xref: /freebsd/sys/vm/vm_page.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113 
114 #include <machine/md_var.h>
115 
116 struct vm_domain vm_dom[MAXMEMDOM];
117 
118 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
119 
120 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
121 
122 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
123 /* The following fields are protected by the domainset lock. */
124 domainset_t __exclusive_cache_line vm_min_domains;
125 domainset_t __exclusive_cache_line vm_severe_domains;
126 static int vm_min_waiters;
127 static int vm_severe_waiters;
128 static int vm_pageproc_waiters;
129 
130 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
131     "VM page statistics");
132 
133 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
135     CTLFLAG_RD, &pqstate_commit_retries,
136     "Number of failed per-page atomic queue state updates");
137 
138 static COUNTER_U64_DEFINE_EARLY(queue_ops);
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
140     CTLFLAG_RD, &queue_ops,
141     "Number of batched queue operations");
142 
143 static COUNTER_U64_DEFINE_EARLY(queue_nops);
144 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
145     CTLFLAG_RD, &queue_nops,
146     "Number of batched queue operations with no effects");
147 
148 /*
149  * bogus page -- for I/O to/from partially complete buffers,
150  * or for paging into sparsely invalid regions.
151  */
152 vm_page_t bogus_page;
153 
154 vm_page_t vm_page_array;
155 long vm_page_array_size;
156 long first_page;
157 
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162 
163 static uma_zone_t fakepg_zone;
164 
165 static void vm_page_alloc_check(vm_page_t m);
166 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
167     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
168 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
169 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
170 static bool vm_page_free_prep(vm_page_t m);
171 static void vm_page_free_toq(vm_page_t m);
172 static void vm_page_init(void *dummy);
173 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
174     vm_pindex_t pindex, vm_page_t mpred);
175 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
176     vm_page_t mpred);
177 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
178     const uint16_t nflag);
179 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
180     vm_page_t m_run, vm_paddr_t high);
181 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
182 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
183     int req);
184 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
185     int flags);
186 static void vm_page_zone_release(void *arg, void **store, int cnt);
187 
188 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
189 
190 static void
191 vm_page_init(void *dummy)
192 {
193 
194 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
195 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
197 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
198 }
199 
200 /*
201  * The cache page zone is initialized later since we need to be able to allocate
202  * pages before UMA is fully initialized.
203  */
204 static void
205 vm_page_init_cache_zones(void *dummy __unused)
206 {
207 	struct vm_domain *vmd;
208 	struct vm_pgcache *pgcache;
209 	int cache, domain, maxcache, pool;
210 
211 	maxcache = 0;
212 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
213 	maxcache *= mp_ncpus;
214 	for (domain = 0; domain < vm_ndomains; domain++) {
215 		vmd = VM_DOMAIN(domain);
216 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
217 			pgcache = &vmd->vmd_pgcache[pool];
218 			pgcache->domain = domain;
219 			pgcache->pool = pool;
220 			pgcache->zone = uma_zcache_create("vm pgcache",
221 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
222 			    vm_page_zone_import, vm_page_zone_release, pgcache,
223 			    UMA_ZONE_VM);
224 
225 			/*
226 			 * Limit each pool's zone to 0.1% of the pages in the
227 			 * domain.
228 			 */
229 			cache = maxcache != 0 ? maxcache :
230 			    vmd->vmd_page_count / 1000;
231 			uma_zone_set_maxcache(pgcache->zone, cache);
232 		}
233 	}
234 }
235 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
236 
237 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
238 #if PAGE_SIZE == 32768
239 #ifdef CTASSERT
240 CTASSERT(sizeof(u_long) >= 8);
241 #endif
242 #endif
243 
244 /*
245  *	vm_set_page_size:
246  *
247  *	Sets the page size, perhaps based upon the memory
248  *	size.  Must be called before any use of page-size
249  *	dependent functions.
250  */
251 void
252 vm_set_page_size(void)
253 {
254 	if (vm_cnt.v_page_size == 0)
255 		vm_cnt.v_page_size = PAGE_SIZE;
256 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
257 		panic("vm_set_page_size: page size not a power of two");
258 }
259 
260 /*
261  *	vm_page_blacklist_next:
262  *
263  *	Find the next entry in the provided string of blacklist
264  *	addresses.  Entries are separated by space, comma, or newline.
265  *	If an invalid integer is encountered then the rest of the
266  *	string is skipped.  Updates the list pointer to the next
267  *	character, or NULL if the string is exhausted or invalid.
268  */
269 static vm_paddr_t
270 vm_page_blacklist_next(char **list, char *end)
271 {
272 	vm_paddr_t bad;
273 	char *cp, *pos;
274 
275 	if (list == NULL || *list == NULL)
276 		return (0);
277 	if (**list =='\0') {
278 		*list = NULL;
279 		return (0);
280 	}
281 
282 	/*
283 	 * If there's no end pointer then the buffer is coming from
284 	 * the kenv and we know it's null-terminated.
285 	 */
286 	if (end == NULL)
287 		end = *list + strlen(*list);
288 
289 	/* Ensure that strtoq() won't walk off the end */
290 	if (*end != '\0') {
291 		if (*end == '\n' || *end == ' ' || *end  == ',')
292 			*end = '\0';
293 		else {
294 			printf("Blacklist not terminated, skipping\n");
295 			*list = NULL;
296 			return (0);
297 		}
298 	}
299 
300 	for (pos = *list; *pos != '\0'; pos = cp) {
301 		bad = strtoq(pos, &cp, 0);
302 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
303 			if (bad == 0) {
304 				if (++cp < end)
305 					continue;
306 				else
307 					break;
308 			}
309 		} else
310 			break;
311 		if (*cp == '\0' || ++cp >= end)
312 			*list = NULL;
313 		else
314 			*list = cp;
315 		return (trunc_page(bad));
316 	}
317 	printf("Garbage in RAM blacklist, skipping\n");
318 	*list = NULL;
319 	return (0);
320 }
321 
322 bool
323 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
324 {
325 	struct vm_domain *vmd;
326 	vm_page_t m;
327 	int ret;
328 
329 	m = vm_phys_paddr_to_vm_page(pa);
330 	if (m == NULL)
331 		return (true); /* page does not exist, no failure */
332 
333 	vmd = vm_pagequeue_domain(m);
334 	vm_domain_free_lock(vmd);
335 	ret = vm_phys_unfree_page(m);
336 	vm_domain_free_unlock(vmd);
337 	if (ret != 0) {
338 		vm_domain_freecnt_inc(vmd, -1);
339 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
340 		if (verbose)
341 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
342 	}
343 	return (ret);
344 }
345 
346 /*
347  *	vm_page_blacklist_check:
348  *
349  *	Iterate through the provided string of blacklist addresses, pulling
350  *	each entry out of the physical allocator free list and putting it
351  *	onto a list for reporting via the vm.page_blacklist sysctl.
352  */
353 static void
354 vm_page_blacklist_check(char *list, char *end)
355 {
356 	vm_paddr_t pa;
357 	char *next;
358 
359 	next = list;
360 	while (next != NULL) {
361 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
362 			continue;
363 		vm_page_blacklist_add(pa, bootverbose);
364 	}
365 }
366 
367 /*
368  *	vm_page_blacklist_load:
369  *
370  *	Search for a special module named "ram_blacklist".  It'll be a
371  *	plain text file provided by the user via the loader directive
372  *	of the same name.
373  */
374 static void
375 vm_page_blacklist_load(char **list, char **end)
376 {
377 	void *mod;
378 	u_char *ptr;
379 	u_int len;
380 
381 	mod = NULL;
382 	ptr = NULL;
383 
384 	mod = preload_search_by_type("ram_blacklist");
385 	if (mod != NULL) {
386 		ptr = preload_fetch_addr(mod);
387 		len = preload_fetch_size(mod);
388         }
389 	*list = ptr;
390 	if (ptr != NULL)
391 		*end = ptr + len;
392 	else
393 		*end = NULL;
394 	return;
395 }
396 
397 static int
398 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
399 {
400 	vm_page_t m;
401 	struct sbuf sbuf;
402 	int error, first;
403 
404 	first = 1;
405 	error = sysctl_wire_old_buffer(req, 0);
406 	if (error != 0)
407 		return (error);
408 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
409 	TAILQ_FOREACH(m, &blacklist_head, listq) {
410 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
411 		    (uintmax_t)m->phys_addr);
412 		first = 0;
413 	}
414 	error = sbuf_finish(&sbuf);
415 	sbuf_delete(&sbuf);
416 	return (error);
417 }
418 
419 /*
420  * Initialize a dummy page for use in scans of the specified paging queue.
421  * In principle, this function only needs to set the flag PG_MARKER.
422  * Nonetheless, it write busies the page as a safety precaution.
423  */
424 static void
425 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
426 {
427 
428 	bzero(marker, sizeof(*marker));
429 	marker->flags = PG_MARKER;
430 	marker->a.flags = aflags;
431 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
432 	marker->a.queue = queue;
433 }
434 
435 static void
436 vm_page_domain_init(int domain)
437 {
438 	struct vm_domain *vmd;
439 	struct vm_pagequeue *pq;
440 	int i;
441 
442 	vmd = VM_DOMAIN(domain);
443 	bzero(vmd, sizeof(*vmd));
444 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
445 	    "vm inactive pagequeue";
446 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
447 	    "vm active pagequeue";
448 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
449 	    "vm laundry pagequeue";
450 	*__DECONST(const char **,
451 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
452 	    "vm unswappable pagequeue";
453 	vmd->vmd_domain = domain;
454 	vmd->vmd_page_count = 0;
455 	vmd->vmd_free_count = 0;
456 	vmd->vmd_segs = 0;
457 	vmd->vmd_oom = FALSE;
458 	for (i = 0; i < PQ_COUNT; i++) {
459 		pq = &vmd->vmd_pagequeues[i];
460 		TAILQ_INIT(&pq->pq_pl);
461 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
462 		    MTX_DEF | MTX_DUPOK);
463 		pq->pq_pdpages = 0;
464 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
465 	}
466 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
467 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
468 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
469 
470 	/*
471 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
472 	 * insertions.
473 	 */
474 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
475 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
476 	    &vmd->vmd_inacthead, plinks.q);
477 
478 	/*
479 	 * The clock pages are used to implement active queue scanning without
480 	 * requeues.  Scans start at clock[0], which is advanced after the scan
481 	 * ends.  When the two clock hands meet, they are reset and scanning
482 	 * resumes from the head of the queue.
483 	 */
484 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
485 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
486 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
487 	    &vmd->vmd_clock[0], plinks.q);
488 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
489 	    &vmd->vmd_clock[1], plinks.q);
490 }
491 
492 /*
493  * Initialize a physical page in preparation for adding it to the free
494  * lists.
495  */
496 static void
497 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
498 {
499 
500 	m->object = NULL;
501 	m->ref_count = 0;
502 	m->busy_lock = VPB_FREED;
503 	m->flags = m->a.flags = 0;
504 	m->phys_addr = pa;
505 	m->a.queue = PQ_NONE;
506 	m->psind = 0;
507 	m->segind = segind;
508 	m->order = VM_NFREEORDER;
509 	m->pool = VM_FREEPOOL_DEFAULT;
510 	m->valid = m->dirty = 0;
511 	pmap_page_init(m);
512 }
513 
514 #ifndef PMAP_HAS_PAGE_ARRAY
515 static vm_paddr_t
516 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
517 {
518 	vm_paddr_t new_end;
519 
520 	/*
521 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
522 	 * However, because this page is allocated from KVM, out-of-bounds
523 	 * accesses using the direct map will not be trapped.
524 	 */
525 	*vaddr += PAGE_SIZE;
526 
527 	/*
528 	 * Allocate physical memory for the page structures, and map it.
529 	 */
530 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
531 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
532 	    VM_PROT_READ | VM_PROT_WRITE);
533 	vm_page_array_size = page_range;
534 
535 	return (new_end);
536 }
537 #endif
538 
539 /*
540  *	vm_page_startup:
541  *
542  *	Initializes the resident memory module.  Allocates physical memory for
543  *	bootstrapping UMA and some data structures that are used to manage
544  *	physical pages.  Initializes these structures, and populates the free
545  *	page queues.
546  */
547 vm_offset_t
548 vm_page_startup(vm_offset_t vaddr)
549 {
550 	struct vm_phys_seg *seg;
551 	vm_page_t m;
552 	char *list, *listend;
553 	vm_paddr_t end, high_avail, low_avail, new_end, size;
554 	vm_paddr_t page_range __unused;
555 	vm_paddr_t last_pa, pa;
556 	u_long pagecount;
557 	int biggestone, i, segind;
558 #ifdef WITNESS
559 	vm_offset_t mapped;
560 	int witness_size;
561 #endif
562 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
563 	long ii;
564 #endif
565 
566 	vaddr = round_page(vaddr);
567 
568 	vm_phys_early_startup();
569 	biggestone = vm_phys_avail_largest();
570 	end = phys_avail[biggestone+1];
571 
572 	/*
573 	 * Initialize the page and queue locks.
574 	 */
575 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
576 	for (i = 0; i < PA_LOCK_COUNT; i++)
577 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
578 	for (i = 0; i < vm_ndomains; i++)
579 		vm_page_domain_init(i);
580 
581 	new_end = end;
582 #ifdef WITNESS
583 	witness_size = round_page(witness_startup_count());
584 	new_end -= witness_size;
585 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
586 	    VM_PROT_READ | VM_PROT_WRITE);
587 	bzero((void *)mapped, witness_size);
588 	witness_startup((void *)mapped);
589 #endif
590 
591 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
592     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
593     defined(__powerpc64__)
594 	/*
595 	 * Allocate a bitmap to indicate that a random physical page
596 	 * needs to be included in a minidump.
597 	 *
598 	 * The amd64 port needs this to indicate which direct map pages
599 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
600 	 *
601 	 * However, i386 still needs this workspace internally within the
602 	 * minidump code.  In theory, they are not needed on i386, but are
603 	 * included should the sf_buf code decide to use them.
604 	 */
605 	last_pa = 0;
606 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
607 		if (dump_avail[i + 1] > last_pa)
608 			last_pa = dump_avail[i + 1];
609 	page_range = last_pa / PAGE_SIZE;
610 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
611 	new_end -= vm_page_dump_size;
612 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
613 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
614 	bzero((void *)vm_page_dump, vm_page_dump_size);
615 #else
616 	(void)last_pa;
617 #endif
618 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
619     defined(__riscv) || defined(__powerpc64__)
620 	/*
621 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
622 	 * in a crash dump.  When pmap_map() uses the direct map, they are
623 	 * not automatically included.
624 	 */
625 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
626 		dump_add_page(pa);
627 #endif
628 	phys_avail[biggestone + 1] = new_end;
629 #ifdef __amd64__
630 	/*
631 	 * Request that the physical pages underlying the message buffer be
632 	 * included in a crash dump.  Since the message buffer is accessed
633 	 * through the direct map, they are not automatically included.
634 	 */
635 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
636 	last_pa = pa + round_page(msgbufsize);
637 	while (pa < last_pa) {
638 		dump_add_page(pa);
639 		pa += PAGE_SIZE;
640 	}
641 #endif
642 	/*
643 	 * Compute the number of pages of memory that will be available for
644 	 * use, taking into account the overhead of a page structure per page.
645 	 * In other words, solve
646 	 *	"available physical memory" - round_page(page_range *
647 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
648 	 * for page_range.
649 	 */
650 	low_avail = phys_avail[0];
651 	high_avail = phys_avail[1];
652 	for (i = 0; i < vm_phys_nsegs; i++) {
653 		if (vm_phys_segs[i].start < low_avail)
654 			low_avail = vm_phys_segs[i].start;
655 		if (vm_phys_segs[i].end > high_avail)
656 			high_avail = vm_phys_segs[i].end;
657 	}
658 	/* Skip the first chunk.  It is already accounted for. */
659 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
660 		if (phys_avail[i] < low_avail)
661 			low_avail = phys_avail[i];
662 		if (phys_avail[i + 1] > high_avail)
663 			high_avail = phys_avail[i + 1];
664 	}
665 	first_page = low_avail / PAGE_SIZE;
666 #ifdef VM_PHYSSEG_SPARSE
667 	size = 0;
668 	for (i = 0; i < vm_phys_nsegs; i++)
669 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
670 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
671 		size += phys_avail[i + 1] - phys_avail[i];
672 #elif defined(VM_PHYSSEG_DENSE)
673 	size = high_avail - low_avail;
674 #else
675 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
676 #endif
677 
678 #ifdef PMAP_HAS_PAGE_ARRAY
679 	pmap_page_array_startup(size / PAGE_SIZE);
680 	biggestone = vm_phys_avail_largest();
681 	end = new_end = phys_avail[biggestone + 1];
682 #else
683 #ifdef VM_PHYSSEG_DENSE
684 	/*
685 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
686 	 * the overhead of a page structure per page only if vm_page_array is
687 	 * allocated from the last physical memory chunk.  Otherwise, we must
688 	 * allocate page structures representing the physical memory
689 	 * underlying vm_page_array, even though they will not be used.
690 	 */
691 	if (new_end != high_avail)
692 		page_range = size / PAGE_SIZE;
693 	else
694 #endif
695 	{
696 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
697 
698 		/*
699 		 * If the partial bytes remaining are large enough for
700 		 * a page (PAGE_SIZE) without a corresponding
701 		 * 'struct vm_page', then new_end will contain an
702 		 * extra page after subtracting the length of the VM
703 		 * page array.  Compensate by subtracting an extra
704 		 * page from new_end.
705 		 */
706 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
707 			if (new_end == high_avail)
708 				high_avail -= PAGE_SIZE;
709 			new_end -= PAGE_SIZE;
710 		}
711 	}
712 	end = new_end;
713 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
714 #endif
715 
716 #if VM_NRESERVLEVEL > 0
717 	/*
718 	 * Allocate physical memory for the reservation management system's
719 	 * data structures, and map it.
720 	 */
721 	new_end = vm_reserv_startup(&vaddr, new_end);
722 #endif
723 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
724     defined(__riscv) || defined(__powerpc64__)
725 	/*
726 	 * Include vm_page_array and vm_reserv_array in a crash dump.
727 	 */
728 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
729 		dump_add_page(pa);
730 #endif
731 	phys_avail[biggestone + 1] = new_end;
732 
733 	/*
734 	 * Add physical memory segments corresponding to the available
735 	 * physical pages.
736 	 */
737 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
738 		if (vm_phys_avail_size(i) != 0)
739 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
740 
741 	/*
742 	 * Initialize the physical memory allocator.
743 	 */
744 	vm_phys_init();
745 
746 	/*
747 	 * Initialize the page structures and add every available page to the
748 	 * physical memory allocator's free lists.
749 	 */
750 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
751 	for (ii = 0; ii < vm_page_array_size; ii++) {
752 		m = &vm_page_array[ii];
753 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
754 		m->flags = PG_FICTITIOUS;
755 	}
756 #endif
757 	vm_cnt.v_page_count = 0;
758 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
759 		seg = &vm_phys_segs[segind];
760 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
761 		    m++, pa += PAGE_SIZE)
762 			vm_page_init_page(m, pa, segind);
763 
764 		/*
765 		 * Add the segment to the free lists only if it is covered by
766 		 * one of the ranges in phys_avail.  Because we've added the
767 		 * ranges to the vm_phys_segs array, we can assume that each
768 		 * segment is either entirely contained in one of the ranges,
769 		 * or doesn't overlap any of them.
770 		 */
771 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
772 			struct vm_domain *vmd;
773 
774 			if (seg->start < phys_avail[i] ||
775 			    seg->end > phys_avail[i + 1])
776 				continue;
777 
778 			m = seg->first_page;
779 			pagecount = (u_long)atop(seg->end - seg->start);
780 
781 			vmd = VM_DOMAIN(seg->domain);
782 			vm_domain_free_lock(vmd);
783 			vm_phys_enqueue_contig(m, pagecount);
784 			vm_domain_free_unlock(vmd);
785 			vm_domain_freecnt_inc(vmd, pagecount);
786 			vm_cnt.v_page_count += (u_int)pagecount;
787 
788 			vmd = VM_DOMAIN(seg->domain);
789 			vmd->vmd_page_count += (u_int)pagecount;
790 			vmd->vmd_segs |= 1UL << m->segind;
791 			break;
792 		}
793 	}
794 
795 	/*
796 	 * Remove blacklisted pages from the physical memory allocator.
797 	 */
798 	TAILQ_INIT(&blacklist_head);
799 	vm_page_blacklist_load(&list, &listend);
800 	vm_page_blacklist_check(list, listend);
801 
802 	list = kern_getenv("vm.blacklist");
803 	vm_page_blacklist_check(list, NULL);
804 
805 	freeenv(list);
806 #if VM_NRESERVLEVEL > 0
807 	/*
808 	 * Initialize the reservation management system.
809 	 */
810 	vm_reserv_init();
811 #endif
812 
813 	return (vaddr);
814 }
815 
816 void
817 vm_page_reference(vm_page_t m)
818 {
819 
820 	vm_page_aflag_set(m, PGA_REFERENCED);
821 }
822 
823 /*
824  *	vm_page_trybusy
825  *
826  *	Helper routine for grab functions to trylock busy.
827  *
828  *	Returns true on success and false on failure.
829  */
830 static bool
831 vm_page_trybusy(vm_page_t m, int allocflags)
832 {
833 
834 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
835 		return (vm_page_trysbusy(m));
836 	else
837 		return (vm_page_tryxbusy(m));
838 }
839 
840 /*
841  *	vm_page_tryacquire
842  *
843  *	Helper routine for grab functions to trylock busy and wire.
844  *
845  *	Returns true on success and false on failure.
846  */
847 static inline bool
848 vm_page_tryacquire(vm_page_t m, int allocflags)
849 {
850 	bool locked;
851 
852 	locked = vm_page_trybusy(m, allocflags);
853 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
854 		vm_page_wire(m);
855 	return (locked);
856 }
857 
858 /*
859  *	vm_page_busy_acquire:
860  *
861  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
862  *	and drop the object lock if necessary.
863  */
864 bool
865 vm_page_busy_acquire(vm_page_t m, int allocflags)
866 {
867 	vm_object_t obj;
868 	bool locked;
869 
870 	/*
871 	 * The page-specific object must be cached because page
872 	 * identity can change during the sleep, causing the
873 	 * re-lock of a different object.
874 	 * It is assumed that a reference to the object is already
875 	 * held by the callers.
876 	 */
877 	obj = m->object;
878 	for (;;) {
879 		if (vm_page_tryacquire(m, allocflags))
880 			return (true);
881 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
882 			return (false);
883 		if (obj != NULL)
884 			locked = VM_OBJECT_WOWNED(obj);
885 		else
886 			locked = false;
887 		MPASS(locked || vm_page_wired(m));
888 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
889 		    locked) && locked)
890 			VM_OBJECT_WLOCK(obj);
891 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
892 			return (false);
893 		KASSERT(m->object == obj || m->object == NULL,
894 		    ("vm_page_busy_acquire: page %p does not belong to %p",
895 		    m, obj));
896 	}
897 }
898 
899 /*
900  *	vm_page_busy_downgrade:
901  *
902  *	Downgrade an exclusive busy page into a single shared busy page.
903  */
904 void
905 vm_page_busy_downgrade(vm_page_t m)
906 {
907 	u_int x;
908 
909 	vm_page_assert_xbusied(m);
910 
911 	x = m->busy_lock;
912 	for (;;) {
913 		if (atomic_fcmpset_rel_int(&m->busy_lock,
914 		    &x, VPB_SHARERS_WORD(1)))
915 			break;
916 	}
917 	if ((x & VPB_BIT_WAITERS) != 0)
918 		wakeup(m);
919 }
920 
921 /*
922  *
923  *	vm_page_busy_tryupgrade:
924  *
925  *	Attempt to upgrade a single shared busy into an exclusive busy.
926  */
927 int
928 vm_page_busy_tryupgrade(vm_page_t m)
929 {
930 	u_int ce, x;
931 
932 	vm_page_assert_sbusied(m);
933 
934 	x = m->busy_lock;
935 	ce = VPB_CURTHREAD_EXCLUSIVE;
936 	for (;;) {
937 		if (VPB_SHARERS(x) > 1)
938 			return (0);
939 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
940 		    ("vm_page_busy_tryupgrade: invalid lock state"));
941 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
942 		    ce | (x & VPB_BIT_WAITERS)))
943 			continue;
944 		return (1);
945 	}
946 }
947 
948 /*
949  *	vm_page_sbusied:
950  *
951  *	Return a positive value if the page is shared busied, 0 otherwise.
952  */
953 int
954 vm_page_sbusied(vm_page_t m)
955 {
956 	u_int x;
957 
958 	x = m->busy_lock;
959 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
960 }
961 
962 /*
963  *	vm_page_sunbusy:
964  *
965  *	Shared unbusy a page.
966  */
967 void
968 vm_page_sunbusy(vm_page_t m)
969 {
970 	u_int x;
971 
972 	vm_page_assert_sbusied(m);
973 
974 	x = m->busy_lock;
975 	for (;;) {
976 		KASSERT(x != VPB_FREED,
977 		    ("vm_page_sunbusy: Unlocking freed page."));
978 		if (VPB_SHARERS(x) > 1) {
979 			if (atomic_fcmpset_int(&m->busy_lock, &x,
980 			    x - VPB_ONE_SHARER))
981 				break;
982 			continue;
983 		}
984 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
985 		    ("vm_page_sunbusy: invalid lock state"));
986 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
987 			continue;
988 		if ((x & VPB_BIT_WAITERS) == 0)
989 			break;
990 		wakeup(m);
991 		break;
992 	}
993 }
994 
995 /*
996  *	vm_page_busy_sleep:
997  *
998  *	Sleep if the page is busy, using the page pointer as wchan.
999  *	This is used to implement the hard-path of busying mechanism.
1000  *
1001  *	If nonshared is true, sleep only if the page is xbusy.
1002  *
1003  *	The object lock must be held on entry and will be released on exit.
1004  */
1005 void
1006 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1007 {
1008 	vm_object_t obj;
1009 
1010 	obj = m->object;
1011 	VM_OBJECT_ASSERT_LOCKED(obj);
1012 	vm_page_lock_assert(m, MA_NOTOWNED);
1013 
1014 	if (!_vm_page_busy_sleep(obj, m, m->pindex, wmesg,
1015 	    nonshared ? VM_ALLOC_SBUSY : 0 , true))
1016 		VM_OBJECT_DROP(obj);
1017 }
1018 
1019 /*
1020  *	vm_page_busy_sleep_unlocked:
1021  *
1022  *	Sleep if the page is busy, using the page pointer as wchan.
1023  *	This is used to implement the hard-path of busying mechanism.
1024  *
1025  *	If nonshared is true, sleep only if the page is xbusy.
1026  *
1027  *	The object lock must not be held on entry.  The operation will
1028  *	return if the page changes identity.
1029  */
1030 void
1031 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1032     const char *wmesg, bool nonshared)
1033 {
1034 
1035 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1036 	vm_page_lock_assert(m, MA_NOTOWNED);
1037 
1038 	_vm_page_busy_sleep(obj, m, pindex, wmesg,
1039 	    nonshared ? VM_ALLOC_SBUSY : 0, false);
1040 }
1041 
1042 /*
1043  *	_vm_page_busy_sleep:
1044  *
1045  *	Internal busy sleep function.  Verifies the page identity and
1046  *	lockstate against parameters.  Returns true if it sleeps and
1047  *	false otherwise.
1048  *
1049  *	If locked is true the lock will be dropped for any true returns
1050  *	and held for any false returns.
1051  */
1052 static bool
1053 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1054     const char *wmesg, int allocflags, bool locked)
1055 {
1056 	bool xsleep;
1057 	u_int x;
1058 
1059 	/*
1060 	 * If the object is busy we must wait for that to drain to zero
1061 	 * before trying the page again.
1062 	 */
1063 	if (obj != NULL && vm_object_busied(obj)) {
1064 		if (locked)
1065 			VM_OBJECT_DROP(obj);
1066 		vm_object_busy_wait(obj, wmesg);
1067 		return (true);
1068 	}
1069 
1070 	if (!vm_page_busied(m))
1071 		return (false);
1072 
1073 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1074 	sleepq_lock(m);
1075 	x = atomic_load_int(&m->busy_lock);
1076 	do {
1077 		/*
1078 		 * If the page changes objects or becomes unlocked we can
1079 		 * simply return.
1080 		 */
1081 		if (x == VPB_UNBUSIED ||
1082 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1083 		    m->object != obj || m->pindex != pindex) {
1084 			sleepq_release(m);
1085 			return (false);
1086 		}
1087 		if ((x & VPB_BIT_WAITERS) != 0)
1088 			break;
1089 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1090 	if (locked)
1091 		VM_OBJECT_DROP(obj);
1092 	DROP_GIANT();
1093 	sleepq_add(m, NULL, wmesg, 0, 0);
1094 	sleepq_wait(m, PVM);
1095 	PICKUP_GIANT();
1096 	return (true);
1097 }
1098 
1099 /*
1100  *	vm_page_trysbusy:
1101  *
1102  *	Try to shared busy a page.
1103  *	If the operation succeeds 1 is returned otherwise 0.
1104  *	The operation never sleeps.
1105  */
1106 int
1107 vm_page_trysbusy(vm_page_t m)
1108 {
1109 	vm_object_t obj;
1110 	u_int x;
1111 
1112 	obj = m->object;
1113 	x = m->busy_lock;
1114 	for (;;) {
1115 		if ((x & VPB_BIT_SHARED) == 0)
1116 			return (0);
1117 		/*
1118 		 * Reduce the window for transient busies that will trigger
1119 		 * false negatives in vm_page_ps_test().
1120 		 */
1121 		if (obj != NULL && vm_object_busied(obj))
1122 			return (0);
1123 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1124 		    x + VPB_ONE_SHARER))
1125 			break;
1126 	}
1127 
1128 	/* Refetch the object now that we're guaranteed that it is stable. */
1129 	obj = m->object;
1130 	if (obj != NULL && vm_object_busied(obj)) {
1131 		vm_page_sunbusy(m);
1132 		return (0);
1133 	}
1134 	return (1);
1135 }
1136 
1137 /*
1138  *	vm_page_tryxbusy:
1139  *
1140  *	Try to exclusive busy a page.
1141  *	If the operation succeeds 1 is returned otherwise 0.
1142  *	The operation never sleeps.
1143  */
1144 int
1145 vm_page_tryxbusy(vm_page_t m)
1146 {
1147 	vm_object_t obj;
1148 
1149         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1150             VPB_CURTHREAD_EXCLUSIVE) == 0)
1151 		return (0);
1152 
1153 	obj = m->object;
1154 	if (obj != NULL && vm_object_busied(obj)) {
1155 		vm_page_xunbusy(m);
1156 		return (0);
1157 	}
1158 	return (1);
1159 }
1160 
1161 static void
1162 vm_page_xunbusy_hard_tail(vm_page_t m)
1163 {
1164 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1165 	/* Wake the waiter. */
1166 	wakeup(m);
1167 }
1168 
1169 /*
1170  *	vm_page_xunbusy_hard:
1171  *
1172  *	Called when unbusy has failed because there is a waiter.
1173  */
1174 void
1175 vm_page_xunbusy_hard(vm_page_t m)
1176 {
1177 	vm_page_assert_xbusied(m);
1178 	vm_page_xunbusy_hard_tail(m);
1179 }
1180 
1181 void
1182 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1183 {
1184 	vm_page_assert_xbusied_unchecked(m);
1185 	vm_page_xunbusy_hard_tail(m);
1186 }
1187 
1188 static void
1189 vm_page_busy_free(vm_page_t m)
1190 {
1191 	u_int x;
1192 
1193 	atomic_thread_fence_rel();
1194 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1195 	if ((x & VPB_BIT_WAITERS) != 0)
1196 		wakeup(m);
1197 }
1198 
1199 /*
1200  *	vm_page_unhold_pages:
1201  *
1202  *	Unhold each of the pages that is referenced by the given array.
1203  */
1204 void
1205 vm_page_unhold_pages(vm_page_t *ma, int count)
1206 {
1207 
1208 	for (; count != 0; count--) {
1209 		vm_page_unwire(*ma, PQ_ACTIVE);
1210 		ma++;
1211 	}
1212 }
1213 
1214 vm_page_t
1215 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1216 {
1217 	vm_page_t m;
1218 
1219 #ifdef VM_PHYSSEG_SPARSE
1220 	m = vm_phys_paddr_to_vm_page(pa);
1221 	if (m == NULL)
1222 		m = vm_phys_fictitious_to_vm_page(pa);
1223 	return (m);
1224 #elif defined(VM_PHYSSEG_DENSE)
1225 	long pi;
1226 
1227 	pi = atop(pa);
1228 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1229 		m = &vm_page_array[pi - first_page];
1230 		return (m);
1231 	}
1232 	return (vm_phys_fictitious_to_vm_page(pa));
1233 #else
1234 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1235 #endif
1236 }
1237 
1238 /*
1239  *	vm_page_getfake:
1240  *
1241  *	Create a fictitious page with the specified physical address and
1242  *	memory attribute.  The memory attribute is the only the machine-
1243  *	dependent aspect of a fictitious page that must be initialized.
1244  */
1245 vm_page_t
1246 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1247 {
1248 	vm_page_t m;
1249 
1250 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1251 	vm_page_initfake(m, paddr, memattr);
1252 	return (m);
1253 }
1254 
1255 void
1256 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1257 {
1258 
1259 	if ((m->flags & PG_FICTITIOUS) != 0) {
1260 		/*
1261 		 * The page's memattr might have changed since the
1262 		 * previous initialization.  Update the pmap to the
1263 		 * new memattr.
1264 		 */
1265 		goto memattr;
1266 	}
1267 	m->phys_addr = paddr;
1268 	m->a.queue = PQ_NONE;
1269 	/* Fictitious pages don't use "segind". */
1270 	m->flags = PG_FICTITIOUS;
1271 	/* Fictitious pages don't use "order" or "pool". */
1272 	m->oflags = VPO_UNMANAGED;
1273 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1274 	/* Fictitious pages are unevictable. */
1275 	m->ref_count = 1;
1276 	pmap_page_init(m);
1277 memattr:
1278 	pmap_page_set_memattr(m, memattr);
1279 }
1280 
1281 /*
1282  *	vm_page_putfake:
1283  *
1284  *	Release a fictitious page.
1285  */
1286 void
1287 vm_page_putfake(vm_page_t m)
1288 {
1289 
1290 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1291 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1292 	    ("vm_page_putfake: bad page %p", m));
1293 	vm_page_assert_xbusied(m);
1294 	vm_page_busy_free(m);
1295 	uma_zfree(fakepg_zone, m);
1296 }
1297 
1298 /*
1299  *	vm_page_updatefake:
1300  *
1301  *	Update the given fictitious page to the specified physical address and
1302  *	memory attribute.
1303  */
1304 void
1305 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1306 {
1307 
1308 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1309 	    ("vm_page_updatefake: bad page %p", m));
1310 	m->phys_addr = paddr;
1311 	pmap_page_set_memattr(m, memattr);
1312 }
1313 
1314 /*
1315  *	vm_page_free:
1316  *
1317  *	Free a page.
1318  */
1319 void
1320 vm_page_free(vm_page_t m)
1321 {
1322 
1323 	m->flags &= ~PG_ZERO;
1324 	vm_page_free_toq(m);
1325 }
1326 
1327 /*
1328  *	vm_page_free_zero:
1329  *
1330  *	Free a page to the zerod-pages queue
1331  */
1332 void
1333 vm_page_free_zero(vm_page_t m)
1334 {
1335 
1336 	m->flags |= PG_ZERO;
1337 	vm_page_free_toq(m);
1338 }
1339 
1340 /*
1341  * Unbusy and handle the page queueing for a page from a getpages request that
1342  * was optionally read ahead or behind.
1343  */
1344 void
1345 vm_page_readahead_finish(vm_page_t m)
1346 {
1347 
1348 	/* We shouldn't put invalid pages on queues. */
1349 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1350 
1351 	/*
1352 	 * Since the page is not the actually needed one, whether it should
1353 	 * be activated or deactivated is not obvious.  Empirical results
1354 	 * have shown that deactivating the page is usually the best choice,
1355 	 * unless the page is wanted by another thread.
1356 	 */
1357 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1358 		vm_page_activate(m);
1359 	else
1360 		vm_page_deactivate(m);
1361 	vm_page_xunbusy_unchecked(m);
1362 }
1363 
1364 /*
1365  *	vm_page_sleep_if_busy:
1366  *
1367  *	Sleep and release the object lock if the page is busied.
1368  *	Returns TRUE if the thread slept.
1369  *
1370  *	The given page must be unlocked and object containing it must
1371  *	be locked.
1372  */
1373 int
1374 vm_page_sleep_if_busy(vm_page_t m, const char *wmesg)
1375 {
1376 	vm_object_t obj;
1377 
1378 	vm_page_lock_assert(m, MA_NOTOWNED);
1379 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1380 
1381 	/*
1382 	 * The page-specific object must be cached because page
1383 	 * identity can change during the sleep, causing the
1384 	 * re-lock of a different object.
1385 	 * It is assumed that a reference to the object is already
1386 	 * held by the callers.
1387 	 */
1388 	obj = m->object;
1389 	if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, 0, true)) {
1390 		VM_OBJECT_WLOCK(obj);
1391 		return (TRUE);
1392 	}
1393 	return (FALSE);
1394 }
1395 
1396 /*
1397  *	vm_page_sleep_if_xbusy:
1398  *
1399  *	Sleep and release the object lock if the page is xbusied.
1400  *	Returns TRUE if the thread slept.
1401  *
1402  *	The given page must be unlocked and object containing it must
1403  *	be locked.
1404  */
1405 int
1406 vm_page_sleep_if_xbusy(vm_page_t m, const char *wmesg)
1407 {
1408 	vm_object_t obj;
1409 
1410 	vm_page_lock_assert(m, MA_NOTOWNED);
1411 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1412 
1413 	/*
1414 	 * The page-specific object must be cached because page
1415 	 * identity can change during the sleep, causing the
1416 	 * re-lock of a different object.
1417 	 * It is assumed that a reference to the object is already
1418 	 * held by the callers.
1419 	 */
1420 	obj = m->object;
1421 	if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, VM_ALLOC_SBUSY,
1422 	    true)) {
1423 		VM_OBJECT_WLOCK(obj);
1424 		return (TRUE);
1425 	}
1426 	return (FALSE);
1427 }
1428 
1429 /*
1430  *	vm_page_dirty_KBI:		[ internal use only ]
1431  *
1432  *	Set all bits in the page's dirty field.
1433  *
1434  *	The object containing the specified page must be locked if the
1435  *	call is made from the machine-independent layer.
1436  *
1437  *	See vm_page_clear_dirty_mask().
1438  *
1439  *	This function should only be called by vm_page_dirty().
1440  */
1441 void
1442 vm_page_dirty_KBI(vm_page_t m)
1443 {
1444 
1445 	/* Refer to this operation by its public name. */
1446 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1447 	m->dirty = VM_PAGE_BITS_ALL;
1448 }
1449 
1450 /*
1451  *	vm_page_insert:		[ internal use only ]
1452  *
1453  *	Inserts the given mem entry into the object and object list.
1454  *
1455  *	The object must be locked.
1456  */
1457 int
1458 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1459 {
1460 	vm_page_t mpred;
1461 
1462 	VM_OBJECT_ASSERT_WLOCKED(object);
1463 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1464 	return (vm_page_insert_after(m, object, pindex, mpred));
1465 }
1466 
1467 /*
1468  *	vm_page_insert_after:
1469  *
1470  *	Inserts the page "m" into the specified object at offset "pindex".
1471  *
1472  *	The page "mpred" must immediately precede the offset "pindex" within
1473  *	the specified object.
1474  *
1475  *	The object must be locked.
1476  */
1477 static int
1478 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1479     vm_page_t mpred)
1480 {
1481 	vm_page_t msucc;
1482 
1483 	VM_OBJECT_ASSERT_WLOCKED(object);
1484 	KASSERT(m->object == NULL,
1485 	    ("vm_page_insert_after: page already inserted"));
1486 	if (mpred != NULL) {
1487 		KASSERT(mpred->object == object,
1488 		    ("vm_page_insert_after: object doesn't contain mpred"));
1489 		KASSERT(mpred->pindex < pindex,
1490 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1491 		msucc = TAILQ_NEXT(mpred, listq);
1492 	} else
1493 		msucc = TAILQ_FIRST(&object->memq);
1494 	if (msucc != NULL)
1495 		KASSERT(msucc->pindex > pindex,
1496 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1497 
1498 	/*
1499 	 * Record the object/offset pair in this page.
1500 	 */
1501 	m->object = object;
1502 	m->pindex = pindex;
1503 	m->ref_count |= VPRC_OBJREF;
1504 
1505 	/*
1506 	 * Now link into the object's ordered list of backed pages.
1507 	 */
1508 	if (vm_radix_insert(&object->rtree, m)) {
1509 		m->object = NULL;
1510 		m->pindex = 0;
1511 		m->ref_count &= ~VPRC_OBJREF;
1512 		return (1);
1513 	}
1514 	vm_page_insert_radixdone(m, object, mpred);
1515 	return (0);
1516 }
1517 
1518 /*
1519  *	vm_page_insert_radixdone:
1520  *
1521  *	Complete page "m" insertion into the specified object after the
1522  *	radix trie hooking.
1523  *
1524  *	The page "mpred" must precede the offset "m->pindex" within the
1525  *	specified object.
1526  *
1527  *	The object must be locked.
1528  */
1529 static void
1530 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1531 {
1532 
1533 	VM_OBJECT_ASSERT_WLOCKED(object);
1534 	KASSERT(object != NULL && m->object == object,
1535 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1536 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1537 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1538 	if (mpred != NULL) {
1539 		KASSERT(mpred->object == object,
1540 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1541 		KASSERT(mpred->pindex < m->pindex,
1542 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1543 	}
1544 
1545 	if (mpred != NULL)
1546 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1547 	else
1548 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1549 
1550 	/*
1551 	 * Show that the object has one more resident page.
1552 	 */
1553 	object->resident_page_count++;
1554 
1555 	/*
1556 	 * Hold the vnode until the last page is released.
1557 	 */
1558 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1559 		vhold(object->handle);
1560 
1561 	/*
1562 	 * Since we are inserting a new and possibly dirty page,
1563 	 * update the object's generation count.
1564 	 */
1565 	if (pmap_page_is_write_mapped(m))
1566 		vm_object_set_writeable_dirty(object);
1567 }
1568 
1569 /*
1570  * Do the work to remove a page from its object.  The caller is responsible for
1571  * updating the page's fields to reflect this removal.
1572  */
1573 static void
1574 vm_page_object_remove(vm_page_t m)
1575 {
1576 	vm_object_t object;
1577 	vm_page_t mrem;
1578 
1579 	vm_page_assert_xbusied(m);
1580 	object = m->object;
1581 	VM_OBJECT_ASSERT_WLOCKED(object);
1582 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1583 	    ("page %p is missing its object ref", m));
1584 
1585 	/* Deferred free of swap space. */
1586 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1587 		vm_pager_page_unswapped(m);
1588 
1589 	m->object = NULL;
1590 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1591 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1592 
1593 	/*
1594 	 * Now remove from the object's list of backed pages.
1595 	 */
1596 	TAILQ_REMOVE(&object->memq, m, listq);
1597 
1598 	/*
1599 	 * And show that the object has one fewer resident page.
1600 	 */
1601 	object->resident_page_count--;
1602 
1603 	/*
1604 	 * The vnode may now be recycled.
1605 	 */
1606 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1607 		vdrop(object->handle);
1608 }
1609 
1610 /*
1611  *	vm_page_remove:
1612  *
1613  *	Removes the specified page from its containing object, but does not
1614  *	invalidate any backing storage.  Returns true if the object's reference
1615  *	was the last reference to the page, and false otherwise.
1616  *
1617  *	The object must be locked and the page must be exclusively busied.
1618  *	The exclusive busy will be released on return.  If this is not the
1619  *	final ref and the caller does not hold a wire reference it may not
1620  *	continue to access the page.
1621  */
1622 bool
1623 vm_page_remove(vm_page_t m)
1624 {
1625 	bool dropped;
1626 
1627 	dropped = vm_page_remove_xbusy(m);
1628 	vm_page_xunbusy(m);
1629 
1630 	return (dropped);
1631 }
1632 
1633 /*
1634  *	vm_page_remove_xbusy
1635  *
1636  *	Removes the page but leaves the xbusy held.  Returns true if this
1637  *	removed the final ref and false otherwise.
1638  */
1639 bool
1640 vm_page_remove_xbusy(vm_page_t m)
1641 {
1642 
1643 	vm_page_object_remove(m);
1644 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1645 }
1646 
1647 /*
1648  *	vm_page_lookup:
1649  *
1650  *	Returns the page associated with the object/offset
1651  *	pair specified; if none is found, NULL is returned.
1652  *
1653  *	The object must be locked.
1654  */
1655 vm_page_t
1656 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1657 {
1658 
1659 	VM_OBJECT_ASSERT_LOCKED(object);
1660 	return (vm_radix_lookup(&object->rtree, pindex));
1661 }
1662 
1663 /*
1664  *	vm_page_relookup:
1665  *
1666  *	Returns a page that must already have been busied by
1667  *	the caller.  Used for bogus page replacement.
1668  */
1669 vm_page_t
1670 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1671 {
1672 	vm_page_t m;
1673 
1674 	m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1675 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1676 	    m->object == object && m->pindex == pindex,
1677 	    ("vm_page_relookup: Invalid page %p", m));
1678 	return (m);
1679 }
1680 
1681 /*
1682  * This should only be used by lockless functions for releasing transient
1683  * incorrect acquires.  The page may have been freed after we acquired a
1684  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1685  * further to do.
1686  */
1687 static void
1688 vm_page_busy_release(vm_page_t m)
1689 {
1690 	u_int x;
1691 
1692 	x = atomic_load_int(&m->busy_lock);
1693 	for (;;) {
1694 		if (x == VPB_FREED)
1695 			break;
1696 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1697 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1698 			    x - VPB_ONE_SHARER))
1699 				break;
1700 			continue;
1701 		}
1702 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1703 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1704 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1705 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1706 			continue;
1707 		if ((x & VPB_BIT_WAITERS) != 0)
1708 			wakeup(m);
1709 		break;
1710 	}
1711 }
1712 
1713 /*
1714  *	vm_page_find_least:
1715  *
1716  *	Returns the page associated with the object with least pindex
1717  *	greater than or equal to the parameter pindex, or NULL.
1718  *
1719  *	The object must be locked.
1720  */
1721 vm_page_t
1722 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1723 {
1724 	vm_page_t m;
1725 
1726 	VM_OBJECT_ASSERT_LOCKED(object);
1727 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1728 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1729 	return (m);
1730 }
1731 
1732 /*
1733  * Returns the given page's successor (by pindex) within the object if it is
1734  * resident; if none is found, NULL is returned.
1735  *
1736  * The object must be locked.
1737  */
1738 vm_page_t
1739 vm_page_next(vm_page_t m)
1740 {
1741 	vm_page_t next;
1742 
1743 	VM_OBJECT_ASSERT_LOCKED(m->object);
1744 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1745 		MPASS(next->object == m->object);
1746 		if (next->pindex != m->pindex + 1)
1747 			next = NULL;
1748 	}
1749 	return (next);
1750 }
1751 
1752 /*
1753  * Returns the given page's predecessor (by pindex) within the object if it is
1754  * resident; if none is found, NULL is returned.
1755  *
1756  * The object must be locked.
1757  */
1758 vm_page_t
1759 vm_page_prev(vm_page_t m)
1760 {
1761 	vm_page_t prev;
1762 
1763 	VM_OBJECT_ASSERT_LOCKED(m->object);
1764 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1765 		MPASS(prev->object == m->object);
1766 		if (prev->pindex != m->pindex - 1)
1767 			prev = NULL;
1768 	}
1769 	return (prev);
1770 }
1771 
1772 /*
1773  * Uses the page mnew as a replacement for an existing page at index
1774  * pindex which must be already present in the object.
1775  *
1776  * Both pages must be exclusively busied on enter.  The old page is
1777  * unbusied on exit.
1778  *
1779  * A return value of true means mold is now free.  If this is not the
1780  * final ref and the caller does not hold a wire reference it may not
1781  * continue to access the page.
1782  */
1783 static bool
1784 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1785     vm_page_t mold)
1786 {
1787 	vm_page_t mret;
1788 	bool dropped;
1789 
1790 	VM_OBJECT_ASSERT_WLOCKED(object);
1791 	vm_page_assert_xbusied(mold);
1792 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1793 	    ("vm_page_replace: page %p already in object", mnew));
1794 
1795 	/*
1796 	 * This function mostly follows vm_page_insert() and
1797 	 * vm_page_remove() without the radix, object count and vnode
1798 	 * dance.  Double check such functions for more comments.
1799 	 */
1800 
1801 	mnew->object = object;
1802 	mnew->pindex = pindex;
1803 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1804 	mret = vm_radix_replace(&object->rtree, mnew);
1805 	KASSERT(mret == mold,
1806 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1807 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1808 	    (mnew->oflags & VPO_UNMANAGED),
1809 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1810 
1811 	/* Keep the resident page list in sorted order. */
1812 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1813 	TAILQ_REMOVE(&object->memq, mold, listq);
1814 	mold->object = NULL;
1815 
1816 	/*
1817 	 * The object's resident_page_count does not change because we have
1818 	 * swapped one page for another, but the generation count should
1819 	 * change if the page is dirty.
1820 	 */
1821 	if (pmap_page_is_write_mapped(mnew))
1822 		vm_object_set_writeable_dirty(object);
1823 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1824 	vm_page_xunbusy(mold);
1825 
1826 	return (dropped);
1827 }
1828 
1829 void
1830 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1831     vm_page_t mold)
1832 {
1833 
1834 	vm_page_assert_xbusied(mnew);
1835 
1836 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1837 		vm_page_free(mold);
1838 }
1839 
1840 /*
1841  *	vm_page_rename:
1842  *
1843  *	Move the given memory entry from its
1844  *	current object to the specified target object/offset.
1845  *
1846  *	Note: swap associated with the page must be invalidated by the move.  We
1847  *	      have to do this for several reasons:  (1) we aren't freeing the
1848  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1849  *	      moving the page from object A to B, and will then later move
1850  *	      the backing store from A to B and we can't have a conflict.
1851  *
1852  *	Note: we *always* dirty the page.  It is necessary both for the
1853  *	      fact that we moved it, and because we may be invalidating
1854  *	      swap.
1855  *
1856  *	The objects must be locked.
1857  */
1858 int
1859 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1860 {
1861 	vm_page_t mpred;
1862 	vm_pindex_t opidx;
1863 
1864 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1865 
1866 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1867 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1868 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1869 	    ("vm_page_rename: pindex already renamed"));
1870 
1871 	/*
1872 	 * Create a custom version of vm_page_insert() which does not depend
1873 	 * by m_prev and can cheat on the implementation aspects of the
1874 	 * function.
1875 	 */
1876 	opidx = m->pindex;
1877 	m->pindex = new_pindex;
1878 	if (vm_radix_insert(&new_object->rtree, m)) {
1879 		m->pindex = opidx;
1880 		return (1);
1881 	}
1882 
1883 	/*
1884 	 * The operation cannot fail anymore.  The removal must happen before
1885 	 * the listq iterator is tainted.
1886 	 */
1887 	m->pindex = opidx;
1888 	vm_page_object_remove(m);
1889 
1890 	/* Return back to the new pindex to complete vm_page_insert(). */
1891 	m->pindex = new_pindex;
1892 	m->object = new_object;
1893 
1894 	vm_page_insert_radixdone(m, new_object, mpred);
1895 	vm_page_dirty(m);
1896 	return (0);
1897 }
1898 
1899 /*
1900  *	vm_page_alloc:
1901  *
1902  *	Allocate and return a page that is associated with the specified
1903  *	object and offset pair.  By default, this page is exclusive busied.
1904  *
1905  *	The caller must always specify an allocation class.
1906  *
1907  *	allocation classes:
1908  *	VM_ALLOC_NORMAL		normal process request
1909  *	VM_ALLOC_SYSTEM		system *really* needs a page
1910  *	VM_ALLOC_INTERRUPT	interrupt time request
1911  *
1912  *	optional allocation flags:
1913  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1914  *				intends to allocate
1915  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1916  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1917  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1918  *				should not be exclusive busy
1919  *	VM_ALLOC_SBUSY		shared busy the allocated page
1920  *	VM_ALLOC_WIRED		wire the allocated page
1921  *	VM_ALLOC_ZERO		prefer a zeroed page
1922  */
1923 vm_page_t
1924 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1925 {
1926 
1927 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1928 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1929 }
1930 
1931 vm_page_t
1932 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1933     int req)
1934 {
1935 
1936 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1937 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1938 	    NULL));
1939 }
1940 
1941 /*
1942  * Allocate a page in the specified object with the given page index.  To
1943  * optimize insertion of the page into the object, the caller must also specifiy
1944  * the resident page in the object with largest index smaller than the given
1945  * page index, or NULL if no such page exists.
1946  */
1947 vm_page_t
1948 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1949     int req, vm_page_t mpred)
1950 {
1951 	struct vm_domainset_iter di;
1952 	vm_page_t m;
1953 	int domain;
1954 
1955 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1956 	do {
1957 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1958 		    mpred);
1959 		if (m != NULL)
1960 			break;
1961 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1962 
1963 	return (m);
1964 }
1965 
1966 /*
1967  * Returns true if the number of free pages exceeds the minimum
1968  * for the request class and false otherwise.
1969  */
1970 static int
1971 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1972 {
1973 	u_int limit, old, new;
1974 
1975 	if (req_class == VM_ALLOC_INTERRUPT)
1976 		limit = 0;
1977 	else if (req_class == VM_ALLOC_SYSTEM)
1978 		limit = vmd->vmd_interrupt_free_min;
1979 	else
1980 		limit = vmd->vmd_free_reserved;
1981 
1982 	/*
1983 	 * Attempt to reserve the pages.  Fail if we're below the limit.
1984 	 */
1985 	limit += npages;
1986 	old = vmd->vmd_free_count;
1987 	do {
1988 		if (old < limit)
1989 			return (0);
1990 		new = old - npages;
1991 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1992 
1993 	/* Wake the page daemon if we've crossed the threshold. */
1994 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1995 		pagedaemon_wakeup(vmd->vmd_domain);
1996 
1997 	/* Only update bitsets on transitions. */
1998 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1999 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2000 		vm_domain_set(vmd);
2001 
2002 	return (1);
2003 }
2004 
2005 int
2006 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2007 {
2008 	int req_class;
2009 
2010 	/*
2011 	 * The page daemon is allowed to dig deeper into the free page list.
2012 	 */
2013 	req_class = req & VM_ALLOC_CLASS_MASK;
2014 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2015 		req_class = VM_ALLOC_SYSTEM;
2016 	return (_vm_domain_allocate(vmd, req_class, npages));
2017 }
2018 
2019 vm_page_t
2020 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2021     int req, vm_page_t mpred)
2022 {
2023 	struct vm_domain *vmd;
2024 	vm_page_t m;
2025 	int flags, pool;
2026 
2027 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2028 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2029 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2030 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2031 	    ("inconsistent object(%p)/req(%x)", object, req));
2032 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2033 	    ("Can't sleep and retry object insertion."));
2034 	KASSERT(mpred == NULL || mpred->pindex < pindex,
2035 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
2036 	    (uintmax_t)pindex));
2037 	if (object != NULL)
2038 		VM_OBJECT_ASSERT_WLOCKED(object);
2039 
2040 	flags = 0;
2041 	m = NULL;
2042 	pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
2043 again:
2044 #if VM_NRESERVLEVEL > 0
2045 	/*
2046 	 * Can we allocate the page from a reservation?
2047 	 */
2048 	if (vm_object_reserv(object) &&
2049 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2050 	    NULL) {
2051 		domain = vm_phys_domain(m);
2052 		vmd = VM_DOMAIN(domain);
2053 		goto found;
2054 	}
2055 #endif
2056 	vmd = VM_DOMAIN(domain);
2057 	if (vmd->vmd_pgcache[pool].zone != NULL) {
2058 		m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT | M_NOVM);
2059 		if (m != NULL) {
2060 			flags |= PG_PCPU_CACHE;
2061 			goto found;
2062 		}
2063 	}
2064 	if (vm_domain_allocate(vmd, req, 1)) {
2065 		/*
2066 		 * If not, allocate it from the free page queues.
2067 		 */
2068 		vm_domain_free_lock(vmd);
2069 		m = vm_phys_alloc_pages(domain, pool, 0);
2070 		vm_domain_free_unlock(vmd);
2071 		if (m == NULL) {
2072 			vm_domain_freecnt_inc(vmd, 1);
2073 #if VM_NRESERVLEVEL > 0
2074 			if (vm_reserv_reclaim_inactive(domain))
2075 				goto again;
2076 #endif
2077 		}
2078 	}
2079 	if (m == NULL) {
2080 		/*
2081 		 * Not allocatable, give up.
2082 		 */
2083 		if (vm_domain_alloc_fail(vmd, object, req))
2084 			goto again;
2085 		return (NULL);
2086 	}
2087 
2088 	/*
2089 	 * At this point we had better have found a good page.
2090 	 */
2091 found:
2092 	vm_page_dequeue(m);
2093 	vm_page_alloc_check(m);
2094 
2095 	/*
2096 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2097 	 */
2098 	if ((req & VM_ALLOC_ZERO) != 0)
2099 		flags |= (m->flags & PG_ZERO);
2100 	if ((req & VM_ALLOC_NODUMP) != 0)
2101 		flags |= PG_NODUMP;
2102 	m->flags = flags;
2103 	m->a.flags = 0;
2104 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2105 	    VPO_UNMANAGED : 0;
2106 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2107 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2108 	else if ((req & VM_ALLOC_SBUSY) != 0)
2109 		m->busy_lock = VPB_SHARERS_WORD(1);
2110 	else
2111 		m->busy_lock = VPB_UNBUSIED;
2112 	if (req & VM_ALLOC_WIRED) {
2113 		vm_wire_add(1);
2114 		m->ref_count = 1;
2115 	}
2116 	m->a.act_count = 0;
2117 
2118 	if (object != NULL) {
2119 		if (vm_page_insert_after(m, object, pindex, mpred)) {
2120 			if (req & VM_ALLOC_WIRED) {
2121 				vm_wire_sub(1);
2122 				m->ref_count = 0;
2123 			}
2124 			KASSERT(m->object == NULL, ("page %p has object", m));
2125 			m->oflags = VPO_UNMANAGED;
2126 			m->busy_lock = VPB_UNBUSIED;
2127 			/* Don't change PG_ZERO. */
2128 			vm_page_free_toq(m);
2129 			if (req & VM_ALLOC_WAITFAIL) {
2130 				VM_OBJECT_WUNLOCK(object);
2131 				vm_radix_wait();
2132 				VM_OBJECT_WLOCK(object);
2133 			}
2134 			return (NULL);
2135 		}
2136 
2137 		/* Ignore device objects; the pager sets "memattr" for them. */
2138 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2139 		    (object->flags & OBJ_FICTITIOUS) == 0)
2140 			pmap_page_set_memattr(m, object->memattr);
2141 	} else
2142 		m->pindex = pindex;
2143 
2144 	return (m);
2145 }
2146 
2147 /*
2148  *	vm_page_alloc_contig:
2149  *
2150  *	Allocate a contiguous set of physical pages of the given size "npages"
2151  *	from the free lists.  All of the physical pages must be at or above
2152  *	the given physical address "low" and below the given physical address
2153  *	"high".  The given value "alignment" determines the alignment of the
2154  *	first physical page in the set.  If the given value "boundary" is
2155  *	non-zero, then the set of physical pages cannot cross any physical
2156  *	address boundary that is a multiple of that value.  Both "alignment"
2157  *	and "boundary" must be a power of two.
2158  *
2159  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2160  *	then the memory attribute setting for the physical pages is configured
2161  *	to the object's memory attribute setting.  Otherwise, the memory
2162  *	attribute setting for the physical pages is configured to "memattr",
2163  *	overriding the object's memory attribute setting.  However, if the
2164  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2165  *	memory attribute setting for the physical pages cannot be configured
2166  *	to VM_MEMATTR_DEFAULT.
2167  *
2168  *	The specified object may not contain fictitious pages.
2169  *
2170  *	The caller must always specify an allocation class.
2171  *
2172  *	allocation classes:
2173  *	VM_ALLOC_NORMAL		normal process request
2174  *	VM_ALLOC_SYSTEM		system *really* needs a page
2175  *	VM_ALLOC_INTERRUPT	interrupt time request
2176  *
2177  *	optional allocation flags:
2178  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2179  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2180  *	VM_ALLOC_NOOBJ		page is not associated with an object and
2181  *				should not be exclusive busy
2182  *	VM_ALLOC_SBUSY		shared busy the allocated page
2183  *	VM_ALLOC_WIRED		wire the allocated page
2184  *	VM_ALLOC_ZERO		prefer a zeroed page
2185  */
2186 vm_page_t
2187 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2188     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2189     vm_paddr_t boundary, vm_memattr_t memattr)
2190 {
2191 	struct vm_domainset_iter di;
2192 	vm_page_t m;
2193 	int domain;
2194 
2195 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2196 	do {
2197 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2198 		    npages, low, high, alignment, boundary, memattr);
2199 		if (m != NULL)
2200 			break;
2201 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2202 
2203 	return (m);
2204 }
2205 
2206 vm_page_t
2207 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2208     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2209     vm_paddr_t boundary, vm_memattr_t memattr)
2210 {
2211 	struct vm_domain *vmd;
2212 	vm_page_t m, m_ret, mpred;
2213 	u_int busy_lock, flags, oflags;
2214 
2215 	mpred = NULL;	/* XXX: pacify gcc */
2216 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2217 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2218 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2219 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2220 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2221 	    req));
2222 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2223 	    ("Can't sleep and retry object insertion."));
2224 	if (object != NULL) {
2225 		VM_OBJECT_ASSERT_WLOCKED(object);
2226 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2227 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2228 		    object));
2229 	}
2230 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2231 
2232 	if (object != NULL) {
2233 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2234 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2235 		    ("vm_page_alloc_contig: pindex already allocated"));
2236 	}
2237 
2238 	/*
2239 	 * Can we allocate the pages without the number of free pages falling
2240 	 * below the lower bound for the allocation class?
2241 	 */
2242 	m_ret = NULL;
2243 again:
2244 #if VM_NRESERVLEVEL > 0
2245 	/*
2246 	 * Can we allocate the pages from a reservation?
2247 	 */
2248 	if (vm_object_reserv(object) &&
2249 	    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2250 	    mpred, npages, low, high, alignment, boundary)) != NULL) {
2251 		domain = vm_phys_domain(m_ret);
2252 		vmd = VM_DOMAIN(domain);
2253 		goto found;
2254 	}
2255 #endif
2256 	vmd = VM_DOMAIN(domain);
2257 	if (vm_domain_allocate(vmd, req, npages)) {
2258 		/*
2259 		 * allocate them from the free page queues.
2260 		 */
2261 		vm_domain_free_lock(vmd);
2262 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2263 		    alignment, boundary);
2264 		vm_domain_free_unlock(vmd);
2265 		if (m_ret == NULL) {
2266 			vm_domain_freecnt_inc(vmd, npages);
2267 #if VM_NRESERVLEVEL > 0
2268 			if (vm_reserv_reclaim_contig(domain, npages, low,
2269 			    high, alignment, boundary))
2270 				goto again;
2271 #endif
2272 		}
2273 	}
2274 	if (m_ret == NULL) {
2275 		if (vm_domain_alloc_fail(vmd, object, req))
2276 			goto again;
2277 		return (NULL);
2278 	}
2279 #if VM_NRESERVLEVEL > 0
2280 found:
2281 #endif
2282 	for (m = m_ret; m < &m_ret[npages]; m++) {
2283 		vm_page_dequeue(m);
2284 		vm_page_alloc_check(m);
2285 	}
2286 
2287 	/*
2288 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2289 	 */
2290 	flags = 0;
2291 	if ((req & VM_ALLOC_ZERO) != 0)
2292 		flags = PG_ZERO;
2293 	if ((req & VM_ALLOC_NODUMP) != 0)
2294 		flags |= PG_NODUMP;
2295 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2296 	    VPO_UNMANAGED : 0;
2297 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2298 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2299 	else if ((req & VM_ALLOC_SBUSY) != 0)
2300 		busy_lock = VPB_SHARERS_WORD(1);
2301 	else
2302 		busy_lock = VPB_UNBUSIED;
2303 	if ((req & VM_ALLOC_WIRED) != 0)
2304 		vm_wire_add(npages);
2305 	if (object != NULL) {
2306 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2307 		    memattr == VM_MEMATTR_DEFAULT)
2308 			memattr = object->memattr;
2309 	}
2310 	for (m = m_ret; m < &m_ret[npages]; m++) {
2311 		m->a.flags = 0;
2312 		m->flags = (m->flags | PG_NODUMP) & flags;
2313 		m->busy_lock = busy_lock;
2314 		if ((req & VM_ALLOC_WIRED) != 0)
2315 			m->ref_count = 1;
2316 		m->a.act_count = 0;
2317 		m->oflags = oflags;
2318 		if (object != NULL) {
2319 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2320 				if ((req & VM_ALLOC_WIRED) != 0)
2321 					vm_wire_sub(npages);
2322 				KASSERT(m->object == NULL,
2323 				    ("page %p has object", m));
2324 				mpred = m;
2325 				for (m = m_ret; m < &m_ret[npages]; m++) {
2326 					if (m <= mpred &&
2327 					    (req & VM_ALLOC_WIRED) != 0)
2328 						m->ref_count = 0;
2329 					m->oflags = VPO_UNMANAGED;
2330 					m->busy_lock = VPB_UNBUSIED;
2331 					/* Don't change PG_ZERO. */
2332 					vm_page_free_toq(m);
2333 				}
2334 				if (req & VM_ALLOC_WAITFAIL) {
2335 					VM_OBJECT_WUNLOCK(object);
2336 					vm_radix_wait();
2337 					VM_OBJECT_WLOCK(object);
2338 				}
2339 				return (NULL);
2340 			}
2341 			mpred = m;
2342 		} else
2343 			m->pindex = pindex;
2344 		if (memattr != VM_MEMATTR_DEFAULT)
2345 			pmap_page_set_memattr(m, memattr);
2346 		pindex++;
2347 	}
2348 	return (m_ret);
2349 }
2350 
2351 /*
2352  * Check a page that has been freshly dequeued from a freelist.
2353  */
2354 static void
2355 vm_page_alloc_check(vm_page_t m)
2356 {
2357 
2358 	KASSERT(m->object == NULL, ("page %p has object", m));
2359 	KASSERT(m->a.queue == PQ_NONE &&
2360 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2361 	    ("page %p has unexpected queue %d, flags %#x",
2362 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2363 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2364 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2365 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2366 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2367 	    ("page %p has unexpected memattr %d",
2368 	    m, pmap_page_get_memattr(m)));
2369 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2370 }
2371 
2372 /*
2373  * 	vm_page_alloc_freelist:
2374  *
2375  *	Allocate a physical page from the specified free page list.
2376  *
2377  *	The caller must always specify an allocation class.
2378  *
2379  *	allocation classes:
2380  *	VM_ALLOC_NORMAL		normal process request
2381  *	VM_ALLOC_SYSTEM		system *really* needs a page
2382  *	VM_ALLOC_INTERRUPT	interrupt time request
2383  *
2384  *	optional allocation flags:
2385  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2386  *				intends to allocate
2387  *	VM_ALLOC_WIRED		wire the allocated page
2388  *	VM_ALLOC_ZERO		prefer a zeroed page
2389  */
2390 vm_page_t
2391 vm_page_alloc_freelist(int freelist, int req)
2392 {
2393 	struct vm_domainset_iter di;
2394 	vm_page_t m;
2395 	int domain;
2396 
2397 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2398 	do {
2399 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2400 		if (m != NULL)
2401 			break;
2402 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2403 
2404 	return (m);
2405 }
2406 
2407 vm_page_t
2408 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2409 {
2410 	struct vm_domain *vmd;
2411 	vm_page_t m;
2412 	u_int flags;
2413 
2414 	m = NULL;
2415 	vmd = VM_DOMAIN(domain);
2416 again:
2417 	if (vm_domain_allocate(vmd, req, 1)) {
2418 		vm_domain_free_lock(vmd);
2419 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2420 		    VM_FREEPOOL_DIRECT, 0);
2421 		vm_domain_free_unlock(vmd);
2422 		if (m == NULL)
2423 			vm_domain_freecnt_inc(vmd, 1);
2424 	}
2425 	if (m == NULL) {
2426 		if (vm_domain_alloc_fail(vmd, NULL, req))
2427 			goto again;
2428 		return (NULL);
2429 	}
2430 	vm_page_dequeue(m);
2431 	vm_page_alloc_check(m);
2432 
2433 	/*
2434 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2435 	 */
2436 	m->a.flags = 0;
2437 	flags = 0;
2438 	if ((req & VM_ALLOC_ZERO) != 0)
2439 		flags = PG_ZERO;
2440 	m->flags &= flags;
2441 	if ((req & VM_ALLOC_WIRED) != 0) {
2442 		vm_wire_add(1);
2443 		m->ref_count = 1;
2444 	}
2445 	/* Unmanaged pages don't use "act_count". */
2446 	m->oflags = VPO_UNMANAGED;
2447 	return (m);
2448 }
2449 
2450 static int
2451 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2452 {
2453 	struct vm_domain *vmd;
2454 	struct vm_pgcache *pgcache;
2455 	int i;
2456 
2457 	pgcache = arg;
2458 	vmd = VM_DOMAIN(pgcache->domain);
2459 
2460 	/*
2461 	 * The page daemon should avoid creating extra memory pressure since its
2462 	 * main purpose is to replenish the store of free pages.
2463 	 */
2464 	if (vmd->vmd_severeset || curproc == pageproc ||
2465 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2466 		return (0);
2467 	domain = vmd->vmd_domain;
2468 	vm_domain_free_lock(vmd);
2469 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2470 	    (vm_page_t *)store);
2471 	vm_domain_free_unlock(vmd);
2472 	if (cnt != i)
2473 		vm_domain_freecnt_inc(vmd, cnt - i);
2474 
2475 	return (i);
2476 }
2477 
2478 static void
2479 vm_page_zone_release(void *arg, void **store, int cnt)
2480 {
2481 	struct vm_domain *vmd;
2482 	struct vm_pgcache *pgcache;
2483 	vm_page_t m;
2484 	int i;
2485 
2486 	pgcache = arg;
2487 	vmd = VM_DOMAIN(pgcache->domain);
2488 	vm_domain_free_lock(vmd);
2489 	for (i = 0; i < cnt; i++) {
2490 		m = (vm_page_t)store[i];
2491 		vm_phys_free_pages(m, 0);
2492 	}
2493 	vm_domain_free_unlock(vmd);
2494 	vm_domain_freecnt_inc(vmd, cnt);
2495 }
2496 
2497 #define	VPSC_ANY	0	/* No restrictions. */
2498 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2499 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2500 
2501 /*
2502  *	vm_page_scan_contig:
2503  *
2504  *	Scan vm_page_array[] between the specified entries "m_start" and
2505  *	"m_end" for a run of contiguous physical pages that satisfy the
2506  *	specified conditions, and return the lowest page in the run.  The
2507  *	specified "alignment" determines the alignment of the lowest physical
2508  *	page in the run.  If the specified "boundary" is non-zero, then the
2509  *	run of physical pages cannot span a physical address that is a
2510  *	multiple of "boundary".
2511  *
2512  *	"m_end" is never dereferenced, so it need not point to a vm_page
2513  *	structure within vm_page_array[].
2514  *
2515  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2516  *	span a hole (or discontiguity) in the physical address space.  Both
2517  *	"alignment" and "boundary" must be a power of two.
2518  */
2519 vm_page_t
2520 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2521     u_long alignment, vm_paddr_t boundary, int options)
2522 {
2523 	vm_object_t object;
2524 	vm_paddr_t pa;
2525 	vm_page_t m, m_run;
2526 #if VM_NRESERVLEVEL > 0
2527 	int level;
2528 #endif
2529 	int m_inc, order, run_ext, run_len;
2530 
2531 	KASSERT(npages > 0, ("npages is 0"));
2532 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2533 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2534 	m_run = NULL;
2535 	run_len = 0;
2536 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2537 		KASSERT((m->flags & PG_MARKER) == 0,
2538 		    ("page %p is PG_MARKER", m));
2539 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2540 		    ("fictitious page %p has invalid ref count", m));
2541 
2542 		/*
2543 		 * If the current page would be the start of a run, check its
2544 		 * physical address against the end, alignment, and boundary
2545 		 * conditions.  If it doesn't satisfy these conditions, either
2546 		 * terminate the scan or advance to the next page that
2547 		 * satisfies the failed condition.
2548 		 */
2549 		if (run_len == 0) {
2550 			KASSERT(m_run == NULL, ("m_run != NULL"));
2551 			if (m + npages > m_end)
2552 				break;
2553 			pa = VM_PAGE_TO_PHYS(m);
2554 			if ((pa & (alignment - 1)) != 0) {
2555 				m_inc = atop(roundup2(pa, alignment) - pa);
2556 				continue;
2557 			}
2558 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2559 			    boundary) != 0) {
2560 				m_inc = atop(roundup2(pa, boundary) - pa);
2561 				continue;
2562 			}
2563 		} else
2564 			KASSERT(m_run != NULL, ("m_run == NULL"));
2565 
2566 retry:
2567 		m_inc = 1;
2568 		if (vm_page_wired(m))
2569 			run_ext = 0;
2570 #if VM_NRESERVLEVEL > 0
2571 		else if ((level = vm_reserv_level(m)) >= 0 &&
2572 		    (options & VPSC_NORESERV) != 0) {
2573 			run_ext = 0;
2574 			/* Advance to the end of the reservation. */
2575 			pa = VM_PAGE_TO_PHYS(m);
2576 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2577 			    pa);
2578 		}
2579 #endif
2580 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2581 			/*
2582 			 * The page is considered eligible for relocation if
2583 			 * and only if it could be laundered or reclaimed by
2584 			 * the page daemon.
2585 			 */
2586 			VM_OBJECT_RLOCK(object);
2587 			if (object != m->object) {
2588 				VM_OBJECT_RUNLOCK(object);
2589 				goto retry;
2590 			}
2591 			/* Don't care: PG_NODUMP, PG_ZERO. */
2592 			if (object->type != OBJT_DEFAULT &&
2593 			    object->type != OBJT_SWAP &&
2594 			    object->type != OBJT_VNODE) {
2595 				run_ext = 0;
2596 #if VM_NRESERVLEVEL > 0
2597 			} else if ((options & VPSC_NOSUPER) != 0 &&
2598 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2599 				run_ext = 0;
2600 				/* Advance to the end of the superpage. */
2601 				pa = VM_PAGE_TO_PHYS(m);
2602 				m_inc = atop(roundup2(pa + 1,
2603 				    vm_reserv_size(level)) - pa);
2604 #endif
2605 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2606 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2607 				/*
2608 				 * The page is allocated but eligible for
2609 				 * relocation.  Extend the current run by one
2610 				 * page.
2611 				 */
2612 				KASSERT(pmap_page_get_memattr(m) ==
2613 				    VM_MEMATTR_DEFAULT,
2614 				    ("page %p has an unexpected memattr", m));
2615 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2616 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2617 				    ("page %p has unexpected oflags", m));
2618 				/* Don't care: PGA_NOSYNC. */
2619 				run_ext = 1;
2620 			} else
2621 				run_ext = 0;
2622 			VM_OBJECT_RUNLOCK(object);
2623 #if VM_NRESERVLEVEL > 0
2624 		} else if (level >= 0) {
2625 			/*
2626 			 * The page is reserved but not yet allocated.  In
2627 			 * other words, it is still free.  Extend the current
2628 			 * run by one page.
2629 			 */
2630 			run_ext = 1;
2631 #endif
2632 		} else if ((order = m->order) < VM_NFREEORDER) {
2633 			/*
2634 			 * The page is enqueued in the physical memory
2635 			 * allocator's free page queues.  Moreover, it is the
2636 			 * first page in a power-of-two-sized run of
2637 			 * contiguous free pages.  Add these pages to the end
2638 			 * of the current run, and jump ahead.
2639 			 */
2640 			run_ext = 1 << order;
2641 			m_inc = 1 << order;
2642 		} else {
2643 			/*
2644 			 * Skip the page for one of the following reasons: (1)
2645 			 * It is enqueued in the physical memory allocator's
2646 			 * free page queues.  However, it is not the first
2647 			 * page in a run of contiguous free pages.  (This case
2648 			 * rarely occurs because the scan is performed in
2649 			 * ascending order.) (2) It is not reserved, and it is
2650 			 * transitioning from free to allocated.  (Conversely,
2651 			 * the transition from allocated to free for managed
2652 			 * pages is blocked by the page lock.) (3) It is
2653 			 * allocated but not contained by an object and not
2654 			 * wired, e.g., allocated by Xen's balloon driver.
2655 			 */
2656 			run_ext = 0;
2657 		}
2658 
2659 		/*
2660 		 * Extend or reset the current run of pages.
2661 		 */
2662 		if (run_ext > 0) {
2663 			if (run_len == 0)
2664 				m_run = m;
2665 			run_len += run_ext;
2666 		} else {
2667 			if (run_len > 0) {
2668 				m_run = NULL;
2669 				run_len = 0;
2670 			}
2671 		}
2672 	}
2673 	if (run_len >= npages)
2674 		return (m_run);
2675 	return (NULL);
2676 }
2677 
2678 /*
2679  *	vm_page_reclaim_run:
2680  *
2681  *	Try to relocate each of the allocated virtual pages within the
2682  *	specified run of physical pages to a new physical address.  Free the
2683  *	physical pages underlying the relocated virtual pages.  A virtual page
2684  *	is relocatable if and only if it could be laundered or reclaimed by
2685  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2686  *	physical address above "high".
2687  *
2688  *	Returns 0 if every physical page within the run was already free or
2689  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2690  *	value indicating why the last attempt to relocate a virtual page was
2691  *	unsuccessful.
2692  *
2693  *	"req_class" must be an allocation class.
2694  */
2695 static int
2696 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2697     vm_paddr_t high)
2698 {
2699 	struct vm_domain *vmd;
2700 	struct spglist free;
2701 	vm_object_t object;
2702 	vm_paddr_t pa;
2703 	vm_page_t m, m_end, m_new;
2704 	int error, order, req;
2705 
2706 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2707 	    ("req_class is not an allocation class"));
2708 	SLIST_INIT(&free);
2709 	error = 0;
2710 	m = m_run;
2711 	m_end = m_run + npages;
2712 	for (; error == 0 && m < m_end; m++) {
2713 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2714 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2715 
2716 		/*
2717 		 * Racily check for wirings.  Races are handled once the object
2718 		 * lock is held and the page is unmapped.
2719 		 */
2720 		if (vm_page_wired(m))
2721 			error = EBUSY;
2722 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2723 			/*
2724 			 * The page is relocated if and only if it could be
2725 			 * laundered or reclaimed by the page daemon.
2726 			 */
2727 			VM_OBJECT_WLOCK(object);
2728 			/* Don't care: PG_NODUMP, PG_ZERO. */
2729 			if (m->object != object ||
2730 			    (object->type != OBJT_DEFAULT &&
2731 			    object->type != OBJT_SWAP &&
2732 			    object->type != OBJT_VNODE))
2733 				error = EINVAL;
2734 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2735 				error = EINVAL;
2736 			else if (vm_page_queue(m) != PQ_NONE &&
2737 			    vm_page_tryxbusy(m) != 0) {
2738 				if (vm_page_wired(m)) {
2739 					vm_page_xunbusy(m);
2740 					error = EBUSY;
2741 					goto unlock;
2742 				}
2743 				KASSERT(pmap_page_get_memattr(m) ==
2744 				    VM_MEMATTR_DEFAULT,
2745 				    ("page %p has an unexpected memattr", m));
2746 				KASSERT(m->oflags == 0,
2747 				    ("page %p has unexpected oflags", m));
2748 				/* Don't care: PGA_NOSYNC. */
2749 				if (!vm_page_none_valid(m)) {
2750 					/*
2751 					 * First, try to allocate a new page
2752 					 * that is above "high".  Failing
2753 					 * that, try to allocate a new page
2754 					 * that is below "m_run".  Allocate
2755 					 * the new page between the end of
2756 					 * "m_run" and "high" only as a last
2757 					 * resort.
2758 					 */
2759 					req = req_class | VM_ALLOC_NOOBJ;
2760 					if ((m->flags & PG_NODUMP) != 0)
2761 						req |= VM_ALLOC_NODUMP;
2762 					if (trunc_page(high) !=
2763 					    ~(vm_paddr_t)PAGE_MASK) {
2764 						m_new = vm_page_alloc_contig(
2765 						    NULL, 0, req, 1,
2766 						    round_page(high),
2767 						    ~(vm_paddr_t)0,
2768 						    PAGE_SIZE, 0,
2769 						    VM_MEMATTR_DEFAULT);
2770 					} else
2771 						m_new = NULL;
2772 					if (m_new == NULL) {
2773 						pa = VM_PAGE_TO_PHYS(m_run);
2774 						m_new = vm_page_alloc_contig(
2775 						    NULL, 0, req, 1,
2776 						    0, pa - 1, PAGE_SIZE, 0,
2777 						    VM_MEMATTR_DEFAULT);
2778 					}
2779 					if (m_new == NULL) {
2780 						pa += ptoa(npages);
2781 						m_new = vm_page_alloc_contig(
2782 						    NULL, 0, req, 1,
2783 						    pa, high, PAGE_SIZE, 0,
2784 						    VM_MEMATTR_DEFAULT);
2785 					}
2786 					if (m_new == NULL) {
2787 						vm_page_xunbusy(m);
2788 						error = ENOMEM;
2789 						goto unlock;
2790 					}
2791 
2792 					/*
2793 					 * Unmap the page and check for new
2794 					 * wirings that may have been acquired
2795 					 * through a pmap lookup.
2796 					 */
2797 					if (object->ref_count != 0 &&
2798 					    !vm_page_try_remove_all(m)) {
2799 						vm_page_xunbusy(m);
2800 						vm_page_free(m_new);
2801 						error = EBUSY;
2802 						goto unlock;
2803 					}
2804 
2805 					/*
2806 					 * Replace "m" with the new page.  For
2807 					 * vm_page_replace(), "m" must be busy
2808 					 * and dequeued.  Finally, change "m"
2809 					 * as if vm_page_free() was called.
2810 					 */
2811 					m_new->a.flags = m->a.flags &
2812 					    ~PGA_QUEUE_STATE_MASK;
2813 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2814 					    ("page %p is managed", m_new));
2815 					m_new->oflags = 0;
2816 					pmap_copy_page(m, m_new);
2817 					m_new->valid = m->valid;
2818 					m_new->dirty = m->dirty;
2819 					m->flags &= ~PG_ZERO;
2820 					vm_page_dequeue(m);
2821 					if (vm_page_replace_hold(m_new, object,
2822 					    m->pindex, m) &&
2823 					    vm_page_free_prep(m))
2824 						SLIST_INSERT_HEAD(&free, m,
2825 						    plinks.s.ss);
2826 
2827 					/*
2828 					 * The new page must be deactivated
2829 					 * before the object is unlocked.
2830 					 */
2831 					vm_page_deactivate(m_new);
2832 				} else {
2833 					m->flags &= ~PG_ZERO;
2834 					vm_page_dequeue(m);
2835 					if (vm_page_free_prep(m))
2836 						SLIST_INSERT_HEAD(&free, m,
2837 						    plinks.s.ss);
2838 					KASSERT(m->dirty == 0,
2839 					    ("page %p is dirty", m));
2840 				}
2841 			} else
2842 				error = EBUSY;
2843 unlock:
2844 			VM_OBJECT_WUNLOCK(object);
2845 		} else {
2846 			MPASS(vm_phys_domain(m) == domain);
2847 			vmd = VM_DOMAIN(domain);
2848 			vm_domain_free_lock(vmd);
2849 			order = m->order;
2850 			if (order < VM_NFREEORDER) {
2851 				/*
2852 				 * The page is enqueued in the physical memory
2853 				 * allocator's free page queues.  Moreover, it
2854 				 * is the first page in a power-of-two-sized
2855 				 * run of contiguous free pages.  Jump ahead
2856 				 * to the last page within that run, and
2857 				 * continue from there.
2858 				 */
2859 				m += (1 << order) - 1;
2860 			}
2861 #if VM_NRESERVLEVEL > 0
2862 			else if (vm_reserv_is_page_free(m))
2863 				order = 0;
2864 #endif
2865 			vm_domain_free_unlock(vmd);
2866 			if (order == VM_NFREEORDER)
2867 				error = EINVAL;
2868 		}
2869 	}
2870 	if ((m = SLIST_FIRST(&free)) != NULL) {
2871 		int cnt;
2872 
2873 		vmd = VM_DOMAIN(domain);
2874 		cnt = 0;
2875 		vm_domain_free_lock(vmd);
2876 		do {
2877 			MPASS(vm_phys_domain(m) == domain);
2878 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2879 			vm_phys_free_pages(m, 0);
2880 			cnt++;
2881 		} while ((m = SLIST_FIRST(&free)) != NULL);
2882 		vm_domain_free_unlock(vmd);
2883 		vm_domain_freecnt_inc(vmd, cnt);
2884 	}
2885 	return (error);
2886 }
2887 
2888 #define	NRUNS	16
2889 
2890 CTASSERT(powerof2(NRUNS));
2891 
2892 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2893 
2894 #define	MIN_RECLAIM	8
2895 
2896 /*
2897  *	vm_page_reclaim_contig:
2898  *
2899  *	Reclaim allocated, contiguous physical memory satisfying the specified
2900  *	conditions by relocating the virtual pages using that physical memory.
2901  *	Returns true if reclamation is successful and false otherwise.  Since
2902  *	relocation requires the allocation of physical pages, reclamation may
2903  *	fail due to a shortage of free pages.  When reclamation fails, callers
2904  *	are expected to perform vm_wait() before retrying a failed allocation
2905  *	operation, e.g., vm_page_alloc_contig().
2906  *
2907  *	The caller must always specify an allocation class through "req".
2908  *
2909  *	allocation classes:
2910  *	VM_ALLOC_NORMAL		normal process request
2911  *	VM_ALLOC_SYSTEM		system *really* needs a page
2912  *	VM_ALLOC_INTERRUPT	interrupt time request
2913  *
2914  *	The optional allocation flags are ignored.
2915  *
2916  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2917  *	must be a power of two.
2918  */
2919 bool
2920 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2921     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2922 {
2923 	struct vm_domain *vmd;
2924 	vm_paddr_t curr_low;
2925 	vm_page_t m_run, m_runs[NRUNS];
2926 	u_long count, reclaimed;
2927 	int error, i, options, req_class;
2928 
2929 	KASSERT(npages > 0, ("npages is 0"));
2930 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2931 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2932 	req_class = req & VM_ALLOC_CLASS_MASK;
2933 
2934 	/*
2935 	 * The page daemon is allowed to dig deeper into the free page list.
2936 	 */
2937 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2938 		req_class = VM_ALLOC_SYSTEM;
2939 
2940 	/*
2941 	 * Return if the number of free pages cannot satisfy the requested
2942 	 * allocation.
2943 	 */
2944 	vmd = VM_DOMAIN(domain);
2945 	count = vmd->vmd_free_count;
2946 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2947 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2948 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2949 		return (false);
2950 
2951 	/*
2952 	 * Scan up to three times, relaxing the restrictions ("options") on
2953 	 * the reclamation of reservations and superpages each time.
2954 	 */
2955 	for (options = VPSC_NORESERV;;) {
2956 		/*
2957 		 * Find the highest runs that satisfy the given constraints
2958 		 * and restrictions, and record them in "m_runs".
2959 		 */
2960 		curr_low = low;
2961 		count = 0;
2962 		for (;;) {
2963 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2964 			    high, alignment, boundary, options);
2965 			if (m_run == NULL)
2966 				break;
2967 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2968 			m_runs[RUN_INDEX(count)] = m_run;
2969 			count++;
2970 		}
2971 
2972 		/*
2973 		 * Reclaim the highest runs in LIFO (descending) order until
2974 		 * the number of reclaimed pages, "reclaimed", is at least
2975 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2976 		 * reclamation is idempotent, and runs will (likely) recur
2977 		 * from one scan to the next as restrictions are relaxed.
2978 		 */
2979 		reclaimed = 0;
2980 		for (i = 0; count > 0 && i < NRUNS; i++) {
2981 			count--;
2982 			m_run = m_runs[RUN_INDEX(count)];
2983 			error = vm_page_reclaim_run(req_class, domain, npages,
2984 			    m_run, high);
2985 			if (error == 0) {
2986 				reclaimed += npages;
2987 				if (reclaimed >= MIN_RECLAIM)
2988 					return (true);
2989 			}
2990 		}
2991 
2992 		/*
2993 		 * Either relax the restrictions on the next scan or return if
2994 		 * the last scan had no restrictions.
2995 		 */
2996 		if (options == VPSC_NORESERV)
2997 			options = VPSC_NOSUPER;
2998 		else if (options == VPSC_NOSUPER)
2999 			options = VPSC_ANY;
3000 		else if (options == VPSC_ANY)
3001 			return (reclaimed != 0);
3002 	}
3003 }
3004 
3005 bool
3006 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3007     u_long alignment, vm_paddr_t boundary)
3008 {
3009 	struct vm_domainset_iter di;
3010 	int domain;
3011 	bool ret;
3012 
3013 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3014 	do {
3015 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3016 		    high, alignment, boundary);
3017 		if (ret)
3018 			break;
3019 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3020 
3021 	return (ret);
3022 }
3023 
3024 /*
3025  * Set the domain in the appropriate page level domainset.
3026  */
3027 void
3028 vm_domain_set(struct vm_domain *vmd)
3029 {
3030 
3031 	mtx_lock(&vm_domainset_lock);
3032 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3033 		vmd->vmd_minset = 1;
3034 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3035 	}
3036 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3037 		vmd->vmd_severeset = 1;
3038 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3039 	}
3040 	mtx_unlock(&vm_domainset_lock);
3041 }
3042 
3043 /*
3044  * Clear the domain from the appropriate page level domainset.
3045  */
3046 void
3047 vm_domain_clear(struct vm_domain *vmd)
3048 {
3049 
3050 	mtx_lock(&vm_domainset_lock);
3051 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3052 		vmd->vmd_minset = 0;
3053 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3054 		if (vm_min_waiters != 0) {
3055 			vm_min_waiters = 0;
3056 			wakeup(&vm_min_domains);
3057 		}
3058 	}
3059 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3060 		vmd->vmd_severeset = 0;
3061 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3062 		if (vm_severe_waiters != 0) {
3063 			vm_severe_waiters = 0;
3064 			wakeup(&vm_severe_domains);
3065 		}
3066 	}
3067 
3068 	/*
3069 	 * If pageout daemon needs pages, then tell it that there are
3070 	 * some free.
3071 	 */
3072 	if (vmd->vmd_pageout_pages_needed &&
3073 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3074 		wakeup(&vmd->vmd_pageout_pages_needed);
3075 		vmd->vmd_pageout_pages_needed = 0;
3076 	}
3077 
3078 	/* See comments in vm_wait_doms(). */
3079 	if (vm_pageproc_waiters) {
3080 		vm_pageproc_waiters = 0;
3081 		wakeup(&vm_pageproc_waiters);
3082 	}
3083 	mtx_unlock(&vm_domainset_lock);
3084 }
3085 
3086 /*
3087  * Wait for free pages to exceed the min threshold globally.
3088  */
3089 void
3090 vm_wait_min(void)
3091 {
3092 
3093 	mtx_lock(&vm_domainset_lock);
3094 	while (vm_page_count_min()) {
3095 		vm_min_waiters++;
3096 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3097 	}
3098 	mtx_unlock(&vm_domainset_lock);
3099 }
3100 
3101 /*
3102  * Wait for free pages to exceed the severe threshold globally.
3103  */
3104 void
3105 vm_wait_severe(void)
3106 {
3107 
3108 	mtx_lock(&vm_domainset_lock);
3109 	while (vm_page_count_severe()) {
3110 		vm_severe_waiters++;
3111 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3112 		    "vmwait", 0);
3113 	}
3114 	mtx_unlock(&vm_domainset_lock);
3115 }
3116 
3117 u_int
3118 vm_wait_count(void)
3119 {
3120 
3121 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3122 }
3123 
3124 void
3125 vm_wait_doms(const domainset_t *wdoms)
3126 {
3127 
3128 	/*
3129 	 * We use racey wakeup synchronization to avoid expensive global
3130 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3131 	 * To handle this, we only sleep for one tick in this instance.  It
3132 	 * is expected that most allocations for the pageproc will come from
3133 	 * kmem or vm_page_grab* which will use the more specific and
3134 	 * race-free vm_wait_domain().
3135 	 */
3136 	if (curproc == pageproc) {
3137 		mtx_lock(&vm_domainset_lock);
3138 		vm_pageproc_waiters++;
3139 		msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3140 		    "pageprocwait", 1);
3141 	} else {
3142 		/*
3143 		 * XXX Ideally we would wait only until the allocation could
3144 		 * be satisfied.  This condition can cause new allocators to
3145 		 * consume all freed pages while old allocators wait.
3146 		 */
3147 		mtx_lock(&vm_domainset_lock);
3148 		if (vm_page_count_min_set(wdoms)) {
3149 			vm_min_waiters++;
3150 			msleep(&vm_min_domains, &vm_domainset_lock,
3151 			    PVM | PDROP, "vmwait", 0);
3152 		} else
3153 			mtx_unlock(&vm_domainset_lock);
3154 	}
3155 }
3156 
3157 /*
3158  *	vm_wait_domain:
3159  *
3160  *	Sleep until free pages are available for allocation.
3161  *	- Called in various places after failed memory allocations.
3162  */
3163 void
3164 vm_wait_domain(int domain)
3165 {
3166 	struct vm_domain *vmd;
3167 	domainset_t wdom;
3168 
3169 	vmd = VM_DOMAIN(domain);
3170 	vm_domain_free_assert_unlocked(vmd);
3171 
3172 	if (curproc == pageproc) {
3173 		mtx_lock(&vm_domainset_lock);
3174 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3175 			vmd->vmd_pageout_pages_needed = 1;
3176 			msleep(&vmd->vmd_pageout_pages_needed,
3177 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3178 		} else
3179 			mtx_unlock(&vm_domainset_lock);
3180 	} else {
3181 		if (pageproc == NULL)
3182 			panic("vm_wait in early boot");
3183 		DOMAINSET_ZERO(&wdom);
3184 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3185 		vm_wait_doms(&wdom);
3186 	}
3187 }
3188 
3189 /*
3190  *	vm_wait:
3191  *
3192  *	Sleep until free pages are available for allocation in the
3193  *	affinity domains of the obj.  If obj is NULL, the domain set
3194  *	for the calling thread is used.
3195  *	Called in various places after failed memory allocations.
3196  */
3197 void
3198 vm_wait(vm_object_t obj)
3199 {
3200 	struct domainset *d;
3201 
3202 	d = NULL;
3203 
3204 	/*
3205 	 * Carefully fetch pointers only once: the struct domainset
3206 	 * itself is ummutable but the pointer might change.
3207 	 */
3208 	if (obj != NULL)
3209 		d = obj->domain.dr_policy;
3210 	if (d == NULL)
3211 		d = curthread->td_domain.dr_policy;
3212 
3213 	vm_wait_doms(&d->ds_mask);
3214 }
3215 
3216 /*
3217  *	vm_domain_alloc_fail:
3218  *
3219  *	Called when a page allocation function fails.  Informs the
3220  *	pagedaemon and performs the requested wait.  Requires the
3221  *	domain_free and object lock on entry.  Returns with the
3222  *	object lock held and free lock released.  Returns an error when
3223  *	retry is necessary.
3224  *
3225  */
3226 static int
3227 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3228 {
3229 
3230 	vm_domain_free_assert_unlocked(vmd);
3231 
3232 	atomic_add_int(&vmd->vmd_pageout_deficit,
3233 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3234 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3235 		if (object != NULL)
3236 			VM_OBJECT_WUNLOCK(object);
3237 		vm_wait_domain(vmd->vmd_domain);
3238 		if (object != NULL)
3239 			VM_OBJECT_WLOCK(object);
3240 		if (req & VM_ALLOC_WAITOK)
3241 			return (EAGAIN);
3242 	}
3243 
3244 	return (0);
3245 }
3246 
3247 /*
3248  *	vm_waitpfault:
3249  *
3250  *	Sleep until free pages are available for allocation.
3251  *	- Called only in vm_fault so that processes page faulting
3252  *	  can be easily tracked.
3253  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3254  *	  processes will be able to grab memory first.  Do not change
3255  *	  this balance without careful testing first.
3256  */
3257 void
3258 vm_waitpfault(struct domainset *dset, int timo)
3259 {
3260 
3261 	/*
3262 	 * XXX Ideally we would wait only until the allocation could
3263 	 * be satisfied.  This condition can cause new allocators to
3264 	 * consume all freed pages while old allocators wait.
3265 	 */
3266 	mtx_lock(&vm_domainset_lock);
3267 	if (vm_page_count_min_set(&dset->ds_mask)) {
3268 		vm_min_waiters++;
3269 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3270 		    "pfault", timo);
3271 	} else
3272 		mtx_unlock(&vm_domainset_lock);
3273 }
3274 
3275 static struct vm_pagequeue *
3276 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3277 {
3278 
3279 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3280 }
3281 
3282 #ifdef INVARIANTS
3283 static struct vm_pagequeue *
3284 vm_page_pagequeue(vm_page_t m)
3285 {
3286 
3287 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3288 }
3289 #endif
3290 
3291 static __always_inline bool
3292 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3293 {
3294 	vm_page_astate_t tmp;
3295 
3296 	tmp = *old;
3297 	do {
3298 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3299 			return (true);
3300 		counter_u64_add(pqstate_commit_retries, 1);
3301 	} while (old->_bits == tmp._bits);
3302 
3303 	return (false);
3304 }
3305 
3306 /*
3307  * Do the work of committing a queue state update that moves the page out of
3308  * its current queue.
3309  */
3310 static bool
3311 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3312     vm_page_astate_t *old, vm_page_astate_t new)
3313 {
3314 	vm_page_t next;
3315 
3316 	vm_pagequeue_assert_locked(pq);
3317 	KASSERT(vm_page_pagequeue(m) == pq,
3318 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3319 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3320 	    ("%s: invalid queue indices %d %d",
3321 	    __func__, old->queue, new.queue));
3322 
3323 	/*
3324 	 * Once the queue index of the page changes there is nothing
3325 	 * synchronizing with further updates to the page's physical
3326 	 * queue state.  Therefore we must speculatively remove the page
3327 	 * from the queue now and be prepared to roll back if the queue
3328 	 * state update fails.  If the page is not physically enqueued then
3329 	 * we just update its queue index.
3330 	 */
3331 	if ((old->flags & PGA_ENQUEUED) != 0) {
3332 		new.flags &= ~PGA_ENQUEUED;
3333 		next = TAILQ_NEXT(m, plinks.q);
3334 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3335 		vm_pagequeue_cnt_dec(pq);
3336 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3337 			if (next == NULL)
3338 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3339 			else
3340 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3341 			vm_pagequeue_cnt_inc(pq);
3342 			return (false);
3343 		} else {
3344 			return (true);
3345 		}
3346 	} else {
3347 		return (vm_page_pqstate_fcmpset(m, old, new));
3348 	}
3349 }
3350 
3351 static bool
3352 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3353     vm_page_astate_t new)
3354 {
3355 	struct vm_pagequeue *pq;
3356 	vm_page_astate_t as;
3357 	bool ret;
3358 
3359 	pq = _vm_page_pagequeue(m, old->queue);
3360 
3361 	/*
3362 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3363 	 * corresponding page queue lock is held.
3364 	 */
3365 	vm_pagequeue_lock(pq);
3366 	as = vm_page_astate_load(m);
3367 	if (__predict_false(as._bits != old->_bits)) {
3368 		*old = as;
3369 		ret = false;
3370 	} else {
3371 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3372 	}
3373 	vm_pagequeue_unlock(pq);
3374 	return (ret);
3375 }
3376 
3377 /*
3378  * Commit a queue state update that enqueues or requeues a page.
3379  */
3380 static bool
3381 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3382     vm_page_astate_t *old, vm_page_astate_t new)
3383 {
3384 	struct vm_domain *vmd;
3385 
3386 	vm_pagequeue_assert_locked(pq);
3387 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3388 	    ("%s: invalid queue indices %d %d",
3389 	    __func__, old->queue, new.queue));
3390 
3391 	new.flags |= PGA_ENQUEUED;
3392 	if (!vm_page_pqstate_fcmpset(m, old, new))
3393 		return (false);
3394 
3395 	if ((old->flags & PGA_ENQUEUED) != 0)
3396 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3397 	else
3398 		vm_pagequeue_cnt_inc(pq);
3399 
3400 	/*
3401 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3402 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3403 	 * applied, even if it was set first.
3404 	 */
3405 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3406 		vmd = vm_pagequeue_domain(m);
3407 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3408 		    ("%s: invalid page queue for page %p", __func__, m));
3409 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3410 	} else {
3411 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3412 	}
3413 	return (true);
3414 }
3415 
3416 /*
3417  * Commit a queue state update that encodes a request for a deferred queue
3418  * operation.
3419  */
3420 static bool
3421 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3422     vm_page_astate_t new)
3423 {
3424 
3425 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3426 	    ("%s: invalid state, queue %d flags %x",
3427 	    __func__, new.queue, new.flags));
3428 
3429 	if (old->_bits != new._bits &&
3430 	    !vm_page_pqstate_fcmpset(m, old, new))
3431 		return (false);
3432 	vm_page_pqbatch_submit(m, new.queue);
3433 	return (true);
3434 }
3435 
3436 /*
3437  * A generic queue state update function.  This handles more cases than the
3438  * specialized functions above.
3439  */
3440 bool
3441 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3442 {
3443 
3444 	if (old->_bits == new._bits)
3445 		return (true);
3446 
3447 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3448 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3449 			return (false);
3450 		if (new.queue != PQ_NONE)
3451 			vm_page_pqbatch_submit(m, new.queue);
3452 	} else {
3453 		if (!vm_page_pqstate_fcmpset(m, old, new))
3454 			return (false);
3455 		if (new.queue != PQ_NONE &&
3456 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3457 			vm_page_pqbatch_submit(m, new.queue);
3458 	}
3459 	return (true);
3460 }
3461 
3462 /*
3463  * Apply deferred queue state updates to a page.
3464  */
3465 static inline void
3466 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3467 {
3468 	vm_page_astate_t new, old;
3469 
3470 	CRITICAL_ASSERT(curthread);
3471 	vm_pagequeue_assert_locked(pq);
3472 	KASSERT(queue < PQ_COUNT,
3473 	    ("%s: invalid queue index %d", __func__, queue));
3474 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3475 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3476 
3477 	for (old = vm_page_astate_load(m);;) {
3478 		if (__predict_false(old.queue != queue ||
3479 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3480 			counter_u64_add(queue_nops, 1);
3481 			break;
3482 		}
3483 		KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3484 		    ("%s: page %p has unexpected queue state", __func__, m));
3485 
3486 		new = old;
3487 		if ((old.flags & PGA_DEQUEUE) != 0) {
3488 			new.flags &= ~PGA_QUEUE_OP_MASK;
3489 			new.queue = PQ_NONE;
3490 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3491 			    m, &old, new))) {
3492 				counter_u64_add(queue_ops, 1);
3493 				break;
3494 			}
3495 		} else {
3496 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3497 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3498 			    m, &old, new))) {
3499 				counter_u64_add(queue_ops, 1);
3500 				break;
3501 			}
3502 		}
3503 	}
3504 }
3505 
3506 static void
3507 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3508     uint8_t queue)
3509 {
3510 	int i;
3511 
3512 	for (i = 0; i < bq->bq_cnt; i++)
3513 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3514 	vm_batchqueue_init(bq);
3515 }
3516 
3517 /*
3518  *	vm_page_pqbatch_submit:		[ internal use only ]
3519  *
3520  *	Enqueue a page in the specified page queue's batched work queue.
3521  *	The caller must have encoded the requested operation in the page
3522  *	structure's a.flags field.
3523  */
3524 void
3525 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3526 {
3527 	struct vm_batchqueue *bq;
3528 	struct vm_pagequeue *pq;
3529 	int domain;
3530 
3531 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3532 	    ("page %p is unmanaged", m));
3533 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3534 
3535 	domain = vm_phys_domain(m);
3536 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3537 
3538 	critical_enter();
3539 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3540 	if (vm_batchqueue_insert(bq, m)) {
3541 		critical_exit();
3542 		return;
3543 	}
3544 	critical_exit();
3545 	vm_pagequeue_lock(pq);
3546 	critical_enter();
3547 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3548 	vm_pqbatch_process(pq, bq, queue);
3549 	vm_pqbatch_process_page(pq, m, queue);
3550 	vm_pagequeue_unlock(pq);
3551 	critical_exit();
3552 }
3553 
3554 /*
3555  *	vm_page_pqbatch_drain:		[ internal use only ]
3556  *
3557  *	Force all per-CPU page queue batch queues to be drained.  This is
3558  *	intended for use in severe memory shortages, to ensure that pages
3559  *	do not remain stuck in the batch queues.
3560  */
3561 void
3562 vm_page_pqbatch_drain(void)
3563 {
3564 	struct thread *td;
3565 	struct vm_domain *vmd;
3566 	struct vm_pagequeue *pq;
3567 	int cpu, domain, queue;
3568 
3569 	td = curthread;
3570 	CPU_FOREACH(cpu) {
3571 		thread_lock(td);
3572 		sched_bind(td, cpu);
3573 		thread_unlock(td);
3574 
3575 		for (domain = 0; domain < vm_ndomains; domain++) {
3576 			vmd = VM_DOMAIN(domain);
3577 			for (queue = 0; queue < PQ_COUNT; queue++) {
3578 				pq = &vmd->vmd_pagequeues[queue];
3579 				vm_pagequeue_lock(pq);
3580 				critical_enter();
3581 				vm_pqbatch_process(pq,
3582 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3583 				critical_exit();
3584 				vm_pagequeue_unlock(pq);
3585 			}
3586 		}
3587 	}
3588 	thread_lock(td);
3589 	sched_unbind(td);
3590 	thread_unlock(td);
3591 }
3592 
3593 /*
3594  *	vm_page_dequeue_deferred:	[ internal use only ]
3595  *
3596  *	Request removal of the given page from its current page
3597  *	queue.  Physical removal from the queue may be deferred
3598  *	indefinitely.
3599  *
3600  *	The page must be locked.
3601  */
3602 void
3603 vm_page_dequeue_deferred(vm_page_t m)
3604 {
3605 	vm_page_astate_t new, old;
3606 
3607 	old = vm_page_astate_load(m);
3608 	do {
3609 		if (old.queue == PQ_NONE) {
3610 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3611 			    ("%s: page %p has unexpected queue state",
3612 			    __func__, m));
3613 			break;
3614 		}
3615 		new = old;
3616 		new.flags |= PGA_DEQUEUE;
3617 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3618 }
3619 
3620 /*
3621  *	vm_page_dequeue:
3622  *
3623  *	Remove the page from whichever page queue it's in, if any, before
3624  *	returning.
3625  */
3626 void
3627 vm_page_dequeue(vm_page_t m)
3628 {
3629 	vm_page_astate_t new, old;
3630 
3631 	old = vm_page_astate_load(m);
3632 	do {
3633 		if (old.queue == PQ_NONE) {
3634 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3635 			    ("%s: page %p has unexpected queue state",
3636 			    __func__, m));
3637 			break;
3638 		}
3639 		new = old;
3640 		new.flags &= ~PGA_QUEUE_OP_MASK;
3641 		new.queue = PQ_NONE;
3642 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3643 
3644 }
3645 
3646 /*
3647  * Schedule the given page for insertion into the specified page queue.
3648  * Physical insertion of the page may be deferred indefinitely.
3649  */
3650 static void
3651 vm_page_enqueue(vm_page_t m, uint8_t queue)
3652 {
3653 
3654 	KASSERT(m->a.queue == PQ_NONE &&
3655 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3656 	    ("%s: page %p is already enqueued", __func__, m));
3657 	KASSERT(m->ref_count > 0,
3658 	    ("%s: page %p does not carry any references", __func__, m));
3659 
3660 	m->a.queue = queue;
3661 	if ((m->a.flags & PGA_REQUEUE) == 0)
3662 		vm_page_aflag_set(m, PGA_REQUEUE);
3663 	vm_page_pqbatch_submit(m, queue);
3664 }
3665 
3666 /*
3667  *	vm_page_free_prep:
3668  *
3669  *	Prepares the given page to be put on the free list,
3670  *	disassociating it from any VM object. The caller may return
3671  *	the page to the free list only if this function returns true.
3672  *
3673  *	The object must be locked.  The page must be locked if it is
3674  *	managed.
3675  */
3676 static bool
3677 vm_page_free_prep(vm_page_t m)
3678 {
3679 
3680 	/*
3681 	 * Synchronize with threads that have dropped a reference to this
3682 	 * page.
3683 	 */
3684 	atomic_thread_fence_acq();
3685 
3686 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3687 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3688 		uint64_t *p;
3689 		int i;
3690 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3691 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3692 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3693 			    m, i, (uintmax_t)*p));
3694 	}
3695 #endif
3696 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3697 		KASSERT(!pmap_page_is_mapped(m),
3698 		    ("vm_page_free_prep: freeing mapped page %p", m));
3699 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3700 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3701 	} else {
3702 		KASSERT(m->a.queue == PQ_NONE,
3703 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3704 	}
3705 	VM_CNT_INC(v_tfree);
3706 
3707 	if (m->object != NULL) {
3708 		KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3709 		    ((m->object->flags & OBJ_UNMANAGED) != 0),
3710 		    ("vm_page_free_prep: managed flag mismatch for page %p",
3711 		    m));
3712 		vm_page_assert_xbusied(m);
3713 
3714 		/*
3715 		 * The object reference can be released without an atomic
3716 		 * operation.
3717 		 */
3718 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3719 		    m->ref_count == VPRC_OBJREF,
3720 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3721 		    m, m->ref_count));
3722 		vm_page_object_remove(m);
3723 		m->ref_count -= VPRC_OBJREF;
3724 	} else
3725 		vm_page_assert_unbusied(m);
3726 
3727 	vm_page_busy_free(m);
3728 
3729 	/*
3730 	 * If fictitious remove object association and
3731 	 * return.
3732 	 */
3733 	if ((m->flags & PG_FICTITIOUS) != 0) {
3734 		KASSERT(m->ref_count == 1,
3735 		    ("fictitious page %p is referenced", m));
3736 		KASSERT(m->a.queue == PQ_NONE,
3737 		    ("fictitious page %p is queued", m));
3738 		return (false);
3739 	}
3740 
3741 	/*
3742 	 * Pages need not be dequeued before they are returned to the physical
3743 	 * memory allocator, but they must at least be marked for a deferred
3744 	 * dequeue.
3745 	 */
3746 	if ((m->oflags & VPO_UNMANAGED) == 0)
3747 		vm_page_dequeue_deferred(m);
3748 
3749 	m->valid = 0;
3750 	vm_page_undirty(m);
3751 
3752 	if (m->ref_count != 0)
3753 		panic("vm_page_free_prep: page %p has references", m);
3754 
3755 	/*
3756 	 * Restore the default memory attribute to the page.
3757 	 */
3758 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3759 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3760 
3761 #if VM_NRESERVLEVEL > 0
3762 	/*
3763 	 * Determine whether the page belongs to a reservation.  If the page was
3764 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3765 	 * as an optimization, we avoid the check in that case.
3766 	 */
3767 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3768 		return (false);
3769 #endif
3770 
3771 	return (true);
3772 }
3773 
3774 /*
3775  *	vm_page_free_toq:
3776  *
3777  *	Returns the given page to the free list, disassociating it
3778  *	from any VM object.
3779  *
3780  *	The object must be locked.  The page must be locked if it is
3781  *	managed.
3782  */
3783 static void
3784 vm_page_free_toq(vm_page_t m)
3785 {
3786 	struct vm_domain *vmd;
3787 	uma_zone_t zone;
3788 
3789 	if (!vm_page_free_prep(m))
3790 		return;
3791 
3792 	vmd = vm_pagequeue_domain(m);
3793 	zone = vmd->vmd_pgcache[m->pool].zone;
3794 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3795 		uma_zfree(zone, m);
3796 		return;
3797 	}
3798 	vm_domain_free_lock(vmd);
3799 	vm_phys_free_pages(m, 0);
3800 	vm_domain_free_unlock(vmd);
3801 	vm_domain_freecnt_inc(vmd, 1);
3802 }
3803 
3804 /*
3805  *	vm_page_free_pages_toq:
3806  *
3807  *	Returns a list of pages to the free list, disassociating it
3808  *	from any VM object.  In other words, this is equivalent to
3809  *	calling vm_page_free_toq() for each page of a list of VM objects.
3810  *
3811  *	The objects must be locked.  The pages must be locked if it is
3812  *	managed.
3813  */
3814 void
3815 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3816 {
3817 	vm_page_t m;
3818 	int count;
3819 
3820 	if (SLIST_EMPTY(free))
3821 		return;
3822 
3823 	count = 0;
3824 	while ((m = SLIST_FIRST(free)) != NULL) {
3825 		count++;
3826 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3827 		vm_page_free_toq(m);
3828 	}
3829 
3830 	if (update_wire_count)
3831 		vm_wire_sub(count);
3832 }
3833 
3834 /*
3835  * Mark this page as wired down, preventing reclamation by the page daemon
3836  * or when the containing object is destroyed.
3837  */
3838 void
3839 vm_page_wire(vm_page_t m)
3840 {
3841 	u_int old;
3842 
3843 	KASSERT(m->object != NULL,
3844 	    ("vm_page_wire: page %p does not belong to an object", m));
3845 	if (!vm_page_busied(m) && !vm_object_busied(m->object))
3846 		VM_OBJECT_ASSERT_LOCKED(m->object);
3847 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3848 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
3849 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
3850 
3851 	old = atomic_fetchadd_int(&m->ref_count, 1);
3852 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3853 	    ("vm_page_wire: counter overflow for page %p", m));
3854 	if (VPRC_WIRE_COUNT(old) == 0) {
3855 		if ((m->oflags & VPO_UNMANAGED) == 0)
3856 			vm_page_aflag_set(m, PGA_DEQUEUE);
3857 		vm_wire_add(1);
3858 	}
3859 }
3860 
3861 /*
3862  * Attempt to wire a mapped page following a pmap lookup of that page.
3863  * This may fail if a thread is concurrently tearing down mappings of the page.
3864  * The transient failure is acceptable because it translates to the
3865  * failure of the caller pmap_extract_and_hold(), which should be then
3866  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3867  */
3868 bool
3869 vm_page_wire_mapped(vm_page_t m)
3870 {
3871 	u_int old;
3872 
3873 	old = m->ref_count;
3874 	do {
3875 		KASSERT(old > 0,
3876 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3877 		if ((old & VPRC_BLOCKED) != 0)
3878 			return (false);
3879 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3880 
3881 	if (VPRC_WIRE_COUNT(old) == 0) {
3882 		if ((m->oflags & VPO_UNMANAGED) == 0)
3883 			vm_page_aflag_set(m, PGA_DEQUEUE);
3884 		vm_wire_add(1);
3885 	}
3886 	return (true);
3887 }
3888 
3889 /*
3890  * Release a wiring reference to a managed page.  If the page still belongs to
3891  * an object, update its position in the page queues to reflect the reference.
3892  * If the wiring was the last reference to the page, free the page.
3893  */
3894 static void
3895 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3896 {
3897 	u_int old;
3898 
3899 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3900 	    ("%s: page %p is unmanaged", __func__, m));
3901 
3902 	/*
3903 	 * Update LRU state before releasing the wiring reference.
3904 	 * Use a release store when updating the reference count to
3905 	 * synchronize with vm_page_free_prep().
3906 	 */
3907 	old = m->ref_count;
3908 	do {
3909 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
3910 		    ("vm_page_unwire: wire count underflow for page %p", m));
3911 
3912 		if (old > VPRC_OBJREF + 1) {
3913 			/*
3914 			 * The page has at least one other wiring reference.  An
3915 			 * earlier iteration of this loop may have called
3916 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3917 			 * re-set it if necessary.
3918 			 */
3919 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3920 				vm_page_aflag_set(m, PGA_DEQUEUE);
3921 		} else if (old == VPRC_OBJREF + 1) {
3922 			/*
3923 			 * This is the last wiring.  Clear PGA_DEQUEUE and
3924 			 * update the page's queue state to reflect the
3925 			 * reference.  If the page does not belong to an object
3926 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
3927 			 * clear leftover queue state.
3928 			 */
3929 			vm_page_release_toq(m, nqueue, false);
3930 		} else if (old == 1) {
3931 			vm_page_aflag_clear(m, PGA_DEQUEUE);
3932 		}
3933 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3934 
3935 	if (VPRC_WIRE_COUNT(old) == 1) {
3936 		vm_wire_sub(1);
3937 		if (old == 1)
3938 			vm_page_free(m);
3939 	}
3940 }
3941 
3942 /*
3943  * Release one wiring of the specified page, potentially allowing it to be
3944  * paged out.
3945  *
3946  * Only managed pages belonging to an object can be paged out.  If the number
3947  * of wirings transitions to zero and the page is eligible for page out, then
3948  * the page is added to the specified paging queue.  If the released wiring
3949  * represented the last reference to the page, the page is freed.
3950  *
3951  * A managed page must be locked.
3952  */
3953 void
3954 vm_page_unwire(vm_page_t m, uint8_t nqueue)
3955 {
3956 
3957 	KASSERT(nqueue < PQ_COUNT,
3958 	    ("vm_page_unwire: invalid queue %u request for page %p",
3959 	    nqueue, m));
3960 
3961 	if ((m->oflags & VPO_UNMANAGED) != 0) {
3962 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
3963 			vm_page_free(m);
3964 		return;
3965 	}
3966 	vm_page_unwire_managed(m, nqueue, false);
3967 }
3968 
3969 /*
3970  * Unwire a page without (re-)inserting it into a page queue.  It is up
3971  * to the caller to enqueue, requeue, or free the page as appropriate.
3972  * In most cases involving managed pages, vm_page_unwire() should be used
3973  * instead.
3974  */
3975 bool
3976 vm_page_unwire_noq(vm_page_t m)
3977 {
3978 	u_int old;
3979 
3980 	old = vm_page_drop(m, 1);
3981 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
3982 	    ("vm_page_unref: counter underflow for page %p", m));
3983 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3984 	    ("vm_page_unref: missing ref on fictitious page %p", m));
3985 
3986 	if (VPRC_WIRE_COUNT(old) > 1)
3987 		return (false);
3988 	if ((m->oflags & VPO_UNMANAGED) == 0)
3989 		vm_page_aflag_clear(m, PGA_DEQUEUE);
3990 	vm_wire_sub(1);
3991 	return (true);
3992 }
3993 
3994 /*
3995  * Ensure that the page ends up in the specified page queue.  If the page is
3996  * active or being moved to the active queue, ensure that its act_count is
3997  * at least ACT_INIT but do not otherwise mess with it.
3998  *
3999  * A managed page must be locked.
4000  */
4001 static __always_inline void
4002 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4003 {
4004 	vm_page_astate_t old, new;
4005 
4006 	KASSERT(m->ref_count > 0,
4007 	    ("%s: page %p does not carry any references", __func__, m));
4008 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4009 	    ("%s: invalid flags %x", __func__, nflag));
4010 
4011 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4012 		return;
4013 
4014 	old = vm_page_astate_load(m);
4015 	do {
4016 		if ((old.flags & PGA_DEQUEUE) != 0)
4017 			break;
4018 		new = old;
4019 		new.flags &= ~PGA_QUEUE_OP_MASK;
4020 		if (nqueue == PQ_ACTIVE)
4021 			new.act_count = max(old.act_count, ACT_INIT);
4022 		if (old.queue == nqueue) {
4023 			if (nqueue != PQ_ACTIVE)
4024 				new.flags |= nflag;
4025 		} else {
4026 			new.flags |= nflag;
4027 			new.queue = nqueue;
4028 		}
4029 	} while (!vm_page_pqstate_commit(m, &old, new));
4030 }
4031 
4032 /*
4033  * Put the specified page on the active list (if appropriate).
4034  */
4035 void
4036 vm_page_activate(vm_page_t m)
4037 {
4038 
4039 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4040 }
4041 
4042 /*
4043  * Move the specified page to the tail of the inactive queue, or requeue
4044  * the page if it is already in the inactive queue.
4045  */
4046 void
4047 vm_page_deactivate(vm_page_t m)
4048 {
4049 
4050 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4051 }
4052 
4053 void
4054 vm_page_deactivate_noreuse(vm_page_t m)
4055 {
4056 
4057 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4058 }
4059 
4060 /*
4061  * Put a page in the laundry, or requeue it if it is already there.
4062  */
4063 void
4064 vm_page_launder(vm_page_t m)
4065 {
4066 
4067 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4068 }
4069 
4070 /*
4071  * Put a page in the PQ_UNSWAPPABLE holding queue.
4072  */
4073 void
4074 vm_page_unswappable(vm_page_t m)
4075 {
4076 
4077 	KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4078 	    ("page %p already unswappable", m));
4079 
4080 	vm_page_dequeue(m);
4081 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4082 }
4083 
4084 /*
4085  * Release a page back to the page queues in preparation for unwiring.
4086  */
4087 static void
4088 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4089 {
4090 	vm_page_astate_t old, new;
4091 	uint16_t nflag;
4092 
4093 	/*
4094 	 * Use a check of the valid bits to determine whether we should
4095 	 * accelerate reclamation of the page.  The object lock might not be
4096 	 * held here, in which case the check is racy.  At worst we will either
4097 	 * accelerate reclamation of a valid page and violate LRU, or
4098 	 * unnecessarily defer reclamation of an invalid page.
4099 	 *
4100 	 * If we were asked to not cache the page, place it near the head of the
4101 	 * inactive queue so that is reclaimed sooner.
4102 	 */
4103 	if (noreuse || m->valid == 0) {
4104 		nqueue = PQ_INACTIVE;
4105 		nflag = PGA_REQUEUE_HEAD;
4106 	} else {
4107 		nflag = PGA_REQUEUE;
4108 	}
4109 
4110 	old = vm_page_astate_load(m);
4111 	do {
4112 		new = old;
4113 
4114 		/*
4115 		 * If the page is already in the active queue and we are not
4116 		 * trying to accelerate reclamation, simply mark it as
4117 		 * referenced and avoid any queue operations.
4118 		 */
4119 		new.flags &= ~PGA_QUEUE_OP_MASK;
4120 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4121 			new.flags |= PGA_REFERENCED;
4122 		else {
4123 			new.flags |= nflag;
4124 			new.queue = nqueue;
4125 		}
4126 	} while (!vm_page_pqstate_commit(m, &old, new));
4127 }
4128 
4129 /*
4130  * Unwire a page and either attempt to free it or re-add it to the page queues.
4131  */
4132 void
4133 vm_page_release(vm_page_t m, int flags)
4134 {
4135 	vm_object_t object;
4136 
4137 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4138 	    ("vm_page_release: page %p is unmanaged", m));
4139 
4140 	if ((flags & VPR_TRYFREE) != 0) {
4141 		for (;;) {
4142 			object = atomic_load_ptr(&m->object);
4143 			if (object == NULL)
4144 				break;
4145 			/* Depends on type-stability. */
4146 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4147 				break;
4148 			if (object == m->object) {
4149 				vm_page_release_locked(m, flags);
4150 				VM_OBJECT_WUNLOCK(object);
4151 				return;
4152 			}
4153 			VM_OBJECT_WUNLOCK(object);
4154 		}
4155 	}
4156 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4157 }
4158 
4159 /* See vm_page_release(). */
4160 void
4161 vm_page_release_locked(vm_page_t m, int flags)
4162 {
4163 
4164 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4165 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4166 	    ("vm_page_release_locked: page %p is unmanaged", m));
4167 
4168 	if (vm_page_unwire_noq(m)) {
4169 		if ((flags & VPR_TRYFREE) != 0 &&
4170 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4171 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4172 			vm_page_free(m);
4173 		} else {
4174 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4175 		}
4176 	}
4177 }
4178 
4179 static bool
4180 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4181 {
4182 	u_int old;
4183 
4184 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4185 	    ("vm_page_try_blocked_op: page %p has no object", m));
4186 	KASSERT(vm_page_busied(m),
4187 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4188 	VM_OBJECT_ASSERT_LOCKED(m->object);
4189 
4190 	old = m->ref_count;
4191 	do {
4192 		KASSERT(old != 0,
4193 		    ("vm_page_try_blocked_op: page %p has no references", m));
4194 		if (VPRC_WIRE_COUNT(old) != 0)
4195 			return (false);
4196 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4197 
4198 	(op)(m);
4199 
4200 	/*
4201 	 * If the object is read-locked, new wirings may be created via an
4202 	 * object lookup.
4203 	 */
4204 	old = vm_page_drop(m, VPRC_BLOCKED);
4205 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4206 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4207 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4208 	    old, m));
4209 	return (true);
4210 }
4211 
4212 /*
4213  * Atomically check for wirings and remove all mappings of the page.
4214  */
4215 bool
4216 vm_page_try_remove_all(vm_page_t m)
4217 {
4218 
4219 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4220 }
4221 
4222 /*
4223  * Atomically check for wirings and remove all writeable mappings of the page.
4224  */
4225 bool
4226 vm_page_try_remove_write(vm_page_t m)
4227 {
4228 
4229 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4230 }
4231 
4232 /*
4233  * vm_page_advise
4234  *
4235  * 	Apply the specified advice to the given page.
4236  *
4237  *	The object and page must be locked.
4238  */
4239 void
4240 vm_page_advise(vm_page_t m, int advice)
4241 {
4242 
4243 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4244 	if (advice == MADV_FREE)
4245 		/*
4246 		 * Mark the page clean.  This will allow the page to be freed
4247 		 * without first paging it out.  MADV_FREE pages are often
4248 		 * quickly reused by malloc(3), so we do not do anything that
4249 		 * would result in a page fault on a later access.
4250 		 */
4251 		vm_page_undirty(m);
4252 	else if (advice != MADV_DONTNEED) {
4253 		if (advice == MADV_WILLNEED)
4254 			vm_page_activate(m);
4255 		return;
4256 	}
4257 
4258 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4259 		vm_page_dirty(m);
4260 
4261 	/*
4262 	 * Clear any references to the page.  Otherwise, the page daemon will
4263 	 * immediately reactivate the page.
4264 	 */
4265 	vm_page_aflag_clear(m, PGA_REFERENCED);
4266 
4267 	/*
4268 	 * Place clean pages near the head of the inactive queue rather than
4269 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4270 	 * the page will be reused quickly.  Dirty pages not already in the
4271 	 * laundry are moved there.
4272 	 */
4273 	if (m->dirty == 0)
4274 		vm_page_deactivate_noreuse(m);
4275 	else if (!vm_page_in_laundry(m))
4276 		vm_page_launder(m);
4277 }
4278 
4279 /*
4280  *	vm_page_grab_release
4281  *
4282  *	Helper routine for grab functions to release busy on return.
4283  */
4284 static inline void
4285 vm_page_grab_release(vm_page_t m, int allocflags)
4286 {
4287 
4288 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4289 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4290 			vm_page_sunbusy(m);
4291 		else
4292 			vm_page_xunbusy(m);
4293 	}
4294 }
4295 
4296 /*
4297  *	vm_page_grab_sleep
4298  *
4299  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4300  *	if the caller should retry and false otherwise.
4301  *
4302  *	If the object is locked on entry the object will be unlocked with
4303  *	false returns and still locked but possibly having been dropped
4304  *	with true returns.
4305  */
4306 static bool
4307 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4308     const char *wmesg, int allocflags, bool locked)
4309 {
4310 
4311 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4312 		return (false);
4313 
4314 	/*
4315 	 * Reference the page before unlocking and sleeping so that
4316 	 * the page daemon is less likely to reclaim it.
4317 	 */
4318 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4319 		vm_page_reference(m);
4320 
4321 	if (_vm_page_busy_sleep(object, m, m->pindex, wmesg, allocflags,
4322 	    locked) && locked)
4323 		VM_OBJECT_WLOCK(object);
4324 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4325 		return (false);
4326 
4327 	return (true);
4328 }
4329 
4330 /*
4331  * Assert that the grab flags are valid.
4332  */
4333 static inline void
4334 vm_page_grab_check(int allocflags)
4335 {
4336 
4337 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4338 	    (allocflags & VM_ALLOC_WIRED) != 0,
4339 	    ("vm_page_grab*: the pages must be busied or wired"));
4340 
4341 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4342 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4343 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4344 }
4345 
4346 /*
4347  * Calculate the page allocation flags for grab.
4348  */
4349 static inline int
4350 vm_page_grab_pflags(int allocflags)
4351 {
4352 	int pflags;
4353 
4354 	pflags = allocflags &
4355 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4356 	    VM_ALLOC_NOBUSY);
4357 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4358 		pflags |= VM_ALLOC_WAITFAIL;
4359 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4360 		pflags |= VM_ALLOC_SBUSY;
4361 
4362 	return (pflags);
4363 }
4364 
4365 /*
4366  * Grab a page, waiting until we are waken up due to the page
4367  * changing state.  We keep on waiting, if the page continues
4368  * to be in the object.  If the page doesn't exist, first allocate it
4369  * and then conditionally zero it.
4370  *
4371  * This routine may sleep.
4372  *
4373  * The object must be locked on entry.  The lock will, however, be released
4374  * and reacquired if the routine sleeps.
4375  */
4376 vm_page_t
4377 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4378 {
4379 	vm_page_t m;
4380 
4381 	VM_OBJECT_ASSERT_WLOCKED(object);
4382 	vm_page_grab_check(allocflags);
4383 
4384 retrylookup:
4385 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4386 		if (!vm_page_tryacquire(m, allocflags)) {
4387 			if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4388 			    allocflags, true))
4389 				goto retrylookup;
4390 			return (NULL);
4391 		}
4392 		goto out;
4393 	}
4394 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4395 		return (NULL);
4396 	m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4397 	if (m == NULL) {
4398 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4399 			return (NULL);
4400 		goto retrylookup;
4401 	}
4402 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4403 		pmap_zero_page(m);
4404 
4405 out:
4406 	vm_page_grab_release(m, allocflags);
4407 
4408 	return (m);
4409 }
4410 
4411 /*
4412  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4413  * and an optional previous page to avoid the radix lookup.  The resulting
4414  * page will be validated against the identity tuple and busied or wired
4415  * as requested.  A NULL *mp return guarantees that the page was not in
4416  * radix at the time of the call but callers must perform higher level
4417  * synchronization or retry the operation under a lock if they require
4418  * an atomic answer.  This is the only lock free validation routine,
4419  * other routines can depend on the resulting page state.
4420  *
4421  * The return value indicates whether the operation failed due to caller
4422  * flags.  The return is tri-state with mp:
4423  *
4424  * (true, *mp != NULL) - The operation was successful.
4425  * (true, *mp == NULL) - The page was not found in tree.
4426  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4427  */
4428 static bool
4429 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4430     vm_page_t prev, vm_page_t *mp, int allocflags)
4431 {
4432 	vm_page_t m;
4433 
4434 	vm_page_grab_check(allocflags);
4435 	MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4436 
4437 	*mp = NULL;
4438 	for (;;) {
4439 		/*
4440 		 * We may see a false NULL here because the previous page
4441 		 * has been removed or just inserted and the list is loaded
4442 		 * without barriers.  Switch to radix to verify.
4443 		 */
4444 		if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4445 		    m->pindex != pindex ||
4446 		    atomic_load_ptr(&m->object) != object) {
4447 			prev = NULL;
4448 			/*
4449 			 * This guarantees the result is instantaneously
4450 			 * correct.
4451 			 */
4452 			m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4453 		}
4454 		if (m == NULL)
4455 			return (true);
4456 		if (vm_page_trybusy(m, allocflags)) {
4457 			if (m->object == object && m->pindex == pindex)
4458 				break;
4459 			/* relookup. */
4460 			vm_page_busy_release(m);
4461 			cpu_spinwait();
4462 			continue;
4463 		}
4464 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4465 		    allocflags, false))
4466 			return (false);
4467 	}
4468 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4469 		vm_page_wire(m);
4470 	vm_page_grab_release(m, allocflags);
4471 	*mp = m;
4472 	return (true);
4473 }
4474 
4475 /*
4476  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4477  * is not set.
4478  */
4479 vm_page_t
4480 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4481 {
4482 	vm_page_t m;
4483 
4484 	vm_page_grab_check(allocflags);
4485 
4486 	if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4487 		return (NULL);
4488 	if (m != NULL)
4489 		return (m);
4490 
4491 	/*
4492 	 * The radix lockless lookup should never return a false negative
4493 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4494 	 * was no page present at the instant of the call.  A NOCREAT caller
4495 	 * must handle create races gracefully.
4496 	 */
4497 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4498 		return (NULL);
4499 
4500 	VM_OBJECT_WLOCK(object);
4501 	m = vm_page_grab(object, pindex, allocflags);
4502 	VM_OBJECT_WUNLOCK(object);
4503 
4504 	return (m);
4505 }
4506 
4507 /*
4508  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4509  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4510  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4511  * in simultaneously.  Additional pages will be left on a paging queue but
4512  * will neither be wired nor busy regardless of allocflags.
4513  */
4514 int
4515 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4516 {
4517 	vm_page_t m;
4518 	vm_page_t ma[VM_INITIAL_PAGEIN];
4519 	int after, i, pflags, rv;
4520 
4521 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4522 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4523 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4524 	KASSERT((allocflags &
4525 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4526 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4527 	VM_OBJECT_ASSERT_WLOCKED(object);
4528 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4529 	    VM_ALLOC_WIRED);
4530 	pflags |= VM_ALLOC_WAITFAIL;
4531 
4532 retrylookup:
4533 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4534 		/*
4535 		 * If the page is fully valid it can only become invalid
4536 		 * with the object lock held.  If it is not valid it can
4537 		 * become valid with the busy lock held.  Therefore, we
4538 		 * may unnecessarily lock the exclusive busy here if we
4539 		 * race with I/O completion not using the object lock.
4540 		 * However, we will not end up with an invalid page and a
4541 		 * shared lock.
4542 		 */
4543 		if (!vm_page_trybusy(m,
4544 		    vm_page_all_valid(m) ? allocflags : 0)) {
4545 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4546 			    allocflags, true);
4547 			goto retrylookup;
4548 		}
4549 		if (vm_page_all_valid(m))
4550 			goto out;
4551 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4552 			vm_page_busy_release(m);
4553 			*mp = NULL;
4554 			return (VM_PAGER_FAIL);
4555 		}
4556 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4557 		*mp = NULL;
4558 		return (VM_PAGER_FAIL);
4559 	} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4560 		goto retrylookup;
4561 	}
4562 
4563 	vm_page_assert_xbusied(m);
4564 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4565 		after = MIN(after, VM_INITIAL_PAGEIN);
4566 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4567 		after = MAX(after, 1);
4568 		ma[0] = m;
4569 		for (i = 1; i < after; i++) {
4570 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4571 				if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4572 					break;
4573 			} else {
4574 				ma[i] = vm_page_alloc(object, m->pindex + i,
4575 				    VM_ALLOC_NORMAL);
4576 				if (ma[i] == NULL)
4577 					break;
4578 			}
4579 		}
4580 		after = i;
4581 		vm_object_pip_add(object, after);
4582 		VM_OBJECT_WUNLOCK(object);
4583 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4584 		VM_OBJECT_WLOCK(object);
4585 		vm_object_pip_wakeupn(object, after);
4586 		/* Pager may have replaced a page. */
4587 		m = ma[0];
4588 		if (rv != VM_PAGER_OK) {
4589 			for (i = 0; i < after; i++) {
4590 				if (!vm_page_wired(ma[i]))
4591 					vm_page_free(ma[i]);
4592 				else
4593 					vm_page_xunbusy(ma[i]);
4594 			}
4595 			*mp = NULL;
4596 			return (rv);
4597 		}
4598 		for (i = 1; i < after; i++)
4599 			vm_page_readahead_finish(ma[i]);
4600 		MPASS(vm_page_all_valid(m));
4601 	} else {
4602 		vm_page_zero_invalid(m, TRUE);
4603 	}
4604 out:
4605 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4606 		vm_page_wire(m);
4607 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4608 		vm_page_busy_downgrade(m);
4609 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4610 		vm_page_busy_release(m);
4611 	*mp = m;
4612 	return (VM_PAGER_OK);
4613 }
4614 
4615 /*
4616  * Locklessly grab a valid page.  If the page is not valid or not yet
4617  * allocated this will fall back to the object lock method.
4618  */
4619 int
4620 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4621     vm_pindex_t pindex, int allocflags)
4622 {
4623 	vm_page_t m;
4624 	int flags;
4625 	int error;
4626 
4627 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4628 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4629 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4630 	    "mismatch"));
4631 	KASSERT((allocflags &
4632 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4633 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4634 
4635 	/*
4636 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
4637 	 * before we can inspect the valid field and return a wired page.
4638 	 */
4639 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4640 	if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4641 		return (VM_PAGER_FAIL);
4642 	if ((m = *mp) != NULL) {
4643 		if (vm_page_all_valid(m)) {
4644 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4645 				vm_page_wire(m);
4646 			vm_page_grab_release(m, allocflags);
4647 			return (VM_PAGER_OK);
4648 		}
4649 		vm_page_busy_release(m);
4650 	}
4651 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4652 		*mp = NULL;
4653 		return (VM_PAGER_FAIL);
4654 	}
4655 	VM_OBJECT_WLOCK(object);
4656 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
4657 	VM_OBJECT_WUNLOCK(object);
4658 
4659 	return (error);
4660 }
4661 
4662 /*
4663  * Return the specified range of pages from the given object.  For each
4664  * page offset within the range, if a page already exists within the object
4665  * at that offset and it is busy, then wait for it to change state.  If,
4666  * instead, the page doesn't exist, then allocate it.
4667  *
4668  * The caller must always specify an allocation class.
4669  *
4670  * allocation classes:
4671  *	VM_ALLOC_NORMAL		normal process request
4672  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4673  *
4674  * The caller must always specify that the pages are to be busied and/or
4675  * wired.
4676  *
4677  * optional allocation flags:
4678  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4679  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4680  *	VM_ALLOC_NOWAIT		do not sleep
4681  *	VM_ALLOC_SBUSY		set page to sbusy state
4682  *	VM_ALLOC_WIRED		wire the pages
4683  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4684  *
4685  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4686  * may return a partial prefix of the requested range.
4687  */
4688 int
4689 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4690     vm_page_t *ma, int count)
4691 {
4692 	vm_page_t m, mpred;
4693 	int pflags;
4694 	int i;
4695 
4696 	VM_OBJECT_ASSERT_WLOCKED(object);
4697 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4698 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4699 	vm_page_grab_check(allocflags);
4700 
4701 	pflags = vm_page_grab_pflags(allocflags);
4702 	if (count == 0)
4703 		return (0);
4704 
4705 	i = 0;
4706 retrylookup:
4707 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4708 	if (m == NULL || m->pindex != pindex + i) {
4709 		mpred = m;
4710 		m = NULL;
4711 	} else
4712 		mpred = TAILQ_PREV(m, pglist, listq);
4713 	for (; i < count; i++) {
4714 		if (m != NULL) {
4715 			if (!vm_page_tryacquire(m, allocflags)) {
4716 				if (vm_page_grab_sleep(object, m, pindex,
4717 				    "grbmaw", allocflags, true))
4718 					goto retrylookup;
4719 				break;
4720 			}
4721 		} else {
4722 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4723 				break;
4724 			m = vm_page_alloc_after(object, pindex + i,
4725 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4726 			if (m == NULL) {
4727 				if ((allocflags & (VM_ALLOC_NOWAIT |
4728 				    VM_ALLOC_WAITFAIL)) != 0)
4729 					break;
4730 				goto retrylookup;
4731 			}
4732 		}
4733 		if (vm_page_none_valid(m) &&
4734 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4735 			if ((m->flags & PG_ZERO) == 0)
4736 				pmap_zero_page(m);
4737 			vm_page_valid(m);
4738 		}
4739 		vm_page_grab_release(m, allocflags);
4740 		ma[i] = mpred = m;
4741 		m = vm_page_next(m);
4742 	}
4743 	return (i);
4744 }
4745 
4746 /*
4747  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4748  * and will fall back to the locked variant to handle allocation.
4749  */
4750 int
4751 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4752     int allocflags, vm_page_t *ma, int count)
4753 {
4754 	vm_page_t m, pred;
4755 	int flags;
4756 	int i;
4757 
4758 	vm_page_grab_check(allocflags);
4759 
4760 	/*
4761 	 * Modify flags for lockless acquire to hold the page until we
4762 	 * set it valid if necessary.
4763 	 */
4764 	flags = allocflags & ~VM_ALLOC_NOBUSY;
4765 	pred = NULL;
4766 	for (i = 0; i < count; i++, pindex++) {
4767 		if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4768 			return (i);
4769 		if (m == NULL)
4770 			break;
4771 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4772 			if ((m->flags & PG_ZERO) == 0)
4773 				pmap_zero_page(m);
4774 			vm_page_valid(m);
4775 		}
4776 		/* m will still be wired or busy according to flags. */
4777 		vm_page_grab_release(m, allocflags);
4778 		pred = ma[i] = m;
4779 	}
4780 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4781 		return (i);
4782 	count -= i;
4783 	VM_OBJECT_WLOCK(object);
4784 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4785 	VM_OBJECT_WUNLOCK(object);
4786 
4787 	return (i);
4788 }
4789 
4790 /*
4791  * Mapping function for valid or dirty bits in a page.
4792  *
4793  * Inputs are required to range within a page.
4794  */
4795 vm_page_bits_t
4796 vm_page_bits(int base, int size)
4797 {
4798 	int first_bit;
4799 	int last_bit;
4800 
4801 	KASSERT(
4802 	    base + size <= PAGE_SIZE,
4803 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4804 	);
4805 
4806 	if (size == 0)		/* handle degenerate case */
4807 		return (0);
4808 
4809 	first_bit = base >> DEV_BSHIFT;
4810 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4811 
4812 	return (((vm_page_bits_t)2 << last_bit) -
4813 	    ((vm_page_bits_t)1 << first_bit));
4814 }
4815 
4816 void
4817 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4818 {
4819 
4820 #if PAGE_SIZE == 32768
4821 	atomic_set_64((uint64_t *)bits, set);
4822 #elif PAGE_SIZE == 16384
4823 	atomic_set_32((uint32_t *)bits, set);
4824 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4825 	atomic_set_16((uint16_t *)bits, set);
4826 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4827 	atomic_set_8((uint8_t *)bits, set);
4828 #else		/* PAGE_SIZE <= 8192 */
4829 	uintptr_t addr;
4830 	int shift;
4831 
4832 	addr = (uintptr_t)bits;
4833 	/*
4834 	 * Use a trick to perform a 32-bit atomic on the
4835 	 * containing aligned word, to not depend on the existence
4836 	 * of atomic_{set, clear}_{8, 16}.
4837 	 */
4838 	shift = addr & (sizeof(uint32_t) - 1);
4839 #if BYTE_ORDER == BIG_ENDIAN
4840 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4841 #else
4842 	shift *= NBBY;
4843 #endif
4844 	addr &= ~(sizeof(uint32_t) - 1);
4845 	atomic_set_32((uint32_t *)addr, set << shift);
4846 #endif		/* PAGE_SIZE */
4847 }
4848 
4849 static inline void
4850 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4851 {
4852 
4853 #if PAGE_SIZE == 32768
4854 	atomic_clear_64((uint64_t *)bits, clear);
4855 #elif PAGE_SIZE == 16384
4856 	atomic_clear_32((uint32_t *)bits, clear);
4857 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4858 	atomic_clear_16((uint16_t *)bits, clear);
4859 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4860 	atomic_clear_8((uint8_t *)bits, clear);
4861 #else		/* PAGE_SIZE <= 8192 */
4862 	uintptr_t addr;
4863 	int shift;
4864 
4865 	addr = (uintptr_t)bits;
4866 	/*
4867 	 * Use a trick to perform a 32-bit atomic on the
4868 	 * containing aligned word, to not depend on the existence
4869 	 * of atomic_{set, clear}_{8, 16}.
4870 	 */
4871 	shift = addr & (sizeof(uint32_t) - 1);
4872 #if BYTE_ORDER == BIG_ENDIAN
4873 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4874 #else
4875 	shift *= NBBY;
4876 #endif
4877 	addr &= ~(sizeof(uint32_t) - 1);
4878 	atomic_clear_32((uint32_t *)addr, clear << shift);
4879 #endif		/* PAGE_SIZE */
4880 }
4881 
4882 static inline vm_page_bits_t
4883 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4884 {
4885 #if PAGE_SIZE == 32768
4886 	uint64_t old;
4887 
4888 	old = *bits;
4889 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4890 	return (old);
4891 #elif PAGE_SIZE == 16384
4892 	uint32_t old;
4893 
4894 	old = *bits;
4895 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4896 	return (old);
4897 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4898 	uint16_t old;
4899 
4900 	old = *bits;
4901 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4902 	return (old);
4903 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4904 	uint8_t old;
4905 
4906 	old = *bits;
4907 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4908 	return (old);
4909 #else		/* PAGE_SIZE <= 4096*/
4910 	uintptr_t addr;
4911 	uint32_t old, new, mask;
4912 	int shift;
4913 
4914 	addr = (uintptr_t)bits;
4915 	/*
4916 	 * Use a trick to perform a 32-bit atomic on the
4917 	 * containing aligned word, to not depend on the existence
4918 	 * of atomic_{set, swap, clear}_{8, 16}.
4919 	 */
4920 	shift = addr & (sizeof(uint32_t) - 1);
4921 #if BYTE_ORDER == BIG_ENDIAN
4922 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4923 #else
4924 	shift *= NBBY;
4925 #endif
4926 	addr &= ~(sizeof(uint32_t) - 1);
4927 	mask = VM_PAGE_BITS_ALL << shift;
4928 
4929 	old = *bits;
4930 	do {
4931 		new = old & ~mask;
4932 		new |= newbits << shift;
4933 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4934 	return (old >> shift);
4935 #endif		/* PAGE_SIZE */
4936 }
4937 
4938 /*
4939  *	vm_page_set_valid_range:
4940  *
4941  *	Sets portions of a page valid.  The arguments are expected
4942  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4943  *	of any partial chunks touched by the range.  The invalid portion of
4944  *	such chunks will be zeroed.
4945  *
4946  *	(base + size) must be less then or equal to PAGE_SIZE.
4947  */
4948 void
4949 vm_page_set_valid_range(vm_page_t m, int base, int size)
4950 {
4951 	int endoff, frag;
4952 	vm_page_bits_t pagebits;
4953 
4954 	vm_page_assert_busied(m);
4955 	if (size == 0)	/* handle degenerate case */
4956 		return;
4957 
4958 	/*
4959 	 * If the base is not DEV_BSIZE aligned and the valid
4960 	 * bit is clear, we have to zero out a portion of the
4961 	 * first block.
4962 	 */
4963 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4964 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4965 		pmap_zero_page_area(m, frag, base - frag);
4966 
4967 	/*
4968 	 * If the ending offset is not DEV_BSIZE aligned and the
4969 	 * valid bit is clear, we have to zero out a portion of
4970 	 * the last block.
4971 	 */
4972 	endoff = base + size;
4973 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4974 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4975 		pmap_zero_page_area(m, endoff,
4976 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4977 
4978 	/*
4979 	 * Assert that no previously invalid block that is now being validated
4980 	 * is already dirty.
4981 	 */
4982 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4983 	    ("vm_page_set_valid_range: page %p is dirty", m));
4984 
4985 	/*
4986 	 * Set valid bits inclusive of any overlap.
4987 	 */
4988 	pagebits = vm_page_bits(base, size);
4989 	if (vm_page_xbusied(m))
4990 		m->valid |= pagebits;
4991 	else
4992 		vm_page_bits_set(m, &m->valid, pagebits);
4993 }
4994 
4995 /*
4996  * Set the page dirty bits and free the invalid swap space if
4997  * present.  Returns the previous dirty bits.
4998  */
4999 vm_page_bits_t
5000 vm_page_set_dirty(vm_page_t m)
5001 {
5002 	vm_page_bits_t old;
5003 
5004 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5005 
5006 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5007 		old = m->dirty;
5008 		m->dirty = VM_PAGE_BITS_ALL;
5009 	} else
5010 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5011 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5012 		vm_pager_page_unswapped(m);
5013 
5014 	return (old);
5015 }
5016 
5017 /*
5018  * Clear the given bits from the specified page's dirty field.
5019  */
5020 static __inline void
5021 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5022 {
5023 
5024 	vm_page_assert_busied(m);
5025 
5026 	/*
5027 	 * If the page is xbusied and not write mapped we are the
5028 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5029 	 * layer can call vm_page_dirty() without holding a distinguished
5030 	 * lock.  The combination of page busy and atomic operations
5031 	 * suffice to guarantee consistency of the page dirty field.
5032 	 */
5033 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5034 		m->dirty &= ~pagebits;
5035 	else
5036 		vm_page_bits_clear(m, &m->dirty, pagebits);
5037 }
5038 
5039 /*
5040  *	vm_page_set_validclean:
5041  *
5042  *	Sets portions of a page valid and clean.  The arguments are expected
5043  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5044  *	of any partial chunks touched by the range.  The invalid portion of
5045  *	such chunks will be zero'd.
5046  *
5047  *	(base + size) must be less then or equal to PAGE_SIZE.
5048  */
5049 void
5050 vm_page_set_validclean(vm_page_t m, int base, int size)
5051 {
5052 	vm_page_bits_t oldvalid, pagebits;
5053 	int endoff, frag;
5054 
5055 	vm_page_assert_busied(m);
5056 	if (size == 0)	/* handle degenerate case */
5057 		return;
5058 
5059 	/*
5060 	 * If the base is not DEV_BSIZE aligned and the valid
5061 	 * bit is clear, we have to zero out a portion of the
5062 	 * first block.
5063 	 */
5064 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5065 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5066 		pmap_zero_page_area(m, frag, base - frag);
5067 
5068 	/*
5069 	 * If the ending offset is not DEV_BSIZE aligned and the
5070 	 * valid bit is clear, we have to zero out a portion of
5071 	 * the last block.
5072 	 */
5073 	endoff = base + size;
5074 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5075 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5076 		pmap_zero_page_area(m, endoff,
5077 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5078 
5079 	/*
5080 	 * Set valid, clear dirty bits.  If validating the entire
5081 	 * page we can safely clear the pmap modify bit.  We also
5082 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5083 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5084 	 * be set again.
5085 	 *
5086 	 * We set valid bits inclusive of any overlap, but we can only
5087 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5088 	 * the range.
5089 	 */
5090 	oldvalid = m->valid;
5091 	pagebits = vm_page_bits(base, size);
5092 	if (vm_page_xbusied(m))
5093 		m->valid |= pagebits;
5094 	else
5095 		vm_page_bits_set(m, &m->valid, pagebits);
5096 #if 0	/* NOT YET */
5097 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5098 		frag = DEV_BSIZE - frag;
5099 		base += frag;
5100 		size -= frag;
5101 		if (size < 0)
5102 			size = 0;
5103 	}
5104 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5105 #endif
5106 	if (base == 0 && size == PAGE_SIZE) {
5107 		/*
5108 		 * The page can only be modified within the pmap if it is
5109 		 * mapped, and it can only be mapped if it was previously
5110 		 * fully valid.
5111 		 */
5112 		if (oldvalid == VM_PAGE_BITS_ALL)
5113 			/*
5114 			 * Perform the pmap_clear_modify() first.  Otherwise,
5115 			 * a concurrent pmap operation, such as
5116 			 * pmap_protect(), could clear a modification in the
5117 			 * pmap and set the dirty field on the page before
5118 			 * pmap_clear_modify() had begun and after the dirty
5119 			 * field was cleared here.
5120 			 */
5121 			pmap_clear_modify(m);
5122 		m->dirty = 0;
5123 		vm_page_aflag_clear(m, PGA_NOSYNC);
5124 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5125 		m->dirty &= ~pagebits;
5126 	else
5127 		vm_page_clear_dirty_mask(m, pagebits);
5128 }
5129 
5130 void
5131 vm_page_clear_dirty(vm_page_t m, int base, int size)
5132 {
5133 
5134 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5135 }
5136 
5137 /*
5138  *	vm_page_set_invalid:
5139  *
5140  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5141  *	valid and dirty bits for the effected areas are cleared.
5142  */
5143 void
5144 vm_page_set_invalid(vm_page_t m, int base, int size)
5145 {
5146 	vm_page_bits_t bits;
5147 	vm_object_t object;
5148 
5149 	/*
5150 	 * The object lock is required so that pages can't be mapped
5151 	 * read-only while we're in the process of invalidating them.
5152 	 */
5153 	object = m->object;
5154 	VM_OBJECT_ASSERT_WLOCKED(object);
5155 	vm_page_assert_busied(m);
5156 
5157 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5158 	    size >= object->un_pager.vnp.vnp_size)
5159 		bits = VM_PAGE_BITS_ALL;
5160 	else
5161 		bits = vm_page_bits(base, size);
5162 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5163 		pmap_remove_all(m);
5164 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5165 	    !pmap_page_is_mapped(m),
5166 	    ("vm_page_set_invalid: page %p is mapped", m));
5167 	if (vm_page_xbusied(m)) {
5168 		m->valid &= ~bits;
5169 		m->dirty &= ~bits;
5170 	} else {
5171 		vm_page_bits_clear(m, &m->valid, bits);
5172 		vm_page_bits_clear(m, &m->dirty, bits);
5173 	}
5174 }
5175 
5176 /*
5177  *	vm_page_invalid:
5178  *
5179  *	Invalidates the entire page.  The page must be busy, unmapped, and
5180  *	the enclosing object must be locked.  The object locks protects
5181  *	against concurrent read-only pmap enter which is done without
5182  *	busy.
5183  */
5184 void
5185 vm_page_invalid(vm_page_t m)
5186 {
5187 
5188 	vm_page_assert_busied(m);
5189 	VM_OBJECT_ASSERT_LOCKED(m->object);
5190 	MPASS(!pmap_page_is_mapped(m));
5191 
5192 	if (vm_page_xbusied(m))
5193 		m->valid = 0;
5194 	else
5195 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5196 }
5197 
5198 /*
5199  * vm_page_zero_invalid()
5200  *
5201  *	The kernel assumes that the invalid portions of a page contain
5202  *	garbage, but such pages can be mapped into memory by user code.
5203  *	When this occurs, we must zero out the non-valid portions of the
5204  *	page so user code sees what it expects.
5205  *
5206  *	Pages are most often semi-valid when the end of a file is mapped
5207  *	into memory and the file's size is not page aligned.
5208  */
5209 void
5210 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5211 {
5212 	int b;
5213 	int i;
5214 
5215 	/*
5216 	 * Scan the valid bits looking for invalid sections that
5217 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5218 	 * valid bit may be set ) have already been zeroed by
5219 	 * vm_page_set_validclean().
5220 	 */
5221 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5222 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5223 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5224 			if (i > b) {
5225 				pmap_zero_page_area(m,
5226 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5227 			}
5228 			b = i + 1;
5229 		}
5230 	}
5231 
5232 	/*
5233 	 * setvalid is TRUE when we can safely set the zero'd areas
5234 	 * as being valid.  We can do this if there are no cache consistancy
5235 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5236 	 */
5237 	if (setvalid)
5238 		vm_page_valid(m);
5239 }
5240 
5241 /*
5242  *	vm_page_is_valid:
5243  *
5244  *	Is (partial) page valid?  Note that the case where size == 0
5245  *	will return FALSE in the degenerate case where the page is
5246  *	entirely invalid, and TRUE otherwise.
5247  *
5248  *	Some callers envoke this routine without the busy lock held and
5249  *	handle races via higher level locks.  Typical callers should
5250  *	hold a busy lock to prevent invalidation.
5251  */
5252 int
5253 vm_page_is_valid(vm_page_t m, int base, int size)
5254 {
5255 	vm_page_bits_t bits;
5256 
5257 	bits = vm_page_bits(base, size);
5258 	return (m->valid != 0 && (m->valid & bits) == bits);
5259 }
5260 
5261 /*
5262  * Returns true if all of the specified predicates are true for the entire
5263  * (super)page and false otherwise.
5264  */
5265 bool
5266 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5267 {
5268 	vm_object_t object;
5269 	int i, npages;
5270 
5271 	object = m->object;
5272 	if (skip_m != NULL && skip_m->object != object)
5273 		return (false);
5274 	VM_OBJECT_ASSERT_LOCKED(object);
5275 	npages = atop(pagesizes[m->psind]);
5276 
5277 	/*
5278 	 * The physically contiguous pages that make up a superpage, i.e., a
5279 	 * page with a page size index ("psind") greater than zero, will
5280 	 * occupy adjacent entries in vm_page_array[].
5281 	 */
5282 	for (i = 0; i < npages; i++) {
5283 		/* Always test object consistency, including "skip_m". */
5284 		if (m[i].object != object)
5285 			return (false);
5286 		if (&m[i] == skip_m)
5287 			continue;
5288 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5289 			return (false);
5290 		if ((flags & PS_ALL_DIRTY) != 0) {
5291 			/*
5292 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5293 			 * might stop this case from spuriously returning
5294 			 * "false".  However, that would require a write lock
5295 			 * on the object containing "m[i]".
5296 			 */
5297 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5298 				return (false);
5299 		}
5300 		if ((flags & PS_ALL_VALID) != 0 &&
5301 		    m[i].valid != VM_PAGE_BITS_ALL)
5302 			return (false);
5303 	}
5304 	return (true);
5305 }
5306 
5307 /*
5308  * Set the page's dirty bits if the page is modified.
5309  */
5310 void
5311 vm_page_test_dirty(vm_page_t m)
5312 {
5313 
5314 	vm_page_assert_busied(m);
5315 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5316 		vm_page_dirty(m);
5317 }
5318 
5319 void
5320 vm_page_valid(vm_page_t m)
5321 {
5322 
5323 	vm_page_assert_busied(m);
5324 	if (vm_page_xbusied(m))
5325 		m->valid = VM_PAGE_BITS_ALL;
5326 	else
5327 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5328 }
5329 
5330 void
5331 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5332 {
5333 
5334 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5335 }
5336 
5337 void
5338 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5339 {
5340 
5341 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5342 }
5343 
5344 int
5345 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5346 {
5347 
5348 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5349 }
5350 
5351 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5352 void
5353 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5354 {
5355 
5356 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5357 }
5358 
5359 void
5360 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5361 {
5362 
5363 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5364 }
5365 #endif
5366 
5367 #ifdef INVARIANTS
5368 void
5369 vm_page_object_busy_assert(vm_page_t m)
5370 {
5371 
5372 	/*
5373 	 * Certain of the page's fields may only be modified by the
5374 	 * holder of a page or object busy.
5375 	 */
5376 	if (m->object != NULL && !vm_page_busied(m))
5377 		VM_OBJECT_ASSERT_BUSY(m->object);
5378 }
5379 
5380 void
5381 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5382 {
5383 
5384 	if ((bits & PGA_WRITEABLE) == 0)
5385 		return;
5386 
5387 	/*
5388 	 * The PGA_WRITEABLE flag can only be set if the page is
5389 	 * managed, is exclusively busied or the object is locked.
5390 	 * Currently, this flag is only set by pmap_enter().
5391 	 */
5392 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5393 	    ("PGA_WRITEABLE on unmanaged page"));
5394 	if (!vm_page_xbusied(m))
5395 		VM_OBJECT_ASSERT_BUSY(m->object);
5396 }
5397 #endif
5398 
5399 #include "opt_ddb.h"
5400 #ifdef DDB
5401 #include <sys/kernel.h>
5402 
5403 #include <ddb/ddb.h>
5404 
5405 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5406 {
5407 
5408 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5409 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5410 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5411 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5412 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5413 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5414 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5415 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5416 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5417 }
5418 
5419 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5420 {
5421 	int dom;
5422 
5423 	db_printf("pq_free %d\n", vm_free_count());
5424 	for (dom = 0; dom < vm_ndomains; dom++) {
5425 		db_printf(
5426     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5427 		    dom,
5428 		    vm_dom[dom].vmd_page_count,
5429 		    vm_dom[dom].vmd_free_count,
5430 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5431 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5432 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5433 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5434 	}
5435 }
5436 
5437 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5438 {
5439 	vm_page_t m;
5440 	boolean_t phys, virt;
5441 
5442 	if (!have_addr) {
5443 		db_printf("show pginfo addr\n");
5444 		return;
5445 	}
5446 
5447 	phys = strchr(modif, 'p') != NULL;
5448 	virt = strchr(modif, 'v') != NULL;
5449 	if (virt)
5450 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5451 	else if (phys)
5452 		m = PHYS_TO_VM_PAGE(addr);
5453 	else
5454 		m = (vm_page_t)addr;
5455 	db_printf(
5456     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5457     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5458 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5459 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5460 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5461 }
5462 #endif /* DDB */
5463