs_copy, it is already
2944 		 * write-protected.
2945 		 */
2946 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2947 			pmap_protect(src_map->pmap,
2948 			    src_entry->start,
2949 			    src_entry->end,
2950 			    src_entry->protection & ~VM_PROT_WRITE);
2951 		}
2952 
2953 		/*
2954 		 * Make a copy of the object.
2955 		 */
2956 		size = src_entry->end - src_entry->start;
2957 		if ((src_object = src_entry->object.vm_object) != NULL) {
2958 			VM_OBJECT_LOCK(src_object);
2959 			charged = ENTRY_CHARGED(src_entry);
2960 			if ((src_object->handle == NULL) &&
2961 				(src_object->type == OBJT_DEFAULT ||
2962 				 src_object->type == OBJT_SWAP)) {
2963 				vm_object_collapse(src_object);
2964 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2965 					vm_object_split(src_entry);
2966 					src_object = src_entry->object.vm_object;
2967 				}
2968 			}
2969 			vm_object_reference_locked(src_object);
2970 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2971 			if (src_entry->cred != NULL &&
2972 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
2973 				KASSERT(src_object->cred == NULL,
2974 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
2975 				     src_object));
2976 				src_object->cred = src_entry->cred;
2977 				src_object->charge = size;
2978 			}
2979 			VM_OBJECT_UNLOCK(src_object);
2980 			dst_entry->object.vm_object = src_object;
2981 			if (charged) {
2982 				cred = curthread->td_ucred;
2983 				crhold(cred);
2984 				dst_entry->cred = cred;
2985 				*fork_charge += size;
2986 				if (!(src_entry->eflags &
2987 				      MAP_ENTRY_NEEDS_COPY)) {
2988 					crhold(cred);
2989 					src_entry->cred = cred;
2990 					*fork_charge += size;
2991 				}
2992 			}
2993 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2994 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2995 			dst_entry->offset = src_entry->offset;
2996 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
2997 				/*
2998 				 * MAP_ENTRY_VN_WRITECNT cannot
2999 				 * indicate write reference from
3000 				 * src_entry, since the entry is
3001 				 * marked as needs copy.  Allocate a
3002 				 * fake entry that is used to
3003 				 * decrement object->un_pager.vnp.writecount
3004 				 * at the appropriate time.  Attach
3005 				 * fake_entry to the deferred list.
3006 				 */
3007 				fake_entry = vm_map_entry_create(dst_map);
3008 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3009 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3010 				vm_object_reference(src_object);
3011 				fake_entry->object.vm_object = src_object;
3012 				fake_entry->start = src_entry->start;
3013 				fake_entry->end = src_entry->end;
3014 				fake_entry->next = curthread->td_map_def_user;
3015 				curthread->td_map_def_user = fake_entry;
3016 			}
3017 		} else {
3018 			dst_entry->object.vm_object = NULL;
3019 			dst_entry->offset = 0;
3020 			if (src_entry->cred != NULL) {
3021 				dst_entry->cred = curthread->td_ucred;
3022 				crhold(dst_entry->cred);
3023 				*fork_charge += size;
3024 			}
3025 		}
3026 
3027 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3028 		    dst_entry->end - dst_entry->start, src_entry->start);
3029 	} else {
3030 		/*
3031 		 * Of course, wired down pages can't be set copy-on-write.
3032 		 * Cause wired pages to be copied into the new map by
3033 		 * simulating faults (the new pages are pageable)
3034 		 */
3035 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3036 		    fork_charge);
3037 	}
3038 }
3039 
3040 /*
3041  * vmspace_map_entry_forked:
3042  * Update the newly-forked vmspace each time a map entry is inherited
3043  * or copied.  The values for vm_dsize and vm_tsize are approximate
3044  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3045  */
3046 static void
3047 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3048     vm_map_entry_t entry)
3049 {
3050 	vm_size_t entrysize;
3051 	vm_offset_t newend;
3052 
3053 	entrysize = entry->end - entry->start;
3054 	vm2->vm_map.size += entrysize;
3055 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3056 		vm2->vm_ssize += btoc(entrysize);
3057 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3058 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3059 		newend = MIN(entry->end,
3060 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3061 		vm2->vm_dsize += btoc(newend - entry->start);
3062 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3063 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3064 		newend = MIN(entry->end,
3065 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3066 		vm2->vm_tsize += btoc(newend - entry->start);
3067 	}
3068 }
3069 
3070 /*
3071  * vmspace_fork:
3072  * Create a new process vmspace structure and vm_map
3073  * based on those of an existing process.  The new map
3074  * is based on the old map, according to the inheritance
3075  * values on the regions in that map.
3076  *
3077  * XXX It might be worth coalescing the entries added to the new vmspace.
3078  *
3079  * The source map must not be locked.
3080  */
3081 struct vmspace *
3082 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3083 {
3084 	struct vmspace *vm2;
3085 	vm_map_t new_map, old_map;
3086 	vm_map_entry_t new_entry, old_entry;
3087 	vm_object_t object;
3088 	int locked;
3089 
3090 	old_map = &vm1->vm_map;
3091 	/* Copy immutable fields of vm1 to vm2. */
3092 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3093 	if (vm2 == NULL)
3094 		return (NULL);
3095 	vm2->vm_taddr = vm1->vm_taddr;
3096 	vm2->vm_daddr = vm1->vm_daddr;
3097 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3098 	vm_map_lock(old_map);
3099 	if (old_map->busy)
3100 		vm_map_wait_busy(old_map);
3101 	new_map = &vm2->vm_map;
3102 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3103 	KASSERT(locked, ("vmspace_fork: lock failed"));
3104 
3105 	old_entry = old_map->header.next;
3106 
3107 	while (old_entry != &old_map->header) {
3108 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3109 			panic("vm_map_fork: encountered a submap");
3110 
3111 		switch (old_entry->inheritance) {
3112 		case VM_INHERIT_NONE:
3113 			break;
3114 
3115 		case VM_INHERIT_SHARE:
3116 			/*
3117 			 * Clone the entry, creating the shared object if necessary.
3118 			 */
3119 			object = old_entry->object.vm_object;
3120 			if (object == NULL) {
3121 				object = vm_object_allocate(OBJT_DEFAULT,
3122 					atop(old_entry->end - old_entry->start));
3123 				old_entry->object.vm_object = object;
3124 				old_entry->offset = 0;
3125 				if (old_entry->cred != NULL) {
3126 					object->cred = old_entry->cred;
3127 					object->charge = old_entry->end -
3128 					    old_entry->start;
3129 					old_entry->cred = NULL;
3130 				}
3131 			}
3132 
3133 			/*
3134 			 * Add the reference before calling vm_object_shadow
3135 			 * to insure that a shadow object is created.
3136 			 */
3137 			vm_object_reference(object);
3138 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3139 				vm_object_shadow(&old_entry->object.vm_object,
3140 				    &old_entry->offset,
3141 				    old_entry->end - old_entry->start);
3142 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3143 				/* Transfer the second reference too. */
3144 				vm_object_reference(
3145 				    old_entry->object.vm_object);
3146 
3147 				/*
3148 				 * As in vm_map_simplify_entry(), the
3149 				 * vnode lock will not be acquired in
3150 				 * this call to vm_object_deallocate().
3151 				 */
3152 				vm_object_deallocate(object);
3153 				object = old_entry->object.vm_object;
3154 			}
3155 			VM_OBJECT_LOCK(object);
3156 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3157 			if (old_entry->cred != NULL) {
3158 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3159 				object->cred = old_entry->cred;
3160 				object->charge = old_entry->end - old_entry->start;
3161 				old_entry->cred = NULL;
3162 			}
3163 			VM_OBJECT_UNLOCK(object);
3164 
3165 			/*
3166 			 * Clone the entry, referencing the shared object.
3167 			 */
3168 			new_entry = vm_map_entry_create(new_map);
3169 			*new_entry = *old_entry;
3170 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3171 			    MAP_ENTRY_IN_TRANSITION);
3172 			new_entry->wired_count = 0;
3173 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3174 				object = new_entry->object.vm_object;
3175 				KASSERT(((struct vnode *)object->handle)->
3176 				    v_writecount > 0,
3177 				    ("vmspace_fork: v_writecount"));
3178 				KASSERT(object->un_pager.vnp.writemappings > 0,
3179 				    ("vmspace_fork: vnp.writecount"));
3180 				vnode_pager_update_writecount(object,
3181 				    new_entry->start, new_entry->end);
3182 			}
3183 
3184 			/*
3185 			 * Insert the entry into the new map -- we know we're
3186 			 * inserting at the end of the new map.
3187 			 */
3188 			vm_map_entry_link(new_map, new_map->header.prev,
3189 			    new_entry);
3190 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3191 
3192 			/*
3193 			 * Update the physical map
3194 			 */
3195 			pmap_copy(new_map->pmap, old_map->pmap,
3196 			    new_entry->start,
3197 			    (old_entry->end - old_entry->start),
3198 			    old_entry->start);
3199 			break;
3200 
3201 		case VM_INHERIT_COPY:
3202 			/*
3203 			 * Clone the entry and link into the map.
3204 			 */
3205 			new_entry = vm_map_entry_create(new_map);
3206 			*new_entry = *old_entry;
3207 			/*
3208 			 * Copied entry is COW over the old object.
3209 			 */
3210 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3211 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3212 			new_entry->wired_count = 0;
3213 			new_entry->object.vm_object = NULL;
3214 			new_entry->cred = NULL;
3215 			vm_map_entry_link(new_map, new_map->header.prev,
3216 			    new_entry);
3217 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3218 			vm_map_copy_entry(old_map, new_map, old_entry,
3219 			    new_entry, fork_charge);
3220 			break;
3221 		}
3222 		old_entry = old_entry->next;
3223 	}
3224 	/*
3225 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3226 	 * map entries, which cannot be done until both old_map and
3227 	 * new_map locks are released.
3228 	 */
3229 	sx_xunlock(&old_map->lock);
3230 	sx_xunlock(&new_map->lock);
3231 	vm_map_process_deferred();
3232 
3233 	return (vm2);
3234 }
3235 
3236 int
3237 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3238     vm_prot_t prot, vm_prot_t max, int cow)
3239 {
3240 	vm_map_entry_t new_entry, prev_entry;
3241 	vm_offset_t bot, top;
3242 	vm_size_t init_ssize;
3243 	int orient, rv;
3244 	rlim_t vmemlim;
3245 
3246 	/*
3247 	 * The stack orientation is piggybacked with the cow argument.
3248 	 * Extract it into orient and mask the cow argument so that we
3249 	 * don't pass it around further.
3250 	 * NOTE: We explicitly allow bi-directional stacks.
3251 	 */
3252 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3253 	cow &= ~orient;
3254 	KASSERT(orient != 0, ("No stack grow direction"));
3255 
3256 	if (addrbos < vm_map_min(map) ||
3257 	    addrbos > vm_map_max(map) ||
3258 	    addrbos + max_ssize < addrbos)
3259 		return (KERN_NO_SPACE);
3260 
3261 	init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
3262 
3263 	PROC_LOCK(curthread->td_proc);
3264 	vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
3265 	PROC_UNLOCK(curthread->td_proc);
3266 
3267 	vm_map_lock(map);
3268 
3269 	/* If addr is already mapped, no go */
3270 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3271 		vm_map_unlock(map);
3272 		return (KERN_NO_SPACE);
3273 	}
3274 
3275 	/* If we would blow our VMEM resource limit, no go */
3276 	if (map->size + init_ssize > vmemlim) {
3277 		vm_map_unlock(map);
3278 		return (KERN_NO_SPACE);
3279 	}
3280 
3281 	/*
3282 	 * If we can't accomodate max_ssize in the current mapping, no go.
3283 	 * However, we need to be aware that subsequent user mappings might
3284 	 * map into the space we have reserved for stack, and currently this
3285 	 * space is not protected.
3286 	 *
3287 	 * Hopefully we will at least detect this condition when we try to
3288 	 * grow the stack.
3289 	 */
3290 	if ((prev_entry->next != &map->header) &&
3291 	    (prev_entry->next->start < addrbos + max_ssize)) {
3292 		vm_map_unlock(map);
3293 		return (KERN_NO_SPACE);
3294 	}
3295 
3296 	/*
3297 	 * We initially map a stack of only init_ssize.  We will grow as
3298 	 * needed later.  Depending on the orientation of the stack (i.e.
3299 	 * the grow direction) we either map at the top of the range, the
3300 	 * bottom of the range or in the middle.
3301 	 *
3302 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3303 	 * and cow to be 0.  Possibly we should eliminate these as input
3304 	 * parameters, and just pass these values here in the insert call.
3305 	 */
3306 	if (orient == MAP_STACK_GROWS_DOWN)
3307 		bot = addrbos + max_ssize - init_ssize;
3308 	else if (orient == MAP_STACK_GROWS_UP)
3309 		bot = addrbos;
3310 	else
3311 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3312 	top = bot + init_ssize;
3313 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3314 
3315 	/* Now set the avail_ssize amount. */
3316 	if (rv == KERN_SUCCESS) {
3317 		if (prev_entry != &map->header)
3318 			vm_map_clip_end(map, prev_entry, bot);
3319 		new_entry = prev_entry->next;
3320 		if (new_entry->end != top || new_entry->start != bot)
3321 			panic("Bad entry start/end for new stack entry");
3322 
3323 		new_entry->avail_ssize = max_ssize - init_ssize;
3324 		if (orient & MAP_STACK_GROWS_DOWN)
3325 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3326 		if (orient & MAP_STACK_GROWS_UP)
3327 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3328 	}
3329 
3330 	vm_map_unlock(map);
3331 	return (rv);
3332 }
3333 
3334 static int stack_guard_page = 0;
3335 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3336 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3337     &stack_guard_page, 0,
3338     "Insert stack guard page ahead of the growable segments.");
3339 
3340 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3341  * desired address is already mapped, or if we successfully grow
3342  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3343  * stack range (this is strange, but preserves compatibility with
3344  * the grow function in vm_machdep.c).
3345  */
3346 int
3347 vm_map_growstack(struct proc *p, vm_offset_t addr)
3348 {
3349 	vm_map_entry_t next_entry, prev_entry;
3350 	vm_map_entry_t new_entry, stack_entry;
3351 	struct vmspace *vm = p->p_vmspace;
3352 	vm_map_t map = &vm->vm_map;
3353 	vm_offset_t end;
3354 	size_t grow_amount, max_grow;
3355 	rlim_t stacklim, vmemlim;
3356 	int is_procstack, rv;
3357 	struct ucred *cred;
3358 #ifdef notyet
3359 	uint64_t limit;
3360 #endif
3361 #ifdef RACCT
3362 	int error;
3363 #endif
3364 
3365 Retry:
3366 	PROC_LOCK(p);
3367 	stacklim = lim_cur(p, RLIMIT_STACK);
3368 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3369 	PROC_UNLOCK(p);
3370 
3371 	vm_map_lock_read(map);
3372 
3373 	/* If addr is already in the entry range, no need to grow.*/
3374 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3375 		vm_map_unlock_read(map);
3376 		return (KERN_SUCCESS);
3377 	}
3378 
3379 	next_entry = prev_entry->next;
3380 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3381 		/*
3382 		 * This entry does not grow upwards. Since the address lies
3383 		 * beyond this entry, the next entry (if one exists) has to
3384 		 * be a downward growable entry. The entry list header is
3385 		 * never a growable entry, so it suffices to check the flags.
3386 		 */
3387 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3388 			vm_map_unlock_read(map);
3389 			return (KERN_SUCCESS);
3390 		}
3391 		stack_entry = next_entry;
3392 	} else {
3393 		/*
3394 		 * This entry grows upward. If the next entry does not at
3395 		 * least grow downwards, this is the entry we need to grow.
3396 		 * otherwise we have two possible choices and we have to
3397 		 * select one.
3398 		 */
3399 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3400 			/*
3401 			 * We have two choices; grow the entry closest to
3402 			 * the address to minimize the amount of growth.
3403 			 */
3404 			if (addr - prev_entry->end <= next_entry->start - addr)
3405 				stack_entry = prev_entry;
3406 			else
3407 				stack_entry = next_entry;
3408 		} else
3409 			stack_entry = prev_entry;
3410 	}
3411 
3412 	if (stack_entry == next_entry) {
3413 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3414 		KASSERT(addr < stack_entry->start, ("foo"));
3415 		end = (prev_entry != &map->header) ? prev_entry->end :
3416 		    stack_entry->start - stack_entry->avail_ssize;
3417 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3418 		max_grow = stack_entry->start - end;
3419 	} else {
3420 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3421 		KASSERT(addr >= stack_entry->end, ("foo"));
3422 		end = (next_entry != &map->header) ? next_entry->start :
3423 		    stack_entry->end + stack_entry->avail_ssize;
3424 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3425 		max_grow = end - stack_entry->end;
3426 	}
3427 
3428 	if (grow_amount > stack_entry->avail_ssize) {
3429 		vm_map_unlock_read(map);
3430 		return (KERN_NO_SPACE);
3431 	}
3432 
3433 	/*
3434 	 * If there is no longer enough space between the entries nogo, and
3435 	 * adjust the available space.  Note: this  should only happen if the
3436 	 * user has mapped into the stack area after the stack was created,
3437 	 * and is probably an error.
3438 	 *
3439 	 * This also effectively destroys any guard page the user might have
3440 	 * intended by limiting the stack size.
3441 	 */
3442 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3443 		if (vm_map_lock_upgrade(map))
3444 			goto Retry;
3445 
3446 		stack_entry->avail_ssize = max_grow;
3447 
3448 		vm_map_unlock(map);
3449 		return (KERN_NO_SPACE);
3450 	}
3451 
3452 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3453 
3454 	/*
3455 	 * If this is the main process stack, see if we're over the stack
3456 	 * limit.
3457 	 */
3458 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3459 		vm_map_unlock_read(map);
3460 		return (KERN_NO_SPACE);
3461 	}
3462 #ifdef RACCT
3463 	PROC_LOCK(p);
3464 	if (is_procstack &&
3465 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3466 		PROC_UNLOCK(p);
3467 		vm_map_unlock_read(map);
3468 		return (KERN_NO_SPACE);
3469 	}
3470 	PROC_UNLOCK(p);
3471 #endif
3472 
3473 	/* Round up the grow amount modulo SGROWSIZ */
3474 	grow_amount = roundup (grow_amount, sgrowsiz);
3475 	if (grow_amount > stack_entry->avail_ssize)
3476 		grow_amount = stack_entry->avail_ssize;
3477 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3478 		grow_amount = trunc_page((vm_size_t)stacklim) -
3479 		    ctob(vm->vm_ssize);
3480 	}
3481 #ifdef notyet
3482 	PROC_LOCK(p);
3483 	limit = racct_get_available(p, RACCT_STACK);
3484 	PROC_UNLOCK(p);
3485 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3486 		grow_amount = limit - ctob(vm->vm_ssize);
3487 #endif
3488 
3489 	/* If we would blow our VMEM resource limit, no go */
3490 	if (map->size + grow_amount > vmemlim) {
3491 		vm_map_unlock_read(map);
3492 		rv = KERN_NO_SPACE;
3493 		goto out;
3494 	}
3495 #ifdef RACCT
3496 	PROC_LOCK(p);
3497 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3498 		PROC_UNLOCK(p);
3499 		vm_map_unlock_read(map);
3500 		rv = KERN_NO_SPACE;
3501 		goto out;
3502 	}
3503 	PROC_UNLOCK(p);
3504 #endif
3505 
3506 	if (vm_map_lock_upgrade(map))
3507 		goto Retry;
3508 
3509 	if (stack_entry == next_entry) {
3510 		/*
3511 		 * Growing downward.
3512 		 */
3513 		/* Get the preliminary new entry start value */
3514 		addr = stack_entry->start - grow_amount;
3515 
3516 		/*
3517 		 * If this puts us into the previous entry, cut back our
3518 		 * growth to the available space. Also, see the note above.
3519 		 */
3520 		if (addr < end) {
3521 			stack_entry->avail_ssize = max_grow;
3522 			addr = end;
3523 			if (stack_guard_page)
3524 				addr += PAGE_SIZE;
3525 		}
3526 
3527 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3528 		    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
3529 
3530 		/* Adjust the available stack space by the amount we grew. */
3531 		if (rv == KERN_SUCCESS) {
3532 			if (prev_entry != &map->header)
3533 				vm_map_clip_end(map, prev_entry, addr);
3534 			new_entry = prev_entry->next;
3535 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3536 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3537 			KASSERT(new_entry->start == addr, ("foo"));
3538 			grow_amount = new_entry->end - new_entry->start;
3539 			new_entry->avail_ssize = stack_entry->avail_ssize -
3540 			    grow_amount;
3541 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3542 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3543 		}
3544 	} else {
3545 		/*
3546 		 * Growing upward.
3547 		 */
3548 		addr = stack_entry->end + grow_amount;
3549 
3550 		/*
3551 		 * If this puts us into the next entry, cut back our growth
3552 		 * to the available space. Also, see the note above.
3553 		 */
3554 		if (addr > end) {
3555 			stack_entry->avail_ssize = end - stack_entry->end;
3556 			addr = end;
3557 			if (stack_guard_page)
3558 				addr -= PAGE_SIZE;
3559 		}
3560 
3561 		grow_amount = addr - stack_entry->end;
3562 		cred = stack_entry->cred;
3563 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3564 			cred = stack_entry->object.vm_object->cred;
3565 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3566 			rv = KERN_NO_SPACE;
3567 		/* Grow the underlying object if applicable. */
3568 		else if (stack_entry->object.vm_object == NULL ||
3569 			 vm_object_coalesce(stack_entry->object.vm_object,
3570 			 stack_entry->offset,
3571 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3572 			 (vm_size_t)grow_amount, cred != NULL)) {
3573 			map->size += (addr - stack_entry->end);
3574 			/* Update the current entry. */
3575 			stack_entry->end = addr;
3576 			stack_entry->avail_ssize -= grow_amount;
3577 			vm_map_entry_resize_free(map, stack_entry);
3578 			rv = KERN_SUCCESS;
3579 
3580 			if (next_entry != &map->header)
3581 				vm_map_clip_start(map, next_entry, addr);
3582 		} else
3583 			rv = KERN_FAILURE;
3584 	}
3585 
3586 	if (rv == KERN_SUCCESS && is_procstack)
3587 		vm->vm_ssize += btoc(grow_amount);
3588 
3589 	vm_map_unlock(map);
3590 
3591 	/*
3592 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3593 	 */
3594 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3595 		vm_map_wire(map,
3596 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3597 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3598 		    (p->p_flag & P_SYSTEM)
3599 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3600 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3601 	}
3602 
3603 out:
3604 #ifdef RACCT
3605 	if (rv != KERN_SUCCESS) {
3606 		PROC_LOCK(p);
3607 		error = racct_set(p, RACCT_VMEM, map->size);
3608 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3609 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3610 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3611 		PROC_UNLOCK(p);
3612 	}
3613 #endif
3614 
3615 	return (rv);
3616 }
3617 
3618 /*
3619  * Unshare the specified VM space for exec.  If other processes are
3620  * mapped to it, then create a new one.  The new vmspace is null.
3621  */
3622 int
3623 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3624 {
3625 	struct vmspace *oldvmspace = p->p_vmspace;
3626 	struct vmspace *newvmspace;
3627 
3628 	newvmspace = vmspace_alloc(minuser, maxuser);
3629 	if (newvmspace == NULL)
3630 		return (ENOMEM);
3631 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3632 	/*
3633 	 * This code is written like this for prototype purposes.  The
3634 	 * goal is to avoid running down the vmspace here, but let the
3635 	 * other process's that are still using the vmspace to finally
3636 	 * run it down.  Even though there is little or no chance of blocking
3637 	 * here, it is a good idea to keep this form for future mods.
3638 	 */
3639 	PROC_VMSPACE_LOCK(p);
3640 	p->p_vmspace = newvmspace;
3641 	PROC_VMSPACE_UNLOCK(p);
3642 	if (p == curthread->td_proc)
3643 		pmap_activate(curthread);
3644 	vmspace_free(oldvmspace);
3645 	return (0);
3646 }
3647 
3648 /*
3649  * Unshare the specified VM space for forcing COW.  This
3650  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3651  */
3652 int
3653 vmspace_unshare(struct proc *p)
3654 {
3655 	struct vmspace *oldvmspace = p->p_vmspace;
3656 	struct vmspace *newvmspace;
3657 	vm_ooffset_t fork_charge;
3658 
3659 	if (oldvmspace->vm_refcnt == 1)
3660 		return (0);
3661 	fork_charge = 0;
3662 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3663 	if (newvmspace == NULL)
3664 		return (ENOMEM);
3665 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3666 		vmspace_free(newvmspace);
3667 		return (ENOMEM);
3668 	}
3669 	PROC_VMSPACE_LOCK(p);
3670 	p->p_vmspace = newvmspace;
3671 	PROC_VMSPACE_UNLOCK(p);
3672 	if (p == curthread->td_proc)
3673 		pmap_activate(curthread);
3674 	vmspace_free(oldvmspace);
3675 	return (0);
3676 }
3677 
3678 /*
3679  *	vm_map_lookup:
3680  *
3681  *	Finds the VM object, offset, and
3682  *	protection for a given virtual address in the
3683  *	specified map, assuming a page fault of the
3684  *	type specified.
3685  *
3686  *	Leaves the map in question locked for read; return
3687  *	values are guaranteed until a vm_map_lookup_done
3688  *	call is performed.  Note that the map argument
3689  *	is in/out; the returned map must be used in
3690  *	the call to vm_map_lookup_done.
3691  *
3692  *	A handle (out_entry) is returned for use in
3693  *	vm_map_lookup_done, to make that fast.
3694  *
3695  *	If a lookup is requested with "write protection"
3696  *	specified, the map may be changed to perform virtual
3697  *	copying operations, although the data referenced will
3698  *	remain the same.
3699  */
3700 int
3701 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3702 	      vm_offset_t vaddr,
3703 	      vm_prot_t fault_typea,
3704 	      vm_map_entry_t *out_entry,	/* OUT */
3705 	      vm_object_t *object,		/* OUT */
3706 	      vm_pindex_t *pindex,		/* OUT */
3707 	      vm_prot_t *out_prot,		/* OUT */
3708 	      boolean_t *wired)			/* OUT */
3709 {
3710 	vm_map_entry_t entry;
3711 	vm_map_t map = *var_map;
3712 	vm_prot_t prot;
3713 	vm_prot_t fault_type = fault_typea;
3714 	vm_object_t eobject;
3715 	vm_size_t size;
3716 	struct ucred *cred;
3717 
3718 RetryLookup:;
3719 
3720 	vm_map_lock_read(map);
3721 
3722 	/*
3723 	 * Lookup the faulting address.
3724 	 */
3725 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3726 		vm_map_unlock_read(map);
3727 		return (KERN_INVALID_ADDRESS);
3728 	}
3729 
3730 	entry = *out_entry;
3731 
3732 	/*
3733 	 * Handle submaps.
3734 	 */
3735 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3736 		vm_map_t old_map = map;
3737 
3738 		*var_map = map = entry->object.sub_map;
3739 		vm_map_unlock_read(old_map);
3740 		goto RetryLookup;
3741 	}
3742 
3743 	/*
3744 	 * Check whether this task is allowed to have this page.
3745 	 */
3746 	prot = entry->protection;
3747 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3748 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3749 		vm_map_unlock_read(map);
3750 		return (KERN_PROTECTION_FAILURE);
3751 	}
3752 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3753 	    (entry->eflags & MAP_ENTRY_COW) &&
3754 	    (fault_type & VM_PROT_WRITE)) {
3755 		vm_map_unlock_read(map);
3756 		return (KERN_PROTECTION_FAILURE);
3757 	}
3758 
3759 	/*
3760 	 * If this page is not pageable, we have to get it for all possible
3761 	 * accesses.
3762 	 */
3763 	*wired = (entry->wired_count != 0);
3764 	if (*wired)
3765 		fault_type = entry->protection;
3766 	size = entry->end - entry->start;
3767 	/*
3768 	 * If the entry was copy-on-write, we either ...
3769 	 */
3770 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3771 		/*
3772 		 * If we want to write the page, we may as well handle that
3773 		 * now since we've got the map locked.
3774 		 *
3775 		 * If we don't need to write the page, we just demote the
3776 		 * permissions allowed.
3777 		 */
3778 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3779 		    (fault_typea & VM_PROT_COPY) != 0) {
3780 			/*
3781 			 * Make a new object, and place it in the object
3782 			 * chain.  Note that no new references have appeared
3783 			 * -- one just moved from the map to the new
3784 			 * object.
3785 			 */
3786 			if (vm_map_lock_upgrade(map))
3787 				goto RetryLookup;
3788 
3789 			if (entry->cred == NULL) {
3790 				/*
3791 				 * The debugger owner is charged for
3792 				 * the memory.
3793 				 */
3794 				cred = curthread->td_ucred;
3795 				crhold(cred);
3796 				if (!swap_reserve_by_cred(size, cred)) {
3797 					crfree(cred);
3798 					vm_map_unlock(map);
3799 					return (KERN_RESOURCE_SHORTAGE);
3800 				}
3801 				entry->cred = cred;
3802 			}
3803 			vm_object_shadow(&entry->object.vm_object,
3804 			    &entry->offset, size);
3805 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3806 			eobject = entry->object.vm_object;
3807 			if (eobject->cred != NULL) {
3808 				/*
3809 				 * The object was not shadowed.
3810 				 */
3811 				swap_release_by_cred(size, entry->cred);
3812 				crfree(entry->cred);
3813 				entry->cred = NULL;
3814 			} else if (entry->cred != NULL) {
3815 				VM_OBJECT_LOCK(eobject);
3816 				eobject->cred = entry->cred;
3817 				eobject->charge = size;
3818 				VM_OBJECT_UNLOCK(eobject);
3819 				entry->cred = NULL;
3820 			}
3821 
3822 			vm_map_lock_downgrade(map);
3823 		} else {
3824 			/*
3825 			 * We're attempting to read a copy-on-write page --
3826 			 * don't allow writes.
3827 			 */
3828 			prot &= ~VM_PROT_WRITE;
3829 		}
3830 	}
3831 
3832 	/*
3833 	 * Create an object if necessary.
3834 	 */
3835 	if (entry->object.vm_object == NULL &&
3836 	    !map->system_map) {
3837 		if (vm_map_lock_upgrade(map))
3838 			goto RetryLookup;
3839 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3840 		    atop(size));
3841 		entry->offset = 0;
3842 		if (entry->cred != NULL) {
3843 			VM_OBJECT_LOCK(entry->object.vm_object);
3844 			entry->object.vm_object->cred = entry->cred;
3845 			entry->object.vm_object->charge = size;
3846 			VM_OBJECT_UNLOCK(entry->object.vm_object);
3847 			entry->cred = NULL;
3848 		}
3849 		vm_map_lock_downgrade(map);
3850 	}
3851 
3852 	/*
3853 	 * Return the object/offset from this entry.  If the entry was
3854 	 * copy-on-write or empty, it has been fixed up.
3855 	 */
3856 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3857 	*object = entry->object.vm_object;
3858 
3859 	*out_prot = prot;
3860 	return (KERN_SUCCESS);
3861 }
3862 
3863 /*
3864  *	vm_map_lookup_locked:
3865  *
3866  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3867  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3868  */
3869 int
3870 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3871 		     vm_offset_t vaddr,
3872 		     vm_prot_t fault_typea,
3873 		     vm_map_entry_t *out_entry,	/* OUT */
3874 		     vm_object_t *object,	/* OUT */
3875 		     vm_pindex_t *pindex,	/* OUT */
3876 		     vm_prot_t *out_prot,	/* OUT */
3877 		     boolean_t *wired)		/* OUT */
3878 {
3879 	vm_map_entry_t entry;
3880 	vm_map_t map = *var_map;
3881 	vm_prot_t prot;
3882 	vm_prot_t fault_type = fault_typea;
3883 
3884 	/*
3885 	 * Lookup the faulting address.
3886 	 */
3887 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3888 		return (KERN_INVALID_ADDRESS);
3889 
3890 	entry = *out_entry;
3891 
3892 	/*
3893 	 * Fail if the entry refers to a submap.
3894 	 */
3895 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3896 		return (KERN_FAILURE);
3897 
3898 	/*
3899 	 * Check whether this task is allowed to have this page.
3900 	 */
3901 	prot = entry->protection;
3902 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3903 	if ((fault_type & prot) != fault_type)
3904 		return (KERN_PROTECTION_FAILURE);
3905 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3906 	    (entry->eflags & MAP_ENTRY_COW) &&
3907 	    (fault_type & VM_PROT_WRITE))
3908 		return (KERN_PROTECTION_FAILURE);
3909 
3910 	/*
3911 	 * If this page is not pageable, we have to get it for all possible
3912 	 * accesses.
3913 	 */
3914 	*wired = (entry->wired_count != 0);
3915 	if (*wired)
3916 		fault_type = entry->protection;
3917 
3918 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3919 		/*
3920 		 * Fail if the entry was copy-on-write for a write fault.
3921 		 */
3922 		if (fault_type & VM_PROT_WRITE)
3923 			return (KERN_FAILURE);
3924 		/*
3925 		 * We're attempting to read a copy-on-write page --
3926 		 * don't allow writes.
3927 		 */
3928 		prot &= ~VM_PROT_WRITE;
3929 	}
3930 
3931 	/*
3932 	 * Fail if an object should be created.
3933 	 */
3934 	if (entry->object.vm_object == NULL && !map->system_map)
3935 		return (KERN_FAILURE);
3936 
3937 	/*
3938 	 * Return the object/offset from this entry.  If the entry was
3939 	 * copy-on-write or empty, it has been fixed up.
3940 	 */
3941 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3942 	*object = entry->object.vm_object;
3943 
3944 	*out_prot = prot;
3945 	return (KERN_SUCCESS);
3946 }
3947 
3948 /*
3949  *	vm_map_lookup_done:
3950  *
3951  *	Releases locks acquired by a vm_map_lookup
3952  *	(according to the handle returned by that lookup).
3953  */
3954 void
3955 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3956 {
3957 	/*
3958 	 * Unlock the main-level map
3959 	 */
3960 	vm_map_unlock_read(map);
3961 }
3962 
3963 #include "opt_ddb.h"
3964 #ifdef DDB
3965 #include <sys/kernel.h>
3966 
3967 #include <ddb/ddb.h>
3968 
3969 /*
3970  *	vm_map_print:	[ debug ]
3971  */
3972 DB_SHOW_COMMAND(map, vm_map_print)
3973 {
3974 	static int nlines;
3975 	/* XXX convert args. */
3976 	vm_map_t map = (vm_map_t)addr;
3977 	boolean_t full = have_addr;
3978 
3979 	vm_map_entry_t entry;
3980 
3981 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3982 	    (void *)map,
3983 	    (void *)map->pmap, map->nentries, map->timestamp);
3984 	nlines++;
3985 
3986 	if (!full && db_indent)
3987 		return;
3988 
3989 	db_indent += 2;
3990 	for (entry = map->header.next; entry != &map->header;
3991 	    entry = entry->next) {
3992 		db_iprintf("map entry %p: start=%p, end=%p\n",
3993 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3994 		nlines++;
3995 		{
3996 			static char *inheritance_name[4] =
3997 			{"share", "copy", "none", "donate_copy"};
3998 
3999 			db_iprintf(" prot=%x/%x/%s",
4000 			    entry->protection,
4001 			    entry->max_protection,
4002 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4003 			if (entry->wired_count != 0)
4004 				db_printf(", wired");
4005 		}
4006 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4007 			db_printf(", share=%p, offset=0x%jx\n",
4008 			    (void *)entry->object.sub_map,
4009 			    (uintmax_t)entry->offset);
4010 			nlines++;
4011 			if ((entry->prev == &map->header) ||
4012 			    (entry->prev->object.sub_map !=
4013 				entry->object.sub_map)) {
4014 				db_indent += 2;
4015 				vm_map_print((db_expr_t)(intptr_t)
4016 					     entry->object.sub_map,
4017 					     full, 0, (char *)0);
4018 				db_indent -= 2;
4019 			}
4020 		} else {
4021 			if (entry->cred != NULL)
4022 				db_printf(", ruid %d", entry->cred->cr_ruid);
4023 			db_printf(", object=%p, offset=0x%jx",
4024 			    (void *)entry->object.vm_object,
4025 			    (uintmax_t)entry->offset);
4026 			if (entry->object.vm_object && entry->object.vm_object->cred)
4027 				db_printf(", obj ruid %d charge %jx",
4028 				    entry->object.vm_object->cred->cr_ruid,
4029 				    (uintmax_t)entry->object.vm_object->charge);
4030 			if (entry->eflags & MAP_ENTRY_COW)
4031 				db_printf(", copy (%s)",
4032 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4033 			db_printf("\n");
4034 			nlines++;
4035 
4036 			if ((entry->prev == &map->header) ||
4037 			    (entry->prev->object.vm_object !=
4038 				entry->object.vm_object)) {
4039 				db_indent += 2;
4040 				vm_object_print((db_expr_t)(intptr_t)
4041 						entry->object.vm_object,
4042 						full, 0, (char *)0);
4043 				nlines += 4;
4044 				db_indent -= 2;
4045 			}
4046 		}
4047 	}
4048 	db_indent -= 2;
4049 	if (db_indent == 0)
4050 		nlines = 0;
4051 }
4052 
4053 
4054 DB_SHOW_COMMAND(procvm, procvm)
4055 {
4056 	struct proc *p;
4057 
4058 	if (have_addr) {
4059 		p = (struct proc *) addr;
4060 	} else {
4061 		p = curproc;
4062 	}
4063 
4064 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4065 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4066 	    (void *)vmspace_pmap(p->p_vmspace));
4067 
4068 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4069 }
4070 
4071 #endif /* DDB */
4072