xref: /freebsd/sys/vm/vm_page.c (revision 4d846d26)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/vm_dumpset.h>
112 #include <vm/uma.h>
113 #include <vm/uma_int.h>
114 
115 #include <machine/md_var.h>
116 
117 struct vm_domain vm_dom[MAXMEMDOM];
118 
119 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
120 
121 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
122 
123 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
124 /* The following fields are protected by the domainset lock. */
125 domainset_t __exclusive_cache_line vm_min_domains;
126 domainset_t __exclusive_cache_line vm_severe_domains;
127 static int vm_min_waiters;
128 static int vm_severe_waiters;
129 static int vm_pageproc_waiters;
130 
131 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
132     "VM page statistics");
133 
134 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
135 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
136     CTLFLAG_RD, &pqstate_commit_retries,
137     "Number of failed per-page atomic queue state updates");
138 
139 static COUNTER_U64_DEFINE_EARLY(queue_ops);
140 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
141     CTLFLAG_RD, &queue_ops,
142     "Number of batched queue operations");
143 
144 static COUNTER_U64_DEFINE_EARLY(queue_nops);
145 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
146     CTLFLAG_RD, &queue_nops,
147     "Number of batched queue operations with no effects");
148 
149 /*
150  * bogus page -- for I/O to/from partially complete buffers,
151  * or for paging into sparsely invalid regions.
152  */
153 vm_page_t bogus_page;
154 
155 vm_page_t vm_page_array;
156 long vm_page_array_size;
157 long first_page;
158 
159 struct bitset *vm_page_dump;
160 long vm_page_dump_pages;
161 
162 static TAILQ_HEAD(, vm_page) blacklist_head;
163 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
164 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
165     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
166 
167 static uma_zone_t fakepg_zone;
168 
169 static void vm_page_alloc_check(vm_page_t m);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
178     vm_pindex_t pindex, vm_page_t mpred);
179 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
180     vm_page_t mpred);
181 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
182     const uint16_t nflag);
183 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
184     vm_page_t m_run, vm_paddr_t high);
185 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
187     int req);
188 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
189     int flags);
190 static void vm_page_zone_release(void *arg, void **store, int cnt);
191 
192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
193 
194 static void
195 vm_page_init(void *dummy)
196 {
197 
198 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
199 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200 	bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED);
201 }
202 
203 /*
204  * The cache page zone is initialized later since we need to be able to allocate
205  * pages before UMA is fully initialized.
206  */
207 static void
208 vm_page_init_cache_zones(void *dummy __unused)
209 {
210 	struct vm_domain *vmd;
211 	struct vm_pgcache *pgcache;
212 	int cache, domain, maxcache, pool;
213 
214 	maxcache = 0;
215 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
216 	maxcache *= mp_ncpus;
217 	for (domain = 0; domain < vm_ndomains; domain++) {
218 		vmd = VM_DOMAIN(domain);
219 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
220 			pgcache = &vmd->vmd_pgcache[pool];
221 			pgcache->domain = domain;
222 			pgcache->pool = pool;
223 			pgcache->zone = uma_zcache_create("vm pgcache",
224 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
225 			    vm_page_zone_import, vm_page_zone_release, pgcache,
226 			    UMA_ZONE_VM);
227 
228 			/*
229 			 * Limit each pool's zone to 0.1% of the pages in the
230 			 * domain.
231 			 */
232 			cache = maxcache != 0 ? maxcache :
233 			    vmd->vmd_page_count / 1000;
234 			uma_zone_set_maxcache(pgcache->zone, cache);
235 		}
236 	}
237 }
238 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
239 
240 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
241 #if PAGE_SIZE == 32768
242 #ifdef CTASSERT
243 CTASSERT(sizeof(u_long) >= 8);
244 #endif
245 #endif
246 
247 /*
248  *	vm_set_page_size:
249  *
250  *	Sets the page size, perhaps based upon the memory
251  *	size.  Must be called before any use of page-size
252  *	dependent functions.
253  */
254 void
255 vm_set_page_size(void)
256 {
257 	if (vm_cnt.v_page_size == 0)
258 		vm_cnt.v_page_size = PAGE_SIZE;
259 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
260 		panic("vm_set_page_size: page size not a power of two");
261 }
262 
263 /*
264  *	vm_page_blacklist_next:
265  *
266  *	Find the next entry in the provided string of blacklist
267  *	addresses.  Entries are separated by space, comma, or newline.
268  *	If an invalid integer is encountered then the rest of the
269  *	string is skipped.  Updates the list pointer to the next
270  *	character, or NULL if the string is exhausted or invalid.
271  */
272 static vm_paddr_t
273 vm_page_blacklist_next(char **list, char *end)
274 {
275 	vm_paddr_t bad;
276 	char *cp, *pos;
277 
278 	if (list == NULL || *list == NULL)
279 		return (0);
280 	if (**list =='\0') {
281 		*list = NULL;
282 		return (0);
283 	}
284 
285 	/*
286 	 * If there's no end pointer then the buffer is coming from
287 	 * the kenv and we know it's null-terminated.
288 	 */
289 	if (end == NULL)
290 		end = *list + strlen(*list);
291 
292 	/* Ensure that strtoq() won't walk off the end */
293 	if (*end != '\0') {
294 		if (*end == '\n' || *end == ' ' || *end  == ',')
295 			*end = '\0';
296 		else {
297 			printf("Blacklist not terminated, skipping\n");
298 			*list = NULL;
299 			return (0);
300 		}
301 	}
302 
303 	for (pos = *list; *pos != '\0'; pos = cp) {
304 		bad = strtoq(pos, &cp, 0);
305 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
306 			if (bad == 0) {
307 				if (++cp < end)
308 					continue;
309 				else
310 					break;
311 			}
312 		} else
313 			break;
314 		if (*cp == '\0' || ++cp >= end)
315 			*list = NULL;
316 		else
317 			*list = cp;
318 		return (trunc_page(bad));
319 	}
320 	printf("Garbage in RAM blacklist, skipping\n");
321 	*list = NULL;
322 	return (0);
323 }
324 
325 bool
326 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
327 {
328 	struct vm_domain *vmd;
329 	vm_page_t m;
330 	int ret;
331 
332 	m = vm_phys_paddr_to_vm_page(pa);
333 	if (m == NULL)
334 		return (true); /* page does not exist, no failure */
335 
336 	vmd = vm_pagequeue_domain(m);
337 	vm_domain_free_lock(vmd);
338 	ret = vm_phys_unfree_page(m);
339 	vm_domain_free_unlock(vmd);
340 	if (ret != 0) {
341 		vm_domain_freecnt_inc(vmd, -1);
342 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
343 		if (verbose)
344 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
345 	}
346 	return (ret);
347 }
348 
349 /*
350  *	vm_page_blacklist_check:
351  *
352  *	Iterate through the provided string of blacklist addresses, pulling
353  *	each entry out of the physical allocator free list and putting it
354  *	onto a list for reporting via the vm.page_blacklist sysctl.
355  */
356 static void
357 vm_page_blacklist_check(char *list, char *end)
358 {
359 	vm_paddr_t pa;
360 	char *next;
361 
362 	next = list;
363 	while (next != NULL) {
364 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
365 			continue;
366 		vm_page_blacklist_add(pa, bootverbose);
367 	}
368 }
369 
370 /*
371  *	vm_page_blacklist_load:
372  *
373  *	Search for a special module named "ram_blacklist".  It'll be a
374  *	plain text file provided by the user via the loader directive
375  *	of the same name.
376  */
377 static void
378 vm_page_blacklist_load(char **list, char **end)
379 {
380 	void *mod;
381 	u_char *ptr;
382 	u_int len;
383 
384 	mod = NULL;
385 	ptr = NULL;
386 
387 	mod = preload_search_by_type("ram_blacklist");
388 	if (mod != NULL) {
389 		ptr = preload_fetch_addr(mod);
390 		len = preload_fetch_size(mod);
391         }
392 	*list = ptr;
393 	if (ptr != NULL)
394 		*end = ptr + len;
395 	else
396 		*end = NULL;
397 	return;
398 }
399 
400 static int
401 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
402 {
403 	vm_page_t m;
404 	struct sbuf sbuf;
405 	int error, first;
406 
407 	first = 1;
408 	error = sysctl_wire_old_buffer(req, 0);
409 	if (error != 0)
410 		return (error);
411 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
412 	TAILQ_FOREACH(m, &blacklist_head, listq) {
413 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
414 		    (uintmax_t)m->phys_addr);
415 		first = 0;
416 	}
417 	error = sbuf_finish(&sbuf);
418 	sbuf_delete(&sbuf);
419 	return (error);
420 }
421 
422 /*
423  * Initialize a dummy page for use in scans of the specified paging queue.
424  * In principle, this function only needs to set the flag PG_MARKER.
425  * Nonetheless, it write busies the page as a safety precaution.
426  */
427 void
428 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
429 {
430 
431 	bzero(marker, sizeof(*marker));
432 	marker->flags = PG_MARKER;
433 	marker->a.flags = aflags;
434 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
435 	marker->a.queue = queue;
436 }
437 
438 static void
439 vm_page_domain_init(int domain)
440 {
441 	struct vm_domain *vmd;
442 	struct vm_pagequeue *pq;
443 	int i;
444 
445 	vmd = VM_DOMAIN(domain);
446 	bzero(vmd, sizeof(*vmd));
447 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
448 	    "vm inactive pagequeue";
449 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
450 	    "vm active pagequeue";
451 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
452 	    "vm laundry pagequeue";
453 	*__DECONST(const char **,
454 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
455 	    "vm unswappable pagequeue";
456 	vmd->vmd_domain = domain;
457 	vmd->vmd_page_count = 0;
458 	vmd->vmd_free_count = 0;
459 	vmd->vmd_segs = 0;
460 	vmd->vmd_oom = FALSE;
461 	for (i = 0; i < PQ_COUNT; i++) {
462 		pq = &vmd->vmd_pagequeues[i];
463 		TAILQ_INIT(&pq->pq_pl);
464 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
465 		    MTX_DEF | MTX_DUPOK);
466 		pq->pq_pdpages = 0;
467 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
468 	}
469 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
470 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
471 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
472 
473 	/*
474 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
475 	 * insertions.
476 	 */
477 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
478 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
479 	    &vmd->vmd_inacthead, plinks.q);
480 
481 	/*
482 	 * The clock pages are used to implement active queue scanning without
483 	 * requeues.  Scans start at clock[0], which is advanced after the scan
484 	 * ends.  When the two clock hands meet, they are reset and scanning
485 	 * resumes from the head of the queue.
486 	 */
487 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
488 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
489 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
490 	    &vmd->vmd_clock[0], plinks.q);
491 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
492 	    &vmd->vmd_clock[1], plinks.q);
493 }
494 
495 /*
496  * Initialize a physical page in preparation for adding it to the free
497  * lists.
498  */
499 void
500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
501 {
502 
503 	m->object = NULL;
504 	m->ref_count = 0;
505 	m->busy_lock = VPB_FREED;
506 	m->flags = m->a.flags = 0;
507 	m->phys_addr = pa;
508 	m->a.queue = PQ_NONE;
509 	m->psind = 0;
510 	m->segind = segind;
511 	m->order = VM_NFREEORDER;
512 	m->pool = VM_FREEPOOL_DEFAULT;
513 	m->valid = m->dirty = 0;
514 	pmap_page_init(m);
515 }
516 
517 #ifndef PMAP_HAS_PAGE_ARRAY
518 static vm_paddr_t
519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
520 {
521 	vm_paddr_t new_end;
522 
523 	/*
524 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
525 	 * However, because this page is allocated from KVM, out-of-bounds
526 	 * accesses using the direct map will not be trapped.
527 	 */
528 	*vaddr += PAGE_SIZE;
529 
530 	/*
531 	 * Allocate physical memory for the page structures, and map it.
532 	 */
533 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
534 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
535 	    VM_PROT_READ | VM_PROT_WRITE);
536 	vm_page_array_size = page_range;
537 
538 	return (new_end);
539 }
540 #endif
541 
542 /*
543  *	vm_page_startup:
544  *
545  *	Initializes the resident memory module.  Allocates physical memory for
546  *	bootstrapping UMA and some data structures that are used to manage
547  *	physical pages.  Initializes these structures, and populates the free
548  *	page queues.
549  */
550 vm_offset_t
551 vm_page_startup(vm_offset_t vaddr)
552 {
553 	struct vm_phys_seg *seg;
554 	struct vm_domain *vmd;
555 	vm_page_t m;
556 	char *list, *listend;
557 	vm_paddr_t end, high_avail, low_avail, new_end, size;
558 	vm_paddr_t page_range __unused;
559 	vm_paddr_t last_pa, pa, startp, endp;
560 	u_long pagecount;
561 #if MINIDUMP_PAGE_TRACKING
562 	u_long vm_page_dump_size;
563 #endif
564 	int biggestone, i, segind;
565 #ifdef WITNESS
566 	vm_offset_t mapped;
567 	int witness_size;
568 #endif
569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
570 	long ii;
571 #endif
572 
573 	vaddr = round_page(vaddr);
574 
575 	vm_phys_early_startup();
576 	biggestone = vm_phys_avail_largest();
577 	end = phys_avail[biggestone+1];
578 
579 	/*
580 	 * Initialize the page and queue locks.
581 	 */
582 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
583 	for (i = 0; i < PA_LOCK_COUNT; i++)
584 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
585 	for (i = 0; i < vm_ndomains; i++)
586 		vm_page_domain_init(i);
587 
588 	new_end = end;
589 #ifdef WITNESS
590 	witness_size = round_page(witness_startup_count());
591 	new_end -= witness_size;
592 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
593 	    VM_PROT_READ | VM_PROT_WRITE);
594 	bzero((void *)mapped, witness_size);
595 	witness_startup((void *)mapped);
596 #endif
597 
598 #if MINIDUMP_PAGE_TRACKING
599 	/*
600 	 * Allocate a bitmap to indicate that a random physical page
601 	 * needs to be included in a minidump.
602 	 *
603 	 * The amd64 port needs this to indicate which direct map pages
604 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
605 	 *
606 	 * However, i386 still needs this workspace internally within the
607 	 * minidump code.  In theory, they are not needed on i386, but are
608 	 * included should the sf_buf code decide to use them.
609 	 */
610 	last_pa = 0;
611 	vm_page_dump_pages = 0;
612 	for (i = 0; dump_avail[i + 1] != 0; i += 2) {
613 		vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
614 		    dump_avail[i] / PAGE_SIZE;
615 		if (dump_avail[i + 1] > last_pa)
616 			last_pa = dump_avail[i + 1];
617 	}
618 	vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
619 	new_end -= vm_page_dump_size;
620 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
621 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
622 	bzero((void *)vm_page_dump, vm_page_dump_size);
623 #else
624 	(void)last_pa;
625 #endif
626 #if defined(__aarch64__) || defined(__amd64__) || \
627     defined(__riscv) || defined(__powerpc64__)
628 	/*
629 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
630 	 * in a crash dump.  When pmap_map() uses the direct map, they are
631 	 * not automatically included.
632 	 */
633 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
634 		dump_add_page(pa);
635 #endif
636 	phys_avail[biggestone + 1] = new_end;
637 #ifdef __amd64__
638 	/*
639 	 * Request that the physical pages underlying the message buffer be
640 	 * included in a crash dump.  Since the message buffer is accessed
641 	 * through the direct map, they are not automatically included.
642 	 */
643 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
644 	last_pa = pa + round_page(msgbufsize);
645 	while (pa < last_pa) {
646 		dump_add_page(pa);
647 		pa += PAGE_SIZE;
648 	}
649 #endif
650 	/*
651 	 * Compute the number of pages of memory that will be available for
652 	 * use, taking into account the overhead of a page structure per page.
653 	 * In other words, solve
654 	 *	"available physical memory" - round_page(page_range *
655 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
656 	 * for page_range.
657 	 */
658 	low_avail = phys_avail[0];
659 	high_avail = phys_avail[1];
660 	for (i = 0; i < vm_phys_nsegs; i++) {
661 		if (vm_phys_segs[i].start < low_avail)
662 			low_avail = vm_phys_segs[i].start;
663 		if (vm_phys_segs[i].end > high_avail)
664 			high_avail = vm_phys_segs[i].end;
665 	}
666 	/* Skip the first chunk.  It is already accounted for. */
667 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
668 		if (phys_avail[i] < low_avail)
669 			low_avail = phys_avail[i];
670 		if (phys_avail[i + 1] > high_avail)
671 			high_avail = phys_avail[i + 1];
672 	}
673 	first_page = low_avail / PAGE_SIZE;
674 #ifdef VM_PHYSSEG_SPARSE
675 	size = 0;
676 	for (i = 0; i < vm_phys_nsegs; i++)
677 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
678 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
679 		size += phys_avail[i + 1] - phys_avail[i];
680 #elif defined(VM_PHYSSEG_DENSE)
681 	size = high_avail - low_avail;
682 #else
683 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
684 #endif
685 
686 #ifdef PMAP_HAS_PAGE_ARRAY
687 	pmap_page_array_startup(size / PAGE_SIZE);
688 	biggestone = vm_phys_avail_largest();
689 	end = new_end = phys_avail[biggestone + 1];
690 #else
691 #ifdef VM_PHYSSEG_DENSE
692 	/*
693 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
694 	 * the overhead of a page structure per page only if vm_page_array is
695 	 * allocated from the last physical memory chunk.  Otherwise, we must
696 	 * allocate page structures representing the physical memory
697 	 * underlying vm_page_array, even though they will not be used.
698 	 */
699 	if (new_end != high_avail)
700 		page_range = size / PAGE_SIZE;
701 	else
702 #endif
703 	{
704 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
705 
706 		/*
707 		 * If the partial bytes remaining are large enough for
708 		 * a page (PAGE_SIZE) without a corresponding
709 		 * 'struct vm_page', then new_end will contain an
710 		 * extra page after subtracting the length of the VM
711 		 * page array.  Compensate by subtracting an extra
712 		 * page from new_end.
713 		 */
714 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
715 			if (new_end == high_avail)
716 				high_avail -= PAGE_SIZE;
717 			new_end -= PAGE_SIZE;
718 		}
719 	}
720 	end = new_end;
721 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
722 #endif
723 
724 #if VM_NRESERVLEVEL > 0
725 	/*
726 	 * Allocate physical memory for the reservation management system's
727 	 * data structures, and map it.
728 	 */
729 	new_end = vm_reserv_startup(&vaddr, new_end);
730 #endif
731 #if defined(__aarch64__) || defined(__amd64__) || \
732     defined(__riscv) || defined(__powerpc64__)
733 	/*
734 	 * Include vm_page_array and vm_reserv_array in a crash dump.
735 	 */
736 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
737 		dump_add_page(pa);
738 #endif
739 	phys_avail[biggestone + 1] = new_end;
740 
741 	/*
742 	 * Add physical memory segments corresponding to the available
743 	 * physical pages.
744 	 */
745 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
746 		if (vm_phys_avail_size(i) != 0)
747 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
748 
749 	/*
750 	 * Initialize the physical memory allocator.
751 	 */
752 	vm_phys_init();
753 
754 	/*
755 	 * Initialize the page structures and add every available page to the
756 	 * physical memory allocator's free lists.
757 	 */
758 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
759 	for (ii = 0; ii < vm_page_array_size; ii++) {
760 		m = &vm_page_array[ii];
761 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
762 		m->flags = PG_FICTITIOUS;
763 	}
764 #endif
765 	vm_cnt.v_page_count = 0;
766 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
767 		seg = &vm_phys_segs[segind];
768 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
769 		    m++, pa += PAGE_SIZE)
770 			vm_page_init_page(m, pa, segind);
771 
772 		/*
773 		 * Add the segment's pages that are covered by one of
774 		 * phys_avail's ranges to the free lists.
775 		 */
776 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
777 			if (seg->end <= phys_avail[i] ||
778 			    seg->start >= phys_avail[i + 1])
779 				continue;
780 
781 			startp = MAX(seg->start, phys_avail[i]);
782 			endp = MIN(seg->end, phys_avail[i + 1]);
783 			pagecount = (u_long)atop(endp - startp);
784 			if (pagecount == 0)
785 				continue;
786 
787 			m = seg->first_page + atop(startp - seg->start);
788 			vmd = VM_DOMAIN(seg->domain);
789 			vm_domain_free_lock(vmd);
790 			vm_phys_enqueue_contig(m, pagecount);
791 			vm_domain_free_unlock(vmd);
792 			vm_domain_freecnt_inc(vmd, pagecount);
793 			vm_cnt.v_page_count += (u_int)pagecount;
794 			vmd->vmd_page_count += (u_int)pagecount;
795 			vmd->vmd_segs |= 1UL << segind;
796 		}
797 	}
798 
799 	/*
800 	 * Remove blacklisted pages from the physical memory allocator.
801 	 */
802 	TAILQ_INIT(&blacklist_head);
803 	vm_page_blacklist_load(&list, &listend);
804 	vm_page_blacklist_check(list, listend);
805 
806 	list = kern_getenv("vm.blacklist");
807 	vm_page_blacklist_check(list, NULL);
808 
809 	freeenv(list);
810 #if VM_NRESERVLEVEL > 0
811 	/*
812 	 * Initialize the reservation management system.
813 	 */
814 	vm_reserv_init();
815 #endif
816 
817 	return (vaddr);
818 }
819 
820 void
821 vm_page_reference(vm_page_t m)
822 {
823 
824 	vm_page_aflag_set(m, PGA_REFERENCED);
825 }
826 
827 /*
828  *	vm_page_trybusy
829  *
830  *	Helper routine for grab functions to trylock busy.
831  *
832  *	Returns true on success and false on failure.
833  */
834 static bool
835 vm_page_trybusy(vm_page_t m, int allocflags)
836 {
837 
838 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
839 		return (vm_page_trysbusy(m));
840 	else
841 		return (vm_page_tryxbusy(m));
842 }
843 
844 /*
845  *	vm_page_tryacquire
846  *
847  *	Helper routine for grab functions to trylock busy and wire.
848  *
849  *	Returns true on success and false on failure.
850  */
851 static inline bool
852 vm_page_tryacquire(vm_page_t m, int allocflags)
853 {
854 	bool locked;
855 
856 	locked = vm_page_trybusy(m, allocflags);
857 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
858 		vm_page_wire(m);
859 	return (locked);
860 }
861 
862 /*
863  *	vm_page_busy_acquire:
864  *
865  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
866  *	and drop the object lock if necessary.
867  */
868 bool
869 vm_page_busy_acquire(vm_page_t m, int allocflags)
870 {
871 	vm_object_t obj;
872 	bool locked;
873 
874 	/*
875 	 * The page-specific object must be cached because page
876 	 * identity can change during the sleep, causing the
877 	 * re-lock of a different object.
878 	 * It is assumed that a reference to the object is already
879 	 * held by the callers.
880 	 */
881 	obj = atomic_load_ptr(&m->object);
882 	for (;;) {
883 		if (vm_page_tryacquire(m, allocflags))
884 			return (true);
885 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
886 			return (false);
887 		if (obj != NULL)
888 			locked = VM_OBJECT_WOWNED(obj);
889 		else
890 			locked = false;
891 		MPASS(locked || vm_page_wired(m));
892 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
893 		    locked) && locked)
894 			VM_OBJECT_WLOCK(obj);
895 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
896 			return (false);
897 		KASSERT(m->object == obj || m->object == NULL,
898 		    ("vm_page_busy_acquire: page %p does not belong to %p",
899 		    m, obj));
900 	}
901 }
902 
903 /*
904  *	vm_page_busy_downgrade:
905  *
906  *	Downgrade an exclusive busy page into a single shared busy page.
907  */
908 void
909 vm_page_busy_downgrade(vm_page_t m)
910 {
911 	u_int x;
912 
913 	vm_page_assert_xbusied(m);
914 
915 	x = vm_page_busy_fetch(m);
916 	for (;;) {
917 		if (atomic_fcmpset_rel_int(&m->busy_lock,
918 		    &x, VPB_SHARERS_WORD(1)))
919 			break;
920 	}
921 	if ((x & VPB_BIT_WAITERS) != 0)
922 		wakeup(m);
923 }
924 
925 /*
926  *
927  *	vm_page_busy_tryupgrade:
928  *
929  *	Attempt to upgrade a single shared busy into an exclusive busy.
930  */
931 int
932 vm_page_busy_tryupgrade(vm_page_t m)
933 {
934 	u_int ce, x;
935 
936 	vm_page_assert_sbusied(m);
937 
938 	x = vm_page_busy_fetch(m);
939 	ce = VPB_CURTHREAD_EXCLUSIVE;
940 	for (;;) {
941 		if (VPB_SHARERS(x) > 1)
942 			return (0);
943 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
944 		    ("vm_page_busy_tryupgrade: invalid lock state"));
945 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
946 		    ce | (x & VPB_BIT_WAITERS)))
947 			continue;
948 		return (1);
949 	}
950 }
951 
952 /*
953  *	vm_page_sbusied:
954  *
955  *	Return a positive value if the page is shared busied, 0 otherwise.
956  */
957 int
958 vm_page_sbusied(vm_page_t m)
959 {
960 	u_int x;
961 
962 	x = vm_page_busy_fetch(m);
963 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
964 }
965 
966 /*
967  *	vm_page_sunbusy:
968  *
969  *	Shared unbusy a page.
970  */
971 void
972 vm_page_sunbusy(vm_page_t m)
973 {
974 	u_int x;
975 
976 	vm_page_assert_sbusied(m);
977 
978 	x = vm_page_busy_fetch(m);
979 	for (;;) {
980 		KASSERT(x != VPB_FREED,
981 		    ("vm_page_sunbusy: Unlocking freed page."));
982 		if (VPB_SHARERS(x) > 1) {
983 			if (atomic_fcmpset_int(&m->busy_lock, &x,
984 			    x - VPB_ONE_SHARER))
985 				break;
986 			continue;
987 		}
988 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
989 		    ("vm_page_sunbusy: invalid lock state"));
990 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
991 			continue;
992 		if ((x & VPB_BIT_WAITERS) == 0)
993 			break;
994 		wakeup(m);
995 		break;
996 	}
997 }
998 
999 /*
1000  *	vm_page_busy_sleep:
1001  *
1002  *	Sleep if the page is busy, using the page pointer as wchan.
1003  *	This is used to implement the hard-path of the busying mechanism.
1004  *
1005  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1006  *	will not sleep if the page is shared-busy.
1007  *
1008  *	The object lock must be held on entry.
1009  *
1010  *	Returns true if it slept and dropped the object lock, or false
1011  *	if there was no sleep and the lock is still held.
1012  */
1013 bool
1014 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1015 {
1016 	vm_object_t obj;
1017 
1018 	obj = m->object;
1019 	VM_OBJECT_ASSERT_LOCKED(obj);
1020 
1021 	return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1022 	    true));
1023 }
1024 
1025 /*
1026  *	vm_page_busy_sleep_unlocked:
1027  *
1028  *	Sleep if the page is busy, using the page pointer as wchan.
1029  *	This is used to implement the hard-path of busying mechanism.
1030  *
1031  *	If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1032  *	will not sleep if the page is shared-busy.
1033  *
1034  *	The object lock must not be held on entry.  The operation will
1035  *	return if the page changes identity.
1036  */
1037 void
1038 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1039     const char *wmesg, int allocflags)
1040 {
1041 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1042 
1043 	(void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1044 }
1045 
1046 /*
1047  *	_vm_page_busy_sleep:
1048  *
1049  *	Internal busy sleep function.  Verifies the page identity and
1050  *	lockstate against parameters.  Returns true if it sleeps and
1051  *	false otherwise.
1052  *
1053  *	allocflags uses VM_ALLOC_* flags to specify the lock required.
1054  *
1055  *	If locked is true the lock will be dropped for any true returns
1056  *	and held for any false returns.
1057  */
1058 static bool
1059 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1060     const char *wmesg, int allocflags, bool locked)
1061 {
1062 	bool xsleep;
1063 	u_int x;
1064 
1065 	/*
1066 	 * If the object is busy we must wait for that to drain to zero
1067 	 * before trying the page again.
1068 	 */
1069 	if (obj != NULL && vm_object_busied(obj)) {
1070 		if (locked)
1071 			VM_OBJECT_DROP(obj);
1072 		vm_object_busy_wait(obj, wmesg);
1073 		return (true);
1074 	}
1075 
1076 	if (!vm_page_busied(m))
1077 		return (false);
1078 
1079 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1080 	sleepq_lock(m);
1081 	x = vm_page_busy_fetch(m);
1082 	do {
1083 		/*
1084 		 * If the page changes objects or becomes unlocked we can
1085 		 * simply return.
1086 		 */
1087 		if (x == VPB_UNBUSIED ||
1088 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1089 		    m->object != obj || m->pindex != pindex) {
1090 			sleepq_release(m);
1091 			return (false);
1092 		}
1093 		if ((x & VPB_BIT_WAITERS) != 0)
1094 			break;
1095 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1096 	if (locked)
1097 		VM_OBJECT_DROP(obj);
1098 	DROP_GIANT();
1099 	sleepq_add(m, NULL, wmesg, 0, 0);
1100 	sleepq_wait(m, PVM);
1101 	PICKUP_GIANT();
1102 	return (true);
1103 }
1104 
1105 /*
1106  *	vm_page_trysbusy:
1107  *
1108  *	Try to shared busy a page.
1109  *	If the operation succeeds 1 is returned otherwise 0.
1110  *	The operation never sleeps.
1111  */
1112 int
1113 vm_page_trysbusy(vm_page_t m)
1114 {
1115 	vm_object_t obj;
1116 	u_int x;
1117 
1118 	obj = m->object;
1119 	x = vm_page_busy_fetch(m);
1120 	for (;;) {
1121 		if ((x & VPB_BIT_SHARED) == 0)
1122 			return (0);
1123 		/*
1124 		 * Reduce the window for transient busies that will trigger
1125 		 * false negatives in vm_page_ps_test().
1126 		 */
1127 		if (obj != NULL && vm_object_busied(obj))
1128 			return (0);
1129 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1130 		    x + VPB_ONE_SHARER))
1131 			break;
1132 	}
1133 
1134 	/* Refetch the object now that we're guaranteed that it is stable. */
1135 	obj = m->object;
1136 	if (obj != NULL && vm_object_busied(obj)) {
1137 		vm_page_sunbusy(m);
1138 		return (0);
1139 	}
1140 	return (1);
1141 }
1142 
1143 /*
1144  *	vm_page_tryxbusy:
1145  *
1146  *	Try to exclusive busy a page.
1147  *	If the operation succeeds 1 is returned otherwise 0.
1148  *	The operation never sleeps.
1149  */
1150 int
1151 vm_page_tryxbusy(vm_page_t m)
1152 {
1153 	vm_object_t obj;
1154 
1155         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1156             VPB_CURTHREAD_EXCLUSIVE) == 0)
1157 		return (0);
1158 
1159 	obj = m->object;
1160 	if (obj != NULL && vm_object_busied(obj)) {
1161 		vm_page_xunbusy(m);
1162 		return (0);
1163 	}
1164 	return (1);
1165 }
1166 
1167 static void
1168 vm_page_xunbusy_hard_tail(vm_page_t m)
1169 {
1170 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1171 	/* Wake the waiter. */
1172 	wakeup(m);
1173 }
1174 
1175 /*
1176  *	vm_page_xunbusy_hard:
1177  *
1178  *	Called when unbusy has failed because there is a waiter.
1179  */
1180 void
1181 vm_page_xunbusy_hard(vm_page_t m)
1182 {
1183 	vm_page_assert_xbusied(m);
1184 	vm_page_xunbusy_hard_tail(m);
1185 }
1186 
1187 void
1188 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1189 {
1190 	vm_page_assert_xbusied_unchecked(m);
1191 	vm_page_xunbusy_hard_tail(m);
1192 }
1193 
1194 static void
1195 vm_page_busy_free(vm_page_t m)
1196 {
1197 	u_int x;
1198 
1199 	atomic_thread_fence_rel();
1200 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1201 	if ((x & VPB_BIT_WAITERS) != 0)
1202 		wakeup(m);
1203 }
1204 
1205 /*
1206  *	vm_page_unhold_pages:
1207  *
1208  *	Unhold each of the pages that is referenced by the given array.
1209  */
1210 void
1211 vm_page_unhold_pages(vm_page_t *ma, int count)
1212 {
1213 
1214 	for (; count != 0; count--) {
1215 		vm_page_unwire(*ma, PQ_ACTIVE);
1216 		ma++;
1217 	}
1218 }
1219 
1220 vm_page_t
1221 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1222 {
1223 	vm_page_t m;
1224 
1225 #ifdef VM_PHYSSEG_SPARSE
1226 	m = vm_phys_paddr_to_vm_page(pa);
1227 	if (m == NULL)
1228 		m = vm_phys_fictitious_to_vm_page(pa);
1229 	return (m);
1230 #elif defined(VM_PHYSSEG_DENSE)
1231 	long pi;
1232 
1233 	pi = atop(pa);
1234 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1235 		m = &vm_page_array[pi - first_page];
1236 		return (m);
1237 	}
1238 	return (vm_phys_fictitious_to_vm_page(pa));
1239 #else
1240 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1241 #endif
1242 }
1243 
1244 /*
1245  *	vm_page_getfake:
1246  *
1247  *	Create a fictitious page with the specified physical address and
1248  *	memory attribute.  The memory attribute is the only the machine-
1249  *	dependent aspect of a fictitious page that must be initialized.
1250  */
1251 vm_page_t
1252 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1253 {
1254 	vm_page_t m;
1255 
1256 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1257 	vm_page_initfake(m, paddr, memattr);
1258 	return (m);
1259 }
1260 
1261 void
1262 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1263 {
1264 
1265 	if ((m->flags & PG_FICTITIOUS) != 0) {
1266 		/*
1267 		 * The page's memattr might have changed since the
1268 		 * previous initialization.  Update the pmap to the
1269 		 * new memattr.
1270 		 */
1271 		goto memattr;
1272 	}
1273 	m->phys_addr = paddr;
1274 	m->a.queue = PQ_NONE;
1275 	/* Fictitious pages don't use "segind". */
1276 	m->flags = PG_FICTITIOUS;
1277 	/* Fictitious pages don't use "order" or "pool". */
1278 	m->oflags = VPO_UNMANAGED;
1279 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1280 	/* Fictitious pages are unevictable. */
1281 	m->ref_count = 1;
1282 	pmap_page_init(m);
1283 memattr:
1284 	pmap_page_set_memattr(m, memattr);
1285 }
1286 
1287 /*
1288  *	vm_page_putfake:
1289  *
1290  *	Release a fictitious page.
1291  */
1292 void
1293 vm_page_putfake(vm_page_t m)
1294 {
1295 
1296 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1297 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1298 	    ("vm_page_putfake: bad page %p", m));
1299 	vm_page_assert_xbusied(m);
1300 	vm_page_busy_free(m);
1301 	uma_zfree(fakepg_zone, m);
1302 }
1303 
1304 /*
1305  *	vm_page_updatefake:
1306  *
1307  *	Update the given fictitious page to the specified physical address and
1308  *	memory attribute.
1309  */
1310 void
1311 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1312 {
1313 
1314 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1315 	    ("vm_page_updatefake: bad page %p", m));
1316 	m->phys_addr = paddr;
1317 	pmap_page_set_memattr(m, memattr);
1318 }
1319 
1320 /*
1321  *	vm_page_free:
1322  *
1323  *	Free a page.
1324  */
1325 void
1326 vm_page_free(vm_page_t m)
1327 {
1328 
1329 	m->flags &= ~PG_ZERO;
1330 	vm_page_free_toq(m);
1331 }
1332 
1333 /*
1334  *	vm_page_free_zero:
1335  *
1336  *	Free a page to the zerod-pages queue
1337  */
1338 void
1339 vm_page_free_zero(vm_page_t m)
1340 {
1341 
1342 	m->flags |= PG_ZERO;
1343 	vm_page_free_toq(m);
1344 }
1345 
1346 /*
1347  * Unbusy and handle the page queueing for a page from a getpages request that
1348  * was optionally read ahead or behind.
1349  */
1350 void
1351 vm_page_readahead_finish(vm_page_t m)
1352 {
1353 
1354 	/* We shouldn't put invalid pages on queues. */
1355 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1356 
1357 	/*
1358 	 * Since the page is not the actually needed one, whether it should
1359 	 * be activated or deactivated is not obvious.  Empirical results
1360 	 * have shown that deactivating the page is usually the best choice,
1361 	 * unless the page is wanted by another thread.
1362 	 */
1363 	if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1364 		vm_page_activate(m);
1365 	else
1366 		vm_page_deactivate(m);
1367 	vm_page_xunbusy_unchecked(m);
1368 }
1369 
1370 /*
1371  * Destroy the identity of an invalid page and free it if possible.
1372  * This is intended to be used when reading a page from backing store fails.
1373  */
1374 void
1375 vm_page_free_invalid(vm_page_t m)
1376 {
1377 
1378 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1379 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1380 	KASSERT(m->object != NULL, ("page %p has no object", m));
1381 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1382 
1383 	/*
1384 	 * We may be attempting to free the page as part of the handling for an
1385 	 * I/O error, in which case the page was xbusied by a different thread.
1386 	 */
1387 	vm_page_xbusy_claim(m);
1388 
1389 	/*
1390 	 * If someone has wired this page while the object lock
1391 	 * was not held, then the thread that unwires is responsible
1392 	 * for freeing the page.  Otherwise just free the page now.
1393 	 * The wire count of this unmapped page cannot change while
1394 	 * we have the page xbusy and the page's object wlocked.
1395 	 */
1396 	if (vm_page_remove(m))
1397 		vm_page_free(m);
1398 }
1399 
1400 /*
1401  *	vm_page_dirty_KBI:		[ internal use only ]
1402  *
1403  *	Set all bits in the page's dirty field.
1404  *
1405  *	The object containing the specified page must be locked if the
1406  *	call is made from the machine-independent layer.
1407  *
1408  *	See vm_page_clear_dirty_mask().
1409  *
1410  *	This function should only be called by vm_page_dirty().
1411  */
1412 void
1413 vm_page_dirty_KBI(vm_page_t m)
1414 {
1415 
1416 	/* Refer to this operation by its public name. */
1417 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1418 	m->dirty = VM_PAGE_BITS_ALL;
1419 }
1420 
1421 /*
1422  *	vm_page_insert:		[ internal use only ]
1423  *
1424  *	Inserts the given mem entry into the object and object list.
1425  *
1426  *	The object must be locked.
1427  */
1428 int
1429 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1430 {
1431 	vm_page_t mpred;
1432 
1433 	VM_OBJECT_ASSERT_WLOCKED(object);
1434 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1435 	return (vm_page_insert_after(m, object, pindex, mpred));
1436 }
1437 
1438 /*
1439  *	vm_page_insert_after:
1440  *
1441  *	Inserts the page "m" into the specified object at offset "pindex".
1442  *
1443  *	The page "mpred" must immediately precede the offset "pindex" within
1444  *	the specified object.
1445  *
1446  *	The object must be locked.
1447  */
1448 static int
1449 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1450     vm_page_t mpred)
1451 {
1452 	vm_page_t msucc;
1453 
1454 	VM_OBJECT_ASSERT_WLOCKED(object);
1455 	KASSERT(m->object == NULL,
1456 	    ("vm_page_insert_after: page already inserted"));
1457 	if (mpred != NULL) {
1458 		KASSERT(mpred->object == object,
1459 		    ("vm_page_insert_after: object doesn't contain mpred"));
1460 		KASSERT(mpred->pindex < pindex,
1461 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1462 		msucc = TAILQ_NEXT(mpred, listq);
1463 	} else
1464 		msucc = TAILQ_FIRST(&object->memq);
1465 	if (msucc != NULL)
1466 		KASSERT(msucc->pindex > pindex,
1467 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1468 
1469 	/*
1470 	 * Record the object/offset pair in this page.
1471 	 */
1472 	m->object = object;
1473 	m->pindex = pindex;
1474 	m->ref_count |= VPRC_OBJREF;
1475 
1476 	/*
1477 	 * Now link into the object's ordered list of backed pages.
1478 	 */
1479 	if (vm_radix_insert(&object->rtree, m)) {
1480 		m->object = NULL;
1481 		m->pindex = 0;
1482 		m->ref_count &= ~VPRC_OBJREF;
1483 		return (1);
1484 	}
1485 	vm_page_insert_radixdone(m, object, mpred);
1486 	vm_pager_page_inserted(object, m);
1487 	return (0);
1488 }
1489 
1490 /*
1491  *	vm_page_insert_radixdone:
1492  *
1493  *	Complete page "m" insertion into the specified object after the
1494  *	radix trie hooking.
1495  *
1496  *	The page "mpred" must precede the offset "m->pindex" within the
1497  *	specified object.
1498  *
1499  *	The object must be locked.
1500  */
1501 static void
1502 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1503 {
1504 
1505 	VM_OBJECT_ASSERT_WLOCKED(object);
1506 	KASSERT(object != NULL && m->object == object,
1507 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1508 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1509 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1510 	if (mpred != NULL) {
1511 		KASSERT(mpred->object == object,
1512 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1513 		KASSERT(mpred->pindex < m->pindex,
1514 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1515 	}
1516 
1517 	if (mpred != NULL)
1518 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1519 	else
1520 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1521 
1522 	/*
1523 	 * Show that the object has one more resident page.
1524 	 */
1525 	object->resident_page_count++;
1526 
1527 	/*
1528 	 * Hold the vnode until the last page is released.
1529 	 */
1530 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1531 		vhold(object->handle);
1532 
1533 	/*
1534 	 * Since we are inserting a new and possibly dirty page,
1535 	 * update the object's generation count.
1536 	 */
1537 	if (pmap_page_is_write_mapped(m))
1538 		vm_object_set_writeable_dirty(object);
1539 }
1540 
1541 /*
1542  * Do the work to remove a page from its object.  The caller is responsible for
1543  * updating the page's fields to reflect this removal.
1544  */
1545 static void
1546 vm_page_object_remove(vm_page_t m)
1547 {
1548 	vm_object_t object;
1549 	vm_page_t mrem __diagused;
1550 
1551 	vm_page_assert_xbusied(m);
1552 	object = m->object;
1553 	VM_OBJECT_ASSERT_WLOCKED(object);
1554 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1555 	    ("page %p is missing its object ref", m));
1556 
1557 	/* Deferred free of swap space. */
1558 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1559 		vm_pager_page_unswapped(m);
1560 
1561 	vm_pager_page_removed(object, m);
1562 
1563 	m->object = NULL;
1564 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1565 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1566 
1567 	/*
1568 	 * Now remove from the object's list of backed pages.
1569 	 */
1570 	TAILQ_REMOVE(&object->memq, m, listq);
1571 
1572 	/*
1573 	 * And show that the object has one fewer resident page.
1574 	 */
1575 	object->resident_page_count--;
1576 
1577 	/*
1578 	 * The vnode may now be recycled.
1579 	 */
1580 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1581 		vdrop(object->handle);
1582 }
1583 
1584 /*
1585  *	vm_page_remove:
1586  *
1587  *	Removes the specified page from its containing object, but does not
1588  *	invalidate any backing storage.  Returns true if the object's reference
1589  *	was the last reference to the page, and false otherwise.
1590  *
1591  *	The object must be locked and the page must be exclusively busied.
1592  *	The exclusive busy will be released on return.  If this is not the
1593  *	final ref and the caller does not hold a wire reference it may not
1594  *	continue to access the page.
1595  */
1596 bool
1597 vm_page_remove(vm_page_t m)
1598 {
1599 	bool dropped;
1600 
1601 	dropped = vm_page_remove_xbusy(m);
1602 	vm_page_xunbusy(m);
1603 
1604 	return (dropped);
1605 }
1606 
1607 /*
1608  *	vm_page_remove_xbusy
1609  *
1610  *	Removes the page but leaves the xbusy held.  Returns true if this
1611  *	removed the final ref and false otherwise.
1612  */
1613 bool
1614 vm_page_remove_xbusy(vm_page_t m)
1615 {
1616 
1617 	vm_page_object_remove(m);
1618 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1619 }
1620 
1621 /*
1622  *	vm_page_lookup:
1623  *
1624  *	Returns the page associated with the object/offset
1625  *	pair specified; if none is found, NULL is returned.
1626  *
1627  *	The object must be locked.
1628  */
1629 vm_page_t
1630 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1631 {
1632 
1633 	VM_OBJECT_ASSERT_LOCKED(object);
1634 	return (vm_radix_lookup(&object->rtree, pindex));
1635 }
1636 
1637 /*
1638  *	vm_page_lookup_unlocked:
1639  *
1640  *	Returns the page associated with the object/offset pair specified;
1641  *	if none is found, NULL is returned.  The page may be no longer be
1642  *	present in the object at the time that this function returns.  Only
1643  *	useful for opportunistic checks such as inmem().
1644  */
1645 vm_page_t
1646 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1647 {
1648 
1649 	return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1650 }
1651 
1652 /*
1653  *	vm_page_relookup:
1654  *
1655  *	Returns a page that must already have been busied by
1656  *	the caller.  Used for bogus page replacement.
1657  */
1658 vm_page_t
1659 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1660 {
1661 	vm_page_t m;
1662 
1663 	m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1664 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1665 	    m->object == object && m->pindex == pindex,
1666 	    ("vm_page_relookup: Invalid page %p", m));
1667 	return (m);
1668 }
1669 
1670 /*
1671  * This should only be used by lockless functions for releasing transient
1672  * incorrect acquires.  The page may have been freed after we acquired a
1673  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1674  * further to do.
1675  */
1676 static void
1677 vm_page_busy_release(vm_page_t m)
1678 {
1679 	u_int x;
1680 
1681 	x = vm_page_busy_fetch(m);
1682 	for (;;) {
1683 		if (x == VPB_FREED)
1684 			break;
1685 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1686 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1687 			    x - VPB_ONE_SHARER))
1688 				break;
1689 			continue;
1690 		}
1691 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1692 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1693 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1694 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1695 			continue;
1696 		if ((x & VPB_BIT_WAITERS) != 0)
1697 			wakeup(m);
1698 		break;
1699 	}
1700 }
1701 
1702 /*
1703  *	vm_page_find_least:
1704  *
1705  *	Returns the page associated with the object with least pindex
1706  *	greater than or equal to the parameter pindex, or NULL.
1707  *
1708  *	The object must be locked.
1709  */
1710 vm_page_t
1711 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1712 {
1713 	vm_page_t m;
1714 
1715 	VM_OBJECT_ASSERT_LOCKED(object);
1716 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1717 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1718 	return (m);
1719 }
1720 
1721 /*
1722  * Returns the given page's successor (by pindex) within the object if it is
1723  * resident; if none is found, NULL is returned.
1724  *
1725  * The object must be locked.
1726  */
1727 vm_page_t
1728 vm_page_next(vm_page_t m)
1729 {
1730 	vm_page_t next;
1731 
1732 	VM_OBJECT_ASSERT_LOCKED(m->object);
1733 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1734 		MPASS(next->object == m->object);
1735 		if (next->pindex != m->pindex + 1)
1736 			next = NULL;
1737 	}
1738 	return (next);
1739 }
1740 
1741 /*
1742  * Returns the given page's predecessor (by pindex) within the object if it is
1743  * resident; if none is found, NULL is returned.
1744  *
1745  * The object must be locked.
1746  */
1747 vm_page_t
1748 vm_page_prev(vm_page_t m)
1749 {
1750 	vm_page_t prev;
1751 
1752 	VM_OBJECT_ASSERT_LOCKED(m->object);
1753 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1754 		MPASS(prev->object == m->object);
1755 		if (prev->pindex != m->pindex - 1)
1756 			prev = NULL;
1757 	}
1758 	return (prev);
1759 }
1760 
1761 /*
1762  * Uses the page mnew as a replacement for an existing page at index
1763  * pindex which must be already present in the object.
1764  *
1765  * Both pages must be exclusively busied on enter.  The old page is
1766  * unbusied on exit.
1767  *
1768  * A return value of true means mold is now free.  If this is not the
1769  * final ref and the caller does not hold a wire reference it may not
1770  * continue to access the page.
1771  */
1772 static bool
1773 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1774     vm_page_t mold)
1775 {
1776 	vm_page_t mret __diagused;
1777 	bool dropped;
1778 
1779 	VM_OBJECT_ASSERT_WLOCKED(object);
1780 	vm_page_assert_xbusied(mold);
1781 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1782 	    ("vm_page_replace: page %p already in object", mnew));
1783 
1784 	/*
1785 	 * This function mostly follows vm_page_insert() and
1786 	 * vm_page_remove() without the radix, object count and vnode
1787 	 * dance.  Double check such functions for more comments.
1788 	 */
1789 
1790 	mnew->object = object;
1791 	mnew->pindex = pindex;
1792 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1793 	mret = vm_radix_replace(&object->rtree, mnew);
1794 	KASSERT(mret == mold,
1795 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1796 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1797 	    (mnew->oflags & VPO_UNMANAGED),
1798 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1799 
1800 	/* Keep the resident page list in sorted order. */
1801 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1802 	TAILQ_REMOVE(&object->memq, mold, listq);
1803 	mold->object = NULL;
1804 
1805 	/*
1806 	 * The object's resident_page_count does not change because we have
1807 	 * swapped one page for another, but the generation count should
1808 	 * change if the page is dirty.
1809 	 */
1810 	if (pmap_page_is_write_mapped(mnew))
1811 		vm_object_set_writeable_dirty(object);
1812 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1813 	vm_page_xunbusy(mold);
1814 
1815 	return (dropped);
1816 }
1817 
1818 void
1819 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1820     vm_page_t mold)
1821 {
1822 
1823 	vm_page_assert_xbusied(mnew);
1824 
1825 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1826 		vm_page_free(mold);
1827 }
1828 
1829 /*
1830  *	vm_page_rename:
1831  *
1832  *	Move the given memory entry from its
1833  *	current object to the specified target object/offset.
1834  *
1835  *	Note: swap associated with the page must be invalidated by the move.  We
1836  *	      have to do this for several reasons:  (1) we aren't freeing the
1837  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1838  *	      moving the page from object A to B, and will then later move
1839  *	      the backing store from A to B and we can't have a conflict.
1840  *
1841  *	Note: we *always* dirty the page.  It is necessary both for the
1842  *	      fact that we moved it, and because we may be invalidating
1843  *	      swap.
1844  *
1845  *	The objects must be locked.
1846  */
1847 int
1848 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1849 {
1850 	vm_page_t mpred;
1851 	vm_pindex_t opidx;
1852 
1853 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1854 
1855 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1856 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1857 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1858 	    ("vm_page_rename: pindex already renamed"));
1859 
1860 	/*
1861 	 * Create a custom version of vm_page_insert() which does not depend
1862 	 * by m_prev and can cheat on the implementation aspects of the
1863 	 * function.
1864 	 */
1865 	opidx = m->pindex;
1866 	m->pindex = new_pindex;
1867 	if (vm_radix_insert(&new_object->rtree, m)) {
1868 		m->pindex = opidx;
1869 		return (1);
1870 	}
1871 
1872 	/*
1873 	 * The operation cannot fail anymore.  The removal must happen before
1874 	 * the listq iterator is tainted.
1875 	 */
1876 	m->pindex = opidx;
1877 	vm_page_object_remove(m);
1878 
1879 	/* Return back to the new pindex to complete vm_page_insert(). */
1880 	m->pindex = new_pindex;
1881 	m->object = new_object;
1882 
1883 	vm_page_insert_radixdone(m, new_object, mpred);
1884 	vm_page_dirty(m);
1885 	vm_pager_page_inserted(new_object, m);
1886 	return (0);
1887 }
1888 
1889 /*
1890  *	vm_page_alloc:
1891  *
1892  *	Allocate and return a page that is associated with the specified
1893  *	object and offset pair.  By default, this page is exclusive busied.
1894  *
1895  *	The caller must always specify an allocation class.
1896  *
1897  *	allocation classes:
1898  *	VM_ALLOC_NORMAL		normal process request
1899  *	VM_ALLOC_SYSTEM		system *really* needs a page
1900  *	VM_ALLOC_INTERRUPT	interrupt time request
1901  *
1902  *	optional allocation flags:
1903  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1904  *				intends to allocate
1905  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1906  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1907  *	VM_ALLOC_SBUSY		shared busy the allocated page
1908  *	VM_ALLOC_WIRED		wire the allocated page
1909  *	VM_ALLOC_ZERO		prefer a zeroed page
1910  */
1911 vm_page_t
1912 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1913 {
1914 
1915 	return (vm_page_alloc_after(object, pindex, req,
1916 	    vm_radix_lookup_le(&object->rtree, pindex)));
1917 }
1918 
1919 vm_page_t
1920 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1921     int req)
1922 {
1923 
1924 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1925 	    vm_radix_lookup_le(&object->rtree, pindex)));
1926 }
1927 
1928 /*
1929  * Allocate a page in the specified object with the given page index.  To
1930  * optimize insertion of the page into the object, the caller must also specifiy
1931  * the resident page in the object with largest index smaller than the given
1932  * page index, or NULL if no such page exists.
1933  */
1934 vm_page_t
1935 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1936     int req, vm_page_t mpred)
1937 {
1938 	struct vm_domainset_iter di;
1939 	vm_page_t m;
1940 	int domain;
1941 
1942 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1943 	do {
1944 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1945 		    mpred);
1946 		if (m != NULL)
1947 			break;
1948 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1949 
1950 	return (m);
1951 }
1952 
1953 /*
1954  * Returns true if the number of free pages exceeds the minimum
1955  * for the request class and false otherwise.
1956  */
1957 static int
1958 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1959 {
1960 	u_int limit, old, new;
1961 
1962 	if (req_class == VM_ALLOC_INTERRUPT)
1963 		limit = 0;
1964 	else if (req_class == VM_ALLOC_SYSTEM)
1965 		limit = vmd->vmd_interrupt_free_min;
1966 	else
1967 		limit = vmd->vmd_free_reserved;
1968 
1969 	/*
1970 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1971 	 */
1972 	limit += npages;
1973 	old = vmd->vmd_free_count;
1974 	do {
1975 		if (old < limit)
1976 			return (0);
1977 		new = old - npages;
1978 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1979 
1980 	/* Wake the page daemon if we've crossed the threshold. */
1981 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1982 		pagedaemon_wakeup(vmd->vmd_domain);
1983 
1984 	/* Only update bitsets on transitions. */
1985 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1986 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1987 		vm_domain_set(vmd);
1988 
1989 	return (1);
1990 }
1991 
1992 int
1993 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1994 {
1995 	int req_class;
1996 
1997 	/*
1998 	 * The page daemon is allowed to dig deeper into the free page list.
1999 	 */
2000 	req_class = req & VM_ALLOC_CLASS_MASK;
2001 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2002 		req_class = VM_ALLOC_SYSTEM;
2003 	return (_vm_domain_allocate(vmd, req_class, npages));
2004 }
2005 
2006 vm_page_t
2007 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2008     int req, vm_page_t mpred)
2009 {
2010 	struct vm_domain *vmd;
2011 	vm_page_t m;
2012 	int flags;
2013 
2014 #define	VPA_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |	\
2015 			 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY |		\
2016 			 VM_ALLOC_SBUSY | VM_ALLOC_WIRED |		\
2017 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2018 	KASSERT((req & ~VPA_FLAGS) == 0,
2019 	    ("invalid request %#x", req));
2020 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2021 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2022 	    ("invalid request %#x", req));
2023 	KASSERT(mpred == NULL || mpred->pindex < pindex,
2024 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
2025 	    (uintmax_t)pindex));
2026 	VM_OBJECT_ASSERT_WLOCKED(object);
2027 
2028 	flags = 0;
2029 	m = NULL;
2030 	if (!vm_pager_can_alloc_page(object, pindex))
2031 		return (NULL);
2032 again:
2033 #if VM_NRESERVLEVEL > 0
2034 	/*
2035 	 * Can we allocate the page from a reservation?
2036 	 */
2037 	if (vm_object_reserv(object) &&
2038 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2039 	    NULL) {
2040 		goto found;
2041 	}
2042 #endif
2043 	vmd = VM_DOMAIN(domain);
2044 	if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2045 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2046 		    M_NOWAIT | M_NOVM);
2047 		if (m != NULL) {
2048 			flags |= PG_PCPU_CACHE;
2049 			goto found;
2050 		}
2051 	}
2052 	if (vm_domain_allocate(vmd, req, 1)) {
2053 		/*
2054 		 * If not, allocate it from the free page queues.
2055 		 */
2056 		vm_domain_free_lock(vmd);
2057 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2058 		vm_domain_free_unlock(vmd);
2059 		if (m == NULL) {
2060 			vm_domain_freecnt_inc(vmd, 1);
2061 #if VM_NRESERVLEVEL > 0
2062 			if (vm_reserv_reclaim_inactive(domain))
2063 				goto again;
2064 #endif
2065 		}
2066 	}
2067 	if (m == NULL) {
2068 		/*
2069 		 * Not allocatable, give up.
2070 		 */
2071 		if (vm_domain_alloc_fail(vmd, object, req))
2072 			goto again;
2073 		return (NULL);
2074 	}
2075 
2076 	/*
2077 	 * At this point we had better have found a good page.
2078 	 */
2079 found:
2080 	vm_page_dequeue(m);
2081 	vm_page_alloc_check(m);
2082 
2083 	/*
2084 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2085 	 */
2086 	flags |= m->flags & PG_ZERO;
2087 	if ((req & VM_ALLOC_NODUMP) != 0)
2088 		flags |= PG_NODUMP;
2089 	m->flags = flags;
2090 	m->a.flags = 0;
2091 	m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2092 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2093 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2094 	else if ((req & VM_ALLOC_SBUSY) != 0)
2095 		m->busy_lock = VPB_SHARERS_WORD(1);
2096 	else
2097 		m->busy_lock = VPB_UNBUSIED;
2098 	if (req & VM_ALLOC_WIRED) {
2099 		vm_wire_add(1);
2100 		m->ref_count = 1;
2101 	}
2102 	m->a.act_count = 0;
2103 
2104 	if (vm_page_insert_after(m, object, pindex, mpred)) {
2105 		if (req & VM_ALLOC_WIRED) {
2106 			vm_wire_sub(1);
2107 			m->ref_count = 0;
2108 		}
2109 		KASSERT(m->object == NULL, ("page %p has object", m));
2110 		m->oflags = VPO_UNMANAGED;
2111 		m->busy_lock = VPB_UNBUSIED;
2112 		/* Don't change PG_ZERO. */
2113 		vm_page_free_toq(m);
2114 		if (req & VM_ALLOC_WAITFAIL) {
2115 			VM_OBJECT_WUNLOCK(object);
2116 			vm_radix_wait();
2117 			VM_OBJECT_WLOCK(object);
2118 		}
2119 		return (NULL);
2120 	}
2121 
2122 	/* Ignore device objects; the pager sets "memattr" for them. */
2123 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2124 	    (object->flags & OBJ_FICTITIOUS) == 0)
2125 		pmap_page_set_memattr(m, object->memattr);
2126 
2127 	return (m);
2128 }
2129 
2130 /*
2131  *	vm_page_alloc_contig:
2132  *
2133  *	Allocate a contiguous set of physical pages of the given size "npages"
2134  *	from the free lists.  All of the physical pages must be at or above
2135  *	the given physical address "low" and below the given physical address
2136  *	"high".  The given value "alignment" determines the alignment of the
2137  *	first physical page in the set.  If the given value "boundary" is
2138  *	non-zero, then the set of physical pages cannot cross any physical
2139  *	address boundary that is a multiple of that value.  Both "alignment"
2140  *	and "boundary" must be a power of two.
2141  *
2142  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2143  *	then the memory attribute setting for the physical pages is configured
2144  *	to the object's memory attribute setting.  Otherwise, the memory
2145  *	attribute setting for the physical pages is configured to "memattr",
2146  *	overriding the object's memory attribute setting.  However, if the
2147  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2148  *	memory attribute setting for the physical pages cannot be configured
2149  *	to VM_MEMATTR_DEFAULT.
2150  *
2151  *	The specified object may not contain fictitious pages.
2152  *
2153  *	The caller must always specify an allocation class.
2154  *
2155  *	allocation classes:
2156  *	VM_ALLOC_NORMAL		normal process request
2157  *	VM_ALLOC_SYSTEM		system *really* needs a page
2158  *	VM_ALLOC_INTERRUPT	interrupt time request
2159  *
2160  *	optional allocation flags:
2161  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2162  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2163  *	VM_ALLOC_SBUSY		shared busy the allocated page
2164  *	VM_ALLOC_WIRED		wire the allocated page
2165  *	VM_ALLOC_ZERO		prefer a zeroed page
2166  */
2167 vm_page_t
2168 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2169     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2170     vm_paddr_t boundary, vm_memattr_t memattr)
2171 {
2172 	struct vm_domainset_iter di;
2173 	vm_page_t m;
2174 	int domain;
2175 
2176 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2177 	do {
2178 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2179 		    npages, low, high, alignment, boundary, memattr);
2180 		if (m != NULL)
2181 			break;
2182 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2183 
2184 	return (m);
2185 }
2186 
2187 static vm_page_t
2188 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2189     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2190 {
2191 	struct vm_domain *vmd;
2192 	vm_page_t m_ret;
2193 
2194 	/*
2195 	 * Can we allocate the pages without the number of free pages falling
2196 	 * below the lower bound for the allocation class?
2197 	 */
2198 	vmd = VM_DOMAIN(domain);
2199 	if (!vm_domain_allocate(vmd, req, npages))
2200 		return (NULL);
2201 	/*
2202 	 * Try to allocate the pages from the free page queues.
2203 	 */
2204 	vm_domain_free_lock(vmd);
2205 	m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2206 	    alignment, boundary);
2207 	vm_domain_free_unlock(vmd);
2208 	if (m_ret != NULL)
2209 		return (m_ret);
2210 #if VM_NRESERVLEVEL > 0
2211 	/*
2212 	 * Try to break a reservation to allocate the pages.
2213 	 */
2214 	if ((req & VM_ALLOC_NORECLAIM) == 0) {
2215 		m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2216 	            high, alignment, boundary);
2217 		if (m_ret != NULL)
2218 			return (m_ret);
2219 	}
2220 #endif
2221 	vm_domain_freecnt_inc(vmd, npages);
2222 	return (NULL);
2223 }
2224 
2225 vm_page_t
2226 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2227     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2228     vm_paddr_t boundary, vm_memattr_t memattr)
2229 {
2230 	vm_page_t m, m_ret, mpred;
2231 	u_int busy_lock, flags, oflags;
2232 
2233 #define	VPAC_FLAGS	(VPA_FLAGS | VM_ALLOC_NORECLAIM)
2234 	KASSERT((req & ~VPAC_FLAGS) == 0,
2235 	    ("invalid request %#x", req));
2236 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2237 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2238 	    ("invalid request %#x", req));
2239 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2240 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2241 	    ("invalid request %#x", req));
2242 	VM_OBJECT_ASSERT_WLOCKED(object);
2243 	KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2244 	    ("vm_page_alloc_contig: object %p has fictitious pages",
2245 	    object));
2246 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2247 
2248 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
2249 	KASSERT(mpred == NULL || mpred->pindex != pindex,
2250 	    ("vm_page_alloc_contig: pindex already allocated"));
2251 	for (;;) {
2252 #if VM_NRESERVLEVEL > 0
2253 		/*
2254 		 * Can we allocate the pages from a reservation?
2255 		 */
2256 		if (vm_object_reserv(object) &&
2257 		    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2258 		    mpred, npages, low, high, alignment, boundary)) != NULL) {
2259 			break;
2260 		}
2261 #endif
2262 		if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2263 		    low, high, alignment, boundary)) != NULL)
2264 			break;
2265 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2266 			return (NULL);
2267 	}
2268 	for (m = m_ret; m < &m_ret[npages]; m++) {
2269 		vm_page_dequeue(m);
2270 		vm_page_alloc_check(m);
2271 	}
2272 
2273 	/*
2274 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2275 	 */
2276 	flags = PG_ZERO;
2277 	if ((req & VM_ALLOC_NODUMP) != 0)
2278 		flags |= PG_NODUMP;
2279 	oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2280 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2281 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2282 	else if ((req & VM_ALLOC_SBUSY) != 0)
2283 		busy_lock = VPB_SHARERS_WORD(1);
2284 	else
2285 		busy_lock = VPB_UNBUSIED;
2286 	if ((req & VM_ALLOC_WIRED) != 0)
2287 		vm_wire_add(npages);
2288 	if (object->memattr != VM_MEMATTR_DEFAULT &&
2289 	    memattr == VM_MEMATTR_DEFAULT)
2290 		memattr = object->memattr;
2291 	for (m = m_ret; m < &m_ret[npages]; m++) {
2292 		m->a.flags = 0;
2293 		m->flags = (m->flags | PG_NODUMP) & flags;
2294 		m->busy_lock = busy_lock;
2295 		if ((req & VM_ALLOC_WIRED) != 0)
2296 			m->ref_count = 1;
2297 		m->a.act_count = 0;
2298 		m->oflags = oflags;
2299 		if (vm_page_insert_after(m, object, pindex, mpred)) {
2300 			if ((req & VM_ALLOC_WIRED) != 0)
2301 				vm_wire_sub(npages);
2302 			KASSERT(m->object == NULL,
2303 			    ("page %p has object", m));
2304 			mpred = m;
2305 			for (m = m_ret; m < &m_ret[npages]; m++) {
2306 				if (m <= mpred &&
2307 				    (req & VM_ALLOC_WIRED) != 0)
2308 					m->ref_count = 0;
2309 				m->oflags = VPO_UNMANAGED;
2310 				m->busy_lock = VPB_UNBUSIED;
2311 				/* Don't change PG_ZERO. */
2312 				vm_page_free_toq(m);
2313 			}
2314 			if (req & VM_ALLOC_WAITFAIL) {
2315 				VM_OBJECT_WUNLOCK(object);
2316 				vm_radix_wait();
2317 				VM_OBJECT_WLOCK(object);
2318 			}
2319 			return (NULL);
2320 		}
2321 		mpred = m;
2322 		if (memattr != VM_MEMATTR_DEFAULT)
2323 			pmap_page_set_memattr(m, memattr);
2324 		pindex++;
2325 	}
2326 	return (m_ret);
2327 }
2328 
2329 /*
2330  * Allocate a physical page that is not intended to be inserted into a VM
2331  * object.  If the "freelist" parameter is not equal to VM_NFREELIST, then only
2332  * pages from the specified vm_phys freelist will be returned.
2333  */
2334 static __always_inline vm_page_t
2335 _vm_page_alloc_noobj_domain(int domain, const int freelist, int req)
2336 {
2337 	struct vm_domain *vmd;
2338 	vm_page_t m;
2339 	int flags;
2340 
2341 #define	VPAN_FLAGS	(VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |      \
2342 			 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |		\
2343 			 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED |		\
2344 			 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2345 	KASSERT((req & ~VPAN_FLAGS) == 0,
2346 	    ("invalid request %#x", req));
2347 
2348 	flags = (req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0;
2349 	vmd = VM_DOMAIN(domain);
2350 again:
2351 	if (freelist == VM_NFREELIST &&
2352 	    vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2353 		m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2354 		    M_NOWAIT | M_NOVM);
2355 		if (m != NULL) {
2356 			flags |= PG_PCPU_CACHE;
2357 			goto found;
2358 		}
2359 	}
2360 
2361 	if (vm_domain_allocate(vmd, req, 1)) {
2362 		vm_domain_free_lock(vmd);
2363 		if (freelist == VM_NFREELIST)
2364 			m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2365 		else
2366 			m = vm_phys_alloc_freelist_pages(domain, freelist,
2367 			    VM_FREEPOOL_DIRECT, 0);
2368 		vm_domain_free_unlock(vmd);
2369 		if (m == NULL) {
2370 			vm_domain_freecnt_inc(vmd, 1);
2371 #if VM_NRESERVLEVEL > 0
2372 			if (freelist == VM_NFREELIST &&
2373 			    vm_reserv_reclaim_inactive(domain))
2374 				goto again;
2375 #endif
2376 		}
2377 	}
2378 	if (m == NULL) {
2379 		if (vm_domain_alloc_fail(vmd, NULL, req))
2380 			goto again;
2381 		return (NULL);
2382 	}
2383 
2384 found:
2385 	vm_page_dequeue(m);
2386 	vm_page_alloc_check(m);
2387 
2388 	/*
2389 	 * Consumers should not rely on a useful default pindex value.
2390 	 */
2391 	m->pindex = 0xdeadc0dedeadc0de;
2392 	m->flags = (m->flags & PG_ZERO) | flags;
2393 	m->a.flags = 0;
2394 	m->oflags = VPO_UNMANAGED;
2395 	m->busy_lock = VPB_UNBUSIED;
2396 	if ((req & VM_ALLOC_WIRED) != 0) {
2397 		vm_wire_add(1);
2398 		m->ref_count = 1;
2399 	}
2400 
2401 	if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2402 		pmap_zero_page(m);
2403 
2404 	return (m);
2405 }
2406 
2407 vm_page_t
2408 vm_page_alloc_freelist(int freelist, int req)
2409 {
2410 	struct vm_domainset_iter di;
2411 	vm_page_t m;
2412 	int domain;
2413 
2414 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2415 	do {
2416 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2417 		if (m != NULL)
2418 			break;
2419 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2420 
2421 	return (m);
2422 }
2423 
2424 vm_page_t
2425 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2426 {
2427 	KASSERT(freelist >= 0 && freelist < VM_NFREELIST,
2428 	    ("%s: invalid freelist %d", __func__, freelist));
2429 
2430 	return (_vm_page_alloc_noobj_domain(domain, freelist, req));
2431 }
2432 
2433 vm_page_t
2434 vm_page_alloc_noobj(int req)
2435 {
2436 	struct vm_domainset_iter di;
2437 	vm_page_t m;
2438 	int domain;
2439 
2440 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2441 	do {
2442 		m = vm_page_alloc_noobj_domain(domain, req);
2443 		if (m != NULL)
2444 			break;
2445 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2446 
2447 	return (m);
2448 }
2449 
2450 vm_page_t
2451 vm_page_alloc_noobj_domain(int domain, int req)
2452 {
2453 	return (_vm_page_alloc_noobj_domain(domain, VM_NFREELIST, req));
2454 }
2455 
2456 vm_page_t
2457 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2458     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2459     vm_memattr_t memattr)
2460 {
2461 	struct vm_domainset_iter di;
2462 	vm_page_t m;
2463 	int domain;
2464 
2465 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2466 	do {
2467 		m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2468 		    high, alignment, boundary, memattr);
2469 		if (m != NULL)
2470 			break;
2471 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2472 
2473 	return (m);
2474 }
2475 
2476 vm_page_t
2477 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2478     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2479     vm_memattr_t memattr)
2480 {
2481 	vm_page_t m, m_ret;
2482 	u_int flags;
2483 
2484 #define	VPANC_FLAGS	(VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2485 	KASSERT((req & ~VPANC_FLAGS) == 0,
2486 	    ("invalid request %#x", req));
2487 	KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2488 	    (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2489 	    ("invalid request %#x", req));
2490 	KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2491 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2492 	    ("invalid request %#x", req));
2493 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2494 
2495 	while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2496 	    low, high, alignment, boundary)) == NULL) {
2497 		if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2498 			return (NULL);
2499 	}
2500 
2501 	/*
2502 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2503 	 */
2504 	flags = PG_ZERO;
2505 	if ((req & VM_ALLOC_NODUMP) != 0)
2506 		flags |= PG_NODUMP;
2507 	if ((req & VM_ALLOC_WIRED) != 0)
2508 		vm_wire_add(npages);
2509 	for (m = m_ret; m < &m_ret[npages]; m++) {
2510 		vm_page_dequeue(m);
2511 		vm_page_alloc_check(m);
2512 
2513 		/*
2514 		 * Consumers should not rely on a useful default pindex value.
2515 		 */
2516 		m->pindex = 0xdeadc0dedeadc0de;
2517 		m->a.flags = 0;
2518 		m->flags = (m->flags | PG_NODUMP) & flags;
2519 		m->busy_lock = VPB_UNBUSIED;
2520 		if ((req & VM_ALLOC_WIRED) != 0)
2521 			m->ref_count = 1;
2522 		m->a.act_count = 0;
2523 		m->oflags = VPO_UNMANAGED;
2524 
2525 		/*
2526 		 * Zero the page before updating any mappings since the page is
2527 		 * not yet shared with any devices which might require the
2528 		 * non-default memory attribute.  pmap_page_set_memattr()
2529 		 * flushes data caches before returning.
2530 		 */
2531 		if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2532 			pmap_zero_page(m);
2533 		if (memattr != VM_MEMATTR_DEFAULT)
2534 			pmap_page_set_memattr(m, memattr);
2535 	}
2536 	return (m_ret);
2537 }
2538 
2539 /*
2540  * Check a page that has been freshly dequeued from a freelist.
2541  */
2542 static void
2543 vm_page_alloc_check(vm_page_t m)
2544 {
2545 
2546 	KASSERT(m->object == NULL, ("page %p has object", m));
2547 	KASSERT(m->a.queue == PQ_NONE &&
2548 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2549 	    ("page %p has unexpected queue %d, flags %#x",
2550 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2551 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2552 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2553 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2554 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2555 	    ("page %p has unexpected memattr %d",
2556 	    m, pmap_page_get_memattr(m)));
2557 	KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2558 	pmap_vm_page_alloc_check(m);
2559 }
2560 
2561 static int
2562 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2563 {
2564 	struct vm_domain *vmd;
2565 	struct vm_pgcache *pgcache;
2566 	int i;
2567 
2568 	pgcache = arg;
2569 	vmd = VM_DOMAIN(pgcache->domain);
2570 
2571 	/*
2572 	 * The page daemon should avoid creating extra memory pressure since its
2573 	 * main purpose is to replenish the store of free pages.
2574 	 */
2575 	if (vmd->vmd_severeset || curproc == pageproc ||
2576 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2577 		return (0);
2578 	domain = vmd->vmd_domain;
2579 	vm_domain_free_lock(vmd);
2580 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2581 	    (vm_page_t *)store);
2582 	vm_domain_free_unlock(vmd);
2583 	if (cnt != i)
2584 		vm_domain_freecnt_inc(vmd, cnt - i);
2585 
2586 	return (i);
2587 }
2588 
2589 static void
2590 vm_page_zone_release(void *arg, void **store, int cnt)
2591 {
2592 	struct vm_domain *vmd;
2593 	struct vm_pgcache *pgcache;
2594 	vm_page_t m;
2595 	int i;
2596 
2597 	pgcache = arg;
2598 	vmd = VM_DOMAIN(pgcache->domain);
2599 	vm_domain_free_lock(vmd);
2600 	for (i = 0; i < cnt; i++) {
2601 		m = (vm_page_t)store[i];
2602 		vm_phys_free_pages(m, 0);
2603 	}
2604 	vm_domain_free_unlock(vmd);
2605 	vm_domain_freecnt_inc(vmd, cnt);
2606 }
2607 
2608 #define	VPSC_ANY	0	/* No restrictions. */
2609 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2610 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2611 
2612 /*
2613  *	vm_page_scan_contig:
2614  *
2615  *	Scan vm_page_array[] between the specified entries "m_start" and
2616  *	"m_end" for a run of contiguous physical pages that satisfy the
2617  *	specified conditions, and return the lowest page in the run.  The
2618  *	specified "alignment" determines the alignment of the lowest physical
2619  *	page in the run.  If the specified "boundary" is non-zero, then the
2620  *	run of physical pages cannot span a physical address that is a
2621  *	multiple of "boundary".
2622  *
2623  *	"m_end" is never dereferenced, so it need not point to a vm_page
2624  *	structure within vm_page_array[].
2625  *
2626  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2627  *	span a hole (or discontiguity) in the physical address space.  Both
2628  *	"alignment" and "boundary" must be a power of two.
2629  */
2630 vm_page_t
2631 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2632     u_long alignment, vm_paddr_t boundary, int options)
2633 {
2634 	vm_object_t object;
2635 	vm_paddr_t pa;
2636 	vm_page_t m, m_run;
2637 #if VM_NRESERVLEVEL > 0
2638 	int level;
2639 #endif
2640 	int m_inc, order, run_ext, run_len;
2641 
2642 	KASSERT(npages > 0, ("npages is 0"));
2643 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2644 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2645 	m_run = NULL;
2646 	run_len = 0;
2647 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2648 		KASSERT((m->flags & PG_MARKER) == 0,
2649 		    ("page %p is PG_MARKER", m));
2650 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2651 		    ("fictitious page %p has invalid ref count", m));
2652 
2653 		/*
2654 		 * If the current page would be the start of a run, check its
2655 		 * physical address against the end, alignment, and boundary
2656 		 * conditions.  If it doesn't satisfy these conditions, either
2657 		 * terminate the scan or advance to the next page that
2658 		 * satisfies the failed condition.
2659 		 */
2660 		if (run_len == 0) {
2661 			KASSERT(m_run == NULL, ("m_run != NULL"));
2662 			if (m + npages > m_end)
2663 				break;
2664 			pa = VM_PAGE_TO_PHYS(m);
2665 			if (!vm_addr_align_ok(pa, alignment)) {
2666 				m_inc = atop(roundup2(pa, alignment) - pa);
2667 				continue;
2668 			}
2669 			if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2670 				m_inc = atop(roundup2(pa, boundary) - pa);
2671 				continue;
2672 			}
2673 		} else
2674 			KASSERT(m_run != NULL, ("m_run == NULL"));
2675 
2676 retry:
2677 		m_inc = 1;
2678 		if (vm_page_wired(m))
2679 			run_ext = 0;
2680 #if VM_NRESERVLEVEL > 0
2681 		else if ((level = vm_reserv_level(m)) >= 0 &&
2682 		    (options & VPSC_NORESERV) != 0) {
2683 			run_ext = 0;
2684 			/* Advance to the end of the reservation. */
2685 			pa = VM_PAGE_TO_PHYS(m);
2686 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2687 			    pa);
2688 		}
2689 #endif
2690 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2691 			/*
2692 			 * The page is considered eligible for relocation if
2693 			 * and only if it could be laundered or reclaimed by
2694 			 * the page daemon.
2695 			 */
2696 			VM_OBJECT_RLOCK(object);
2697 			if (object != m->object) {
2698 				VM_OBJECT_RUNLOCK(object);
2699 				goto retry;
2700 			}
2701 			/* Don't care: PG_NODUMP, PG_ZERO. */
2702 			if ((object->flags & OBJ_SWAP) == 0 &&
2703 			    object->type != OBJT_VNODE) {
2704 				run_ext = 0;
2705 #if VM_NRESERVLEVEL > 0
2706 			} else if ((options & VPSC_NOSUPER) != 0 &&
2707 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2708 				run_ext = 0;
2709 				/* Advance to the end of the superpage. */
2710 				pa = VM_PAGE_TO_PHYS(m);
2711 				m_inc = atop(roundup2(pa + 1,
2712 				    vm_reserv_size(level)) - pa);
2713 #endif
2714 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2715 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2716 				/*
2717 				 * The page is allocated but eligible for
2718 				 * relocation.  Extend the current run by one
2719 				 * page.
2720 				 */
2721 				KASSERT(pmap_page_get_memattr(m) ==
2722 				    VM_MEMATTR_DEFAULT,
2723 				    ("page %p has an unexpected memattr", m));
2724 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2725 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2726 				    ("page %p has unexpected oflags", m));
2727 				/* Don't care: PGA_NOSYNC. */
2728 				run_ext = 1;
2729 			} else
2730 				run_ext = 0;
2731 			VM_OBJECT_RUNLOCK(object);
2732 #if VM_NRESERVLEVEL > 0
2733 		} else if (level >= 0) {
2734 			/*
2735 			 * The page is reserved but not yet allocated.  In
2736 			 * other words, it is still free.  Extend the current
2737 			 * run by one page.
2738 			 */
2739 			run_ext = 1;
2740 #endif
2741 		} else if ((order = m->order) < VM_NFREEORDER) {
2742 			/*
2743 			 * The page is enqueued in the physical memory
2744 			 * allocator's free page queues.  Moreover, it is the
2745 			 * first page in a power-of-two-sized run of
2746 			 * contiguous free pages.  Add these pages to the end
2747 			 * of the current run, and jump ahead.
2748 			 */
2749 			run_ext = 1 << order;
2750 			m_inc = 1 << order;
2751 		} else {
2752 			/*
2753 			 * Skip the page for one of the following reasons: (1)
2754 			 * It is enqueued in the physical memory allocator's
2755 			 * free page queues.  However, it is not the first
2756 			 * page in a run of contiguous free pages.  (This case
2757 			 * rarely occurs because the scan is performed in
2758 			 * ascending order.) (2) It is not reserved, and it is
2759 			 * transitioning from free to allocated.  (Conversely,
2760 			 * the transition from allocated to free for managed
2761 			 * pages is blocked by the page busy lock.) (3) It is
2762 			 * allocated but not contained by an object and not
2763 			 * wired, e.g., allocated by Xen's balloon driver.
2764 			 */
2765 			run_ext = 0;
2766 		}
2767 
2768 		/*
2769 		 * Extend or reset the current run of pages.
2770 		 */
2771 		if (run_ext > 0) {
2772 			if (run_len == 0)
2773 				m_run = m;
2774 			run_len += run_ext;
2775 		} else {
2776 			if (run_len > 0) {
2777 				m_run = NULL;
2778 				run_len = 0;
2779 			}
2780 		}
2781 	}
2782 	if (run_len >= npages)
2783 		return (m_run);
2784 	return (NULL);
2785 }
2786 
2787 /*
2788  *	vm_page_reclaim_run:
2789  *
2790  *	Try to relocate each of the allocated virtual pages within the
2791  *	specified run of physical pages to a new physical address.  Free the
2792  *	physical pages underlying the relocated virtual pages.  A virtual page
2793  *	is relocatable if and only if it could be laundered or reclaimed by
2794  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2795  *	physical address above "high".
2796  *
2797  *	Returns 0 if every physical page within the run was already free or
2798  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2799  *	value indicating why the last attempt to relocate a virtual page was
2800  *	unsuccessful.
2801  *
2802  *	"req_class" must be an allocation class.
2803  */
2804 static int
2805 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2806     vm_paddr_t high)
2807 {
2808 	struct vm_domain *vmd;
2809 	struct spglist free;
2810 	vm_object_t object;
2811 	vm_paddr_t pa;
2812 	vm_page_t m, m_end, m_new;
2813 	int error, order, req;
2814 
2815 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2816 	    ("req_class is not an allocation class"));
2817 	SLIST_INIT(&free);
2818 	error = 0;
2819 	m = m_run;
2820 	m_end = m_run + npages;
2821 	for (; error == 0 && m < m_end; m++) {
2822 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2823 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2824 
2825 		/*
2826 		 * Racily check for wirings.  Races are handled once the object
2827 		 * lock is held and the page is unmapped.
2828 		 */
2829 		if (vm_page_wired(m))
2830 			error = EBUSY;
2831 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2832 			/*
2833 			 * The page is relocated if and only if it could be
2834 			 * laundered or reclaimed by the page daemon.
2835 			 */
2836 			VM_OBJECT_WLOCK(object);
2837 			/* Don't care: PG_NODUMP, PG_ZERO. */
2838 			if (m->object != object ||
2839 			    ((object->flags & OBJ_SWAP) == 0 &&
2840 			    object->type != OBJT_VNODE))
2841 				error = EINVAL;
2842 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2843 				error = EINVAL;
2844 			else if (vm_page_queue(m) != PQ_NONE &&
2845 			    vm_page_tryxbusy(m) != 0) {
2846 				if (vm_page_wired(m)) {
2847 					vm_page_xunbusy(m);
2848 					error = EBUSY;
2849 					goto unlock;
2850 				}
2851 				KASSERT(pmap_page_get_memattr(m) ==
2852 				    VM_MEMATTR_DEFAULT,
2853 				    ("page %p has an unexpected memattr", m));
2854 				KASSERT(m->oflags == 0,
2855 				    ("page %p has unexpected oflags", m));
2856 				/* Don't care: PGA_NOSYNC. */
2857 				if (!vm_page_none_valid(m)) {
2858 					/*
2859 					 * First, try to allocate a new page
2860 					 * that is above "high".  Failing
2861 					 * that, try to allocate a new page
2862 					 * that is below "m_run".  Allocate
2863 					 * the new page between the end of
2864 					 * "m_run" and "high" only as a last
2865 					 * resort.
2866 					 */
2867 					req = req_class;
2868 					if ((m->flags & PG_NODUMP) != 0)
2869 						req |= VM_ALLOC_NODUMP;
2870 					if (trunc_page(high) !=
2871 					    ~(vm_paddr_t)PAGE_MASK) {
2872 						m_new =
2873 						    vm_page_alloc_noobj_contig(
2874 						    req, 1, round_page(high),
2875 						    ~(vm_paddr_t)0, PAGE_SIZE,
2876 						    0, VM_MEMATTR_DEFAULT);
2877 					} else
2878 						m_new = NULL;
2879 					if (m_new == NULL) {
2880 						pa = VM_PAGE_TO_PHYS(m_run);
2881 						m_new =
2882 						    vm_page_alloc_noobj_contig(
2883 						    req, 1, 0, pa - 1,
2884 						    PAGE_SIZE, 0,
2885 						    VM_MEMATTR_DEFAULT);
2886 					}
2887 					if (m_new == NULL) {
2888 						pa += ptoa(npages);
2889 						m_new =
2890 						    vm_page_alloc_noobj_contig(
2891 						    req, 1, pa, high, PAGE_SIZE,
2892 						    0, VM_MEMATTR_DEFAULT);
2893 					}
2894 					if (m_new == NULL) {
2895 						vm_page_xunbusy(m);
2896 						error = ENOMEM;
2897 						goto unlock;
2898 					}
2899 
2900 					/*
2901 					 * Unmap the page and check for new
2902 					 * wirings that may have been acquired
2903 					 * through a pmap lookup.
2904 					 */
2905 					if (object->ref_count != 0 &&
2906 					    !vm_page_try_remove_all(m)) {
2907 						vm_page_xunbusy(m);
2908 						vm_page_free(m_new);
2909 						error = EBUSY;
2910 						goto unlock;
2911 					}
2912 
2913 					/*
2914 					 * Replace "m" with the new page.  For
2915 					 * vm_page_replace(), "m" must be busy
2916 					 * and dequeued.  Finally, change "m"
2917 					 * as if vm_page_free() was called.
2918 					 */
2919 					m_new->a.flags = m->a.flags &
2920 					    ~PGA_QUEUE_STATE_MASK;
2921 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2922 					    ("page %p is managed", m_new));
2923 					m_new->oflags = 0;
2924 					pmap_copy_page(m, m_new);
2925 					m_new->valid = m->valid;
2926 					m_new->dirty = m->dirty;
2927 					m->flags &= ~PG_ZERO;
2928 					vm_page_dequeue(m);
2929 					if (vm_page_replace_hold(m_new, object,
2930 					    m->pindex, m) &&
2931 					    vm_page_free_prep(m))
2932 						SLIST_INSERT_HEAD(&free, m,
2933 						    plinks.s.ss);
2934 
2935 					/*
2936 					 * The new page must be deactivated
2937 					 * before the object is unlocked.
2938 					 */
2939 					vm_page_deactivate(m_new);
2940 				} else {
2941 					m->flags &= ~PG_ZERO;
2942 					vm_page_dequeue(m);
2943 					if (vm_page_free_prep(m))
2944 						SLIST_INSERT_HEAD(&free, m,
2945 						    plinks.s.ss);
2946 					KASSERT(m->dirty == 0,
2947 					    ("page %p is dirty", m));
2948 				}
2949 			} else
2950 				error = EBUSY;
2951 unlock:
2952 			VM_OBJECT_WUNLOCK(object);
2953 		} else {
2954 			MPASS(vm_page_domain(m) == domain);
2955 			vmd = VM_DOMAIN(domain);
2956 			vm_domain_free_lock(vmd);
2957 			order = m->order;
2958 			if (order < VM_NFREEORDER) {
2959 				/*
2960 				 * The page is enqueued in the physical memory
2961 				 * allocator's free page queues.  Moreover, it
2962 				 * is the first page in a power-of-two-sized
2963 				 * run of contiguous free pages.  Jump ahead
2964 				 * to the last page within that run, and
2965 				 * continue from there.
2966 				 */
2967 				m += (1 << order) - 1;
2968 			}
2969 #if VM_NRESERVLEVEL > 0
2970 			else if (vm_reserv_is_page_free(m))
2971 				order = 0;
2972 #endif
2973 			vm_domain_free_unlock(vmd);
2974 			if (order == VM_NFREEORDER)
2975 				error = EINVAL;
2976 		}
2977 	}
2978 	if ((m = SLIST_FIRST(&free)) != NULL) {
2979 		int cnt;
2980 
2981 		vmd = VM_DOMAIN(domain);
2982 		cnt = 0;
2983 		vm_domain_free_lock(vmd);
2984 		do {
2985 			MPASS(vm_page_domain(m) == domain);
2986 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2987 			vm_phys_free_pages(m, 0);
2988 			cnt++;
2989 		} while ((m = SLIST_FIRST(&free)) != NULL);
2990 		vm_domain_free_unlock(vmd);
2991 		vm_domain_freecnt_inc(vmd, cnt);
2992 	}
2993 	return (error);
2994 }
2995 
2996 #define	NRUNS	16
2997 
2998 #define	RUN_INDEX(count, nruns)	((count) % (nruns))
2999 
3000 #define	MIN_RECLAIM	8
3001 
3002 /*
3003  *	vm_page_reclaim_contig:
3004  *
3005  *	Reclaim allocated, contiguous physical memory satisfying the specified
3006  *	conditions by relocating the virtual pages using that physical memory.
3007  *	Returns true if reclamation is successful and false otherwise.  Since
3008  *	relocation requires the allocation of physical pages, reclamation may
3009  *	fail due to a shortage of free pages.  When reclamation fails, callers
3010  *	are expected to perform vm_wait() before retrying a failed allocation
3011  *	operation, e.g., vm_page_alloc_contig().
3012  *
3013  *	The caller must always specify an allocation class through "req".
3014  *
3015  *	allocation classes:
3016  *	VM_ALLOC_NORMAL		normal process request
3017  *	VM_ALLOC_SYSTEM		system *really* needs a page
3018  *	VM_ALLOC_INTERRUPT	interrupt time request
3019  *
3020  *	The optional allocation flags are ignored.
3021  *
3022  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
3023  *	must be a power of two.
3024  */
3025 bool
3026 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3027     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3028     int desired_runs)
3029 {
3030 	struct vm_domain *vmd;
3031 	vm_paddr_t curr_low;
3032 	vm_page_t m_run, _m_runs[NRUNS], *m_runs;
3033 	u_long count, minalign, reclaimed;
3034 	int error, i, min_reclaim, nruns, options, req_class;
3035 	bool ret;
3036 
3037 	KASSERT(npages > 0, ("npages is 0"));
3038 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3039 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3040 
3041 	ret = false;
3042 
3043 	/*
3044 	 * If the caller wants to reclaim multiple runs, try to allocate
3045 	 * space to store the runs.  If that fails, fall back to the old
3046 	 * behavior of just reclaiming MIN_RECLAIM pages.
3047 	 */
3048 	if (desired_runs > 1)
3049 		m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3050 		    M_TEMP, M_NOWAIT);
3051 	else
3052 		m_runs = NULL;
3053 
3054 	if (m_runs == NULL) {
3055 		m_runs = _m_runs;
3056 		nruns = NRUNS;
3057 	} else {
3058 		nruns = NRUNS + desired_runs - 1;
3059 	}
3060 	min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3061 
3062 	/*
3063 	 * The caller will attempt an allocation after some runs have been
3064 	 * reclaimed and added to the vm_phys buddy lists.  Due to limitations
3065 	 * of vm_phys_alloc_contig(), round up the requested length to the next
3066 	 * power of two or maximum chunk size, and ensure that each run is
3067 	 * suitably aligned.
3068 	 */
3069 	minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3070 	npages = roundup2(npages, minalign);
3071 	if (alignment < ptoa(minalign))
3072 		alignment = ptoa(minalign);
3073 
3074 	/*
3075 	 * The page daemon is allowed to dig deeper into the free page list.
3076 	 */
3077 	req_class = req & VM_ALLOC_CLASS_MASK;
3078 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3079 		req_class = VM_ALLOC_SYSTEM;
3080 
3081 	/*
3082 	 * Return if the number of free pages cannot satisfy the requested
3083 	 * allocation.
3084 	 */
3085 	vmd = VM_DOMAIN(domain);
3086 	count = vmd->vmd_free_count;
3087 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
3088 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3089 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
3090 		goto done;
3091 
3092 	/*
3093 	 * Scan up to three times, relaxing the restrictions ("options") on
3094 	 * the reclamation of reservations and superpages each time.
3095 	 */
3096 	for (options = VPSC_NORESERV;;) {
3097 		/*
3098 		 * Find the highest runs that satisfy the given constraints
3099 		 * and restrictions, and record them in "m_runs".
3100 		 */
3101 		curr_low = low;
3102 		count = 0;
3103 		for (;;) {
3104 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
3105 			    high, alignment, boundary, options);
3106 			if (m_run == NULL)
3107 				break;
3108 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
3109 			m_runs[RUN_INDEX(count, nruns)] = m_run;
3110 			count++;
3111 		}
3112 
3113 		/*
3114 		 * Reclaim the highest runs in LIFO (descending) order until
3115 		 * the number of reclaimed pages, "reclaimed", is at least
3116 		 * "min_reclaim".  Reset "reclaimed" each time because each
3117 		 * reclamation is idempotent, and runs will (likely) recur
3118 		 * from one scan to the next as restrictions are relaxed.
3119 		 */
3120 		reclaimed = 0;
3121 		for (i = 0; count > 0 && i < nruns; i++) {
3122 			count--;
3123 			m_run = m_runs[RUN_INDEX(count, nruns)];
3124 			error = vm_page_reclaim_run(req_class, domain, npages,
3125 			    m_run, high);
3126 			if (error == 0) {
3127 				reclaimed += npages;
3128 				if (reclaimed >= min_reclaim) {
3129 					ret = true;
3130 					goto done;
3131 				}
3132 			}
3133 		}
3134 
3135 		/*
3136 		 * Either relax the restrictions on the next scan or return if
3137 		 * the last scan had no restrictions.
3138 		 */
3139 		if (options == VPSC_NORESERV)
3140 			options = VPSC_NOSUPER;
3141 		else if (options == VPSC_NOSUPER)
3142 			options = VPSC_ANY;
3143 		else if (options == VPSC_ANY) {
3144 			ret = reclaimed != 0;
3145 			goto done;
3146 		}
3147 	}
3148 done:
3149 	if (m_runs != _m_runs)
3150 		free(m_runs, M_TEMP);
3151 	return (ret);
3152 }
3153 
3154 bool
3155 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3156     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3157 {
3158 	return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
3159 	    alignment, boundary, 1));
3160 }
3161 
3162 bool
3163 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3164     u_long alignment, vm_paddr_t boundary)
3165 {
3166 	struct vm_domainset_iter di;
3167 	int domain;
3168 	bool ret;
3169 
3170 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3171 	do {
3172 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3173 		    high, alignment, boundary);
3174 		if (ret)
3175 			break;
3176 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3177 
3178 	return (ret);
3179 }
3180 
3181 /*
3182  * Set the domain in the appropriate page level domainset.
3183  */
3184 void
3185 vm_domain_set(struct vm_domain *vmd)
3186 {
3187 
3188 	mtx_lock(&vm_domainset_lock);
3189 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3190 		vmd->vmd_minset = 1;
3191 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3192 	}
3193 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3194 		vmd->vmd_severeset = 1;
3195 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3196 	}
3197 	mtx_unlock(&vm_domainset_lock);
3198 }
3199 
3200 /*
3201  * Clear the domain from the appropriate page level domainset.
3202  */
3203 void
3204 vm_domain_clear(struct vm_domain *vmd)
3205 {
3206 
3207 	mtx_lock(&vm_domainset_lock);
3208 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3209 		vmd->vmd_minset = 0;
3210 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3211 		if (vm_min_waiters != 0) {
3212 			vm_min_waiters = 0;
3213 			wakeup(&vm_min_domains);
3214 		}
3215 	}
3216 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3217 		vmd->vmd_severeset = 0;
3218 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3219 		if (vm_severe_waiters != 0) {
3220 			vm_severe_waiters = 0;
3221 			wakeup(&vm_severe_domains);
3222 		}
3223 	}
3224 
3225 	/*
3226 	 * If pageout daemon needs pages, then tell it that there are
3227 	 * some free.
3228 	 */
3229 	if (vmd->vmd_pageout_pages_needed &&
3230 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3231 		wakeup(&vmd->vmd_pageout_pages_needed);
3232 		vmd->vmd_pageout_pages_needed = 0;
3233 	}
3234 
3235 	/* See comments in vm_wait_doms(). */
3236 	if (vm_pageproc_waiters) {
3237 		vm_pageproc_waiters = 0;
3238 		wakeup(&vm_pageproc_waiters);
3239 	}
3240 	mtx_unlock(&vm_domainset_lock);
3241 }
3242 
3243 /*
3244  * Wait for free pages to exceed the min threshold globally.
3245  */
3246 void
3247 vm_wait_min(void)
3248 {
3249 
3250 	mtx_lock(&vm_domainset_lock);
3251 	while (vm_page_count_min()) {
3252 		vm_min_waiters++;
3253 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3254 	}
3255 	mtx_unlock(&vm_domainset_lock);
3256 }
3257 
3258 /*
3259  * Wait for free pages to exceed the severe threshold globally.
3260  */
3261 void
3262 vm_wait_severe(void)
3263 {
3264 
3265 	mtx_lock(&vm_domainset_lock);
3266 	while (vm_page_count_severe()) {
3267 		vm_severe_waiters++;
3268 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3269 		    "vmwait", 0);
3270 	}
3271 	mtx_unlock(&vm_domainset_lock);
3272 }
3273 
3274 u_int
3275 vm_wait_count(void)
3276 {
3277 
3278 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3279 }
3280 
3281 int
3282 vm_wait_doms(const domainset_t *wdoms, int mflags)
3283 {
3284 	int error;
3285 
3286 	error = 0;
3287 
3288 	/*
3289 	 * We use racey wakeup synchronization to avoid expensive global
3290 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3291 	 * To handle this, we only sleep for one tick in this instance.  It
3292 	 * is expected that most allocations for the pageproc will come from
3293 	 * kmem or vm_page_grab* which will use the more specific and
3294 	 * race-free vm_wait_domain().
3295 	 */
3296 	if (curproc == pageproc) {
3297 		mtx_lock(&vm_domainset_lock);
3298 		vm_pageproc_waiters++;
3299 		error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3300 		    PVM | PDROP | mflags, "pageprocwait", 1);
3301 	} else {
3302 		/*
3303 		 * XXX Ideally we would wait only until the allocation could
3304 		 * be satisfied.  This condition can cause new allocators to
3305 		 * consume all freed pages while old allocators wait.
3306 		 */
3307 		mtx_lock(&vm_domainset_lock);
3308 		if (vm_page_count_min_set(wdoms)) {
3309 			if (pageproc == NULL)
3310 				panic("vm_wait in early boot");
3311 			vm_min_waiters++;
3312 			error = msleep(&vm_min_domains, &vm_domainset_lock,
3313 			    PVM | PDROP | mflags, "vmwait", 0);
3314 		} else
3315 			mtx_unlock(&vm_domainset_lock);
3316 	}
3317 	return (error);
3318 }
3319 
3320 /*
3321  *	vm_wait_domain:
3322  *
3323  *	Sleep until free pages are available for allocation.
3324  *	- Called in various places after failed memory allocations.
3325  */
3326 void
3327 vm_wait_domain(int domain)
3328 {
3329 	struct vm_domain *vmd;
3330 	domainset_t wdom;
3331 
3332 	vmd = VM_DOMAIN(domain);
3333 	vm_domain_free_assert_unlocked(vmd);
3334 
3335 	if (curproc == pageproc) {
3336 		mtx_lock(&vm_domainset_lock);
3337 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3338 			vmd->vmd_pageout_pages_needed = 1;
3339 			msleep(&vmd->vmd_pageout_pages_needed,
3340 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3341 		} else
3342 			mtx_unlock(&vm_domainset_lock);
3343 	} else {
3344 		DOMAINSET_ZERO(&wdom);
3345 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3346 		vm_wait_doms(&wdom, 0);
3347 	}
3348 }
3349 
3350 static int
3351 vm_wait_flags(vm_object_t obj, int mflags)
3352 {
3353 	struct domainset *d;
3354 
3355 	d = NULL;
3356 
3357 	/*
3358 	 * Carefully fetch pointers only once: the struct domainset
3359 	 * itself is ummutable but the pointer might change.
3360 	 */
3361 	if (obj != NULL)
3362 		d = obj->domain.dr_policy;
3363 	if (d == NULL)
3364 		d = curthread->td_domain.dr_policy;
3365 
3366 	return (vm_wait_doms(&d->ds_mask, mflags));
3367 }
3368 
3369 /*
3370  *	vm_wait:
3371  *
3372  *	Sleep until free pages are available for allocation in the
3373  *	affinity domains of the obj.  If obj is NULL, the domain set
3374  *	for the calling thread is used.
3375  *	Called in various places after failed memory allocations.
3376  */
3377 void
3378 vm_wait(vm_object_t obj)
3379 {
3380 	(void)vm_wait_flags(obj, 0);
3381 }
3382 
3383 int
3384 vm_wait_intr(vm_object_t obj)
3385 {
3386 	return (vm_wait_flags(obj, PCATCH));
3387 }
3388 
3389 /*
3390  *	vm_domain_alloc_fail:
3391  *
3392  *	Called when a page allocation function fails.  Informs the
3393  *	pagedaemon and performs the requested wait.  Requires the
3394  *	domain_free and object lock on entry.  Returns with the
3395  *	object lock held and free lock released.  Returns an error when
3396  *	retry is necessary.
3397  *
3398  */
3399 static int
3400 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3401 {
3402 
3403 	vm_domain_free_assert_unlocked(vmd);
3404 
3405 	atomic_add_int(&vmd->vmd_pageout_deficit,
3406 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3407 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3408 		if (object != NULL)
3409 			VM_OBJECT_WUNLOCK(object);
3410 		vm_wait_domain(vmd->vmd_domain);
3411 		if (object != NULL)
3412 			VM_OBJECT_WLOCK(object);
3413 		if (req & VM_ALLOC_WAITOK)
3414 			return (EAGAIN);
3415 	}
3416 
3417 	return (0);
3418 }
3419 
3420 /*
3421  *	vm_waitpfault:
3422  *
3423  *	Sleep until free pages are available for allocation.
3424  *	- Called only in vm_fault so that processes page faulting
3425  *	  can be easily tracked.
3426  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3427  *	  processes will be able to grab memory first.  Do not change
3428  *	  this balance without careful testing first.
3429  */
3430 void
3431 vm_waitpfault(struct domainset *dset, int timo)
3432 {
3433 
3434 	/*
3435 	 * XXX Ideally we would wait only until the allocation could
3436 	 * be satisfied.  This condition can cause new allocators to
3437 	 * consume all freed pages while old allocators wait.
3438 	 */
3439 	mtx_lock(&vm_domainset_lock);
3440 	if (vm_page_count_min_set(&dset->ds_mask)) {
3441 		vm_min_waiters++;
3442 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3443 		    "pfault", timo);
3444 	} else
3445 		mtx_unlock(&vm_domainset_lock);
3446 }
3447 
3448 static struct vm_pagequeue *
3449 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3450 {
3451 
3452 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3453 }
3454 
3455 #ifdef INVARIANTS
3456 static struct vm_pagequeue *
3457 vm_page_pagequeue(vm_page_t m)
3458 {
3459 
3460 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3461 }
3462 #endif
3463 
3464 static __always_inline bool
3465 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3466 {
3467 	vm_page_astate_t tmp;
3468 
3469 	tmp = *old;
3470 	do {
3471 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3472 			return (true);
3473 		counter_u64_add(pqstate_commit_retries, 1);
3474 	} while (old->_bits == tmp._bits);
3475 
3476 	return (false);
3477 }
3478 
3479 /*
3480  * Do the work of committing a queue state update that moves the page out of
3481  * its current queue.
3482  */
3483 static bool
3484 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3485     vm_page_astate_t *old, vm_page_astate_t new)
3486 {
3487 	vm_page_t next;
3488 
3489 	vm_pagequeue_assert_locked(pq);
3490 	KASSERT(vm_page_pagequeue(m) == pq,
3491 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3492 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3493 	    ("%s: invalid queue indices %d %d",
3494 	    __func__, old->queue, new.queue));
3495 
3496 	/*
3497 	 * Once the queue index of the page changes there is nothing
3498 	 * synchronizing with further updates to the page's physical
3499 	 * queue state.  Therefore we must speculatively remove the page
3500 	 * from the queue now and be prepared to roll back if the queue
3501 	 * state update fails.  If the page is not physically enqueued then
3502 	 * we just update its queue index.
3503 	 */
3504 	if ((old->flags & PGA_ENQUEUED) != 0) {
3505 		new.flags &= ~PGA_ENQUEUED;
3506 		next = TAILQ_NEXT(m, plinks.q);
3507 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3508 		vm_pagequeue_cnt_dec(pq);
3509 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3510 			if (next == NULL)
3511 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3512 			else
3513 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3514 			vm_pagequeue_cnt_inc(pq);
3515 			return (false);
3516 		} else {
3517 			return (true);
3518 		}
3519 	} else {
3520 		return (vm_page_pqstate_fcmpset(m, old, new));
3521 	}
3522 }
3523 
3524 static bool
3525 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3526     vm_page_astate_t new)
3527 {
3528 	struct vm_pagequeue *pq;
3529 	vm_page_astate_t as;
3530 	bool ret;
3531 
3532 	pq = _vm_page_pagequeue(m, old->queue);
3533 
3534 	/*
3535 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3536 	 * corresponding page queue lock is held.
3537 	 */
3538 	vm_pagequeue_lock(pq);
3539 	as = vm_page_astate_load(m);
3540 	if (__predict_false(as._bits != old->_bits)) {
3541 		*old = as;
3542 		ret = false;
3543 	} else {
3544 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3545 	}
3546 	vm_pagequeue_unlock(pq);
3547 	return (ret);
3548 }
3549 
3550 /*
3551  * Commit a queue state update that enqueues or requeues a page.
3552  */
3553 static bool
3554 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3555     vm_page_astate_t *old, vm_page_astate_t new)
3556 {
3557 	struct vm_domain *vmd;
3558 
3559 	vm_pagequeue_assert_locked(pq);
3560 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3561 	    ("%s: invalid queue indices %d %d",
3562 	    __func__, old->queue, new.queue));
3563 
3564 	new.flags |= PGA_ENQUEUED;
3565 	if (!vm_page_pqstate_fcmpset(m, old, new))
3566 		return (false);
3567 
3568 	if ((old->flags & PGA_ENQUEUED) != 0)
3569 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3570 	else
3571 		vm_pagequeue_cnt_inc(pq);
3572 
3573 	/*
3574 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3575 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3576 	 * applied, even if it was set first.
3577 	 */
3578 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3579 		vmd = vm_pagequeue_domain(m);
3580 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3581 		    ("%s: invalid page queue for page %p", __func__, m));
3582 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3583 	} else {
3584 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3585 	}
3586 	return (true);
3587 }
3588 
3589 /*
3590  * Commit a queue state update that encodes a request for a deferred queue
3591  * operation.
3592  */
3593 static bool
3594 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3595     vm_page_astate_t new)
3596 {
3597 
3598 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3599 	    ("%s: invalid state, queue %d flags %x",
3600 	    __func__, new.queue, new.flags));
3601 
3602 	if (old->_bits != new._bits &&
3603 	    !vm_page_pqstate_fcmpset(m, old, new))
3604 		return (false);
3605 	vm_page_pqbatch_submit(m, new.queue);
3606 	return (true);
3607 }
3608 
3609 /*
3610  * A generic queue state update function.  This handles more cases than the
3611  * specialized functions above.
3612  */
3613 bool
3614 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3615 {
3616 
3617 	if (old->_bits == new._bits)
3618 		return (true);
3619 
3620 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3621 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3622 			return (false);
3623 		if (new.queue != PQ_NONE)
3624 			vm_page_pqbatch_submit(m, new.queue);
3625 	} else {
3626 		if (!vm_page_pqstate_fcmpset(m, old, new))
3627 			return (false);
3628 		if (new.queue != PQ_NONE &&
3629 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3630 			vm_page_pqbatch_submit(m, new.queue);
3631 	}
3632 	return (true);
3633 }
3634 
3635 /*
3636  * Apply deferred queue state updates to a page.
3637  */
3638 static inline void
3639 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3640 {
3641 	vm_page_astate_t new, old;
3642 
3643 	CRITICAL_ASSERT(curthread);
3644 	vm_pagequeue_assert_locked(pq);
3645 	KASSERT(queue < PQ_COUNT,
3646 	    ("%s: invalid queue index %d", __func__, queue));
3647 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3648 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3649 
3650 	for (old = vm_page_astate_load(m);;) {
3651 		if (__predict_false(old.queue != queue ||
3652 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3653 			counter_u64_add(queue_nops, 1);
3654 			break;
3655 		}
3656 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3657 		    ("%s: page %p is unmanaged", __func__, m));
3658 
3659 		new = old;
3660 		if ((old.flags & PGA_DEQUEUE) != 0) {
3661 			new.flags &= ~PGA_QUEUE_OP_MASK;
3662 			new.queue = PQ_NONE;
3663 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3664 			    m, &old, new))) {
3665 				counter_u64_add(queue_ops, 1);
3666 				break;
3667 			}
3668 		} else {
3669 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3670 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3671 			    m, &old, new))) {
3672 				counter_u64_add(queue_ops, 1);
3673 				break;
3674 			}
3675 		}
3676 	}
3677 }
3678 
3679 static void
3680 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3681     uint8_t queue)
3682 {
3683 	int i;
3684 
3685 	for (i = 0; i < bq->bq_cnt; i++)
3686 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3687 	vm_batchqueue_init(bq);
3688 }
3689 
3690 /*
3691  *	vm_page_pqbatch_submit:		[ internal use only ]
3692  *
3693  *	Enqueue a page in the specified page queue's batched work queue.
3694  *	The caller must have encoded the requested operation in the page
3695  *	structure's a.flags field.
3696  */
3697 void
3698 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3699 {
3700 	struct vm_batchqueue *bq;
3701 	struct vm_pagequeue *pq;
3702 	int domain, slots_remaining;
3703 
3704 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3705 
3706 	domain = vm_page_domain(m);
3707 	critical_enter();
3708 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3709 	slots_remaining = vm_batchqueue_insert(bq, m);
3710 	if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3711 		/* keep building the bq */
3712 		critical_exit();
3713 		return;
3714 	} else if (slots_remaining > 0 ) {
3715 		/* Try to process the bq if we can get the lock */
3716 		pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3717 		if (vm_pagequeue_trylock(pq)) {
3718 			vm_pqbatch_process(pq, bq, queue);
3719 			vm_pagequeue_unlock(pq);
3720 		}
3721 		critical_exit();
3722 		return;
3723 	}
3724 	critical_exit();
3725 
3726 	/* if we make it here, the bq is full so wait for the lock */
3727 
3728 	pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3729 	vm_pagequeue_lock(pq);
3730 	critical_enter();
3731 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3732 	vm_pqbatch_process(pq, bq, queue);
3733 	vm_pqbatch_process_page(pq, m, queue);
3734 	vm_pagequeue_unlock(pq);
3735 	critical_exit();
3736 }
3737 
3738 /*
3739  *	vm_page_pqbatch_drain:		[ internal use only ]
3740  *
3741  *	Force all per-CPU page queue batch queues to be drained.  This is
3742  *	intended for use in severe memory shortages, to ensure that pages
3743  *	do not remain stuck in the batch queues.
3744  */
3745 void
3746 vm_page_pqbatch_drain(void)
3747 {
3748 	struct thread *td;
3749 	struct vm_domain *vmd;
3750 	struct vm_pagequeue *pq;
3751 	int cpu, domain, queue;
3752 
3753 	td = curthread;
3754 	CPU_FOREACH(cpu) {
3755 		thread_lock(td);
3756 		sched_bind(td, cpu);
3757 		thread_unlock(td);
3758 
3759 		for (domain = 0; domain < vm_ndomains; domain++) {
3760 			vmd = VM_DOMAIN(domain);
3761 			for (queue = 0; queue < PQ_COUNT; queue++) {
3762 				pq = &vmd->vmd_pagequeues[queue];
3763 				vm_pagequeue_lock(pq);
3764 				critical_enter();
3765 				vm_pqbatch_process(pq,
3766 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3767 				critical_exit();
3768 				vm_pagequeue_unlock(pq);
3769 			}
3770 		}
3771 	}
3772 	thread_lock(td);
3773 	sched_unbind(td);
3774 	thread_unlock(td);
3775 }
3776 
3777 /*
3778  *	vm_page_dequeue_deferred:	[ internal use only ]
3779  *
3780  *	Request removal of the given page from its current page
3781  *	queue.  Physical removal from the queue may be deferred
3782  *	indefinitely.
3783  */
3784 void
3785 vm_page_dequeue_deferred(vm_page_t m)
3786 {
3787 	vm_page_astate_t new, old;
3788 
3789 	old = vm_page_astate_load(m);
3790 	do {
3791 		if (old.queue == PQ_NONE) {
3792 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3793 			    ("%s: page %p has unexpected queue state",
3794 			    __func__, m));
3795 			break;
3796 		}
3797 		new = old;
3798 		new.flags |= PGA_DEQUEUE;
3799 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3800 }
3801 
3802 /*
3803  *	vm_page_dequeue:
3804  *
3805  *	Remove the page from whichever page queue it's in, if any, before
3806  *	returning.
3807  */
3808 void
3809 vm_page_dequeue(vm_page_t m)
3810 {
3811 	vm_page_astate_t new, old;
3812 
3813 	old = vm_page_astate_load(m);
3814 	do {
3815 		if (old.queue == PQ_NONE) {
3816 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3817 			    ("%s: page %p has unexpected queue state",
3818 			    __func__, m));
3819 			break;
3820 		}
3821 		new = old;
3822 		new.flags &= ~PGA_QUEUE_OP_MASK;
3823 		new.queue = PQ_NONE;
3824 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3825 
3826 }
3827 
3828 /*
3829  * Schedule the given page for insertion into the specified page queue.
3830  * Physical insertion of the page may be deferred indefinitely.
3831  */
3832 static void
3833 vm_page_enqueue(vm_page_t m, uint8_t queue)
3834 {
3835 
3836 	KASSERT(m->a.queue == PQ_NONE &&
3837 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3838 	    ("%s: page %p is already enqueued", __func__, m));
3839 	KASSERT(m->ref_count > 0,
3840 	    ("%s: page %p does not carry any references", __func__, m));
3841 
3842 	m->a.queue = queue;
3843 	if ((m->a.flags & PGA_REQUEUE) == 0)
3844 		vm_page_aflag_set(m, PGA_REQUEUE);
3845 	vm_page_pqbatch_submit(m, queue);
3846 }
3847 
3848 /*
3849  *	vm_page_free_prep:
3850  *
3851  *	Prepares the given page to be put on the free list,
3852  *	disassociating it from any VM object. The caller may return
3853  *	the page to the free list only if this function returns true.
3854  *
3855  *	The object, if it exists, must be locked, and then the page must
3856  *	be xbusy.  Otherwise the page must be not busied.  A managed
3857  *	page must be unmapped.
3858  */
3859 static bool
3860 vm_page_free_prep(vm_page_t m)
3861 {
3862 
3863 	/*
3864 	 * Synchronize with threads that have dropped a reference to this
3865 	 * page.
3866 	 */
3867 	atomic_thread_fence_acq();
3868 
3869 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3870 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3871 		uint64_t *p;
3872 		int i;
3873 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3874 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3875 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3876 			    m, i, (uintmax_t)*p));
3877 	}
3878 #endif
3879 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3880 		KASSERT(!pmap_page_is_mapped(m),
3881 		    ("vm_page_free_prep: freeing mapped page %p", m));
3882 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3883 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3884 	} else {
3885 		KASSERT(m->a.queue == PQ_NONE,
3886 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3887 	}
3888 	VM_CNT_INC(v_tfree);
3889 
3890 	if (m->object != NULL) {
3891 		KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3892 		    ((m->object->flags & OBJ_UNMANAGED) != 0),
3893 		    ("vm_page_free_prep: managed flag mismatch for page %p",
3894 		    m));
3895 		vm_page_assert_xbusied(m);
3896 
3897 		/*
3898 		 * The object reference can be released without an atomic
3899 		 * operation.
3900 		 */
3901 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3902 		    m->ref_count == VPRC_OBJREF,
3903 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3904 		    m, m->ref_count));
3905 		vm_page_object_remove(m);
3906 		m->ref_count -= VPRC_OBJREF;
3907 	} else
3908 		vm_page_assert_unbusied(m);
3909 
3910 	vm_page_busy_free(m);
3911 
3912 	/*
3913 	 * If fictitious remove object association and
3914 	 * return.
3915 	 */
3916 	if ((m->flags & PG_FICTITIOUS) != 0) {
3917 		KASSERT(m->ref_count == 1,
3918 		    ("fictitious page %p is referenced", m));
3919 		KASSERT(m->a.queue == PQ_NONE,
3920 		    ("fictitious page %p is queued", m));
3921 		return (false);
3922 	}
3923 
3924 	/*
3925 	 * Pages need not be dequeued before they are returned to the physical
3926 	 * memory allocator, but they must at least be marked for a deferred
3927 	 * dequeue.
3928 	 */
3929 	if ((m->oflags & VPO_UNMANAGED) == 0)
3930 		vm_page_dequeue_deferred(m);
3931 
3932 	m->valid = 0;
3933 	vm_page_undirty(m);
3934 
3935 	if (m->ref_count != 0)
3936 		panic("vm_page_free_prep: page %p has references", m);
3937 
3938 	/*
3939 	 * Restore the default memory attribute to the page.
3940 	 */
3941 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3942 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3943 
3944 #if VM_NRESERVLEVEL > 0
3945 	/*
3946 	 * Determine whether the page belongs to a reservation.  If the page was
3947 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3948 	 * as an optimization, we avoid the check in that case.
3949 	 */
3950 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3951 		return (false);
3952 #endif
3953 
3954 	return (true);
3955 }
3956 
3957 /*
3958  *	vm_page_free_toq:
3959  *
3960  *	Returns the given page to the free list, disassociating it
3961  *	from any VM object.
3962  *
3963  *	The object must be locked.  The page must be exclusively busied if it
3964  *	belongs to an object.
3965  */
3966 static void
3967 vm_page_free_toq(vm_page_t m)
3968 {
3969 	struct vm_domain *vmd;
3970 	uma_zone_t zone;
3971 
3972 	if (!vm_page_free_prep(m))
3973 		return;
3974 
3975 	vmd = vm_pagequeue_domain(m);
3976 	zone = vmd->vmd_pgcache[m->pool].zone;
3977 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3978 		uma_zfree(zone, m);
3979 		return;
3980 	}
3981 	vm_domain_free_lock(vmd);
3982 	vm_phys_free_pages(m, 0);
3983 	vm_domain_free_unlock(vmd);
3984 	vm_domain_freecnt_inc(vmd, 1);
3985 }
3986 
3987 /*
3988  *	vm_page_free_pages_toq:
3989  *
3990  *	Returns a list of pages to the free list, disassociating it
3991  *	from any VM object.  In other words, this is equivalent to
3992  *	calling vm_page_free_toq() for each page of a list of VM objects.
3993  */
3994 void
3995 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3996 {
3997 	vm_page_t m;
3998 	int count;
3999 
4000 	if (SLIST_EMPTY(free))
4001 		return;
4002 
4003 	count = 0;
4004 	while ((m = SLIST_FIRST(free)) != NULL) {
4005 		count++;
4006 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
4007 		vm_page_free_toq(m);
4008 	}
4009 
4010 	if (update_wire_count)
4011 		vm_wire_sub(count);
4012 }
4013 
4014 /*
4015  * Mark this page as wired down.  For managed pages, this prevents reclamation
4016  * by the page daemon, or when the containing object, if any, is destroyed.
4017  */
4018 void
4019 vm_page_wire(vm_page_t m)
4020 {
4021 	u_int old;
4022 
4023 #ifdef INVARIANTS
4024 	if (m->object != NULL && !vm_page_busied(m) &&
4025 	    !vm_object_busied(m->object))
4026 		VM_OBJECT_ASSERT_LOCKED(m->object);
4027 #endif
4028 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4029 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
4030 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
4031 
4032 	old = atomic_fetchadd_int(&m->ref_count, 1);
4033 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4034 	    ("vm_page_wire: counter overflow for page %p", m));
4035 	if (VPRC_WIRE_COUNT(old) == 0) {
4036 		if ((m->oflags & VPO_UNMANAGED) == 0)
4037 			vm_page_aflag_set(m, PGA_DEQUEUE);
4038 		vm_wire_add(1);
4039 	}
4040 }
4041 
4042 /*
4043  * Attempt to wire a mapped page following a pmap lookup of that page.
4044  * This may fail if a thread is concurrently tearing down mappings of the page.
4045  * The transient failure is acceptable because it translates to the
4046  * failure of the caller pmap_extract_and_hold(), which should be then
4047  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4048  */
4049 bool
4050 vm_page_wire_mapped(vm_page_t m)
4051 {
4052 	u_int old;
4053 
4054 	old = m->ref_count;
4055 	do {
4056 		KASSERT(old > 0,
4057 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4058 		if ((old & VPRC_BLOCKED) != 0)
4059 			return (false);
4060 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4061 
4062 	if (VPRC_WIRE_COUNT(old) == 0) {
4063 		if ((m->oflags & VPO_UNMANAGED) == 0)
4064 			vm_page_aflag_set(m, PGA_DEQUEUE);
4065 		vm_wire_add(1);
4066 	}
4067 	return (true);
4068 }
4069 
4070 /*
4071  * Release a wiring reference to a managed page.  If the page still belongs to
4072  * an object, update its position in the page queues to reflect the reference.
4073  * If the wiring was the last reference to the page, free the page.
4074  */
4075 static void
4076 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4077 {
4078 	u_int old;
4079 
4080 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4081 	    ("%s: page %p is unmanaged", __func__, m));
4082 
4083 	/*
4084 	 * Update LRU state before releasing the wiring reference.
4085 	 * Use a release store when updating the reference count to
4086 	 * synchronize with vm_page_free_prep().
4087 	 */
4088 	old = m->ref_count;
4089 	do {
4090 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
4091 		    ("vm_page_unwire: wire count underflow for page %p", m));
4092 
4093 		if (old > VPRC_OBJREF + 1) {
4094 			/*
4095 			 * The page has at least one other wiring reference.  An
4096 			 * earlier iteration of this loop may have called
4097 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4098 			 * re-set it if necessary.
4099 			 */
4100 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4101 				vm_page_aflag_set(m, PGA_DEQUEUE);
4102 		} else if (old == VPRC_OBJREF + 1) {
4103 			/*
4104 			 * This is the last wiring.  Clear PGA_DEQUEUE and
4105 			 * update the page's queue state to reflect the
4106 			 * reference.  If the page does not belong to an object
4107 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4108 			 * clear leftover queue state.
4109 			 */
4110 			vm_page_release_toq(m, nqueue, noreuse);
4111 		} else if (old == 1) {
4112 			vm_page_aflag_clear(m, PGA_DEQUEUE);
4113 		}
4114 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4115 
4116 	if (VPRC_WIRE_COUNT(old) == 1) {
4117 		vm_wire_sub(1);
4118 		if (old == 1)
4119 			vm_page_free(m);
4120 	}
4121 }
4122 
4123 /*
4124  * Release one wiring of the specified page, potentially allowing it to be
4125  * paged out.
4126  *
4127  * Only managed pages belonging to an object can be paged out.  If the number
4128  * of wirings transitions to zero and the page is eligible for page out, then
4129  * the page is added to the specified paging queue.  If the released wiring
4130  * represented the last reference to the page, the page is freed.
4131  */
4132 void
4133 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4134 {
4135 
4136 	KASSERT(nqueue < PQ_COUNT,
4137 	    ("vm_page_unwire: invalid queue %u request for page %p",
4138 	    nqueue, m));
4139 
4140 	if ((m->oflags & VPO_UNMANAGED) != 0) {
4141 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
4142 			vm_page_free(m);
4143 		return;
4144 	}
4145 	vm_page_unwire_managed(m, nqueue, false);
4146 }
4147 
4148 /*
4149  * Unwire a page without (re-)inserting it into a page queue.  It is up
4150  * to the caller to enqueue, requeue, or free the page as appropriate.
4151  * In most cases involving managed pages, vm_page_unwire() should be used
4152  * instead.
4153  */
4154 bool
4155 vm_page_unwire_noq(vm_page_t m)
4156 {
4157 	u_int old;
4158 
4159 	old = vm_page_drop(m, 1);
4160 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4161 	    ("%s: counter underflow for page %p", __func__,  m));
4162 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4163 	    ("%s: missing ref on fictitious page %p", __func__, m));
4164 
4165 	if (VPRC_WIRE_COUNT(old) > 1)
4166 		return (false);
4167 	if ((m->oflags & VPO_UNMANAGED) == 0)
4168 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4169 	vm_wire_sub(1);
4170 	return (true);
4171 }
4172 
4173 /*
4174  * Ensure that the page ends up in the specified page queue.  If the page is
4175  * active or being moved to the active queue, ensure that its act_count is
4176  * at least ACT_INIT but do not otherwise mess with it.
4177  */
4178 static __always_inline void
4179 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4180 {
4181 	vm_page_astate_t old, new;
4182 
4183 	KASSERT(m->ref_count > 0,
4184 	    ("%s: page %p does not carry any references", __func__, m));
4185 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4186 	    ("%s: invalid flags %x", __func__, nflag));
4187 
4188 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4189 		return;
4190 
4191 	old = vm_page_astate_load(m);
4192 	do {
4193 		if ((old.flags & PGA_DEQUEUE) != 0)
4194 			break;
4195 		new = old;
4196 		new.flags &= ~PGA_QUEUE_OP_MASK;
4197 		if (nqueue == PQ_ACTIVE)
4198 			new.act_count = max(old.act_count, ACT_INIT);
4199 		if (old.queue == nqueue) {
4200 			/*
4201 			 * There is no need to requeue pages already in the
4202 			 * active queue.
4203 			 */
4204 			if (nqueue != PQ_ACTIVE ||
4205 			    (old.flags & PGA_ENQUEUED) == 0)
4206 				new.flags |= nflag;
4207 		} else {
4208 			new.flags |= nflag;
4209 			new.queue = nqueue;
4210 		}
4211 	} while (!vm_page_pqstate_commit(m, &old, new));
4212 }
4213 
4214 /*
4215  * Put the specified page on the active list (if appropriate).
4216  */
4217 void
4218 vm_page_activate(vm_page_t m)
4219 {
4220 
4221 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4222 }
4223 
4224 /*
4225  * Move the specified page to the tail of the inactive queue, or requeue
4226  * the page if it is already in the inactive queue.
4227  */
4228 void
4229 vm_page_deactivate(vm_page_t m)
4230 {
4231 
4232 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4233 }
4234 
4235 void
4236 vm_page_deactivate_noreuse(vm_page_t m)
4237 {
4238 
4239 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4240 }
4241 
4242 /*
4243  * Put a page in the laundry, or requeue it if it is already there.
4244  */
4245 void
4246 vm_page_launder(vm_page_t m)
4247 {
4248 
4249 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4250 }
4251 
4252 /*
4253  * Put a page in the PQ_UNSWAPPABLE holding queue.
4254  */
4255 void
4256 vm_page_unswappable(vm_page_t m)
4257 {
4258 
4259 	VM_OBJECT_ASSERT_LOCKED(m->object);
4260 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4261 	    ("page %p already unswappable", m));
4262 
4263 	vm_page_dequeue(m);
4264 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4265 }
4266 
4267 /*
4268  * Release a page back to the page queues in preparation for unwiring.
4269  */
4270 static void
4271 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4272 {
4273 	vm_page_astate_t old, new;
4274 	uint16_t nflag;
4275 
4276 	/*
4277 	 * Use a check of the valid bits to determine whether we should
4278 	 * accelerate reclamation of the page.  The object lock might not be
4279 	 * held here, in which case the check is racy.  At worst we will either
4280 	 * accelerate reclamation of a valid page and violate LRU, or
4281 	 * unnecessarily defer reclamation of an invalid page.
4282 	 *
4283 	 * If we were asked to not cache the page, place it near the head of the
4284 	 * inactive queue so that is reclaimed sooner.
4285 	 */
4286 	if (noreuse || vm_page_none_valid(m)) {
4287 		nqueue = PQ_INACTIVE;
4288 		nflag = PGA_REQUEUE_HEAD;
4289 	} else {
4290 		nflag = PGA_REQUEUE;
4291 	}
4292 
4293 	old = vm_page_astate_load(m);
4294 	do {
4295 		new = old;
4296 
4297 		/*
4298 		 * If the page is already in the active queue and we are not
4299 		 * trying to accelerate reclamation, simply mark it as
4300 		 * referenced and avoid any queue operations.
4301 		 */
4302 		new.flags &= ~PGA_QUEUE_OP_MASK;
4303 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4304 		    (old.flags & PGA_ENQUEUED) != 0)
4305 			new.flags |= PGA_REFERENCED;
4306 		else {
4307 			new.flags |= nflag;
4308 			new.queue = nqueue;
4309 		}
4310 	} while (!vm_page_pqstate_commit(m, &old, new));
4311 }
4312 
4313 /*
4314  * Unwire a page and either attempt to free it or re-add it to the page queues.
4315  */
4316 void
4317 vm_page_release(vm_page_t m, int flags)
4318 {
4319 	vm_object_t object;
4320 
4321 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4322 	    ("vm_page_release: page %p is unmanaged", m));
4323 
4324 	if ((flags & VPR_TRYFREE) != 0) {
4325 		for (;;) {
4326 			object = atomic_load_ptr(&m->object);
4327 			if (object == NULL)
4328 				break;
4329 			/* Depends on type-stability. */
4330 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4331 				break;
4332 			if (object == m->object) {
4333 				vm_page_release_locked(m, flags);
4334 				VM_OBJECT_WUNLOCK(object);
4335 				return;
4336 			}
4337 			VM_OBJECT_WUNLOCK(object);
4338 		}
4339 	}
4340 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4341 }
4342 
4343 /* See vm_page_release(). */
4344 void
4345 vm_page_release_locked(vm_page_t m, int flags)
4346 {
4347 
4348 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4349 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4350 	    ("vm_page_release_locked: page %p is unmanaged", m));
4351 
4352 	if (vm_page_unwire_noq(m)) {
4353 		if ((flags & VPR_TRYFREE) != 0 &&
4354 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4355 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4356 			/*
4357 			 * An unlocked lookup may have wired the page before the
4358 			 * busy lock was acquired, in which case the page must
4359 			 * not be freed.
4360 			 */
4361 			if (__predict_true(!vm_page_wired(m))) {
4362 				vm_page_free(m);
4363 				return;
4364 			}
4365 			vm_page_xunbusy(m);
4366 		} else {
4367 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4368 		}
4369 	}
4370 }
4371 
4372 static bool
4373 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4374 {
4375 	u_int old;
4376 
4377 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4378 	    ("vm_page_try_blocked_op: page %p has no object", m));
4379 	KASSERT(vm_page_busied(m),
4380 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4381 	VM_OBJECT_ASSERT_LOCKED(m->object);
4382 
4383 	old = m->ref_count;
4384 	do {
4385 		KASSERT(old != 0,
4386 		    ("vm_page_try_blocked_op: page %p has no references", m));
4387 		if (VPRC_WIRE_COUNT(old) != 0)
4388 			return (false);
4389 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4390 
4391 	(op)(m);
4392 
4393 	/*
4394 	 * If the object is read-locked, new wirings may be created via an
4395 	 * object lookup.
4396 	 */
4397 	old = vm_page_drop(m, VPRC_BLOCKED);
4398 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4399 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4400 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4401 	    old, m));
4402 	return (true);
4403 }
4404 
4405 /*
4406  * Atomically check for wirings and remove all mappings of the page.
4407  */
4408 bool
4409 vm_page_try_remove_all(vm_page_t m)
4410 {
4411 
4412 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4413 }
4414 
4415 /*
4416  * Atomically check for wirings and remove all writeable mappings of the page.
4417  */
4418 bool
4419 vm_page_try_remove_write(vm_page_t m)
4420 {
4421 
4422 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4423 }
4424 
4425 /*
4426  * vm_page_advise
4427  *
4428  * 	Apply the specified advice to the given page.
4429  */
4430 void
4431 vm_page_advise(vm_page_t m, int advice)
4432 {
4433 
4434 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4435 	vm_page_assert_xbusied(m);
4436 
4437 	if (advice == MADV_FREE)
4438 		/*
4439 		 * Mark the page clean.  This will allow the page to be freed
4440 		 * without first paging it out.  MADV_FREE pages are often
4441 		 * quickly reused by malloc(3), so we do not do anything that
4442 		 * would result in a page fault on a later access.
4443 		 */
4444 		vm_page_undirty(m);
4445 	else if (advice != MADV_DONTNEED) {
4446 		if (advice == MADV_WILLNEED)
4447 			vm_page_activate(m);
4448 		return;
4449 	}
4450 
4451 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4452 		vm_page_dirty(m);
4453 
4454 	/*
4455 	 * Clear any references to the page.  Otherwise, the page daemon will
4456 	 * immediately reactivate the page.
4457 	 */
4458 	vm_page_aflag_clear(m, PGA_REFERENCED);
4459 
4460 	/*
4461 	 * Place clean pages near the head of the inactive queue rather than
4462 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4463 	 * the page will be reused quickly.  Dirty pages not already in the
4464 	 * laundry are moved there.
4465 	 */
4466 	if (m->dirty == 0)
4467 		vm_page_deactivate_noreuse(m);
4468 	else if (!vm_page_in_laundry(m))
4469 		vm_page_launder(m);
4470 }
4471 
4472 /*
4473  *	vm_page_grab_release
4474  *
4475  *	Helper routine for grab functions to release busy on return.
4476  */
4477 static inline void
4478 vm_page_grab_release(vm_page_t m, int allocflags)
4479 {
4480 
4481 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4482 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4483 			vm_page_sunbusy(m);
4484 		else
4485 			vm_page_xunbusy(m);
4486 	}
4487 }
4488 
4489 /*
4490  *	vm_page_grab_sleep
4491  *
4492  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4493  *	if the caller should retry and false otherwise.
4494  *
4495  *	If the object is locked on entry the object will be unlocked with
4496  *	false returns and still locked but possibly having been dropped
4497  *	with true returns.
4498  */
4499 static bool
4500 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4501     const char *wmesg, int allocflags, bool locked)
4502 {
4503 
4504 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4505 		return (false);
4506 
4507 	/*
4508 	 * Reference the page before unlocking and sleeping so that
4509 	 * the page daemon is less likely to reclaim it.
4510 	 */
4511 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4512 		vm_page_reference(m);
4513 
4514 	if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4515 	    locked)
4516 		VM_OBJECT_WLOCK(object);
4517 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4518 		return (false);
4519 
4520 	return (true);
4521 }
4522 
4523 /*
4524  * Assert that the grab flags are valid.
4525  */
4526 static inline void
4527 vm_page_grab_check(int allocflags)
4528 {
4529 
4530 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4531 	    (allocflags & VM_ALLOC_WIRED) != 0,
4532 	    ("vm_page_grab*: the pages must be busied or wired"));
4533 
4534 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4535 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4536 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4537 }
4538 
4539 /*
4540  * Calculate the page allocation flags for grab.
4541  */
4542 static inline int
4543 vm_page_grab_pflags(int allocflags)
4544 {
4545 	int pflags;
4546 
4547 	pflags = allocflags &
4548 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4549 	    VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4550 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4551 		pflags |= VM_ALLOC_WAITFAIL;
4552 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4553 		pflags |= VM_ALLOC_SBUSY;
4554 
4555 	return (pflags);
4556 }
4557 
4558 /*
4559  * Grab a page, waiting until we are waken up due to the page
4560  * changing state.  We keep on waiting, if the page continues
4561  * to be in the object.  If the page doesn't exist, first allocate it
4562  * and then conditionally zero it.
4563  *
4564  * This routine may sleep.
4565  *
4566  * The object must be locked on entry.  The lock will, however, be released
4567  * and reacquired if the routine sleeps.
4568  */
4569 vm_page_t
4570 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4571 {
4572 	vm_page_t m;
4573 
4574 	VM_OBJECT_ASSERT_WLOCKED(object);
4575 	vm_page_grab_check(allocflags);
4576 
4577 retrylookup:
4578 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4579 		if (!vm_page_tryacquire(m, allocflags)) {
4580 			if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4581 			    allocflags, true))
4582 				goto retrylookup;
4583 			return (NULL);
4584 		}
4585 		goto out;
4586 	}
4587 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4588 		return (NULL);
4589 	m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4590 	if (m == NULL) {
4591 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4592 			return (NULL);
4593 		goto retrylookup;
4594 	}
4595 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4596 		pmap_zero_page(m);
4597 
4598 out:
4599 	vm_page_grab_release(m, allocflags);
4600 
4601 	return (m);
4602 }
4603 
4604 /*
4605  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4606  * and an optional previous page to avoid the radix lookup.  The resulting
4607  * page will be validated against the identity tuple and busied or wired
4608  * as requested.  A NULL *mp return guarantees that the page was not in
4609  * radix at the time of the call but callers must perform higher level
4610  * synchronization or retry the operation under a lock if they require
4611  * an atomic answer.  This is the only lock free validation routine,
4612  * other routines can depend on the resulting page state.
4613  *
4614  * The return value indicates whether the operation failed due to caller
4615  * flags.  The return is tri-state with mp:
4616  *
4617  * (true, *mp != NULL) - The operation was successful.
4618  * (true, *mp == NULL) - The page was not found in tree.
4619  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4620  */
4621 static bool
4622 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4623     vm_page_t prev, vm_page_t *mp, int allocflags)
4624 {
4625 	vm_page_t m;
4626 
4627 	vm_page_grab_check(allocflags);
4628 	MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4629 
4630 	*mp = NULL;
4631 	for (;;) {
4632 		/*
4633 		 * We may see a false NULL here because the previous page
4634 		 * has been removed or just inserted and the list is loaded
4635 		 * without barriers.  Switch to radix to verify.
4636 		 */
4637 		if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4638 		    QMD_IS_TRASHED(m) || m->pindex != pindex ||
4639 		    atomic_load_ptr(&m->object) != object) {
4640 			prev = NULL;
4641 			/*
4642 			 * This guarantees the result is instantaneously
4643 			 * correct.
4644 			 */
4645 			m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4646 		}
4647 		if (m == NULL)
4648 			return (true);
4649 		if (vm_page_trybusy(m, allocflags)) {
4650 			if (m->object == object && m->pindex == pindex)
4651 				break;
4652 			/* relookup. */
4653 			vm_page_busy_release(m);
4654 			cpu_spinwait();
4655 			continue;
4656 		}
4657 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4658 		    allocflags, false))
4659 			return (false);
4660 	}
4661 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4662 		vm_page_wire(m);
4663 	vm_page_grab_release(m, allocflags);
4664 	*mp = m;
4665 	return (true);
4666 }
4667 
4668 /*
4669  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4670  * is not set.
4671  */
4672 vm_page_t
4673 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4674 {
4675 	vm_page_t m;
4676 
4677 	vm_page_grab_check(allocflags);
4678 
4679 	if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4680 		return (NULL);
4681 	if (m != NULL)
4682 		return (m);
4683 
4684 	/*
4685 	 * The radix lockless lookup should never return a false negative
4686 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4687 	 * was no page present at the instant of the call.  A NOCREAT caller
4688 	 * must handle create races gracefully.
4689 	 */
4690 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4691 		return (NULL);
4692 
4693 	VM_OBJECT_WLOCK(object);
4694 	m = vm_page_grab(object, pindex, allocflags);
4695 	VM_OBJECT_WUNLOCK(object);
4696 
4697 	return (m);
4698 }
4699 
4700 /*
4701  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4702  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4703  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4704  * in simultaneously.  Additional pages will be left on a paging queue but
4705  * will neither be wired nor busy regardless of allocflags.
4706  */
4707 int
4708 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4709 {
4710 	vm_page_t m;
4711 	vm_page_t ma[VM_INITIAL_PAGEIN];
4712 	int after, i, pflags, rv;
4713 
4714 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4715 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4716 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4717 	KASSERT((allocflags &
4718 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4719 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4720 	VM_OBJECT_ASSERT_WLOCKED(object);
4721 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4722 	    VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4723 	pflags |= VM_ALLOC_WAITFAIL;
4724 
4725 retrylookup:
4726 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4727 		/*
4728 		 * If the page is fully valid it can only become invalid
4729 		 * with the object lock held.  If it is not valid it can
4730 		 * become valid with the busy lock held.  Therefore, we
4731 		 * may unnecessarily lock the exclusive busy here if we
4732 		 * race with I/O completion not using the object lock.
4733 		 * However, we will not end up with an invalid page and a
4734 		 * shared lock.
4735 		 */
4736 		if (!vm_page_trybusy(m,
4737 		    vm_page_all_valid(m) ? allocflags : 0)) {
4738 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4739 			    allocflags, true);
4740 			goto retrylookup;
4741 		}
4742 		if (vm_page_all_valid(m))
4743 			goto out;
4744 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4745 			vm_page_busy_release(m);
4746 			*mp = NULL;
4747 			return (VM_PAGER_FAIL);
4748 		}
4749 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4750 		*mp = NULL;
4751 		return (VM_PAGER_FAIL);
4752 	} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4753 		if (!vm_pager_can_alloc_page(object, pindex)) {
4754 			*mp = NULL;
4755 			return (VM_PAGER_AGAIN);
4756 		}
4757 		goto retrylookup;
4758 	}
4759 
4760 	vm_page_assert_xbusied(m);
4761 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4762 		after = MIN(after, VM_INITIAL_PAGEIN);
4763 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4764 		after = MAX(after, 1);
4765 		ma[0] = m;
4766 		for (i = 1; i < after; i++) {
4767 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4768 				if (vm_page_any_valid(ma[i]) ||
4769 				    !vm_page_tryxbusy(ma[i]))
4770 					break;
4771 			} else {
4772 				ma[i] = vm_page_alloc(object, m->pindex + i,
4773 				    VM_ALLOC_NORMAL);
4774 				if (ma[i] == NULL)
4775 					break;
4776 			}
4777 		}
4778 		after = i;
4779 		vm_object_pip_add(object, after);
4780 		VM_OBJECT_WUNLOCK(object);
4781 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4782 		VM_OBJECT_WLOCK(object);
4783 		vm_object_pip_wakeupn(object, after);
4784 		/* Pager may have replaced a page. */
4785 		m = ma[0];
4786 		if (rv != VM_PAGER_OK) {
4787 			for (i = 0; i < after; i++) {
4788 				if (!vm_page_wired(ma[i]))
4789 					vm_page_free(ma[i]);
4790 				else
4791 					vm_page_xunbusy(ma[i]);
4792 			}
4793 			*mp = NULL;
4794 			return (rv);
4795 		}
4796 		for (i = 1; i < after; i++)
4797 			vm_page_readahead_finish(ma[i]);
4798 		MPASS(vm_page_all_valid(m));
4799 	} else {
4800 		vm_page_zero_invalid(m, TRUE);
4801 	}
4802 out:
4803 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4804 		vm_page_wire(m);
4805 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4806 		vm_page_busy_downgrade(m);
4807 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4808 		vm_page_busy_release(m);
4809 	*mp = m;
4810 	return (VM_PAGER_OK);
4811 }
4812 
4813 /*
4814  * Locklessly grab a valid page.  If the page is not valid or not yet
4815  * allocated this will fall back to the object lock method.
4816  */
4817 int
4818 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4819     vm_pindex_t pindex, int allocflags)
4820 {
4821 	vm_page_t m;
4822 	int flags;
4823 	int error;
4824 
4825 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4826 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4827 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4828 	    "mismatch"));
4829 	KASSERT((allocflags &
4830 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4831 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4832 
4833 	/*
4834 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
4835 	 * before we can inspect the valid field and return a wired page.
4836 	 */
4837 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4838 	if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4839 		return (VM_PAGER_FAIL);
4840 	if ((m = *mp) != NULL) {
4841 		if (vm_page_all_valid(m)) {
4842 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4843 				vm_page_wire(m);
4844 			vm_page_grab_release(m, allocflags);
4845 			return (VM_PAGER_OK);
4846 		}
4847 		vm_page_busy_release(m);
4848 	}
4849 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4850 		*mp = NULL;
4851 		return (VM_PAGER_FAIL);
4852 	}
4853 	VM_OBJECT_WLOCK(object);
4854 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
4855 	VM_OBJECT_WUNLOCK(object);
4856 
4857 	return (error);
4858 }
4859 
4860 /*
4861  * Return the specified range of pages from the given object.  For each
4862  * page offset within the range, if a page already exists within the object
4863  * at that offset and it is busy, then wait for it to change state.  If,
4864  * instead, the page doesn't exist, then allocate it.
4865  *
4866  * The caller must always specify an allocation class.
4867  *
4868  * allocation classes:
4869  *	VM_ALLOC_NORMAL		normal process request
4870  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4871  *
4872  * The caller must always specify that the pages are to be busied and/or
4873  * wired.
4874  *
4875  * optional allocation flags:
4876  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4877  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4878  *	VM_ALLOC_NOWAIT		do not sleep
4879  *	VM_ALLOC_SBUSY		set page to sbusy state
4880  *	VM_ALLOC_WIRED		wire the pages
4881  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4882  *
4883  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4884  * may return a partial prefix of the requested range.
4885  */
4886 int
4887 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4888     vm_page_t *ma, int count)
4889 {
4890 	vm_page_t m, mpred;
4891 	int pflags;
4892 	int i;
4893 
4894 	VM_OBJECT_ASSERT_WLOCKED(object);
4895 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4896 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4897 	KASSERT(count > 0,
4898 	    ("vm_page_grab_pages: invalid page count %d", count));
4899 	vm_page_grab_check(allocflags);
4900 
4901 	pflags = vm_page_grab_pflags(allocflags);
4902 	i = 0;
4903 retrylookup:
4904 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4905 	if (m == NULL || m->pindex != pindex + i) {
4906 		mpred = m;
4907 		m = NULL;
4908 	} else
4909 		mpred = TAILQ_PREV(m, pglist, listq);
4910 	for (; i < count; i++) {
4911 		if (m != NULL) {
4912 			if (!vm_page_tryacquire(m, allocflags)) {
4913 				if (vm_page_grab_sleep(object, m, pindex + i,
4914 				    "grbmaw", allocflags, true))
4915 					goto retrylookup;
4916 				break;
4917 			}
4918 		} else {
4919 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4920 				break;
4921 			m = vm_page_alloc_after(object, pindex + i,
4922 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4923 			if (m == NULL) {
4924 				if ((allocflags & (VM_ALLOC_NOWAIT |
4925 				    VM_ALLOC_WAITFAIL)) != 0)
4926 					break;
4927 				goto retrylookup;
4928 			}
4929 		}
4930 		if (vm_page_none_valid(m) &&
4931 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4932 			if ((m->flags & PG_ZERO) == 0)
4933 				pmap_zero_page(m);
4934 			vm_page_valid(m);
4935 		}
4936 		vm_page_grab_release(m, allocflags);
4937 		ma[i] = mpred = m;
4938 		m = vm_page_next(m);
4939 	}
4940 	return (i);
4941 }
4942 
4943 /*
4944  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4945  * and will fall back to the locked variant to handle allocation.
4946  */
4947 int
4948 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4949     int allocflags, vm_page_t *ma, int count)
4950 {
4951 	vm_page_t m, pred;
4952 	int flags;
4953 	int i;
4954 
4955 	KASSERT(count > 0,
4956 	    ("vm_page_grab_pages_unlocked: invalid page count %d", count));
4957 	vm_page_grab_check(allocflags);
4958 
4959 	/*
4960 	 * Modify flags for lockless acquire to hold the page until we
4961 	 * set it valid if necessary.
4962 	 */
4963 	flags = allocflags & ~VM_ALLOC_NOBUSY;
4964 	pred = NULL;
4965 	for (i = 0; i < count; i++, pindex++) {
4966 		if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4967 			return (i);
4968 		if (m == NULL)
4969 			break;
4970 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4971 			if ((m->flags & PG_ZERO) == 0)
4972 				pmap_zero_page(m);
4973 			vm_page_valid(m);
4974 		}
4975 		/* m will still be wired or busy according to flags. */
4976 		vm_page_grab_release(m, allocflags);
4977 		pred = ma[i] = m;
4978 	}
4979 	if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
4980 		return (i);
4981 	count -= i;
4982 	VM_OBJECT_WLOCK(object);
4983 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4984 	VM_OBJECT_WUNLOCK(object);
4985 
4986 	return (i);
4987 }
4988 
4989 /*
4990  * Mapping function for valid or dirty bits in a page.
4991  *
4992  * Inputs are required to range within a page.
4993  */
4994 vm_page_bits_t
4995 vm_page_bits(int base, int size)
4996 {
4997 	int first_bit;
4998 	int last_bit;
4999 
5000 	KASSERT(
5001 	    base + size <= PAGE_SIZE,
5002 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
5003 	);
5004 
5005 	if (size == 0)		/* handle degenerate case */
5006 		return (0);
5007 
5008 	first_bit = base >> DEV_BSHIFT;
5009 	last_bit = (base + size - 1) >> DEV_BSHIFT;
5010 
5011 	return (((vm_page_bits_t)2 << last_bit) -
5012 	    ((vm_page_bits_t)1 << first_bit));
5013 }
5014 
5015 void
5016 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5017 {
5018 
5019 #if PAGE_SIZE == 32768
5020 	atomic_set_64((uint64_t *)bits, set);
5021 #elif PAGE_SIZE == 16384
5022 	atomic_set_32((uint32_t *)bits, set);
5023 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5024 	atomic_set_16((uint16_t *)bits, set);
5025 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5026 	atomic_set_8((uint8_t *)bits, set);
5027 #else		/* PAGE_SIZE <= 8192 */
5028 	uintptr_t addr;
5029 	int shift;
5030 
5031 	addr = (uintptr_t)bits;
5032 	/*
5033 	 * Use a trick to perform a 32-bit atomic on the
5034 	 * containing aligned word, to not depend on the existence
5035 	 * of atomic_{set, clear}_{8, 16}.
5036 	 */
5037 	shift = addr & (sizeof(uint32_t) - 1);
5038 #if BYTE_ORDER == BIG_ENDIAN
5039 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5040 #else
5041 	shift *= NBBY;
5042 #endif
5043 	addr &= ~(sizeof(uint32_t) - 1);
5044 	atomic_set_32((uint32_t *)addr, set << shift);
5045 #endif		/* PAGE_SIZE */
5046 }
5047 
5048 static inline void
5049 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5050 {
5051 
5052 #if PAGE_SIZE == 32768
5053 	atomic_clear_64((uint64_t *)bits, clear);
5054 #elif PAGE_SIZE == 16384
5055 	atomic_clear_32((uint32_t *)bits, clear);
5056 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5057 	atomic_clear_16((uint16_t *)bits, clear);
5058 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5059 	atomic_clear_8((uint8_t *)bits, clear);
5060 #else		/* PAGE_SIZE <= 8192 */
5061 	uintptr_t addr;
5062 	int shift;
5063 
5064 	addr = (uintptr_t)bits;
5065 	/*
5066 	 * Use a trick to perform a 32-bit atomic on the
5067 	 * containing aligned word, to not depend on the existence
5068 	 * of atomic_{set, clear}_{8, 16}.
5069 	 */
5070 	shift = addr & (sizeof(uint32_t) - 1);
5071 #if BYTE_ORDER == BIG_ENDIAN
5072 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5073 #else
5074 	shift *= NBBY;
5075 #endif
5076 	addr &= ~(sizeof(uint32_t) - 1);
5077 	atomic_clear_32((uint32_t *)addr, clear << shift);
5078 #endif		/* PAGE_SIZE */
5079 }
5080 
5081 static inline vm_page_bits_t
5082 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5083 {
5084 #if PAGE_SIZE == 32768
5085 	uint64_t old;
5086 
5087 	old = *bits;
5088 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5089 	return (old);
5090 #elif PAGE_SIZE == 16384
5091 	uint32_t old;
5092 
5093 	old = *bits;
5094 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5095 	return (old);
5096 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5097 	uint16_t old;
5098 
5099 	old = *bits;
5100 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5101 	return (old);
5102 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5103 	uint8_t old;
5104 
5105 	old = *bits;
5106 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5107 	return (old);
5108 #else		/* PAGE_SIZE <= 4096*/
5109 	uintptr_t addr;
5110 	uint32_t old, new, mask;
5111 	int shift;
5112 
5113 	addr = (uintptr_t)bits;
5114 	/*
5115 	 * Use a trick to perform a 32-bit atomic on the
5116 	 * containing aligned word, to not depend on the existence
5117 	 * of atomic_{set, swap, clear}_{8, 16}.
5118 	 */
5119 	shift = addr & (sizeof(uint32_t) - 1);
5120 #if BYTE_ORDER == BIG_ENDIAN
5121 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5122 #else
5123 	shift *= NBBY;
5124 #endif
5125 	addr &= ~(sizeof(uint32_t) - 1);
5126 	mask = VM_PAGE_BITS_ALL << shift;
5127 
5128 	old = *bits;
5129 	do {
5130 		new = old & ~mask;
5131 		new |= newbits << shift;
5132 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5133 	return (old >> shift);
5134 #endif		/* PAGE_SIZE */
5135 }
5136 
5137 /*
5138  *	vm_page_set_valid_range:
5139  *
5140  *	Sets portions of a page valid.  The arguments are expected
5141  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5142  *	of any partial chunks touched by the range.  The invalid portion of
5143  *	such chunks will be zeroed.
5144  *
5145  *	(base + size) must be less then or equal to PAGE_SIZE.
5146  */
5147 void
5148 vm_page_set_valid_range(vm_page_t m, int base, int size)
5149 {
5150 	int endoff, frag;
5151 	vm_page_bits_t pagebits;
5152 
5153 	vm_page_assert_busied(m);
5154 	if (size == 0)	/* handle degenerate case */
5155 		return;
5156 
5157 	/*
5158 	 * If the base is not DEV_BSIZE aligned and the valid
5159 	 * bit is clear, we have to zero out a portion of the
5160 	 * first block.
5161 	 */
5162 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5163 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5164 		pmap_zero_page_area(m, frag, base - frag);
5165 
5166 	/*
5167 	 * If the ending offset is not DEV_BSIZE aligned and the
5168 	 * valid bit is clear, we have to zero out a portion of
5169 	 * the last block.
5170 	 */
5171 	endoff = base + size;
5172 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5173 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5174 		pmap_zero_page_area(m, endoff,
5175 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5176 
5177 	/*
5178 	 * Assert that no previously invalid block that is now being validated
5179 	 * is already dirty.
5180 	 */
5181 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5182 	    ("vm_page_set_valid_range: page %p is dirty", m));
5183 
5184 	/*
5185 	 * Set valid bits inclusive of any overlap.
5186 	 */
5187 	pagebits = vm_page_bits(base, size);
5188 	if (vm_page_xbusied(m))
5189 		m->valid |= pagebits;
5190 	else
5191 		vm_page_bits_set(m, &m->valid, pagebits);
5192 }
5193 
5194 /*
5195  * Set the page dirty bits and free the invalid swap space if
5196  * present.  Returns the previous dirty bits.
5197  */
5198 vm_page_bits_t
5199 vm_page_set_dirty(vm_page_t m)
5200 {
5201 	vm_page_bits_t old;
5202 
5203 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5204 
5205 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5206 		old = m->dirty;
5207 		m->dirty = VM_PAGE_BITS_ALL;
5208 	} else
5209 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5210 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5211 		vm_pager_page_unswapped(m);
5212 
5213 	return (old);
5214 }
5215 
5216 /*
5217  * Clear the given bits from the specified page's dirty field.
5218  */
5219 static __inline void
5220 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5221 {
5222 
5223 	vm_page_assert_busied(m);
5224 
5225 	/*
5226 	 * If the page is xbusied and not write mapped we are the
5227 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5228 	 * layer can call vm_page_dirty() without holding a distinguished
5229 	 * lock.  The combination of page busy and atomic operations
5230 	 * suffice to guarantee consistency of the page dirty field.
5231 	 */
5232 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5233 		m->dirty &= ~pagebits;
5234 	else
5235 		vm_page_bits_clear(m, &m->dirty, pagebits);
5236 }
5237 
5238 /*
5239  *	vm_page_set_validclean:
5240  *
5241  *	Sets portions of a page valid and clean.  The arguments are expected
5242  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5243  *	of any partial chunks touched by the range.  The invalid portion of
5244  *	such chunks will be zero'd.
5245  *
5246  *	(base + size) must be less then or equal to PAGE_SIZE.
5247  */
5248 void
5249 vm_page_set_validclean(vm_page_t m, int base, int size)
5250 {
5251 	vm_page_bits_t oldvalid, pagebits;
5252 	int endoff, frag;
5253 
5254 	vm_page_assert_busied(m);
5255 	if (size == 0)	/* handle degenerate case */
5256 		return;
5257 
5258 	/*
5259 	 * If the base is not DEV_BSIZE aligned and the valid
5260 	 * bit is clear, we have to zero out a portion of the
5261 	 * first block.
5262 	 */
5263 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5264 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5265 		pmap_zero_page_area(m, frag, base - frag);
5266 
5267 	/*
5268 	 * If the ending offset is not DEV_BSIZE aligned and the
5269 	 * valid bit is clear, we have to zero out a portion of
5270 	 * the last block.
5271 	 */
5272 	endoff = base + size;
5273 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5274 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5275 		pmap_zero_page_area(m, endoff,
5276 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5277 
5278 	/*
5279 	 * Set valid, clear dirty bits.  If validating the entire
5280 	 * page we can safely clear the pmap modify bit.  We also
5281 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5282 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5283 	 * be set again.
5284 	 *
5285 	 * We set valid bits inclusive of any overlap, but we can only
5286 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5287 	 * the range.
5288 	 */
5289 	oldvalid = m->valid;
5290 	pagebits = vm_page_bits(base, size);
5291 	if (vm_page_xbusied(m))
5292 		m->valid |= pagebits;
5293 	else
5294 		vm_page_bits_set(m, &m->valid, pagebits);
5295 #if 0	/* NOT YET */
5296 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5297 		frag = DEV_BSIZE - frag;
5298 		base += frag;
5299 		size -= frag;
5300 		if (size < 0)
5301 			size = 0;
5302 	}
5303 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5304 #endif
5305 	if (base == 0 && size == PAGE_SIZE) {
5306 		/*
5307 		 * The page can only be modified within the pmap if it is
5308 		 * mapped, and it can only be mapped if it was previously
5309 		 * fully valid.
5310 		 */
5311 		if (oldvalid == VM_PAGE_BITS_ALL)
5312 			/*
5313 			 * Perform the pmap_clear_modify() first.  Otherwise,
5314 			 * a concurrent pmap operation, such as
5315 			 * pmap_protect(), could clear a modification in the
5316 			 * pmap and set the dirty field on the page before
5317 			 * pmap_clear_modify() had begun and after the dirty
5318 			 * field was cleared here.
5319 			 */
5320 			pmap_clear_modify(m);
5321 		m->dirty = 0;
5322 		vm_page_aflag_clear(m, PGA_NOSYNC);
5323 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5324 		m->dirty &= ~pagebits;
5325 	else
5326 		vm_page_clear_dirty_mask(m, pagebits);
5327 }
5328 
5329 void
5330 vm_page_clear_dirty(vm_page_t m, int base, int size)
5331 {
5332 
5333 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5334 }
5335 
5336 /*
5337  *	vm_page_set_invalid:
5338  *
5339  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5340  *	valid and dirty bits for the effected areas are cleared.
5341  */
5342 void
5343 vm_page_set_invalid(vm_page_t m, int base, int size)
5344 {
5345 	vm_page_bits_t bits;
5346 	vm_object_t object;
5347 
5348 	/*
5349 	 * The object lock is required so that pages can't be mapped
5350 	 * read-only while we're in the process of invalidating them.
5351 	 */
5352 	object = m->object;
5353 	VM_OBJECT_ASSERT_WLOCKED(object);
5354 	vm_page_assert_busied(m);
5355 
5356 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5357 	    size >= object->un_pager.vnp.vnp_size)
5358 		bits = VM_PAGE_BITS_ALL;
5359 	else
5360 		bits = vm_page_bits(base, size);
5361 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5362 		pmap_remove_all(m);
5363 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5364 	    !pmap_page_is_mapped(m),
5365 	    ("vm_page_set_invalid: page %p is mapped", m));
5366 	if (vm_page_xbusied(m)) {
5367 		m->valid &= ~bits;
5368 		m->dirty &= ~bits;
5369 	} else {
5370 		vm_page_bits_clear(m, &m->valid, bits);
5371 		vm_page_bits_clear(m, &m->dirty, bits);
5372 	}
5373 }
5374 
5375 /*
5376  *	vm_page_invalid:
5377  *
5378  *	Invalidates the entire page.  The page must be busy, unmapped, and
5379  *	the enclosing object must be locked.  The object locks protects
5380  *	against concurrent read-only pmap enter which is done without
5381  *	busy.
5382  */
5383 void
5384 vm_page_invalid(vm_page_t m)
5385 {
5386 
5387 	vm_page_assert_busied(m);
5388 	VM_OBJECT_ASSERT_WLOCKED(m->object);
5389 	MPASS(!pmap_page_is_mapped(m));
5390 
5391 	if (vm_page_xbusied(m))
5392 		m->valid = 0;
5393 	else
5394 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5395 }
5396 
5397 /*
5398  * vm_page_zero_invalid()
5399  *
5400  *	The kernel assumes that the invalid portions of a page contain
5401  *	garbage, but such pages can be mapped into memory by user code.
5402  *	When this occurs, we must zero out the non-valid portions of the
5403  *	page so user code sees what it expects.
5404  *
5405  *	Pages are most often semi-valid when the end of a file is mapped
5406  *	into memory and the file's size is not page aligned.
5407  */
5408 void
5409 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5410 {
5411 	int b;
5412 	int i;
5413 
5414 	/*
5415 	 * Scan the valid bits looking for invalid sections that
5416 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5417 	 * valid bit may be set ) have already been zeroed by
5418 	 * vm_page_set_validclean().
5419 	 */
5420 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5421 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5422 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5423 			if (i > b) {
5424 				pmap_zero_page_area(m,
5425 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5426 			}
5427 			b = i + 1;
5428 		}
5429 	}
5430 
5431 	/*
5432 	 * setvalid is TRUE when we can safely set the zero'd areas
5433 	 * as being valid.  We can do this if there are no cache consistency
5434 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5435 	 */
5436 	if (setvalid)
5437 		vm_page_valid(m);
5438 }
5439 
5440 /*
5441  *	vm_page_is_valid:
5442  *
5443  *	Is (partial) page valid?  Note that the case where size == 0
5444  *	will return FALSE in the degenerate case where the page is
5445  *	entirely invalid, and TRUE otherwise.
5446  *
5447  *	Some callers envoke this routine without the busy lock held and
5448  *	handle races via higher level locks.  Typical callers should
5449  *	hold a busy lock to prevent invalidation.
5450  */
5451 int
5452 vm_page_is_valid(vm_page_t m, int base, int size)
5453 {
5454 	vm_page_bits_t bits;
5455 
5456 	bits = vm_page_bits(base, size);
5457 	return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5458 }
5459 
5460 /*
5461  * Returns true if all of the specified predicates are true for the entire
5462  * (super)page and false otherwise.
5463  */
5464 bool
5465 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5466 {
5467 	vm_object_t object;
5468 	int i, npages;
5469 
5470 	object = m->object;
5471 	if (skip_m != NULL && skip_m->object != object)
5472 		return (false);
5473 	VM_OBJECT_ASSERT_LOCKED(object);
5474 	npages = atop(pagesizes[m->psind]);
5475 
5476 	/*
5477 	 * The physically contiguous pages that make up a superpage, i.e., a
5478 	 * page with a page size index ("psind") greater than zero, will
5479 	 * occupy adjacent entries in vm_page_array[].
5480 	 */
5481 	for (i = 0; i < npages; i++) {
5482 		/* Always test object consistency, including "skip_m". */
5483 		if (m[i].object != object)
5484 			return (false);
5485 		if (&m[i] == skip_m)
5486 			continue;
5487 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5488 			return (false);
5489 		if ((flags & PS_ALL_DIRTY) != 0) {
5490 			/*
5491 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5492 			 * might stop this case from spuriously returning
5493 			 * "false".  However, that would require a write lock
5494 			 * on the object containing "m[i]".
5495 			 */
5496 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5497 				return (false);
5498 		}
5499 		if ((flags & PS_ALL_VALID) != 0 &&
5500 		    m[i].valid != VM_PAGE_BITS_ALL)
5501 			return (false);
5502 	}
5503 	return (true);
5504 }
5505 
5506 /*
5507  * Set the page's dirty bits if the page is modified.
5508  */
5509 void
5510 vm_page_test_dirty(vm_page_t m)
5511 {
5512 
5513 	vm_page_assert_busied(m);
5514 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5515 		vm_page_dirty(m);
5516 }
5517 
5518 void
5519 vm_page_valid(vm_page_t m)
5520 {
5521 
5522 	vm_page_assert_busied(m);
5523 	if (vm_page_xbusied(m))
5524 		m->valid = VM_PAGE_BITS_ALL;
5525 	else
5526 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5527 }
5528 
5529 void
5530 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5531 {
5532 
5533 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5534 }
5535 
5536 void
5537 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5538 {
5539 
5540 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5541 }
5542 
5543 int
5544 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5545 {
5546 
5547 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5548 }
5549 
5550 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5551 void
5552 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5553 {
5554 
5555 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5556 }
5557 
5558 void
5559 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5560 {
5561 
5562 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5563 }
5564 #endif
5565 
5566 #ifdef INVARIANTS
5567 void
5568 vm_page_object_busy_assert(vm_page_t m)
5569 {
5570 
5571 	/*
5572 	 * Certain of the page's fields may only be modified by the
5573 	 * holder of a page or object busy.
5574 	 */
5575 	if (m->object != NULL && !vm_page_busied(m))
5576 		VM_OBJECT_ASSERT_BUSY(m->object);
5577 }
5578 
5579 void
5580 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5581 {
5582 
5583 	if ((bits & PGA_WRITEABLE) == 0)
5584 		return;
5585 
5586 	/*
5587 	 * The PGA_WRITEABLE flag can only be set if the page is
5588 	 * managed, is exclusively busied or the object is locked.
5589 	 * Currently, this flag is only set by pmap_enter().
5590 	 */
5591 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5592 	    ("PGA_WRITEABLE on unmanaged page"));
5593 	if (!vm_page_xbusied(m))
5594 		VM_OBJECT_ASSERT_BUSY(m->object);
5595 }
5596 #endif
5597 
5598 #include "opt_ddb.h"
5599 #ifdef DDB
5600 #include <sys/kernel.h>
5601 
5602 #include <ddb/ddb.h>
5603 
5604 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5605 {
5606 
5607 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5608 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5609 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5610 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5611 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5612 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5613 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5614 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5615 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5616 }
5617 
5618 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5619 {
5620 	int dom;
5621 
5622 	db_printf("pq_free %d\n", vm_free_count());
5623 	for (dom = 0; dom < vm_ndomains; dom++) {
5624 		db_printf(
5625     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5626 		    dom,
5627 		    vm_dom[dom].vmd_page_count,
5628 		    vm_dom[dom].vmd_free_count,
5629 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5630 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5631 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5632 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5633 	}
5634 }
5635 
5636 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5637 {
5638 	vm_page_t m;
5639 	boolean_t phys, virt;
5640 
5641 	if (!have_addr) {
5642 		db_printf("show pginfo addr\n");
5643 		return;
5644 	}
5645 
5646 	phys = strchr(modif, 'p') != NULL;
5647 	virt = strchr(modif, 'v') != NULL;
5648 	if (virt)
5649 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5650 	else if (phys)
5651 		m = PHYS_TO_VM_PAGE(addr);
5652 	else
5653 		m = (vm_page_t)addr;
5654 	db_printf(
5655     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5656     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5657 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5658 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5659 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5660 }
5661 #endif /* DDB */
5662