xref: /freebsd/sys/vm/vm_map.c (revision f141ed73)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
137     vm_map_entry_t gap_entry);
138 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
139     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
140 #ifdef INVARIANTS
141 static void vm_map_zdtor(void *mem, int size, void *arg);
142 static void vmspace_zdtor(void *mem, int size, void *arg);
143 #endif
144 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
145     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
146     int cow);
147 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
148     vm_offset_t failed_addr);
149 
150 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
151     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
152      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
153 
154 /*
155  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
156  * stable.
157  */
158 #define PROC_VMSPACE_LOCK(p) do { } while (0)
159 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
160 
161 /*
162  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
163  *
164  *	Asserts that the starting and ending region
165  *	addresses fall within the valid range of the map.
166  */
167 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
168 		{					\
169 		if (start < vm_map_min(map))		\
170 			start = vm_map_min(map);	\
171 		if (end > vm_map_max(map))		\
172 			end = vm_map_max(map);		\
173 		if (start > end)			\
174 			start = end;			\
175 		}
176 
177 /*
178  *	vm_map_startup:
179  *
180  *	Initialize the vm_map module.  Must be called before
181  *	any other vm_map routines.
182  *
183  *	Map and entry structures are allocated from the general
184  *	purpose memory pool with some exceptions:
185  *
186  *	- The kernel map and kmem submap are allocated statically.
187  *	- Kernel map entries are allocated out of a static pool.
188  *
189  *	These restrictions are necessary since malloc() uses the
190  *	maps and requires map entries.
191  */
192 
193 void
194 vm_map_startup(void)
195 {
196 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
197 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
198 #ifdef INVARIANTS
199 	    vm_map_zdtor,
200 #else
201 	    NULL,
202 #endif
203 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 	uma_prealloc(mapzone, MAX_KMAP);
205 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
206 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
207 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
208 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
209 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
210 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
211 #ifdef INVARIANTS
212 	    vmspace_zdtor,
213 #else
214 	    NULL,
215 #endif
216 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
217 }
218 
219 static int
220 vmspace_zinit(void *mem, int size, int flags)
221 {
222 	struct vmspace *vm;
223 
224 	vm = (struct vmspace *)mem;
225 
226 	vm->vm_map.pmap = NULL;
227 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
228 	PMAP_LOCK_INIT(vmspace_pmap(vm));
229 	return (0);
230 }
231 
232 static int
233 vm_map_zinit(void *mem, int size, int flags)
234 {
235 	vm_map_t map;
236 
237 	map = (vm_map_t)mem;
238 	memset(map, 0, sizeof(*map));
239 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
240 	sx_init(&map->lock, "vm map (user)");
241 	return (0);
242 }
243 
244 #ifdef INVARIANTS
245 static void
246 vmspace_zdtor(void *mem, int size, void *arg)
247 {
248 	struct vmspace *vm;
249 
250 	vm = (struct vmspace *)mem;
251 
252 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
253 }
254 static void
255 vm_map_zdtor(void *mem, int size, void *arg)
256 {
257 	vm_map_t map;
258 
259 	map = (vm_map_t)mem;
260 	KASSERT(map->nentries == 0,
261 	    ("map %p nentries == %d on free.",
262 	    map, map->nentries));
263 	KASSERT(map->size == 0,
264 	    ("map %p size == %lu on free.",
265 	    map, (unsigned long)map->size));
266 }
267 #endif	/* INVARIANTS */
268 
269 /*
270  * Allocate a vmspace structure, including a vm_map and pmap,
271  * and initialize those structures.  The refcnt is set to 1.
272  *
273  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
274  */
275 struct vmspace *
276 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
277 {
278 	struct vmspace *vm;
279 
280 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
281 
282 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
283 
284 	if (pinit == NULL)
285 		pinit = &pmap_pinit;
286 
287 	if (!pinit(vmspace_pmap(vm))) {
288 		uma_zfree(vmspace_zone, vm);
289 		return (NULL);
290 	}
291 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
292 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
293 	vm->vm_refcnt = 1;
294 	vm->vm_shm = NULL;
295 	vm->vm_swrss = 0;
296 	vm->vm_tsize = 0;
297 	vm->vm_dsize = 0;
298 	vm->vm_ssize = 0;
299 	vm->vm_taddr = 0;
300 	vm->vm_daddr = 0;
301 	vm->vm_maxsaddr = 0;
302 	return (vm);
303 }
304 
305 #ifdef RACCT
306 static void
307 vmspace_container_reset(struct proc *p)
308 {
309 
310 	PROC_LOCK(p);
311 	racct_set(p, RACCT_DATA, 0);
312 	racct_set(p, RACCT_STACK, 0);
313 	racct_set(p, RACCT_RSS, 0);
314 	racct_set(p, RACCT_MEMLOCK, 0);
315 	racct_set(p, RACCT_VMEM, 0);
316 	PROC_UNLOCK(p);
317 }
318 #endif
319 
320 static inline void
321 vmspace_dofree(struct vmspace *vm)
322 {
323 
324 	CTR1(KTR_VM, "vmspace_free: %p", vm);
325 
326 	/*
327 	 * Make sure any SysV shm is freed, it might not have been in
328 	 * exit1().
329 	 */
330 	shmexit(vm);
331 
332 	/*
333 	 * Lock the map, to wait out all other references to it.
334 	 * Delete all of the mappings and pages they hold, then call
335 	 * the pmap module to reclaim anything left.
336 	 */
337 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
338 	    vm->vm_map.max_offset);
339 
340 	pmap_release(vmspace_pmap(vm));
341 	vm->vm_map.pmap = NULL;
342 	uma_zfree(vmspace_zone, vm);
343 }
344 
345 void
346 vmspace_free(struct vmspace *vm)
347 {
348 
349 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
350 	    "vmspace_free() called");
351 
352 	if (vm->vm_refcnt == 0)
353 		panic("vmspace_free: attempt to free already freed vmspace");
354 
355 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
356 		vmspace_dofree(vm);
357 }
358 
359 void
360 vmspace_exitfree(struct proc *p)
361 {
362 	struct vmspace *vm;
363 
364 	PROC_VMSPACE_LOCK(p);
365 	vm = p->p_vmspace;
366 	p->p_vmspace = NULL;
367 	PROC_VMSPACE_UNLOCK(p);
368 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
369 	vmspace_free(vm);
370 }
371 
372 void
373 vmspace_exit(struct thread *td)
374 {
375 	int refcnt;
376 	struct vmspace *vm;
377 	struct proc *p;
378 
379 	/*
380 	 * Release user portion of address space.
381 	 * This releases references to vnodes,
382 	 * which could cause I/O if the file has been unlinked.
383 	 * Need to do this early enough that we can still sleep.
384 	 *
385 	 * The last exiting process to reach this point releases as
386 	 * much of the environment as it can. vmspace_dofree() is the
387 	 * slower fallback in case another process had a temporary
388 	 * reference to the vmspace.
389 	 */
390 
391 	p = td->td_proc;
392 	vm = p->p_vmspace;
393 	atomic_add_int(&vmspace0.vm_refcnt, 1);
394 	do {
395 		refcnt = vm->vm_refcnt;
396 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
397 			/* Switch now since other proc might free vmspace */
398 			PROC_VMSPACE_LOCK(p);
399 			p->p_vmspace = &vmspace0;
400 			PROC_VMSPACE_UNLOCK(p);
401 			pmap_activate(td);
402 		}
403 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
404 	if (refcnt == 1) {
405 		if (p->p_vmspace != vm) {
406 			/* vmspace not yet freed, switch back */
407 			PROC_VMSPACE_LOCK(p);
408 			p->p_vmspace = vm;
409 			PROC_VMSPACE_UNLOCK(p);
410 			pmap_activate(td);
411 		}
412 		pmap_remove_pages(vmspace_pmap(vm));
413 		/* Switch now since this proc will free vmspace */
414 		PROC_VMSPACE_LOCK(p);
415 		p->p_vmspace = &vmspace0;
416 		PROC_VMSPACE_UNLOCK(p);
417 		pmap_activate(td);
418 		vmspace_dofree(vm);
419 	}
420 #ifdef RACCT
421 	if (racct_enable)
422 		vmspace_container_reset(p);
423 #endif
424 }
425 
426 /* Acquire reference to vmspace owned by another process. */
427 
428 struct vmspace *
429 vmspace_acquire_ref(struct proc *p)
430 {
431 	struct vmspace *vm;
432 	int refcnt;
433 
434 	PROC_VMSPACE_LOCK(p);
435 	vm = p->p_vmspace;
436 	if (vm == NULL) {
437 		PROC_VMSPACE_UNLOCK(p);
438 		return (NULL);
439 	}
440 	do {
441 		refcnt = vm->vm_refcnt;
442 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
443 			PROC_VMSPACE_UNLOCK(p);
444 			return (NULL);
445 		}
446 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
447 	if (vm != p->p_vmspace) {
448 		PROC_VMSPACE_UNLOCK(p);
449 		vmspace_free(vm);
450 		return (NULL);
451 	}
452 	PROC_VMSPACE_UNLOCK(p);
453 	return (vm);
454 }
455 
456 /*
457  * Switch between vmspaces in an AIO kernel process.
458  *
459  * The AIO kernel processes switch to and from a user process's
460  * vmspace while performing an I/O operation on behalf of a user
461  * process.  The new vmspace is either the vmspace of a user process
462  * obtained from an active AIO request or the initial vmspace of the
463  * AIO kernel process (when it is idling).  Because user processes
464  * will block to drain any active AIO requests before proceeding in
465  * exit() or execve(), the vmspace reference count for these vmspaces
466  * can never be 0.  This allows for a much simpler implementation than
467  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
468  * processes hold an extra reference on their initial vmspace for the
469  * life of the process so that this guarantee is true for any vmspace
470  * passed as 'newvm'.
471  */
472 void
473 vmspace_switch_aio(struct vmspace *newvm)
474 {
475 	struct vmspace *oldvm;
476 
477 	/* XXX: Need some way to assert that this is an aio daemon. */
478 
479 	KASSERT(newvm->vm_refcnt > 0,
480 	    ("vmspace_switch_aio: newvm unreferenced"));
481 
482 	oldvm = curproc->p_vmspace;
483 	if (oldvm == newvm)
484 		return;
485 
486 	/*
487 	 * Point to the new address space and refer to it.
488 	 */
489 	curproc->p_vmspace = newvm;
490 	atomic_add_int(&newvm->vm_refcnt, 1);
491 
492 	/* Activate the new mapping. */
493 	pmap_activate(curthread);
494 
495 	/* Remove the daemon's reference to the old address space. */
496 	KASSERT(oldvm->vm_refcnt > 1,
497 	    ("vmspace_switch_aio: oldvm dropping last reference"));
498 	vmspace_free(oldvm);
499 }
500 
501 void
502 _vm_map_lock(vm_map_t map, const char *file, int line)
503 {
504 
505 	if (map->system_map)
506 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
507 	else
508 		sx_xlock_(&map->lock, file, line);
509 	map->timestamp++;
510 }
511 
512 static void
513 vm_map_process_deferred(void)
514 {
515 	struct thread *td;
516 	vm_map_entry_t entry, next;
517 	vm_object_t object;
518 
519 	td = curthread;
520 	entry = td->td_map_def_user;
521 	td->td_map_def_user = NULL;
522 	while (entry != NULL) {
523 		next = entry->next;
524 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
525 			/*
526 			 * Decrement the object's writemappings and
527 			 * possibly the vnode's v_writecount.
528 			 */
529 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
530 			    ("Submap with writecount"));
531 			object = entry->object.vm_object;
532 			KASSERT(object != NULL, ("No object for writecount"));
533 			vnode_pager_release_writecount(object, entry->start,
534 			    entry->end);
535 		}
536 		vm_map_entry_deallocate(entry, FALSE);
537 		entry = next;
538 	}
539 }
540 
541 void
542 _vm_map_unlock(vm_map_t map, const char *file, int line)
543 {
544 
545 	if (map->system_map)
546 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
547 	else {
548 		sx_xunlock_(&map->lock, file, line);
549 		vm_map_process_deferred();
550 	}
551 }
552 
553 void
554 _vm_map_lock_read(vm_map_t map, const char *file, int line)
555 {
556 
557 	if (map->system_map)
558 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
559 	else
560 		sx_slock_(&map->lock, file, line);
561 }
562 
563 void
564 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
565 {
566 
567 	if (map->system_map)
568 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
569 	else {
570 		sx_sunlock_(&map->lock, file, line);
571 		vm_map_process_deferred();
572 	}
573 }
574 
575 int
576 _vm_map_trylock(vm_map_t map, const char *file, int line)
577 {
578 	int error;
579 
580 	error = map->system_map ?
581 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
582 	    !sx_try_xlock_(&map->lock, file, line);
583 	if (error == 0)
584 		map->timestamp++;
585 	return (error == 0);
586 }
587 
588 int
589 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
590 {
591 	int error;
592 
593 	error = map->system_map ?
594 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
595 	    !sx_try_slock_(&map->lock, file, line);
596 	return (error == 0);
597 }
598 
599 /*
600  *	_vm_map_lock_upgrade:	[ internal use only ]
601  *
602  *	Tries to upgrade a read (shared) lock on the specified map to a write
603  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
604  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
605  *	returned without a read or write lock held.
606  *
607  *	Requires that the map be read locked.
608  */
609 int
610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
611 {
612 	unsigned int last_timestamp;
613 
614 	if (map->system_map) {
615 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
616 	} else {
617 		if (!sx_try_upgrade_(&map->lock, file, line)) {
618 			last_timestamp = map->timestamp;
619 			sx_sunlock_(&map->lock, file, line);
620 			vm_map_process_deferred();
621 			/*
622 			 * If the map's timestamp does not change while the
623 			 * map is unlocked, then the upgrade succeeds.
624 			 */
625 			sx_xlock_(&map->lock, file, line);
626 			if (last_timestamp != map->timestamp) {
627 				sx_xunlock_(&map->lock, file, line);
628 				return (1);
629 			}
630 		}
631 	}
632 	map->timestamp++;
633 	return (0);
634 }
635 
636 void
637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
638 {
639 
640 	if (map->system_map) {
641 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
642 	} else
643 		sx_downgrade_(&map->lock, file, line);
644 }
645 
646 /*
647  *	vm_map_locked:
648  *
649  *	Returns a non-zero value if the caller holds a write (exclusive) lock
650  *	on the specified map and the value "0" otherwise.
651  */
652 int
653 vm_map_locked(vm_map_t map)
654 {
655 
656 	if (map->system_map)
657 		return (mtx_owned(&map->system_mtx));
658 	else
659 		return (sx_xlocked(&map->lock));
660 }
661 
662 #ifdef INVARIANTS
663 static void
664 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
665 {
666 
667 	if (map->system_map)
668 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
669 	else
670 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
671 }
672 
673 #define	VM_MAP_ASSERT_LOCKED(map) \
674     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
675 #else
676 #define	VM_MAP_ASSERT_LOCKED(map)
677 #endif
678 
679 /*
680  *	_vm_map_unlock_and_wait:
681  *
682  *	Atomically releases the lock on the specified map and puts the calling
683  *	thread to sleep.  The calling thread will remain asleep until either
684  *	vm_map_wakeup() is performed on the map or the specified timeout is
685  *	exceeded.
686  *
687  *	WARNING!  This function does not perform deferred deallocations of
688  *	objects and map	entries.  Therefore, the calling thread is expected to
689  *	reacquire the map lock after reawakening and later perform an ordinary
690  *	unlock operation, such as vm_map_unlock(), before completing its
691  *	operation on the map.
692  */
693 int
694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
695 {
696 
697 	mtx_lock(&map_sleep_mtx);
698 	if (map->system_map)
699 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
700 	else
701 		sx_xunlock_(&map->lock, file, line);
702 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
703 	    timo));
704 }
705 
706 /*
707  *	vm_map_wakeup:
708  *
709  *	Awaken any threads that have slept on the map using
710  *	vm_map_unlock_and_wait().
711  */
712 void
713 vm_map_wakeup(vm_map_t map)
714 {
715 
716 	/*
717 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
718 	 * from being performed (and lost) between the map unlock
719 	 * and the msleep() in _vm_map_unlock_and_wait().
720 	 */
721 	mtx_lock(&map_sleep_mtx);
722 	mtx_unlock(&map_sleep_mtx);
723 	wakeup(&map->root);
724 }
725 
726 void
727 vm_map_busy(vm_map_t map)
728 {
729 
730 	VM_MAP_ASSERT_LOCKED(map);
731 	map->busy++;
732 }
733 
734 void
735 vm_map_unbusy(vm_map_t map)
736 {
737 
738 	VM_MAP_ASSERT_LOCKED(map);
739 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
740 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
741 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
742 		wakeup(&map->busy);
743 	}
744 }
745 
746 void
747 vm_map_wait_busy(vm_map_t map)
748 {
749 
750 	VM_MAP_ASSERT_LOCKED(map);
751 	while (map->busy) {
752 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
753 		if (map->system_map)
754 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
755 		else
756 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
757 	}
758 	map->timestamp++;
759 }
760 
761 long
762 vmspace_resident_count(struct vmspace *vmspace)
763 {
764 	return pmap_resident_count(vmspace_pmap(vmspace));
765 }
766 
767 /*
768  *	vm_map_create:
769  *
770  *	Creates and returns a new empty VM map with
771  *	the given physical map structure, and having
772  *	the given lower and upper address bounds.
773  */
774 vm_map_t
775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
776 {
777 	vm_map_t result;
778 
779 	result = uma_zalloc(mapzone, M_WAITOK);
780 	CTR1(KTR_VM, "vm_map_create: %p", result);
781 	_vm_map_init(result, pmap, min, max);
782 	return (result);
783 }
784 
785 /*
786  * Initialize an existing vm_map structure
787  * such as that in the vmspace structure.
788  */
789 static void
790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
791 {
792 
793 	map->header.next = map->header.prev = &map->header;
794 	map->needs_wakeup = FALSE;
795 	map->system_map = 0;
796 	map->pmap = pmap;
797 	map->min_offset = min;
798 	map->max_offset = max;
799 	map->flags = 0;
800 	map->root = NULL;
801 	map->timestamp = 0;
802 	map->busy = 0;
803 }
804 
805 void
806 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
807 {
808 
809 	_vm_map_init(map, pmap, min, max);
810 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
811 	sx_init(&map->lock, "user map");
812 }
813 
814 /*
815  *	vm_map_entry_dispose:	[ internal use only ]
816  *
817  *	Inverse of vm_map_entry_create.
818  */
819 static void
820 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
821 {
822 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
823 }
824 
825 /*
826  *	vm_map_entry_create:	[ internal use only ]
827  *
828  *	Allocates a VM map entry for insertion.
829  *	No entry fields are filled in.
830  */
831 static vm_map_entry_t
832 vm_map_entry_create(vm_map_t map)
833 {
834 	vm_map_entry_t new_entry;
835 
836 	if (map->system_map)
837 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
838 	else
839 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
840 	if (new_entry == NULL)
841 		panic("vm_map_entry_create: kernel resources exhausted");
842 	return (new_entry);
843 }
844 
845 /*
846  *	vm_map_entry_set_behavior:
847  *
848  *	Set the expected access behavior, either normal, random, or
849  *	sequential.
850  */
851 static inline void
852 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
853 {
854 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
855 	    (behavior & MAP_ENTRY_BEHAV_MASK);
856 }
857 
858 /*
859  *	vm_map_entry_set_max_free:
860  *
861  *	Set the max_free field in a vm_map_entry.
862  */
863 static inline void
864 vm_map_entry_set_max_free(vm_map_entry_t entry)
865 {
866 
867 	entry->max_free = entry->adj_free;
868 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
869 		entry->max_free = entry->left->max_free;
870 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
871 		entry->max_free = entry->right->max_free;
872 }
873 
874 /*
875  *	vm_map_entry_splay:
876  *
877  *	The Sleator and Tarjan top-down splay algorithm with the
878  *	following variation.  Max_free must be computed bottom-up, so
879  *	on the downward pass, maintain the left and right spines in
880  *	reverse order.  Then, make a second pass up each side to fix
881  *	the pointers and compute max_free.  The time bound is O(log n)
882  *	amortized.
883  *
884  *	The new root is the vm_map_entry containing "addr", or else an
885  *	adjacent entry (lower or higher) if addr is not in the tree.
886  *
887  *	The map must be locked, and leaves it so.
888  *
889  *	Returns: the new root.
890  */
891 static vm_map_entry_t
892 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
893 {
894 	vm_map_entry_t llist, rlist;
895 	vm_map_entry_t ltree, rtree;
896 	vm_map_entry_t y;
897 
898 	/* Special case of empty tree. */
899 	if (root == NULL)
900 		return (root);
901 
902 	/*
903 	 * Pass One: Splay down the tree until we find addr or a NULL
904 	 * pointer where addr would go.  llist and rlist are the two
905 	 * sides in reverse order (bottom-up), with llist linked by
906 	 * the right pointer and rlist linked by the left pointer in
907 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
908 	 * the two spines.
909 	 */
910 	llist = NULL;
911 	rlist = NULL;
912 	for (;;) {
913 		/* root is never NULL in here. */
914 		if (addr < root->start) {
915 			y = root->left;
916 			if (y == NULL)
917 				break;
918 			if (addr < y->start && y->left != NULL) {
919 				/* Rotate right and put y on rlist. */
920 				root->left = y->right;
921 				y->right = root;
922 				vm_map_entry_set_max_free(root);
923 				root = y->left;
924 				y->left = rlist;
925 				rlist = y;
926 			} else {
927 				/* Put root on rlist. */
928 				root->left = rlist;
929 				rlist = root;
930 				root = y;
931 			}
932 		} else if (addr >= root->end) {
933 			y = root->right;
934 			if (y == NULL)
935 				break;
936 			if (addr >= y->end && y->right != NULL) {
937 				/* Rotate left and put y on llist. */
938 				root->right = y->left;
939 				y->left = root;
940 				vm_map_entry_set_max_free(root);
941 				root = y->right;
942 				y->right = llist;
943 				llist = y;
944 			} else {
945 				/* Put root on llist. */
946 				root->right = llist;
947 				llist = root;
948 				root = y;
949 			}
950 		} else
951 			break;
952 	}
953 
954 	/*
955 	 * Pass Two: Walk back up the two spines, flip the pointers
956 	 * and set max_free.  The subtrees of the root go at the
957 	 * bottom of llist and rlist.
958 	 */
959 	ltree = root->left;
960 	while (llist != NULL) {
961 		y = llist->right;
962 		llist->right = ltree;
963 		vm_map_entry_set_max_free(llist);
964 		ltree = llist;
965 		llist = y;
966 	}
967 	rtree = root->right;
968 	while (rlist != NULL) {
969 		y = rlist->left;
970 		rlist->left = rtree;
971 		vm_map_entry_set_max_free(rlist);
972 		rtree = rlist;
973 		rlist = y;
974 	}
975 
976 	/*
977 	 * Final assembly: add ltree and rtree as subtrees of root.
978 	 */
979 	root->left = ltree;
980 	root->right = rtree;
981 	vm_map_entry_set_max_free(root);
982 
983 	return (root);
984 }
985 
986 /*
987  *	vm_map_entry_{un,}link:
988  *
989  *	Insert/remove entries from maps.
990  */
991 static void
992 vm_map_entry_link(vm_map_t map,
993 		  vm_map_entry_t after_where,
994 		  vm_map_entry_t entry)
995 {
996 
997 	CTR4(KTR_VM,
998 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
999 	    map->nentries, entry, after_where);
1000 	VM_MAP_ASSERT_LOCKED(map);
1001 	KASSERT(after_where == &map->header ||
1002 	    after_where->end <= entry->start,
1003 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
1004 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
1005 	KASSERT(after_where->next == &map->header ||
1006 	    entry->end <= after_where->next->start,
1007 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1008 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1009 
1010 	map->nentries++;
1011 	entry->prev = after_where;
1012 	entry->next = after_where->next;
1013 	entry->next->prev = entry;
1014 	after_where->next = entry;
1015 
1016 	if (after_where != &map->header) {
1017 		if (after_where != map->root)
1018 			vm_map_entry_splay(after_where->start, map->root);
1019 		entry->right = after_where->right;
1020 		entry->left = after_where;
1021 		after_where->right = NULL;
1022 		after_where->adj_free = entry->start - after_where->end;
1023 		vm_map_entry_set_max_free(after_where);
1024 	} else {
1025 		entry->right = map->root;
1026 		entry->left = NULL;
1027 	}
1028 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1029 	    entry->next->start) - entry->end;
1030 	vm_map_entry_set_max_free(entry);
1031 	map->root = entry;
1032 }
1033 
1034 static void
1035 vm_map_entry_unlink(vm_map_t map,
1036 		    vm_map_entry_t entry)
1037 {
1038 	vm_map_entry_t next, prev, root;
1039 
1040 	VM_MAP_ASSERT_LOCKED(map);
1041 	if (entry != map->root)
1042 		vm_map_entry_splay(entry->start, map->root);
1043 	if (entry->left == NULL)
1044 		root = entry->right;
1045 	else {
1046 		root = vm_map_entry_splay(entry->start, entry->left);
1047 		root->right = entry->right;
1048 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1049 		    entry->next->start) - root->end;
1050 		vm_map_entry_set_max_free(root);
1051 	}
1052 	map->root = root;
1053 
1054 	prev = entry->prev;
1055 	next = entry->next;
1056 	next->prev = prev;
1057 	prev->next = next;
1058 	map->nentries--;
1059 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1060 	    map->nentries, entry);
1061 }
1062 
1063 /*
1064  *	vm_map_entry_resize_free:
1065  *
1066  *	Recompute the amount of free space following a vm_map_entry
1067  *	and propagate that value up the tree.  Call this function after
1068  *	resizing a map entry in-place, that is, without a call to
1069  *	vm_map_entry_link() or _unlink().
1070  *
1071  *	The map must be locked, and leaves it so.
1072  */
1073 static void
1074 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1075 {
1076 
1077 	/*
1078 	 * Using splay trees without parent pointers, propagating
1079 	 * max_free up the tree is done by moving the entry to the
1080 	 * root and making the change there.
1081 	 */
1082 	if (entry != map->root)
1083 		map->root = vm_map_entry_splay(entry->start, map->root);
1084 
1085 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1086 	    entry->next->start) - entry->end;
1087 	vm_map_entry_set_max_free(entry);
1088 }
1089 
1090 /*
1091  *	vm_map_lookup_entry:	[ internal use only ]
1092  *
1093  *	Finds the map entry containing (or
1094  *	immediately preceding) the specified address
1095  *	in the given map; the entry is returned
1096  *	in the "entry" parameter.  The boolean
1097  *	result indicates whether the address is
1098  *	actually contained in the map.
1099  */
1100 boolean_t
1101 vm_map_lookup_entry(
1102 	vm_map_t map,
1103 	vm_offset_t address,
1104 	vm_map_entry_t *entry)	/* OUT */
1105 {
1106 	vm_map_entry_t cur;
1107 	boolean_t locked;
1108 
1109 	/*
1110 	 * If the map is empty, then the map entry immediately preceding
1111 	 * "address" is the map's header.
1112 	 */
1113 	cur = map->root;
1114 	if (cur == NULL)
1115 		*entry = &map->header;
1116 	else if (address >= cur->start && cur->end > address) {
1117 		*entry = cur;
1118 		return (TRUE);
1119 	} else if ((locked = vm_map_locked(map)) ||
1120 	    sx_try_upgrade(&map->lock)) {
1121 		/*
1122 		 * Splay requires a write lock on the map.  However, it only
1123 		 * restructures the binary search tree; it does not otherwise
1124 		 * change the map.  Thus, the map's timestamp need not change
1125 		 * on a temporary upgrade.
1126 		 */
1127 		map->root = cur = vm_map_entry_splay(address, cur);
1128 		if (!locked)
1129 			sx_downgrade(&map->lock);
1130 
1131 		/*
1132 		 * If "address" is contained within a map entry, the new root
1133 		 * is that map entry.  Otherwise, the new root is a map entry
1134 		 * immediately before or after "address".
1135 		 */
1136 		if (address >= cur->start) {
1137 			*entry = cur;
1138 			if (cur->end > address)
1139 				return (TRUE);
1140 		} else
1141 			*entry = cur->prev;
1142 	} else
1143 		/*
1144 		 * Since the map is only locked for read access, perform a
1145 		 * standard binary search tree lookup for "address".
1146 		 */
1147 		for (;;) {
1148 			if (address < cur->start) {
1149 				if (cur->left == NULL) {
1150 					*entry = cur->prev;
1151 					break;
1152 				}
1153 				cur = cur->left;
1154 			} else if (cur->end > address) {
1155 				*entry = cur;
1156 				return (TRUE);
1157 			} else {
1158 				if (cur->right == NULL) {
1159 					*entry = cur;
1160 					break;
1161 				}
1162 				cur = cur->right;
1163 			}
1164 		}
1165 	return (FALSE);
1166 }
1167 
1168 /*
1169  *	vm_map_insert:
1170  *
1171  *	Inserts the given whole VM object into the target
1172  *	map at the specified address range.  The object's
1173  *	size should match that of the address range.
1174  *
1175  *	Requires that the map be locked, and leaves it so.
1176  *
1177  *	If object is non-NULL, ref count must be bumped by caller
1178  *	prior to making call to account for the new entry.
1179  */
1180 int
1181 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1182     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1183 {
1184 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1185 	struct ucred *cred;
1186 	vm_eflags_t protoeflags;
1187 	vm_inherit_t inheritance;
1188 
1189 	VM_MAP_ASSERT_LOCKED(map);
1190 	KASSERT((object != kmem_object && object != kernel_object) ||
1191 	    (cow & MAP_COPY_ON_WRITE) == 0,
1192 	    ("vm_map_insert: kmem or kernel object and COW"));
1193 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1194 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1195 	KASSERT((prot & ~max) == 0,
1196 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1197 
1198 	/*
1199 	 * Check that the start and end points are not bogus.
1200 	 */
1201 	if (start < map->min_offset || end > map->max_offset || start >= end)
1202 		return (KERN_INVALID_ADDRESS);
1203 
1204 	/*
1205 	 * Find the entry prior to the proposed starting address; if it's part
1206 	 * of an existing entry, this range is bogus.
1207 	 */
1208 	if (vm_map_lookup_entry(map, start, &temp_entry))
1209 		return (KERN_NO_SPACE);
1210 
1211 	prev_entry = temp_entry;
1212 
1213 	/*
1214 	 * Assert that the next entry doesn't overlap the end point.
1215 	 */
1216 	if (prev_entry->next != &map->header && prev_entry->next->start < end)
1217 		return (KERN_NO_SPACE);
1218 
1219 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1220 	    max != VM_PROT_NONE))
1221 		return (KERN_INVALID_ARGUMENT);
1222 
1223 	protoeflags = 0;
1224 	if (cow & MAP_COPY_ON_WRITE)
1225 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1226 	if (cow & MAP_NOFAULT)
1227 		protoeflags |= MAP_ENTRY_NOFAULT;
1228 	if (cow & MAP_DISABLE_SYNCER)
1229 		protoeflags |= MAP_ENTRY_NOSYNC;
1230 	if (cow & MAP_DISABLE_COREDUMP)
1231 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1232 	if (cow & MAP_STACK_GROWS_DOWN)
1233 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1234 	if (cow & MAP_STACK_GROWS_UP)
1235 		protoeflags |= MAP_ENTRY_GROWS_UP;
1236 	if (cow & MAP_VN_WRITECOUNT)
1237 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1238 	if ((cow & MAP_CREATE_GUARD) != 0)
1239 		protoeflags |= MAP_ENTRY_GUARD;
1240 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1241 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1242 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1243 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1244 	if (cow & MAP_INHERIT_SHARE)
1245 		inheritance = VM_INHERIT_SHARE;
1246 	else
1247 		inheritance = VM_INHERIT_DEFAULT;
1248 
1249 	cred = NULL;
1250 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1251 		goto charged;
1252 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1253 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1254 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1255 			return (KERN_RESOURCE_SHORTAGE);
1256 		KASSERT(object == NULL ||
1257 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1258 		    object->cred == NULL,
1259 		    ("overcommit: vm_map_insert o %p", object));
1260 		cred = curthread->td_ucred;
1261 	}
1262 
1263 charged:
1264 	/* Expand the kernel pmap, if necessary. */
1265 	if (map == kernel_map && end > kernel_vm_end)
1266 		pmap_growkernel(end);
1267 	if (object != NULL) {
1268 		/*
1269 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1270 		 * is trivially proven to be the only mapping for any
1271 		 * of the object's pages.  (Object granularity
1272 		 * reference counting is insufficient to recognize
1273 		 * aliases with precision.)
1274 		 */
1275 		VM_OBJECT_WLOCK(object);
1276 		if (object->ref_count > 1 || object->shadow_count != 0)
1277 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1278 		VM_OBJECT_WUNLOCK(object);
1279 	} else if (prev_entry != &map->header &&
1280 	    prev_entry->eflags == protoeflags &&
1281 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1282 	    prev_entry->end == start && prev_entry->wired_count == 0 &&
1283 	    (prev_entry->cred == cred ||
1284 	    (prev_entry->object.vm_object != NULL &&
1285 	    prev_entry->object.vm_object->cred == cred)) &&
1286 	    vm_object_coalesce(prev_entry->object.vm_object,
1287 	    prev_entry->offset,
1288 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1289 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1290 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1291 		/*
1292 		 * We were able to extend the object.  Determine if we
1293 		 * can extend the previous map entry to include the
1294 		 * new range as well.
1295 		 */
1296 		if (prev_entry->inheritance == inheritance &&
1297 		    prev_entry->protection == prot &&
1298 		    prev_entry->max_protection == max) {
1299 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1300 				map->size += end - prev_entry->end;
1301 			prev_entry->end = end;
1302 			vm_map_entry_resize_free(map, prev_entry);
1303 			vm_map_simplify_entry(map, prev_entry);
1304 			return (KERN_SUCCESS);
1305 		}
1306 
1307 		/*
1308 		 * If we can extend the object but cannot extend the
1309 		 * map entry, we have to create a new map entry.  We
1310 		 * must bump the ref count on the extended object to
1311 		 * account for it.  object may be NULL.
1312 		 */
1313 		object = prev_entry->object.vm_object;
1314 		offset = prev_entry->offset +
1315 		    (prev_entry->end - prev_entry->start);
1316 		vm_object_reference(object);
1317 		if (cred != NULL && object != NULL && object->cred != NULL &&
1318 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1319 			/* Object already accounts for this uid. */
1320 			cred = NULL;
1321 		}
1322 	}
1323 	if (cred != NULL)
1324 		crhold(cred);
1325 
1326 	/*
1327 	 * Create a new entry
1328 	 */
1329 	new_entry = vm_map_entry_create(map);
1330 	new_entry->start = start;
1331 	new_entry->end = end;
1332 	new_entry->cred = NULL;
1333 
1334 	new_entry->eflags = protoeflags;
1335 	new_entry->object.vm_object = object;
1336 	new_entry->offset = offset;
1337 
1338 	new_entry->inheritance = inheritance;
1339 	new_entry->protection = prot;
1340 	new_entry->max_protection = max;
1341 	new_entry->wired_count = 0;
1342 	new_entry->wiring_thread = NULL;
1343 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1344 	new_entry->next_read = start;
1345 
1346 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1347 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1348 	new_entry->cred = cred;
1349 
1350 	/*
1351 	 * Insert the new entry into the list
1352 	 */
1353 	vm_map_entry_link(map, prev_entry, new_entry);
1354 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1355 		map->size += new_entry->end - new_entry->start;
1356 
1357 	/*
1358 	 * Try to coalesce the new entry with both the previous and next
1359 	 * entries in the list.  Previously, we only attempted to coalesce
1360 	 * with the previous entry when object is NULL.  Here, we handle the
1361 	 * other cases, which are less common.
1362 	 */
1363 	vm_map_simplify_entry(map, new_entry);
1364 
1365 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1366 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1367 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1368 	}
1369 
1370 	return (KERN_SUCCESS);
1371 }
1372 
1373 /*
1374  *	vm_map_findspace:
1375  *
1376  *	Find the first fit (lowest VM address) for "length" free bytes
1377  *	beginning at address >= start in the given map.
1378  *
1379  *	In a vm_map_entry, "adj_free" is the amount of free space
1380  *	adjacent (higher address) to this entry, and "max_free" is the
1381  *	maximum amount of contiguous free space in its subtree.  This
1382  *	allows finding a free region in one path down the tree, so
1383  *	O(log n) amortized with splay trees.
1384  *
1385  *	The map must be locked, and leaves it so.
1386  *
1387  *	Returns: 0 on success, and starting address in *addr,
1388  *		 1 if insufficient space.
1389  */
1390 int
1391 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1392     vm_offset_t *addr)	/* OUT */
1393 {
1394 	vm_map_entry_t entry;
1395 	vm_offset_t st;
1396 
1397 	/*
1398 	 * Request must fit within min/max VM address and must avoid
1399 	 * address wrap.
1400 	 */
1401 	if (start < map->min_offset)
1402 		start = map->min_offset;
1403 	if (start + length > map->max_offset || start + length < start)
1404 		return (1);
1405 
1406 	/* Empty tree means wide open address space. */
1407 	if (map->root == NULL) {
1408 		*addr = start;
1409 		return (0);
1410 	}
1411 
1412 	/*
1413 	 * After splay, if start comes before root node, then there
1414 	 * must be a gap from start to the root.
1415 	 */
1416 	map->root = vm_map_entry_splay(start, map->root);
1417 	if (start + length <= map->root->start) {
1418 		*addr = start;
1419 		return (0);
1420 	}
1421 
1422 	/*
1423 	 * Root is the last node that might begin its gap before
1424 	 * start, and this is the last comparison where address
1425 	 * wrap might be a problem.
1426 	 */
1427 	st = (start > map->root->end) ? start : map->root->end;
1428 	if (length <= map->root->end + map->root->adj_free - st) {
1429 		*addr = st;
1430 		return (0);
1431 	}
1432 
1433 	/* With max_free, can immediately tell if no solution. */
1434 	entry = map->root->right;
1435 	if (entry == NULL || length > entry->max_free)
1436 		return (1);
1437 
1438 	/*
1439 	 * Search the right subtree in the order: left subtree, root,
1440 	 * right subtree (first fit).  The previous splay implies that
1441 	 * all regions in the right subtree have addresses > start.
1442 	 */
1443 	while (entry != NULL) {
1444 		if (entry->left != NULL && entry->left->max_free >= length)
1445 			entry = entry->left;
1446 		else if (entry->adj_free >= length) {
1447 			*addr = entry->end;
1448 			return (0);
1449 		} else
1450 			entry = entry->right;
1451 	}
1452 
1453 	/* Can't get here, so panic if we do. */
1454 	panic("vm_map_findspace: max_free corrupt");
1455 }
1456 
1457 int
1458 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1459     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1460     vm_prot_t max, int cow)
1461 {
1462 	vm_offset_t end;
1463 	int result;
1464 
1465 	end = start + length;
1466 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1467 	    object == NULL,
1468 	    ("vm_map_fixed: non-NULL backing object for stack"));
1469 	vm_map_lock(map);
1470 	VM_MAP_RANGE_CHECK(map, start, end);
1471 	if ((cow & MAP_CHECK_EXCL) == 0)
1472 		vm_map_delete(map, start, end);
1473 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1474 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1475 		    prot, max, cow);
1476 	} else {
1477 		result = vm_map_insert(map, object, offset, start, end,
1478 		    prot, max, cow);
1479 	}
1480 	vm_map_unlock(map);
1481 	return (result);
1482 }
1483 
1484 /*
1485  *	vm_map_find finds an unallocated region in the target address
1486  *	map with the given length.  The search is defined to be
1487  *	first-fit from the specified address; the region found is
1488  *	returned in the same parameter.
1489  *
1490  *	If object is non-NULL, ref count must be bumped by caller
1491  *	prior to making call to account for the new entry.
1492  */
1493 int
1494 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1495 	    vm_offset_t *addr,	/* IN/OUT */
1496 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1497 	    vm_prot_t prot, vm_prot_t max, int cow)
1498 {
1499 	vm_offset_t alignment, initial_addr, start;
1500 	int result;
1501 
1502 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1503 	    object == NULL,
1504 	    ("vm_map_find: non-NULL backing object for stack"));
1505 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1506 	    (object->flags & OBJ_COLORED) == 0))
1507 		find_space = VMFS_ANY_SPACE;
1508 	if (find_space >> 8 != 0) {
1509 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1510 		alignment = (vm_offset_t)1 << (find_space >> 8);
1511 	} else
1512 		alignment = 0;
1513 	initial_addr = *addr;
1514 again:
1515 	start = initial_addr;
1516 	vm_map_lock(map);
1517 	do {
1518 		if (find_space != VMFS_NO_SPACE) {
1519 			if (vm_map_findspace(map, start, length, addr) ||
1520 			    (max_addr != 0 && *addr + length > max_addr)) {
1521 				vm_map_unlock(map);
1522 				if (find_space == VMFS_OPTIMAL_SPACE) {
1523 					find_space = VMFS_ANY_SPACE;
1524 					goto again;
1525 				}
1526 				return (KERN_NO_SPACE);
1527 			}
1528 			switch (find_space) {
1529 			case VMFS_SUPER_SPACE:
1530 			case VMFS_OPTIMAL_SPACE:
1531 				pmap_align_superpage(object, offset, addr,
1532 				    length);
1533 				break;
1534 			case VMFS_ANY_SPACE:
1535 				break;
1536 			default:
1537 				if ((*addr & (alignment - 1)) != 0) {
1538 					*addr &= ~(alignment - 1);
1539 					*addr += alignment;
1540 				}
1541 				break;
1542 			}
1543 
1544 			start = *addr;
1545 		}
1546 		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1547 			result = vm_map_stack_locked(map, start, length,
1548 			    sgrowsiz, prot, max, cow);
1549 		} else {
1550 			result = vm_map_insert(map, object, offset, start,
1551 			    start + length, prot, max, cow);
1552 		}
1553 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1554 	    find_space != VMFS_ANY_SPACE);
1555 	vm_map_unlock(map);
1556 	return (result);
1557 }
1558 
1559 /*
1560  *	vm_map_simplify_entry:
1561  *
1562  *	Simplify the given map entry by merging with either neighbor.  This
1563  *	routine also has the ability to merge with both neighbors.
1564  *
1565  *	The map must be locked.
1566  *
1567  *	This routine guarantees that the passed entry remains valid (though
1568  *	possibly extended).  When merging, this routine may delete one or
1569  *	both neighbors.
1570  */
1571 void
1572 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1573 {
1574 	vm_map_entry_t next, prev;
1575 	vm_size_t prevsize, esize;
1576 
1577 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1578 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1579 		return;
1580 
1581 	prev = entry->prev;
1582 	if (prev != &map->header) {
1583 		prevsize = prev->end - prev->start;
1584 		if ( (prev->end == entry->start) &&
1585 		     (prev->object.vm_object == entry->object.vm_object) &&
1586 		     (!prev->object.vm_object ||
1587 			(prev->offset + prevsize == entry->offset)) &&
1588 		     (prev->eflags == entry->eflags) &&
1589 		     (prev->protection == entry->protection) &&
1590 		     (prev->max_protection == entry->max_protection) &&
1591 		     (prev->inheritance == entry->inheritance) &&
1592 		     (prev->wired_count == entry->wired_count) &&
1593 		     (prev->cred == entry->cred)) {
1594 			vm_map_entry_unlink(map, prev);
1595 			entry->start = prev->start;
1596 			entry->offset = prev->offset;
1597 			if (entry->prev != &map->header)
1598 				vm_map_entry_resize_free(map, entry->prev);
1599 
1600 			/*
1601 			 * If the backing object is a vnode object,
1602 			 * vm_object_deallocate() calls vrele().
1603 			 * However, vrele() does not lock the vnode
1604 			 * because the vnode has additional
1605 			 * references.  Thus, the map lock can be kept
1606 			 * without causing a lock-order reversal with
1607 			 * the vnode lock.
1608 			 *
1609 			 * Since we count the number of virtual page
1610 			 * mappings in object->un_pager.vnp.writemappings,
1611 			 * the writemappings value should not be adjusted
1612 			 * when the entry is disposed of.
1613 			 */
1614 			if (prev->object.vm_object)
1615 				vm_object_deallocate(prev->object.vm_object);
1616 			if (prev->cred != NULL)
1617 				crfree(prev->cred);
1618 			vm_map_entry_dispose(map, prev);
1619 		}
1620 	}
1621 
1622 	next = entry->next;
1623 	if (next != &map->header) {
1624 		esize = entry->end - entry->start;
1625 		if ((entry->end == next->start) &&
1626 		    (next->object.vm_object == entry->object.vm_object) &&
1627 		     (!entry->object.vm_object ||
1628 			(entry->offset + esize == next->offset)) &&
1629 		    (next->eflags == entry->eflags) &&
1630 		    (next->protection == entry->protection) &&
1631 		    (next->max_protection == entry->max_protection) &&
1632 		    (next->inheritance == entry->inheritance) &&
1633 		    (next->wired_count == entry->wired_count) &&
1634 		    (next->cred == entry->cred)) {
1635 			vm_map_entry_unlink(map, next);
1636 			entry->end = next->end;
1637 			vm_map_entry_resize_free(map, entry);
1638 
1639 			/*
1640 			 * See comment above.
1641 			 */
1642 			if (next->object.vm_object)
1643 				vm_object_deallocate(next->object.vm_object);
1644 			if (next->cred != NULL)
1645 				crfree(next->cred);
1646 			vm_map_entry_dispose(map, next);
1647 		}
1648 	}
1649 }
1650 /*
1651  *	vm_map_clip_start:	[ internal use only ]
1652  *
1653  *	Asserts that the given entry begins at or after
1654  *	the specified address; if necessary,
1655  *	it splits the entry into two.
1656  */
1657 #define vm_map_clip_start(map, entry, startaddr) \
1658 { \
1659 	if (startaddr > entry->start) \
1660 		_vm_map_clip_start(map, entry, startaddr); \
1661 }
1662 
1663 /*
1664  *	This routine is called only when it is known that
1665  *	the entry must be split.
1666  */
1667 static void
1668 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1669 {
1670 	vm_map_entry_t new_entry;
1671 
1672 	VM_MAP_ASSERT_LOCKED(map);
1673 	KASSERT(entry->end > start && entry->start < start,
1674 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
1675 
1676 	/*
1677 	 * Split off the front portion -- note that we must insert the new
1678 	 * entry BEFORE this one, so that this entry has the specified
1679 	 * starting address.
1680 	 */
1681 	vm_map_simplify_entry(map, entry);
1682 
1683 	/*
1684 	 * If there is no object backing this entry, we might as well create
1685 	 * one now.  If we defer it, an object can get created after the map
1686 	 * is clipped, and individual objects will be created for the split-up
1687 	 * map.  This is a bit of a hack, but is also about the best place to
1688 	 * put this improvement.
1689 	 */
1690 	if (entry->object.vm_object == NULL && !map->system_map &&
1691 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1692 		vm_object_t object;
1693 		object = vm_object_allocate(OBJT_DEFAULT,
1694 				atop(entry->end - entry->start));
1695 		entry->object.vm_object = object;
1696 		entry->offset = 0;
1697 		if (entry->cred != NULL) {
1698 			object->cred = entry->cred;
1699 			object->charge = entry->end - entry->start;
1700 			entry->cred = NULL;
1701 		}
1702 	} else if (entry->object.vm_object != NULL &&
1703 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1704 		   entry->cred != NULL) {
1705 		VM_OBJECT_WLOCK(entry->object.vm_object);
1706 		KASSERT(entry->object.vm_object->cred == NULL,
1707 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1708 		entry->object.vm_object->cred = entry->cred;
1709 		entry->object.vm_object->charge = entry->end - entry->start;
1710 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1711 		entry->cred = NULL;
1712 	}
1713 
1714 	new_entry = vm_map_entry_create(map);
1715 	*new_entry = *entry;
1716 
1717 	new_entry->end = start;
1718 	entry->offset += (start - entry->start);
1719 	entry->start = start;
1720 	if (new_entry->cred != NULL)
1721 		crhold(entry->cred);
1722 
1723 	vm_map_entry_link(map, entry->prev, new_entry);
1724 
1725 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1726 		vm_object_reference(new_entry->object.vm_object);
1727 		/*
1728 		 * The object->un_pager.vnp.writemappings for the
1729 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1730 		 * kept as is here.  The virtual pages are
1731 		 * re-distributed among the clipped entries, so the sum is
1732 		 * left the same.
1733 		 */
1734 	}
1735 }
1736 
1737 /*
1738  *	vm_map_clip_end:	[ internal use only ]
1739  *
1740  *	Asserts that the given entry ends at or before
1741  *	the specified address; if necessary,
1742  *	it splits the entry into two.
1743  */
1744 #define vm_map_clip_end(map, entry, endaddr) \
1745 { \
1746 	if ((endaddr) < (entry->end)) \
1747 		_vm_map_clip_end((map), (entry), (endaddr)); \
1748 }
1749 
1750 /*
1751  *	This routine is called only when it is known that
1752  *	the entry must be split.
1753  */
1754 static void
1755 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1756 {
1757 	vm_map_entry_t new_entry;
1758 
1759 	VM_MAP_ASSERT_LOCKED(map);
1760 	KASSERT(entry->start < end && entry->end > end,
1761 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
1762 
1763 	/*
1764 	 * If there is no object backing this entry, we might as well create
1765 	 * one now.  If we defer it, an object can get created after the map
1766 	 * is clipped, and individual objects will be created for the split-up
1767 	 * map.  This is a bit of a hack, but is also about the best place to
1768 	 * put this improvement.
1769 	 */
1770 	if (entry->object.vm_object == NULL && !map->system_map &&
1771 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1772 		vm_object_t object;
1773 		object = vm_object_allocate(OBJT_DEFAULT,
1774 				atop(entry->end - entry->start));
1775 		entry->object.vm_object = object;
1776 		entry->offset = 0;
1777 		if (entry->cred != NULL) {
1778 			object->cred = entry->cred;
1779 			object->charge = entry->end - entry->start;
1780 			entry->cred = NULL;
1781 		}
1782 	} else if (entry->object.vm_object != NULL &&
1783 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1784 		   entry->cred != NULL) {
1785 		VM_OBJECT_WLOCK(entry->object.vm_object);
1786 		KASSERT(entry->object.vm_object->cred == NULL,
1787 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1788 		entry->object.vm_object->cred = entry->cred;
1789 		entry->object.vm_object->charge = entry->end - entry->start;
1790 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1791 		entry->cred = NULL;
1792 	}
1793 
1794 	/*
1795 	 * Create a new entry and insert it AFTER the specified entry
1796 	 */
1797 	new_entry = vm_map_entry_create(map);
1798 	*new_entry = *entry;
1799 
1800 	new_entry->start = entry->end = end;
1801 	new_entry->offset += (end - entry->start);
1802 	if (new_entry->cred != NULL)
1803 		crhold(entry->cred);
1804 
1805 	vm_map_entry_link(map, entry, new_entry);
1806 
1807 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1808 		vm_object_reference(new_entry->object.vm_object);
1809 	}
1810 }
1811 
1812 /*
1813  *	vm_map_submap:		[ kernel use only ]
1814  *
1815  *	Mark the given range as handled by a subordinate map.
1816  *
1817  *	This range must have been created with vm_map_find,
1818  *	and no other operations may have been performed on this
1819  *	range prior to calling vm_map_submap.
1820  *
1821  *	Only a limited number of operations can be performed
1822  *	within this rage after calling vm_map_submap:
1823  *		vm_fault
1824  *	[Don't try vm_map_copy!]
1825  *
1826  *	To remove a submapping, one must first remove the
1827  *	range from the superior map, and then destroy the
1828  *	submap (if desired).  [Better yet, don't try it.]
1829  */
1830 int
1831 vm_map_submap(
1832 	vm_map_t map,
1833 	vm_offset_t start,
1834 	vm_offset_t end,
1835 	vm_map_t submap)
1836 {
1837 	vm_map_entry_t entry;
1838 	int result = KERN_INVALID_ARGUMENT;
1839 
1840 	vm_map_lock(map);
1841 
1842 	VM_MAP_RANGE_CHECK(map, start, end);
1843 
1844 	if (vm_map_lookup_entry(map, start, &entry)) {
1845 		vm_map_clip_start(map, entry, start);
1846 	} else
1847 		entry = entry->next;
1848 
1849 	vm_map_clip_end(map, entry, end);
1850 
1851 	if ((entry->start == start) && (entry->end == end) &&
1852 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1853 	    (entry->object.vm_object == NULL)) {
1854 		entry->object.sub_map = submap;
1855 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1856 		result = KERN_SUCCESS;
1857 	}
1858 	vm_map_unlock(map);
1859 
1860 	return (result);
1861 }
1862 
1863 /*
1864  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1865  */
1866 #define	MAX_INIT_PT	96
1867 
1868 /*
1869  *	vm_map_pmap_enter:
1870  *
1871  *	Preload the specified map's pmap with mappings to the specified
1872  *	object's memory-resident pages.  No further physical pages are
1873  *	allocated, and no further virtual pages are retrieved from secondary
1874  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1875  *	limited number of page mappings are created at the low-end of the
1876  *	specified address range.  (For this purpose, a superpage mapping
1877  *	counts as one page mapping.)  Otherwise, all resident pages within
1878  *	the specified address range are mapped.
1879  */
1880 static void
1881 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1882     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1883 {
1884 	vm_offset_t start;
1885 	vm_page_t p, p_start;
1886 	vm_pindex_t mask, psize, threshold, tmpidx;
1887 
1888 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1889 		return;
1890 	VM_OBJECT_RLOCK(object);
1891 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1892 		VM_OBJECT_RUNLOCK(object);
1893 		VM_OBJECT_WLOCK(object);
1894 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1895 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1896 			    size);
1897 			VM_OBJECT_WUNLOCK(object);
1898 			return;
1899 		}
1900 		VM_OBJECT_LOCK_DOWNGRADE(object);
1901 	}
1902 
1903 	psize = atop(size);
1904 	if (psize + pindex > object->size) {
1905 		if (object->size < pindex) {
1906 			VM_OBJECT_RUNLOCK(object);
1907 			return;
1908 		}
1909 		psize = object->size - pindex;
1910 	}
1911 
1912 	start = 0;
1913 	p_start = NULL;
1914 	threshold = MAX_INIT_PT;
1915 
1916 	p = vm_page_find_least(object, pindex);
1917 	/*
1918 	 * Assert: the variable p is either (1) the page with the
1919 	 * least pindex greater than or equal to the parameter pindex
1920 	 * or (2) NULL.
1921 	 */
1922 	for (;
1923 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1924 	     p = TAILQ_NEXT(p, listq)) {
1925 		/*
1926 		 * don't allow an madvise to blow away our really
1927 		 * free pages allocating pv entries.
1928 		 */
1929 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1930 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1931 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1932 		    tmpidx >= threshold)) {
1933 			psize = tmpidx;
1934 			break;
1935 		}
1936 		if (p->valid == VM_PAGE_BITS_ALL) {
1937 			if (p_start == NULL) {
1938 				start = addr + ptoa(tmpidx);
1939 				p_start = p;
1940 			}
1941 			/* Jump ahead if a superpage mapping is possible. */
1942 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1943 			    (pagesizes[p->psind] - 1)) == 0) {
1944 				mask = atop(pagesizes[p->psind]) - 1;
1945 				if (tmpidx + mask < psize &&
1946 				    vm_page_ps_is_valid(p)) {
1947 					p += mask;
1948 					threshold += mask;
1949 				}
1950 			}
1951 		} else if (p_start != NULL) {
1952 			pmap_enter_object(map->pmap, start, addr +
1953 			    ptoa(tmpidx), p_start, prot);
1954 			p_start = NULL;
1955 		}
1956 	}
1957 	if (p_start != NULL)
1958 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1959 		    p_start, prot);
1960 	VM_OBJECT_RUNLOCK(object);
1961 }
1962 
1963 /*
1964  *	vm_map_protect:
1965  *
1966  *	Sets the protection of the specified address
1967  *	region in the target map.  If "set_max" is
1968  *	specified, the maximum protection is to be set;
1969  *	otherwise, only the current protection is affected.
1970  */
1971 int
1972 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1973 	       vm_prot_t new_prot, boolean_t set_max)
1974 {
1975 	vm_map_entry_t current, entry;
1976 	vm_object_t obj;
1977 	struct ucred *cred;
1978 	vm_prot_t old_prot;
1979 
1980 	if (start == end)
1981 		return (KERN_SUCCESS);
1982 
1983 	vm_map_lock(map);
1984 
1985 	/*
1986 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
1987 	 * need to fault pages into the map and will drop the map lock while
1988 	 * doing so, and the VM object may end up in an inconsistent state if we
1989 	 * update the protection on the map entry in between faults.
1990 	 */
1991 	vm_map_wait_busy(map);
1992 
1993 	VM_MAP_RANGE_CHECK(map, start, end);
1994 
1995 	if (vm_map_lookup_entry(map, start, &entry)) {
1996 		vm_map_clip_start(map, entry, start);
1997 	} else {
1998 		entry = entry->next;
1999 	}
2000 
2001 	/*
2002 	 * Make a first pass to check for protection violations.
2003 	 */
2004 	for (current = entry; current != &map->header && current->start < end;
2005 	    current = current->next) {
2006 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2007 			vm_map_unlock(map);
2008 			return (KERN_INVALID_ARGUMENT);
2009 		}
2010 		if ((new_prot & current->max_protection) != new_prot) {
2011 			vm_map_unlock(map);
2012 			return (KERN_PROTECTION_FAILURE);
2013 		}
2014 	}
2015 
2016 	/*
2017 	 * Do an accounting pass for private read-only mappings that
2018 	 * now will do cow due to allowed write (e.g. debugger sets
2019 	 * breakpoint on text segment)
2020 	 */
2021 	for (current = entry; current != &map->header && current->start < end;
2022 	    current = current->next) {
2023 
2024 		vm_map_clip_end(map, current, end);
2025 
2026 		if (set_max ||
2027 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2028 		    ENTRY_CHARGED(current) ||
2029 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2030 			continue;
2031 		}
2032 
2033 		cred = curthread->td_ucred;
2034 		obj = current->object.vm_object;
2035 
2036 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2037 			if (!swap_reserve(current->end - current->start)) {
2038 				vm_map_unlock(map);
2039 				return (KERN_RESOURCE_SHORTAGE);
2040 			}
2041 			crhold(cred);
2042 			current->cred = cred;
2043 			continue;
2044 		}
2045 
2046 		VM_OBJECT_WLOCK(obj);
2047 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2048 			VM_OBJECT_WUNLOCK(obj);
2049 			continue;
2050 		}
2051 
2052 		/*
2053 		 * Charge for the whole object allocation now, since
2054 		 * we cannot distinguish between non-charged and
2055 		 * charged clipped mapping of the same object later.
2056 		 */
2057 		KASSERT(obj->charge == 0,
2058 		    ("vm_map_protect: object %p overcharged (entry %p)",
2059 		    obj, current));
2060 		if (!swap_reserve(ptoa(obj->size))) {
2061 			VM_OBJECT_WUNLOCK(obj);
2062 			vm_map_unlock(map);
2063 			return (KERN_RESOURCE_SHORTAGE);
2064 		}
2065 
2066 		crhold(cred);
2067 		obj->cred = cred;
2068 		obj->charge = ptoa(obj->size);
2069 		VM_OBJECT_WUNLOCK(obj);
2070 	}
2071 
2072 	/*
2073 	 * Go back and fix up protections. [Note that clipping is not
2074 	 * necessary the second time.]
2075 	 */
2076 	for (current = entry; current != &map->header && current->start < end;
2077 	    current = current->next) {
2078 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2079 			continue;
2080 
2081 		old_prot = current->protection;
2082 
2083 		if (set_max)
2084 			current->protection =
2085 			    (current->max_protection = new_prot) &
2086 			    old_prot;
2087 		else
2088 			current->protection = new_prot;
2089 
2090 		/*
2091 		 * For user wired map entries, the normal lazy evaluation of
2092 		 * write access upgrades through soft page faults is
2093 		 * undesirable.  Instead, immediately copy any pages that are
2094 		 * copy-on-write and enable write access in the physical map.
2095 		 */
2096 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2097 		    (current->protection & VM_PROT_WRITE) != 0 &&
2098 		    (old_prot & VM_PROT_WRITE) == 0)
2099 			vm_fault_copy_entry(map, map, current, current, NULL);
2100 
2101 		/*
2102 		 * When restricting access, update the physical map.  Worry
2103 		 * about copy-on-write here.
2104 		 */
2105 		if ((old_prot & ~current->protection) != 0) {
2106 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2107 							VM_PROT_ALL)
2108 			pmap_protect(map->pmap, current->start,
2109 			    current->end,
2110 			    current->protection & MASK(current));
2111 #undef	MASK
2112 		}
2113 		vm_map_simplify_entry(map, current);
2114 	}
2115 	vm_map_unlock(map);
2116 	return (KERN_SUCCESS);
2117 }
2118 
2119 /*
2120  *	vm_map_madvise:
2121  *
2122  *	This routine traverses a processes map handling the madvise
2123  *	system call.  Advisories are classified as either those effecting
2124  *	the vm_map_entry structure, or those effecting the underlying
2125  *	objects.
2126  */
2127 int
2128 vm_map_madvise(
2129 	vm_map_t map,
2130 	vm_offset_t start,
2131 	vm_offset_t end,
2132 	int behav)
2133 {
2134 	vm_map_entry_t current, entry;
2135 	int modify_map = 0;
2136 
2137 	/*
2138 	 * Some madvise calls directly modify the vm_map_entry, in which case
2139 	 * we need to use an exclusive lock on the map and we need to perform
2140 	 * various clipping operations.  Otherwise we only need a read-lock
2141 	 * on the map.
2142 	 */
2143 	switch(behav) {
2144 	case MADV_NORMAL:
2145 	case MADV_SEQUENTIAL:
2146 	case MADV_RANDOM:
2147 	case MADV_NOSYNC:
2148 	case MADV_AUTOSYNC:
2149 	case MADV_NOCORE:
2150 	case MADV_CORE:
2151 		if (start == end)
2152 			return (KERN_SUCCESS);
2153 		modify_map = 1;
2154 		vm_map_lock(map);
2155 		break;
2156 	case MADV_WILLNEED:
2157 	case MADV_DONTNEED:
2158 	case MADV_FREE:
2159 		if (start == end)
2160 			return (KERN_SUCCESS);
2161 		vm_map_lock_read(map);
2162 		break;
2163 	default:
2164 		return (KERN_INVALID_ARGUMENT);
2165 	}
2166 
2167 	/*
2168 	 * Locate starting entry and clip if necessary.
2169 	 */
2170 	VM_MAP_RANGE_CHECK(map, start, end);
2171 
2172 	if (vm_map_lookup_entry(map, start, &entry)) {
2173 		if (modify_map)
2174 			vm_map_clip_start(map, entry, start);
2175 	} else {
2176 		entry = entry->next;
2177 	}
2178 
2179 	if (modify_map) {
2180 		/*
2181 		 * madvise behaviors that are implemented in the vm_map_entry.
2182 		 *
2183 		 * We clip the vm_map_entry so that behavioral changes are
2184 		 * limited to the specified address range.
2185 		 */
2186 		for (current = entry;
2187 		     (current != &map->header) && (current->start < end);
2188 		     current = current->next
2189 		) {
2190 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2191 				continue;
2192 
2193 			vm_map_clip_end(map, current, end);
2194 
2195 			switch (behav) {
2196 			case MADV_NORMAL:
2197 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2198 				break;
2199 			case MADV_SEQUENTIAL:
2200 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2201 				break;
2202 			case MADV_RANDOM:
2203 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2204 				break;
2205 			case MADV_NOSYNC:
2206 				current->eflags |= MAP_ENTRY_NOSYNC;
2207 				break;
2208 			case MADV_AUTOSYNC:
2209 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2210 				break;
2211 			case MADV_NOCORE:
2212 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2213 				break;
2214 			case MADV_CORE:
2215 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2216 				break;
2217 			default:
2218 				break;
2219 			}
2220 			vm_map_simplify_entry(map, current);
2221 		}
2222 		vm_map_unlock(map);
2223 	} else {
2224 		vm_pindex_t pstart, pend;
2225 
2226 		/*
2227 		 * madvise behaviors that are implemented in the underlying
2228 		 * vm_object.
2229 		 *
2230 		 * Since we don't clip the vm_map_entry, we have to clip
2231 		 * the vm_object pindex and count.
2232 		 */
2233 		for (current = entry;
2234 		     (current != &map->header) && (current->start < end);
2235 		     current = current->next
2236 		) {
2237 			vm_offset_t useEnd, useStart;
2238 
2239 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2240 				continue;
2241 
2242 			pstart = OFF_TO_IDX(current->offset);
2243 			pend = pstart + atop(current->end - current->start);
2244 			useStart = current->start;
2245 			useEnd = current->end;
2246 
2247 			if (current->start < start) {
2248 				pstart += atop(start - current->start);
2249 				useStart = start;
2250 			}
2251 			if (current->end > end) {
2252 				pend -= atop(current->end - end);
2253 				useEnd = end;
2254 			}
2255 
2256 			if (pstart >= pend)
2257 				continue;
2258 
2259 			/*
2260 			 * Perform the pmap_advise() before clearing
2261 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2262 			 * concurrent pmap operation, such as pmap_remove(),
2263 			 * could clear a reference in the pmap and set
2264 			 * PGA_REFERENCED on the page before the pmap_advise()
2265 			 * had completed.  Consequently, the page would appear
2266 			 * referenced based upon an old reference that
2267 			 * occurred before this pmap_advise() ran.
2268 			 */
2269 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2270 				pmap_advise(map->pmap, useStart, useEnd,
2271 				    behav);
2272 
2273 			vm_object_madvise(current->object.vm_object, pstart,
2274 			    pend, behav);
2275 
2276 			/*
2277 			 * Pre-populate paging structures in the
2278 			 * WILLNEED case.  For wired entries, the
2279 			 * paging structures are already populated.
2280 			 */
2281 			if (behav == MADV_WILLNEED &&
2282 			    current->wired_count == 0) {
2283 				vm_map_pmap_enter(map,
2284 				    useStart,
2285 				    current->protection,
2286 				    current->object.vm_object,
2287 				    pstart,
2288 				    ptoa(pend - pstart),
2289 				    MAP_PREFAULT_MADVISE
2290 				);
2291 			}
2292 		}
2293 		vm_map_unlock_read(map);
2294 	}
2295 	return (0);
2296 }
2297 
2298 
2299 /*
2300  *	vm_map_inherit:
2301  *
2302  *	Sets the inheritance of the specified address
2303  *	range in the target map.  Inheritance
2304  *	affects how the map will be shared with
2305  *	child maps at the time of vmspace_fork.
2306  */
2307 int
2308 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2309 	       vm_inherit_t new_inheritance)
2310 {
2311 	vm_map_entry_t entry;
2312 	vm_map_entry_t temp_entry;
2313 
2314 	switch (new_inheritance) {
2315 	case VM_INHERIT_NONE:
2316 	case VM_INHERIT_COPY:
2317 	case VM_INHERIT_SHARE:
2318 	case VM_INHERIT_ZERO:
2319 		break;
2320 	default:
2321 		return (KERN_INVALID_ARGUMENT);
2322 	}
2323 	if (start == end)
2324 		return (KERN_SUCCESS);
2325 	vm_map_lock(map);
2326 	VM_MAP_RANGE_CHECK(map, start, end);
2327 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2328 		entry = temp_entry;
2329 		vm_map_clip_start(map, entry, start);
2330 	} else
2331 		entry = temp_entry->next;
2332 	while ((entry != &map->header) && (entry->start < end)) {
2333 		vm_map_clip_end(map, entry, end);
2334 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2335 		    new_inheritance != VM_INHERIT_ZERO)
2336 			entry->inheritance = new_inheritance;
2337 		vm_map_simplify_entry(map, entry);
2338 		entry = entry->next;
2339 	}
2340 	vm_map_unlock(map);
2341 	return (KERN_SUCCESS);
2342 }
2343 
2344 /*
2345  *	vm_map_unwire:
2346  *
2347  *	Implements both kernel and user unwiring.
2348  */
2349 int
2350 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2351     int flags)
2352 {
2353 	vm_map_entry_t entry, first_entry, tmp_entry;
2354 	vm_offset_t saved_start;
2355 	unsigned int last_timestamp;
2356 	int rv;
2357 	boolean_t need_wakeup, result, user_unwire;
2358 
2359 	if (start == end)
2360 		return (KERN_SUCCESS);
2361 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2362 	vm_map_lock(map);
2363 	VM_MAP_RANGE_CHECK(map, start, end);
2364 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2365 		if (flags & VM_MAP_WIRE_HOLESOK)
2366 			first_entry = first_entry->next;
2367 		else {
2368 			vm_map_unlock(map);
2369 			return (KERN_INVALID_ADDRESS);
2370 		}
2371 	}
2372 	last_timestamp = map->timestamp;
2373 	entry = first_entry;
2374 	while (entry != &map->header && entry->start < end) {
2375 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2376 			/*
2377 			 * We have not yet clipped the entry.
2378 			 */
2379 			saved_start = (start >= entry->start) ? start :
2380 			    entry->start;
2381 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2382 			if (vm_map_unlock_and_wait(map, 0)) {
2383 				/*
2384 				 * Allow interruption of user unwiring?
2385 				 */
2386 			}
2387 			vm_map_lock(map);
2388 			if (last_timestamp+1 != map->timestamp) {
2389 				/*
2390 				 * Look again for the entry because the map was
2391 				 * modified while it was unlocked.
2392 				 * Specifically, the entry may have been
2393 				 * clipped, merged, or deleted.
2394 				 */
2395 				if (!vm_map_lookup_entry(map, saved_start,
2396 				    &tmp_entry)) {
2397 					if (flags & VM_MAP_WIRE_HOLESOK)
2398 						tmp_entry = tmp_entry->next;
2399 					else {
2400 						if (saved_start == start) {
2401 							/*
2402 							 * First_entry has been deleted.
2403 							 */
2404 							vm_map_unlock(map);
2405 							return (KERN_INVALID_ADDRESS);
2406 						}
2407 						end = saved_start;
2408 						rv = KERN_INVALID_ADDRESS;
2409 						goto done;
2410 					}
2411 				}
2412 				if (entry == first_entry)
2413 					first_entry = tmp_entry;
2414 				else
2415 					first_entry = NULL;
2416 				entry = tmp_entry;
2417 			}
2418 			last_timestamp = map->timestamp;
2419 			continue;
2420 		}
2421 		vm_map_clip_start(map, entry, start);
2422 		vm_map_clip_end(map, entry, end);
2423 		/*
2424 		 * Mark the entry in case the map lock is released.  (See
2425 		 * above.)
2426 		 */
2427 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2428 		    entry->wiring_thread == NULL,
2429 		    ("owned map entry %p", entry));
2430 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2431 		entry->wiring_thread = curthread;
2432 		/*
2433 		 * Check the map for holes in the specified region.
2434 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2435 		 */
2436 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2437 		    (entry->end < end && (entry->next == &map->header ||
2438 		    entry->next->start > entry->end))) {
2439 			end = entry->end;
2440 			rv = KERN_INVALID_ADDRESS;
2441 			goto done;
2442 		}
2443 		/*
2444 		 * If system unwiring, require that the entry is system wired.
2445 		 */
2446 		if (!user_unwire &&
2447 		    vm_map_entry_system_wired_count(entry) == 0) {
2448 			end = entry->end;
2449 			rv = KERN_INVALID_ARGUMENT;
2450 			goto done;
2451 		}
2452 		entry = entry->next;
2453 	}
2454 	rv = KERN_SUCCESS;
2455 done:
2456 	need_wakeup = FALSE;
2457 	if (first_entry == NULL) {
2458 		result = vm_map_lookup_entry(map, start, &first_entry);
2459 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2460 			first_entry = first_entry->next;
2461 		else
2462 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2463 	}
2464 	for (entry = first_entry; entry != &map->header && entry->start < end;
2465 	    entry = entry->next) {
2466 		/*
2467 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2468 		 * space in the unwired region could have been mapped
2469 		 * while the map lock was dropped for draining
2470 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2471 		 * could be simultaneously wiring this new mapping
2472 		 * entry.  Detect these cases and skip any entries
2473 		 * marked as in transition by us.
2474 		 */
2475 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2476 		    entry->wiring_thread != curthread) {
2477 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2478 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2479 			continue;
2480 		}
2481 
2482 		if (rv == KERN_SUCCESS && (!user_unwire ||
2483 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2484 			if (user_unwire)
2485 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2486 			if (entry->wired_count == 1)
2487 				vm_map_entry_unwire(map, entry);
2488 			else
2489 				entry->wired_count--;
2490 		}
2491 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2492 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2493 		KASSERT(entry->wiring_thread == curthread,
2494 		    ("vm_map_unwire: alien wire %p", entry));
2495 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2496 		entry->wiring_thread = NULL;
2497 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2498 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2499 			need_wakeup = TRUE;
2500 		}
2501 		vm_map_simplify_entry(map, entry);
2502 	}
2503 	vm_map_unlock(map);
2504 	if (need_wakeup)
2505 		vm_map_wakeup(map);
2506 	return (rv);
2507 }
2508 
2509 /*
2510  *	vm_map_wire_entry_failure:
2511  *
2512  *	Handle a wiring failure on the given entry.
2513  *
2514  *	The map should be locked.
2515  */
2516 static void
2517 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2518     vm_offset_t failed_addr)
2519 {
2520 
2521 	VM_MAP_ASSERT_LOCKED(map);
2522 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2523 	    entry->wired_count == 1,
2524 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2525 	KASSERT(failed_addr < entry->end,
2526 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2527 
2528 	/*
2529 	 * If any pages at the start of this entry were successfully wired,
2530 	 * then unwire them.
2531 	 */
2532 	if (failed_addr > entry->start) {
2533 		pmap_unwire(map->pmap, entry->start, failed_addr);
2534 		vm_object_unwire(entry->object.vm_object, entry->offset,
2535 		    failed_addr - entry->start, PQ_ACTIVE);
2536 	}
2537 
2538 	/*
2539 	 * Assign an out-of-range value to represent the failure to wire this
2540 	 * entry.
2541 	 */
2542 	entry->wired_count = -1;
2543 }
2544 
2545 /*
2546  *	vm_map_wire:
2547  *
2548  *	Implements both kernel and user wiring.
2549  */
2550 int
2551 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2552     int flags)
2553 {
2554 	vm_map_entry_t entry, first_entry, tmp_entry;
2555 	vm_offset_t faddr, saved_end, saved_start;
2556 	unsigned int last_timestamp;
2557 	int rv;
2558 	boolean_t need_wakeup, result, user_wire;
2559 	vm_prot_t prot;
2560 
2561 	if (start == end)
2562 		return (KERN_SUCCESS);
2563 	prot = 0;
2564 	if (flags & VM_MAP_WIRE_WRITE)
2565 		prot |= VM_PROT_WRITE;
2566 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2567 	vm_map_lock(map);
2568 	VM_MAP_RANGE_CHECK(map, start, end);
2569 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2570 		if (flags & VM_MAP_WIRE_HOLESOK)
2571 			first_entry = first_entry->next;
2572 		else {
2573 			vm_map_unlock(map);
2574 			return (KERN_INVALID_ADDRESS);
2575 		}
2576 	}
2577 	last_timestamp = map->timestamp;
2578 	entry = first_entry;
2579 	while (entry != &map->header && entry->start < end) {
2580 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2581 			/*
2582 			 * We have not yet clipped the entry.
2583 			 */
2584 			saved_start = (start >= entry->start) ? start :
2585 			    entry->start;
2586 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2587 			if (vm_map_unlock_and_wait(map, 0)) {
2588 				/*
2589 				 * Allow interruption of user wiring?
2590 				 */
2591 			}
2592 			vm_map_lock(map);
2593 			if (last_timestamp + 1 != map->timestamp) {
2594 				/*
2595 				 * Look again for the entry because the map was
2596 				 * modified while it was unlocked.
2597 				 * Specifically, the entry may have been
2598 				 * clipped, merged, or deleted.
2599 				 */
2600 				if (!vm_map_lookup_entry(map, saved_start,
2601 				    &tmp_entry)) {
2602 					if (flags & VM_MAP_WIRE_HOLESOK)
2603 						tmp_entry = tmp_entry->next;
2604 					else {
2605 						if (saved_start == start) {
2606 							/*
2607 							 * first_entry has been deleted.
2608 							 */
2609 							vm_map_unlock(map);
2610 							return (KERN_INVALID_ADDRESS);
2611 						}
2612 						end = saved_start;
2613 						rv = KERN_INVALID_ADDRESS;
2614 						goto done;
2615 					}
2616 				}
2617 				if (entry == first_entry)
2618 					first_entry = tmp_entry;
2619 				else
2620 					first_entry = NULL;
2621 				entry = tmp_entry;
2622 			}
2623 			last_timestamp = map->timestamp;
2624 			continue;
2625 		}
2626 		vm_map_clip_start(map, entry, start);
2627 		vm_map_clip_end(map, entry, end);
2628 		/*
2629 		 * Mark the entry in case the map lock is released.  (See
2630 		 * above.)
2631 		 */
2632 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2633 		    entry->wiring_thread == NULL,
2634 		    ("owned map entry %p", entry));
2635 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2636 		entry->wiring_thread = curthread;
2637 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2638 		    || (entry->protection & prot) != prot) {
2639 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2640 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2641 				end = entry->end;
2642 				rv = KERN_INVALID_ADDRESS;
2643 				goto done;
2644 			}
2645 			goto next_entry;
2646 		}
2647 		if (entry->wired_count == 0) {
2648 			entry->wired_count++;
2649 			saved_start = entry->start;
2650 			saved_end = entry->end;
2651 
2652 			/*
2653 			 * Release the map lock, relying on the in-transition
2654 			 * mark.  Mark the map busy for fork.
2655 			 */
2656 			vm_map_busy(map);
2657 			vm_map_unlock(map);
2658 
2659 			faddr = saved_start;
2660 			do {
2661 				/*
2662 				 * Simulate a fault to get the page and enter
2663 				 * it into the physical map.
2664 				 */
2665 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2666 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2667 					break;
2668 			} while ((faddr += PAGE_SIZE) < saved_end);
2669 			vm_map_lock(map);
2670 			vm_map_unbusy(map);
2671 			if (last_timestamp + 1 != map->timestamp) {
2672 				/*
2673 				 * Look again for the entry because the map was
2674 				 * modified while it was unlocked.  The entry
2675 				 * may have been clipped, but NOT merged or
2676 				 * deleted.
2677 				 */
2678 				result = vm_map_lookup_entry(map, saved_start,
2679 				    &tmp_entry);
2680 				KASSERT(result, ("vm_map_wire: lookup failed"));
2681 				if (entry == first_entry)
2682 					first_entry = tmp_entry;
2683 				else
2684 					first_entry = NULL;
2685 				entry = tmp_entry;
2686 				while (entry->end < saved_end) {
2687 					/*
2688 					 * In case of failure, handle entries
2689 					 * that were not fully wired here;
2690 					 * fully wired entries are handled
2691 					 * later.
2692 					 */
2693 					if (rv != KERN_SUCCESS &&
2694 					    faddr < entry->end)
2695 						vm_map_wire_entry_failure(map,
2696 						    entry, faddr);
2697 					entry = entry->next;
2698 				}
2699 			}
2700 			last_timestamp = map->timestamp;
2701 			if (rv != KERN_SUCCESS) {
2702 				vm_map_wire_entry_failure(map, entry, faddr);
2703 				end = entry->end;
2704 				goto done;
2705 			}
2706 		} else if (!user_wire ||
2707 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2708 			entry->wired_count++;
2709 		}
2710 		/*
2711 		 * Check the map for holes in the specified region.
2712 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2713 		 */
2714 	next_entry:
2715 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2716 		    entry->end < end && (entry->next == &map->header ||
2717 		    entry->next->start > entry->end)) {
2718 			end = entry->end;
2719 			rv = KERN_INVALID_ADDRESS;
2720 			goto done;
2721 		}
2722 		entry = entry->next;
2723 	}
2724 	rv = KERN_SUCCESS;
2725 done:
2726 	need_wakeup = FALSE;
2727 	if (first_entry == NULL) {
2728 		result = vm_map_lookup_entry(map, start, &first_entry);
2729 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2730 			first_entry = first_entry->next;
2731 		else
2732 			KASSERT(result, ("vm_map_wire: lookup failed"));
2733 	}
2734 	for (entry = first_entry; entry != &map->header && entry->start < end;
2735 	    entry = entry->next) {
2736 		/*
2737 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2738 		 * space in the unwired region could have been mapped
2739 		 * while the map lock was dropped for faulting in the
2740 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2741 		 * Moreover, another thread could be simultaneously
2742 		 * wiring this new mapping entry.  Detect these cases
2743 		 * and skip any entries marked as in transition not by us.
2744 		 */
2745 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2746 		    entry->wiring_thread != curthread) {
2747 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2748 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2749 			continue;
2750 		}
2751 
2752 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2753 			goto next_entry_done;
2754 
2755 		if (rv == KERN_SUCCESS) {
2756 			if (user_wire)
2757 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2758 		} else if (entry->wired_count == -1) {
2759 			/*
2760 			 * Wiring failed on this entry.  Thus, unwiring is
2761 			 * unnecessary.
2762 			 */
2763 			entry->wired_count = 0;
2764 		} else if (!user_wire ||
2765 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2766 			/*
2767 			 * Undo the wiring.  Wiring succeeded on this entry
2768 			 * but failed on a later entry.
2769 			 */
2770 			if (entry->wired_count == 1)
2771 				vm_map_entry_unwire(map, entry);
2772 			else
2773 				entry->wired_count--;
2774 		}
2775 	next_entry_done:
2776 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2777 		    ("vm_map_wire: in-transition flag missing %p", entry));
2778 		KASSERT(entry->wiring_thread == curthread,
2779 		    ("vm_map_wire: alien wire %p", entry));
2780 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2781 		    MAP_ENTRY_WIRE_SKIPPED);
2782 		entry->wiring_thread = NULL;
2783 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2784 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2785 			need_wakeup = TRUE;
2786 		}
2787 		vm_map_simplify_entry(map, entry);
2788 	}
2789 	vm_map_unlock(map);
2790 	if (need_wakeup)
2791 		vm_map_wakeup(map);
2792 	return (rv);
2793 }
2794 
2795 /*
2796  * vm_map_sync
2797  *
2798  * Push any dirty cached pages in the address range to their pager.
2799  * If syncio is TRUE, dirty pages are written synchronously.
2800  * If invalidate is TRUE, any cached pages are freed as well.
2801  *
2802  * If the size of the region from start to end is zero, we are
2803  * supposed to flush all modified pages within the region containing
2804  * start.  Unfortunately, a region can be split or coalesced with
2805  * neighboring regions, making it difficult to determine what the
2806  * original region was.  Therefore, we approximate this requirement by
2807  * flushing the current region containing start.
2808  *
2809  * Returns an error if any part of the specified range is not mapped.
2810  */
2811 int
2812 vm_map_sync(
2813 	vm_map_t map,
2814 	vm_offset_t start,
2815 	vm_offset_t end,
2816 	boolean_t syncio,
2817 	boolean_t invalidate)
2818 {
2819 	vm_map_entry_t current;
2820 	vm_map_entry_t entry;
2821 	vm_size_t size;
2822 	vm_object_t object;
2823 	vm_ooffset_t offset;
2824 	unsigned int last_timestamp;
2825 	boolean_t failed;
2826 
2827 	vm_map_lock_read(map);
2828 	VM_MAP_RANGE_CHECK(map, start, end);
2829 	if (!vm_map_lookup_entry(map, start, &entry)) {
2830 		vm_map_unlock_read(map);
2831 		return (KERN_INVALID_ADDRESS);
2832 	} else if (start == end) {
2833 		start = entry->start;
2834 		end = entry->end;
2835 	}
2836 	/*
2837 	 * Make a first pass to check for user-wired memory and holes.
2838 	 */
2839 	for (current = entry; current != &map->header && current->start < end;
2840 	    current = current->next) {
2841 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2842 			vm_map_unlock_read(map);
2843 			return (KERN_INVALID_ARGUMENT);
2844 		}
2845 		if (end > current->end &&
2846 		    (current->next == &map->header ||
2847 			current->end != current->next->start)) {
2848 			vm_map_unlock_read(map);
2849 			return (KERN_INVALID_ADDRESS);
2850 		}
2851 	}
2852 
2853 	if (invalidate)
2854 		pmap_remove(map->pmap, start, end);
2855 	failed = FALSE;
2856 
2857 	/*
2858 	 * Make a second pass, cleaning/uncaching pages from the indicated
2859 	 * objects as we go.
2860 	 */
2861 	for (current = entry; current != &map->header && current->start < end;) {
2862 		offset = current->offset + (start - current->start);
2863 		size = (end <= current->end ? end : current->end) - start;
2864 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2865 			vm_map_t smap;
2866 			vm_map_entry_t tentry;
2867 			vm_size_t tsize;
2868 
2869 			smap = current->object.sub_map;
2870 			vm_map_lock_read(smap);
2871 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2872 			tsize = tentry->end - offset;
2873 			if (tsize < size)
2874 				size = tsize;
2875 			object = tentry->object.vm_object;
2876 			offset = tentry->offset + (offset - tentry->start);
2877 			vm_map_unlock_read(smap);
2878 		} else {
2879 			object = current->object.vm_object;
2880 		}
2881 		vm_object_reference(object);
2882 		last_timestamp = map->timestamp;
2883 		vm_map_unlock_read(map);
2884 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2885 			failed = TRUE;
2886 		start += size;
2887 		vm_object_deallocate(object);
2888 		vm_map_lock_read(map);
2889 		if (last_timestamp == map->timestamp ||
2890 		    !vm_map_lookup_entry(map, start, &current))
2891 			current = current->next;
2892 	}
2893 
2894 	vm_map_unlock_read(map);
2895 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2896 }
2897 
2898 /*
2899  *	vm_map_entry_unwire:	[ internal use only ]
2900  *
2901  *	Make the region specified by this entry pageable.
2902  *
2903  *	The map in question should be locked.
2904  *	[This is the reason for this routine's existence.]
2905  */
2906 static void
2907 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2908 {
2909 
2910 	VM_MAP_ASSERT_LOCKED(map);
2911 	KASSERT(entry->wired_count > 0,
2912 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2913 	pmap_unwire(map->pmap, entry->start, entry->end);
2914 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2915 	    entry->start, PQ_ACTIVE);
2916 	entry->wired_count = 0;
2917 }
2918 
2919 static void
2920 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2921 {
2922 
2923 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2924 		vm_object_deallocate(entry->object.vm_object);
2925 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2926 }
2927 
2928 /*
2929  *	vm_map_entry_delete:	[ internal use only ]
2930  *
2931  *	Deallocate the given entry from the target map.
2932  */
2933 static void
2934 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2935 {
2936 	vm_object_t object;
2937 	vm_pindex_t offidxstart, offidxend, count, size1;
2938 	vm_size_t size;
2939 
2940 	vm_map_entry_unlink(map, entry);
2941 	object = entry->object.vm_object;
2942 
2943 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2944 		MPASS(entry->cred == NULL);
2945 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
2946 		MPASS(object == NULL);
2947 		vm_map_entry_deallocate(entry, map->system_map);
2948 		return;
2949 	}
2950 
2951 	size = entry->end - entry->start;
2952 	map->size -= size;
2953 
2954 	if (entry->cred != NULL) {
2955 		swap_release_by_cred(size, entry->cred);
2956 		crfree(entry->cred);
2957 	}
2958 
2959 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2960 	    (object != NULL)) {
2961 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2962 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2963 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2964 		count = atop(size);
2965 		offidxstart = OFF_TO_IDX(entry->offset);
2966 		offidxend = offidxstart + count;
2967 		VM_OBJECT_WLOCK(object);
2968 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2969 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2970 		    object == kernel_object || object == kmem_object)) {
2971 			vm_object_collapse(object);
2972 
2973 			/*
2974 			 * The option OBJPR_NOTMAPPED can be passed here
2975 			 * because vm_map_delete() already performed
2976 			 * pmap_remove() on the only mapping to this range
2977 			 * of pages.
2978 			 */
2979 			vm_object_page_remove(object, offidxstart, offidxend,
2980 			    OBJPR_NOTMAPPED);
2981 			if (object->type == OBJT_SWAP)
2982 				swap_pager_freespace(object, offidxstart,
2983 				    count);
2984 			if (offidxend >= object->size &&
2985 			    offidxstart < object->size) {
2986 				size1 = object->size;
2987 				object->size = offidxstart;
2988 				if (object->cred != NULL) {
2989 					size1 -= object->size;
2990 					KASSERT(object->charge >= ptoa(size1),
2991 					    ("object %p charge < 0", object));
2992 					swap_release_by_cred(ptoa(size1),
2993 					    object->cred);
2994 					object->charge -= ptoa(size1);
2995 				}
2996 			}
2997 		}
2998 		VM_OBJECT_WUNLOCK(object);
2999 	} else
3000 		entry->object.vm_object = NULL;
3001 	if (map->system_map)
3002 		vm_map_entry_deallocate(entry, TRUE);
3003 	else {
3004 		entry->next = curthread->td_map_def_user;
3005 		curthread->td_map_def_user = entry;
3006 	}
3007 }
3008 
3009 /*
3010  *	vm_map_delete:	[ internal use only ]
3011  *
3012  *	Deallocates the given address range from the target
3013  *	map.
3014  */
3015 int
3016 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3017 {
3018 	vm_map_entry_t entry;
3019 	vm_map_entry_t first_entry;
3020 
3021 	VM_MAP_ASSERT_LOCKED(map);
3022 	if (start == end)
3023 		return (KERN_SUCCESS);
3024 
3025 	/*
3026 	 * Find the start of the region, and clip it
3027 	 */
3028 	if (!vm_map_lookup_entry(map, start, &first_entry))
3029 		entry = first_entry->next;
3030 	else {
3031 		entry = first_entry;
3032 		vm_map_clip_start(map, entry, start);
3033 	}
3034 
3035 	/*
3036 	 * Step through all entries in this region
3037 	 */
3038 	while ((entry != &map->header) && (entry->start < end)) {
3039 		vm_map_entry_t next;
3040 
3041 		/*
3042 		 * Wait for wiring or unwiring of an entry to complete.
3043 		 * Also wait for any system wirings to disappear on
3044 		 * user maps.
3045 		 */
3046 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3047 		    (vm_map_pmap(map) != kernel_pmap &&
3048 		    vm_map_entry_system_wired_count(entry) != 0)) {
3049 			unsigned int last_timestamp;
3050 			vm_offset_t saved_start;
3051 			vm_map_entry_t tmp_entry;
3052 
3053 			saved_start = entry->start;
3054 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3055 			last_timestamp = map->timestamp;
3056 			(void) vm_map_unlock_and_wait(map, 0);
3057 			vm_map_lock(map);
3058 			if (last_timestamp + 1 != map->timestamp) {
3059 				/*
3060 				 * Look again for the entry because the map was
3061 				 * modified while it was unlocked.
3062 				 * Specifically, the entry may have been
3063 				 * clipped, merged, or deleted.
3064 				 */
3065 				if (!vm_map_lookup_entry(map, saved_start,
3066 							 &tmp_entry))
3067 					entry = tmp_entry->next;
3068 				else {
3069 					entry = tmp_entry;
3070 					vm_map_clip_start(map, entry,
3071 							  saved_start);
3072 				}
3073 			}
3074 			continue;
3075 		}
3076 		vm_map_clip_end(map, entry, end);
3077 
3078 		next = entry->next;
3079 
3080 		/*
3081 		 * Unwire before removing addresses from the pmap; otherwise,
3082 		 * unwiring will put the entries back in the pmap.
3083 		 */
3084 		if (entry->wired_count != 0) {
3085 			vm_map_entry_unwire(map, entry);
3086 		}
3087 
3088 		pmap_remove(map->pmap, entry->start, entry->end);
3089 
3090 		/*
3091 		 * Delete the entry only after removing all pmap
3092 		 * entries pointing to its pages.  (Otherwise, its
3093 		 * page frames may be reallocated, and any modify bits
3094 		 * will be set in the wrong object!)
3095 		 */
3096 		vm_map_entry_delete(map, entry);
3097 		entry = next;
3098 	}
3099 	return (KERN_SUCCESS);
3100 }
3101 
3102 /*
3103  *	vm_map_remove:
3104  *
3105  *	Remove the given address range from the target map.
3106  *	This is the exported form of vm_map_delete.
3107  */
3108 int
3109 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3110 {
3111 	int result;
3112 
3113 	vm_map_lock(map);
3114 	VM_MAP_RANGE_CHECK(map, start, end);
3115 	result = vm_map_delete(map, start, end);
3116 	vm_map_unlock(map);
3117 	return (result);
3118 }
3119 
3120 /*
3121  *	vm_map_check_protection:
3122  *
3123  *	Assert that the target map allows the specified privilege on the
3124  *	entire address region given.  The entire region must be allocated.
3125  *
3126  *	WARNING!  This code does not and should not check whether the
3127  *	contents of the region is accessible.  For example a smaller file
3128  *	might be mapped into a larger address space.
3129  *
3130  *	NOTE!  This code is also called by munmap().
3131  *
3132  *	The map must be locked.  A read lock is sufficient.
3133  */
3134 boolean_t
3135 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3136 			vm_prot_t protection)
3137 {
3138 	vm_map_entry_t entry;
3139 	vm_map_entry_t tmp_entry;
3140 
3141 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3142 		return (FALSE);
3143 	entry = tmp_entry;
3144 
3145 	while (start < end) {
3146 		if (entry == &map->header)
3147 			return (FALSE);
3148 		/*
3149 		 * No holes allowed!
3150 		 */
3151 		if (start < entry->start)
3152 			return (FALSE);
3153 		/*
3154 		 * Check protection associated with entry.
3155 		 */
3156 		if ((entry->protection & protection) != protection)
3157 			return (FALSE);
3158 		/* go to next entry */
3159 		start = entry->end;
3160 		entry = entry->next;
3161 	}
3162 	return (TRUE);
3163 }
3164 
3165 /*
3166  *	vm_map_copy_entry:
3167  *
3168  *	Copies the contents of the source entry to the destination
3169  *	entry.  The entries *must* be aligned properly.
3170  */
3171 static void
3172 vm_map_copy_entry(
3173 	vm_map_t src_map,
3174 	vm_map_t dst_map,
3175 	vm_map_entry_t src_entry,
3176 	vm_map_entry_t dst_entry,
3177 	vm_ooffset_t *fork_charge)
3178 {
3179 	vm_object_t src_object;
3180 	vm_map_entry_t fake_entry;
3181 	vm_offset_t size;
3182 	struct ucred *cred;
3183 	int charged;
3184 
3185 	VM_MAP_ASSERT_LOCKED(dst_map);
3186 
3187 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3188 		return;
3189 
3190 	if (src_entry->wired_count == 0 ||
3191 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3192 		/*
3193 		 * If the source entry is marked needs_copy, it is already
3194 		 * write-protected.
3195 		 */
3196 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3197 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3198 			pmap_protect(src_map->pmap,
3199 			    src_entry->start,
3200 			    src_entry->end,
3201 			    src_entry->protection & ~VM_PROT_WRITE);
3202 		}
3203 
3204 		/*
3205 		 * Make a copy of the object.
3206 		 */
3207 		size = src_entry->end - src_entry->start;
3208 		if ((src_object = src_entry->object.vm_object) != NULL) {
3209 			VM_OBJECT_WLOCK(src_object);
3210 			charged = ENTRY_CHARGED(src_entry);
3211 			if (src_object->handle == NULL &&
3212 			    (src_object->type == OBJT_DEFAULT ||
3213 			    src_object->type == OBJT_SWAP)) {
3214 				vm_object_collapse(src_object);
3215 				if ((src_object->flags & (OBJ_NOSPLIT |
3216 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3217 					vm_object_split(src_entry);
3218 					src_object =
3219 					    src_entry->object.vm_object;
3220 				}
3221 			}
3222 			vm_object_reference_locked(src_object);
3223 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3224 			if (src_entry->cred != NULL &&
3225 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3226 				KASSERT(src_object->cred == NULL,
3227 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3228 				     src_object));
3229 				src_object->cred = src_entry->cred;
3230 				src_object->charge = size;
3231 			}
3232 			VM_OBJECT_WUNLOCK(src_object);
3233 			dst_entry->object.vm_object = src_object;
3234 			if (charged) {
3235 				cred = curthread->td_ucred;
3236 				crhold(cred);
3237 				dst_entry->cred = cred;
3238 				*fork_charge += size;
3239 				if (!(src_entry->eflags &
3240 				      MAP_ENTRY_NEEDS_COPY)) {
3241 					crhold(cred);
3242 					src_entry->cred = cred;
3243 					*fork_charge += size;
3244 				}
3245 			}
3246 			src_entry->eflags |= MAP_ENTRY_COW |
3247 			    MAP_ENTRY_NEEDS_COPY;
3248 			dst_entry->eflags |= MAP_ENTRY_COW |
3249 			    MAP_ENTRY_NEEDS_COPY;
3250 			dst_entry->offset = src_entry->offset;
3251 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3252 				/*
3253 				 * MAP_ENTRY_VN_WRITECNT cannot
3254 				 * indicate write reference from
3255 				 * src_entry, since the entry is
3256 				 * marked as needs copy.  Allocate a
3257 				 * fake entry that is used to
3258 				 * decrement object->un_pager.vnp.writecount
3259 				 * at the appropriate time.  Attach
3260 				 * fake_entry to the deferred list.
3261 				 */
3262 				fake_entry = vm_map_entry_create(dst_map);
3263 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3264 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3265 				vm_object_reference(src_object);
3266 				fake_entry->object.vm_object = src_object;
3267 				fake_entry->start = src_entry->start;
3268 				fake_entry->end = src_entry->end;
3269 				fake_entry->next = curthread->td_map_def_user;
3270 				curthread->td_map_def_user = fake_entry;
3271 			}
3272 
3273 			pmap_copy(dst_map->pmap, src_map->pmap,
3274 			    dst_entry->start, dst_entry->end - dst_entry->start,
3275 			    src_entry->start);
3276 		} else {
3277 			dst_entry->object.vm_object = NULL;
3278 			dst_entry->offset = 0;
3279 			if (src_entry->cred != NULL) {
3280 				dst_entry->cred = curthread->td_ucred;
3281 				crhold(dst_entry->cred);
3282 				*fork_charge += size;
3283 			}
3284 		}
3285 	} else {
3286 		/*
3287 		 * We don't want to make writeable wired pages copy-on-write.
3288 		 * Immediately copy these pages into the new map by simulating
3289 		 * page faults.  The new pages are pageable.
3290 		 */
3291 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3292 		    fork_charge);
3293 	}
3294 }
3295 
3296 /*
3297  * vmspace_map_entry_forked:
3298  * Update the newly-forked vmspace each time a map entry is inherited
3299  * or copied.  The values for vm_dsize and vm_tsize are approximate
3300  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3301  */
3302 static void
3303 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3304     vm_map_entry_t entry)
3305 {
3306 	vm_size_t entrysize;
3307 	vm_offset_t newend;
3308 
3309 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3310 		return;
3311 	entrysize = entry->end - entry->start;
3312 	vm2->vm_map.size += entrysize;
3313 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3314 		vm2->vm_ssize += btoc(entrysize);
3315 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3316 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3317 		newend = MIN(entry->end,
3318 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3319 		vm2->vm_dsize += btoc(newend - entry->start);
3320 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3321 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3322 		newend = MIN(entry->end,
3323 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3324 		vm2->vm_tsize += btoc(newend - entry->start);
3325 	}
3326 }
3327 
3328 /*
3329  * vmspace_fork:
3330  * Create a new process vmspace structure and vm_map
3331  * based on those of an existing process.  The new map
3332  * is based on the old map, according to the inheritance
3333  * values on the regions in that map.
3334  *
3335  * XXX It might be worth coalescing the entries added to the new vmspace.
3336  *
3337  * The source map must not be locked.
3338  */
3339 struct vmspace *
3340 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3341 {
3342 	struct vmspace *vm2;
3343 	vm_map_t new_map, old_map;
3344 	vm_map_entry_t new_entry, old_entry;
3345 	vm_object_t object;
3346 	int locked;
3347 	vm_inherit_t inh;
3348 
3349 	old_map = &vm1->vm_map;
3350 	/* Copy immutable fields of vm1 to vm2. */
3351 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3352 	if (vm2 == NULL)
3353 		return (NULL);
3354 	vm2->vm_taddr = vm1->vm_taddr;
3355 	vm2->vm_daddr = vm1->vm_daddr;
3356 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3357 	vm_map_lock(old_map);
3358 	if (old_map->busy)
3359 		vm_map_wait_busy(old_map);
3360 	new_map = &vm2->vm_map;
3361 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3362 	KASSERT(locked, ("vmspace_fork: lock failed"));
3363 
3364 	old_entry = old_map->header.next;
3365 
3366 	while (old_entry != &old_map->header) {
3367 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3368 			panic("vm_map_fork: encountered a submap");
3369 
3370 		inh = old_entry->inheritance;
3371 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3372 		    inh != VM_INHERIT_NONE)
3373 			inh = VM_INHERIT_COPY;
3374 
3375 		switch (inh) {
3376 		case VM_INHERIT_NONE:
3377 			break;
3378 
3379 		case VM_INHERIT_SHARE:
3380 			/*
3381 			 * Clone the entry, creating the shared object if necessary.
3382 			 */
3383 			object = old_entry->object.vm_object;
3384 			if (object == NULL) {
3385 				object = vm_object_allocate(OBJT_DEFAULT,
3386 					atop(old_entry->end - old_entry->start));
3387 				old_entry->object.vm_object = object;
3388 				old_entry->offset = 0;
3389 				if (old_entry->cred != NULL) {
3390 					object->cred = old_entry->cred;
3391 					object->charge = old_entry->end -
3392 					    old_entry->start;
3393 					old_entry->cred = NULL;
3394 				}
3395 			}
3396 
3397 			/*
3398 			 * Add the reference before calling vm_object_shadow
3399 			 * to insure that a shadow object is created.
3400 			 */
3401 			vm_object_reference(object);
3402 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3403 				vm_object_shadow(&old_entry->object.vm_object,
3404 				    &old_entry->offset,
3405 				    old_entry->end - old_entry->start);
3406 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3407 				/* Transfer the second reference too. */
3408 				vm_object_reference(
3409 				    old_entry->object.vm_object);
3410 
3411 				/*
3412 				 * As in vm_map_simplify_entry(), the
3413 				 * vnode lock will not be acquired in
3414 				 * this call to vm_object_deallocate().
3415 				 */
3416 				vm_object_deallocate(object);
3417 				object = old_entry->object.vm_object;
3418 			}
3419 			VM_OBJECT_WLOCK(object);
3420 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3421 			if (old_entry->cred != NULL) {
3422 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3423 				object->cred = old_entry->cred;
3424 				object->charge = old_entry->end - old_entry->start;
3425 				old_entry->cred = NULL;
3426 			}
3427 
3428 			/*
3429 			 * Assert the correct state of the vnode
3430 			 * v_writecount while the object is locked, to
3431 			 * not relock it later for the assertion
3432 			 * correctness.
3433 			 */
3434 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3435 			    object->type == OBJT_VNODE) {
3436 				KASSERT(((struct vnode *)object->handle)->
3437 				    v_writecount > 0,
3438 				    ("vmspace_fork: v_writecount %p", object));
3439 				KASSERT(object->un_pager.vnp.writemappings > 0,
3440 				    ("vmspace_fork: vnp.writecount %p",
3441 				    object));
3442 			}
3443 			VM_OBJECT_WUNLOCK(object);
3444 
3445 			/*
3446 			 * Clone the entry, referencing the shared object.
3447 			 */
3448 			new_entry = vm_map_entry_create(new_map);
3449 			*new_entry = *old_entry;
3450 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3451 			    MAP_ENTRY_IN_TRANSITION);
3452 			new_entry->wiring_thread = NULL;
3453 			new_entry->wired_count = 0;
3454 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3455 				vnode_pager_update_writecount(object,
3456 				    new_entry->start, new_entry->end);
3457 			}
3458 
3459 			/*
3460 			 * Insert the entry into the new map -- we know we're
3461 			 * inserting at the end of the new map.
3462 			 */
3463 			vm_map_entry_link(new_map, new_map->header.prev,
3464 			    new_entry);
3465 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3466 
3467 			/*
3468 			 * Update the physical map
3469 			 */
3470 			pmap_copy(new_map->pmap, old_map->pmap,
3471 			    new_entry->start,
3472 			    (old_entry->end - old_entry->start),
3473 			    old_entry->start);
3474 			break;
3475 
3476 		case VM_INHERIT_COPY:
3477 			/*
3478 			 * Clone the entry and link into the map.
3479 			 */
3480 			new_entry = vm_map_entry_create(new_map);
3481 			*new_entry = *old_entry;
3482 			/*
3483 			 * Copied entry is COW over the old object.
3484 			 */
3485 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3486 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3487 			new_entry->wiring_thread = NULL;
3488 			new_entry->wired_count = 0;
3489 			new_entry->object.vm_object = NULL;
3490 			new_entry->cred = NULL;
3491 			vm_map_entry_link(new_map, new_map->header.prev,
3492 			    new_entry);
3493 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3494 			vm_map_copy_entry(old_map, new_map, old_entry,
3495 			    new_entry, fork_charge);
3496 			break;
3497 
3498 		case VM_INHERIT_ZERO:
3499 			/*
3500 			 * Create a new anonymous mapping entry modelled from
3501 			 * the old one.
3502 			 */
3503 			new_entry = vm_map_entry_create(new_map);
3504 			memset(new_entry, 0, sizeof(*new_entry));
3505 
3506 			new_entry->start = old_entry->start;
3507 			new_entry->end = old_entry->end;
3508 			new_entry->eflags = old_entry->eflags &
3509 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3510 			    MAP_ENTRY_VN_WRITECNT);
3511 			new_entry->protection = old_entry->protection;
3512 			new_entry->max_protection = old_entry->max_protection;
3513 			new_entry->inheritance = VM_INHERIT_ZERO;
3514 
3515 			vm_map_entry_link(new_map, new_map->header.prev,
3516 			    new_entry);
3517 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3518 
3519 			new_entry->cred = curthread->td_ucred;
3520 			crhold(new_entry->cred);
3521 			*fork_charge += (new_entry->end - new_entry->start);
3522 
3523 			break;
3524 		}
3525 		old_entry = old_entry->next;
3526 	}
3527 	/*
3528 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3529 	 * map entries, which cannot be done until both old_map and
3530 	 * new_map locks are released.
3531 	 */
3532 	sx_xunlock(&old_map->lock);
3533 	sx_xunlock(&new_map->lock);
3534 	vm_map_process_deferred();
3535 
3536 	return (vm2);
3537 }
3538 
3539 int
3540 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3541     vm_prot_t prot, vm_prot_t max, int cow)
3542 {
3543 	vm_size_t growsize, init_ssize;
3544 	rlim_t lmemlim, vmemlim;
3545 	int rv;
3546 
3547 	growsize = sgrowsiz;
3548 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3549 	vm_map_lock(map);
3550 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3551 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3552 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3553 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3554 			rv = KERN_NO_SPACE;
3555 			goto out;
3556 		}
3557 	}
3558 	/* If we would blow our VMEM resource limit, no go */
3559 	if (map->size + init_ssize > vmemlim) {
3560 		rv = KERN_NO_SPACE;
3561 		goto out;
3562 	}
3563 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3564 	    max, cow);
3565 out:
3566 	vm_map_unlock(map);
3567 	return (rv);
3568 }
3569 
3570 static int
3571 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3572     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3573 {
3574 	vm_map_entry_t new_entry, prev_entry;
3575 	vm_offset_t bot, gap_bot, gap_top, top;
3576 	vm_size_t init_ssize;
3577 	int orient, rv;
3578 
3579 	/*
3580 	 * The stack orientation is piggybacked with the cow argument.
3581 	 * Extract it into orient and mask the cow argument so that we
3582 	 * don't pass it around further.
3583 	 */
3584 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3585 	KASSERT(orient != 0, ("No stack grow direction"));
3586 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3587 	    ("bi-dir stack"));
3588 
3589 	if (addrbos < vm_map_min(map) ||
3590 	    addrbos > vm_map_max(map) ||
3591 	    addrbos + max_ssize < addrbos)
3592 		return (KERN_NO_SPACE);
3593 
3594 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3595 
3596 	/* If addr is already mapped, no go */
3597 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3598 		return (KERN_NO_SPACE);
3599 
3600 	/*
3601 	 * If we can't accommodate max_ssize in the current mapping, no go.
3602 	 * However, we need to be aware that subsequent user mappings might
3603 	 * map into the space we have reserved for stack, and currently this
3604 	 * space is not protected.
3605 	 *
3606 	 * Hopefully we will at least detect this condition when we try to
3607 	 * grow the stack.
3608 	 */
3609 	if ((prev_entry->next != &map->header) &&
3610 	    (prev_entry->next->start < addrbos + max_ssize))
3611 		return (KERN_NO_SPACE);
3612 
3613 	/*
3614 	 * We initially map a stack of only init_ssize.  We will grow as
3615 	 * needed later.  Depending on the orientation of the stack (i.e.
3616 	 * the grow direction) we either map at the top of the range, the
3617 	 * bottom of the range or in the middle.
3618 	 *
3619 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3620 	 * and cow to be 0.  Possibly we should eliminate these as input
3621 	 * parameters, and just pass these values here in the insert call.
3622 	 */
3623 	if (orient == MAP_STACK_GROWS_DOWN) {
3624 		bot = addrbos + max_ssize - init_ssize;
3625 		top = bot + init_ssize;
3626 		gap_bot = addrbos;
3627 		gap_top = bot;
3628 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
3629 		bot = addrbos;
3630 		top = bot + init_ssize;
3631 		gap_bot = top;
3632 		gap_top = addrbos + max_ssize;
3633 	}
3634 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3635 	if (rv != KERN_SUCCESS)
3636 		return (rv);
3637 	new_entry = prev_entry->next;
3638 	KASSERT(new_entry->end == top || new_entry->start == bot,
3639 	    ("Bad entry start/end for new stack entry"));
3640 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3641 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3642 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3643 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3644 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3645 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3646 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3647 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3648 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3649 	if (rv != KERN_SUCCESS)
3650 		(void)vm_map_delete(map, bot, top);
3651 	return (rv);
3652 }
3653 
3654 static int stack_guard_page = 1;
3655 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3656     &stack_guard_page, 0,
3657     "Specifies the number of guard pages for a stack that grows.");
3658 
3659 /*
3660  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3661  * successfully grow the stack.
3662  */
3663 static int
3664 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3665 {
3666 	vm_map_entry_t stack_entry;
3667 	struct proc *p;
3668 	struct vmspace *vm;
3669 	struct ucred *cred;
3670 	vm_offset_t gap_end, gap_start, grow_start;
3671 	size_t grow_amount, max_grow;
3672 	rlim_t lmemlim, stacklim, vmemlim;
3673 	int rv, rv1;
3674 	bool gap_deleted, grow_down, is_procstack;
3675 #ifdef notyet
3676 	uint64_t limit;
3677 #endif
3678 #ifdef RACCT
3679 	int error;
3680 #endif
3681 
3682 	p = curproc;
3683 	vm = p->p_vmspace;
3684 	MPASS(map == &p->p_vmspace->vm_map);
3685 	MPASS(!map->system_map);
3686 
3687 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3688 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3689 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3690 retry:
3691 	/* If addr is not in a hole for a stack grow area, no need to grow. */
3692 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3693 		return (KERN_FAILURE);
3694 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3695 		return (KERN_SUCCESS);
3696 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3697 		stack_entry = gap_entry->next;
3698 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3699 		    stack_entry->start != gap_entry->end)
3700 			return (KERN_FAILURE);
3701 		grow_amount = round_page(stack_entry->start - addr);
3702 		grow_down = true;
3703 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3704 		stack_entry = gap_entry->prev;
3705 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3706 		    stack_entry->end != gap_entry->start)
3707 			return (KERN_FAILURE);
3708 		grow_amount = round_page(addr + 1 - stack_entry->end);
3709 		grow_down = false;
3710 	} else {
3711 		return (KERN_FAILURE);
3712 	}
3713 	max_grow = gap_entry->end - gap_entry->start - stack_guard_page *
3714 	    PAGE_SIZE;
3715 	if (grow_amount > max_grow)
3716 		return (KERN_NO_SPACE);
3717 
3718 	/*
3719 	 * If this is the main process stack, see if we're over the stack
3720 	 * limit.
3721 	 */
3722 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3723 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3724 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3725 		return (KERN_NO_SPACE);
3726 
3727 #ifdef RACCT
3728 	if (racct_enable) {
3729 		PROC_LOCK(p);
3730 		if (is_procstack && racct_set(p, RACCT_STACK,
3731 		    ctob(vm->vm_ssize) + grow_amount)) {
3732 			PROC_UNLOCK(p);
3733 			return (KERN_NO_SPACE);
3734 		}
3735 		PROC_UNLOCK(p);
3736 	}
3737 #endif
3738 
3739 	grow_amount = roundup(grow_amount, sgrowsiz);
3740 	if (grow_amount > max_grow)
3741 		grow_amount = max_grow;
3742 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3743 		grow_amount = trunc_page((vm_size_t)stacklim) -
3744 		    ctob(vm->vm_ssize);
3745 	}
3746 
3747 #ifdef notyet
3748 	PROC_LOCK(p);
3749 	limit = racct_get_available(p, RACCT_STACK);
3750 	PROC_UNLOCK(p);
3751 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3752 		grow_amount = limit - ctob(vm->vm_ssize);
3753 #endif
3754 
3755 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3756 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3757 			rv = KERN_NO_SPACE;
3758 			goto out;
3759 		}
3760 #ifdef RACCT
3761 		if (racct_enable) {
3762 			PROC_LOCK(p);
3763 			if (racct_set(p, RACCT_MEMLOCK,
3764 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3765 				PROC_UNLOCK(p);
3766 				rv = KERN_NO_SPACE;
3767 				goto out;
3768 			}
3769 			PROC_UNLOCK(p);
3770 		}
3771 #endif
3772 	}
3773 
3774 	/* If we would blow our VMEM resource limit, no go */
3775 	if (map->size + grow_amount > vmemlim) {
3776 		rv = KERN_NO_SPACE;
3777 		goto out;
3778 	}
3779 #ifdef RACCT
3780 	if (racct_enable) {
3781 		PROC_LOCK(p);
3782 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3783 			PROC_UNLOCK(p);
3784 			rv = KERN_NO_SPACE;
3785 			goto out;
3786 		}
3787 		PROC_UNLOCK(p);
3788 	}
3789 #endif
3790 
3791 	if (vm_map_lock_upgrade(map)) {
3792 		gap_entry = NULL;
3793 		vm_map_lock_read(map);
3794 		goto retry;
3795 	}
3796 
3797 	if (grow_down) {
3798 		grow_start = gap_entry->end - grow_amount;
3799 		if (gap_entry->start + grow_amount == gap_entry->end) {
3800 			gap_start = gap_entry->start;
3801 			gap_end = gap_entry->end;
3802 			vm_map_entry_delete(map, gap_entry);
3803 			gap_deleted = true;
3804 		} else {
3805 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
3806 			gap_entry->end -= grow_amount;
3807 			vm_map_entry_resize_free(map, gap_entry);
3808 			gap_deleted = false;
3809 		}
3810 		rv = vm_map_insert(map, NULL, 0, grow_start,
3811 		    grow_start + grow_amount,
3812 		    stack_entry->protection, stack_entry->max_protection,
3813 		    MAP_STACK_GROWS_DOWN);
3814 		if (rv != KERN_SUCCESS) {
3815 			if (gap_deleted) {
3816 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
3817 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
3818 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3819 				MPASS(rv1 == KERN_SUCCESS);
3820 			} else {
3821 				gap_entry->end += grow_amount;
3822 				vm_map_entry_resize_free(map, gap_entry);
3823 			}
3824 		}
3825 	} else {
3826 		grow_start = stack_entry->end;
3827 		cred = stack_entry->cred;
3828 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3829 			cred = stack_entry->object.vm_object->cred;
3830 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3831 			rv = KERN_NO_SPACE;
3832 		/* Grow the underlying object if applicable. */
3833 		else if (stack_entry->object.vm_object == NULL ||
3834 		    vm_object_coalesce(stack_entry->object.vm_object,
3835 		    stack_entry->offset,
3836 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3837 		    (vm_size_t)grow_amount, cred != NULL)) {
3838 			if (gap_entry->start + grow_amount == gap_entry->end)
3839 				vm_map_entry_delete(map, gap_entry);
3840 			else
3841 				gap_entry->start += grow_amount;
3842 			stack_entry->end += grow_amount;
3843 			map->size += grow_amount;
3844 			vm_map_entry_resize_free(map, stack_entry);
3845 			rv = KERN_SUCCESS;
3846 		} else
3847 			rv = KERN_FAILURE;
3848 	}
3849 	if (rv == KERN_SUCCESS && is_procstack)
3850 		vm->vm_ssize += btoc(grow_amount);
3851 
3852 	/*
3853 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3854 	 */
3855 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3856 		vm_map_unlock(map);
3857 		vm_map_wire(map, grow_start, grow_start + grow_amount,
3858 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3859 		vm_map_lock_read(map);
3860 	} else
3861 		vm_map_lock_downgrade(map);
3862 
3863 out:
3864 #ifdef RACCT
3865 	if (racct_enable && rv != KERN_SUCCESS) {
3866 		PROC_LOCK(p);
3867 		error = racct_set(p, RACCT_VMEM, map->size);
3868 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3869 		if (!old_mlock) {
3870 			error = racct_set(p, RACCT_MEMLOCK,
3871 			    ptoa(pmap_wired_count(map->pmap)));
3872 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3873 		}
3874 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3875 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3876 		PROC_UNLOCK(p);
3877 	}
3878 #endif
3879 
3880 	return (rv);
3881 }
3882 
3883 /*
3884  * Unshare the specified VM space for exec.  If other processes are
3885  * mapped to it, then create a new one.  The new vmspace is null.
3886  */
3887 int
3888 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3889 {
3890 	struct vmspace *oldvmspace = p->p_vmspace;
3891 	struct vmspace *newvmspace;
3892 
3893 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3894 	    ("vmspace_exec recursed"));
3895 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3896 	if (newvmspace == NULL)
3897 		return (ENOMEM);
3898 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3899 	/*
3900 	 * This code is written like this for prototype purposes.  The
3901 	 * goal is to avoid running down the vmspace here, but let the
3902 	 * other process's that are still using the vmspace to finally
3903 	 * run it down.  Even though there is little or no chance of blocking
3904 	 * here, it is a good idea to keep this form for future mods.
3905 	 */
3906 	PROC_VMSPACE_LOCK(p);
3907 	p->p_vmspace = newvmspace;
3908 	PROC_VMSPACE_UNLOCK(p);
3909 	if (p == curthread->td_proc)
3910 		pmap_activate(curthread);
3911 	curthread->td_pflags |= TDP_EXECVMSPC;
3912 	return (0);
3913 }
3914 
3915 /*
3916  * Unshare the specified VM space for forcing COW.  This
3917  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3918  */
3919 int
3920 vmspace_unshare(struct proc *p)
3921 {
3922 	struct vmspace *oldvmspace = p->p_vmspace;
3923 	struct vmspace *newvmspace;
3924 	vm_ooffset_t fork_charge;
3925 
3926 	if (oldvmspace->vm_refcnt == 1)
3927 		return (0);
3928 	fork_charge = 0;
3929 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3930 	if (newvmspace == NULL)
3931 		return (ENOMEM);
3932 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3933 		vmspace_free(newvmspace);
3934 		return (ENOMEM);
3935 	}
3936 	PROC_VMSPACE_LOCK(p);
3937 	p->p_vmspace = newvmspace;
3938 	PROC_VMSPACE_UNLOCK(p);
3939 	if (p == curthread->td_proc)
3940 		pmap_activate(curthread);
3941 	vmspace_free(oldvmspace);
3942 	return (0);
3943 }
3944 
3945 /*
3946  *	vm_map_lookup:
3947  *
3948  *	Finds the VM object, offset, and
3949  *	protection for a given virtual address in the
3950  *	specified map, assuming a page fault of the
3951  *	type specified.
3952  *
3953  *	Leaves the map in question locked for read; return
3954  *	values are guaranteed until a vm_map_lookup_done
3955  *	call is performed.  Note that the map argument
3956  *	is in/out; the returned map must be used in
3957  *	the call to vm_map_lookup_done.
3958  *
3959  *	A handle (out_entry) is returned for use in
3960  *	vm_map_lookup_done, to make that fast.
3961  *
3962  *	If a lookup is requested with "write protection"
3963  *	specified, the map may be changed to perform virtual
3964  *	copying operations, although the data referenced will
3965  *	remain the same.
3966  */
3967 int
3968 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3969 	      vm_offset_t vaddr,
3970 	      vm_prot_t fault_typea,
3971 	      vm_map_entry_t *out_entry,	/* OUT */
3972 	      vm_object_t *object,		/* OUT */
3973 	      vm_pindex_t *pindex,		/* OUT */
3974 	      vm_prot_t *out_prot,		/* OUT */
3975 	      boolean_t *wired)			/* OUT */
3976 {
3977 	vm_map_entry_t entry;
3978 	vm_map_t map = *var_map;
3979 	vm_prot_t prot;
3980 	vm_prot_t fault_type = fault_typea;
3981 	vm_object_t eobject;
3982 	vm_size_t size;
3983 	struct ucred *cred;
3984 
3985 RetryLookup:
3986 
3987 	vm_map_lock_read(map);
3988 
3989 RetryLookupLocked:
3990 	/*
3991 	 * Lookup the faulting address.
3992 	 */
3993 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3994 		vm_map_unlock_read(map);
3995 		return (KERN_INVALID_ADDRESS);
3996 	}
3997 
3998 	entry = *out_entry;
3999 
4000 	/*
4001 	 * Handle submaps.
4002 	 */
4003 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4004 		vm_map_t old_map = map;
4005 
4006 		*var_map = map = entry->object.sub_map;
4007 		vm_map_unlock_read(old_map);
4008 		goto RetryLookup;
4009 	}
4010 
4011 	/*
4012 	 * Check whether this task is allowed to have this page.
4013 	 */
4014 	prot = entry->protection;
4015 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4016 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4017 		if (prot == VM_PROT_NONE && map != kernel_map &&
4018 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4019 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4020 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4021 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4022 			goto RetryLookupLocked;
4023 	}
4024 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4025 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4026 		vm_map_unlock_read(map);
4027 		return (KERN_PROTECTION_FAILURE);
4028 	}
4029 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4030 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4031 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4032 	    ("entry %p flags %x", entry, entry->eflags));
4033 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4034 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4035 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4036 		vm_map_unlock_read(map);
4037 		return (KERN_PROTECTION_FAILURE);
4038 	}
4039 
4040 	/*
4041 	 * If this page is not pageable, we have to get it for all possible
4042 	 * accesses.
4043 	 */
4044 	*wired = (entry->wired_count != 0);
4045 	if (*wired)
4046 		fault_type = entry->protection;
4047 	size = entry->end - entry->start;
4048 	/*
4049 	 * If the entry was copy-on-write, we either ...
4050 	 */
4051 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4052 		/*
4053 		 * If we want to write the page, we may as well handle that
4054 		 * now since we've got the map locked.
4055 		 *
4056 		 * If we don't need to write the page, we just demote the
4057 		 * permissions allowed.
4058 		 */
4059 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4060 		    (fault_typea & VM_PROT_COPY) != 0) {
4061 			/*
4062 			 * Make a new object, and place it in the object
4063 			 * chain.  Note that no new references have appeared
4064 			 * -- one just moved from the map to the new
4065 			 * object.
4066 			 */
4067 			if (vm_map_lock_upgrade(map))
4068 				goto RetryLookup;
4069 
4070 			if (entry->cred == NULL) {
4071 				/*
4072 				 * The debugger owner is charged for
4073 				 * the memory.
4074 				 */
4075 				cred = curthread->td_ucred;
4076 				crhold(cred);
4077 				if (!swap_reserve_by_cred(size, cred)) {
4078 					crfree(cred);
4079 					vm_map_unlock(map);
4080 					return (KERN_RESOURCE_SHORTAGE);
4081 				}
4082 				entry->cred = cred;
4083 			}
4084 			vm_object_shadow(&entry->object.vm_object,
4085 			    &entry->offset, size);
4086 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4087 			eobject = entry->object.vm_object;
4088 			if (eobject->cred != NULL) {
4089 				/*
4090 				 * The object was not shadowed.
4091 				 */
4092 				swap_release_by_cred(size, entry->cred);
4093 				crfree(entry->cred);
4094 				entry->cred = NULL;
4095 			} else if (entry->cred != NULL) {
4096 				VM_OBJECT_WLOCK(eobject);
4097 				eobject->cred = entry->cred;
4098 				eobject->charge = size;
4099 				VM_OBJECT_WUNLOCK(eobject);
4100 				entry->cred = NULL;
4101 			}
4102 
4103 			vm_map_lock_downgrade(map);
4104 		} else {
4105 			/*
4106 			 * We're attempting to read a copy-on-write page --
4107 			 * don't allow writes.
4108 			 */
4109 			prot &= ~VM_PROT_WRITE;
4110 		}
4111 	}
4112 
4113 	/*
4114 	 * Create an object if necessary.
4115 	 */
4116 	if (entry->object.vm_object == NULL &&
4117 	    !map->system_map) {
4118 		if (vm_map_lock_upgrade(map))
4119 			goto RetryLookup;
4120 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4121 		    atop(size));
4122 		entry->offset = 0;
4123 		if (entry->cred != NULL) {
4124 			VM_OBJECT_WLOCK(entry->object.vm_object);
4125 			entry->object.vm_object->cred = entry->cred;
4126 			entry->object.vm_object->charge = size;
4127 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4128 			entry->cred = NULL;
4129 		}
4130 		vm_map_lock_downgrade(map);
4131 	}
4132 
4133 	/*
4134 	 * Return the object/offset from this entry.  If the entry was
4135 	 * copy-on-write or empty, it has been fixed up.
4136 	 */
4137 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4138 	*object = entry->object.vm_object;
4139 
4140 	*out_prot = prot;
4141 	return (KERN_SUCCESS);
4142 }
4143 
4144 /*
4145  *	vm_map_lookup_locked:
4146  *
4147  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4148  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4149  */
4150 int
4151 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4152 		     vm_offset_t vaddr,
4153 		     vm_prot_t fault_typea,
4154 		     vm_map_entry_t *out_entry,	/* OUT */
4155 		     vm_object_t *object,	/* OUT */
4156 		     vm_pindex_t *pindex,	/* OUT */
4157 		     vm_prot_t *out_prot,	/* OUT */
4158 		     boolean_t *wired)		/* OUT */
4159 {
4160 	vm_map_entry_t entry;
4161 	vm_map_t map = *var_map;
4162 	vm_prot_t prot;
4163 	vm_prot_t fault_type = fault_typea;
4164 
4165 	/*
4166 	 * Lookup the faulting address.
4167 	 */
4168 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4169 		return (KERN_INVALID_ADDRESS);
4170 
4171 	entry = *out_entry;
4172 
4173 	/*
4174 	 * Fail if the entry refers to a submap.
4175 	 */
4176 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4177 		return (KERN_FAILURE);
4178 
4179 	/*
4180 	 * Check whether this task is allowed to have this page.
4181 	 */
4182 	prot = entry->protection;
4183 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4184 	if ((fault_type & prot) != fault_type)
4185 		return (KERN_PROTECTION_FAILURE);
4186 
4187 	/*
4188 	 * If this page is not pageable, we have to get it for all possible
4189 	 * accesses.
4190 	 */
4191 	*wired = (entry->wired_count != 0);
4192 	if (*wired)
4193 		fault_type = entry->protection;
4194 
4195 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4196 		/*
4197 		 * Fail if the entry was copy-on-write for a write fault.
4198 		 */
4199 		if (fault_type & VM_PROT_WRITE)
4200 			return (KERN_FAILURE);
4201 		/*
4202 		 * We're attempting to read a copy-on-write page --
4203 		 * don't allow writes.
4204 		 */
4205 		prot &= ~VM_PROT_WRITE;
4206 	}
4207 
4208 	/*
4209 	 * Fail if an object should be created.
4210 	 */
4211 	if (entry->object.vm_object == NULL && !map->system_map)
4212 		return (KERN_FAILURE);
4213 
4214 	/*
4215 	 * Return the object/offset from this entry.  If the entry was
4216 	 * copy-on-write or empty, it has been fixed up.
4217 	 */
4218 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4219 	*object = entry->object.vm_object;
4220 
4221 	*out_prot = prot;
4222 	return (KERN_SUCCESS);
4223 }
4224 
4225 /*
4226  *	vm_map_lookup_done:
4227  *
4228  *	Releases locks acquired by a vm_map_lookup
4229  *	(according to the handle returned by that lookup).
4230  */
4231 void
4232 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4233 {
4234 	/*
4235 	 * Unlock the main-level map
4236 	 */
4237 	vm_map_unlock_read(map);
4238 }
4239 
4240 #include "opt_ddb.h"
4241 #ifdef DDB
4242 #include <sys/kernel.h>
4243 
4244 #include <ddb/ddb.h>
4245 
4246 static void
4247 vm_map_print(vm_map_t map)
4248 {
4249 	vm_map_entry_t entry;
4250 
4251 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4252 	    (void *)map,
4253 	    (void *)map->pmap, map->nentries, map->timestamp);
4254 
4255 	db_indent += 2;
4256 	for (entry = map->header.next; entry != &map->header;
4257 	    entry = entry->next) {
4258 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4259 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4260 		    entry->eflags);
4261 		{
4262 			static char *inheritance_name[4] =
4263 			{"share", "copy", "none", "donate_copy"};
4264 
4265 			db_iprintf(" prot=%x/%x/%s",
4266 			    entry->protection,
4267 			    entry->max_protection,
4268 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4269 			if (entry->wired_count != 0)
4270 				db_printf(", wired");
4271 		}
4272 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4273 			db_printf(", share=%p, offset=0x%jx\n",
4274 			    (void *)entry->object.sub_map,
4275 			    (uintmax_t)entry->offset);
4276 			if ((entry->prev == &map->header) ||
4277 			    (entry->prev->object.sub_map !=
4278 				entry->object.sub_map)) {
4279 				db_indent += 2;
4280 				vm_map_print((vm_map_t)entry->object.sub_map);
4281 				db_indent -= 2;
4282 			}
4283 		} else {
4284 			if (entry->cred != NULL)
4285 				db_printf(", ruid %d", entry->cred->cr_ruid);
4286 			db_printf(", object=%p, offset=0x%jx",
4287 			    (void *)entry->object.vm_object,
4288 			    (uintmax_t)entry->offset);
4289 			if (entry->object.vm_object && entry->object.vm_object->cred)
4290 				db_printf(", obj ruid %d charge %jx",
4291 				    entry->object.vm_object->cred->cr_ruid,
4292 				    (uintmax_t)entry->object.vm_object->charge);
4293 			if (entry->eflags & MAP_ENTRY_COW)
4294 				db_printf(", copy (%s)",
4295 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4296 			db_printf("\n");
4297 
4298 			if ((entry->prev == &map->header) ||
4299 			    (entry->prev->object.vm_object !=
4300 				entry->object.vm_object)) {
4301 				db_indent += 2;
4302 				vm_object_print((db_expr_t)(intptr_t)
4303 						entry->object.vm_object,
4304 						0, 0, (char *)0);
4305 				db_indent -= 2;
4306 			}
4307 		}
4308 	}
4309 	db_indent -= 2;
4310 }
4311 
4312 DB_SHOW_COMMAND(map, map)
4313 {
4314 
4315 	if (!have_addr) {
4316 		db_printf("usage: show map <addr>\n");
4317 		return;
4318 	}
4319 	vm_map_print((vm_map_t)addr);
4320 }
4321 
4322 DB_SHOW_COMMAND(procvm, procvm)
4323 {
4324 	struct proc *p;
4325 
4326 	if (have_addr) {
4327 		p = db_lookup_proc(addr);
4328 	} else {
4329 		p = curproc;
4330 	}
4331 
4332 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4333 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4334 	    (void *)vmspace_pmap(p->p_vmspace));
4335 
4336 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4337 }
4338 
4339 #endif /* DDB */
4340