xref: /freebsd/sys/vm/vm_page.c (revision 3157ba21)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
34  */
35 
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *			GENERAL RULES ON VM_PAGE MANIPULATION
65  *
66  *	- a pageq mutex is required when adding or removing a page from a
67  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
68  *	  busy state of a page.
69  *
70  *	- a hash chain mutex is required when associating or disassociating
71  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
72  *	  regardless of other mutexes or the busy state of a page.
73  *
74  *	- either a hash chain mutex OR a busied page is required in order
75  *	  to modify the page flags.  A hash chain mutex must be obtained in
76  *	  order to busy a page.  A page's flags cannot be modified by a
77  *	  hash chain mutex if the page is marked busy.
78  *
79  *	- The object memq mutex is held when inserting or removing
80  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
81  *	  is different from the object's main mutex.
82  *
83  *	Generally speaking, you have to be aware of side effects when running
84  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
85  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
86  *	vm_page_cache(), vm_page_activate(), and a number of other routines
87  *	will release the hash chain mutex for you.  Intermediate manipulation
88  *	routines such as vm_page_flag_set() expect the hash chain to be held
89  *	on entry and the hash chain will remain held on return.
90  *
91  *	pageq scanning can only occur with the pageq in question locked.
92  *	We have a known bottleneck with the active queue, but the cache
93  *	and free queues are actually arrays already.
94  */
95 
96 /*
97  *	Resident memory management module.
98  */
99 
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD$");
102 
103 #include "opt_vm.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/lock.h>
108 #include <sys/kernel.h>
109 #include <sys/limits.h>
110 #include <sys/malloc.h>
111 #include <sys/msgbuf.h>
112 #include <sys/mutex.h>
113 #include <sys/proc.h>
114 #include <sys/sysctl.h>
115 #include <sys/vmmeter.h>
116 #include <sys/vnode.h>
117 
118 #include <vm/vm.h>
119 #include <vm/pmap.h>
120 #include <vm/vm_param.h>
121 #include <vm/vm_kern.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_page.h>
124 #include <vm/vm_pageout.h>
125 #include <vm/vm_pager.h>
126 #include <vm/vm_phys.h>
127 #include <vm/vm_reserv.h>
128 #include <vm/vm_extern.h>
129 #include <vm/uma.h>
130 #include <vm/uma_int.h>
131 
132 #include <machine/md_var.h>
133 
134 #if defined(__amd64__) || defined (__i386__)
135 extern struct sysctl_oid_list sysctl__vm_pmap_children;
136 #else
137 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
138 #endif
139 
140 static uint64_t pmap_tryrelock_calls;
141 SYSCTL_QUAD(_vm_pmap, OID_AUTO, tryrelock_calls, CTLFLAG_RD,
142     &pmap_tryrelock_calls, 0, "Number of tryrelock calls");
143 
144 static int pmap_tryrelock_restart;
145 SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
146     &pmap_tryrelock_restart, 0, "Number of tryrelock restarts");
147 
148 static int pmap_tryrelock_race;
149 SYSCTL_INT(_vm_pmap, OID_AUTO, tryrelock_race, CTLFLAG_RD,
150     &pmap_tryrelock_race, 0, "Number of tryrelock pmap race cases");
151 
152 /*
153  *	Associated with page of user-allocatable memory is a
154  *	page structure.
155  */
156 
157 struct vpgqueues vm_page_queues[PQ_COUNT];
158 struct vpglocks vm_page_queue_lock;
159 struct vpglocks vm_page_queue_free_lock;
160 
161 struct vpglocks	pa_lock[PA_LOCK_COUNT] __aligned(CACHE_LINE_SIZE);
162 
163 vm_page_t vm_page_array = 0;
164 int vm_page_array_size = 0;
165 long first_page = 0;
166 int vm_page_zero_count = 0;
167 
168 static int boot_pages = UMA_BOOT_PAGES;
169 TUNABLE_INT("vm.boot_pages", &boot_pages);
170 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
171 	"number of pages allocated for bootstrapping the VM system");
172 
173 static void vm_page_clear_dirty_mask(vm_page_t m, int pagebits);
174 static void vm_page_queue_remove(int queue, vm_page_t m);
175 static void vm_page_enqueue(int queue, vm_page_t m);
176 
177 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
178 #if PAGE_SIZE == 32768
179 #ifdef CTASSERT
180 CTASSERT(sizeof(u_long) >= 8);
181 #endif
182 #endif
183 
184 /*
185  * Try to acquire a physical address lock while a pmap is locked.  If we
186  * fail to trylock we unlock and lock the pmap directly and cache the
187  * locked pa in *locked.  The caller should then restart their loop in case
188  * the virtual to physical mapping has changed.
189  */
190 int
191 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
192 {
193 	vm_paddr_t lockpa;
194 	uint32_t gen_count;
195 
196 	gen_count = pmap->pm_gen_count;
197 	atomic_add_long((volatile long *)&pmap_tryrelock_calls, 1);
198 	lockpa = *locked;
199 	*locked = pa;
200 	if (lockpa) {
201 		PA_LOCK_ASSERT(lockpa, MA_OWNED);
202 		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
203 			return (0);
204 		PA_UNLOCK(lockpa);
205 	}
206 	if (PA_TRYLOCK(pa))
207 		return (0);
208 	PMAP_UNLOCK(pmap);
209 	atomic_add_int((volatile int *)&pmap_tryrelock_restart, 1);
210 	PA_LOCK(pa);
211 	PMAP_LOCK(pmap);
212 
213 	if (pmap->pm_gen_count != gen_count + 1) {
214 		pmap->pm_retries++;
215 		atomic_add_int((volatile int *)&pmap_tryrelock_race, 1);
216 		return (EAGAIN);
217 	}
218 	return (0);
219 }
220 
221 /*
222  *	vm_set_page_size:
223  *
224  *	Sets the page size, perhaps based upon the memory
225  *	size.  Must be called before any use of page-size
226  *	dependent functions.
227  */
228 void
229 vm_set_page_size(void)
230 {
231 	if (cnt.v_page_size == 0)
232 		cnt.v_page_size = PAGE_SIZE;
233 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
234 		panic("vm_set_page_size: page size not a power of two");
235 }
236 
237 /*
238  *	vm_page_blacklist_lookup:
239  *
240  *	See if a physical address in this page has been listed
241  *	in the blacklist tunable.  Entries in the tunable are
242  *	separated by spaces or commas.  If an invalid integer is
243  *	encountered then the rest of the string is skipped.
244  */
245 static int
246 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
247 {
248 	vm_paddr_t bad;
249 	char *cp, *pos;
250 
251 	for (pos = list; *pos != '\0'; pos = cp) {
252 		bad = strtoq(pos, &cp, 0);
253 		if (*cp != '\0') {
254 			if (*cp == ' ' || *cp == ',') {
255 				cp++;
256 				if (cp == pos)
257 					continue;
258 			} else
259 				break;
260 		}
261 		if (pa == trunc_page(bad))
262 			return (1);
263 	}
264 	return (0);
265 }
266 
267 /*
268  *	vm_page_startup:
269  *
270  *	Initializes the resident memory module.
271  *
272  *	Allocates memory for the page cells, and
273  *	for the object/offset-to-page hash table headers.
274  *	Each page cell is initialized and placed on the free list.
275  */
276 vm_offset_t
277 vm_page_startup(vm_offset_t vaddr)
278 {
279 	vm_offset_t mapped;
280 	vm_paddr_t page_range;
281 	vm_paddr_t new_end;
282 	int i;
283 	vm_paddr_t pa;
284 	int nblocks;
285 	vm_paddr_t last_pa;
286 	char *list;
287 
288 	/* the biggest memory array is the second group of pages */
289 	vm_paddr_t end;
290 	vm_paddr_t biggestsize;
291 	vm_paddr_t low_water, high_water;
292 	int biggestone;
293 
294 	biggestsize = 0;
295 	biggestone = 0;
296 	nblocks = 0;
297 	vaddr = round_page(vaddr);
298 
299 	for (i = 0; phys_avail[i + 1]; i += 2) {
300 		phys_avail[i] = round_page(phys_avail[i]);
301 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
302 	}
303 
304 	low_water = phys_avail[0];
305 	high_water = phys_avail[1];
306 
307 	for (i = 0; phys_avail[i + 1]; i += 2) {
308 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
309 
310 		if (size > biggestsize) {
311 			biggestone = i;
312 			biggestsize = size;
313 		}
314 		if (phys_avail[i] < low_water)
315 			low_water = phys_avail[i];
316 		if (phys_avail[i + 1] > high_water)
317 			high_water = phys_avail[i + 1];
318 		++nblocks;
319 	}
320 
321 #ifdef XEN
322 	low_water = 0;
323 #endif
324 
325 	end = phys_avail[biggestone+1];
326 
327 	/*
328 	 * Initialize the locks.
329 	 */
330 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
331 	    MTX_RECURSE);
332 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
333 	    MTX_DEF);
334 
335 	/* Setup page locks. */
336 	for (i = 0; i < PA_LOCK_COUNT; i++)
337 		mtx_init(&pa_lock[i].data, "page lock", NULL,
338 		    MTX_DEF | MTX_RECURSE | MTX_DUPOK);
339 
340 	/*
341 	 * Initialize the queue headers for the hold queue, the active queue,
342 	 * and the inactive queue.
343 	 */
344 	for (i = 0; i < PQ_COUNT; i++)
345 		TAILQ_INIT(&vm_page_queues[i].pl);
346 	vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
347 	vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
348 	vm_page_queues[PQ_HOLD].cnt = &cnt.v_active_count;
349 
350 	/*
351 	 * Allocate memory for use when boot strapping the kernel memory
352 	 * allocator.
353 	 */
354 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
355 	new_end = trunc_page(new_end);
356 	mapped = pmap_map(&vaddr, new_end, end,
357 	    VM_PROT_READ | VM_PROT_WRITE);
358 	bzero((void *)mapped, end - new_end);
359 	uma_startup((void *)mapped, boot_pages);
360 
361 #if defined(__amd64__) || defined(__i386__) || defined(__arm__)
362 	/*
363 	 * Allocate a bitmap to indicate that a random physical page
364 	 * needs to be included in a minidump.
365 	 *
366 	 * The amd64 port needs this to indicate which direct map pages
367 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
368 	 *
369 	 * However, i386 still needs this workspace internally within the
370 	 * minidump code.  In theory, they are not needed on i386, but are
371 	 * included should the sf_buf code decide to use them.
372 	 */
373 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
374 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
375 	new_end -= vm_page_dump_size;
376 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
377 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
378 	bzero((void *)vm_page_dump, vm_page_dump_size);
379 #endif
380 #ifdef __amd64__
381 	/*
382 	 * Request that the physical pages underlying the message buffer be
383 	 * included in a crash dump.  Since the message buffer is accessed
384 	 * through the direct map, they are not automatically included.
385 	 */
386 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
387 	last_pa = pa + round_page(MSGBUF_SIZE);
388 	while (pa < last_pa) {
389 		dump_add_page(pa);
390 		pa += PAGE_SIZE;
391 	}
392 #endif
393 	/*
394 	 * Compute the number of pages of memory that will be available for
395 	 * use (taking into account the overhead of a page structure per
396 	 * page).
397 	 */
398 	first_page = low_water / PAGE_SIZE;
399 #ifdef VM_PHYSSEG_SPARSE
400 	page_range = 0;
401 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
402 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
403 #elif defined(VM_PHYSSEG_DENSE)
404 	page_range = high_water / PAGE_SIZE - first_page;
405 #else
406 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
407 #endif
408 	end = new_end;
409 
410 	/*
411 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
412 	 */
413 	vaddr += PAGE_SIZE;
414 
415 	/*
416 	 * Initialize the mem entry structures now, and put them in the free
417 	 * queue.
418 	 */
419 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
420 	mapped = pmap_map(&vaddr, new_end, end,
421 	    VM_PROT_READ | VM_PROT_WRITE);
422 	vm_page_array = (vm_page_t) mapped;
423 #if VM_NRESERVLEVEL > 0
424 	/*
425 	 * Allocate memory for the reservation management system's data
426 	 * structures.
427 	 */
428 	new_end = vm_reserv_startup(&vaddr, new_end, high_water);
429 #endif
430 #ifdef __amd64__
431 	/*
432 	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
433 	 * so the pages must be tracked for a crashdump to include this data.
434 	 * This includes the vm_page_array and the early UMA bootstrap pages.
435 	 */
436 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
437 		dump_add_page(pa);
438 #endif
439 	phys_avail[biggestone + 1] = new_end;
440 
441 	/*
442 	 * Clear all of the page structures
443 	 */
444 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
445 	for (i = 0; i < page_range; i++)
446 		vm_page_array[i].order = VM_NFREEORDER;
447 	vm_page_array_size = page_range;
448 
449 	/*
450 	 * Initialize the physical memory allocator.
451 	 */
452 	vm_phys_init();
453 
454 	/*
455 	 * Add every available physical page that is not blacklisted to
456 	 * the free lists.
457 	 */
458 	cnt.v_page_count = 0;
459 	cnt.v_free_count = 0;
460 	list = getenv("vm.blacklist");
461 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
462 		pa = phys_avail[i];
463 		last_pa = phys_avail[i + 1];
464 		while (pa < last_pa) {
465 			if (list != NULL &&
466 			    vm_page_blacklist_lookup(list, pa))
467 				printf("Skipping page with pa 0x%jx\n",
468 				    (uintmax_t)pa);
469 			else
470 				vm_phys_add_page(pa);
471 			pa += PAGE_SIZE;
472 		}
473 	}
474 	freeenv(list);
475 #if VM_NRESERVLEVEL > 0
476 	/*
477 	 * Initialize the reservation management system.
478 	 */
479 	vm_reserv_init();
480 #endif
481 	return (vaddr);
482 }
483 
484 void
485 vm_page_flag_set(vm_page_t m, unsigned short bits)
486 {
487 
488 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
489 	/*
490 	 * For a managed page, the PG_WRITEABLE flag can be set only if
491 	 * the page is VPO_BUSY.  Currently this flag is only set by
492 	 * pmap_enter().
493 	 */
494 	KASSERT((bits & PG_WRITEABLE) == 0 ||
495 	    (m->flags & (PG_UNMANAGED | PG_FICTITIOUS)) != 0 ||
496 	    (m->oflags & VPO_BUSY) != 0, ("PG_WRITEABLE and !VPO_BUSY"));
497 	m->flags |= bits;
498 }
499 
500 void
501 vm_page_flag_clear(vm_page_t m, unsigned short bits)
502 {
503 
504 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
505 	KASSERT((bits & PG_REFERENCED) == 0 || VM_OBJECT_LOCKED(m->object),
506 	    ("PG_REFERENCED and !VM_OBJECT_LOCKED"));
507 	m->flags &= ~bits;
508 }
509 
510 void
511 vm_page_busy(vm_page_t m)
512 {
513 
514 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
515 	KASSERT((m->oflags & VPO_BUSY) == 0,
516 	    ("vm_page_busy: page already busy!!!"));
517 	m->oflags |= VPO_BUSY;
518 }
519 
520 /*
521  *      vm_page_flash:
522  *
523  *      wakeup anyone waiting for the page.
524  */
525 void
526 vm_page_flash(vm_page_t m)
527 {
528 
529 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
530 	if (m->oflags & VPO_WANTED) {
531 		m->oflags &= ~VPO_WANTED;
532 		wakeup(m);
533 	}
534 }
535 
536 /*
537  *      vm_page_wakeup:
538  *
539  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
540  *      page.
541  *
542  */
543 void
544 vm_page_wakeup(vm_page_t m)
545 {
546 
547 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
548 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
549 	m->oflags &= ~VPO_BUSY;
550 	vm_page_flash(m);
551 }
552 
553 void
554 vm_page_io_start(vm_page_t m)
555 {
556 
557 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
558 	m->busy++;
559 }
560 
561 void
562 vm_page_io_finish(vm_page_t m)
563 {
564 
565 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
566 	m->busy--;
567 	if (m->busy == 0)
568 		vm_page_flash(m);
569 }
570 
571 /*
572  * Keep page from being freed by the page daemon
573  * much of the same effect as wiring, except much lower
574  * overhead and should be used only for *very* temporary
575  * holding ("wiring").
576  */
577 void
578 vm_page_hold(vm_page_t mem)
579 {
580 
581 	vm_page_lock_assert(mem, MA_OWNED);
582         mem->hold_count++;
583 }
584 
585 void
586 vm_page_unhold(vm_page_t mem)
587 {
588 
589 	vm_page_lock_assert(mem, MA_OWNED);
590 	--mem->hold_count;
591 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
592 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
593 		vm_page_free_toq(mem);
594 }
595 
596 /*
597  *	vm_page_free:
598  *
599  *	Free a page.
600  */
601 void
602 vm_page_free(vm_page_t m)
603 {
604 
605 	m->flags &= ~PG_ZERO;
606 	vm_page_free_toq(m);
607 }
608 
609 /*
610  *	vm_page_free_zero:
611  *
612  *	Free a page to the zerod-pages queue
613  */
614 void
615 vm_page_free_zero(vm_page_t m)
616 {
617 
618 	m->flags |= PG_ZERO;
619 	vm_page_free_toq(m);
620 }
621 
622 /*
623  *	vm_page_sleep:
624  *
625  *	Sleep and release the page and page queues locks.
626  *
627  *	The object containing the given page must be locked.
628  */
629 void
630 vm_page_sleep(vm_page_t m, const char *msg)
631 {
632 
633 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
634 	if (mtx_owned(&vm_page_queue_mtx))
635 		vm_page_unlock_queues();
636 	if (mtx_owned(vm_page_lockptr(m)))
637 		vm_page_unlock(m);
638 
639 	/*
640 	 * It's possible that while we sleep, the page will get
641 	 * unbusied and freed.  If we are holding the object
642 	 * lock, we will assume we hold a reference to the object
643 	 * such that even if m->object changes, we can re-lock
644 	 * it.
645 	 */
646 	m->oflags |= VPO_WANTED;
647 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
648 }
649 
650 /*
651  *	vm_page_dirty:
652  *
653  *	make page all dirty
654  */
655 void
656 vm_page_dirty(vm_page_t m)
657 {
658 
659 	KASSERT((m->flags & PG_CACHED) == 0,
660 	    ("vm_page_dirty: page in cache!"));
661 	KASSERT(!VM_PAGE_IS_FREE(m),
662 	    ("vm_page_dirty: page is free!"));
663 	KASSERT(m->valid == VM_PAGE_BITS_ALL,
664 	    ("vm_page_dirty: page is invalid!"));
665 	m->dirty = VM_PAGE_BITS_ALL;
666 }
667 
668 /*
669  *	vm_page_splay:
670  *
671  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
672  *	the vm_page containing the given pindex.  If, however, that
673  *	pindex is not found in the vm_object, returns a vm_page that is
674  *	adjacent to the pindex, coming before or after it.
675  */
676 vm_page_t
677 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
678 {
679 	struct vm_page dummy;
680 	vm_page_t lefttreemax, righttreemin, y;
681 
682 	if (root == NULL)
683 		return (root);
684 	lefttreemax = righttreemin = &dummy;
685 	for (;; root = y) {
686 		if (pindex < root->pindex) {
687 			if ((y = root->left) == NULL)
688 				break;
689 			if (pindex < y->pindex) {
690 				/* Rotate right. */
691 				root->left = y->right;
692 				y->right = root;
693 				root = y;
694 				if ((y = root->left) == NULL)
695 					break;
696 			}
697 			/* Link into the new root's right tree. */
698 			righttreemin->left = root;
699 			righttreemin = root;
700 		} else if (pindex > root->pindex) {
701 			if ((y = root->right) == NULL)
702 				break;
703 			if (pindex > y->pindex) {
704 				/* Rotate left. */
705 				root->right = y->left;
706 				y->left = root;
707 				root = y;
708 				if ((y = root->right) == NULL)
709 					break;
710 			}
711 			/* Link into the new root's left tree. */
712 			lefttreemax->right = root;
713 			lefttreemax = root;
714 		} else
715 			break;
716 	}
717 	/* Assemble the new root. */
718 	lefttreemax->right = root->left;
719 	righttreemin->left = root->right;
720 	root->left = dummy.right;
721 	root->right = dummy.left;
722 	return (root);
723 }
724 
725 /*
726  *	vm_page_insert:		[ internal use only ]
727  *
728  *	Inserts the given mem entry into the object and object list.
729  *
730  *	The pagetables are not updated but will presumably fault the page
731  *	in if necessary, or if a kernel page the caller will at some point
732  *	enter the page into the kernel's pmap.  We are not allowed to block
733  *	here so we *can't* do this anyway.
734  *
735  *	The object and page must be locked.
736  *	This routine may not block.
737  */
738 void
739 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
740 {
741 	vm_page_t root;
742 
743 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
744 	if (m->object != NULL)
745 		panic("vm_page_insert: page already inserted");
746 
747 	/*
748 	 * Record the object/offset pair in this page
749 	 */
750 	m->object = object;
751 	m->pindex = pindex;
752 
753 	/*
754 	 * Now link into the object's ordered list of backed pages.
755 	 */
756 	root = object->root;
757 	if (root == NULL) {
758 		m->left = NULL;
759 		m->right = NULL;
760 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
761 	} else {
762 		root = vm_page_splay(pindex, root);
763 		if (pindex < root->pindex) {
764 			m->left = root->left;
765 			m->right = root;
766 			root->left = NULL;
767 			TAILQ_INSERT_BEFORE(root, m, listq);
768 		} else if (pindex == root->pindex)
769 			panic("vm_page_insert: offset already allocated");
770 		else {
771 			m->right = root->right;
772 			m->left = root;
773 			root->right = NULL;
774 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
775 		}
776 	}
777 	object->root = m;
778 	object->generation++;
779 
780 	/*
781 	 * show that the object has one more resident page.
782 	 */
783 	object->resident_page_count++;
784 	/*
785 	 * Hold the vnode until the last page is released.
786 	 */
787 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
788 		vhold((struct vnode *)object->handle);
789 
790 	/*
791 	 * Since we are inserting a new and possibly dirty page,
792 	 * update the object's OBJ_MIGHTBEDIRTY flag.
793 	 */
794 	if (m->flags & PG_WRITEABLE)
795 		vm_object_set_writeable_dirty(object);
796 }
797 
798 /*
799  *	vm_page_remove:
800  *				NOTE: used by device pager as well -wfj
801  *
802  *	Removes the given mem entry from the object/offset-page
803  *	table and the object page list, but do not invalidate/terminate
804  *	the backing store.
805  *
806  *	The object and page must be locked.
807  *	The underlying pmap entry (if any) is NOT removed here.
808  *	This routine may not block.
809  */
810 void
811 vm_page_remove(vm_page_t m)
812 {
813 	vm_object_t object;
814 	vm_page_t root;
815 
816 	if ((m->flags & PG_UNMANAGED) == 0)
817 		vm_page_lock_assert(m, MA_OWNED);
818 	if ((object = m->object) == NULL)
819 		return;
820 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
821 	if (m->oflags & VPO_BUSY) {
822 		m->oflags &= ~VPO_BUSY;
823 		vm_page_flash(m);
824 	}
825 
826 	/*
827 	 * Now remove from the object's list of backed pages.
828 	 */
829 	if (m != object->root)
830 		vm_page_splay(m->pindex, object->root);
831 	if (m->left == NULL)
832 		root = m->right;
833 	else {
834 		root = vm_page_splay(m->pindex, m->left);
835 		root->right = m->right;
836 	}
837 	object->root = root;
838 	TAILQ_REMOVE(&object->memq, m, listq);
839 
840 	/*
841 	 * And show that the object has one fewer resident page.
842 	 */
843 	object->resident_page_count--;
844 	object->generation++;
845 	/*
846 	 * The vnode may now be recycled.
847 	 */
848 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
849 		vdrop((struct vnode *)object->handle);
850 
851 	m->object = NULL;
852 }
853 
854 /*
855  *	vm_page_lookup:
856  *
857  *	Returns the page associated with the object/offset
858  *	pair specified; if none is found, NULL is returned.
859  *
860  *	The object must be locked.
861  *	This routine may not block.
862  *	This is a critical path routine
863  */
864 vm_page_t
865 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
866 {
867 	vm_page_t m;
868 
869 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
870 	if ((m = object->root) != NULL && m->pindex != pindex) {
871 		m = vm_page_splay(pindex, m);
872 		if ((object->root = m)->pindex != pindex)
873 			m = NULL;
874 	}
875 	return (m);
876 }
877 
878 /*
879  *	vm_page_rename:
880  *
881  *	Move the given memory entry from its
882  *	current object to the specified target object/offset.
883  *
884  *	The object must be locked.
885  *	This routine may not block.
886  *
887  *	Note: swap associated with the page must be invalidated by the move.  We
888  *	      have to do this for several reasons:  (1) we aren't freeing the
889  *	      page, (2) we are dirtying the page, (3) the VM system is probably
890  *	      moving the page from object A to B, and will then later move
891  *	      the backing store from A to B and we can't have a conflict.
892  *
893  *	Note: we *always* dirty the page.  It is necessary both for the
894  *	      fact that we moved it, and because we may be invalidating
895  *	      swap.  If the page is on the cache, we have to deactivate it
896  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
897  *	      on the cache.
898  */
899 void
900 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
901 {
902 
903 	vm_page_remove(m);
904 	vm_page_insert(m, new_object, new_pindex);
905 	vm_page_dirty(m);
906 }
907 
908 /*
909  *	Convert all of the given object's cached pages that have a
910  *	pindex within the given range into free pages.  If the value
911  *	zero is given for "end", then the range's upper bound is
912  *	infinity.  If the given object is backed by a vnode and it
913  *	transitions from having one or more cached pages to none, the
914  *	vnode's hold count is reduced.
915  */
916 void
917 vm_page_cache_free(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
918 {
919 	vm_page_t m, m_next;
920 	boolean_t empty;
921 
922 	mtx_lock(&vm_page_queue_free_mtx);
923 	if (__predict_false(object->cache == NULL)) {
924 		mtx_unlock(&vm_page_queue_free_mtx);
925 		return;
926 	}
927 	m = object->cache = vm_page_splay(start, object->cache);
928 	if (m->pindex < start) {
929 		if (m->right == NULL)
930 			m = NULL;
931 		else {
932 			m_next = vm_page_splay(start, m->right);
933 			m_next->left = m;
934 			m->right = NULL;
935 			m = object->cache = m_next;
936 		}
937 	}
938 
939 	/*
940 	 * At this point, "m" is either (1) a reference to the page
941 	 * with the least pindex that is greater than or equal to
942 	 * "start" or (2) NULL.
943 	 */
944 	for (; m != NULL && (m->pindex < end || end == 0); m = m_next) {
945 		/*
946 		 * Find "m"'s successor and remove "m" from the
947 		 * object's cache.
948 		 */
949 		if (m->right == NULL) {
950 			object->cache = m->left;
951 			m_next = NULL;
952 		} else {
953 			m_next = vm_page_splay(start, m->right);
954 			m_next->left = m->left;
955 			object->cache = m_next;
956 		}
957 		/* Convert "m" to a free page. */
958 		m->object = NULL;
959 		m->valid = 0;
960 		/* Clear PG_CACHED and set PG_FREE. */
961 		m->flags ^= PG_CACHED | PG_FREE;
962 		KASSERT((m->flags & (PG_CACHED | PG_FREE)) == PG_FREE,
963 		    ("vm_page_cache_free: page %p has inconsistent flags", m));
964 		cnt.v_cache_count--;
965 		cnt.v_free_count++;
966 	}
967 	empty = object->cache == NULL;
968 	mtx_unlock(&vm_page_queue_free_mtx);
969 	if (object->type == OBJT_VNODE && empty)
970 		vdrop(object->handle);
971 }
972 
973 /*
974  *	Returns the cached page that is associated with the given
975  *	object and offset.  If, however, none exists, returns NULL.
976  *
977  *	The free page queue must be locked.
978  */
979 static inline vm_page_t
980 vm_page_cache_lookup(vm_object_t object, vm_pindex_t pindex)
981 {
982 	vm_page_t m;
983 
984 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
985 	if ((m = object->cache) != NULL && m->pindex != pindex) {
986 		m = vm_page_splay(pindex, m);
987 		if ((object->cache = m)->pindex != pindex)
988 			m = NULL;
989 	}
990 	return (m);
991 }
992 
993 /*
994  *	Remove the given cached page from its containing object's
995  *	collection of cached pages.
996  *
997  *	The free page queue must be locked.
998  */
999 void
1000 vm_page_cache_remove(vm_page_t m)
1001 {
1002 	vm_object_t object;
1003 	vm_page_t root;
1004 
1005 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1006 	KASSERT((m->flags & PG_CACHED) != 0,
1007 	    ("vm_page_cache_remove: page %p is not cached", m));
1008 	object = m->object;
1009 	if (m != object->cache) {
1010 		root = vm_page_splay(m->pindex, object->cache);
1011 		KASSERT(root == m,
1012 		    ("vm_page_cache_remove: page %p is not cached in object %p",
1013 		    m, object));
1014 	}
1015 	if (m->left == NULL)
1016 		root = m->right;
1017 	else if (m->right == NULL)
1018 		root = m->left;
1019 	else {
1020 		root = vm_page_splay(m->pindex, m->left);
1021 		root->right = m->right;
1022 	}
1023 	object->cache = root;
1024 	m->object = NULL;
1025 	cnt.v_cache_count--;
1026 }
1027 
1028 /*
1029  *	Transfer all of the cached pages with offset greater than or
1030  *	equal to 'offidxstart' from the original object's cache to the
1031  *	new object's cache.  However, any cached pages with offset
1032  *	greater than or equal to the new object's size are kept in the
1033  *	original object.  Initially, the new object's cache must be
1034  *	empty.  Offset 'offidxstart' in the original object must
1035  *	correspond to offset zero in the new object.
1036  *
1037  *	The new object must be locked.
1038  */
1039 void
1040 vm_page_cache_transfer(vm_object_t orig_object, vm_pindex_t offidxstart,
1041     vm_object_t new_object)
1042 {
1043 	vm_page_t m, m_next;
1044 
1045 	/*
1046 	 * Insertion into an object's collection of cached pages
1047 	 * requires the object to be locked.  In contrast, removal does
1048 	 * not.
1049 	 */
1050 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
1051 	KASSERT(new_object->cache == NULL,
1052 	    ("vm_page_cache_transfer: object %p has cached pages",
1053 	    new_object));
1054 	mtx_lock(&vm_page_queue_free_mtx);
1055 	if ((m = orig_object->cache) != NULL) {
1056 		/*
1057 		 * Transfer all of the pages with offset greater than or
1058 		 * equal to 'offidxstart' from the original object's
1059 		 * cache to the new object's cache.
1060 		 */
1061 		m = vm_page_splay(offidxstart, m);
1062 		if (m->pindex < offidxstart) {
1063 			orig_object->cache = m;
1064 			new_object->cache = m->right;
1065 			m->right = NULL;
1066 		} else {
1067 			orig_object->cache = m->left;
1068 			new_object->cache = m;
1069 			m->left = NULL;
1070 		}
1071 		while ((m = new_object->cache) != NULL) {
1072 			if ((m->pindex - offidxstart) >= new_object->size) {
1073 				/*
1074 				 * Return all of the cached pages with
1075 				 * offset greater than or equal to the
1076 				 * new object's size to the original
1077 				 * object's cache.
1078 				 */
1079 				new_object->cache = m->left;
1080 				m->left = orig_object->cache;
1081 				orig_object->cache = m;
1082 				break;
1083 			}
1084 			m_next = vm_page_splay(m->pindex, m->right);
1085 			/* Update the page's object and offset. */
1086 			m->object = new_object;
1087 			m->pindex -= offidxstart;
1088 			if (m_next == NULL)
1089 				break;
1090 			m->right = NULL;
1091 			m_next->left = m;
1092 			new_object->cache = m_next;
1093 		}
1094 		KASSERT(new_object->cache == NULL ||
1095 		    new_object->type == OBJT_SWAP,
1096 		    ("vm_page_cache_transfer: object %p's type is incompatible"
1097 		    " with cached pages", new_object));
1098 	}
1099 	mtx_unlock(&vm_page_queue_free_mtx);
1100 }
1101 
1102 /*
1103  *	vm_page_alloc:
1104  *
1105  *	Allocate and return a memory cell associated
1106  *	with this VM object/offset pair.
1107  *
1108  *	page_req classes:
1109  *	VM_ALLOC_NORMAL		normal process request
1110  *	VM_ALLOC_SYSTEM		system *really* needs a page
1111  *	VM_ALLOC_INTERRUPT	interrupt time request
1112  *	VM_ALLOC_ZERO		zero page
1113  *	VM_ALLOC_WIRED		wire the allocated page
1114  *	VM_ALLOC_NOOBJ		page is not associated with a vm object
1115  *	VM_ALLOC_NOBUSY		do not set the page busy
1116  *	VM_ALLOC_IFNOTCACHED	return NULL, do not reactivate if the page
1117  *				is cached
1118  *
1119  *	This routine may not sleep.
1120  */
1121 vm_page_t
1122 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1123 {
1124 	struct vnode *vp = NULL;
1125 	vm_object_t m_object;
1126 	vm_page_t m;
1127 	int flags, page_req;
1128 
1129 	page_req = req & VM_ALLOC_CLASS_MASK;
1130 	KASSERT(curthread->td_intr_nesting_level == 0 ||
1131 	    page_req == VM_ALLOC_INTERRUPT,
1132 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
1133 
1134 	if ((req & VM_ALLOC_NOOBJ) == 0) {
1135 		KASSERT(object != NULL,
1136 		    ("vm_page_alloc: NULL object."));
1137 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1138 	}
1139 
1140 	/*
1141 	 * The pager is allowed to eat deeper into the free page list.
1142 	 */
1143 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
1144 		page_req = VM_ALLOC_SYSTEM;
1145 	};
1146 
1147 	mtx_lock(&vm_page_queue_free_mtx);
1148 	if (cnt.v_free_count + cnt.v_cache_count > cnt.v_free_reserved ||
1149 	    (page_req == VM_ALLOC_SYSTEM &&
1150 	    cnt.v_free_count + cnt.v_cache_count > cnt.v_interrupt_free_min) ||
1151 	    (page_req == VM_ALLOC_INTERRUPT &&
1152 	    cnt.v_free_count + cnt.v_cache_count > 0)) {
1153 		/*
1154 		 * Allocate from the free queue if the number of free pages
1155 		 * exceeds the minimum for the request class.
1156 		 */
1157 		if (object != NULL &&
1158 		    (m = vm_page_cache_lookup(object, pindex)) != NULL) {
1159 			if ((req & VM_ALLOC_IFNOTCACHED) != 0) {
1160 				mtx_unlock(&vm_page_queue_free_mtx);
1161 				return (NULL);
1162 			}
1163 			if (vm_phys_unfree_page(m))
1164 				vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, 0);
1165 #if VM_NRESERVLEVEL > 0
1166 			else if (!vm_reserv_reactivate_page(m))
1167 #else
1168 			else
1169 #endif
1170 				panic("vm_page_alloc: cache page %p is missing"
1171 				    " from the free queue", m);
1172 		} else if ((req & VM_ALLOC_IFCACHED) != 0) {
1173 			mtx_unlock(&vm_page_queue_free_mtx);
1174 			return (NULL);
1175 #if VM_NRESERVLEVEL > 0
1176 		} else if (object == NULL || object->type == OBJT_DEVICE ||
1177 		    object->type == OBJT_SG ||
1178 		    (object->flags & OBJ_COLORED) == 0 ||
1179 		    (m = vm_reserv_alloc_page(object, pindex)) == NULL) {
1180 #else
1181 		} else {
1182 #endif
1183 			m = vm_phys_alloc_pages(object != NULL ?
1184 			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
1185 #if VM_NRESERVLEVEL > 0
1186 			if (m == NULL && vm_reserv_reclaim_inactive()) {
1187 				m = vm_phys_alloc_pages(object != NULL ?
1188 				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
1189 				    0);
1190 			}
1191 #endif
1192 		}
1193 	} else {
1194 		/*
1195 		 * Not allocatable, give up.
1196 		 */
1197 		mtx_unlock(&vm_page_queue_free_mtx);
1198 		atomic_add_int(&vm_pageout_deficit, 1);
1199 		pagedaemon_wakeup();
1200 		return (NULL);
1201 	}
1202 
1203 	/*
1204 	 *  At this point we had better have found a good page.
1205 	 */
1206 
1207 	KASSERT(m != NULL, ("vm_page_alloc: missing page"));
1208 	KASSERT(m->queue == PQ_NONE,
1209 	    ("vm_page_alloc: page %p has unexpected queue %d", m, m->queue));
1210 	KASSERT(m->wire_count == 0, ("vm_page_alloc: page %p is wired", m));
1211 	KASSERT(m->hold_count == 0, ("vm_page_alloc: page %p is held", m));
1212 	KASSERT(m->busy == 0, ("vm_page_alloc: page %p is busy", m));
1213 	KASSERT(m->dirty == 0, ("vm_page_alloc: page %p is dirty", m));
1214 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
1215 	    ("vm_page_alloc: page %p has unexpected memattr %d", m,
1216 	    pmap_page_get_memattr(m)));
1217 	if ((m->flags & PG_CACHED) != 0) {
1218 		KASSERT(m->valid != 0,
1219 		    ("vm_page_alloc: cached page %p is invalid", m));
1220 		if (m->object == object && m->pindex == pindex)
1221 	  		cnt.v_reactivated++;
1222 		else
1223 			m->valid = 0;
1224 		m_object = m->object;
1225 		vm_page_cache_remove(m);
1226 		if (m_object->type == OBJT_VNODE && m_object->cache == NULL)
1227 			vp = m_object->handle;
1228 	} else {
1229 		KASSERT(VM_PAGE_IS_FREE(m),
1230 		    ("vm_page_alloc: page %p is not free", m));
1231 		KASSERT(m->valid == 0,
1232 		    ("vm_page_alloc: free page %p is valid", m));
1233 		cnt.v_free_count--;
1234 	}
1235 
1236 	/*
1237 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
1238 	 */
1239 	flags = 0;
1240 	if (m->flags & PG_ZERO) {
1241 		vm_page_zero_count--;
1242 		if (req & VM_ALLOC_ZERO)
1243 			flags = PG_ZERO;
1244 	}
1245 	if (object == NULL || object->type == OBJT_PHYS)
1246 		flags |= PG_UNMANAGED;
1247 	m->flags = flags;
1248 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
1249 		m->oflags = 0;
1250 	else
1251 		m->oflags = VPO_BUSY;
1252 	if (req & VM_ALLOC_WIRED) {
1253 		atomic_add_int(&cnt.v_wire_count, 1);
1254 		m->wire_count = 1;
1255 	}
1256 	m->act_count = 0;
1257 	mtx_unlock(&vm_page_queue_free_mtx);
1258 
1259 	if (object != NULL) {
1260 		/* Ignore device objects; the pager sets "memattr" for them. */
1261 		if (object->memattr != VM_MEMATTR_DEFAULT &&
1262 		    object->type != OBJT_DEVICE && object->type != OBJT_SG)
1263 			pmap_page_set_memattr(m, object->memattr);
1264 		vm_page_insert(m, object, pindex);
1265 	} else
1266 		m->pindex = pindex;
1267 
1268 	/*
1269 	 * The following call to vdrop() must come after the above call
1270 	 * to vm_page_insert() in case both affect the same object and
1271 	 * vnode.  Otherwise, the affected vnode's hold count could
1272 	 * temporarily become zero.
1273 	 */
1274 	if (vp != NULL)
1275 		vdrop(vp);
1276 
1277 	/*
1278 	 * Don't wakeup too often - wakeup the pageout daemon when
1279 	 * we would be nearly out of memory.
1280 	 */
1281 	if (vm_paging_needed())
1282 		pagedaemon_wakeup();
1283 
1284 	return (m);
1285 }
1286 
1287 /*
1288  *	vm_wait:	(also see VM_WAIT macro)
1289  *
1290  *	Block until free pages are available for allocation
1291  *	- Called in various places before memory allocations.
1292  */
1293 void
1294 vm_wait(void)
1295 {
1296 
1297 	mtx_lock(&vm_page_queue_free_mtx);
1298 	if (curproc == pageproc) {
1299 		vm_pageout_pages_needed = 1;
1300 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
1301 		    PDROP | PSWP, "VMWait", 0);
1302 	} else {
1303 		if (!vm_pages_needed) {
1304 			vm_pages_needed = 1;
1305 			wakeup(&vm_pages_needed);
1306 		}
1307 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
1308 		    "vmwait", 0);
1309 	}
1310 }
1311 
1312 /*
1313  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1314  *
1315  *	Block until free pages are available for allocation
1316  *	- Called only in vm_fault so that processes page faulting
1317  *	  can be easily tracked.
1318  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1319  *	  processes will be able to grab memory first.  Do not change
1320  *	  this balance without careful testing first.
1321  */
1322 void
1323 vm_waitpfault(void)
1324 {
1325 
1326 	mtx_lock(&vm_page_queue_free_mtx);
1327 	if (!vm_pages_needed) {
1328 		vm_pages_needed = 1;
1329 		wakeup(&vm_pages_needed);
1330 	}
1331 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1332 	    "pfault", 0);
1333 }
1334 
1335 /*
1336  *	vm_page_requeue:
1337  *
1338  *	Move the given page to the tail of its present page queue.
1339  *
1340  *	The page queues must be locked.
1341  */
1342 void
1343 vm_page_requeue(vm_page_t m)
1344 {
1345 	int queue = VM_PAGE_GETQUEUE(m);
1346 	struct vpgqueues *vpq;
1347 
1348 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1349 	KASSERT(queue != PQ_NONE,
1350 	    ("vm_page_requeue: page %p is not queued", m));
1351 	vpq = &vm_page_queues[queue];
1352 	TAILQ_REMOVE(&vpq->pl, m, pageq);
1353 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1354 }
1355 
1356 /*
1357  *	vm_page_queue_remove:
1358  *
1359  *	Remove the given page from the specified queue.
1360  *
1361  *	The page and page queues must be locked.
1362  */
1363 static __inline void
1364 vm_page_queue_remove(int queue, vm_page_t m)
1365 {
1366 	struct vpgqueues *pq;
1367 
1368 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1369 	vm_page_lock_assert(m, MA_OWNED);
1370 	pq = &vm_page_queues[queue];
1371 	TAILQ_REMOVE(&pq->pl, m, pageq);
1372 	(*pq->cnt)--;
1373 }
1374 
1375 /*
1376  *	vm_pageq_remove:
1377  *
1378  *	Remove a page from its queue.
1379  *
1380  *	The given page must be locked.
1381  *	This routine may not block.
1382  */
1383 void
1384 vm_pageq_remove(vm_page_t m)
1385 {
1386 	int queue = VM_PAGE_GETQUEUE(m);
1387 
1388 	vm_page_lock_assert(m, MA_OWNED);
1389 	if (queue != PQ_NONE) {
1390 		vm_page_lock_queues();
1391 		VM_PAGE_SETQUEUE2(m, PQ_NONE);
1392 		vm_page_queue_remove(queue, m);
1393 		vm_page_unlock_queues();
1394 	}
1395 }
1396 
1397 /*
1398  *	vm_page_enqueue:
1399  *
1400  *	Add the given page to the specified queue.
1401  *
1402  *	The page queues must be locked.
1403  */
1404 static void
1405 vm_page_enqueue(int queue, vm_page_t m)
1406 {
1407 	struct vpgqueues *vpq;
1408 
1409 	vpq = &vm_page_queues[queue];
1410 	VM_PAGE_SETQUEUE2(m, queue);
1411 	TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
1412 	++*vpq->cnt;
1413 }
1414 
1415 /*
1416  *	vm_page_activate:
1417  *
1418  *	Put the specified page on the active list (if appropriate).
1419  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1420  *	mess with it.
1421  *
1422  *	The page must be locked.
1423  *	This routine may not block.
1424  */
1425 void
1426 vm_page_activate(vm_page_t m)
1427 {
1428 	int queue;
1429 
1430 	vm_page_lock_assert(m, MA_OWNED);
1431 	if ((queue = VM_PAGE_GETKNOWNQUEUE2(m)) != PQ_ACTIVE) {
1432 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1433 			if (m->act_count < ACT_INIT)
1434 				m->act_count = ACT_INIT;
1435 			vm_page_lock_queues();
1436 			if (queue != PQ_NONE)
1437 				vm_page_queue_remove(queue, m);
1438 			vm_page_enqueue(PQ_ACTIVE, m);
1439 			vm_page_unlock_queues();
1440 		} else
1441 			KASSERT(queue == PQ_NONE,
1442 			    ("vm_page_activate: wired page %p is queued", m));
1443 	} else {
1444 		if (m->act_count < ACT_INIT)
1445 			m->act_count = ACT_INIT;
1446 	}
1447 }
1448 
1449 /*
1450  *	vm_page_free_wakeup:
1451  *
1452  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1453  *	routine is called when a page has been added to the cache or free
1454  *	queues.
1455  *
1456  *	The page queues must be locked.
1457  *	This routine may not block.
1458  */
1459 static inline void
1460 vm_page_free_wakeup(void)
1461 {
1462 
1463 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1464 	/*
1465 	 * if pageout daemon needs pages, then tell it that there are
1466 	 * some free.
1467 	 */
1468 	if (vm_pageout_pages_needed &&
1469 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1470 		wakeup(&vm_pageout_pages_needed);
1471 		vm_pageout_pages_needed = 0;
1472 	}
1473 	/*
1474 	 * wakeup processes that are waiting on memory if we hit a
1475 	 * high water mark. And wakeup scheduler process if we have
1476 	 * lots of memory. this process will swapin processes.
1477 	 */
1478 	if (vm_pages_needed && !vm_page_count_min()) {
1479 		vm_pages_needed = 0;
1480 		wakeup(&cnt.v_free_count);
1481 	}
1482 }
1483 
1484 /*
1485  *	vm_page_free_toq:
1486  *
1487  *	Returns the given page to the free list,
1488  *	disassociating it with any VM object.
1489  *
1490  *	Object and page must be locked prior to entry.
1491  *	This routine may not block.
1492  */
1493 
1494 void
1495 vm_page_free_toq(vm_page_t m)
1496 {
1497 
1498 	if ((m->flags & PG_UNMANAGED) == 0) {
1499 		vm_page_lock_assert(m, MA_OWNED);
1500 		KASSERT(!pmap_page_is_mapped(m),
1501 		    ("vm_page_free_toq: freeing mapped page %p", m));
1502 	}
1503 	PCPU_INC(cnt.v_tfree);
1504 
1505 	if (m->busy || VM_PAGE_IS_FREE(m)) {
1506 		printf(
1507 		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1508 		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1509 		    m->hold_count);
1510 		if (VM_PAGE_IS_FREE(m))
1511 			panic("vm_page_free: freeing free page");
1512 		else
1513 			panic("vm_page_free: freeing busy page");
1514 	}
1515 
1516 	/*
1517 	 * unqueue, then remove page.  Note that we cannot destroy
1518 	 * the page here because we do not want to call the pager's
1519 	 * callback routine until after we've put the page on the
1520 	 * appropriate free queue.
1521 	 */
1522 	if ((m->flags & PG_UNMANAGED) == 0)
1523 		vm_pageq_remove(m);
1524 	vm_page_remove(m);
1525 
1526 	/*
1527 	 * If fictitious remove object association and
1528 	 * return, otherwise delay object association removal.
1529 	 */
1530 	if ((m->flags & PG_FICTITIOUS) != 0) {
1531 		return;
1532 	}
1533 
1534 	m->valid = 0;
1535 	vm_page_undirty(m);
1536 
1537 	if (m->wire_count != 0) {
1538 		if (m->wire_count > 1) {
1539 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1540 				m->wire_count, (long)m->pindex);
1541 		}
1542 		panic("vm_page_free: freeing wired page");
1543 	}
1544 	if (m->hold_count != 0) {
1545 		m->flags &= ~PG_ZERO;
1546 		vm_page_lock_queues();
1547 		vm_page_enqueue(PQ_HOLD, m);
1548 		vm_page_unlock_queues();
1549 	} else {
1550 		/*
1551 		 * Restore the default memory attribute to the page.
1552 		 */
1553 		if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1554 			pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1555 
1556 		/*
1557 		 * Insert the page into the physical memory allocator's
1558 		 * cache/free page queues.
1559 		 */
1560 		mtx_lock(&vm_page_queue_free_mtx);
1561 		m->flags |= PG_FREE;
1562 		cnt.v_free_count++;
1563 #if VM_NRESERVLEVEL > 0
1564 		if (!vm_reserv_free_page(m))
1565 #else
1566 		if (TRUE)
1567 #endif
1568 			vm_phys_free_pages(m, 0);
1569 		if ((m->flags & PG_ZERO) != 0)
1570 			++vm_page_zero_count;
1571 		else
1572 			vm_page_zero_idle_wakeup();
1573 		vm_page_free_wakeup();
1574 		mtx_unlock(&vm_page_queue_free_mtx);
1575 	}
1576 }
1577 
1578 /*
1579  *	vm_page_wire:
1580  *
1581  *	Mark this page as wired down by yet
1582  *	another map, removing it from paging queues
1583  *	as necessary.
1584  *
1585  *	The page must be locked.
1586  *	This routine may not block.
1587  */
1588 void
1589 vm_page_wire(vm_page_t m)
1590 {
1591 
1592 	/*
1593 	 * Only bump the wire statistics if the page is not already wired,
1594 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1595 	 * it is already off the queues).
1596 	 */
1597 	vm_page_lock_assert(m, MA_OWNED);
1598 	if (m->flags & PG_FICTITIOUS)
1599 		return;
1600 	if (m->wire_count == 0) {
1601 		if ((m->flags & PG_UNMANAGED) == 0)
1602 			vm_pageq_remove(m);
1603 		atomic_add_int(&cnt.v_wire_count, 1);
1604 	}
1605 	m->wire_count++;
1606 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1607 }
1608 
1609 /*
1610  *	vm_page_unwire:
1611  *
1612  *	Release one wiring of this page, potentially
1613  *	enabling it to be paged again.
1614  *
1615  *	Many pages placed on the inactive queue should actually go
1616  *	into the cache, but it is difficult to figure out which.  What
1617  *	we do instead, if the inactive target is well met, is to put
1618  *	clean pages at the head of the inactive queue instead of the tail.
1619  *	This will cause them to be moved to the cache more quickly and
1620  *	if not actively re-referenced, freed more quickly.  If we just
1621  *	stick these pages at the end of the inactive queue, heavy filesystem
1622  *	meta-data accesses can cause an unnecessary paging load on memory bound
1623  *	processes.  This optimization causes one-time-use metadata to be
1624  *	reused more quickly.
1625  *
1626  *	BUT, if we are in a low-memory situation we have no choice but to
1627  *	put clean pages on the cache queue.
1628  *
1629  *	A number of routines use vm_page_unwire() to guarantee that the page
1630  *	will go into either the inactive or active queues, and will NEVER
1631  *	be placed in the cache - for example, just after dirtying a page.
1632  *	dirty pages in the cache are not allowed.
1633  *
1634  *	The page must be locked.
1635  *	This routine may not block.
1636  */
1637 void
1638 vm_page_unwire(vm_page_t m, int activate)
1639 {
1640 
1641 	if ((m->flags & PG_UNMANAGED) == 0)
1642 		vm_page_lock_assert(m, MA_OWNED);
1643 	if (m->flags & PG_FICTITIOUS)
1644 		return;
1645 	if (m->wire_count > 0) {
1646 		m->wire_count--;
1647 		if (m->wire_count == 0) {
1648 			atomic_subtract_int(&cnt.v_wire_count, 1);
1649 			if ((m->flags & PG_UNMANAGED) != 0)
1650 				return;
1651 			vm_page_lock_queues();
1652 			if (activate)
1653 				vm_page_enqueue(PQ_ACTIVE, m);
1654 			else {
1655 				vm_page_flag_clear(m, PG_WINATCFLS);
1656 				vm_page_enqueue(PQ_INACTIVE, m);
1657 			}
1658 			vm_page_unlock_queues();
1659 		}
1660 	} else {
1661 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1662 	}
1663 }
1664 
1665 /*
1666  * Move the specified page to the inactive queue.
1667  *
1668  * Normally athead is 0 resulting in LRU operation.  athead is set
1669  * to 1 if we want this page to be 'as if it were placed in the cache',
1670  * except without unmapping it from the process address space.
1671  *
1672  * This routine may not block.
1673  */
1674 static inline void
1675 _vm_page_deactivate(vm_page_t m, int athead)
1676 {
1677 	int queue;
1678 
1679 	vm_page_lock_assert(m, MA_OWNED);
1680 
1681 	/*
1682 	 * Ignore if already inactive.
1683 	 */
1684 	if ((queue = VM_PAGE_GETKNOWNQUEUE2(m)) == PQ_INACTIVE)
1685 		return;
1686 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1687 		vm_page_lock_queues();
1688 		vm_page_flag_clear(m, PG_WINATCFLS);
1689 		if (queue != PQ_NONE)
1690 			vm_page_queue_remove(queue, m);
1691 		if (athead)
1692 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m,
1693 			    pageq);
1694 		else
1695 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m,
1696 			    pageq);
1697 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1698 		cnt.v_inactive_count++;
1699 		vm_page_unlock_queues();
1700 	}
1701 }
1702 
1703 /*
1704  * Move the specified page to the inactive queue.
1705  *
1706  * The page must be locked.
1707  */
1708 void
1709 vm_page_deactivate(vm_page_t m)
1710 {
1711 
1712 	_vm_page_deactivate(m, 0);
1713 }
1714 
1715 /*
1716  * vm_page_try_to_cache:
1717  *
1718  * Returns 0 on failure, 1 on success
1719  */
1720 int
1721 vm_page_try_to_cache(vm_page_t m)
1722 {
1723 
1724 	vm_page_lock_assert(m, MA_OWNED);
1725 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1726 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1727 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1728 		return (0);
1729 	pmap_remove_all(m);
1730 	if (m->dirty)
1731 		return (0);
1732 	vm_page_cache(m);
1733 	return (1);
1734 }
1735 
1736 /*
1737  * vm_page_try_to_free()
1738  *
1739  *	Attempt to free the page.  If we cannot free it, we do nothing.
1740  *	1 is returned on success, 0 on failure.
1741  */
1742 int
1743 vm_page_try_to_free(vm_page_t m)
1744 {
1745 
1746 	vm_page_lock_assert(m, MA_OWNED);
1747 	if (m->object != NULL)
1748 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1749 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1750 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED))
1751 		return (0);
1752 	pmap_remove_all(m);
1753 	if (m->dirty)
1754 		return (0);
1755 	vm_page_free(m);
1756 	return (1);
1757 }
1758 
1759 /*
1760  * vm_page_cache
1761  *
1762  * Put the specified page onto the page cache queue (if appropriate).
1763  *
1764  * This routine may not block.
1765  */
1766 void
1767 vm_page_cache(vm_page_t m)
1768 {
1769 	vm_object_t object;
1770 	vm_page_t root;
1771 
1772 	vm_page_lock_assert(m, MA_OWNED);
1773 	object = m->object;
1774 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1775 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1776 	    m->hold_count || m->wire_count)
1777 		panic("vm_page_cache: attempting to cache busy page");
1778 	pmap_remove_all(m);
1779 	if (m->dirty != 0)
1780 		panic("vm_page_cache: page %p is dirty", m);
1781 	if (m->valid == 0 || object->type == OBJT_DEFAULT ||
1782 	    (object->type == OBJT_SWAP &&
1783 	    !vm_pager_has_page(object, m->pindex, NULL, NULL))) {
1784 		/*
1785 		 * Hypothesis: A cache-elgible page belonging to a
1786 		 * default object or swap object but without a backing
1787 		 * store must be zero filled.
1788 		 */
1789 		vm_page_free(m);
1790 		return;
1791 	}
1792 	KASSERT((m->flags & PG_CACHED) == 0,
1793 	    ("vm_page_cache: page %p is already cached", m));
1794 	PCPU_INC(cnt.v_tcached);
1795 
1796 	/*
1797 	 * Remove the page from the paging queues.
1798 	 */
1799 	vm_pageq_remove(m);
1800 
1801 	/*
1802 	 * Remove the page from the object's collection of resident
1803 	 * pages.
1804 	 */
1805 	if (m != object->root)
1806 		vm_page_splay(m->pindex, object->root);
1807 	if (m->left == NULL)
1808 		root = m->right;
1809 	else {
1810 		root = vm_page_splay(m->pindex, m->left);
1811 		root->right = m->right;
1812 	}
1813 	object->root = root;
1814 	TAILQ_REMOVE(&object->memq, m, listq);
1815 	object->resident_page_count--;
1816 	object->generation++;
1817 
1818 	/*
1819 	 * Restore the default memory attribute to the page.
1820 	 */
1821 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
1822 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
1823 
1824 	/*
1825 	 * Insert the page into the object's collection of cached pages
1826 	 * and the physical memory allocator's cache/free page queues.
1827 	 */
1828 	m->flags &= ~PG_ZERO;
1829 	mtx_lock(&vm_page_queue_free_mtx);
1830 	m->flags |= PG_CACHED;
1831 	cnt.v_cache_count++;
1832 	root = object->cache;
1833 	if (root == NULL) {
1834 		m->left = NULL;
1835 		m->right = NULL;
1836 	} else {
1837 		root = vm_page_splay(m->pindex, root);
1838 		if (m->pindex < root->pindex) {
1839 			m->left = root->left;
1840 			m->right = root;
1841 			root->left = NULL;
1842 		} else if (__predict_false(m->pindex == root->pindex))
1843 			panic("vm_page_cache: offset already cached");
1844 		else {
1845 			m->right = root->right;
1846 			m->left = root;
1847 			root->right = NULL;
1848 		}
1849 	}
1850 	object->cache = m;
1851 #if VM_NRESERVLEVEL > 0
1852 	if (!vm_reserv_free_page(m)) {
1853 #else
1854 	if (TRUE) {
1855 #endif
1856 		vm_phys_set_pool(VM_FREEPOOL_CACHE, m, 0);
1857 		vm_phys_free_pages(m, 0);
1858 	}
1859 	vm_page_free_wakeup();
1860 	mtx_unlock(&vm_page_queue_free_mtx);
1861 
1862 	/*
1863 	 * Increment the vnode's hold count if this is the object's only
1864 	 * cached page.  Decrement the vnode's hold count if this was
1865 	 * the object's only resident page.
1866 	 */
1867 	if (object->type == OBJT_VNODE) {
1868 		if (root == NULL && object->resident_page_count != 0)
1869 			vhold(object->handle);
1870 		else if (root != NULL && object->resident_page_count == 0)
1871 			vdrop(object->handle);
1872 	}
1873 }
1874 
1875 /*
1876  * vm_page_dontneed
1877  *
1878  *	Cache, deactivate, or do nothing as appropriate.  This routine
1879  *	is typically used by madvise() MADV_DONTNEED.
1880  *
1881  *	Generally speaking we want to move the page into the cache so
1882  *	it gets reused quickly.  However, this can result in a silly syndrome
1883  *	due to the page recycling too quickly.  Small objects will not be
1884  *	fully cached.  On the otherhand, if we move the page to the inactive
1885  *	queue we wind up with a problem whereby very large objects
1886  *	unnecessarily blow away our inactive and cache queues.
1887  *
1888  *	The solution is to move the pages based on a fixed weighting.  We
1889  *	either leave them alone, deactivate them, or move them to the cache,
1890  *	where moving them to the cache has the highest weighting.
1891  *	By forcing some pages into other queues we eventually force the
1892  *	system to balance the queues, potentially recovering other unrelated
1893  *	space from active.  The idea is to not force this to happen too
1894  *	often.
1895  */
1896 void
1897 vm_page_dontneed(vm_page_t m)
1898 {
1899 	int dnw;
1900 	int head;
1901 
1902 	vm_page_lock_assert(m, MA_OWNED);
1903 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1904 	dnw = PCPU_GET(dnweight);
1905 	PCPU_INC(dnweight);
1906 
1907 	/*
1908 	 * Occasionally leave the page alone.
1909 	 */
1910 	if ((dnw & 0x01F0) == 0 ||
1911 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE)) {
1912 		if (m->act_count >= ACT_INIT)
1913 			--m->act_count;
1914 		return;
1915 	}
1916 
1917 	/*
1918 	 * Clear any references to the page.  Otherwise, the page daemon will
1919 	 * immediately reactivate the page.
1920 	 *
1921 	 * Perform the pmap_clear_reference() first.  Otherwise, a concurrent
1922 	 * pmap operation, such as pmap_remove(), could clear a reference in
1923 	 * the pmap and set PG_REFERENCED on the page before the
1924 	 * pmap_clear_reference() had completed.  Consequently, the page would
1925 	 * appear referenced based upon an old reference that occurred before
1926 	 * this function ran.
1927 	 */
1928 	pmap_clear_reference(m);
1929 	vm_page_lock_queues();
1930 	vm_page_flag_clear(m, PG_REFERENCED);
1931 	vm_page_unlock_queues();
1932 
1933 	if (m->dirty == 0 && pmap_is_modified(m))
1934 		vm_page_dirty(m);
1935 
1936 	if (m->dirty || (dnw & 0x0070) == 0) {
1937 		/*
1938 		 * Deactivate the page 3 times out of 32.
1939 		 */
1940 		head = 0;
1941 	} else {
1942 		/*
1943 		 * Cache the page 28 times out of every 32.  Note that
1944 		 * the page is deactivated instead of cached, but placed
1945 		 * at the head of the queue instead of the tail.
1946 		 */
1947 		head = 1;
1948 	}
1949 	_vm_page_deactivate(m, head);
1950 }
1951 
1952 /*
1953  * Grab a page, waiting until we are waken up due to the page
1954  * changing state.  We keep on waiting, if the page continues
1955  * to be in the object.  If the page doesn't exist, first allocate it
1956  * and then conditionally zero it.
1957  *
1958  * This routine may block.
1959  */
1960 vm_page_t
1961 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1962 {
1963 	vm_page_t m;
1964 
1965 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1966 retrylookup:
1967 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1968 		if ((m->oflags & VPO_BUSY) != 0 || m->busy != 0) {
1969 			if ((allocflags & VM_ALLOC_RETRY) != 0) {
1970 				/*
1971 				 * Reference the page before unlocking and
1972 				 * sleeping so that the page daemon is less
1973 				 * likely to reclaim it.
1974 				 */
1975 				vm_page_lock_queues();
1976 				vm_page_flag_set(m, PG_REFERENCED);
1977 			}
1978 			vm_page_sleep(m, "pgrbwt");
1979 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1980 				return (NULL);
1981 			goto retrylookup;
1982 		} else {
1983 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1984 				vm_page_lock(m);
1985 				vm_page_wire(m);
1986 				vm_page_unlock(m);
1987 			}
1988 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1989 				vm_page_busy(m);
1990 			return (m);
1991 		}
1992 	}
1993 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1994 	if (m == NULL) {
1995 		VM_OBJECT_UNLOCK(object);
1996 		VM_WAIT;
1997 		VM_OBJECT_LOCK(object);
1998 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1999 			return (NULL);
2000 		goto retrylookup;
2001 	} else if (m->valid != 0)
2002 		return (m);
2003 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
2004 		pmap_zero_page(m);
2005 	return (m);
2006 }
2007 
2008 /*
2009  * Mapping function for valid bits or for dirty bits in
2010  * a page.  May not block.
2011  *
2012  * Inputs are required to range within a page.
2013  */
2014 int
2015 vm_page_bits(int base, int size)
2016 {
2017 	int first_bit;
2018 	int last_bit;
2019 
2020 	KASSERT(
2021 	    base + size <= PAGE_SIZE,
2022 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2023 	);
2024 
2025 	if (size == 0)		/* handle degenerate case */
2026 		return (0);
2027 
2028 	first_bit = base >> DEV_BSHIFT;
2029 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2030 
2031 	return ((2 << last_bit) - (1 << first_bit));
2032 }
2033 
2034 /*
2035  *	vm_page_set_valid:
2036  *
2037  *	Sets portions of a page valid.  The arguments are expected
2038  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2039  *	of any partial chunks touched by the range.  The invalid portion of
2040  *	such chunks will be zeroed.
2041  *
2042  *	(base + size) must be less then or equal to PAGE_SIZE.
2043  */
2044 void
2045 vm_page_set_valid(vm_page_t m, int base, int size)
2046 {
2047 	int endoff, frag;
2048 
2049 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2050 	if (size == 0)	/* handle degenerate case */
2051 		return;
2052 
2053 	/*
2054 	 * If the base is not DEV_BSIZE aligned and the valid
2055 	 * bit is clear, we have to zero out a portion of the
2056 	 * first block.
2057 	 */
2058 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2059 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2060 		pmap_zero_page_area(m, frag, base - frag);
2061 
2062 	/*
2063 	 * If the ending offset is not DEV_BSIZE aligned and the
2064 	 * valid bit is clear, we have to zero out a portion of
2065 	 * the last block.
2066 	 */
2067 	endoff = base + size;
2068 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2069 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2070 		pmap_zero_page_area(m, endoff,
2071 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2072 
2073 	/*
2074 	 * Assert that no previously invalid block that is now being validated
2075 	 * is already dirty.
2076 	 */
2077 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
2078 	    ("vm_page_set_valid: page %p is dirty", m));
2079 
2080 	/*
2081 	 * Set valid bits inclusive of any overlap.
2082 	 */
2083 	m->valid |= vm_page_bits(base, size);
2084 }
2085 
2086 /*
2087  * Clear the given bits from the specified page's dirty field.
2088  */
2089 static __inline void
2090 vm_page_clear_dirty_mask(vm_page_t m, int pagebits)
2091 {
2092 
2093 	/*
2094 	 * If the object is locked and the page is neither VPO_BUSY nor
2095 	 * PG_WRITEABLE, then the page's dirty field cannot possibly be
2096 	 * modified by a concurrent pmap operation.
2097 	 */
2098 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2099 	if ((m->oflags & VPO_BUSY) == 0 && (m->flags & PG_WRITEABLE) == 0)
2100 		m->dirty &= ~pagebits;
2101 	else {
2102 		vm_page_lock_queues();
2103 		m->dirty &= ~pagebits;
2104 		vm_page_unlock_queues();
2105 	}
2106 }
2107 
2108 /*
2109  *	vm_page_set_validclean:
2110  *
2111  *	Sets portions of a page valid and clean.  The arguments are expected
2112  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2113  *	of any partial chunks touched by the range.  The invalid portion of
2114  *	such chunks will be zero'd.
2115  *
2116  *	This routine may not block.
2117  *
2118  *	(base + size) must be less then or equal to PAGE_SIZE.
2119  */
2120 void
2121 vm_page_set_validclean(vm_page_t m, int base, int size)
2122 {
2123 	u_long oldvalid;
2124 	int endoff, frag, pagebits;
2125 
2126 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2127 	if (size == 0)	/* handle degenerate case */
2128 		return;
2129 
2130 	/*
2131 	 * If the base is not DEV_BSIZE aligned and the valid
2132 	 * bit is clear, we have to zero out a portion of the
2133 	 * first block.
2134 	 */
2135 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2136 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
2137 		pmap_zero_page_area(m, frag, base - frag);
2138 
2139 	/*
2140 	 * If the ending offset is not DEV_BSIZE aligned and the
2141 	 * valid bit is clear, we have to zero out a portion of
2142 	 * the last block.
2143 	 */
2144 	endoff = base + size;
2145 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2146 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
2147 		pmap_zero_page_area(m, endoff,
2148 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
2149 
2150 	/*
2151 	 * Set valid, clear dirty bits.  If validating the entire
2152 	 * page we can safely clear the pmap modify bit.  We also
2153 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
2154 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
2155 	 * be set again.
2156 	 *
2157 	 * We set valid bits inclusive of any overlap, but we can only
2158 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
2159 	 * the range.
2160 	 */
2161 	oldvalid = m->valid;
2162 	pagebits = vm_page_bits(base, size);
2163 	m->valid |= pagebits;
2164 #if 0	/* NOT YET */
2165 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
2166 		frag = DEV_BSIZE - frag;
2167 		base += frag;
2168 		size -= frag;
2169 		if (size < 0)
2170 			size = 0;
2171 	}
2172 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
2173 #endif
2174 	if (base == 0 && size == PAGE_SIZE) {
2175 		/*
2176 		 * The page can only be modified within the pmap if it is
2177 		 * mapped, and it can only be mapped if it was previously
2178 		 * fully valid.
2179 		 */
2180 		if (oldvalid == VM_PAGE_BITS_ALL)
2181 			/*
2182 			 * Perform the pmap_clear_modify() first.  Otherwise,
2183 			 * a concurrent pmap operation, such as
2184 			 * pmap_protect(), could clear a modification in the
2185 			 * pmap and set the dirty field on the page before
2186 			 * pmap_clear_modify() had begun and after the dirty
2187 			 * field was cleared here.
2188 			 */
2189 			pmap_clear_modify(m);
2190 		m->dirty = 0;
2191 		m->oflags &= ~VPO_NOSYNC;
2192 	} else if (oldvalid != VM_PAGE_BITS_ALL)
2193 		m->dirty &= ~pagebits;
2194 	else
2195 		vm_page_clear_dirty_mask(m, pagebits);
2196 }
2197 
2198 void
2199 vm_page_clear_dirty(vm_page_t m, int base, int size)
2200 {
2201 
2202 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
2203 }
2204 
2205 /*
2206  *	vm_page_set_invalid:
2207  *
2208  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
2209  *	valid and dirty bits for the effected areas are cleared.
2210  *
2211  *	May not block.
2212  */
2213 void
2214 vm_page_set_invalid(vm_page_t m, int base, int size)
2215 {
2216 	int bits;
2217 
2218 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2219 	KASSERT((m->oflags & VPO_BUSY) == 0,
2220 	    ("vm_page_set_invalid: page %p is busy", m));
2221 	bits = vm_page_bits(base, size);
2222 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
2223 		pmap_remove_all(m);
2224 	KASSERT(!pmap_page_is_mapped(m),
2225 	    ("vm_page_set_invalid: page %p is mapped", m));
2226 	m->valid &= ~bits;
2227 	m->dirty &= ~bits;
2228 	m->object->generation++;
2229 }
2230 
2231 /*
2232  * vm_page_zero_invalid()
2233  *
2234  *	The kernel assumes that the invalid portions of a page contain
2235  *	garbage, but such pages can be mapped into memory by user code.
2236  *	When this occurs, we must zero out the non-valid portions of the
2237  *	page so user code sees what it expects.
2238  *
2239  *	Pages are most often semi-valid when the end of a file is mapped
2240  *	into memory and the file's size is not page aligned.
2241  */
2242 void
2243 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2244 {
2245 	int b;
2246 	int i;
2247 
2248 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2249 	/*
2250 	 * Scan the valid bits looking for invalid sections that
2251 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2252 	 * valid bit may be set ) have already been zerod by
2253 	 * vm_page_set_validclean().
2254 	 */
2255 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2256 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2257 		    (m->valid & (1 << i))
2258 		) {
2259 			if (i > b) {
2260 				pmap_zero_page_area(m,
2261 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
2262 			}
2263 			b = i + 1;
2264 		}
2265 	}
2266 
2267 	/*
2268 	 * setvalid is TRUE when we can safely set the zero'd areas
2269 	 * as being valid.  We can do this if there are no cache consistancy
2270 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2271 	 */
2272 	if (setvalid)
2273 		m->valid = VM_PAGE_BITS_ALL;
2274 }
2275 
2276 /*
2277  *	vm_page_is_valid:
2278  *
2279  *	Is (partial) page valid?  Note that the case where size == 0
2280  *	will return FALSE in the degenerate case where the page is
2281  *	entirely invalid, and TRUE otherwise.
2282  *
2283  *	May not block.
2284  */
2285 int
2286 vm_page_is_valid(vm_page_t m, int base, int size)
2287 {
2288 	int bits = vm_page_bits(base, size);
2289 
2290 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2291 	if (m->valid && ((m->valid & bits) == bits))
2292 		return 1;
2293 	else
2294 		return 0;
2295 }
2296 
2297 /*
2298  * update dirty bits from pmap/mmu.  May not block.
2299  */
2300 void
2301 vm_page_test_dirty(vm_page_t m)
2302 {
2303 
2304 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
2305 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
2306 		vm_page_dirty(m);
2307 }
2308 
2309 int so_zerocp_fullpage = 0;
2310 
2311 /*
2312  *	Replace the given page with a copy.  The copied page assumes
2313  *	the portion of the given page's "wire_count" that is not the
2314  *	responsibility of this copy-on-write mechanism.
2315  *
2316  *	The object containing the given page must have a non-zero
2317  *	paging-in-progress count and be locked.
2318  */
2319 void
2320 vm_page_cowfault(vm_page_t m)
2321 {
2322 	vm_page_t mnew;
2323 	vm_object_t object;
2324 	vm_pindex_t pindex;
2325 
2326 	mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
2327 	vm_page_lock_assert(m, MA_OWNED);
2328 	object = m->object;
2329 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2330 	KASSERT(object->paging_in_progress != 0,
2331 	    ("vm_page_cowfault: object %p's paging-in-progress count is zero.",
2332 	    object));
2333 	pindex = m->pindex;
2334 
2335  retry_alloc:
2336 	pmap_remove_all(m);
2337 	vm_page_remove(m);
2338 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
2339 	if (mnew == NULL) {
2340 		vm_page_insert(m, object, pindex);
2341 		vm_page_unlock(m);
2342 		VM_OBJECT_UNLOCK(object);
2343 		VM_WAIT;
2344 		VM_OBJECT_LOCK(object);
2345 		if (m == vm_page_lookup(object, pindex)) {
2346 			vm_page_lock(m);
2347 			goto retry_alloc;
2348 		} else {
2349 			/*
2350 			 * Page disappeared during the wait.
2351 			 */
2352 			return;
2353 		}
2354 	}
2355 
2356 	if (m->cow == 0) {
2357 		/*
2358 		 * check to see if we raced with an xmit complete when
2359 		 * waiting to allocate a page.  If so, put things back
2360 		 * the way they were
2361 		 */
2362 		vm_page_unlock(m);
2363 		vm_page_lock(mnew);
2364 		vm_page_free(mnew);
2365 		vm_page_unlock(mnew);
2366 		vm_page_insert(m, object, pindex);
2367 	} else { /* clear COW & copy page */
2368 		if (!so_zerocp_fullpage)
2369 			pmap_copy_page(m, mnew);
2370 		mnew->valid = VM_PAGE_BITS_ALL;
2371 		vm_page_dirty(mnew);
2372 		mnew->wire_count = m->wire_count - m->cow;
2373 		m->wire_count = m->cow;
2374 		vm_page_unlock(m);
2375 	}
2376 }
2377 
2378 void
2379 vm_page_cowclear(vm_page_t m)
2380 {
2381 
2382 	vm_page_lock_assert(m, MA_OWNED);
2383 	if (m->cow) {
2384 		m->cow--;
2385 		/*
2386 		 * let vm_fault add back write permission  lazily
2387 		 */
2388 	}
2389 	/*
2390 	 *  sf_buf_free() will free the page, so we needn't do it here
2391 	 */
2392 }
2393 
2394 int
2395 vm_page_cowsetup(vm_page_t m)
2396 {
2397 
2398 	vm_page_lock_assert(m, MA_OWNED);
2399 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2400 	    m->cow == USHRT_MAX - 1 || !VM_OBJECT_TRYLOCK(m->object))
2401 		return (EBUSY);
2402 	m->cow++;
2403 	pmap_remove_write(m);
2404 	VM_OBJECT_UNLOCK(m->object);
2405 	return (0);
2406 }
2407 
2408 #include "opt_ddb.h"
2409 #ifdef DDB
2410 #include <sys/kernel.h>
2411 
2412 #include <ddb/ddb.h>
2413 
2414 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2415 {
2416 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
2417 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
2418 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
2419 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
2420 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
2421 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
2422 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
2423 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
2424 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
2425 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
2426 }
2427 
2428 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2429 {
2430 
2431 	db_printf("PQ_FREE:");
2432 	db_printf(" %d", cnt.v_free_count);
2433 	db_printf("\n");
2434 
2435 	db_printf("PQ_CACHE:");
2436 	db_printf(" %d", cnt.v_cache_count);
2437 	db_printf("\n");
2438 
2439 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2440 		*vm_page_queues[PQ_ACTIVE].cnt,
2441 		*vm_page_queues[PQ_INACTIVE].cnt);
2442 }
2443 #endif /* DDB */
2444