xref: /freebsd/sys/vm/vm_page.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *			GENERAL RULES ON VM_PAGE MANIPULATION
67  *
68  *	- A page queue lock is required when adding or removing a page from a
69  *	  page queue regardless of other locks or the busy state of a page.
70  *
71  *		* In general, no thread besides the page daemon can acquire or
72  *		  hold more than one page queue lock at a time.
73  *
74  *		* The page daemon can acquire and hold any pair of page queue
75  *		  locks in any order.
76  *
77  *	- The object lock is required when inserting or removing
78  *	  pages from an object (vm_page_insert() or vm_page_remove()).
79  *
80  */
81 
82 /*
83  *	Resident memory management module.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 #include "opt_vm.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/lock.h>
94 #include <sys/domainset.h>
95 #include <sys/kernel.h>
96 #include <sys/limits.h>
97 #include <sys/linker.h>
98 #include <sys/malloc.h>
99 #include <sys/mman.h>
100 #include <sys/msgbuf.h>
101 #include <sys/mutex.h>
102 #include <sys/proc.h>
103 #include <sys/rwlock.h>
104 #include <sys/sbuf.h>
105 #include <sys/sched.h>
106 #include <sys/smp.h>
107 #include <sys/sysctl.h>
108 #include <sys/vmmeter.h>
109 #include <sys/vnode.h>
110 
111 #include <vm/vm.h>
112 #include <vm/pmap.h>
113 #include <vm/vm_param.h>
114 #include <vm/vm_domainset.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_map.h>
117 #include <vm/vm_object.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120 #include <vm/vm_phys.h>
121 #include <vm/vm_pagequeue.h>
122 #include <vm/vm_pager.h>
123 #include <vm/vm_radix.h>
124 #include <vm/vm_reserv.h>
125 #include <vm/vm_extern.h>
126 #include <vm/uma.h>
127 #include <vm/uma_int.h>
128 
129 #include <machine/md_var.h>
130 
131 extern int	uma_startup_count(int);
132 extern void	uma_startup(void *, int);
133 extern int	vmem_startup_count(void);
134 
135 struct vm_domain vm_dom[MAXMEMDOM];
136 
137 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
138 
139 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
140 
141 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
142 /* The following fields are protected by the domainset lock. */
143 domainset_t __exclusive_cache_line vm_min_domains;
144 domainset_t __exclusive_cache_line vm_severe_domains;
145 static int vm_min_waiters;
146 static int vm_severe_waiters;
147 static int vm_pageproc_waiters;
148 
149 /*
150  * bogus page -- for I/O to/from partially complete buffers,
151  * or for paging into sparsely invalid regions.
152  */
153 vm_page_t bogus_page;
154 
155 vm_page_t vm_page_array;
156 long vm_page_array_size;
157 long first_page;
158 
159 static int boot_pages;
160 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
161     &boot_pages, 0,
162     "number of pages allocated for bootstrapping the VM system");
163 
164 static int pa_tryrelock_restart;
165 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
166     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
167 
168 static TAILQ_HEAD(, vm_page) blacklist_head;
169 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
170 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
171     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
172 
173 static uma_zone_t fakepg_zone;
174 
175 static void vm_page_alloc_check(vm_page_t m);
176 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
177 static void vm_page_dequeue_complete(vm_page_t m);
178 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
179 static void vm_page_init(void *dummy);
180 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
181     vm_pindex_t pindex, vm_page_t mpred);
182 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
183     vm_page_t mpred);
184 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
185     vm_page_t m_run, vm_paddr_t high);
186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
187     int req);
188 static int vm_page_import(void *arg, void **store, int cnt, int domain,
189     int flags);
190 static void vm_page_release(void *arg, void **store, int cnt);
191 
192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
193 
194 static void
195 vm_page_init(void *dummy)
196 {
197 
198 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
199 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
200 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
201 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
202 }
203 
204 /*
205  * The cache page zone is initialized later since we need to be able to allocate
206  * pages before UMA is fully initialized.
207  */
208 static void
209 vm_page_init_cache_zones(void *dummy __unused)
210 {
211 	struct vm_domain *vmd;
212 	int i;
213 
214 	for (i = 0; i < vm_ndomains; i++) {
215 		vmd = VM_DOMAIN(i);
216 		/*
217 		 * Don't allow the page cache to take up more than .25% of
218 		 * memory.
219 		 */
220 		if (vmd->vmd_page_count / 400 < 256 * mp_ncpus)
221 			continue;
222 		vmd->vmd_pgcache = uma_zcache_create("vm pgcache",
223 		    sizeof(struct vm_page), NULL, NULL, NULL, NULL,
224 		    vm_page_import, vm_page_release, vmd,
225 		    UMA_ZONE_MAXBUCKET | UMA_ZONE_VM);
226 		(void )uma_zone_set_maxcache(vmd->vmd_pgcache, 0);
227 	}
228 }
229 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
230 
231 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
232 #if PAGE_SIZE == 32768
233 #ifdef CTASSERT
234 CTASSERT(sizeof(u_long) >= 8);
235 #endif
236 #endif
237 
238 /*
239  * Try to acquire a physical address lock while a pmap is locked.  If we
240  * fail to trylock we unlock and lock the pmap directly and cache the
241  * locked pa in *locked.  The caller should then restart their loop in case
242  * the virtual to physical mapping has changed.
243  */
244 int
245 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
246 {
247 	vm_paddr_t lockpa;
248 
249 	lockpa = *locked;
250 	*locked = pa;
251 	if (lockpa) {
252 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
253 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
254 			return (0);
255 		PA_UNLOCK(lockpa);
256 	}
257 	if (PA_TRYLOCK(pa))
258 		return (0);
259 	PMAP_UNLOCK(pmap);
260 	atomic_add_int(&pa_tryrelock_restart, 1);
261 	PA_LOCK(pa);
262 	PMAP_LOCK(pmap);
263 	return (EAGAIN);
264 }
265 
266 /*
267  *	vm_set_page_size:
268  *
269  *	Sets the page size, perhaps based upon the memory
270  *	size.  Must be called before any use of page-size
271  *	dependent functions.
272  */
273 void
274 vm_set_page_size(void)
275 {
276 	if (vm_cnt.v_page_size == 0)
277 		vm_cnt.v_page_size = PAGE_SIZE;
278 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
279 		panic("vm_set_page_size: page size not a power of two");
280 }
281 
282 /*
283  *	vm_page_blacklist_next:
284  *
285  *	Find the next entry in the provided string of blacklist
286  *	addresses.  Entries are separated by space, comma, or newline.
287  *	If an invalid integer is encountered then the rest of the
288  *	string is skipped.  Updates the list pointer to the next
289  *	character, or NULL if the string is exhausted or invalid.
290  */
291 static vm_paddr_t
292 vm_page_blacklist_next(char **list, char *end)
293 {
294 	vm_paddr_t bad;
295 	char *cp, *pos;
296 
297 	if (list == NULL || *list == NULL)
298 		return (0);
299 	if (**list =='\0') {
300 		*list = NULL;
301 		return (0);
302 	}
303 
304 	/*
305 	 * If there's no end pointer then the buffer is coming from
306 	 * the kenv and we know it's null-terminated.
307 	 */
308 	if (end == NULL)
309 		end = *list + strlen(*list);
310 
311 	/* Ensure that strtoq() won't walk off the end */
312 	if (*end != '\0') {
313 		if (*end == '\n' || *end == ' ' || *end  == ',')
314 			*end = '\0';
315 		else {
316 			printf("Blacklist not terminated, skipping\n");
317 			*list = NULL;
318 			return (0);
319 		}
320 	}
321 
322 	for (pos = *list; *pos != '\0'; pos = cp) {
323 		bad = strtoq(pos, &cp, 0);
324 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
325 			if (bad == 0) {
326 				if (++cp < end)
327 					continue;
328 				else
329 					break;
330 			}
331 		} else
332 			break;
333 		if (*cp == '\0' || ++cp >= end)
334 			*list = NULL;
335 		else
336 			*list = cp;
337 		return (trunc_page(bad));
338 	}
339 	printf("Garbage in RAM blacklist, skipping\n");
340 	*list = NULL;
341 	return (0);
342 }
343 
344 bool
345 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
346 {
347 	struct vm_domain *vmd;
348 	vm_page_t m;
349 	int ret;
350 
351 	m = vm_phys_paddr_to_vm_page(pa);
352 	if (m == NULL)
353 		return (true); /* page does not exist, no failure */
354 
355 	vmd = vm_pagequeue_domain(m);
356 	vm_domain_free_lock(vmd);
357 	ret = vm_phys_unfree_page(m);
358 	vm_domain_free_unlock(vmd);
359 	if (ret != 0) {
360 		vm_domain_freecnt_inc(vmd, -1);
361 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
362 		if (verbose)
363 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
364 	}
365 	return (ret);
366 }
367 
368 /*
369  *	vm_page_blacklist_check:
370  *
371  *	Iterate through the provided string of blacklist addresses, pulling
372  *	each entry out of the physical allocator free list and putting it
373  *	onto a list for reporting via the vm.page_blacklist sysctl.
374  */
375 static void
376 vm_page_blacklist_check(char *list, char *end)
377 {
378 	vm_paddr_t pa;
379 	char *next;
380 
381 	next = list;
382 	while (next != NULL) {
383 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
384 			continue;
385 		vm_page_blacklist_add(pa, bootverbose);
386 	}
387 }
388 
389 /*
390  *	vm_page_blacklist_load:
391  *
392  *	Search for a special module named "ram_blacklist".  It'll be a
393  *	plain text file provided by the user via the loader directive
394  *	of the same name.
395  */
396 static void
397 vm_page_blacklist_load(char **list, char **end)
398 {
399 	void *mod;
400 	u_char *ptr;
401 	u_int len;
402 
403 	mod = NULL;
404 	ptr = NULL;
405 
406 	mod = preload_search_by_type("ram_blacklist");
407 	if (mod != NULL) {
408 		ptr = preload_fetch_addr(mod);
409 		len = preload_fetch_size(mod);
410         }
411 	*list = ptr;
412 	if (ptr != NULL)
413 		*end = ptr + len;
414 	else
415 		*end = NULL;
416 	return;
417 }
418 
419 static int
420 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
421 {
422 	vm_page_t m;
423 	struct sbuf sbuf;
424 	int error, first;
425 
426 	first = 1;
427 	error = sysctl_wire_old_buffer(req, 0);
428 	if (error != 0)
429 		return (error);
430 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
431 	TAILQ_FOREACH(m, &blacklist_head, listq) {
432 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
433 		    (uintmax_t)m->phys_addr);
434 		first = 0;
435 	}
436 	error = sbuf_finish(&sbuf);
437 	sbuf_delete(&sbuf);
438 	return (error);
439 }
440 
441 /*
442  * Initialize a dummy page for use in scans of the specified paging queue.
443  * In principle, this function only needs to set the flag PG_MARKER.
444  * Nonetheless, it write busies and initializes the hold count to one as
445  * safety precautions.
446  */
447 static void
448 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags)
449 {
450 
451 	bzero(marker, sizeof(*marker));
452 	marker->flags = PG_MARKER;
453 	marker->aflags = aflags;
454 	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
455 	marker->queue = queue;
456 	marker->hold_count = 1;
457 }
458 
459 static void
460 vm_page_domain_init(int domain)
461 {
462 	struct vm_domain *vmd;
463 	struct vm_pagequeue *pq;
464 	int i;
465 
466 	vmd = VM_DOMAIN(domain);
467 	bzero(vmd, sizeof(*vmd));
468 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
469 	    "vm inactive pagequeue";
470 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
471 	    "vm active pagequeue";
472 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
473 	    "vm laundry pagequeue";
474 	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
475 	    "vm unswappable pagequeue";
476 	vmd->vmd_domain = domain;
477 	vmd->vmd_page_count = 0;
478 	vmd->vmd_free_count = 0;
479 	vmd->vmd_segs = 0;
480 	vmd->vmd_oom = FALSE;
481 	for (i = 0; i < PQ_COUNT; i++) {
482 		pq = &vmd->vmd_pagequeues[i];
483 		TAILQ_INIT(&pq->pq_pl);
484 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
485 		    MTX_DEF | MTX_DUPOK);
486 		pq->pq_pdpages = 0;
487 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
488 	}
489 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
490 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
491 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
492 
493 	/*
494 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
495 	 * insertions.
496 	 */
497 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
498 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
499 	    &vmd->vmd_inacthead, plinks.q);
500 
501 	/*
502 	 * The clock pages are used to implement active queue scanning without
503 	 * requeues.  Scans start at clock[0], which is advanced after the scan
504 	 * ends.  When the two clock hands meet, they are reset and scanning
505 	 * resumes from the head of the queue.
506 	 */
507 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
508 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
509 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
510 	    &vmd->vmd_clock[0], plinks.q);
511 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
512 	    &vmd->vmd_clock[1], plinks.q);
513 }
514 
515 /*
516  * Initialize a physical page in preparation for adding it to the free
517  * lists.
518  */
519 static void
520 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
521 {
522 
523 	m->object = NULL;
524 	m->wire_count = 0;
525 	m->busy_lock = VPB_UNBUSIED;
526 	m->hold_count = 0;
527 	m->flags = m->aflags = 0;
528 	m->phys_addr = pa;
529 	m->queue = PQ_NONE;
530 	m->psind = 0;
531 	m->segind = segind;
532 	m->order = VM_NFREEORDER;
533 	m->pool = VM_FREEPOOL_DEFAULT;
534 	m->valid = m->dirty = 0;
535 	pmap_page_init(m);
536 }
537 
538 /*
539  *	vm_page_startup:
540  *
541  *	Initializes the resident memory module.  Allocates physical memory for
542  *	bootstrapping UMA and some data structures that are used to manage
543  *	physical pages.  Initializes these structures, and populates the free
544  *	page queues.
545  */
546 vm_offset_t
547 vm_page_startup(vm_offset_t vaddr)
548 {
549 	struct vm_phys_seg *seg;
550 	vm_page_t m;
551 	char *list, *listend;
552 	vm_offset_t mapped;
553 	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
554 	vm_paddr_t biggestsize, last_pa, pa;
555 	u_long pagecount;
556 	int biggestone, i, segind;
557 #ifdef WITNESS
558 	int witness_size;
559 #endif
560 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
561 	long ii;
562 #endif
563 
564 	biggestsize = 0;
565 	biggestone = 0;
566 	vaddr = round_page(vaddr);
567 
568 	for (i = 0; phys_avail[i + 1]; i += 2) {
569 		phys_avail[i] = round_page(phys_avail[i]);
570 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
571 	}
572 	for (i = 0; phys_avail[i + 1]; i += 2) {
573 		size = phys_avail[i + 1] - phys_avail[i];
574 		if (size > biggestsize) {
575 			biggestone = i;
576 			biggestsize = size;
577 		}
578 	}
579 
580 	end = phys_avail[biggestone+1];
581 
582 	/*
583 	 * Initialize the page and queue locks.
584 	 */
585 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
586 	for (i = 0; i < PA_LOCK_COUNT; i++)
587 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
588 	for (i = 0; i < vm_ndomains; i++)
589 		vm_page_domain_init(i);
590 
591 	/*
592 	 * Allocate memory for use when boot strapping the kernel memory
593 	 * allocator.  Tell UMA how many zones we are going to create
594 	 * before going fully functional.  UMA will add its zones.
595 	 *
596 	 * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
597 	 * KMAP ENTRY, MAP ENTRY, VMSPACE.
598 	 */
599 	boot_pages = uma_startup_count(8);
600 
601 #ifndef UMA_MD_SMALL_ALLOC
602 	/* vmem_startup() calls uma_prealloc(). */
603 	boot_pages += vmem_startup_count();
604 	/* vm_map_startup() calls uma_prealloc(). */
605 	boot_pages += howmany(MAX_KMAP,
606 	    UMA_SLAB_SPACE / sizeof(struct vm_map));
607 
608 	/*
609 	 * Before going fully functional kmem_init() does allocation
610 	 * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
611 	 */
612 	boot_pages += 2;
613 #endif
614 	/*
615 	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
616 	 * manually fetch the value.
617 	 */
618 	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
619 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
620 	new_end = trunc_page(new_end);
621 	mapped = pmap_map(&vaddr, new_end, end,
622 	    VM_PROT_READ | VM_PROT_WRITE);
623 	bzero((void *)mapped, end - new_end);
624 	uma_startup((void *)mapped, boot_pages);
625 
626 #ifdef WITNESS
627 	witness_size = round_page(witness_startup_count());
628 	new_end -= witness_size;
629 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
630 	    VM_PROT_READ | VM_PROT_WRITE);
631 	bzero((void *)mapped, witness_size);
632 	witness_startup((void *)mapped);
633 #endif
634 
635 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
636     defined(__i386__) || defined(__mips__)
637 	/*
638 	 * Allocate a bitmap to indicate that a random physical page
639 	 * needs to be included in a minidump.
640 	 *
641 	 * The amd64 port needs this to indicate which direct map pages
642 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
643 	 *
644 	 * However, i386 still needs this workspace internally within the
645 	 * minidump code.  In theory, they are not needed on i386, but are
646 	 * included should the sf_buf code decide to use them.
647 	 */
648 	last_pa = 0;
649 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
650 		if (dump_avail[i + 1] > last_pa)
651 			last_pa = dump_avail[i + 1];
652 	page_range = last_pa / PAGE_SIZE;
653 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
654 	new_end -= vm_page_dump_size;
655 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
656 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
657 	bzero((void *)vm_page_dump, vm_page_dump_size);
658 #else
659 	(void)last_pa;
660 #endif
661 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
662 	/*
663 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
664 	 * in a crash dump.  When pmap_map() uses the direct map, they are
665 	 * not automatically included.
666 	 */
667 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
668 		dump_add_page(pa);
669 #endif
670 	phys_avail[biggestone + 1] = new_end;
671 #ifdef __amd64__
672 	/*
673 	 * Request that the physical pages underlying the message buffer be
674 	 * included in a crash dump.  Since the message buffer is accessed
675 	 * through the direct map, they are not automatically included.
676 	 */
677 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
678 	last_pa = pa + round_page(msgbufsize);
679 	while (pa < last_pa) {
680 		dump_add_page(pa);
681 		pa += PAGE_SIZE;
682 	}
683 #endif
684 	/*
685 	 * Compute the number of pages of memory that will be available for
686 	 * use, taking into account the overhead of a page structure per page.
687 	 * In other words, solve
688 	 *	"available physical memory" - round_page(page_range *
689 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
690 	 * for page_range.
691 	 */
692 	low_avail = phys_avail[0];
693 	high_avail = phys_avail[1];
694 	for (i = 0; i < vm_phys_nsegs; i++) {
695 		if (vm_phys_segs[i].start < low_avail)
696 			low_avail = vm_phys_segs[i].start;
697 		if (vm_phys_segs[i].end > high_avail)
698 			high_avail = vm_phys_segs[i].end;
699 	}
700 	/* Skip the first chunk.  It is already accounted for. */
701 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
702 		if (phys_avail[i] < low_avail)
703 			low_avail = phys_avail[i];
704 		if (phys_avail[i + 1] > high_avail)
705 			high_avail = phys_avail[i + 1];
706 	}
707 	first_page = low_avail / PAGE_SIZE;
708 #ifdef VM_PHYSSEG_SPARSE
709 	size = 0;
710 	for (i = 0; i < vm_phys_nsegs; i++)
711 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
712 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
713 		size += phys_avail[i + 1] - phys_avail[i];
714 #elif defined(VM_PHYSSEG_DENSE)
715 	size = high_avail - low_avail;
716 #else
717 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
718 #endif
719 
720 #ifdef VM_PHYSSEG_DENSE
721 	/*
722 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
723 	 * the overhead of a page structure per page only if vm_page_array is
724 	 * allocated from the last physical memory chunk.  Otherwise, we must
725 	 * allocate page structures representing the physical memory
726 	 * underlying vm_page_array, even though they will not be used.
727 	 */
728 	if (new_end != high_avail)
729 		page_range = size / PAGE_SIZE;
730 	else
731 #endif
732 	{
733 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
734 
735 		/*
736 		 * If the partial bytes remaining are large enough for
737 		 * a page (PAGE_SIZE) without a corresponding
738 		 * 'struct vm_page', then new_end will contain an
739 		 * extra page after subtracting the length of the VM
740 		 * page array.  Compensate by subtracting an extra
741 		 * page from new_end.
742 		 */
743 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
744 			if (new_end == high_avail)
745 				high_avail -= PAGE_SIZE;
746 			new_end -= PAGE_SIZE;
747 		}
748 	}
749 	end = new_end;
750 
751 	/*
752 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
753 	 * However, because this page is allocated from KVM, out-of-bounds
754 	 * accesses using the direct map will not be trapped.
755 	 */
756 	vaddr += PAGE_SIZE;
757 
758 	/*
759 	 * Allocate physical memory for the page structures, and map it.
760 	 */
761 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
762 	mapped = pmap_map(&vaddr, new_end, end,
763 	    VM_PROT_READ | VM_PROT_WRITE);
764 	vm_page_array = (vm_page_t)mapped;
765 	vm_page_array_size = page_range;
766 
767 #if VM_NRESERVLEVEL > 0
768 	/*
769 	 * Allocate physical memory for the reservation management system's
770 	 * data structures, and map it.
771 	 */
772 	if (high_avail == end)
773 		high_avail = new_end;
774 	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
775 #endif
776 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
777 	/*
778 	 * Include vm_page_array and vm_reserv_array in a crash dump.
779 	 */
780 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
781 		dump_add_page(pa);
782 #endif
783 	phys_avail[biggestone + 1] = new_end;
784 
785 	/*
786 	 * Add physical memory segments corresponding to the available
787 	 * physical pages.
788 	 */
789 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
790 		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
791 
792 	/*
793 	 * Initialize the physical memory allocator.
794 	 */
795 	vm_phys_init();
796 
797 	/*
798 	 * Initialize the page structures and add every available page to the
799 	 * physical memory allocator's free lists.
800 	 */
801 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
802 	for (ii = 0; ii < vm_page_array_size; ii++) {
803 		m = &vm_page_array[ii];
804 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
805 		m->flags = PG_FICTITIOUS;
806 	}
807 #endif
808 	vm_cnt.v_page_count = 0;
809 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
810 		seg = &vm_phys_segs[segind];
811 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
812 		    m++, pa += PAGE_SIZE)
813 			vm_page_init_page(m, pa, segind);
814 
815 		/*
816 		 * Add the segment to the free lists only if it is covered by
817 		 * one of the ranges in phys_avail.  Because we've added the
818 		 * ranges to the vm_phys_segs array, we can assume that each
819 		 * segment is either entirely contained in one of the ranges,
820 		 * or doesn't overlap any of them.
821 		 */
822 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
823 			struct vm_domain *vmd;
824 
825 			if (seg->start < phys_avail[i] ||
826 			    seg->end > phys_avail[i + 1])
827 				continue;
828 
829 			m = seg->first_page;
830 			pagecount = (u_long)atop(seg->end - seg->start);
831 
832 			vmd = VM_DOMAIN(seg->domain);
833 			vm_domain_free_lock(vmd);
834 			vm_phys_free_contig(m, pagecount);
835 			vm_domain_free_unlock(vmd);
836 			vm_domain_freecnt_inc(vmd, pagecount);
837 			vm_cnt.v_page_count += (u_int)pagecount;
838 
839 			vmd = VM_DOMAIN(seg->domain);
840 			vmd->vmd_page_count += (u_int)pagecount;
841 			vmd->vmd_segs |= 1UL << m->segind;
842 			break;
843 		}
844 	}
845 
846 	/*
847 	 * Remove blacklisted pages from the physical memory allocator.
848 	 */
849 	TAILQ_INIT(&blacklist_head);
850 	vm_page_blacklist_load(&list, &listend);
851 	vm_page_blacklist_check(list, listend);
852 
853 	list = kern_getenv("vm.blacklist");
854 	vm_page_blacklist_check(list, NULL);
855 
856 	freeenv(list);
857 #if VM_NRESERVLEVEL > 0
858 	/*
859 	 * Initialize the reservation management system.
860 	 */
861 	vm_reserv_init();
862 #endif
863 
864 	return (vaddr);
865 }
866 
867 void
868 vm_page_reference(vm_page_t m)
869 {
870 
871 	vm_page_aflag_set(m, PGA_REFERENCED);
872 }
873 
874 /*
875  *	vm_page_busy_downgrade:
876  *
877  *	Downgrade an exclusive busy page into a single shared busy page.
878  */
879 void
880 vm_page_busy_downgrade(vm_page_t m)
881 {
882 	u_int x;
883 	bool locked;
884 
885 	vm_page_assert_xbusied(m);
886 	locked = mtx_owned(vm_page_lockptr(m));
887 
888 	for (;;) {
889 		x = m->busy_lock;
890 		x &= VPB_BIT_WAITERS;
891 		if (x != 0 && !locked)
892 			vm_page_lock(m);
893 		if (atomic_cmpset_rel_int(&m->busy_lock,
894 		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
895 			break;
896 		if (x != 0 && !locked)
897 			vm_page_unlock(m);
898 	}
899 	if (x != 0) {
900 		wakeup(m);
901 		if (!locked)
902 			vm_page_unlock(m);
903 	}
904 }
905 
906 /*
907  *	vm_page_sbusied:
908  *
909  *	Return a positive value if the page is shared busied, 0 otherwise.
910  */
911 int
912 vm_page_sbusied(vm_page_t m)
913 {
914 	u_int x;
915 
916 	x = m->busy_lock;
917 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
918 }
919 
920 /*
921  *	vm_page_sunbusy:
922  *
923  *	Shared unbusy a page.
924  */
925 void
926 vm_page_sunbusy(vm_page_t m)
927 {
928 	u_int x;
929 
930 	vm_page_lock_assert(m, MA_NOTOWNED);
931 	vm_page_assert_sbusied(m);
932 
933 	for (;;) {
934 		x = m->busy_lock;
935 		if (VPB_SHARERS(x) > 1) {
936 			if (atomic_cmpset_int(&m->busy_lock, x,
937 			    x - VPB_ONE_SHARER))
938 				break;
939 			continue;
940 		}
941 		if ((x & VPB_BIT_WAITERS) == 0) {
942 			KASSERT(x == VPB_SHARERS_WORD(1),
943 			    ("vm_page_sunbusy: invalid lock state"));
944 			if (atomic_cmpset_int(&m->busy_lock,
945 			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
946 				break;
947 			continue;
948 		}
949 		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
950 		    ("vm_page_sunbusy: invalid lock state for waiters"));
951 
952 		vm_page_lock(m);
953 		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
954 			vm_page_unlock(m);
955 			continue;
956 		}
957 		wakeup(m);
958 		vm_page_unlock(m);
959 		break;
960 	}
961 }
962 
963 /*
964  *	vm_page_busy_sleep:
965  *
966  *	Sleep and release the page lock, using the page pointer as wchan.
967  *	This is used to implement the hard-path of busying mechanism.
968  *
969  *	The given page must be locked.
970  *
971  *	If nonshared is true, sleep only if the page is xbusy.
972  */
973 void
974 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
975 {
976 	u_int x;
977 
978 	vm_page_assert_locked(m);
979 
980 	x = m->busy_lock;
981 	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
982 	    ((x & VPB_BIT_WAITERS) == 0 &&
983 	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
984 		vm_page_unlock(m);
985 		return;
986 	}
987 	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
988 }
989 
990 /*
991  *	vm_page_trysbusy:
992  *
993  *	Try to shared busy a page.
994  *	If the operation succeeds 1 is returned otherwise 0.
995  *	The operation never sleeps.
996  */
997 int
998 vm_page_trysbusy(vm_page_t m)
999 {
1000 	u_int x;
1001 
1002 	for (;;) {
1003 		x = m->busy_lock;
1004 		if ((x & VPB_BIT_SHARED) == 0)
1005 			return (0);
1006 		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
1007 			return (1);
1008 	}
1009 }
1010 
1011 static void
1012 vm_page_xunbusy_locked(vm_page_t m)
1013 {
1014 
1015 	vm_page_assert_xbusied(m);
1016 	vm_page_assert_locked(m);
1017 
1018 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1019 	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
1020 	wakeup(m);
1021 }
1022 
1023 void
1024 vm_page_xunbusy_maybelocked(vm_page_t m)
1025 {
1026 	bool lockacq;
1027 
1028 	vm_page_assert_xbusied(m);
1029 
1030 	/*
1031 	 * Fast path for unbusy.  If it succeeds, we know that there
1032 	 * are no waiters, so we do not need a wakeup.
1033 	 */
1034 	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
1035 	    VPB_UNBUSIED))
1036 		return;
1037 
1038 	lockacq = !mtx_owned(vm_page_lockptr(m));
1039 	if (lockacq)
1040 		vm_page_lock(m);
1041 	vm_page_xunbusy_locked(m);
1042 	if (lockacq)
1043 		vm_page_unlock(m);
1044 }
1045 
1046 /*
1047  *	vm_page_xunbusy_hard:
1048  *
1049  *	Called after the first try the exclusive unbusy of a page failed.
1050  *	It is assumed that the waiters bit is on.
1051  */
1052 void
1053 vm_page_xunbusy_hard(vm_page_t m)
1054 {
1055 
1056 	vm_page_assert_xbusied(m);
1057 
1058 	vm_page_lock(m);
1059 	vm_page_xunbusy_locked(m);
1060 	vm_page_unlock(m);
1061 }
1062 
1063 /*
1064  *	vm_page_flash:
1065  *
1066  *	Wakeup anyone waiting for the page.
1067  *	The ownership bits do not change.
1068  *
1069  *	The given page must be locked.
1070  */
1071 void
1072 vm_page_flash(vm_page_t m)
1073 {
1074 	u_int x;
1075 
1076 	vm_page_lock_assert(m, MA_OWNED);
1077 
1078 	for (;;) {
1079 		x = m->busy_lock;
1080 		if ((x & VPB_BIT_WAITERS) == 0)
1081 			return;
1082 		if (atomic_cmpset_int(&m->busy_lock, x,
1083 		    x & (~VPB_BIT_WAITERS)))
1084 			break;
1085 	}
1086 	wakeup(m);
1087 }
1088 
1089 /*
1090  * Avoid releasing and reacquiring the same page lock.
1091  */
1092 void
1093 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1094 {
1095 	struct mtx *mtx1;
1096 
1097 	mtx1 = vm_page_lockptr(m);
1098 	if (*mtx == mtx1)
1099 		return;
1100 	if (*mtx != NULL)
1101 		mtx_unlock(*mtx);
1102 	*mtx = mtx1;
1103 	mtx_lock(mtx1);
1104 }
1105 
1106 /*
1107  * Keep page from being freed by the page daemon
1108  * much of the same effect as wiring, except much lower
1109  * overhead and should be used only for *very* temporary
1110  * holding ("wiring").
1111  */
1112 void
1113 vm_page_hold(vm_page_t mem)
1114 {
1115 
1116 	vm_page_lock_assert(mem, MA_OWNED);
1117         mem->hold_count++;
1118 }
1119 
1120 void
1121 vm_page_unhold(vm_page_t mem)
1122 {
1123 
1124 	vm_page_lock_assert(mem, MA_OWNED);
1125 	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
1126 	--mem->hold_count;
1127 	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
1128 		vm_page_free_toq(mem);
1129 }
1130 
1131 /*
1132  *	vm_page_unhold_pages:
1133  *
1134  *	Unhold each of the pages that is referenced by the given array.
1135  */
1136 void
1137 vm_page_unhold_pages(vm_page_t *ma, int count)
1138 {
1139 	struct mtx *mtx;
1140 
1141 	mtx = NULL;
1142 	for (; count != 0; count--) {
1143 		vm_page_change_lock(*ma, &mtx);
1144 		vm_page_unhold(*ma);
1145 		ma++;
1146 	}
1147 	if (mtx != NULL)
1148 		mtx_unlock(mtx);
1149 }
1150 
1151 vm_page_t
1152 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1153 {
1154 	vm_page_t m;
1155 
1156 #ifdef VM_PHYSSEG_SPARSE
1157 	m = vm_phys_paddr_to_vm_page(pa);
1158 	if (m == NULL)
1159 		m = vm_phys_fictitious_to_vm_page(pa);
1160 	return (m);
1161 #elif defined(VM_PHYSSEG_DENSE)
1162 	long pi;
1163 
1164 	pi = atop(pa);
1165 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1166 		m = &vm_page_array[pi - first_page];
1167 		return (m);
1168 	}
1169 	return (vm_phys_fictitious_to_vm_page(pa));
1170 #else
1171 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1172 #endif
1173 }
1174 
1175 /*
1176  *	vm_page_getfake:
1177  *
1178  *	Create a fictitious page with the specified physical address and
1179  *	memory attribute.  The memory attribute is the only the machine-
1180  *	dependent aspect of a fictitious page that must be initialized.
1181  */
1182 vm_page_t
1183 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1184 {
1185 	vm_page_t m;
1186 
1187 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1188 	vm_page_initfake(m, paddr, memattr);
1189 	return (m);
1190 }
1191 
1192 void
1193 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1194 {
1195 
1196 	if ((m->flags & PG_FICTITIOUS) != 0) {
1197 		/*
1198 		 * The page's memattr might have changed since the
1199 		 * previous initialization.  Update the pmap to the
1200 		 * new memattr.
1201 		 */
1202 		goto memattr;
1203 	}
1204 	m->phys_addr = paddr;
1205 	m->queue = PQ_NONE;
1206 	/* Fictitious pages don't use "segind". */
1207 	m->flags = PG_FICTITIOUS;
1208 	/* Fictitious pages don't use "order" or "pool". */
1209 	m->oflags = VPO_UNMANAGED;
1210 	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1211 	m->wire_count = 1;
1212 	pmap_page_init(m);
1213 memattr:
1214 	pmap_page_set_memattr(m, memattr);
1215 }
1216 
1217 /*
1218  *	vm_page_putfake:
1219  *
1220  *	Release a fictitious page.
1221  */
1222 void
1223 vm_page_putfake(vm_page_t m)
1224 {
1225 
1226 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1227 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1228 	    ("vm_page_putfake: bad page %p", m));
1229 	uma_zfree(fakepg_zone, m);
1230 }
1231 
1232 /*
1233  *	vm_page_updatefake:
1234  *
1235  *	Update the given fictitious page to the specified physical address and
1236  *	memory attribute.
1237  */
1238 void
1239 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1240 {
1241 
1242 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1243 	    ("vm_page_updatefake: bad page %p", m));
1244 	m->phys_addr = paddr;
1245 	pmap_page_set_memattr(m, memattr);
1246 }
1247 
1248 /*
1249  *	vm_page_free:
1250  *
1251  *	Free a page.
1252  */
1253 void
1254 vm_page_free(vm_page_t m)
1255 {
1256 
1257 	m->flags &= ~PG_ZERO;
1258 	vm_page_free_toq(m);
1259 }
1260 
1261 /*
1262  *	vm_page_free_zero:
1263  *
1264  *	Free a page to the zerod-pages queue
1265  */
1266 void
1267 vm_page_free_zero(vm_page_t m)
1268 {
1269 
1270 	m->flags |= PG_ZERO;
1271 	vm_page_free_toq(m);
1272 }
1273 
1274 /*
1275  * Unbusy and handle the page queueing for a page from a getpages request that
1276  * was optionally read ahead or behind.
1277  */
1278 void
1279 vm_page_readahead_finish(vm_page_t m)
1280 {
1281 
1282 	/* We shouldn't put invalid pages on queues. */
1283 	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1284 
1285 	/*
1286 	 * Since the page is not the actually needed one, whether it should
1287 	 * be activated or deactivated is not obvious.  Empirical results
1288 	 * have shown that deactivating the page is usually the best choice,
1289 	 * unless the page is wanted by another thread.
1290 	 */
1291 	vm_page_lock(m);
1292 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1293 		vm_page_activate(m);
1294 	else
1295 		vm_page_deactivate(m);
1296 	vm_page_unlock(m);
1297 	vm_page_xunbusy(m);
1298 }
1299 
1300 /*
1301  *	vm_page_sleep_if_busy:
1302  *
1303  *	Sleep and release the page queues lock if the page is busied.
1304  *	Returns TRUE if the thread slept.
1305  *
1306  *	The given page must be unlocked and object containing it must
1307  *	be locked.
1308  */
1309 int
1310 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1311 {
1312 	vm_object_t obj;
1313 
1314 	vm_page_lock_assert(m, MA_NOTOWNED);
1315 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1316 
1317 	if (vm_page_busied(m)) {
1318 		/*
1319 		 * The page-specific object must be cached because page
1320 		 * identity can change during the sleep, causing the
1321 		 * re-lock of a different object.
1322 		 * It is assumed that a reference to the object is already
1323 		 * held by the callers.
1324 		 */
1325 		obj = m->object;
1326 		vm_page_lock(m);
1327 		VM_OBJECT_WUNLOCK(obj);
1328 		vm_page_busy_sleep(m, msg, false);
1329 		VM_OBJECT_WLOCK(obj);
1330 		return (TRUE);
1331 	}
1332 	return (FALSE);
1333 }
1334 
1335 /*
1336  *	vm_page_dirty_KBI:		[ internal use only ]
1337  *
1338  *	Set all bits in the page's dirty field.
1339  *
1340  *	The object containing the specified page must be locked if the
1341  *	call is made from the machine-independent layer.
1342  *
1343  *	See vm_page_clear_dirty_mask().
1344  *
1345  *	This function should only be called by vm_page_dirty().
1346  */
1347 void
1348 vm_page_dirty_KBI(vm_page_t m)
1349 {
1350 
1351 	/* Refer to this operation by its public name. */
1352 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
1353 	    ("vm_page_dirty: page is invalid!"));
1354 	m->dirty = VM_PAGE_BITS_ALL;
1355 }
1356 
1357 /*
1358  *	vm_page_insert:		[ internal use only ]
1359  *
1360  *	Inserts the given mem entry into the object and object list.
1361  *
1362  *	The object must be locked.
1363  */
1364 int
1365 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1366 {
1367 	vm_page_t mpred;
1368 
1369 	VM_OBJECT_ASSERT_WLOCKED(object);
1370 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1371 	return (vm_page_insert_after(m, object, pindex, mpred));
1372 }
1373 
1374 /*
1375  *	vm_page_insert_after:
1376  *
1377  *	Inserts the page "m" into the specified object at offset "pindex".
1378  *
1379  *	The page "mpred" must immediately precede the offset "pindex" within
1380  *	the specified object.
1381  *
1382  *	The object must be locked.
1383  */
1384 static int
1385 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1386     vm_page_t mpred)
1387 {
1388 	vm_page_t msucc;
1389 
1390 	VM_OBJECT_ASSERT_WLOCKED(object);
1391 	KASSERT(m->object == NULL,
1392 	    ("vm_page_insert_after: page already inserted"));
1393 	if (mpred != NULL) {
1394 		KASSERT(mpred->object == object,
1395 		    ("vm_page_insert_after: object doesn't contain mpred"));
1396 		KASSERT(mpred->pindex < pindex,
1397 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1398 		msucc = TAILQ_NEXT(mpred, listq);
1399 	} else
1400 		msucc = TAILQ_FIRST(&object->memq);
1401 	if (msucc != NULL)
1402 		KASSERT(msucc->pindex > pindex,
1403 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1404 
1405 	/*
1406 	 * Record the object/offset pair in this page
1407 	 */
1408 	m->object = object;
1409 	m->pindex = pindex;
1410 
1411 	/*
1412 	 * Now link into the object's ordered list of backed pages.
1413 	 */
1414 	if (vm_radix_insert(&object->rtree, m)) {
1415 		m->object = NULL;
1416 		m->pindex = 0;
1417 		return (1);
1418 	}
1419 	vm_page_insert_radixdone(m, object, mpred);
1420 	return (0);
1421 }
1422 
1423 /*
1424  *	vm_page_insert_radixdone:
1425  *
1426  *	Complete page "m" insertion into the specified object after the
1427  *	radix trie hooking.
1428  *
1429  *	The page "mpred" must precede the offset "m->pindex" within the
1430  *	specified object.
1431  *
1432  *	The object must be locked.
1433  */
1434 static void
1435 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1436 {
1437 
1438 	VM_OBJECT_ASSERT_WLOCKED(object);
1439 	KASSERT(object != NULL && m->object == object,
1440 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1441 	if (mpred != NULL) {
1442 		KASSERT(mpred->object == object,
1443 		    ("vm_page_insert_after: object doesn't contain mpred"));
1444 		KASSERT(mpred->pindex < m->pindex,
1445 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1446 	}
1447 
1448 	if (mpred != NULL)
1449 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1450 	else
1451 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1452 
1453 	/*
1454 	 * Show that the object has one more resident page.
1455 	 */
1456 	object->resident_page_count++;
1457 
1458 	/*
1459 	 * Hold the vnode until the last page is released.
1460 	 */
1461 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1462 		vhold(object->handle);
1463 
1464 	/*
1465 	 * Since we are inserting a new and possibly dirty page,
1466 	 * update the object's OBJ_MIGHTBEDIRTY flag.
1467 	 */
1468 	if (pmap_page_is_write_mapped(m))
1469 		vm_object_set_writeable_dirty(object);
1470 }
1471 
1472 /*
1473  *	vm_page_remove:
1474  *
1475  *	Removes the specified page from its containing object, but does not
1476  *	invalidate any backing storage.
1477  *
1478  *	The object must be locked.  The page must be locked if it is managed.
1479  */
1480 void
1481 vm_page_remove(vm_page_t m)
1482 {
1483 	vm_object_t object;
1484 	vm_page_t mrem;
1485 
1486 	if ((m->oflags & VPO_UNMANAGED) == 0)
1487 		vm_page_assert_locked(m);
1488 	if ((object = m->object) == NULL)
1489 		return;
1490 	VM_OBJECT_ASSERT_WLOCKED(object);
1491 	if (vm_page_xbusied(m))
1492 		vm_page_xunbusy_maybelocked(m);
1493 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1494 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1495 
1496 	/*
1497 	 * Now remove from the object's list of backed pages.
1498 	 */
1499 	TAILQ_REMOVE(&object->memq, m, listq);
1500 
1501 	/*
1502 	 * And show that the object has one fewer resident page.
1503 	 */
1504 	object->resident_page_count--;
1505 
1506 	/*
1507 	 * The vnode may now be recycled.
1508 	 */
1509 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1510 		vdrop(object->handle);
1511 
1512 	m->object = NULL;
1513 }
1514 
1515 /*
1516  *	vm_page_lookup:
1517  *
1518  *	Returns the page associated with the object/offset
1519  *	pair specified; if none is found, NULL is returned.
1520  *
1521  *	The object must be locked.
1522  */
1523 vm_page_t
1524 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1525 {
1526 
1527 	VM_OBJECT_ASSERT_LOCKED(object);
1528 	return (vm_radix_lookup(&object->rtree, pindex));
1529 }
1530 
1531 /*
1532  *	vm_page_find_least:
1533  *
1534  *	Returns the page associated with the object with least pindex
1535  *	greater than or equal to the parameter pindex, or NULL.
1536  *
1537  *	The object must be locked.
1538  */
1539 vm_page_t
1540 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1541 {
1542 	vm_page_t m;
1543 
1544 	VM_OBJECT_ASSERT_LOCKED(object);
1545 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1546 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1547 	return (m);
1548 }
1549 
1550 /*
1551  * Returns the given page's successor (by pindex) within the object if it is
1552  * resident; if none is found, NULL is returned.
1553  *
1554  * The object must be locked.
1555  */
1556 vm_page_t
1557 vm_page_next(vm_page_t m)
1558 {
1559 	vm_page_t next;
1560 
1561 	VM_OBJECT_ASSERT_LOCKED(m->object);
1562 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1563 		MPASS(next->object == m->object);
1564 		if (next->pindex != m->pindex + 1)
1565 			next = NULL;
1566 	}
1567 	return (next);
1568 }
1569 
1570 /*
1571  * Returns the given page's predecessor (by pindex) within the object if it is
1572  * resident; if none is found, NULL is returned.
1573  *
1574  * The object must be locked.
1575  */
1576 vm_page_t
1577 vm_page_prev(vm_page_t m)
1578 {
1579 	vm_page_t prev;
1580 
1581 	VM_OBJECT_ASSERT_LOCKED(m->object);
1582 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1583 		MPASS(prev->object == m->object);
1584 		if (prev->pindex != m->pindex - 1)
1585 			prev = NULL;
1586 	}
1587 	return (prev);
1588 }
1589 
1590 /*
1591  * Uses the page mnew as a replacement for an existing page at index
1592  * pindex which must be already present in the object.
1593  *
1594  * The existing page must not be on a paging queue.
1595  */
1596 vm_page_t
1597 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1598 {
1599 	vm_page_t mold;
1600 
1601 	VM_OBJECT_ASSERT_WLOCKED(object);
1602 	KASSERT(mnew->object == NULL,
1603 	    ("vm_page_replace: page %p already in object", mnew));
1604 	KASSERT(mnew->queue == PQ_NONE,
1605 	    ("vm_page_replace: new page %p is on a paging queue", mnew));
1606 
1607 	/*
1608 	 * This function mostly follows vm_page_insert() and
1609 	 * vm_page_remove() without the radix, object count and vnode
1610 	 * dance.  Double check such functions for more comments.
1611 	 */
1612 
1613 	mnew->object = object;
1614 	mnew->pindex = pindex;
1615 	mold = vm_radix_replace(&object->rtree, mnew);
1616 	KASSERT(mold->queue == PQ_NONE,
1617 	    ("vm_page_replace: old page %p is on a paging queue", mold));
1618 
1619 	/* Keep the resident page list in sorted order. */
1620 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1621 	TAILQ_REMOVE(&object->memq, mold, listq);
1622 
1623 	mold->object = NULL;
1624 	vm_page_xunbusy_maybelocked(mold);
1625 
1626 	/*
1627 	 * The object's resident_page_count does not change because we have
1628 	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1629 	 */
1630 	if (pmap_page_is_write_mapped(mnew))
1631 		vm_object_set_writeable_dirty(object);
1632 	return (mold);
1633 }
1634 
1635 /*
1636  *	vm_page_rename:
1637  *
1638  *	Move the given memory entry from its
1639  *	current object to the specified target object/offset.
1640  *
1641  *	Note: swap associated with the page must be invalidated by the move.  We
1642  *	      have to do this for several reasons:  (1) we aren't freeing the
1643  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1644  *	      moving the page from object A to B, and will then later move
1645  *	      the backing store from A to B and we can't have a conflict.
1646  *
1647  *	Note: we *always* dirty the page.  It is necessary both for the
1648  *	      fact that we moved it, and because we may be invalidating
1649  *	      swap.
1650  *
1651  *	The objects must be locked.
1652  */
1653 int
1654 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1655 {
1656 	vm_page_t mpred;
1657 	vm_pindex_t opidx;
1658 
1659 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1660 
1661 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1662 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1663 	    ("vm_page_rename: pindex already renamed"));
1664 
1665 	/*
1666 	 * Create a custom version of vm_page_insert() which does not depend
1667 	 * by m_prev and can cheat on the implementation aspects of the
1668 	 * function.
1669 	 */
1670 	opidx = m->pindex;
1671 	m->pindex = new_pindex;
1672 	if (vm_radix_insert(&new_object->rtree, m)) {
1673 		m->pindex = opidx;
1674 		return (1);
1675 	}
1676 
1677 	/*
1678 	 * The operation cannot fail anymore.  The removal must happen before
1679 	 * the listq iterator is tainted.
1680 	 */
1681 	m->pindex = opidx;
1682 	vm_page_lock(m);
1683 	vm_page_remove(m);
1684 
1685 	/* Return back to the new pindex to complete vm_page_insert(). */
1686 	m->pindex = new_pindex;
1687 	m->object = new_object;
1688 	vm_page_unlock(m);
1689 	vm_page_insert_radixdone(m, new_object, mpred);
1690 	vm_page_dirty(m);
1691 	return (0);
1692 }
1693 
1694 /*
1695  *	vm_page_alloc:
1696  *
1697  *	Allocate and return a page that is associated with the specified
1698  *	object and offset pair.  By default, this page is exclusive busied.
1699  *
1700  *	The caller must always specify an allocation class.
1701  *
1702  *	allocation classes:
1703  *	VM_ALLOC_NORMAL		normal process request
1704  *	VM_ALLOC_SYSTEM		system *really* needs a page
1705  *	VM_ALLOC_INTERRUPT	interrupt time request
1706  *
1707  *	optional allocation flags:
1708  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1709  *				intends to allocate
1710  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1711  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1712  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1713  *				should not be exclusive busy
1714  *	VM_ALLOC_SBUSY		shared busy the allocated page
1715  *	VM_ALLOC_WIRED		wire the allocated page
1716  *	VM_ALLOC_ZERO		prefer a zeroed page
1717  */
1718 vm_page_t
1719 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1720 {
1721 
1722 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1723 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1724 }
1725 
1726 vm_page_t
1727 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1728     int req)
1729 {
1730 
1731 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1732 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1733 	    NULL));
1734 }
1735 
1736 /*
1737  * Allocate a page in the specified object with the given page index.  To
1738  * optimize insertion of the page into the object, the caller must also specifiy
1739  * the resident page in the object with largest index smaller than the given
1740  * page index, or NULL if no such page exists.
1741  */
1742 vm_page_t
1743 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1744     int req, vm_page_t mpred)
1745 {
1746 	struct vm_domainset_iter di;
1747 	vm_page_t m;
1748 	int domain;
1749 
1750 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1751 	do {
1752 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1753 		    mpred);
1754 		if (m != NULL)
1755 			break;
1756 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1757 
1758 	return (m);
1759 }
1760 
1761 /*
1762  * Returns true if the number of free pages exceeds the minimum
1763  * for the request class and false otherwise.
1764  */
1765 int
1766 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1767 {
1768 	u_int limit, old, new;
1769 
1770 	req = req & VM_ALLOC_CLASS_MASK;
1771 
1772 	/*
1773 	 * The page daemon is allowed to dig deeper into the free page list.
1774 	 */
1775 	if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1776 		req = VM_ALLOC_SYSTEM;
1777 	if (req == VM_ALLOC_INTERRUPT)
1778 		limit = 0;
1779 	else if (req == VM_ALLOC_SYSTEM)
1780 		limit = vmd->vmd_interrupt_free_min;
1781 	else
1782 		limit = vmd->vmd_free_reserved;
1783 
1784 	/*
1785 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1786 	 */
1787 	limit += npages;
1788 	old = vmd->vmd_free_count;
1789 	do {
1790 		if (old < limit)
1791 			return (0);
1792 		new = old - npages;
1793 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1794 
1795 	/* Wake the page daemon if we've crossed the threshold. */
1796 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1797 		pagedaemon_wakeup(vmd->vmd_domain);
1798 
1799 	/* Only update bitsets on transitions. */
1800 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1801 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1802 		vm_domain_set(vmd);
1803 
1804 	return (1);
1805 }
1806 
1807 vm_page_t
1808 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1809     int req, vm_page_t mpred)
1810 {
1811 	struct vm_domain *vmd;
1812 	vm_page_t m;
1813 	int flags;
1814 
1815 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1816 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1817 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1818 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1819 	    ("inconsistent object(%p)/req(%x)", object, req));
1820 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1821 	    ("Can't sleep and retry object insertion."));
1822 	KASSERT(mpred == NULL || mpred->pindex < pindex,
1823 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
1824 	    (uintmax_t)pindex));
1825 	if (object != NULL)
1826 		VM_OBJECT_ASSERT_WLOCKED(object);
1827 
1828 again:
1829 	m = NULL;
1830 #if VM_NRESERVLEVEL > 0
1831 	/*
1832 	 * Can we allocate the page from a reservation?
1833 	 */
1834 	if (vm_object_reserv(object) &&
1835 	    ((m = vm_reserv_extend(req, object, pindex, domain, mpred)) != NULL ||
1836 	    (m = vm_reserv_alloc_page(req, object, pindex, domain, mpred)) != NULL)) {
1837 		domain = vm_phys_domain(m);
1838 		vmd = VM_DOMAIN(domain);
1839 		goto found;
1840 	}
1841 #endif
1842 	vmd = VM_DOMAIN(domain);
1843 	if (object != NULL && vmd->vmd_pgcache != NULL) {
1844 		m = uma_zalloc(vmd->vmd_pgcache, M_NOWAIT);
1845 		if (m != NULL)
1846 			goto found;
1847 	}
1848 	if (vm_domain_allocate(vmd, req, 1)) {
1849 		/*
1850 		 * If not, allocate it from the free page queues.
1851 		 */
1852 		vm_domain_free_lock(vmd);
1853 		m = vm_phys_alloc_pages(domain, object != NULL ?
1854 		    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1855 		vm_domain_free_unlock(vmd);
1856 		if (m == NULL) {
1857 			vm_domain_freecnt_inc(vmd, 1);
1858 #if VM_NRESERVLEVEL > 0
1859 			if (vm_reserv_reclaim_inactive(domain))
1860 				goto again;
1861 #endif
1862 		}
1863 	}
1864 	if (m == NULL) {
1865 		/*
1866 		 * Not allocatable, give up.
1867 		 */
1868 		if (vm_domain_alloc_fail(vmd, object, req))
1869 			goto again;
1870 		return (NULL);
1871 	}
1872 
1873 	/*
1874 	 *  At this point we had better have found a good page.
1875 	 */
1876 	KASSERT(m != NULL, ("missing page"));
1877 
1878 found:
1879 	vm_page_dequeue(m);
1880 	vm_page_alloc_check(m);
1881 
1882 	/*
1883 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
1884 	 */
1885 	flags = 0;
1886 	if ((req & VM_ALLOC_ZERO) != 0)
1887 		flags = PG_ZERO;
1888 	flags &= m->flags;
1889 	if ((req & VM_ALLOC_NODUMP) != 0)
1890 		flags |= PG_NODUMP;
1891 	m->flags = flags;
1892 	m->aflags = 0;
1893 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1894 	    VPO_UNMANAGED : 0;
1895 	m->busy_lock = VPB_UNBUSIED;
1896 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1897 		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1898 	if ((req & VM_ALLOC_SBUSY) != 0)
1899 		m->busy_lock = VPB_SHARERS_WORD(1);
1900 	if (req & VM_ALLOC_WIRED) {
1901 		/*
1902 		 * The page lock is not required for wiring a page until that
1903 		 * page is inserted into the object.
1904 		 */
1905 		vm_wire_add(1);
1906 		m->wire_count = 1;
1907 	}
1908 	m->act_count = 0;
1909 
1910 	if (object != NULL) {
1911 		if (vm_page_insert_after(m, object, pindex, mpred)) {
1912 			if (req & VM_ALLOC_WIRED) {
1913 				vm_wire_sub(1);
1914 				m->wire_count = 0;
1915 			}
1916 			KASSERT(m->object == NULL, ("page %p has object", m));
1917 			m->oflags = VPO_UNMANAGED;
1918 			m->busy_lock = VPB_UNBUSIED;
1919 			/* Don't change PG_ZERO. */
1920 			vm_page_free_toq(m);
1921 			if (req & VM_ALLOC_WAITFAIL) {
1922 				VM_OBJECT_WUNLOCK(object);
1923 				vm_radix_wait();
1924 				VM_OBJECT_WLOCK(object);
1925 			}
1926 			return (NULL);
1927 		}
1928 
1929 		/* Ignore device objects; the pager sets "memattr" for them. */
1930 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1931 		    (object->flags & OBJ_FICTITIOUS) == 0)
1932 			pmap_page_set_memattr(m, object->memattr);
1933 	} else
1934 		m->pindex = pindex;
1935 
1936 	return (m);
1937 }
1938 
1939 /*
1940  *	vm_page_alloc_contig:
1941  *
1942  *	Allocate a contiguous set of physical pages of the given size "npages"
1943  *	from the free lists.  All of the physical pages must be at or above
1944  *	the given physical address "low" and below the given physical address
1945  *	"high".  The given value "alignment" determines the alignment of the
1946  *	first physical page in the set.  If the given value "boundary" is
1947  *	non-zero, then the set of physical pages cannot cross any physical
1948  *	address boundary that is a multiple of that value.  Both "alignment"
1949  *	and "boundary" must be a power of two.
1950  *
1951  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1952  *	then the memory attribute setting for the physical pages is configured
1953  *	to the object's memory attribute setting.  Otherwise, the memory
1954  *	attribute setting for the physical pages is configured to "memattr",
1955  *	overriding the object's memory attribute setting.  However, if the
1956  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1957  *	memory attribute setting for the physical pages cannot be configured
1958  *	to VM_MEMATTR_DEFAULT.
1959  *
1960  *	The specified object may not contain fictitious pages.
1961  *
1962  *	The caller must always specify an allocation class.
1963  *
1964  *	allocation classes:
1965  *	VM_ALLOC_NORMAL		normal process request
1966  *	VM_ALLOC_SYSTEM		system *really* needs a page
1967  *	VM_ALLOC_INTERRUPT	interrupt time request
1968  *
1969  *	optional allocation flags:
1970  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1971  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1972  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1973  *				should not be exclusive busy
1974  *	VM_ALLOC_SBUSY		shared busy the allocated page
1975  *	VM_ALLOC_WIRED		wire the allocated page
1976  *	VM_ALLOC_ZERO		prefer a zeroed page
1977  */
1978 vm_page_t
1979 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1980     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1981     vm_paddr_t boundary, vm_memattr_t memattr)
1982 {
1983 	struct vm_domainset_iter di;
1984 	vm_page_t m;
1985 	int domain;
1986 
1987 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1988 	do {
1989 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
1990 		    npages, low, high, alignment, boundary, memattr);
1991 		if (m != NULL)
1992 			break;
1993 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1994 
1995 	return (m);
1996 }
1997 
1998 vm_page_t
1999 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2000     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2001     vm_paddr_t boundary, vm_memattr_t memattr)
2002 {
2003 	struct vm_domain *vmd;
2004 	vm_page_t m, m_ret, mpred;
2005 	u_int busy_lock, flags, oflags;
2006 
2007 	mpred = NULL;	/* XXX: pacify gcc */
2008 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2009 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2010 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2011 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2012 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2013 	    req));
2014 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2015 	    ("Can't sleep and retry object insertion."));
2016 	if (object != NULL) {
2017 		VM_OBJECT_ASSERT_WLOCKED(object);
2018 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2019 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2020 		    object));
2021 	}
2022 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2023 
2024 	if (object != NULL) {
2025 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2026 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2027 		    ("vm_page_alloc_contig: pindex already allocated"));
2028 	}
2029 
2030 	/*
2031 	 * Can we allocate the pages without the number of free pages falling
2032 	 * below the lower bound for the allocation class?
2033 	 */
2034 again:
2035 #if VM_NRESERVLEVEL > 0
2036 	/*
2037 	 * Can we allocate the pages from a reservation?
2038 	 */
2039 	if (vm_object_reserv(object) &&
2040 	    ((m_ret = vm_reserv_extend_contig(req, object, pindex, domain,
2041 	    npages, low, high, alignment, boundary, mpred)) != NULL ||
2042 	    (m_ret = vm_reserv_alloc_contig(req, object, pindex, domain,
2043 	    npages, low, high, alignment, boundary, mpred)) != NULL)) {
2044 		domain = vm_phys_domain(m_ret);
2045 		vmd = VM_DOMAIN(domain);
2046 		goto found;
2047 	}
2048 #endif
2049 	m_ret = NULL;
2050 	vmd = VM_DOMAIN(domain);
2051 	if (vm_domain_allocate(vmd, req, npages)) {
2052 		/*
2053 		 * allocate them from the free page queues.
2054 		 */
2055 		vm_domain_free_lock(vmd);
2056 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2057 		    alignment, boundary);
2058 		vm_domain_free_unlock(vmd);
2059 		if (m_ret == NULL) {
2060 			vm_domain_freecnt_inc(vmd, npages);
2061 #if VM_NRESERVLEVEL > 0
2062 			if (vm_reserv_reclaim_contig(domain, npages, low,
2063 			    high, alignment, boundary))
2064 				goto again;
2065 #endif
2066 		}
2067 	}
2068 	if (m_ret == NULL) {
2069 		if (vm_domain_alloc_fail(vmd, object, req))
2070 			goto again;
2071 		return (NULL);
2072 	}
2073 #if VM_NRESERVLEVEL > 0
2074 found:
2075 #endif
2076 	for (m = m_ret; m < &m_ret[npages]; m++) {
2077 		vm_page_dequeue(m);
2078 		vm_page_alloc_check(m);
2079 	}
2080 
2081 	/*
2082 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2083 	 */
2084 	flags = 0;
2085 	if ((req & VM_ALLOC_ZERO) != 0)
2086 		flags = PG_ZERO;
2087 	if ((req & VM_ALLOC_NODUMP) != 0)
2088 		flags |= PG_NODUMP;
2089 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2090 	    VPO_UNMANAGED : 0;
2091 	busy_lock = VPB_UNBUSIED;
2092 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2093 		busy_lock = VPB_SINGLE_EXCLUSIVER;
2094 	if ((req & VM_ALLOC_SBUSY) != 0)
2095 		busy_lock = VPB_SHARERS_WORD(1);
2096 	if ((req & VM_ALLOC_WIRED) != 0)
2097 		vm_wire_add(npages);
2098 	if (object != NULL) {
2099 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2100 		    memattr == VM_MEMATTR_DEFAULT)
2101 			memattr = object->memattr;
2102 	}
2103 	for (m = m_ret; m < &m_ret[npages]; m++) {
2104 		m->aflags = 0;
2105 		m->flags = (m->flags | PG_NODUMP) & flags;
2106 		m->busy_lock = busy_lock;
2107 		if ((req & VM_ALLOC_WIRED) != 0)
2108 			m->wire_count = 1;
2109 		m->act_count = 0;
2110 		m->oflags = oflags;
2111 		if (object != NULL) {
2112 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2113 				if ((req & VM_ALLOC_WIRED) != 0)
2114 					vm_wire_sub(npages);
2115 				KASSERT(m->object == NULL,
2116 				    ("page %p has object", m));
2117 				mpred = m;
2118 				for (m = m_ret; m < &m_ret[npages]; m++) {
2119 					if (m <= mpred &&
2120 					    (req & VM_ALLOC_WIRED) != 0)
2121 						m->wire_count = 0;
2122 					m->oflags = VPO_UNMANAGED;
2123 					m->busy_lock = VPB_UNBUSIED;
2124 					/* Don't change PG_ZERO. */
2125 					vm_page_free_toq(m);
2126 				}
2127 				if (req & VM_ALLOC_WAITFAIL) {
2128 					VM_OBJECT_WUNLOCK(object);
2129 					vm_radix_wait();
2130 					VM_OBJECT_WLOCK(object);
2131 				}
2132 				return (NULL);
2133 			}
2134 			mpred = m;
2135 		} else
2136 			m->pindex = pindex;
2137 		if (memattr != VM_MEMATTR_DEFAULT)
2138 			pmap_page_set_memattr(m, memattr);
2139 		pindex++;
2140 	}
2141 	return (m_ret);
2142 }
2143 
2144 /*
2145  * Check a page that has been freshly dequeued from a freelist.
2146  */
2147 static void
2148 vm_page_alloc_check(vm_page_t m)
2149 {
2150 
2151 	KASSERT(m->object == NULL, ("page %p has object", m));
2152 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
2153 	    ("page %p has unexpected queue %d, flags %#x",
2154 	    m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK)));
2155 	KASSERT(!vm_page_held(m), ("page %p is held", m));
2156 	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2157 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2158 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2159 	    ("page %p has unexpected memattr %d",
2160 	    m, pmap_page_get_memattr(m)));
2161 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2162 }
2163 
2164 /*
2165  * 	vm_page_alloc_freelist:
2166  *
2167  *	Allocate a physical page from the specified free page list.
2168  *
2169  *	The caller must always specify an allocation class.
2170  *
2171  *	allocation classes:
2172  *	VM_ALLOC_NORMAL		normal process request
2173  *	VM_ALLOC_SYSTEM		system *really* needs a page
2174  *	VM_ALLOC_INTERRUPT	interrupt time request
2175  *
2176  *	optional allocation flags:
2177  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2178  *				intends to allocate
2179  *	VM_ALLOC_WIRED		wire the allocated page
2180  *	VM_ALLOC_ZERO		prefer a zeroed page
2181  */
2182 vm_page_t
2183 vm_page_alloc_freelist(int freelist, int req)
2184 {
2185 	struct vm_domainset_iter di;
2186 	vm_page_t m;
2187 	int domain;
2188 
2189 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2190 	do {
2191 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2192 		if (m != NULL)
2193 			break;
2194 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2195 
2196 	return (m);
2197 }
2198 
2199 vm_page_t
2200 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2201 {
2202 	struct vm_domain *vmd;
2203 	vm_page_t m;
2204 	u_int flags;
2205 
2206 	m = NULL;
2207 	vmd = VM_DOMAIN(domain);
2208 again:
2209 	if (vm_domain_allocate(vmd, req, 1)) {
2210 		vm_domain_free_lock(vmd);
2211 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2212 		    VM_FREEPOOL_DIRECT, 0);
2213 		vm_domain_free_unlock(vmd);
2214 		if (m == NULL)
2215 			vm_domain_freecnt_inc(vmd, 1);
2216 	}
2217 	if (m == NULL) {
2218 		if (vm_domain_alloc_fail(vmd, NULL, req))
2219 			goto again;
2220 		return (NULL);
2221 	}
2222 	vm_page_dequeue(m);
2223 	vm_page_alloc_check(m);
2224 
2225 	/*
2226 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2227 	 */
2228 	m->aflags = 0;
2229 	flags = 0;
2230 	if ((req & VM_ALLOC_ZERO) != 0)
2231 		flags = PG_ZERO;
2232 	m->flags &= flags;
2233 	if ((req & VM_ALLOC_WIRED) != 0) {
2234 		/*
2235 		 * The page lock is not required for wiring a page that does
2236 		 * not belong to an object.
2237 		 */
2238 		vm_wire_add(1);
2239 		m->wire_count = 1;
2240 	}
2241 	/* Unmanaged pages don't use "act_count". */
2242 	m->oflags = VPO_UNMANAGED;
2243 	return (m);
2244 }
2245 
2246 static int
2247 vm_page_import(void *arg, void **store, int cnt, int domain, int flags)
2248 {
2249 	struct vm_domain *vmd;
2250 	int i;
2251 
2252 	vmd = arg;
2253 	/* Only import if we can bring in a full bucket. */
2254 	if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2255 		return (0);
2256 	domain = vmd->vmd_domain;
2257 	vm_domain_free_lock(vmd);
2258 	i = vm_phys_alloc_npages(domain, VM_FREEPOOL_DEFAULT, cnt,
2259 	    (vm_page_t *)store);
2260 	vm_domain_free_unlock(vmd);
2261 	if (cnt != i)
2262 		vm_domain_freecnt_inc(vmd, cnt - i);
2263 
2264 	return (i);
2265 }
2266 
2267 static void
2268 vm_page_release(void *arg, void **store, int cnt)
2269 {
2270 	struct vm_domain *vmd;
2271 	vm_page_t m;
2272 	int i;
2273 
2274 	vmd = arg;
2275 	vm_domain_free_lock(vmd);
2276 	for (i = 0; i < cnt; i++) {
2277 		m = (vm_page_t)store[i];
2278 		vm_phys_free_pages(m, 0);
2279 	}
2280 	vm_domain_free_unlock(vmd);
2281 	vm_domain_freecnt_inc(vmd, cnt);
2282 }
2283 
2284 #define	VPSC_ANY	0	/* No restrictions. */
2285 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2286 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2287 
2288 /*
2289  *	vm_page_scan_contig:
2290  *
2291  *	Scan vm_page_array[] between the specified entries "m_start" and
2292  *	"m_end" for a run of contiguous physical pages that satisfy the
2293  *	specified conditions, and return the lowest page in the run.  The
2294  *	specified "alignment" determines the alignment of the lowest physical
2295  *	page in the run.  If the specified "boundary" is non-zero, then the
2296  *	run of physical pages cannot span a physical address that is a
2297  *	multiple of "boundary".
2298  *
2299  *	"m_end" is never dereferenced, so it need not point to a vm_page
2300  *	structure within vm_page_array[].
2301  *
2302  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2303  *	span a hole (or discontiguity) in the physical address space.  Both
2304  *	"alignment" and "boundary" must be a power of two.
2305  */
2306 vm_page_t
2307 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2308     u_long alignment, vm_paddr_t boundary, int options)
2309 {
2310 	struct mtx *m_mtx;
2311 	vm_object_t object;
2312 	vm_paddr_t pa;
2313 	vm_page_t m, m_run;
2314 #if VM_NRESERVLEVEL > 0
2315 	int level;
2316 #endif
2317 	int m_inc, order, run_ext, run_len;
2318 
2319 	KASSERT(npages > 0, ("npages is 0"));
2320 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2321 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2322 	m_run = NULL;
2323 	run_len = 0;
2324 	m_mtx = NULL;
2325 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2326 		KASSERT((m->flags & PG_MARKER) == 0,
2327 		    ("page %p is PG_MARKER", m));
2328 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1,
2329 		    ("fictitious page %p has invalid wire count", m));
2330 
2331 		/*
2332 		 * If the current page would be the start of a run, check its
2333 		 * physical address against the end, alignment, and boundary
2334 		 * conditions.  If it doesn't satisfy these conditions, either
2335 		 * terminate the scan or advance to the next page that
2336 		 * satisfies the failed condition.
2337 		 */
2338 		if (run_len == 0) {
2339 			KASSERT(m_run == NULL, ("m_run != NULL"));
2340 			if (m + npages > m_end)
2341 				break;
2342 			pa = VM_PAGE_TO_PHYS(m);
2343 			if ((pa & (alignment - 1)) != 0) {
2344 				m_inc = atop(roundup2(pa, alignment) - pa);
2345 				continue;
2346 			}
2347 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2348 			    boundary) != 0) {
2349 				m_inc = atop(roundup2(pa, boundary) - pa);
2350 				continue;
2351 			}
2352 		} else
2353 			KASSERT(m_run != NULL, ("m_run == NULL"));
2354 
2355 		vm_page_change_lock(m, &m_mtx);
2356 		m_inc = 1;
2357 retry:
2358 		if (vm_page_held(m))
2359 			run_ext = 0;
2360 #if VM_NRESERVLEVEL > 0
2361 		else if ((level = vm_reserv_level(m)) >= 0 &&
2362 		    (options & VPSC_NORESERV) != 0) {
2363 			run_ext = 0;
2364 			/* Advance to the end of the reservation. */
2365 			pa = VM_PAGE_TO_PHYS(m);
2366 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2367 			    pa);
2368 		}
2369 #endif
2370 		else if ((object = m->object) != NULL) {
2371 			/*
2372 			 * The page is considered eligible for relocation if
2373 			 * and only if it could be laundered or reclaimed by
2374 			 * the page daemon.
2375 			 */
2376 			if (!VM_OBJECT_TRYRLOCK(object)) {
2377 				mtx_unlock(m_mtx);
2378 				VM_OBJECT_RLOCK(object);
2379 				mtx_lock(m_mtx);
2380 				if (m->object != object) {
2381 					/*
2382 					 * The page may have been freed.
2383 					 */
2384 					VM_OBJECT_RUNLOCK(object);
2385 					goto retry;
2386 				} else if (vm_page_held(m)) {
2387 					run_ext = 0;
2388 					goto unlock;
2389 				}
2390 			}
2391 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2392 			    ("page %p is PG_UNHOLDFREE", m));
2393 			/* Don't care: PG_NODUMP, PG_ZERO. */
2394 			if (object->type != OBJT_DEFAULT &&
2395 			    object->type != OBJT_SWAP &&
2396 			    object->type != OBJT_VNODE) {
2397 				run_ext = 0;
2398 #if VM_NRESERVLEVEL > 0
2399 			} else if ((options & VPSC_NOSUPER) != 0 &&
2400 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2401 				run_ext = 0;
2402 				/* Advance to the end of the superpage. */
2403 				pa = VM_PAGE_TO_PHYS(m);
2404 				m_inc = atop(roundup2(pa + 1,
2405 				    vm_reserv_size(level)) - pa);
2406 #endif
2407 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2408 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2409 				/*
2410 				 * The page is allocated but eligible for
2411 				 * relocation.  Extend the current run by one
2412 				 * page.
2413 				 */
2414 				KASSERT(pmap_page_get_memattr(m) ==
2415 				    VM_MEMATTR_DEFAULT,
2416 				    ("page %p has an unexpected memattr", m));
2417 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2418 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2419 				    ("page %p has unexpected oflags", m));
2420 				/* Don't care: VPO_NOSYNC. */
2421 				run_ext = 1;
2422 			} else
2423 				run_ext = 0;
2424 unlock:
2425 			VM_OBJECT_RUNLOCK(object);
2426 #if VM_NRESERVLEVEL > 0
2427 		} else if (level >= 0) {
2428 			/*
2429 			 * The page is reserved but not yet allocated.  In
2430 			 * other words, it is still free.  Extend the current
2431 			 * run by one page.
2432 			 */
2433 			run_ext = 1;
2434 #endif
2435 		} else if ((order = m->order) < VM_NFREEORDER) {
2436 			/*
2437 			 * The page is enqueued in the physical memory
2438 			 * allocator's free page queues.  Moreover, it is the
2439 			 * first page in a power-of-two-sized run of
2440 			 * contiguous free pages.  Add these pages to the end
2441 			 * of the current run, and jump ahead.
2442 			 */
2443 			run_ext = 1 << order;
2444 			m_inc = 1 << order;
2445 		} else {
2446 			/*
2447 			 * Skip the page for one of the following reasons: (1)
2448 			 * It is enqueued in the physical memory allocator's
2449 			 * free page queues.  However, it is not the first
2450 			 * page in a run of contiguous free pages.  (This case
2451 			 * rarely occurs because the scan is performed in
2452 			 * ascending order.) (2) It is not reserved, and it is
2453 			 * transitioning from free to allocated.  (Conversely,
2454 			 * the transition from allocated to free for managed
2455 			 * pages is blocked by the page lock.) (3) It is
2456 			 * allocated but not contained by an object and not
2457 			 * wired, e.g., allocated by Xen's balloon driver.
2458 			 */
2459 			run_ext = 0;
2460 		}
2461 
2462 		/*
2463 		 * Extend or reset the current run of pages.
2464 		 */
2465 		if (run_ext > 0) {
2466 			if (run_len == 0)
2467 				m_run = m;
2468 			run_len += run_ext;
2469 		} else {
2470 			if (run_len > 0) {
2471 				m_run = NULL;
2472 				run_len = 0;
2473 			}
2474 		}
2475 	}
2476 	if (m_mtx != NULL)
2477 		mtx_unlock(m_mtx);
2478 	if (run_len >= npages)
2479 		return (m_run);
2480 	return (NULL);
2481 }
2482 
2483 /*
2484  *	vm_page_reclaim_run:
2485  *
2486  *	Try to relocate each of the allocated virtual pages within the
2487  *	specified run of physical pages to a new physical address.  Free the
2488  *	physical pages underlying the relocated virtual pages.  A virtual page
2489  *	is relocatable if and only if it could be laundered or reclaimed by
2490  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2491  *	physical address above "high".
2492  *
2493  *	Returns 0 if every physical page within the run was already free or
2494  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2495  *	value indicating why the last attempt to relocate a virtual page was
2496  *	unsuccessful.
2497  *
2498  *	"req_class" must be an allocation class.
2499  */
2500 static int
2501 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2502     vm_paddr_t high)
2503 {
2504 	struct vm_domain *vmd;
2505 	struct mtx *m_mtx;
2506 	struct spglist free;
2507 	vm_object_t object;
2508 	vm_paddr_t pa;
2509 	vm_page_t m, m_end, m_new;
2510 	int error, order, req;
2511 
2512 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2513 	    ("req_class is not an allocation class"));
2514 	SLIST_INIT(&free);
2515 	error = 0;
2516 	m = m_run;
2517 	m_end = m_run + npages;
2518 	m_mtx = NULL;
2519 	for (; error == 0 && m < m_end; m++) {
2520 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2521 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2522 
2523 		/*
2524 		 * Avoid releasing and reacquiring the same page lock.
2525 		 */
2526 		vm_page_change_lock(m, &m_mtx);
2527 retry:
2528 		if (vm_page_held(m))
2529 			error = EBUSY;
2530 		else if ((object = m->object) != NULL) {
2531 			/*
2532 			 * The page is relocated if and only if it could be
2533 			 * laundered or reclaimed by the page daemon.
2534 			 */
2535 			if (!VM_OBJECT_TRYWLOCK(object)) {
2536 				mtx_unlock(m_mtx);
2537 				VM_OBJECT_WLOCK(object);
2538 				mtx_lock(m_mtx);
2539 				if (m->object != object) {
2540 					/*
2541 					 * The page may have been freed.
2542 					 */
2543 					VM_OBJECT_WUNLOCK(object);
2544 					goto retry;
2545 				} else if (vm_page_held(m)) {
2546 					error = EBUSY;
2547 					goto unlock;
2548 				}
2549 			}
2550 			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2551 			    ("page %p is PG_UNHOLDFREE", m));
2552 			/* Don't care: PG_NODUMP, PG_ZERO. */
2553 			if (object->type != OBJT_DEFAULT &&
2554 			    object->type != OBJT_SWAP &&
2555 			    object->type != OBJT_VNODE)
2556 				error = EINVAL;
2557 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2558 				error = EINVAL;
2559 			else if (vm_page_queue(m) != PQ_NONE &&
2560 			    !vm_page_busied(m)) {
2561 				KASSERT(pmap_page_get_memattr(m) ==
2562 				    VM_MEMATTR_DEFAULT,
2563 				    ("page %p has an unexpected memattr", m));
2564 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2565 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2566 				    ("page %p has unexpected oflags", m));
2567 				/* Don't care: VPO_NOSYNC. */
2568 				if (m->valid != 0) {
2569 					/*
2570 					 * First, try to allocate a new page
2571 					 * that is above "high".  Failing
2572 					 * that, try to allocate a new page
2573 					 * that is below "m_run".  Allocate
2574 					 * the new page between the end of
2575 					 * "m_run" and "high" only as a last
2576 					 * resort.
2577 					 */
2578 					req = req_class | VM_ALLOC_NOOBJ;
2579 					if ((m->flags & PG_NODUMP) != 0)
2580 						req |= VM_ALLOC_NODUMP;
2581 					if (trunc_page(high) !=
2582 					    ~(vm_paddr_t)PAGE_MASK) {
2583 						m_new = vm_page_alloc_contig(
2584 						    NULL, 0, req, 1,
2585 						    round_page(high),
2586 						    ~(vm_paddr_t)0,
2587 						    PAGE_SIZE, 0,
2588 						    VM_MEMATTR_DEFAULT);
2589 					} else
2590 						m_new = NULL;
2591 					if (m_new == NULL) {
2592 						pa = VM_PAGE_TO_PHYS(m_run);
2593 						m_new = vm_page_alloc_contig(
2594 						    NULL, 0, req, 1,
2595 						    0, pa - 1, PAGE_SIZE, 0,
2596 						    VM_MEMATTR_DEFAULT);
2597 					}
2598 					if (m_new == NULL) {
2599 						pa += ptoa(npages);
2600 						m_new = vm_page_alloc_contig(
2601 						    NULL, 0, req, 1,
2602 						    pa, high, PAGE_SIZE, 0,
2603 						    VM_MEMATTR_DEFAULT);
2604 					}
2605 					if (m_new == NULL) {
2606 						error = ENOMEM;
2607 						goto unlock;
2608 					}
2609 					KASSERT(m_new->wire_count == 0,
2610 					    ("page %p is wired", m_new));
2611 
2612 					/*
2613 					 * Replace "m" with the new page.  For
2614 					 * vm_page_replace(), "m" must be busy
2615 					 * and dequeued.  Finally, change "m"
2616 					 * as if vm_page_free() was called.
2617 					 */
2618 					if (object->ref_count != 0)
2619 						pmap_remove_all(m);
2620 					m_new->aflags = m->aflags &
2621 					    ~PGA_QUEUE_STATE_MASK;
2622 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2623 					    ("page %p is managed", m_new));
2624 					m_new->oflags = m->oflags & VPO_NOSYNC;
2625 					pmap_copy_page(m, m_new);
2626 					m_new->valid = m->valid;
2627 					m_new->dirty = m->dirty;
2628 					m->flags &= ~PG_ZERO;
2629 					vm_page_xbusy(m);
2630 					vm_page_dequeue(m);
2631 					vm_page_replace_checked(m_new, object,
2632 					    m->pindex, m);
2633 					if (vm_page_free_prep(m))
2634 						SLIST_INSERT_HEAD(&free, m,
2635 						    plinks.s.ss);
2636 
2637 					/*
2638 					 * The new page must be deactivated
2639 					 * before the object is unlocked.
2640 					 */
2641 					vm_page_change_lock(m_new, &m_mtx);
2642 					vm_page_deactivate(m_new);
2643 				} else {
2644 					m->flags &= ~PG_ZERO;
2645 					vm_page_dequeue(m);
2646 					vm_page_remove(m);
2647 					if (vm_page_free_prep(m))
2648 						SLIST_INSERT_HEAD(&free, m,
2649 						    plinks.s.ss);
2650 					KASSERT(m->dirty == 0,
2651 					    ("page %p is dirty", m));
2652 				}
2653 			} else
2654 				error = EBUSY;
2655 unlock:
2656 			VM_OBJECT_WUNLOCK(object);
2657 		} else {
2658 			MPASS(vm_phys_domain(m) == domain);
2659 			vmd = VM_DOMAIN(domain);
2660 			vm_domain_free_lock(vmd);
2661 			order = m->order;
2662 			if (order < VM_NFREEORDER) {
2663 				/*
2664 				 * The page is enqueued in the physical memory
2665 				 * allocator's free page queues.  Moreover, it
2666 				 * is the first page in a power-of-two-sized
2667 				 * run of contiguous free pages.  Jump ahead
2668 				 * to the last page within that run, and
2669 				 * continue from there.
2670 				 */
2671 				m += (1 << order) - 1;
2672 			}
2673 #if VM_NRESERVLEVEL > 0
2674 			else if (vm_reserv_is_page_free(m))
2675 				order = 0;
2676 #endif
2677 			vm_domain_free_unlock(vmd);
2678 			if (order == VM_NFREEORDER)
2679 				error = EINVAL;
2680 		}
2681 	}
2682 	if (m_mtx != NULL)
2683 		mtx_unlock(m_mtx);
2684 	if ((m = SLIST_FIRST(&free)) != NULL) {
2685 		int cnt;
2686 
2687 		vmd = VM_DOMAIN(domain);
2688 		cnt = 0;
2689 		vm_domain_free_lock(vmd);
2690 		do {
2691 			MPASS(vm_phys_domain(m) == domain);
2692 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2693 			vm_phys_free_pages(m, 0);
2694 			cnt++;
2695 		} while ((m = SLIST_FIRST(&free)) != NULL);
2696 		vm_domain_free_unlock(vmd);
2697 		vm_domain_freecnt_inc(vmd, cnt);
2698 	}
2699 	return (error);
2700 }
2701 
2702 #define	NRUNS	16
2703 
2704 CTASSERT(powerof2(NRUNS));
2705 
2706 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2707 
2708 #define	MIN_RECLAIM	8
2709 
2710 /*
2711  *	vm_page_reclaim_contig:
2712  *
2713  *	Reclaim allocated, contiguous physical memory satisfying the specified
2714  *	conditions by relocating the virtual pages using that physical memory.
2715  *	Returns true if reclamation is successful and false otherwise.  Since
2716  *	relocation requires the allocation of physical pages, reclamation may
2717  *	fail due to a shortage of free pages.  When reclamation fails, callers
2718  *	are expected to perform vm_wait() before retrying a failed allocation
2719  *	operation, e.g., vm_page_alloc_contig().
2720  *
2721  *	The caller must always specify an allocation class through "req".
2722  *
2723  *	allocation classes:
2724  *	VM_ALLOC_NORMAL		normal process request
2725  *	VM_ALLOC_SYSTEM		system *really* needs a page
2726  *	VM_ALLOC_INTERRUPT	interrupt time request
2727  *
2728  *	The optional allocation flags are ignored.
2729  *
2730  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2731  *	must be a power of two.
2732  */
2733 bool
2734 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2735     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2736 {
2737 	struct vm_domain *vmd;
2738 	vm_paddr_t curr_low;
2739 	vm_page_t m_run, m_runs[NRUNS];
2740 	u_long count, reclaimed;
2741 	int error, i, options, req_class;
2742 
2743 	KASSERT(npages > 0, ("npages is 0"));
2744 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2745 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2746 	req_class = req & VM_ALLOC_CLASS_MASK;
2747 
2748 	/*
2749 	 * The page daemon is allowed to dig deeper into the free page list.
2750 	 */
2751 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2752 		req_class = VM_ALLOC_SYSTEM;
2753 
2754 	/*
2755 	 * Return if the number of free pages cannot satisfy the requested
2756 	 * allocation.
2757 	 */
2758 	vmd = VM_DOMAIN(domain);
2759 	count = vmd->vmd_free_count;
2760 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2761 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2762 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2763 		return (false);
2764 
2765 	/*
2766 	 * Scan up to three times, relaxing the restrictions ("options") on
2767 	 * the reclamation of reservations and superpages each time.
2768 	 */
2769 	for (options = VPSC_NORESERV;;) {
2770 		/*
2771 		 * Find the highest runs that satisfy the given constraints
2772 		 * and restrictions, and record them in "m_runs".
2773 		 */
2774 		curr_low = low;
2775 		count = 0;
2776 		for (;;) {
2777 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2778 			    high, alignment, boundary, options);
2779 			if (m_run == NULL)
2780 				break;
2781 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2782 			m_runs[RUN_INDEX(count)] = m_run;
2783 			count++;
2784 		}
2785 
2786 		/*
2787 		 * Reclaim the highest runs in LIFO (descending) order until
2788 		 * the number of reclaimed pages, "reclaimed", is at least
2789 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2790 		 * reclamation is idempotent, and runs will (likely) recur
2791 		 * from one scan to the next as restrictions are relaxed.
2792 		 */
2793 		reclaimed = 0;
2794 		for (i = 0; count > 0 && i < NRUNS; i++) {
2795 			count--;
2796 			m_run = m_runs[RUN_INDEX(count)];
2797 			error = vm_page_reclaim_run(req_class, domain, npages,
2798 			    m_run, high);
2799 			if (error == 0) {
2800 				reclaimed += npages;
2801 				if (reclaimed >= MIN_RECLAIM)
2802 					return (true);
2803 			}
2804 		}
2805 
2806 		/*
2807 		 * Either relax the restrictions on the next scan or return if
2808 		 * the last scan had no restrictions.
2809 		 */
2810 		if (options == VPSC_NORESERV)
2811 			options = VPSC_NOSUPER;
2812 		else if (options == VPSC_NOSUPER)
2813 			options = VPSC_ANY;
2814 		else if (options == VPSC_ANY)
2815 			return (reclaimed != 0);
2816 	}
2817 }
2818 
2819 bool
2820 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2821     u_long alignment, vm_paddr_t boundary)
2822 {
2823 	struct vm_domainset_iter di;
2824 	int domain;
2825 	bool ret;
2826 
2827 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2828 	do {
2829 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2830 		    high, alignment, boundary);
2831 		if (ret)
2832 			break;
2833 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2834 
2835 	return (ret);
2836 }
2837 
2838 /*
2839  * Set the domain in the appropriate page level domainset.
2840  */
2841 void
2842 vm_domain_set(struct vm_domain *vmd)
2843 {
2844 
2845 	mtx_lock(&vm_domainset_lock);
2846 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2847 		vmd->vmd_minset = 1;
2848 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2849 	}
2850 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2851 		vmd->vmd_severeset = 1;
2852 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2853 	}
2854 	mtx_unlock(&vm_domainset_lock);
2855 }
2856 
2857 /*
2858  * Clear the domain from the appropriate page level domainset.
2859  */
2860 void
2861 vm_domain_clear(struct vm_domain *vmd)
2862 {
2863 
2864 	mtx_lock(&vm_domainset_lock);
2865 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2866 		vmd->vmd_minset = 0;
2867 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2868 		if (vm_min_waiters != 0) {
2869 			vm_min_waiters = 0;
2870 			wakeup(&vm_min_domains);
2871 		}
2872 	}
2873 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2874 		vmd->vmd_severeset = 0;
2875 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2876 		if (vm_severe_waiters != 0) {
2877 			vm_severe_waiters = 0;
2878 			wakeup(&vm_severe_domains);
2879 		}
2880 	}
2881 
2882 	/*
2883 	 * If pageout daemon needs pages, then tell it that there are
2884 	 * some free.
2885 	 */
2886 	if (vmd->vmd_pageout_pages_needed &&
2887 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2888 		wakeup(&vmd->vmd_pageout_pages_needed);
2889 		vmd->vmd_pageout_pages_needed = 0;
2890 	}
2891 
2892 	/* See comments in vm_wait_doms(). */
2893 	if (vm_pageproc_waiters) {
2894 		vm_pageproc_waiters = 0;
2895 		wakeup(&vm_pageproc_waiters);
2896 	}
2897 	mtx_unlock(&vm_domainset_lock);
2898 }
2899 
2900 /*
2901  * Wait for free pages to exceed the min threshold globally.
2902  */
2903 void
2904 vm_wait_min(void)
2905 {
2906 
2907 	mtx_lock(&vm_domainset_lock);
2908 	while (vm_page_count_min()) {
2909 		vm_min_waiters++;
2910 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
2911 	}
2912 	mtx_unlock(&vm_domainset_lock);
2913 }
2914 
2915 /*
2916  * Wait for free pages to exceed the severe threshold globally.
2917  */
2918 void
2919 vm_wait_severe(void)
2920 {
2921 
2922 	mtx_lock(&vm_domainset_lock);
2923 	while (vm_page_count_severe()) {
2924 		vm_severe_waiters++;
2925 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
2926 		    "vmwait", 0);
2927 	}
2928 	mtx_unlock(&vm_domainset_lock);
2929 }
2930 
2931 u_int
2932 vm_wait_count(void)
2933 {
2934 
2935 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
2936 }
2937 
2938 void
2939 vm_wait_doms(const domainset_t *wdoms)
2940 {
2941 
2942 	/*
2943 	 * We use racey wakeup synchronization to avoid expensive global
2944 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
2945 	 * To handle this, we only sleep for one tick in this instance.  It
2946 	 * is expected that most allocations for the pageproc will come from
2947 	 * kmem or vm_page_grab* which will use the more specific and
2948 	 * race-free vm_wait_domain().
2949 	 */
2950 	if (curproc == pageproc) {
2951 		mtx_lock(&vm_domainset_lock);
2952 		vm_pageproc_waiters++;
2953 		msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
2954 		    "pageprocwait", 1);
2955 	} else {
2956 		/*
2957 		 * XXX Ideally we would wait only until the allocation could
2958 		 * be satisfied.  This condition can cause new allocators to
2959 		 * consume all freed pages while old allocators wait.
2960 		 */
2961 		mtx_lock(&vm_domainset_lock);
2962 		if (vm_page_count_min_set(wdoms)) {
2963 			vm_min_waiters++;
2964 			msleep(&vm_min_domains, &vm_domainset_lock,
2965 			    PVM | PDROP, "vmwait", 0);
2966 		} else
2967 			mtx_unlock(&vm_domainset_lock);
2968 	}
2969 }
2970 
2971 /*
2972  *	vm_wait_domain:
2973  *
2974  *	Sleep until free pages are available for allocation.
2975  *	- Called in various places after failed memory allocations.
2976  */
2977 void
2978 vm_wait_domain(int domain)
2979 {
2980 	struct vm_domain *vmd;
2981 	domainset_t wdom;
2982 
2983 	vmd = VM_DOMAIN(domain);
2984 	vm_domain_free_assert_unlocked(vmd);
2985 
2986 	if (curproc == pageproc) {
2987 		mtx_lock(&vm_domainset_lock);
2988 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
2989 			vmd->vmd_pageout_pages_needed = 1;
2990 			msleep(&vmd->vmd_pageout_pages_needed,
2991 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
2992 		} else
2993 			mtx_unlock(&vm_domainset_lock);
2994 	} else {
2995 		if (pageproc == NULL)
2996 			panic("vm_wait in early boot");
2997 		DOMAINSET_ZERO(&wdom);
2998 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
2999 		vm_wait_doms(&wdom);
3000 	}
3001 }
3002 
3003 /*
3004  *	vm_wait:
3005  *
3006  *	Sleep until free pages are available for allocation in the
3007  *	affinity domains of the obj.  If obj is NULL, the domain set
3008  *	for the calling thread is used.
3009  *	Called in various places after failed memory allocations.
3010  */
3011 void
3012 vm_wait(vm_object_t obj)
3013 {
3014 	struct domainset *d;
3015 
3016 	d = NULL;
3017 
3018 	/*
3019 	 * Carefully fetch pointers only once: the struct domainset
3020 	 * itself is ummutable but the pointer might change.
3021 	 */
3022 	if (obj != NULL)
3023 		d = obj->domain.dr_policy;
3024 	if (d == NULL)
3025 		d = curthread->td_domain.dr_policy;
3026 
3027 	vm_wait_doms(&d->ds_mask);
3028 }
3029 
3030 /*
3031  *	vm_domain_alloc_fail:
3032  *
3033  *	Called when a page allocation function fails.  Informs the
3034  *	pagedaemon and performs the requested wait.  Requires the
3035  *	domain_free and object lock on entry.  Returns with the
3036  *	object lock held and free lock released.  Returns an error when
3037  *	retry is necessary.
3038  *
3039  */
3040 static int
3041 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3042 {
3043 
3044 	vm_domain_free_assert_unlocked(vmd);
3045 
3046 	atomic_add_int(&vmd->vmd_pageout_deficit,
3047 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3048 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3049 		if (object != NULL)
3050 			VM_OBJECT_WUNLOCK(object);
3051 		vm_wait_domain(vmd->vmd_domain);
3052 		if (object != NULL)
3053 			VM_OBJECT_WLOCK(object);
3054 		if (req & VM_ALLOC_WAITOK)
3055 			return (EAGAIN);
3056 	}
3057 
3058 	return (0);
3059 }
3060 
3061 /*
3062  *	vm_waitpfault:
3063  *
3064  *	Sleep until free pages are available for allocation.
3065  *	- Called only in vm_fault so that processes page faulting
3066  *	  can be easily tracked.
3067  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3068  *	  processes will be able to grab memory first.  Do not change
3069  *	  this balance without careful testing first.
3070  */
3071 void
3072 vm_waitpfault(struct domainset *dset)
3073 {
3074 
3075 	/*
3076 	 * XXX Ideally we would wait only until the allocation could
3077 	 * be satisfied.  This condition can cause new allocators to
3078 	 * consume all freed pages while old allocators wait.
3079 	 */
3080 	mtx_lock(&vm_domainset_lock);
3081 	if (vm_page_count_min_set(&dset->ds_mask)) {
3082 		vm_min_waiters++;
3083 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3084 		    "pfault", 0);
3085 	} else
3086 		mtx_unlock(&vm_domainset_lock);
3087 }
3088 
3089 struct vm_pagequeue *
3090 vm_page_pagequeue(vm_page_t m)
3091 {
3092 
3093 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[m->queue]);
3094 }
3095 
3096 static struct mtx *
3097 vm_page_pagequeue_lockptr(vm_page_t m)
3098 {
3099 	uint8_t queue;
3100 
3101 	if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3102 		return (NULL);
3103 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue].pq_mutex);
3104 }
3105 
3106 static inline void
3107 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3108 {
3109 	struct vm_domain *vmd;
3110 	uint8_t qflags;
3111 
3112 	CRITICAL_ASSERT(curthread);
3113 	vm_pagequeue_assert_locked(pq);
3114 
3115 	/*
3116 	 * The page daemon is allowed to set m->queue = PQ_NONE without
3117 	 * the page queue lock held.  In this case it is about to free the page,
3118 	 * which must not have any queue state.
3119 	 */
3120 	qflags = atomic_load_8(&m->aflags) & PGA_QUEUE_STATE_MASK;
3121 	KASSERT(pq == vm_page_pagequeue(m) || qflags == 0,
3122 	    ("page %p doesn't belong to queue %p but has queue state %#x",
3123 	    m, pq, qflags));
3124 
3125 	if ((qflags & PGA_DEQUEUE) != 0) {
3126 		if (__predict_true((qflags & PGA_ENQUEUED) != 0)) {
3127 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3128 			vm_pagequeue_cnt_dec(pq);
3129 		}
3130 		vm_page_dequeue_complete(m);
3131 	} else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3132 		if ((qflags & PGA_ENQUEUED) != 0)
3133 			TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3134 		else {
3135 			vm_pagequeue_cnt_inc(pq);
3136 			vm_page_aflag_set(m, PGA_ENQUEUED);
3137 		}
3138 		if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3139 			KASSERT(m->queue == PQ_INACTIVE,
3140 			    ("head enqueue not supported for page %p", m));
3141 			vmd = vm_pagequeue_domain(m);
3142 			TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3143 		} else
3144 			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3145 
3146 		/*
3147 		 * PGA_REQUEUE and PGA_REQUEUE_HEAD must be cleared after
3148 		 * setting PGA_ENQUEUED in order to synchronize with the
3149 		 * page daemon.
3150 		 */
3151 		vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
3152 	}
3153 }
3154 
3155 static void
3156 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3157     uint8_t queue)
3158 {
3159 	vm_page_t m;
3160 	int i;
3161 
3162 	for (i = 0; i < bq->bq_cnt; i++) {
3163 		m = bq->bq_pa[i];
3164 		if (__predict_false(m->queue != queue))
3165 			continue;
3166 		vm_pqbatch_process_page(pq, m);
3167 	}
3168 	vm_batchqueue_init(bq);
3169 }
3170 
3171 static void
3172 vm_pqbatch_submit_page(vm_page_t m, uint8_t queue)
3173 {
3174 	struct vm_batchqueue *bq;
3175 	struct vm_pagequeue *pq;
3176 	int domain;
3177 
3178 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3179 	    ("page %p is unmanaged", m));
3180 	KASSERT(mtx_owned(vm_page_lockptr(m)) ||
3181 	    (m->object == NULL && (m->aflags & PGA_DEQUEUE) != 0),
3182 	    ("missing synchronization for page %p", m));
3183 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3184 
3185 	domain = vm_phys_domain(m);
3186 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3187 
3188 	critical_enter();
3189 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3190 	if (vm_batchqueue_insert(bq, m)) {
3191 		critical_exit();
3192 		return;
3193 	}
3194 	if (!vm_pagequeue_trylock(pq)) {
3195 		critical_exit();
3196 		vm_pagequeue_lock(pq);
3197 		critical_enter();
3198 		bq = DPCPU_PTR(pqbatch[domain][queue]);
3199 	}
3200 	vm_pqbatch_process(pq, bq, queue);
3201 
3202 	/*
3203 	 * The page may have been logically dequeued before we acquired the
3204 	 * page queue lock.  In this case, since we either hold the page lock
3205 	 * or the page is being freed, a different thread cannot be concurrently
3206 	 * enqueuing the page.
3207 	 */
3208 	if (__predict_true(m->queue == queue))
3209 		vm_pqbatch_process_page(pq, m);
3210 	else {
3211 		KASSERT(m->queue == PQ_NONE,
3212 		    ("invalid queue transition for page %p", m));
3213 		KASSERT((m->aflags & PGA_ENQUEUED) == 0,
3214 		    ("page %p is enqueued with invalid queue index", m));
3215 		vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3216 	}
3217 	vm_pagequeue_unlock(pq);
3218 	critical_exit();
3219 }
3220 
3221 /*
3222  *	vm_page_drain_pqbatch:		[ internal use only ]
3223  *
3224  *	Force all per-CPU page queue batch queues to be drained.  This is
3225  *	intended for use in severe memory shortages, to ensure that pages
3226  *	do not remain stuck in the batch queues.
3227  */
3228 void
3229 vm_page_drain_pqbatch(void)
3230 {
3231 	struct thread *td;
3232 	struct vm_domain *vmd;
3233 	struct vm_pagequeue *pq;
3234 	int cpu, domain, queue;
3235 
3236 	td = curthread;
3237 	CPU_FOREACH(cpu) {
3238 		thread_lock(td);
3239 		sched_bind(td, cpu);
3240 		thread_unlock(td);
3241 
3242 		for (domain = 0; domain < vm_ndomains; domain++) {
3243 			vmd = VM_DOMAIN(domain);
3244 			for (queue = 0; queue < PQ_COUNT; queue++) {
3245 				pq = &vmd->vmd_pagequeues[queue];
3246 				vm_pagequeue_lock(pq);
3247 				critical_enter();
3248 				vm_pqbatch_process(pq,
3249 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3250 				critical_exit();
3251 				vm_pagequeue_unlock(pq);
3252 			}
3253 		}
3254 	}
3255 	thread_lock(td);
3256 	sched_unbind(td);
3257 	thread_unlock(td);
3258 }
3259 
3260 /*
3261  * Complete the logical removal of a page from a page queue.  We must be
3262  * careful to synchronize with the page daemon, which may be concurrently
3263  * examining the page with only the page lock held.  The page must not be
3264  * in a state where it appears to be logically enqueued.
3265  */
3266 static void
3267 vm_page_dequeue_complete(vm_page_t m)
3268 {
3269 
3270 	m->queue = PQ_NONE;
3271 	atomic_thread_fence_rel();
3272 	vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3273 }
3274 
3275 /*
3276  *	vm_page_dequeue_deferred:	[ internal use only ]
3277  *
3278  *	Request removal of the given page from its current page
3279  *	queue.  Physical removal from the queue may be deferred
3280  *	indefinitely.
3281  *
3282  *	The page must be locked.
3283  */
3284 void
3285 vm_page_dequeue_deferred(vm_page_t m)
3286 {
3287 	uint8_t queue;
3288 
3289 	vm_page_assert_locked(m);
3290 
3291 	if ((queue = vm_page_queue(m)) == PQ_NONE)
3292 		return;
3293 	vm_page_aflag_set(m, PGA_DEQUEUE);
3294 	vm_pqbatch_submit_page(m, queue);
3295 }
3296 
3297 /*
3298  * A variant of vm_page_dequeue_deferred() that does not assert the page
3299  * lock and is only to be called from vm_page_free_prep().  It is just an
3300  * open-coded implementation of vm_page_dequeue_deferred().  Because the
3301  * page is being freed, we can assume that nothing else is scheduling queue
3302  * operations on this page, so we get for free the mutual exclusion that
3303  * is otherwise provided by the page lock.
3304  */
3305 static void
3306 vm_page_dequeue_deferred_free(vm_page_t m)
3307 {
3308 	uint8_t queue;
3309 
3310 	KASSERT(m->object == NULL, ("page %p has an object reference", m));
3311 
3312 	if ((m->aflags & PGA_DEQUEUE) != 0)
3313 		return;
3314 	atomic_thread_fence_acq();
3315 	if ((queue = m->queue) == PQ_NONE)
3316 		return;
3317 	vm_page_aflag_set(m, PGA_DEQUEUE);
3318 	vm_pqbatch_submit_page(m, queue);
3319 }
3320 
3321 /*
3322  *	vm_page_dequeue:
3323  *
3324  *	Remove the page from whichever page queue it's in, if any.
3325  *	The page must either be locked or unallocated.  This constraint
3326  *	ensures that the queue state of the page will remain consistent
3327  *	after this function returns.
3328  */
3329 void
3330 vm_page_dequeue(vm_page_t m)
3331 {
3332 	struct mtx *lock, *lock1;
3333 	struct vm_pagequeue *pq;
3334 	uint8_t aflags;
3335 
3336 	KASSERT(mtx_owned(vm_page_lockptr(m)) || m->order == VM_NFREEORDER,
3337 	    ("page %p is allocated and unlocked", m));
3338 
3339 	for (;;) {
3340 		lock = vm_page_pagequeue_lockptr(m);
3341 		if (lock == NULL) {
3342 			/*
3343 			 * A thread may be concurrently executing
3344 			 * vm_page_dequeue_complete().  Ensure that all queue
3345 			 * state is cleared before we return.
3346 			 */
3347 			aflags = atomic_load_8(&m->aflags);
3348 			if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3349 				return;
3350 			KASSERT((aflags & PGA_DEQUEUE) != 0,
3351 			    ("page %p has unexpected queue state flags %#x",
3352 			    m, aflags));
3353 
3354 			/*
3355 			 * Busy wait until the thread updating queue state is
3356 			 * finished.  Such a thread must be executing in a
3357 			 * critical section.
3358 			 */
3359 			cpu_spinwait();
3360 			continue;
3361 		}
3362 		mtx_lock(lock);
3363 		if ((lock1 = vm_page_pagequeue_lockptr(m)) == lock)
3364 			break;
3365 		mtx_unlock(lock);
3366 		lock = lock1;
3367 	}
3368 	KASSERT(lock == vm_page_pagequeue_lockptr(m),
3369 	    ("%s: page %p migrated directly between queues", __func__, m));
3370 	KASSERT((m->aflags & PGA_DEQUEUE) != 0 ||
3371 	    mtx_owned(vm_page_lockptr(m)),
3372 	    ("%s: queued unlocked page %p", __func__, m));
3373 
3374 	if ((m->aflags & PGA_ENQUEUED) != 0) {
3375 		pq = vm_page_pagequeue(m);
3376 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3377 		vm_pagequeue_cnt_dec(pq);
3378 	}
3379 	vm_page_dequeue_complete(m);
3380 	mtx_unlock(lock);
3381 }
3382 
3383 /*
3384  * Schedule the given page for insertion into the specified page queue.
3385  * Physical insertion of the page may be deferred indefinitely.
3386  */
3387 static void
3388 vm_page_enqueue(vm_page_t m, uint8_t queue)
3389 {
3390 
3391 	vm_page_assert_locked(m);
3392 	KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3393 	    ("%s: page %p is already enqueued", __func__, m));
3394 
3395 	m->queue = queue;
3396 	if ((m->aflags & PGA_REQUEUE) == 0)
3397 		vm_page_aflag_set(m, PGA_REQUEUE);
3398 	vm_pqbatch_submit_page(m, queue);
3399 }
3400 
3401 /*
3402  *	vm_page_requeue:		[ internal use only ]
3403  *
3404  *	Schedule a requeue of the given page.
3405  *
3406  *	The page must be locked.
3407  */
3408 void
3409 vm_page_requeue(vm_page_t m)
3410 {
3411 
3412 	vm_page_assert_locked(m);
3413 	KASSERT(vm_page_queue(m) != PQ_NONE,
3414 	    ("%s: page %p is not logically enqueued", __func__, m));
3415 
3416 	if ((m->aflags & PGA_REQUEUE) == 0)
3417 		vm_page_aflag_set(m, PGA_REQUEUE);
3418 	vm_pqbatch_submit_page(m, atomic_load_8(&m->queue));
3419 }
3420 
3421 /*
3422  *	vm_page_activate:
3423  *
3424  *	Put the specified page on the active list (if appropriate).
3425  *	Ensure that act_count is at least ACT_INIT but do not otherwise
3426  *	mess with it.
3427  *
3428  *	The page must be locked.
3429  */
3430 void
3431 vm_page_activate(vm_page_t m)
3432 {
3433 
3434 	vm_page_assert_locked(m);
3435 
3436 	if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0)
3437 		return;
3438 	if (vm_page_queue(m) == PQ_ACTIVE) {
3439 		if (m->act_count < ACT_INIT)
3440 			m->act_count = ACT_INIT;
3441 		return;
3442 	}
3443 
3444 	vm_page_dequeue(m);
3445 	if (m->act_count < ACT_INIT)
3446 		m->act_count = ACT_INIT;
3447 	vm_page_enqueue(m, PQ_ACTIVE);
3448 }
3449 
3450 /*
3451  *	vm_page_free_prep:
3452  *
3453  *	Prepares the given page to be put on the free list,
3454  *	disassociating it from any VM object. The caller may return
3455  *	the page to the free list only if this function returns true.
3456  *
3457  *	The object must be locked.  The page must be locked if it is
3458  *	managed.
3459  */
3460 bool
3461 vm_page_free_prep(vm_page_t m)
3462 {
3463 
3464 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3465 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3466 		uint64_t *p;
3467 		int i;
3468 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3469 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3470 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3471 			    m, i, (uintmax_t)*p));
3472 	}
3473 #endif
3474 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3475 		vm_page_lock_assert(m, MA_OWNED);
3476 		KASSERT(!pmap_page_is_mapped(m),
3477 		    ("vm_page_free_prep: freeing mapped page %p", m));
3478 	} else
3479 		KASSERT(m->queue == PQ_NONE,
3480 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3481 	VM_CNT_INC(v_tfree);
3482 
3483 	if (vm_page_sbusied(m))
3484 		panic("vm_page_free_prep: freeing busy page %p", m);
3485 
3486 	vm_page_remove(m);
3487 
3488 	/*
3489 	 * If fictitious remove object association and
3490 	 * return.
3491 	 */
3492 	if ((m->flags & PG_FICTITIOUS) != 0) {
3493 		KASSERT(m->wire_count == 1,
3494 		    ("fictitious page %p is not wired", m));
3495 		KASSERT(m->queue == PQ_NONE,
3496 		    ("fictitious page %p is queued", m));
3497 		return (false);
3498 	}
3499 
3500 	/*
3501 	 * Pages need not be dequeued before they are returned to the physical
3502 	 * memory allocator, but they must at least be marked for a deferred
3503 	 * dequeue.
3504 	 */
3505 	if ((m->oflags & VPO_UNMANAGED) == 0)
3506 		vm_page_dequeue_deferred_free(m);
3507 
3508 	m->valid = 0;
3509 	vm_page_undirty(m);
3510 
3511 	if (m->wire_count != 0)
3512 		panic("vm_page_free_prep: freeing wired page %p", m);
3513 	if (m->hold_count != 0) {
3514 		m->flags &= ~PG_ZERO;
3515 		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
3516 		    ("vm_page_free_prep: freeing PG_UNHOLDFREE page %p", m));
3517 		m->flags |= PG_UNHOLDFREE;
3518 		return (false);
3519 	}
3520 
3521 	/*
3522 	 * Restore the default memory attribute to the page.
3523 	 */
3524 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3525 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3526 
3527 #if VM_NRESERVLEVEL > 0
3528 	if (vm_reserv_free_page(m))
3529 		return (false);
3530 #endif
3531 
3532 	return (true);
3533 }
3534 
3535 /*
3536  *	vm_page_free_toq:
3537  *
3538  *	Returns the given page to the free list, disassociating it
3539  *	from any VM object.
3540  *
3541  *	The object must be locked.  The page must be locked if it is
3542  *	managed.
3543  */
3544 void
3545 vm_page_free_toq(vm_page_t m)
3546 {
3547 	struct vm_domain *vmd;
3548 
3549 	if (!vm_page_free_prep(m))
3550 		return;
3551 
3552 	vmd = vm_pagequeue_domain(m);
3553 	if (m->pool == VM_FREEPOOL_DEFAULT && vmd->vmd_pgcache != NULL) {
3554 		uma_zfree(vmd->vmd_pgcache, m);
3555 		return;
3556 	}
3557 	vm_domain_free_lock(vmd);
3558 	vm_phys_free_pages(m, 0);
3559 	vm_domain_free_unlock(vmd);
3560 	vm_domain_freecnt_inc(vmd, 1);
3561 }
3562 
3563 /*
3564  *	vm_page_free_pages_toq:
3565  *
3566  *	Returns a list of pages to the free list, disassociating it
3567  *	from any VM object.  In other words, this is equivalent to
3568  *	calling vm_page_free_toq() for each page of a list of VM objects.
3569  *
3570  *	The objects must be locked.  The pages must be locked if it is
3571  *	managed.
3572  */
3573 void
3574 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3575 {
3576 	vm_page_t m;
3577 	int count;
3578 
3579 	if (SLIST_EMPTY(free))
3580 		return;
3581 
3582 	count = 0;
3583 	while ((m = SLIST_FIRST(free)) != NULL) {
3584 		count++;
3585 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3586 		vm_page_free_toq(m);
3587 	}
3588 
3589 	if (update_wire_count)
3590 		vm_wire_sub(count);
3591 }
3592 
3593 /*
3594  *	vm_page_wire:
3595  *
3596  * Mark this page as wired down.  If the page is fictitious, then
3597  * its wire count must remain one.
3598  *
3599  * The page must be locked.
3600  */
3601 void
3602 vm_page_wire(vm_page_t m)
3603 {
3604 
3605 	vm_page_assert_locked(m);
3606 	if ((m->flags & PG_FICTITIOUS) != 0) {
3607 		KASSERT(m->wire_count == 1,
3608 		    ("vm_page_wire: fictitious page %p's wire count isn't one",
3609 		    m));
3610 		return;
3611 	}
3612 	if (m->wire_count == 0) {
3613 		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3614 		    m->queue == PQ_NONE,
3615 		    ("vm_page_wire: unmanaged page %p is queued", m));
3616 		vm_wire_add(1);
3617 	}
3618 	m->wire_count++;
3619 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3620 }
3621 
3622 /*
3623  * vm_page_unwire:
3624  *
3625  * Release one wiring of the specified page, potentially allowing it to be
3626  * paged out.  Returns TRUE if the number of wirings transitions to zero and
3627  * FALSE otherwise.
3628  *
3629  * Only managed pages belonging to an object can be paged out.  If the number
3630  * of wirings transitions to zero and the page is eligible for page out, then
3631  * the page is added to the specified paging queue (unless PQ_NONE is
3632  * specified, in which case the page is dequeued if it belongs to a paging
3633  * queue).
3634  *
3635  * If a page is fictitious, then its wire count must always be one.
3636  *
3637  * A managed page must be locked.
3638  */
3639 bool
3640 vm_page_unwire(vm_page_t m, uint8_t queue)
3641 {
3642 	bool unwired;
3643 
3644 	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3645 	    ("vm_page_unwire: invalid queue %u request for page %p",
3646 	    queue, m));
3647 	if ((m->oflags & VPO_UNMANAGED) == 0)
3648 		vm_page_assert_locked(m);
3649 
3650 	unwired = vm_page_unwire_noq(m);
3651 	if (!unwired || (m->oflags & VPO_UNMANAGED) != 0 || m->object == NULL)
3652 		return (unwired);
3653 
3654 	if (vm_page_queue(m) == queue) {
3655 		if (queue == PQ_ACTIVE)
3656 			vm_page_reference(m);
3657 		else if (queue != PQ_NONE)
3658 			vm_page_requeue(m);
3659 	} else {
3660 		vm_page_dequeue(m);
3661 		if (queue != PQ_NONE) {
3662 			vm_page_enqueue(m, queue);
3663 			if (queue == PQ_ACTIVE)
3664 				/* Initialize act_count. */
3665 				vm_page_activate(m);
3666 		}
3667 	}
3668 	return (unwired);
3669 }
3670 
3671 /*
3672  *
3673  * vm_page_unwire_noq:
3674  *
3675  * Unwire a page without (re-)inserting it into a page queue.  It is up
3676  * to the caller to enqueue, requeue, or free the page as appropriate.
3677  * In most cases, vm_page_unwire() should be used instead.
3678  */
3679 bool
3680 vm_page_unwire_noq(vm_page_t m)
3681 {
3682 
3683 	if ((m->oflags & VPO_UNMANAGED) == 0)
3684 		vm_page_assert_locked(m);
3685 	if ((m->flags & PG_FICTITIOUS) != 0) {
3686 		KASSERT(m->wire_count == 1,
3687 	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3688 		return (false);
3689 	}
3690 	if (m->wire_count == 0)
3691 		panic("vm_page_unwire: page %p's wire count is zero", m);
3692 	m->wire_count--;
3693 	if (m->wire_count == 0) {
3694 		vm_wire_sub(1);
3695 		return (true);
3696 	} else
3697 		return (false);
3698 }
3699 
3700 /*
3701  * Move the specified page to the tail of the inactive queue, or requeue
3702  * the page if it is already in the inactive queue.
3703  *
3704  * The page must be locked.
3705  */
3706 void
3707 vm_page_deactivate(vm_page_t m)
3708 {
3709 
3710 	vm_page_assert_locked(m);
3711 
3712 	if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0)
3713 		return;
3714 
3715 	if (!vm_page_inactive(m)) {
3716 		vm_page_dequeue(m);
3717 		vm_page_enqueue(m, PQ_INACTIVE);
3718 	} else
3719 		vm_page_requeue(m);
3720 }
3721 
3722 /*
3723  * Move the specified page close to the head of the inactive queue,
3724  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3725  * As with regular enqueues, we use a per-CPU batch queue to reduce
3726  * contention on the page queue lock.
3727  *
3728  * The page must be locked.
3729  */
3730 void
3731 vm_page_deactivate_noreuse(vm_page_t m)
3732 {
3733 
3734 	vm_page_assert_locked(m);
3735 
3736 	if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0)
3737 		return;
3738 
3739 	if (!vm_page_inactive(m)) {
3740 		vm_page_dequeue(m);
3741 		m->queue = PQ_INACTIVE;
3742 	}
3743 	if ((m->aflags & PGA_REQUEUE_HEAD) == 0)
3744 		vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
3745 	vm_pqbatch_submit_page(m, PQ_INACTIVE);
3746 }
3747 
3748 /*
3749  * vm_page_launder
3750  *
3751  * 	Put a page in the laundry, or requeue it if it is already there.
3752  */
3753 void
3754 vm_page_launder(vm_page_t m)
3755 {
3756 
3757 	vm_page_assert_locked(m);
3758 	if (m->wire_count > 0 || (m->oflags & VPO_UNMANAGED) != 0)
3759 		return;
3760 
3761 	if (vm_page_in_laundry(m))
3762 		vm_page_requeue(m);
3763 	else {
3764 		vm_page_dequeue(m);
3765 		vm_page_enqueue(m, PQ_LAUNDRY);
3766 	}
3767 }
3768 
3769 /*
3770  * vm_page_unswappable
3771  *
3772  *	Put a page in the PQ_UNSWAPPABLE holding queue.
3773  */
3774 void
3775 vm_page_unswappable(vm_page_t m)
3776 {
3777 
3778 	vm_page_assert_locked(m);
3779 	KASSERT(m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0,
3780 	    ("page %p already unswappable", m));
3781 
3782 	vm_page_dequeue(m);
3783 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
3784 }
3785 
3786 /*
3787  * Attempt to free the page.  If it cannot be freed, do nothing.  Returns true
3788  * if the page is freed and false otherwise.
3789  *
3790  * The page must be managed.  The page and its containing object must be
3791  * locked.
3792  */
3793 bool
3794 vm_page_try_to_free(vm_page_t m)
3795 {
3796 
3797 	vm_page_assert_locked(m);
3798 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3799 	KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("page %p is unmanaged", m));
3800 	if (m->dirty != 0 || vm_page_held(m) || vm_page_busied(m))
3801 		return (false);
3802 	if (m->object->ref_count != 0) {
3803 		pmap_remove_all(m);
3804 		if (m->dirty != 0)
3805 			return (false);
3806 	}
3807 	vm_page_free(m);
3808 	return (true);
3809 }
3810 
3811 /*
3812  * vm_page_advise
3813  *
3814  * 	Apply the specified advice to the given page.
3815  *
3816  *	The object and page must be locked.
3817  */
3818 void
3819 vm_page_advise(vm_page_t m, int advice)
3820 {
3821 
3822 	vm_page_assert_locked(m);
3823 	VM_OBJECT_ASSERT_WLOCKED(m->object);
3824 	if (advice == MADV_FREE)
3825 		/*
3826 		 * Mark the page clean.  This will allow the page to be freed
3827 		 * without first paging it out.  MADV_FREE pages are often
3828 		 * quickly reused by malloc(3), so we do not do anything that
3829 		 * would result in a page fault on a later access.
3830 		 */
3831 		vm_page_undirty(m);
3832 	else if (advice != MADV_DONTNEED) {
3833 		if (advice == MADV_WILLNEED)
3834 			vm_page_activate(m);
3835 		return;
3836 	}
3837 
3838 	/*
3839 	 * Clear any references to the page.  Otherwise, the page daemon will
3840 	 * immediately reactivate the page.
3841 	 */
3842 	vm_page_aflag_clear(m, PGA_REFERENCED);
3843 
3844 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3845 		vm_page_dirty(m);
3846 
3847 	/*
3848 	 * Place clean pages near the head of the inactive queue rather than
3849 	 * the tail, thus defeating the queue's LRU operation and ensuring that
3850 	 * the page will be reused quickly.  Dirty pages not already in the
3851 	 * laundry are moved there.
3852 	 */
3853 	if (m->dirty == 0)
3854 		vm_page_deactivate_noreuse(m);
3855 	else if (!vm_page_in_laundry(m))
3856 		vm_page_launder(m);
3857 }
3858 
3859 /*
3860  * Grab a page, waiting until we are waken up due to the page
3861  * changing state.  We keep on waiting, if the page continues
3862  * to be in the object.  If the page doesn't exist, first allocate it
3863  * and then conditionally zero it.
3864  *
3865  * This routine may sleep.
3866  *
3867  * The object must be locked on entry.  The lock will, however, be released
3868  * and reacquired if the routine sleeps.
3869  */
3870 vm_page_t
3871 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3872 {
3873 	vm_page_t m;
3874 	int sleep;
3875 	int pflags;
3876 
3877 	VM_OBJECT_ASSERT_WLOCKED(object);
3878 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3879 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3880 	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3881 	pflags = allocflags &
3882 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
3883 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3884 		pflags |= VM_ALLOC_WAITFAIL;
3885 retrylookup:
3886 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
3887 		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3888 		    vm_page_xbusied(m) : vm_page_busied(m);
3889 		if (sleep) {
3890 			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3891 				return (NULL);
3892 			/*
3893 			 * Reference the page before unlocking and
3894 			 * sleeping so that the page daemon is less
3895 			 * likely to reclaim it.
3896 			 */
3897 			vm_page_aflag_set(m, PGA_REFERENCED);
3898 			vm_page_lock(m);
3899 			VM_OBJECT_WUNLOCK(object);
3900 			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3901 			    VM_ALLOC_IGN_SBUSY) != 0);
3902 			VM_OBJECT_WLOCK(object);
3903 			goto retrylookup;
3904 		} else {
3905 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
3906 				vm_page_lock(m);
3907 				vm_page_wire(m);
3908 				vm_page_unlock(m);
3909 			}
3910 			if ((allocflags &
3911 			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3912 				vm_page_xbusy(m);
3913 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
3914 				vm_page_sbusy(m);
3915 			return (m);
3916 		}
3917 	}
3918 	m = vm_page_alloc(object, pindex, pflags);
3919 	if (m == NULL) {
3920 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3921 			return (NULL);
3922 		goto retrylookup;
3923 	}
3924 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3925 		pmap_zero_page(m);
3926 	return (m);
3927 }
3928 
3929 /*
3930  * Return the specified range of pages from the given object.  For each
3931  * page offset within the range, if a page already exists within the object
3932  * at that offset and it is busy, then wait for it to change state.  If,
3933  * instead, the page doesn't exist, then allocate it.
3934  *
3935  * The caller must always specify an allocation class.
3936  *
3937  * allocation classes:
3938  *	VM_ALLOC_NORMAL		normal process request
3939  *	VM_ALLOC_SYSTEM		system *really* needs the pages
3940  *
3941  * The caller must always specify that the pages are to be busied and/or
3942  * wired.
3943  *
3944  * optional allocation flags:
3945  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
3946  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
3947  *	VM_ALLOC_NOWAIT		do not sleep
3948  *	VM_ALLOC_SBUSY		set page to sbusy state
3949  *	VM_ALLOC_WIRED		wire the pages
3950  *	VM_ALLOC_ZERO		zero and validate any invalid pages
3951  *
3952  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
3953  * may return a partial prefix of the requested range.
3954  */
3955 int
3956 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3957     vm_page_t *ma, int count)
3958 {
3959 	vm_page_t m, mpred;
3960 	int pflags;
3961 	int i;
3962 	bool sleep;
3963 
3964 	VM_OBJECT_ASSERT_WLOCKED(object);
3965 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3966 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3967 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3968 	    (allocflags & VM_ALLOC_WIRED) != 0,
3969 	    ("vm_page_grab_pages: the pages must be busied or wired"));
3970 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3971 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3972 	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3973 	if (count == 0)
3974 		return (0);
3975 	pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |
3976 	    VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY);
3977 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3978 		pflags |= VM_ALLOC_WAITFAIL;
3979 	i = 0;
3980 retrylookup:
3981 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
3982 	if (m == NULL || m->pindex != pindex + i) {
3983 		mpred = m;
3984 		m = NULL;
3985 	} else
3986 		mpred = TAILQ_PREV(m, pglist, listq);
3987 	for (; i < count; i++) {
3988 		if (m != NULL) {
3989 			sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3990 			    vm_page_xbusied(m) : vm_page_busied(m);
3991 			if (sleep) {
3992 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3993 					break;
3994 				/*
3995 				 * Reference the page before unlocking and
3996 				 * sleeping so that the page daemon is less
3997 				 * likely to reclaim it.
3998 				 */
3999 				vm_page_aflag_set(m, PGA_REFERENCED);
4000 				vm_page_lock(m);
4001 				VM_OBJECT_WUNLOCK(object);
4002 				vm_page_busy_sleep(m, "grbmaw", (allocflags &
4003 				    VM_ALLOC_IGN_SBUSY) != 0);
4004 				VM_OBJECT_WLOCK(object);
4005 				goto retrylookup;
4006 			}
4007 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
4008 				vm_page_lock(m);
4009 				vm_page_wire(m);
4010 				vm_page_unlock(m);
4011 			}
4012 			if ((allocflags & (VM_ALLOC_NOBUSY |
4013 			    VM_ALLOC_SBUSY)) == 0)
4014 				vm_page_xbusy(m);
4015 			if ((allocflags & VM_ALLOC_SBUSY) != 0)
4016 				vm_page_sbusy(m);
4017 		} else {
4018 			m = vm_page_alloc_after(object, pindex + i,
4019 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4020 			if (m == NULL) {
4021 				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4022 					break;
4023 				goto retrylookup;
4024 			}
4025 		}
4026 		if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
4027 			if ((m->flags & PG_ZERO) == 0)
4028 				pmap_zero_page(m);
4029 			m->valid = VM_PAGE_BITS_ALL;
4030 		}
4031 		ma[i] = mpred = m;
4032 		m = vm_page_next(m);
4033 	}
4034 	return (i);
4035 }
4036 
4037 /*
4038  * Mapping function for valid or dirty bits in a page.
4039  *
4040  * Inputs are required to range within a page.
4041  */
4042 vm_page_bits_t
4043 vm_page_bits(int base, int size)
4044 {
4045 	int first_bit;
4046 	int last_bit;
4047 
4048 	KASSERT(
4049 	    base + size <= PAGE_SIZE,
4050 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4051 	);
4052 
4053 	if (size == 0)		/* handle degenerate case */
4054 		return (0);
4055 
4056 	first_bit = base >> DEV_BSHIFT;
4057 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4058 
4059 	return (((vm_page_bits_t)2 << last_bit) -
4060 	    ((vm_page_bits_t)1 << first_bit));
4061 }
4062 
4063 /*
4064  *	vm_page_set_valid_range:
4065  *
4066  *	Sets portions of a page valid.  The arguments are expected
4067  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4068  *	of any partial chunks touched by the range.  The invalid portion of
4069  *	such chunks will be zeroed.
4070  *
4071  *	(base + size) must be less then or equal to PAGE_SIZE.
4072  */
4073 void
4074 vm_page_set_valid_range(vm_page_t m, int base, int size)
4075 {
4076 	int endoff, frag;
4077 
4078 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4079 	if (size == 0)	/* handle degenerate case */
4080 		return;
4081 
4082 	/*
4083 	 * If the base is not DEV_BSIZE aligned and the valid
4084 	 * bit is clear, we have to zero out a portion of the
4085 	 * first block.
4086 	 */
4087 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4088 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4089 		pmap_zero_page_area(m, frag, base - frag);
4090 
4091 	/*
4092 	 * If the ending offset is not DEV_BSIZE aligned and the
4093 	 * valid bit is clear, we have to zero out a portion of
4094 	 * the last block.
4095 	 */
4096 	endoff = base + size;
4097 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4098 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4099 		pmap_zero_page_area(m, endoff,
4100 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4101 
4102 	/*
4103 	 * Assert that no previously invalid block that is now being validated
4104 	 * is already dirty.
4105 	 */
4106 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4107 	    ("vm_page_set_valid_range: page %p is dirty", m));
4108 
4109 	/*
4110 	 * Set valid bits inclusive of any overlap.
4111 	 */
4112 	m->valid |= vm_page_bits(base, size);
4113 }
4114 
4115 /*
4116  * Clear the given bits from the specified page's dirty field.
4117  */
4118 static __inline void
4119 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4120 {
4121 	uintptr_t addr;
4122 #if PAGE_SIZE < 16384
4123 	int shift;
4124 #endif
4125 
4126 	/*
4127 	 * If the object is locked and the page is neither exclusive busy nor
4128 	 * write mapped, then the page's dirty field cannot possibly be
4129 	 * set by a concurrent pmap operation.
4130 	 */
4131 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4132 	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4133 		m->dirty &= ~pagebits;
4134 	else {
4135 		/*
4136 		 * The pmap layer can call vm_page_dirty() without
4137 		 * holding a distinguished lock.  The combination of
4138 		 * the object's lock and an atomic operation suffice
4139 		 * to guarantee consistency of the page dirty field.
4140 		 *
4141 		 * For PAGE_SIZE == 32768 case, compiler already
4142 		 * properly aligns the dirty field, so no forcible
4143 		 * alignment is needed. Only require existence of
4144 		 * atomic_clear_64 when page size is 32768.
4145 		 */
4146 		addr = (uintptr_t)&m->dirty;
4147 #if PAGE_SIZE == 32768
4148 		atomic_clear_64((uint64_t *)addr, pagebits);
4149 #elif PAGE_SIZE == 16384
4150 		atomic_clear_32((uint32_t *)addr, pagebits);
4151 #else		/* PAGE_SIZE <= 8192 */
4152 		/*
4153 		 * Use a trick to perform a 32-bit atomic on the
4154 		 * containing aligned word, to not depend on the existence
4155 		 * of atomic_clear_{8, 16}.
4156 		 */
4157 		shift = addr & (sizeof(uint32_t) - 1);
4158 #if BYTE_ORDER == BIG_ENDIAN
4159 		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
4160 #else
4161 		shift *= NBBY;
4162 #endif
4163 		addr &= ~(sizeof(uint32_t) - 1);
4164 		atomic_clear_32((uint32_t *)addr, pagebits << shift);
4165 #endif		/* PAGE_SIZE */
4166 	}
4167 }
4168 
4169 /*
4170  *	vm_page_set_validclean:
4171  *
4172  *	Sets portions of a page valid and clean.  The arguments are expected
4173  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4174  *	of any partial chunks touched by the range.  The invalid portion of
4175  *	such chunks will be zero'd.
4176  *
4177  *	(base + size) must be less then or equal to PAGE_SIZE.
4178  */
4179 void
4180 vm_page_set_validclean(vm_page_t m, int base, int size)
4181 {
4182 	vm_page_bits_t oldvalid, pagebits;
4183 	int endoff, frag;
4184 
4185 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4186 	if (size == 0)	/* handle degenerate case */
4187 		return;
4188 
4189 	/*
4190 	 * If the base is not DEV_BSIZE aligned and the valid
4191 	 * bit is clear, we have to zero out a portion of the
4192 	 * first block.
4193 	 */
4194 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4195 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4196 		pmap_zero_page_area(m, frag, base - frag);
4197 
4198 	/*
4199 	 * If the ending offset is not DEV_BSIZE aligned and the
4200 	 * valid bit is clear, we have to zero out a portion of
4201 	 * the last block.
4202 	 */
4203 	endoff = base + size;
4204 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4205 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4206 		pmap_zero_page_area(m, endoff,
4207 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4208 
4209 	/*
4210 	 * Set valid, clear dirty bits.  If validating the entire
4211 	 * page we can safely clear the pmap modify bit.  We also
4212 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
4213 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
4214 	 * be set again.
4215 	 *
4216 	 * We set valid bits inclusive of any overlap, but we can only
4217 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
4218 	 * the range.
4219 	 */
4220 	oldvalid = m->valid;
4221 	pagebits = vm_page_bits(base, size);
4222 	m->valid |= pagebits;
4223 #if 0	/* NOT YET */
4224 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4225 		frag = DEV_BSIZE - frag;
4226 		base += frag;
4227 		size -= frag;
4228 		if (size < 0)
4229 			size = 0;
4230 	}
4231 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4232 #endif
4233 	if (base == 0 && size == PAGE_SIZE) {
4234 		/*
4235 		 * The page can only be modified within the pmap if it is
4236 		 * mapped, and it can only be mapped if it was previously
4237 		 * fully valid.
4238 		 */
4239 		if (oldvalid == VM_PAGE_BITS_ALL)
4240 			/*
4241 			 * Perform the pmap_clear_modify() first.  Otherwise,
4242 			 * a concurrent pmap operation, such as
4243 			 * pmap_protect(), could clear a modification in the
4244 			 * pmap and set the dirty field on the page before
4245 			 * pmap_clear_modify() had begun and after the dirty
4246 			 * field was cleared here.
4247 			 */
4248 			pmap_clear_modify(m);
4249 		m->dirty = 0;
4250 		m->oflags &= ~VPO_NOSYNC;
4251 	} else if (oldvalid != VM_PAGE_BITS_ALL)
4252 		m->dirty &= ~pagebits;
4253 	else
4254 		vm_page_clear_dirty_mask(m, pagebits);
4255 }
4256 
4257 void
4258 vm_page_clear_dirty(vm_page_t m, int base, int size)
4259 {
4260 
4261 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4262 }
4263 
4264 /*
4265  *	vm_page_set_invalid:
4266  *
4267  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
4268  *	valid and dirty bits for the effected areas are cleared.
4269  */
4270 void
4271 vm_page_set_invalid(vm_page_t m, int base, int size)
4272 {
4273 	vm_page_bits_t bits;
4274 	vm_object_t object;
4275 
4276 	object = m->object;
4277 	VM_OBJECT_ASSERT_WLOCKED(object);
4278 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4279 	    size >= object->un_pager.vnp.vnp_size)
4280 		bits = VM_PAGE_BITS_ALL;
4281 	else
4282 		bits = vm_page_bits(base, size);
4283 	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
4284 	    bits != 0)
4285 		pmap_remove_all(m);
4286 	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
4287 	    !pmap_page_is_mapped(m),
4288 	    ("vm_page_set_invalid: page %p is mapped", m));
4289 	m->valid &= ~bits;
4290 	m->dirty &= ~bits;
4291 }
4292 
4293 /*
4294  * vm_page_zero_invalid()
4295  *
4296  *	The kernel assumes that the invalid portions of a page contain
4297  *	garbage, but such pages can be mapped into memory by user code.
4298  *	When this occurs, we must zero out the non-valid portions of the
4299  *	page so user code sees what it expects.
4300  *
4301  *	Pages are most often semi-valid when the end of a file is mapped
4302  *	into memory and the file's size is not page aligned.
4303  */
4304 void
4305 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4306 {
4307 	int b;
4308 	int i;
4309 
4310 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4311 	/*
4312 	 * Scan the valid bits looking for invalid sections that
4313 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4314 	 * valid bit may be set ) have already been zeroed by
4315 	 * vm_page_set_validclean().
4316 	 */
4317 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4318 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
4319 		    (m->valid & ((vm_page_bits_t)1 << i))) {
4320 			if (i > b) {
4321 				pmap_zero_page_area(m,
4322 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4323 			}
4324 			b = i + 1;
4325 		}
4326 	}
4327 
4328 	/*
4329 	 * setvalid is TRUE when we can safely set the zero'd areas
4330 	 * as being valid.  We can do this if there are no cache consistancy
4331 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4332 	 */
4333 	if (setvalid)
4334 		m->valid = VM_PAGE_BITS_ALL;
4335 }
4336 
4337 /*
4338  *	vm_page_is_valid:
4339  *
4340  *	Is (partial) page valid?  Note that the case where size == 0
4341  *	will return FALSE in the degenerate case where the page is
4342  *	entirely invalid, and TRUE otherwise.
4343  */
4344 int
4345 vm_page_is_valid(vm_page_t m, int base, int size)
4346 {
4347 	vm_page_bits_t bits;
4348 
4349 	VM_OBJECT_ASSERT_LOCKED(m->object);
4350 	bits = vm_page_bits(base, size);
4351 	return (m->valid != 0 && (m->valid & bits) == bits);
4352 }
4353 
4354 /*
4355  * Returns true if all of the specified predicates are true for the entire
4356  * (super)page and false otherwise.
4357  */
4358 bool
4359 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4360 {
4361 	vm_object_t object;
4362 	int i, npages;
4363 
4364 	object = m->object;
4365 	if (skip_m != NULL && skip_m->object != object)
4366 		return (false);
4367 	VM_OBJECT_ASSERT_LOCKED(object);
4368 	npages = atop(pagesizes[m->psind]);
4369 
4370 	/*
4371 	 * The physically contiguous pages that make up a superpage, i.e., a
4372 	 * page with a page size index ("psind") greater than zero, will
4373 	 * occupy adjacent entries in vm_page_array[].
4374 	 */
4375 	for (i = 0; i < npages; i++) {
4376 		/* Always test object consistency, including "skip_m". */
4377 		if (m[i].object != object)
4378 			return (false);
4379 		if (&m[i] == skip_m)
4380 			continue;
4381 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4382 			return (false);
4383 		if ((flags & PS_ALL_DIRTY) != 0) {
4384 			/*
4385 			 * Calling vm_page_test_dirty() or pmap_is_modified()
4386 			 * might stop this case from spuriously returning
4387 			 * "false".  However, that would require a write lock
4388 			 * on the object containing "m[i]".
4389 			 */
4390 			if (m[i].dirty != VM_PAGE_BITS_ALL)
4391 				return (false);
4392 		}
4393 		if ((flags & PS_ALL_VALID) != 0 &&
4394 		    m[i].valid != VM_PAGE_BITS_ALL)
4395 			return (false);
4396 	}
4397 	return (true);
4398 }
4399 
4400 /*
4401  * Set the page's dirty bits if the page is modified.
4402  */
4403 void
4404 vm_page_test_dirty(vm_page_t m)
4405 {
4406 
4407 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4408 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4409 		vm_page_dirty(m);
4410 }
4411 
4412 void
4413 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4414 {
4415 
4416 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4417 }
4418 
4419 void
4420 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4421 {
4422 
4423 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4424 }
4425 
4426 int
4427 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4428 {
4429 
4430 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4431 }
4432 
4433 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
4434 void
4435 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
4436 {
4437 
4438 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
4439 }
4440 
4441 void
4442 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
4443 {
4444 
4445 	mtx_assert_(vm_page_lockptr(m), a, file, line);
4446 }
4447 #endif
4448 
4449 #ifdef INVARIANTS
4450 void
4451 vm_page_object_lock_assert(vm_page_t m)
4452 {
4453 
4454 	/*
4455 	 * Certain of the page's fields may only be modified by the
4456 	 * holder of the containing object's lock or the exclusive busy.
4457 	 * holder.  Unfortunately, the holder of the write busy is
4458 	 * not recorded, and thus cannot be checked here.
4459 	 */
4460 	if (m->object != NULL && !vm_page_xbusied(m))
4461 		VM_OBJECT_ASSERT_WLOCKED(m->object);
4462 }
4463 
4464 void
4465 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
4466 {
4467 
4468 	if ((bits & PGA_WRITEABLE) == 0)
4469 		return;
4470 
4471 	/*
4472 	 * The PGA_WRITEABLE flag can only be set if the page is
4473 	 * managed, is exclusively busied or the object is locked.
4474 	 * Currently, this flag is only set by pmap_enter().
4475 	 */
4476 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4477 	    ("PGA_WRITEABLE on unmanaged page"));
4478 	if (!vm_page_xbusied(m))
4479 		VM_OBJECT_ASSERT_LOCKED(m->object);
4480 }
4481 #endif
4482 
4483 #include "opt_ddb.h"
4484 #ifdef DDB
4485 #include <sys/kernel.h>
4486 
4487 #include <ddb/ddb.h>
4488 
4489 DB_SHOW_COMMAND(page, vm_page_print_page_info)
4490 {
4491 
4492 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
4493 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
4494 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
4495 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
4496 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
4497 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
4498 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
4499 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
4500 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
4501 }
4502 
4503 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
4504 {
4505 	int dom;
4506 
4507 	db_printf("pq_free %d\n", vm_free_count());
4508 	for (dom = 0; dom < vm_ndomains; dom++) {
4509 		db_printf(
4510     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
4511 		    dom,
4512 		    vm_dom[dom].vmd_page_count,
4513 		    vm_dom[dom].vmd_free_count,
4514 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
4515 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
4516 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
4517 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
4518 	}
4519 }
4520 
4521 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
4522 {
4523 	vm_page_t m;
4524 	boolean_t phys, virt;
4525 
4526 	if (!have_addr) {
4527 		db_printf("show pginfo addr\n");
4528 		return;
4529 	}
4530 
4531 	phys = strchr(modif, 'p') != NULL;
4532 	virt = strchr(modif, 'v') != NULL;
4533 	if (virt)
4534 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
4535 	else if (phys)
4536 		m = PHYS_TO_VM_PAGE(addr);
4537 	else
4538 		m = (vm_page_t)addr;
4539 	db_printf(
4540     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
4541     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
4542 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
4543 	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
4544 	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
4545 }
4546 #endif /* DDB */
4547