xref: /freebsd/sys/vm/vm_page.c (revision 7bd6fde3)
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  */
34 
35 /*-
36  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
37  * All rights reserved.
38  *
39  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40  *
41  * Permission to use, copy, modify and distribute this software and
42  * its documentation is hereby granted, provided that both the copyright
43  * notice and this permission notice appear in all copies of the
44  * software, derivative works or modified versions, and any portions
45  * thereof, and that both notices appear in supporting documentation.
46  *
47  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
48  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
49  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50  *
51  * Carnegie Mellon requests users of this software to return to
52  *
53  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
54  *  School of Computer Science
55  *  Carnegie Mellon University
56  *  Pittsburgh PA 15213-3890
57  *
58  * any improvements or extensions that they make and grant Carnegie the
59  * rights to redistribute these changes.
60  */
61 
62 /*
63  *			GENERAL RULES ON VM_PAGE MANIPULATION
64  *
65  *	- a pageq mutex is required when adding or removing a page from a
66  *	  page queue (vm_page_queue[]), regardless of other mutexes or the
67  *	  busy state of a page.
68  *
69  *	- a hash chain mutex is required when associating or disassociating
70  *	  a page from the VM PAGE CACHE hash table (vm_page_buckets),
71  *	  regardless of other mutexes or the busy state of a page.
72  *
73  *	- either a hash chain mutex OR a busied page is required in order
74  *	  to modify the page flags.  A hash chain mutex must be obtained in
75  *	  order to busy a page.  A page's flags cannot be modified by a
76  *	  hash chain mutex if the page is marked busy.
77  *
78  *	- The object memq mutex is held when inserting or removing
79  *	  pages from an object (vm_page_insert() or vm_page_remove()).  This
80  *	  is different from the object's main mutex.
81  *
82  *	Generally speaking, you have to be aware of side effects when running
83  *	vm_page ops.  A vm_page_lookup() will return with the hash chain
84  *	locked, whether it was able to lookup the page or not.  vm_page_free(),
85  *	vm_page_cache(), vm_page_activate(), and a number of other routines
86  *	will release the hash chain mutex for you.  Intermediate manipulation
87  *	routines such as vm_page_flag_set() expect the hash chain to be held
88  *	on entry and the hash chain will remain held on return.
89  *
90  *	pageq scanning can only occur with the pageq in question locked.
91  *	We have a known bottleneck with the active queue, but the cache
92  *	and free queues are actually arrays already.
93  */
94 
95 /*
96  *	Resident memory management module.
97  */
98 
99 #include <sys/cdefs.h>
100 __FBSDID("$FreeBSD$");
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/lock.h>
105 #include <sys/kernel.h>
106 #include <sys/malloc.h>
107 #include <sys/mutex.h>
108 #include <sys/proc.h>
109 #include <sys/sysctl.h>
110 #include <sys/vmmeter.h>
111 #include <sys/vnode.h>
112 
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_object.h>
117 #include <vm/vm_page.h>
118 #include <vm/vm_pageout.h>
119 #include <vm/vm_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 #include <vm/uma_int.h>
123 
124 #include <machine/md_var.h>
125 
126 /*
127  *	Associated with page of user-allocatable memory is a
128  *	page structure.
129  */
130 
131 struct mtx vm_page_queue_mtx;
132 struct mtx vm_page_queue_free_mtx;
133 
134 vm_page_t vm_page_array = 0;
135 int vm_page_array_size = 0;
136 long first_page = 0;
137 int vm_page_zero_count = 0;
138 
139 static int boot_pages = UMA_BOOT_PAGES;
140 TUNABLE_INT("vm.boot_pages", &boot_pages);
141 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RD, &boot_pages, 0,
142 	"number of pages allocated for bootstrapping the VM system");
143 
144 /*
145  *	vm_set_page_size:
146  *
147  *	Sets the page size, perhaps based upon the memory
148  *	size.  Must be called before any use of page-size
149  *	dependent functions.
150  */
151 void
152 vm_set_page_size(void)
153 {
154 	if (cnt.v_page_size == 0)
155 		cnt.v_page_size = PAGE_SIZE;
156 	if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
157 		panic("vm_set_page_size: page size not a power of two");
158 }
159 
160 /*
161  *	vm_page_blacklist_lookup:
162  *
163  *	See if a physical address in this page has been listed
164  *	in the blacklist tunable.  Entries in the tunable are
165  *	separated by spaces or commas.  If an invalid integer is
166  *	encountered then the rest of the string is skipped.
167  */
168 static int
169 vm_page_blacklist_lookup(char *list, vm_paddr_t pa)
170 {
171 	vm_paddr_t bad;
172 	char *cp, *pos;
173 
174 	for (pos = list; *pos != '\0'; pos = cp) {
175 		bad = strtoq(pos, &cp, 0);
176 		if (*cp != '\0') {
177 			if (*cp == ' ' || *cp == ',') {
178 				cp++;
179 				if (cp == pos)
180 					continue;
181 			} else
182 				break;
183 		}
184 		if (pa == trunc_page(bad))
185 			return (1);
186 	}
187 	return (0);
188 }
189 
190 /*
191  *	vm_page_startup:
192  *
193  *	Initializes the resident memory module.
194  *
195  *	Allocates memory for the page cells, and
196  *	for the object/offset-to-page hash table headers.
197  *	Each page cell is initialized and placed on the free list.
198  */
199 vm_offset_t
200 vm_page_startup(vm_offset_t vaddr)
201 {
202 	vm_offset_t mapped;
203 	vm_size_t npages;
204 	vm_paddr_t page_range;
205 	vm_paddr_t new_end;
206 	int i;
207 	vm_paddr_t pa;
208 	int nblocks;
209 	vm_paddr_t last_pa;
210 	char *list;
211 
212 	/* the biggest memory array is the second group of pages */
213 	vm_paddr_t end;
214 	vm_paddr_t biggestsize;
215 	vm_paddr_t low_water, high_water;
216 	int biggestone;
217 
218 	vm_paddr_t total;
219 
220 	total = 0;
221 	biggestsize = 0;
222 	biggestone = 0;
223 	nblocks = 0;
224 	vaddr = round_page(vaddr);
225 
226 	for (i = 0; phys_avail[i + 1]; i += 2) {
227 		phys_avail[i] = round_page(phys_avail[i]);
228 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
229 	}
230 
231 	low_water = phys_avail[0];
232 	high_water = phys_avail[1];
233 
234 	for (i = 0; phys_avail[i + 1]; i += 2) {
235 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
236 
237 		if (size > biggestsize) {
238 			biggestone = i;
239 			biggestsize = size;
240 		}
241 		if (phys_avail[i] < low_water)
242 			low_water = phys_avail[i];
243 		if (phys_avail[i + 1] > high_water)
244 			high_water = phys_avail[i + 1];
245 		++nblocks;
246 		total += size;
247 	}
248 
249 	end = phys_avail[biggestone+1];
250 
251 	/*
252 	 * Initialize the locks.
253 	 */
254 	mtx_init(&vm_page_queue_mtx, "vm page queue mutex", NULL, MTX_DEF |
255 	    MTX_RECURSE);
256 	mtx_init(&vm_page_queue_free_mtx, "vm page queue free mutex", NULL,
257 	    MTX_DEF);
258 
259 	/*
260 	 * Initialize the queue headers for the free queue, the active queue
261 	 * and the inactive queue.
262 	 */
263 	vm_pageq_init();
264 
265 	/*
266 	 * Allocate memory for use when boot strapping the kernel memory
267 	 * allocator.
268 	 */
269 	new_end = end - (boot_pages * UMA_SLAB_SIZE);
270 	new_end = trunc_page(new_end);
271 	mapped = pmap_map(&vaddr, new_end, end,
272 	    VM_PROT_READ | VM_PROT_WRITE);
273 	bzero((void *)mapped, end - new_end);
274 	uma_startup((void *)mapped, boot_pages);
275 
276 #if defined(__amd64__) || defined(__i386__)
277 	/*
278 	 * Allocate a bitmap to indicate that a random physical page
279 	 * needs to be included in a minidump.
280 	 *
281 	 * The amd64 port needs this to indicate which direct map pages
282 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
283 	 *
284 	 * However, i386 still needs this workspace internally within the
285 	 * minidump code.  In theory, they are not needed on i386, but are
286 	 * included should the sf_buf code decide to use them.
287 	 */
288 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
289 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
290 	new_end -= vm_page_dump_size;
291 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
292 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
293 	bzero((void *)vm_page_dump, vm_page_dump_size);
294 #endif
295 	/*
296 	 * Compute the number of pages of memory that will be available for
297 	 * use (taking into account the overhead of a page structure per
298 	 * page).
299 	 */
300 	first_page = low_water / PAGE_SIZE;
301 	page_range = high_water / PAGE_SIZE - first_page;
302 	npages = (total - (page_range * sizeof(struct vm_page)) -
303 	    (end - new_end)) / PAGE_SIZE;
304 	end = new_end;
305 
306 	/*
307 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
308 	 */
309 	vaddr += PAGE_SIZE;
310 
311 	/*
312 	 * Initialize the mem entry structures now, and put them in the free
313 	 * queue.
314 	 */
315 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
316 	mapped = pmap_map(&vaddr, new_end, end,
317 	    VM_PROT_READ | VM_PROT_WRITE);
318 	vm_page_array = (vm_page_t) mapped;
319 #ifdef __amd64__
320 	/*
321 	 * pmap_map on amd64 comes out of the direct-map, not kvm like i386,
322 	 * so the pages must be tracked for a crashdump to include this data.
323 	 * This includes the vm_page_array and the early UMA bootstrap pages.
324 	 */
325 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
326 		dump_add_page(pa);
327 #endif
328 	phys_avail[biggestone + 1] = new_end;
329 
330 	/*
331 	 * Clear all of the page structures
332 	 */
333 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
334 	vm_page_array_size = page_range;
335 
336 	/*
337 	 * This assertion tests the hypothesis that npages and total are
338 	 * redundant.  XXX
339 	 */
340 	page_range = 0;
341 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
342 		page_range += atop(phys_avail[i + 1] - phys_avail[i]);
343 	KASSERT(page_range == npages,
344 	    ("vm_page_startup: inconsistent page counts"));
345 
346 	/*
347 	 * Construct the free queue(s) in descending order (by physical
348 	 * address) so that the first 16MB of physical memory is allocated
349 	 * last rather than first.  On large-memory machines, this avoids
350 	 * the exhaustion of low physical memory before isa_dma_init has run.
351 	 */
352 	cnt.v_page_count = 0;
353 	cnt.v_free_count = 0;
354 	list = getenv("vm.blacklist");
355 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
356 		pa = phys_avail[i];
357 		last_pa = phys_avail[i + 1];
358 		while (pa < last_pa) {
359 			if (list != NULL &&
360 			    vm_page_blacklist_lookup(list, pa))
361 				printf("Skipping page with pa 0x%jx\n",
362 				    (uintmax_t)pa);
363 			else
364 				vm_pageq_add_new_page(pa);
365 			pa += PAGE_SIZE;
366 		}
367 	}
368 	freeenv(list);
369 	return (vaddr);
370 }
371 
372 void
373 vm_page_flag_set(vm_page_t m, unsigned short bits)
374 {
375 
376 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
377 	m->flags |= bits;
378 }
379 
380 void
381 vm_page_flag_clear(vm_page_t m, unsigned short bits)
382 {
383 
384 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
385 	m->flags &= ~bits;
386 }
387 
388 void
389 vm_page_busy(vm_page_t m)
390 {
391 
392 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
393 	KASSERT((m->oflags & VPO_BUSY) == 0,
394 	    ("vm_page_busy: page already busy!!!"));
395 	m->oflags |= VPO_BUSY;
396 }
397 
398 /*
399  *      vm_page_flash:
400  *
401  *      wakeup anyone waiting for the page.
402  */
403 void
404 vm_page_flash(vm_page_t m)
405 {
406 
407 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
408 	if (m->oflags & VPO_WANTED) {
409 		m->oflags &= ~VPO_WANTED;
410 		wakeup(m);
411 	}
412 }
413 
414 /*
415  *      vm_page_wakeup:
416  *
417  *      clear the VPO_BUSY flag and wakeup anyone waiting for the
418  *      page.
419  *
420  */
421 void
422 vm_page_wakeup(vm_page_t m)
423 {
424 
425 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
426 	KASSERT(m->oflags & VPO_BUSY, ("vm_page_wakeup: page not busy!!!"));
427 	m->oflags &= ~VPO_BUSY;
428 	vm_page_flash(m);
429 }
430 
431 void
432 vm_page_io_start(vm_page_t m)
433 {
434 
435 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
436 	m->busy++;
437 }
438 
439 void
440 vm_page_io_finish(vm_page_t m)
441 {
442 
443 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
444 	m->busy--;
445 	if (m->busy == 0)
446 		vm_page_flash(m);
447 }
448 
449 /*
450  * Keep page from being freed by the page daemon
451  * much of the same effect as wiring, except much lower
452  * overhead and should be used only for *very* temporary
453  * holding ("wiring").
454  */
455 void
456 vm_page_hold(vm_page_t mem)
457 {
458 
459 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
460         mem->hold_count++;
461 }
462 
463 void
464 vm_page_unhold(vm_page_t mem)
465 {
466 
467 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
468 	--mem->hold_count;
469 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
470 	if (mem->hold_count == 0 && VM_PAGE_INQUEUE2(mem, PQ_HOLD))
471 		vm_page_free_toq(mem);
472 }
473 
474 /*
475  *	vm_page_free:
476  *
477  *	Free a page.
478  */
479 void
480 vm_page_free(vm_page_t m)
481 {
482 
483 	m->flags &= ~PG_ZERO;
484 	vm_page_free_toq(m);
485 }
486 
487 /*
488  *	vm_page_free_zero:
489  *
490  *	Free a page to the zerod-pages queue
491  */
492 void
493 vm_page_free_zero(vm_page_t m)
494 {
495 
496 	m->flags |= PG_ZERO;
497 	vm_page_free_toq(m);
498 }
499 
500 /*
501  *	vm_page_sleep:
502  *
503  *	Sleep and release the page queues lock.
504  *
505  *	The object containing the given page must be locked.
506  */
507 void
508 vm_page_sleep(vm_page_t m, const char *msg)
509 {
510 
511 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
512 	if (!mtx_owned(&vm_page_queue_mtx))
513 		vm_page_lock_queues();
514 	vm_page_flag_set(m, PG_REFERENCED);
515 	vm_page_unlock_queues();
516 
517 	/*
518 	 * It's possible that while we sleep, the page will get
519 	 * unbusied and freed.  If we are holding the object
520 	 * lock, we will assume we hold a reference to the object
521 	 * such that even if m->object changes, we can re-lock
522 	 * it.
523 	 */
524 	m->oflags |= VPO_WANTED;
525 	msleep(m, VM_OBJECT_MTX(m->object), PVM, msg, 0);
526 }
527 
528 /*
529  *	vm_page_dirty:
530  *
531  *	make page all dirty
532  */
533 void
534 vm_page_dirty(vm_page_t m)
535 {
536 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_CACHE,
537 	    ("vm_page_dirty: page in cache!"));
538 	KASSERT(VM_PAGE_GETKNOWNQUEUE1(m) != PQ_FREE,
539 	    ("vm_page_dirty: page is free!"));
540 	m->dirty = VM_PAGE_BITS_ALL;
541 }
542 
543 /*
544  *	vm_page_splay:
545  *
546  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
547  *	the vm_page containing the given pindex.  If, however, that
548  *	pindex is not found in the vm_object, returns a vm_page that is
549  *	adjacent to the pindex, coming before or after it.
550  */
551 vm_page_t
552 vm_page_splay(vm_pindex_t pindex, vm_page_t root)
553 {
554 	struct vm_page dummy;
555 	vm_page_t lefttreemax, righttreemin, y;
556 
557 	if (root == NULL)
558 		return (root);
559 	lefttreemax = righttreemin = &dummy;
560 	for (;; root = y) {
561 		if (pindex < root->pindex) {
562 			if ((y = root->left) == NULL)
563 				break;
564 			if (pindex < y->pindex) {
565 				/* Rotate right. */
566 				root->left = y->right;
567 				y->right = root;
568 				root = y;
569 				if ((y = root->left) == NULL)
570 					break;
571 			}
572 			/* Link into the new root's right tree. */
573 			righttreemin->left = root;
574 			righttreemin = root;
575 		} else if (pindex > root->pindex) {
576 			if ((y = root->right) == NULL)
577 				break;
578 			if (pindex > y->pindex) {
579 				/* Rotate left. */
580 				root->right = y->left;
581 				y->left = root;
582 				root = y;
583 				if ((y = root->right) == NULL)
584 					break;
585 			}
586 			/* Link into the new root's left tree. */
587 			lefttreemax->right = root;
588 			lefttreemax = root;
589 		} else
590 			break;
591 	}
592 	/* Assemble the new root. */
593 	lefttreemax->right = root->left;
594 	righttreemin->left = root->right;
595 	root->left = dummy.right;
596 	root->right = dummy.left;
597 	return (root);
598 }
599 
600 /*
601  *	vm_page_insert:		[ internal use only ]
602  *
603  *	Inserts the given mem entry into the object and object list.
604  *
605  *	The pagetables are not updated but will presumably fault the page
606  *	in if necessary, or if a kernel page the caller will at some point
607  *	enter the page into the kernel's pmap.  We are not allowed to block
608  *	here so we *can't* do this anyway.
609  *
610  *	The object and page must be locked.
611  *	This routine may not block.
612  */
613 void
614 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
615 {
616 	vm_page_t root;
617 
618 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
619 	if (m->object != NULL)
620 		panic("vm_page_insert: page already inserted");
621 
622 	/*
623 	 * Record the object/offset pair in this page
624 	 */
625 	m->object = object;
626 	m->pindex = pindex;
627 
628 	/*
629 	 * Now link into the object's ordered list of backed pages.
630 	 */
631 	root = object->root;
632 	if (root == NULL) {
633 		m->left = NULL;
634 		m->right = NULL;
635 		TAILQ_INSERT_TAIL(&object->memq, m, listq);
636 	} else {
637 		root = vm_page_splay(pindex, root);
638 		if (pindex < root->pindex) {
639 			m->left = root->left;
640 			m->right = root;
641 			root->left = NULL;
642 			TAILQ_INSERT_BEFORE(root, m, listq);
643 		} else if (pindex == root->pindex)
644 			panic("vm_page_insert: offset already allocated");
645 		else {
646 			m->right = root->right;
647 			m->left = root;
648 			root->right = NULL;
649 			TAILQ_INSERT_AFTER(&object->memq, root, m, listq);
650 		}
651 	}
652 	object->root = m;
653 	object->generation++;
654 
655 	/*
656 	 * show that the object has one more resident page.
657 	 */
658 	object->resident_page_count++;
659 	/*
660 	 * Hold the vnode until the last page is released.
661 	 */
662 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
663 		vhold((struct vnode *)object->handle);
664 
665 	/*
666 	 * Since we are inserting a new and possibly dirty page,
667 	 * update the object's OBJ_MIGHTBEDIRTY flag.
668 	 */
669 	if (m->flags & PG_WRITEABLE)
670 		vm_object_set_writeable_dirty(object);
671 }
672 
673 /*
674  *	vm_page_remove:
675  *				NOTE: used by device pager as well -wfj
676  *
677  *	Removes the given mem entry from the object/offset-page
678  *	table and the object page list, but do not invalidate/terminate
679  *	the backing store.
680  *
681  *	The object and page must be locked.
682  *	The underlying pmap entry (if any) is NOT removed here.
683  *	This routine may not block.
684  */
685 void
686 vm_page_remove(vm_page_t m)
687 {
688 	vm_object_t object;
689 	vm_page_t root;
690 
691 	if ((object = m->object) == NULL)
692 		return;
693 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
694 	if (m->oflags & VPO_BUSY) {
695 		m->oflags &= ~VPO_BUSY;
696 		vm_page_flash(m);
697 	}
698 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
699 
700 	/*
701 	 * Now remove from the object's list of backed pages.
702 	 */
703 	if (m != object->root)
704 		vm_page_splay(m->pindex, object->root);
705 	if (m->left == NULL)
706 		root = m->right;
707 	else {
708 		root = vm_page_splay(m->pindex, m->left);
709 		root->right = m->right;
710 	}
711 	object->root = root;
712 	TAILQ_REMOVE(&object->memq, m, listq);
713 
714 	/*
715 	 * And show that the object has one fewer resident page.
716 	 */
717 	object->resident_page_count--;
718 	object->generation++;
719 	/*
720 	 * The vnode may now be recycled.
721 	 */
722 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
723 		vdrop((struct vnode *)object->handle);
724 
725 	m->object = NULL;
726 }
727 
728 /*
729  *	vm_page_lookup:
730  *
731  *	Returns the page associated with the object/offset
732  *	pair specified; if none is found, NULL is returned.
733  *
734  *	The object must be locked.
735  *	This routine may not block.
736  *	This is a critical path routine
737  */
738 vm_page_t
739 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
740 {
741 	vm_page_t m;
742 
743 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
744 	if ((m = object->root) != NULL && m->pindex != pindex) {
745 		m = vm_page_splay(pindex, m);
746 		if ((object->root = m)->pindex != pindex)
747 			m = NULL;
748 	}
749 	return (m);
750 }
751 
752 /*
753  *	vm_page_rename:
754  *
755  *	Move the given memory entry from its
756  *	current object to the specified target object/offset.
757  *
758  *	The object must be locked.
759  *	This routine may not block.
760  *
761  *	Note: swap associated with the page must be invalidated by the move.  We
762  *	      have to do this for several reasons:  (1) we aren't freeing the
763  *	      page, (2) we are dirtying the page, (3) the VM system is probably
764  *	      moving the page from object A to B, and will then later move
765  *	      the backing store from A to B and we can't have a conflict.
766  *
767  *	Note: we *always* dirty the page.  It is necessary both for the
768  *	      fact that we moved it, and because we may be invalidating
769  *	      swap.  If the page is on the cache, we have to deactivate it
770  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
771  *	      on the cache.
772  */
773 void
774 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
775 {
776 
777 	vm_page_remove(m);
778 	vm_page_insert(m, new_object, new_pindex);
779 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
780 		vm_page_deactivate(m);
781 	vm_page_dirty(m);
782 }
783 
784 /*
785  *	vm_page_select_cache:
786  *
787  *	Move a page of the given color from the cache queue to the free
788  *	queue.  As pages might be found, but are not applicable, they are
789  *	deactivated.
790  *
791  *	This routine may not block.
792  */
793 vm_page_t
794 vm_page_select_cache(int color)
795 {
796 	vm_object_t object;
797 	vm_page_t m;
798 	boolean_t was_trylocked;
799 
800 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
801 	while ((m = vm_pageq_find(PQ_CACHE, color, FALSE)) != NULL) {
802 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
803 		KASSERT(!pmap_page_is_mapped(m),
804 		    ("Found mapped cache page %p", m));
805 		KASSERT((m->flags & PG_UNMANAGED) == 0,
806 		    ("Found unmanaged cache page %p", m));
807 		KASSERT(m->wire_count == 0, ("Found wired cache page %p", m));
808 		if (m->hold_count == 0 && (object = m->object,
809 		    (was_trylocked = VM_OBJECT_TRYLOCK(object)) ||
810 		    VM_OBJECT_LOCKED(object))) {
811 			KASSERT((m->oflags & VPO_BUSY) == 0 && m->busy == 0,
812 			    ("Found busy cache page %p", m));
813 			vm_page_free(m);
814 			if (was_trylocked)
815 				VM_OBJECT_UNLOCK(object);
816 			break;
817 		}
818 		vm_page_deactivate(m);
819 	}
820 	return (m);
821 }
822 
823 /*
824  *	vm_page_alloc:
825  *
826  *	Allocate and return a memory cell associated
827  *	with this VM object/offset pair.
828  *
829  *	page_req classes:
830  *	VM_ALLOC_NORMAL		normal process request
831  *	VM_ALLOC_SYSTEM		system *really* needs a page
832  *	VM_ALLOC_INTERRUPT	interrupt time request
833  *	VM_ALLOC_ZERO		zero page
834  *
835  *	This routine may not block.
836  *
837  *	Additional special handling is required when called from an
838  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
839  *	the page cache in this case.
840  */
841 vm_page_t
842 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
843 {
844 	vm_page_t m = NULL;
845 	int color, flags, page_req;
846 
847 	page_req = req & VM_ALLOC_CLASS_MASK;
848 	KASSERT(curthread->td_intr_nesting_level == 0 ||
849 	    page_req == VM_ALLOC_INTERRUPT,
850 	    ("vm_page_alloc(NORMAL|SYSTEM) in interrupt context"));
851 
852 	if ((req & VM_ALLOC_NOOBJ) == 0) {
853 		KASSERT(object != NULL,
854 		    ("vm_page_alloc: NULL object."));
855 		VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
856 		color = (pindex + object->pg_color) & PQ_COLORMASK;
857 	} else
858 		color = pindex & PQ_COLORMASK;
859 
860 	/*
861 	 * The pager is allowed to eat deeper into the free page list.
862 	 */
863 	if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
864 		page_req = VM_ALLOC_SYSTEM;
865 	};
866 
867 loop:
868 	mtx_lock(&vm_page_queue_free_mtx);
869 	if (cnt.v_free_count > cnt.v_free_reserved ||
870 	    (page_req == VM_ALLOC_SYSTEM &&
871 	     cnt.v_cache_count == 0 &&
872 	     cnt.v_free_count > cnt.v_interrupt_free_min) ||
873 	    (page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)) {
874 		/*
875 		 * Allocate from the free queue if the number of free pages
876 		 * exceeds the minimum for the request class.
877 		 */
878 		m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
879 	} else if (page_req != VM_ALLOC_INTERRUPT) {
880 		mtx_unlock(&vm_page_queue_free_mtx);
881 		/*
882 		 * Allocatable from cache (non-interrupt only).  On success,
883 		 * we must free the page and try again, thus ensuring that
884 		 * cnt.v_*_free_min counters are replenished.
885 		 */
886 		vm_page_lock_queues();
887 		if ((m = vm_page_select_cache(color)) == NULL) {
888 			KASSERT(cnt.v_cache_count == 0,
889 			    ("vm_page_alloc: cache queue is missing %d pages",
890 			    cnt.v_cache_count));
891 			vm_page_unlock_queues();
892 			atomic_add_int(&vm_pageout_deficit, 1);
893 			pagedaemon_wakeup();
894 
895 			if (page_req != VM_ALLOC_SYSTEM)
896 				return (NULL);
897 
898 			mtx_lock(&vm_page_queue_free_mtx);
899 			if (cnt.v_free_count <= cnt.v_interrupt_free_min) {
900 				mtx_unlock(&vm_page_queue_free_mtx);
901 				return (NULL);
902 			}
903 			m = vm_pageq_find(PQ_FREE, color, (req & VM_ALLOC_ZERO) != 0);
904 		} else {
905 			vm_page_unlock_queues();
906 			goto loop;
907 		}
908 	} else {
909 		/*
910 		 * Not allocatable from cache from interrupt, give up.
911 		 */
912 		mtx_unlock(&vm_page_queue_free_mtx);
913 		atomic_add_int(&vm_pageout_deficit, 1);
914 		pagedaemon_wakeup();
915 		return (NULL);
916 	}
917 
918 	/*
919 	 *  At this point we had better have found a good page.
920 	 */
921 
922 	KASSERT(
923 	    m != NULL,
924 	    ("vm_page_alloc(): missing page on free queue")
925 	);
926 
927 	/*
928 	 * Remove from free queue
929 	 */
930 	vm_pageq_remove_nowakeup(m);
931 
932 	/*
933 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
934 	 */
935 	flags = 0;
936 	if (m->flags & PG_ZERO) {
937 		vm_page_zero_count--;
938 		if (req & VM_ALLOC_ZERO)
939 			flags = PG_ZERO;
940 	}
941 	if (object != NULL && object->type == OBJT_PHYS)
942 		flags |= PG_UNMANAGED;
943 	m->flags = flags;
944 	if (req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ))
945 		m->oflags = 0;
946 	else
947 		m->oflags = VPO_BUSY;
948 	if (req & VM_ALLOC_WIRED) {
949 		atomic_add_int(&cnt.v_wire_count, 1);
950 		m->wire_count = 1;
951 	} else
952 		m->wire_count = 0;
953 	m->hold_count = 0;
954 	m->act_count = 0;
955 	m->busy = 0;
956 	m->valid = 0;
957 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
958 	mtx_unlock(&vm_page_queue_free_mtx);
959 
960 	if ((req & VM_ALLOC_NOOBJ) == 0)
961 		vm_page_insert(m, object, pindex);
962 	else
963 		m->pindex = pindex;
964 
965 	/*
966 	 * Don't wakeup too often - wakeup the pageout daemon when
967 	 * we would be nearly out of memory.
968 	 */
969 	if (vm_paging_needed())
970 		pagedaemon_wakeup();
971 
972 	return (m);
973 }
974 
975 /*
976  *	vm_wait:	(also see VM_WAIT macro)
977  *
978  *	Block until free pages are available for allocation
979  *	- Called in various places before memory allocations.
980  */
981 void
982 vm_wait(void)
983 {
984 
985 	mtx_lock(&vm_page_queue_free_mtx);
986 	if (curproc == pageproc) {
987 		vm_pageout_pages_needed = 1;
988 		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
989 		    PDROP | PSWP, "VMWait", 0);
990 	} else {
991 		if (!vm_pages_needed) {
992 			vm_pages_needed = 1;
993 			wakeup(&vm_pages_needed);
994 		}
995 		msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
996 		    "vmwait", 0);
997 	}
998 }
999 
1000 /*
1001  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
1002  *
1003  *	Block until free pages are available for allocation
1004  *	- Called only in vm_fault so that processes page faulting
1005  *	  can be easily tracked.
1006  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
1007  *	  processes will be able to grab memory first.  Do not change
1008  *	  this balance without careful testing first.
1009  */
1010 void
1011 vm_waitpfault(void)
1012 {
1013 
1014 	mtx_lock(&vm_page_queue_free_mtx);
1015 	if (!vm_pages_needed) {
1016 		vm_pages_needed = 1;
1017 		wakeup(&vm_pages_needed);
1018 	}
1019 	msleep(&cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
1020 	    "pfault", 0);
1021 }
1022 
1023 /*
1024  *	vm_page_activate:
1025  *
1026  *	Put the specified page on the active list (if appropriate).
1027  *	Ensure that act_count is at least ACT_INIT but do not otherwise
1028  *	mess with it.
1029  *
1030  *	The page queues must be locked.
1031  *	This routine may not block.
1032  */
1033 void
1034 vm_page_activate(vm_page_t m)
1035 {
1036 
1037 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1038 	if (VM_PAGE_GETKNOWNQUEUE2(m) != PQ_ACTIVE) {
1039 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1040 			cnt.v_reactivated++;
1041 		vm_pageq_remove(m);
1042 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1043 			if (m->act_count < ACT_INIT)
1044 				m->act_count = ACT_INIT;
1045 			vm_pageq_enqueue(PQ_ACTIVE, m);
1046 		}
1047 	} else {
1048 		if (m->act_count < ACT_INIT)
1049 			m->act_count = ACT_INIT;
1050 	}
1051 }
1052 
1053 /*
1054  *	vm_page_free_wakeup:
1055  *
1056  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
1057  *	routine is called when a page has been added to the cache or free
1058  *	queues.
1059  *
1060  *	The page queues must be locked.
1061  *	This routine may not block.
1062  */
1063 static inline void
1064 vm_page_free_wakeup(void)
1065 {
1066 
1067 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1068 	/*
1069 	 * if pageout daemon needs pages, then tell it that there are
1070 	 * some free.
1071 	 */
1072 	if (vm_pageout_pages_needed &&
1073 	    cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
1074 		wakeup(&vm_pageout_pages_needed);
1075 		vm_pageout_pages_needed = 0;
1076 	}
1077 	/*
1078 	 * wakeup processes that are waiting on memory if we hit a
1079 	 * high water mark. And wakeup scheduler process if we have
1080 	 * lots of memory. this process will swapin processes.
1081 	 */
1082 	if (vm_pages_needed && !vm_page_count_min()) {
1083 		vm_pages_needed = 0;
1084 		wakeup(&cnt.v_free_count);
1085 	}
1086 }
1087 
1088 /*
1089  *	vm_page_free_toq:
1090  *
1091  *	Returns the given page to the PQ_FREE list,
1092  *	disassociating it with any VM object.
1093  *
1094  *	Object and page must be locked prior to entry.
1095  *	This routine may not block.
1096  */
1097 
1098 void
1099 vm_page_free_toq(vm_page_t m)
1100 {
1101 	struct vpgqueues *pq;
1102 
1103 	if (VM_PAGE_GETQUEUE(m) != PQ_NONE)
1104 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1105 	KASSERT(!pmap_page_is_mapped(m),
1106 	    ("vm_page_free_toq: freeing mapped page %p", m));
1107 	cnt.v_tfree++;
1108 
1109 	if (m->busy || VM_PAGE_INQUEUE1(m, PQ_FREE)) {
1110 		printf(
1111 		"vm_page_free: pindex(%lu), busy(%d), VPO_BUSY(%d), hold(%d)\n",
1112 		    (u_long)m->pindex, m->busy, (m->oflags & VPO_BUSY) ? 1 : 0,
1113 		    m->hold_count);
1114 		if (VM_PAGE_INQUEUE1(m, PQ_FREE))
1115 			panic("vm_page_free: freeing free page");
1116 		else
1117 			panic("vm_page_free: freeing busy page");
1118 	}
1119 
1120 	/*
1121 	 * unqueue, then remove page.  Note that we cannot destroy
1122 	 * the page here because we do not want to call the pager's
1123 	 * callback routine until after we've put the page on the
1124 	 * appropriate free queue.
1125 	 */
1126 	vm_pageq_remove_nowakeup(m);
1127 	vm_page_remove(m);
1128 
1129 	/*
1130 	 * If fictitious remove object association and
1131 	 * return, otherwise delay object association removal.
1132 	 */
1133 	if ((m->flags & PG_FICTITIOUS) != 0) {
1134 		return;
1135 	}
1136 
1137 	m->valid = 0;
1138 	vm_page_undirty(m);
1139 
1140 	if (m->wire_count != 0) {
1141 		if (m->wire_count > 1) {
1142 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1143 				m->wire_count, (long)m->pindex);
1144 		}
1145 		panic("vm_page_free: freeing wired page");
1146 	}
1147 	if (m->hold_count != 0) {
1148 		m->flags &= ~PG_ZERO;
1149 		vm_pageq_enqueue(PQ_HOLD, m);
1150 		return;
1151 	}
1152 	VM_PAGE_SETQUEUE1(m, PQ_FREE);
1153 	mtx_lock(&vm_page_queue_free_mtx);
1154 	pq = &vm_page_queues[VM_PAGE_GETQUEUE(m)];
1155 	pq->lcnt++;
1156 	++(*pq->cnt);
1157 
1158 	/*
1159 	 * Put zero'd pages on the end ( where we look for zero'd pages
1160 	 * first ) and non-zerod pages at the head.
1161 	 */
1162 	if (m->flags & PG_ZERO) {
1163 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1164 		++vm_page_zero_count;
1165 	} else {
1166 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1167 		vm_page_zero_idle_wakeup();
1168 	}
1169 	vm_page_free_wakeup();
1170 	mtx_unlock(&vm_page_queue_free_mtx);
1171 }
1172 
1173 /*
1174  *	vm_page_wire:
1175  *
1176  *	Mark this page as wired down by yet
1177  *	another map, removing it from paging queues
1178  *	as necessary.
1179  *
1180  *	The page queues must be locked.
1181  *	This routine may not block.
1182  */
1183 void
1184 vm_page_wire(vm_page_t m)
1185 {
1186 
1187 	/*
1188 	 * Only bump the wire statistics if the page is not already wired,
1189 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1190 	 * it is already off the queues).
1191 	 */
1192 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1193 	if (m->flags & PG_FICTITIOUS)
1194 		return;
1195 	if (m->wire_count == 0) {
1196 		if ((m->flags & PG_UNMANAGED) == 0)
1197 			vm_pageq_remove(m);
1198 		atomic_add_int(&cnt.v_wire_count, 1);
1199 	}
1200 	m->wire_count++;
1201 	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
1202 }
1203 
1204 /*
1205  *	vm_page_unwire:
1206  *
1207  *	Release one wiring of this page, potentially
1208  *	enabling it to be paged again.
1209  *
1210  *	Many pages placed on the inactive queue should actually go
1211  *	into the cache, but it is difficult to figure out which.  What
1212  *	we do instead, if the inactive target is well met, is to put
1213  *	clean pages at the head of the inactive queue instead of the tail.
1214  *	This will cause them to be moved to the cache more quickly and
1215  *	if not actively re-referenced, freed more quickly.  If we just
1216  *	stick these pages at the end of the inactive queue, heavy filesystem
1217  *	meta-data accesses can cause an unnecessary paging load on memory bound
1218  *	processes.  This optimization causes one-time-use metadata to be
1219  *	reused more quickly.
1220  *
1221  *	BUT, if we are in a low-memory situation we have no choice but to
1222  *	put clean pages on the cache queue.
1223  *
1224  *	A number of routines use vm_page_unwire() to guarantee that the page
1225  *	will go into either the inactive or active queues, and will NEVER
1226  *	be placed in the cache - for example, just after dirtying a page.
1227  *	dirty pages in the cache are not allowed.
1228  *
1229  *	The page queues must be locked.
1230  *	This routine may not block.
1231  */
1232 void
1233 vm_page_unwire(vm_page_t m, int activate)
1234 {
1235 
1236 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1237 	if (m->flags & PG_FICTITIOUS)
1238 		return;
1239 	if (m->wire_count > 0) {
1240 		m->wire_count--;
1241 		if (m->wire_count == 0) {
1242 			atomic_subtract_int(&cnt.v_wire_count, 1);
1243 			if (m->flags & PG_UNMANAGED) {
1244 				;
1245 			} else if (activate)
1246 				vm_pageq_enqueue(PQ_ACTIVE, m);
1247 			else {
1248 				vm_page_flag_clear(m, PG_WINATCFLS);
1249 				vm_pageq_enqueue(PQ_INACTIVE, m);
1250 			}
1251 		}
1252 	} else {
1253 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1254 	}
1255 }
1256 
1257 
1258 /*
1259  * Move the specified page to the inactive queue.  If the page has
1260  * any associated swap, the swap is deallocated.
1261  *
1262  * Normally athead is 0 resulting in LRU operation.  athead is set
1263  * to 1 if we want this page to be 'as if it were placed in the cache',
1264  * except without unmapping it from the process address space.
1265  *
1266  * This routine may not block.
1267  */
1268 static inline void
1269 _vm_page_deactivate(vm_page_t m, int athead)
1270 {
1271 
1272 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1273 
1274 	/*
1275 	 * Ignore if already inactive.
1276 	 */
1277 	if (VM_PAGE_INQUEUE2(m, PQ_INACTIVE))
1278 		return;
1279 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1280 		if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1281 			cnt.v_reactivated++;
1282 		vm_page_flag_clear(m, PG_WINATCFLS);
1283 		vm_pageq_remove(m);
1284 		if (athead)
1285 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1286 		else
1287 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1288 		VM_PAGE_SETQUEUE2(m, PQ_INACTIVE);
1289 		vm_page_queues[PQ_INACTIVE].lcnt++;
1290 		cnt.v_inactive_count++;
1291 	}
1292 }
1293 
1294 void
1295 vm_page_deactivate(vm_page_t m)
1296 {
1297     _vm_page_deactivate(m, 0);
1298 }
1299 
1300 /*
1301  * vm_page_try_to_cache:
1302  *
1303  * Returns 0 on failure, 1 on success
1304  */
1305 int
1306 vm_page_try_to_cache(vm_page_t m)
1307 {
1308 
1309 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1310 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1311 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1312 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1313 		return (0);
1314 	}
1315 	pmap_remove_all(m);
1316 	if (m->dirty)
1317 		return (0);
1318 	vm_page_cache(m);
1319 	return (1);
1320 }
1321 
1322 /*
1323  * vm_page_try_to_free()
1324  *
1325  *	Attempt to free the page.  If we cannot free it, we do nothing.
1326  *	1 is returned on success, 0 on failure.
1327  */
1328 int
1329 vm_page_try_to_free(vm_page_t m)
1330 {
1331 
1332 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1333 	if (m->object != NULL)
1334 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1335 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1336 	    (m->oflags & VPO_BUSY) || (m->flags & PG_UNMANAGED)) {
1337 		return (0);
1338 	}
1339 	pmap_remove_all(m);
1340 	if (m->dirty)
1341 		return (0);
1342 	vm_page_free(m);
1343 	return (1);
1344 }
1345 
1346 /*
1347  * vm_page_cache
1348  *
1349  * Put the specified page onto the page cache queue (if appropriate).
1350  *
1351  * This routine may not block.
1352  */
1353 void
1354 vm_page_cache(vm_page_t m)
1355 {
1356 
1357 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1358 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1359 	if ((m->flags & PG_UNMANAGED) || (m->oflags & VPO_BUSY) || m->busy ||
1360 	    m->hold_count || m->wire_count) {
1361 		printf("vm_page_cache: attempting to cache busy page\n");
1362 		return;
1363 	}
1364 	if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1365 		return;
1366 
1367 	/*
1368 	 * Remove all pmaps and indicate that the page is not
1369 	 * writeable or mapped.
1370 	 */
1371 	pmap_remove_all(m);
1372 	if (m->dirty != 0) {
1373 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1374 			(long)m->pindex);
1375 	}
1376 	vm_pageq_remove_nowakeup(m);
1377 	vm_pageq_enqueue(PQ_CACHE + m->pc, m);
1378 	mtx_lock(&vm_page_queue_free_mtx);
1379 	vm_page_free_wakeup();
1380 	mtx_unlock(&vm_page_queue_free_mtx);
1381 }
1382 
1383 /*
1384  * vm_page_dontneed
1385  *
1386  *	Cache, deactivate, or do nothing as appropriate.  This routine
1387  *	is typically used by madvise() MADV_DONTNEED.
1388  *
1389  *	Generally speaking we want to move the page into the cache so
1390  *	it gets reused quickly.  However, this can result in a silly syndrome
1391  *	due to the page recycling too quickly.  Small objects will not be
1392  *	fully cached.  On the otherhand, if we move the page to the inactive
1393  *	queue we wind up with a problem whereby very large objects
1394  *	unnecessarily blow away our inactive and cache queues.
1395  *
1396  *	The solution is to move the pages based on a fixed weighting.  We
1397  *	either leave them alone, deactivate them, or move them to the cache,
1398  *	where moving them to the cache has the highest weighting.
1399  *	By forcing some pages into other queues we eventually force the
1400  *	system to balance the queues, potentially recovering other unrelated
1401  *	space from active.  The idea is to not force this to happen too
1402  *	often.
1403  */
1404 void
1405 vm_page_dontneed(vm_page_t m)
1406 {
1407 	static int dnweight;
1408 	int dnw;
1409 	int head;
1410 
1411 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1412 	dnw = ++dnweight;
1413 
1414 	/*
1415 	 * occassionally leave the page alone
1416 	 */
1417 	if ((dnw & 0x01F0) == 0 ||
1418 	    VM_PAGE_INQUEUE2(m, PQ_INACTIVE) ||
1419 	    VM_PAGE_INQUEUE1(m, PQ_CACHE)
1420 	) {
1421 		if (m->act_count >= ACT_INIT)
1422 			--m->act_count;
1423 		return;
1424 	}
1425 
1426 	if (m->dirty == 0 && pmap_is_modified(m))
1427 		vm_page_dirty(m);
1428 
1429 	if (m->dirty || (dnw & 0x0070) == 0) {
1430 		/*
1431 		 * Deactivate the page 3 times out of 32.
1432 		 */
1433 		head = 0;
1434 	} else {
1435 		/*
1436 		 * Cache the page 28 times out of every 32.  Note that
1437 		 * the page is deactivated instead of cached, but placed
1438 		 * at the head of the queue instead of the tail.
1439 		 */
1440 		head = 1;
1441 	}
1442 	_vm_page_deactivate(m, head);
1443 }
1444 
1445 /*
1446  * Grab a page, waiting until we are waken up due to the page
1447  * changing state.  We keep on waiting, if the page continues
1448  * to be in the object.  If the page doesn't exist, first allocate it
1449  * and then conditionally zero it.
1450  *
1451  * This routine may block.
1452  */
1453 vm_page_t
1454 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1455 {
1456 	vm_page_t m;
1457 
1458 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1459 retrylookup:
1460 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1461 		if (vm_page_sleep_if_busy(m, TRUE, "pgrbwt")) {
1462 			if ((allocflags & VM_ALLOC_RETRY) == 0)
1463 				return (NULL);
1464 			goto retrylookup;
1465 		} else {
1466 			if ((allocflags & VM_ALLOC_WIRED) != 0) {
1467 				vm_page_lock_queues();
1468 				vm_page_wire(m);
1469 				vm_page_unlock_queues();
1470 			}
1471 			if ((allocflags & VM_ALLOC_NOBUSY) == 0)
1472 				vm_page_busy(m);
1473 			return (m);
1474 		}
1475 	}
1476 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1477 	if (m == NULL) {
1478 		VM_OBJECT_UNLOCK(object);
1479 		VM_WAIT;
1480 		VM_OBJECT_LOCK(object);
1481 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1482 			return (NULL);
1483 		goto retrylookup;
1484 	}
1485 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
1486 		pmap_zero_page(m);
1487 	return (m);
1488 }
1489 
1490 /*
1491  * Mapping function for valid bits or for dirty bits in
1492  * a page.  May not block.
1493  *
1494  * Inputs are required to range within a page.
1495  */
1496 inline int
1497 vm_page_bits(int base, int size)
1498 {
1499 	int first_bit;
1500 	int last_bit;
1501 
1502 	KASSERT(
1503 	    base + size <= PAGE_SIZE,
1504 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1505 	);
1506 
1507 	if (size == 0)		/* handle degenerate case */
1508 		return (0);
1509 
1510 	first_bit = base >> DEV_BSHIFT;
1511 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1512 
1513 	return ((2 << last_bit) - (1 << first_bit));
1514 }
1515 
1516 /*
1517  *	vm_page_set_validclean:
1518  *
1519  *	Sets portions of a page valid and clean.  The arguments are expected
1520  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1521  *	of any partial chunks touched by the range.  The invalid portion of
1522  *	such chunks will be zero'd.
1523  *
1524  *	This routine may not block.
1525  *
1526  *	(base + size) must be less then or equal to PAGE_SIZE.
1527  */
1528 void
1529 vm_page_set_validclean(vm_page_t m, int base, int size)
1530 {
1531 	int pagebits;
1532 	int frag;
1533 	int endoff;
1534 
1535 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1536 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1537 	if (size == 0)	/* handle degenerate case */
1538 		return;
1539 
1540 	/*
1541 	 * If the base is not DEV_BSIZE aligned and the valid
1542 	 * bit is clear, we have to zero out a portion of the
1543 	 * first block.
1544 	 */
1545 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1546 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
1547 		pmap_zero_page_area(m, frag, base - frag);
1548 
1549 	/*
1550 	 * If the ending offset is not DEV_BSIZE aligned and the
1551 	 * valid bit is clear, we have to zero out a portion of
1552 	 * the last block.
1553 	 */
1554 	endoff = base + size;
1555 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1556 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
1557 		pmap_zero_page_area(m, endoff,
1558 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
1559 
1560 	/*
1561 	 * Set valid, clear dirty bits.  If validating the entire
1562 	 * page we can safely clear the pmap modify bit.  We also
1563 	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
1564 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1565 	 * be set again.
1566 	 *
1567 	 * We set valid bits inclusive of any overlap, but we can only
1568 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1569 	 * the range.
1570 	 */
1571 	pagebits = vm_page_bits(base, size);
1572 	m->valid |= pagebits;
1573 #if 0	/* NOT YET */
1574 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1575 		frag = DEV_BSIZE - frag;
1576 		base += frag;
1577 		size -= frag;
1578 		if (size < 0)
1579 			size = 0;
1580 	}
1581 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1582 #endif
1583 	m->dirty &= ~pagebits;
1584 	if (base == 0 && size == PAGE_SIZE) {
1585 		pmap_clear_modify(m);
1586 		m->oflags &= ~VPO_NOSYNC;
1587 	}
1588 }
1589 
1590 void
1591 vm_page_clear_dirty(vm_page_t m, int base, int size)
1592 {
1593 
1594 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1595 	m->dirty &= ~vm_page_bits(base, size);
1596 }
1597 
1598 /*
1599  *	vm_page_set_invalid:
1600  *
1601  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1602  *	valid and dirty bits for the effected areas are cleared.
1603  *
1604  *	May not block.
1605  */
1606 void
1607 vm_page_set_invalid(vm_page_t m, int base, int size)
1608 {
1609 	int bits;
1610 
1611 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1612 	bits = vm_page_bits(base, size);
1613 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1614 	if (m->valid == VM_PAGE_BITS_ALL && bits != 0)
1615 		pmap_remove_all(m);
1616 	m->valid &= ~bits;
1617 	m->dirty &= ~bits;
1618 	m->object->generation++;
1619 }
1620 
1621 /*
1622  * vm_page_zero_invalid()
1623  *
1624  *	The kernel assumes that the invalid portions of a page contain
1625  *	garbage, but such pages can be mapped into memory by user code.
1626  *	When this occurs, we must zero out the non-valid portions of the
1627  *	page so user code sees what it expects.
1628  *
1629  *	Pages are most often semi-valid when the end of a file is mapped
1630  *	into memory and the file's size is not page aligned.
1631  */
1632 void
1633 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1634 {
1635 	int b;
1636 	int i;
1637 
1638 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1639 	/*
1640 	 * Scan the valid bits looking for invalid sections that
1641 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1642 	 * valid bit may be set ) have already been zerod by
1643 	 * vm_page_set_validclean().
1644 	 */
1645 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1646 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1647 		    (m->valid & (1 << i))
1648 		) {
1649 			if (i > b) {
1650 				pmap_zero_page_area(m,
1651 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
1652 			}
1653 			b = i + 1;
1654 		}
1655 	}
1656 
1657 	/*
1658 	 * setvalid is TRUE when we can safely set the zero'd areas
1659 	 * as being valid.  We can do this if there are no cache consistancy
1660 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1661 	 */
1662 	if (setvalid)
1663 		m->valid = VM_PAGE_BITS_ALL;
1664 }
1665 
1666 /*
1667  *	vm_page_is_valid:
1668  *
1669  *	Is (partial) page valid?  Note that the case where size == 0
1670  *	will return FALSE in the degenerate case where the page is
1671  *	entirely invalid, and TRUE otherwise.
1672  *
1673  *	May not block.
1674  */
1675 int
1676 vm_page_is_valid(vm_page_t m, int base, int size)
1677 {
1678 	int bits = vm_page_bits(base, size);
1679 
1680 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1681 	if (m->valid && ((m->valid & bits) == bits))
1682 		return 1;
1683 	else
1684 		return 0;
1685 }
1686 
1687 /*
1688  * update dirty bits from pmap/mmu.  May not block.
1689  */
1690 void
1691 vm_page_test_dirty(vm_page_t m)
1692 {
1693 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1694 		vm_page_dirty(m);
1695 	}
1696 }
1697 
1698 int so_zerocp_fullpage = 0;
1699 
1700 void
1701 vm_page_cowfault(vm_page_t m)
1702 {
1703 	vm_page_t mnew;
1704 	vm_object_t object;
1705 	vm_pindex_t pindex;
1706 
1707 	object = m->object;
1708 	pindex = m->pindex;
1709 
1710  retry_alloc:
1711 	pmap_remove_all(m);
1712 	vm_page_remove(m);
1713 	mnew = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
1714 	if (mnew == NULL) {
1715 		vm_page_insert(m, object, pindex);
1716 		vm_page_unlock_queues();
1717 		VM_OBJECT_UNLOCK(object);
1718 		VM_WAIT;
1719 		VM_OBJECT_LOCK(object);
1720 		vm_page_lock_queues();
1721 		goto retry_alloc;
1722 	}
1723 
1724 	if (m->cow == 0) {
1725 		/*
1726 		 * check to see if we raced with an xmit complete when
1727 		 * waiting to allocate a page.  If so, put things back
1728 		 * the way they were
1729 		 */
1730 		vm_page_free(mnew);
1731 		vm_page_insert(m, object, pindex);
1732 	} else { /* clear COW & copy page */
1733 		if (!so_zerocp_fullpage)
1734 			pmap_copy_page(m, mnew);
1735 		mnew->valid = VM_PAGE_BITS_ALL;
1736 		vm_page_dirty(mnew);
1737 		mnew->wire_count = m->wire_count - m->cow;
1738 		m->wire_count = m->cow;
1739 	}
1740 }
1741 
1742 void
1743 vm_page_cowclear(vm_page_t m)
1744 {
1745 
1746 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1747 	if (m->cow) {
1748 		m->cow--;
1749 		/*
1750 		 * let vm_fault add back write permission  lazily
1751 		 */
1752 	}
1753 	/*
1754 	 *  sf_buf_free() will free the page, so we needn't do it here
1755 	 */
1756 }
1757 
1758 void
1759 vm_page_cowsetup(vm_page_t m)
1760 {
1761 
1762 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1763 	m->cow++;
1764 	pmap_remove_write(m);
1765 }
1766 
1767 #include "opt_ddb.h"
1768 #ifdef DDB
1769 #include <sys/kernel.h>
1770 
1771 #include <ddb/ddb.h>
1772 
1773 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1774 {
1775 	db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
1776 	db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
1777 	db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
1778 	db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
1779 	db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
1780 	db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
1781 	db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
1782 	db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
1783 	db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
1784 	db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
1785 }
1786 
1787 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1788 {
1789 	int i;
1790 	db_printf("PQ_FREE:");
1791 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1792 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1793 	}
1794 	db_printf("\n");
1795 
1796 	db_printf("PQ_CACHE:");
1797 	for (i = 0; i < PQ_NUMCOLORS; i++) {
1798 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1799 	}
1800 	db_printf("\n");
1801 
1802 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1803 		vm_page_queues[PQ_ACTIVE].lcnt,
1804 		vm_page_queues[PQ_INACTIVE].lcnt);
1805 }
1806 #endif /* DDB */
1807