xref: /freebsd/sys/vm/vm_page.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
36  */
37 
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Resident memory management module.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_vm.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113 
114 #include <machine/md_var.h>
115 
116 struct vm_domain vm_dom[MAXMEMDOM];
117 
118 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
119 
120 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
121 
122 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
123 /* The following fields are protected by the domainset lock. */
124 domainset_t __exclusive_cache_line vm_min_domains;
125 domainset_t __exclusive_cache_line vm_severe_domains;
126 static int vm_min_waiters;
127 static int vm_severe_waiters;
128 static int vm_pageproc_waiters;
129 
130 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
131     "VM page statistics");
132 
133 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
135     CTLFLAG_RD, &pqstate_commit_retries,
136     "Number of failed per-page atomic queue state updates");
137 
138 static COUNTER_U64_DEFINE_EARLY(queue_ops);
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
140     CTLFLAG_RD, &queue_ops,
141     "Number of batched queue operations");
142 
143 static COUNTER_U64_DEFINE_EARLY(queue_nops);
144 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
145     CTLFLAG_RD, &queue_nops,
146     "Number of batched queue operations with no effects");
147 
148 /*
149  * bogus page -- for I/O to/from partially complete buffers,
150  * or for paging into sparsely invalid regions.
151  */
152 vm_page_t bogus_page;
153 
154 vm_page_t vm_page_array;
155 long vm_page_array_size;
156 long first_page;
157 
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162 
163 static uma_zone_t fakepg_zone;
164 
165 static void vm_page_alloc_check(vm_page_t m);
166 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
167     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
168 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
169 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
170 static bool vm_page_free_prep(vm_page_t m);
171 static void vm_page_free_toq(vm_page_t m);
172 static void vm_page_init(void *dummy);
173 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
174     vm_pindex_t pindex, vm_page_t mpred);
175 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
176     vm_page_t mpred);
177 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
178     const uint16_t nflag);
179 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
180     vm_page_t m_run, vm_paddr_t high);
181 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
182 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
183     int req);
184 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
185     int flags);
186 static void vm_page_zone_release(void *arg, void **store, int cnt);
187 
188 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
189 
190 static void
191 vm_page_init(void *dummy)
192 {
193 
194 	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
195 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
197 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
198 }
199 
200 /*
201  * The cache page zone is initialized later since we need to be able to allocate
202  * pages before UMA is fully initialized.
203  */
204 static void
205 vm_page_init_cache_zones(void *dummy __unused)
206 {
207 	struct vm_domain *vmd;
208 	struct vm_pgcache *pgcache;
209 	int cache, domain, maxcache, pool;
210 
211 	maxcache = 0;
212 	TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
213 	maxcache *= mp_ncpus;
214 	for (domain = 0; domain < vm_ndomains; domain++) {
215 		vmd = VM_DOMAIN(domain);
216 		for (pool = 0; pool < VM_NFREEPOOL; pool++) {
217 			pgcache = &vmd->vmd_pgcache[pool];
218 			pgcache->domain = domain;
219 			pgcache->pool = pool;
220 			pgcache->zone = uma_zcache_create("vm pgcache",
221 			    PAGE_SIZE, NULL, NULL, NULL, NULL,
222 			    vm_page_zone_import, vm_page_zone_release, pgcache,
223 			    UMA_ZONE_VM);
224 
225 			/*
226 			 * Limit each pool's zone to 0.1% of the pages in the
227 			 * domain.
228 			 */
229 			cache = maxcache != 0 ? maxcache :
230 			    vmd->vmd_page_count / 1000;
231 			uma_zone_set_maxcache(pgcache->zone, cache);
232 		}
233 	}
234 }
235 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
236 
237 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
238 #if PAGE_SIZE == 32768
239 #ifdef CTASSERT
240 CTASSERT(sizeof(u_long) >= 8);
241 #endif
242 #endif
243 
244 /*
245  *	vm_set_page_size:
246  *
247  *	Sets the page size, perhaps based upon the memory
248  *	size.  Must be called before any use of page-size
249  *	dependent functions.
250  */
251 void
252 vm_set_page_size(void)
253 {
254 	if (vm_cnt.v_page_size == 0)
255 		vm_cnt.v_page_size = PAGE_SIZE;
256 	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
257 		panic("vm_set_page_size: page size not a power of two");
258 }
259 
260 /*
261  *	vm_page_blacklist_next:
262  *
263  *	Find the next entry in the provided string of blacklist
264  *	addresses.  Entries are separated by space, comma, or newline.
265  *	If an invalid integer is encountered then the rest of the
266  *	string is skipped.  Updates the list pointer to the next
267  *	character, or NULL if the string is exhausted or invalid.
268  */
269 static vm_paddr_t
270 vm_page_blacklist_next(char **list, char *end)
271 {
272 	vm_paddr_t bad;
273 	char *cp, *pos;
274 
275 	if (list == NULL || *list == NULL)
276 		return (0);
277 	if (**list =='\0') {
278 		*list = NULL;
279 		return (0);
280 	}
281 
282 	/*
283 	 * If there's no end pointer then the buffer is coming from
284 	 * the kenv and we know it's null-terminated.
285 	 */
286 	if (end == NULL)
287 		end = *list + strlen(*list);
288 
289 	/* Ensure that strtoq() won't walk off the end */
290 	if (*end != '\0') {
291 		if (*end == '\n' || *end == ' ' || *end  == ',')
292 			*end = '\0';
293 		else {
294 			printf("Blacklist not terminated, skipping\n");
295 			*list = NULL;
296 			return (0);
297 		}
298 	}
299 
300 	for (pos = *list; *pos != '\0'; pos = cp) {
301 		bad = strtoq(pos, &cp, 0);
302 		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
303 			if (bad == 0) {
304 				if (++cp < end)
305 					continue;
306 				else
307 					break;
308 			}
309 		} else
310 			break;
311 		if (*cp == '\0' || ++cp >= end)
312 			*list = NULL;
313 		else
314 			*list = cp;
315 		return (trunc_page(bad));
316 	}
317 	printf("Garbage in RAM blacklist, skipping\n");
318 	*list = NULL;
319 	return (0);
320 }
321 
322 bool
323 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
324 {
325 	struct vm_domain *vmd;
326 	vm_page_t m;
327 	int ret;
328 
329 	m = vm_phys_paddr_to_vm_page(pa);
330 	if (m == NULL)
331 		return (true); /* page does not exist, no failure */
332 
333 	vmd = vm_pagequeue_domain(m);
334 	vm_domain_free_lock(vmd);
335 	ret = vm_phys_unfree_page(m);
336 	vm_domain_free_unlock(vmd);
337 	if (ret != 0) {
338 		vm_domain_freecnt_inc(vmd, -1);
339 		TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
340 		if (verbose)
341 			printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
342 	}
343 	return (ret);
344 }
345 
346 /*
347  *	vm_page_blacklist_check:
348  *
349  *	Iterate through the provided string of blacklist addresses, pulling
350  *	each entry out of the physical allocator free list and putting it
351  *	onto a list for reporting via the vm.page_blacklist sysctl.
352  */
353 static void
354 vm_page_blacklist_check(char *list, char *end)
355 {
356 	vm_paddr_t pa;
357 	char *next;
358 
359 	next = list;
360 	while (next != NULL) {
361 		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
362 			continue;
363 		vm_page_blacklist_add(pa, bootverbose);
364 	}
365 }
366 
367 /*
368  *	vm_page_blacklist_load:
369  *
370  *	Search for a special module named "ram_blacklist".  It'll be a
371  *	plain text file provided by the user via the loader directive
372  *	of the same name.
373  */
374 static void
375 vm_page_blacklist_load(char **list, char **end)
376 {
377 	void *mod;
378 	u_char *ptr;
379 	u_int len;
380 
381 	mod = NULL;
382 	ptr = NULL;
383 
384 	mod = preload_search_by_type("ram_blacklist");
385 	if (mod != NULL) {
386 		ptr = preload_fetch_addr(mod);
387 		len = preload_fetch_size(mod);
388         }
389 	*list = ptr;
390 	if (ptr != NULL)
391 		*end = ptr + len;
392 	else
393 		*end = NULL;
394 	return;
395 }
396 
397 static int
398 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
399 {
400 	vm_page_t m;
401 	struct sbuf sbuf;
402 	int error, first;
403 
404 	first = 1;
405 	error = sysctl_wire_old_buffer(req, 0);
406 	if (error != 0)
407 		return (error);
408 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
409 	TAILQ_FOREACH(m, &blacklist_head, listq) {
410 		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
411 		    (uintmax_t)m->phys_addr);
412 		first = 0;
413 	}
414 	error = sbuf_finish(&sbuf);
415 	sbuf_delete(&sbuf);
416 	return (error);
417 }
418 
419 /*
420  * Initialize a dummy page for use in scans of the specified paging queue.
421  * In principle, this function only needs to set the flag PG_MARKER.
422  * Nonetheless, it write busies the page as a safety precaution.
423  */
424 static void
425 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
426 {
427 
428 	bzero(marker, sizeof(*marker));
429 	marker->flags = PG_MARKER;
430 	marker->a.flags = aflags;
431 	marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
432 	marker->a.queue = queue;
433 }
434 
435 static void
436 vm_page_domain_init(int domain)
437 {
438 	struct vm_domain *vmd;
439 	struct vm_pagequeue *pq;
440 	int i;
441 
442 	vmd = VM_DOMAIN(domain);
443 	bzero(vmd, sizeof(*vmd));
444 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
445 	    "vm inactive pagequeue";
446 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
447 	    "vm active pagequeue";
448 	*__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
449 	    "vm laundry pagequeue";
450 	*__DECONST(const char **,
451 	    &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
452 	    "vm unswappable pagequeue";
453 	vmd->vmd_domain = domain;
454 	vmd->vmd_page_count = 0;
455 	vmd->vmd_free_count = 0;
456 	vmd->vmd_segs = 0;
457 	vmd->vmd_oom = FALSE;
458 	for (i = 0; i < PQ_COUNT; i++) {
459 		pq = &vmd->vmd_pagequeues[i];
460 		TAILQ_INIT(&pq->pq_pl);
461 		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
462 		    MTX_DEF | MTX_DUPOK);
463 		pq->pq_pdpages = 0;
464 		vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
465 	}
466 	mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
467 	mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
468 	snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
469 
470 	/*
471 	 * inacthead is used to provide FIFO ordering for LRU-bypassing
472 	 * insertions.
473 	 */
474 	vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
475 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
476 	    &vmd->vmd_inacthead, plinks.q);
477 
478 	/*
479 	 * The clock pages are used to implement active queue scanning without
480 	 * requeues.  Scans start at clock[0], which is advanced after the scan
481 	 * ends.  When the two clock hands meet, they are reset and scanning
482 	 * resumes from the head of the queue.
483 	 */
484 	vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
485 	vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
486 	TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
487 	    &vmd->vmd_clock[0], plinks.q);
488 	TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
489 	    &vmd->vmd_clock[1], plinks.q);
490 }
491 
492 /*
493  * Initialize a physical page in preparation for adding it to the free
494  * lists.
495  */
496 static void
497 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
498 {
499 
500 	m->object = NULL;
501 	m->ref_count = 0;
502 	m->busy_lock = VPB_FREED;
503 	m->flags = m->a.flags = 0;
504 	m->phys_addr = pa;
505 	m->a.queue = PQ_NONE;
506 	m->psind = 0;
507 	m->segind = segind;
508 	m->order = VM_NFREEORDER;
509 	m->pool = VM_FREEPOOL_DEFAULT;
510 	m->valid = m->dirty = 0;
511 	pmap_page_init(m);
512 }
513 
514 #ifndef PMAP_HAS_PAGE_ARRAY
515 static vm_paddr_t
516 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
517 {
518 	vm_paddr_t new_end;
519 
520 	/*
521 	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
522 	 * However, because this page is allocated from KVM, out-of-bounds
523 	 * accesses using the direct map will not be trapped.
524 	 */
525 	*vaddr += PAGE_SIZE;
526 
527 	/*
528 	 * Allocate physical memory for the page structures, and map it.
529 	 */
530 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
531 	vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
532 	    VM_PROT_READ | VM_PROT_WRITE);
533 	vm_page_array_size = page_range;
534 
535 	return (new_end);
536 }
537 #endif
538 
539 /*
540  *	vm_page_startup:
541  *
542  *	Initializes the resident memory module.  Allocates physical memory for
543  *	bootstrapping UMA and some data structures that are used to manage
544  *	physical pages.  Initializes these structures, and populates the free
545  *	page queues.
546  */
547 vm_offset_t
548 vm_page_startup(vm_offset_t vaddr)
549 {
550 	struct vm_phys_seg *seg;
551 	vm_page_t m;
552 	char *list, *listend;
553 	vm_paddr_t end, high_avail, low_avail, new_end, size;
554 	vm_paddr_t page_range __unused;
555 	vm_paddr_t last_pa, pa;
556 	u_long pagecount;
557 	int biggestone, i, segind;
558 #ifdef WITNESS
559 	vm_offset_t mapped;
560 	int witness_size;
561 #endif
562 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
563 	long ii;
564 #endif
565 
566 	vaddr = round_page(vaddr);
567 
568 	vm_phys_early_startup();
569 	biggestone = vm_phys_avail_largest();
570 	end = phys_avail[biggestone+1];
571 
572 	/*
573 	 * Initialize the page and queue locks.
574 	 */
575 	mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
576 	for (i = 0; i < PA_LOCK_COUNT; i++)
577 		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
578 	for (i = 0; i < vm_ndomains; i++)
579 		vm_page_domain_init(i);
580 
581 	new_end = end;
582 #ifdef WITNESS
583 	witness_size = round_page(witness_startup_count());
584 	new_end -= witness_size;
585 	mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
586 	    VM_PROT_READ | VM_PROT_WRITE);
587 	bzero((void *)mapped, witness_size);
588 	witness_startup((void *)mapped);
589 #endif
590 
591 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
592     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
593     defined(__powerpc64__)
594 	/*
595 	 * Allocate a bitmap to indicate that a random physical page
596 	 * needs to be included in a minidump.
597 	 *
598 	 * The amd64 port needs this to indicate which direct map pages
599 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
600 	 *
601 	 * However, i386 still needs this workspace internally within the
602 	 * minidump code.  In theory, they are not needed on i386, but are
603 	 * included should the sf_buf code decide to use them.
604 	 */
605 	last_pa = 0;
606 	for (i = 0; dump_avail[i + 1] != 0; i += 2)
607 		if (dump_avail[i + 1] > last_pa)
608 			last_pa = dump_avail[i + 1];
609 	page_range = last_pa / PAGE_SIZE;
610 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
611 	new_end -= vm_page_dump_size;
612 	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
613 	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
614 	bzero((void *)vm_page_dump, vm_page_dump_size);
615 #else
616 	(void)last_pa;
617 #endif
618 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
619     defined(__riscv) || defined(__powerpc64__)
620 	/*
621 	 * Include the UMA bootstrap pages, witness pages and vm_page_dump
622 	 * in a crash dump.  When pmap_map() uses the direct map, they are
623 	 * not automatically included.
624 	 */
625 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
626 		dump_add_page(pa);
627 #endif
628 	phys_avail[biggestone + 1] = new_end;
629 #ifdef __amd64__
630 	/*
631 	 * Request that the physical pages underlying the message buffer be
632 	 * included in a crash dump.  Since the message buffer is accessed
633 	 * through the direct map, they are not automatically included.
634 	 */
635 	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
636 	last_pa = pa + round_page(msgbufsize);
637 	while (pa < last_pa) {
638 		dump_add_page(pa);
639 		pa += PAGE_SIZE;
640 	}
641 #endif
642 	/*
643 	 * Compute the number of pages of memory that will be available for
644 	 * use, taking into account the overhead of a page structure per page.
645 	 * In other words, solve
646 	 *	"available physical memory" - round_page(page_range *
647 	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE
648 	 * for page_range.
649 	 */
650 	low_avail = phys_avail[0];
651 	high_avail = phys_avail[1];
652 	for (i = 0; i < vm_phys_nsegs; i++) {
653 		if (vm_phys_segs[i].start < low_avail)
654 			low_avail = vm_phys_segs[i].start;
655 		if (vm_phys_segs[i].end > high_avail)
656 			high_avail = vm_phys_segs[i].end;
657 	}
658 	/* Skip the first chunk.  It is already accounted for. */
659 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
660 		if (phys_avail[i] < low_avail)
661 			low_avail = phys_avail[i];
662 		if (phys_avail[i + 1] > high_avail)
663 			high_avail = phys_avail[i + 1];
664 	}
665 	first_page = low_avail / PAGE_SIZE;
666 #ifdef VM_PHYSSEG_SPARSE
667 	size = 0;
668 	for (i = 0; i < vm_phys_nsegs; i++)
669 		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
670 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
671 		size += phys_avail[i + 1] - phys_avail[i];
672 #elif defined(VM_PHYSSEG_DENSE)
673 	size = high_avail - low_avail;
674 #else
675 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
676 #endif
677 
678 #ifdef PMAP_HAS_PAGE_ARRAY
679 	pmap_page_array_startup(size / PAGE_SIZE);
680 	biggestone = vm_phys_avail_largest();
681 	end = new_end = phys_avail[biggestone + 1];
682 #else
683 #ifdef VM_PHYSSEG_DENSE
684 	/*
685 	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
686 	 * the overhead of a page structure per page only if vm_page_array is
687 	 * allocated from the last physical memory chunk.  Otherwise, we must
688 	 * allocate page structures representing the physical memory
689 	 * underlying vm_page_array, even though they will not be used.
690 	 */
691 	if (new_end != high_avail)
692 		page_range = size / PAGE_SIZE;
693 	else
694 #endif
695 	{
696 		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
697 
698 		/*
699 		 * If the partial bytes remaining are large enough for
700 		 * a page (PAGE_SIZE) without a corresponding
701 		 * 'struct vm_page', then new_end will contain an
702 		 * extra page after subtracting the length of the VM
703 		 * page array.  Compensate by subtracting an extra
704 		 * page from new_end.
705 		 */
706 		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
707 			if (new_end == high_avail)
708 				high_avail -= PAGE_SIZE;
709 			new_end -= PAGE_SIZE;
710 		}
711 	}
712 	end = new_end;
713 	new_end = vm_page_array_alloc(&vaddr, end, page_range);
714 #endif
715 
716 #if VM_NRESERVLEVEL > 0
717 	/*
718 	 * Allocate physical memory for the reservation management system's
719 	 * data structures, and map it.
720 	 */
721 	new_end = vm_reserv_startup(&vaddr, new_end);
722 #endif
723 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
724     defined(__riscv) || defined(__powerpc64__)
725 	/*
726 	 * Include vm_page_array and vm_reserv_array in a crash dump.
727 	 */
728 	for (pa = new_end; pa < end; pa += PAGE_SIZE)
729 		dump_add_page(pa);
730 #endif
731 	phys_avail[biggestone + 1] = new_end;
732 
733 	/*
734 	 * Add physical memory segments corresponding to the available
735 	 * physical pages.
736 	 */
737 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
738 		if (vm_phys_avail_size(i) != 0)
739 			vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
740 
741 	/*
742 	 * Initialize the physical memory allocator.
743 	 */
744 	vm_phys_init();
745 
746 	/*
747 	 * Initialize the page structures and add every available page to the
748 	 * physical memory allocator's free lists.
749 	 */
750 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
751 	for (ii = 0; ii < vm_page_array_size; ii++) {
752 		m = &vm_page_array[ii];
753 		vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
754 		m->flags = PG_FICTITIOUS;
755 	}
756 #endif
757 	vm_cnt.v_page_count = 0;
758 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
759 		seg = &vm_phys_segs[segind];
760 		for (m = seg->first_page, pa = seg->start; pa < seg->end;
761 		    m++, pa += PAGE_SIZE)
762 			vm_page_init_page(m, pa, segind);
763 
764 		/*
765 		 * Add the segment to the free lists only if it is covered by
766 		 * one of the ranges in phys_avail.  Because we've added the
767 		 * ranges to the vm_phys_segs array, we can assume that each
768 		 * segment is either entirely contained in one of the ranges,
769 		 * or doesn't overlap any of them.
770 		 */
771 		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
772 			struct vm_domain *vmd;
773 
774 			if (seg->start < phys_avail[i] ||
775 			    seg->end > phys_avail[i + 1])
776 				continue;
777 
778 			m = seg->first_page;
779 			pagecount = (u_long)atop(seg->end - seg->start);
780 
781 			vmd = VM_DOMAIN(seg->domain);
782 			vm_domain_free_lock(vmd);
783 			vm_phys_enqueue_contig(m, pagecount);
784 			vm_domain_free_unlock(vmd);
785 			vm_domain_freecnt_inc(vmd, pagecount);
786 			vm_cnt.v_page_count += (u_int)pagecount;
787 
788 			vmd = VM_DOMAIN(seg->domain);
789 			vmd->vmd_page_count += (u_int)pagecount;
790 			vmd->vmd_segs |= 1UL << m->segind;
791 			break;
792 		}
793 	}
794 
795 	/*
796 	 * Remove blacklisted pages from the physical memory allocator.
797 	 */
798 	TAILQ_INIT(&blacklist_head);
799 	vm_page_blacklist_load(&list, &listend);
800 	vm_page_blacklist_check(list, listend);
801 
802 	list = kern_getenv("vm.blacklist");
803 	vm_page_blacklist_check(list, NULL);
804 
805 	freeenv(list);
806 #if VM_NRESERVLEVEL > 0
807 	/*
808 	 * Initialize the reservation management system.
809 	 */
810 	vm_reserv_init();
811 #endif
812 
813 	return (vaddr);
814 }
815 
816 void
817 vm_page_reference(vm_page_t m)
818 {
819 
820 	vm_page_aflag_set(m, PGA_REFERENCED);
821 }
822 
823 /*
824  *	vm_page_trybusy
825  *
826  *	Helper routine for grab functions to trylock busy.
827  *
828  *	Returns true on success and false on failure.
829  */
830 static bool
831 vm_page_trybusy(vm_page_t m, int allocflags)
832 {
833 
834 	if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
835 		return (vm_page_trysbusy(m));
836 	else
837 		return (vm_page_tryxbusy(m));
838 }
839 
840 /*
841  *	vm_page_tryacquire
842  *
843  *	Helper routine for grab functions to trylock busy and wire.
844  *
845  *	Returns true on success and false on failure.
846  */
847 static inline bool
848 vm_page_tryacquire(vm_page_t m, int allocflags)
849 {
850 	bool locked;
851 
852 	locked = vm_page_trybusy(m, allocflags);
853 	if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
854 		vm_page_wire(m);
855 	return (locked);
856 }
857 
858 /*
859  *	vm_page_busy_acquire:
860  *
861  *	Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
862  *	and drop the object lock if necessary.
863  */
864 bool
865 vm_page_busy_acquire(vm_page_t m, int allocflags)
866 {
867 	vm_object_t obj;
868 	bool locked;
869 
870 	/*
871 	 * The page-specific object must be cached because page
872 	 * identity can change during the sleep, causing the
873 	 * re-lock of a different object.
874 	 * It is assumed that a reference to the object is already
875 	 * held by the callers.
876 	 */
877 	obj = m->object;
878 	for (;;) {
879 		if (vm_page_tryacquire(m, allocflags))
880 			return (true);
881 		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
882 			return (false);
883 		if (obj != NULL)
884 			locked = VM_OBJECT_WOWNED(obj);
885 		else
886 			locked = false;
887 		MPASS(locked || vm_page_wired(m));
888 		if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
889 		    locked) && locked)
890 			VM_OBJECT_WLOCK(obj);
891 		if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
892 			return (false);
893 		KASSERT(m->object == obj || m->object == NULL,
894 		    ("vm_page_busy_acquire: page %p does not belong to %p",
895 		    m, obj));
896 	}
897 }
898 
899 /*
900  *	vm_page_busy_downgrade:
901  *
902  *	Downgrade an exclusive busy page into a single shared busy page.
903  */
904 void
905 vm_page_busy_downgrade(vm_page_t m)
906 {
907 	u_int x;
908 
909 	vm_page_assert_xbusied(m);
910 
911 	x = m->busy_lock;
912 	for (;;) {
913 		if (atomic_fcmpset_rel_int(&m->busy_lock,
914 		    &x, VPB_SHARERS_WORD(1)))
915 			break;
916 	}
917 	if ((x & VPB_BIT_WAITERS) != 0)
918 		wakeup(m);
919 }
920 
921 /*
922  *
923  *	vm_page_busy_tryupgrade:
924  *
925  *	Attempt to upgrade a single shared busy into an exclusive busy.
926  */
927 int
928 vm_page_busy_tryupgrade(vm_page_t m)
929 {
930 	u_int ce, x;
931 
932 	vm_page_assert_sbusied(m);
933 
934 	x = m->busy_lock;
935 	ce = VPB_CURTHREAD_EXCLUSIVE;
936 	for (;;) {
937 		if (VPB_SHARERS(x) > 1)
938 			return (0);
939 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
940 		    ("vm_page_busy_tryupgrade: invalid lock state"));
941 		if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
942 		    ce | (x & VPB_BIT_WAITERS)))
943 			continue;
944 		return (1);
945 	}
946 }
947 
948 /*
949  *	vm_page_sbusied:
950  *
951  *	Return a positive value if the page is shared busied, 0 otherwise.
952  */
953 int
954 vm_page_sbusied(vm_page_t m)
955 {
956 	u_int x;
957 
958 	x = m->busy_lock;
959 	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
960 }
961 
962 /*
963  *	vm_page_sunbusy:
964  *
965  *	Shared unbusy a page.
966  */
967 void
968 vm_page_sunbusy(vm_page_t m)
969 {
970 	u_int x;
971 
972 	vm_page_assert_sbusied(m);
973 
974 	x = m->busy_lock;
975 	for (;;) {
976 		KASSERT(x != VPB_FREED,
977 		    ("vm_page_sunbusy: Unlocking freed page."));
978 		if (VPB_SHARERS(x) > 1) {
979 			if (atomic_fcmpset_int(&m->busy_lock, &x,
980 			    x - VPB_ONE_SHARER))
981 				break;
982 			continue;
983 		}
984 		KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
985 		    ("vm_page_sunbusy: invalid lock state"));
986 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
987 			continue;
988 		if ((x & VPB_BIT_WAITERS) == 0)
989 			break;
990 		wakeup(m);
991 		break;
992 	}
993 }
994 
995 /*
996  *	vm_page_busy_sleep:
997  *
998  *	Sleep if the page is busy, using the page pointer as wchan.
999  *	This is used to implement the hard-path of busying mechanism.
1000  *
1001  *	If nonshared is true, sleep only if the page is xbusy.
1002  *
1003  *	The object lock must be held on entry and will be released on exit.
1004  */
1005 void
1006 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1007 {
1008 	vm_object_t obj;
1009 
1010 	obj = m->object;
1011 	VM_OBJECT_ASSERT_LOCKED(obj);
1012 	vm_page_lock_assert(m, MA_NOTOWNED);
1013 
1014 	if (!_vm_page_busy_sleep(obj, m, m->pindex, wmesg,
1015 	    nonshared ? VM_ALLOC_SBUSY : 0 , true))
1016 		VM_OBJECT_DROP(obj);
1017 }
1018 
1019 /*
1020  *	vm_page_busy_sleep_unlocked:
1021  *
1022  *	Sleep if the page is busy, using the page pointer as wchan.
1023  *	This is used to implement the hard-path of busying mechanism.
1024  *
1025  *	If nonshared is true, sleep only if the page is xbusy.
1026  *
1027  *	The object lock must not be held on entry.  The operation will
1028  *	return if the page changes identity.
1029  */
1030 void
1031 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1032     const char *wmesg, bool nonshared)
1033 {
1034 
1035 	VM_OBJECT_ASSERT_UNLOCKED(obj);
1036 	vm_page_lock_assert(m, MA_NOTOWNED);
1037 
1038 	_vm_page_busy_sleep(obj, m, pindex, wmesg,
1039 	    nonshared ? VM_ALLOC_SBUSY : 0, false);
1040 }
1041 
1042 /*
1043  *	_vm_page_busy_sleep:
1044  *
1045  *	Internal busy sleep function.  Verifies the page identity and
1046  *	lockstate against parameters.  Returns true if it sleeps and
1047  *	false otherwise.
1048  *
1049  *	If locked is true the lock will be dropped for any true returns
1050  *	and held for any false returns.
1051  */
1052 static bool
1053 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1054     const char *wmesg, int allocflags, bool locked)
1055 {
1056 	bool xsleep;
1057 	u_int x;
1058 
1059 	/*
1060 	 * If the object is busy we must wait for that to drain to zero
1061 	 * before trying the page again.
1062 	 */
1063 	if (obj != NULL && vm_object_busied(obj)) {
1064 		if (locked)
1065 			VM_OBJECT_DROP(obj);
1066 		vm_object_busy_wait(obj, wmesg);
1067 		return (true);
1068 	}
1069 
1070 	if (!vm_page_busied(m))
1071 		return (false);
1072 
1073 	xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1074 	sleepq_lock(m);
1075 	x = atomic_load_int(&m->busy_lock);
1076 	do {
1077 		/*
1078 		 * If the page changes objects or becomes unlocked we can
1079 		 * simply return.
1080 		 */
1081 		if (x == VPB_UNBUSIED ||
1082 		    (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1083 		    m->object != obj || m->pindex != pindex) {
1084 			sleepq_release(m);
1085 			return (false);
1086 		}
1087 		if ((x & VPB_BIT_WAITERS) != 0)
1088 			break;
1089 	} while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1090 	if (locked)
1091 		VM_OBJECT_DROP(obj);
1092 	DROP_GIANT();
1093 	sleepq_add(m, NULL, wmesg, 0, 0);
1094 	sleepq_wait(m, PVM);
1095 	PICKUP_GIANT();
1096 	return (true);
1097 }
1098 
1099 /*
1100  *	vm_page_trysbusy:
1101  *
1102  *	Try to shared busy a page.
1103  *	If the operation succeeds 1 is returned otherwise 0.
1104  *	The operation never sleeps.
1105  */
1106 int
1107 vm_page_trysbusy(vm_page_t m)
1108 {
1109 	vm_object_t obj;
1110 	u_int x;
1111 
1112 	obj = m->object;
1113 	x = m->busy_lock;
1114 	for (;;) {
1115 		if ((x & VPB_BIT_SHARED) == 0)
1116 			return (0);
1117 		/*
1118 		 * Reduce the window for transient busies that will trigger
1119 		 * false negatives in vm_page_ps_test().
1120 		 */
1121 		if (obj != NULL && vm_object_busied(obj))
1122 			return (0);
1123 		if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1124 		    x + VPB_ONE_SHARER))
1125 			break;
1126 	}
1127 
1128 	/* Refetch the object now that we're guaranteed that it is stable. */
1129 	obj = m->object;
1130 	if (obj != NULL && vm_object_busied(obj)) {
1131 		vm_page_sunbusy(m);
1132 		return (0);
1133 	}
1134 	return (1);
1135 }
1136 
1137 /*
1138  *	vm_page_tryxbusy:
1139  *
1140  *	Try to exclusive busy a page.
1141  *	If the operation succeeds 1 is returned otherwise 0.
1142  *	The operation never sleeps.
1143  */
1144 int
1145 vm_page_tryxbusy(vm_page_t m)
1146 {
1147 	vm_object_t obj;
1148 
1149         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1150             VPB_CURTHREAD_EXCLUSIVE) == 0)
1151 		return (0);
1152 
1153 	obj = m->object;
1154 	if (obj != NULL && vm_object_busied(obj)) {
1155 		vm_page_xunbusy(m);
1156 		return (0);
1157 	}
1158 	return (1);
1159 }
1160 
1161 static void
1162 vm_page_xunbusy_hard_tail(vm_page_t m)
1163 {
1164 	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1165 	/* Wake the waiter. */
1166 	wakeup(m);
1167 }
1168 
1169 /*
1170  *	vm_page_xunbusy_hard:
1171  *
1172  *	Called when unbusy has failed because there is a waiter.
1173  */
1174 void
1175 vm_page_xunbusy_hard(vm_page_t m)
1176 {
1177 	vm_page_assert_xbusied(m);
1178 	vm_page_xunbusy_hard_tail(m);
1179 }
1180 
1181 void
1182 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1183 {
1184 	vm_page_assert_xbusied_unchecked(m);
1185 	vm_page_xunbusy_hard_tail(m);
1186 }
1187 
1188 static void
1189 vm_page_busy_free(vm_page_t m)
1190 {
1191 	u_int x;
1192 
1193 	atomic_thread_fence_rel();
1194 	x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1195 	if ((x & VPB_BIT_WAITERS) != 0)
1196 		wakeup(m);
1197 }
1198 
1199 /*
1200  *	vm_page_unhold_pages:
1201  *
1202  *	Unhold each of the pages that is referenced by the given array.
1203  */
1204 void
1205 vm_page_unhold_pages(vm_page_t *ma, int count)
1206 {
1207 
1208 	for (; count != 0; count--) {
1209 		vm_page_unwire(*ma, PQ_ACTIVE);
1210 		ma++;
1211 	}
1212 }
1213 
1214 vm_page_t
1215 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1216 {
1217 	vm_page_t m;
1218 
1219 #ifdef VM_PHYSSEG_SPARSE
1220 	m = vm_phys_paddr_to_vm_page(pa);
1221 	if (m == NULL)
1222 		m = vm_phys_fictitious_to_vm_page(pa);
1223 	return (m);
1224 #elif defined(VM_PHYSSEG_DENSE)
1225 	long pi;
1226 
1227 	pi = atop(pa);
1228 	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1229 		m = &vm_page_array[pi - first_page];
1230 		return (m);
1231 	}
1232 	return (vm_phys_fictitious_to_vm_page(pa));
1233 #else
1234 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1235 #endif
1236 }
1237 
1238 /*
1239  *	vm_page_getfake:
1240  *
1241  *	Create a fictitious page with the specified physical address and
1242  *	memory attribute.  The memory attribute is the only the machine-
1243  *	dependent aspect of a fictitious page that must be initialized.
1244  */
1245 vm_page_t
1246 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1247 {
1248 	vm_page_t m;
1249 
1250 	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1251 	vm_page_initfake(m, paddr, memattr);
1252 	return (m);
1253 }
1254 
1255 void
1256 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1257 {
1258 
1259 	if ((m->flags & PG_FICTITIOUS) != 0) {
1260 		/*
1261 		 * The page's memattr might have changed since the
1262 		 * previous initialization.  Update the pmap to the
1263 		 * new memattr.
1264 		 */
1265 		goto memattr;
1266 	}
1267 	m->phys_addr = paddr;
1268 	m->a.queue = PQ_NONE;
1269 	/* Fictitious pages don't use "segind". */
1270 	m->flags = PG_FICTITIOUS;
1271 	/* Fictitious pages don't use "order" or "pool". */
1272 	m->oflags = VPO_UNMANAGED;
1273 	m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1274 	/* Fictitious pages are unevictable. */
1275 	m->ref_count = 1;
1276 	pmap_page_init(m);
1277 memattr:
1278 	pmap_page_set_memattr(m, memattr);
1279 }
1280 
1281 /*
1282  *	vm_page_putfake:
1283  *
1284  *	Release a fictitious page.
1285  */
1286 void
1287 vm_page_putfake(vm_page_t m)
1288 {
1289 
1290 	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1291 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1292 	    ("vm_page_putfake: bad page %p", m));
1293 	vm_page_assert_xbusied(m);
1294 	vm_page_busy_free(m);
1295 	uma_zfree(fakepg_zone, m);
1296 }
1297 
1298 /*
1299  *	vm_page_updatefake:
1300  *
1301  *	Update the given fictitious page to the specified physical address and
1302  *	memory attribute.
1303  */
1304 void
1305 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1306 {
1307 
1308 	KASSERT((m->flags & PG_FICTITIOUS) != 0,
1309 	    ("vm_page_updatefake: bad page %p", m));
1310 	m->phys_addr = paddr;
1311 	pmap_page_set_memattr(m, memattr);
1312 }
1313 
1314 /*
1315  *	vm_page_free:
1316  *
1317  *	Free a page.
1318  */
1319 void
1320 vm_page_free(vm_page_t m)
1321 {
1322 
1323 	m->flags &= ~PG_ZERO;
1324 	vm_page_free_toq(m);
1325 }
1326 
1327 /*
1328  *	vm_page_free_zero:
1329  *
1330  *	Free a page to the zerod-pages queue
1331  */
1332 void
1333 vm_page_free_zero(vm_page_t m)
1334 {
1335 
1336 	m->flags |= PG_ZERO;
1337 	vm_page_free_toq(m);
1338 }
1339 
1340 /*
1341  * Unbusy and handle the page queueing for a page from a getpages request that
1342  * was optionally read ahead or behind.
1343  */
1344 void
1345 vm_page_readahead_finish(vm_page_t m)
1346 {
1347 
1348 	/* We shouldn't put invalid pages on queues. */
1349 	KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1350 
1351 	/*
1352 	 * Since the page is not the actually needed one, whether it should
1353 	 * be activated or deactivated is not obvious.  Empirical results
1354 	 * have shown that deactivating the page is usually the best choice,
1355 	 * unless the page is wanted by another thread.
1356 	 */
1357 	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1358 		vm_page_activate(m);
1359 	else
1360 		vm_page_deactivate(m);
1361 	vm_page_xunbusy_unchecked(m);
1362 }
1363 
1364 /*
1365  * Destroy the identity of an invalid page and free it if possible.
1366  * This is intended to be used when reading a page from backing store fails.
1367  */
1368 void
1369 vm_page_free_invalid(vm_page_t m)
1370 {
1371 
1372 	KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1373 	KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1374 	vm_page_assert_xbusied(m);
1375 	KASSERT(m->object != NULL, ("page %p has no object", m));
1376 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1377 
1378 	/*
1379 	 * If someone has wired this page while the object lock
1380 	 * was not held, then the thread that unwires is responsible
1381 	 * for freeing the page.  Otherwise just free the page now.
1382 	 * The wire count of this unmapped page cannot change while
1383 	 * we have the page xbusy and the page's object wlocked.
1384 	 */
1385 	if (vm_page_remove(m))
1386 		vm_page_free(m);
1387 }
1388 
1389 /*
1390  *	vm_page_sleep_if_busy:
1391  *
1392  *	Sleep and release the object lock if the page is busied.
1393  *	Returns TRUE if the thread slept.
1394  *
1395  *	The given page must be unlocked and object containing it must
1396  *	be locked.
1397  */
1398 int
1399 vm_page_sleep_if_busy(vm_page_t m, const char *wmesg)
1400 {
1401 	vm_object_t obj;
1402 
1403 	vm_page_lock_assert(m, MA_NOTOWNED);
1404 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1405 
1406 	/*
1407 	 * The page-specific object must be cached because page
1408 	 * identity can change during the sleep, causing the
1409 	 * re-lock of a different object.
1410 	 * It is assumed that a reference to the object is already
1411 	 * held by the callers.
1412 	 */
1413 	obj = m->object;
1414 	if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, 0, true)) {
1415 		VM_OBJECT_WLOCK(obj);
1416 		return (TRUE);
1417 	}
1418 	return (FALSE);
1419 }
1420 
1421 /*
1422  *	vm_page_sleep_if_xbusy:
1423  *
1424  *	Sleep and release the object lock if the page is xbusied.
1425  *	Returns TRUE if the thread slept.
1426  *
1427  *	The given page must be unlocked and object containing it must
1428  *	be locked.
1429  */
1430 int
1431 vm_page_sleep_if_xbusy(vm_page_t m, const char *wmesg)
1432 {
1433 	vm_object_t obj;
1434 
1435 	vm_page_lock_assert(m, MA_NOTOWNED);
1436 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1437 
1438 	/*
1439 	 * The page-specific object must be cached because page
1440 	 * identity can change during the sleep, causing the
1441 	 * re-lock of a different object.
1442 	 * It is assumed that a reference to the object is already
1443 	 * held by the callers.
1444 	 */
1445 	obj = m->object;
1446 	if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, VM_ALLOC_SBUSY,
1447 	    true)) {
1448 		VM_OBJECT_WLOCK(obj);
1449 		return (TRUE);
1450 	}
1451 	return (FALSE);
1452 }
1453 
1454 /*
1455  *	vm_page_dirty_KBI:		[ internal use only ]
1456  *
1457  *	Set all bits in the page's dirty field.
1458  *
1459  *	The object containing the specified page must be locked if the
1460  *	call is made from the machine-independent layer.
1461  *
1462  *	See vm_page_clear_dirty_mask().
1463  *
1464  *	This function should only be called by vm_page_dirty().
1465  */
1466 void
1467 vm_page_dirty_KBI(vm_page_t m)
1468 {
1469 
1470 	/* Refer to this operation by its public name. */
1471 	KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1472 	m->dirty = VM_PAGE_BITS_ALL;
1473 }
1474 
1475 /*
1476  *	vm_page_insert:		[ internal use only ]
1477  *
1478  *	Inserts the given mem entry into the object and object list.
1479  *
1480  *	The object must be locked.
1481  */
1482 int
1483 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1484 {
1485 	vm_page_t mpred;
1486 
1487 	VM_OBJECT_ASSERT_WLOCKED(object);
1488 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
1489 	return (vm_page_insert_after(m, object, pindex, mpred));
1490 }
1491 
1492 /*
1493  *	vm_page_insert_after:
1494  *
1495  *	Inserts the page "m" into the specified object at offset "pindex".
1496  *
1497  *	The page "mpred" must immediately precede the offset "pindex" within
1498  *	the specified object.
1499  *
1500  *	The object must be locked.
1501  */
1502 static int
1503 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1504     vm_page_t mpred)
1505 {
1506 	vm_page_t msucc;
1507 
1508 	VM_OBJECT_ASSERT_WLOCKED(object);
1509 	KASSERT(m->object == NULL,
1510 	    ("vm_page_insert_after: page already inserted"));
1511 	if (mpred != NULL) {
1512 		KASSERT(mpred->object == object,
1513 		    ("vm_page_insert_after: object doesn't contain mpred"));
1514 		KASSERT(mpred->pindex < pindex,
1515 		    ("vm_page_insert_after: mpred doesn't precede pindex"));
1516 		msucc = TAILQ_NEXT(mpred, listq);
1517 	} else
1518 		msucc = TAILQ_FIRST(&object->memq);
1519 	if (msucc != NULL)
1520 		KASSERT(msucc->pindex > pindex,
1521 		    ("vm_page_insert_after: msucc doesn't succeed pindex"));
1522 
1523 	/*
1524 	 * Record the object/offset pair in this page.
1525 	 */
1526 	m->object = object;
1527 	m->pindex = pindex;
1528 	m->ref_count |= VPRC_OBJREF;
1529 
1530 	/*
1531 	 * Now link into the object's ordered list of backed pages.
1532 	 */
1533 	if (vm_radix_insert(&object->rtree, m)) {
1534 		m->object = NULL;
1535 		m->pindex = 0;
1536 		m->ref_count &= ~VPRC_OBJREF;
1537 		return (1);
1538 	}
1539 	vm_page_insert_radixdone(m, object, mpred);
1540 	return (0);
1541 }
1542 
1543 /*
1544  *	vm_page_insert_radixdone:
1545  *
1546  *	Complete page "m" insertion into the specified object after the
1547  *	radix trie hooking.
1548  *
1549  *	The page "mpred" must precede the offset "m->pindex" within the
1550  *	specified object.
1551  *
1552  *	The object must be locked.
1553  */
1554 static void
1555 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1556 {
1557 
1558 	VM_OBJECT_ASSERT_WLOCKED(object);
1559 	KASSERT(object != NULL && m->object == object,
1560 	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1561 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1562 	    ("vm_page_insert_radixdone: page %p is missing object ref", m));
1563 	if (mpred != NULL) {
1564 		KASSERT(mpred->object == object,
1565 		    ("vm_page_insert_radixdone: object doesn't contain mpred"));
1566 		KASSERT(mpred->pindex < m->pindex,
1567 		    ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1568 	}
1569 
1570 	if (mpred != NULL)
1571 		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1572 	else
1573 		TAILQ_INSERT_HEAD(&object->memq, m, listq);
1574 
1575 	/*
1576 	 * Show that the object has one more resident page.
1577 	 */
1578 	object->resident_page_count++;
1579 
1580 	/*
1581 	 * Hold the vnode until the last page is released.
1582 	 */
1583 	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1584 		vhold(object->handle);
1585 
1586 	/*
1587 	 * Since we are inserting a new and possibly dirty page,
1588 	 * update the object's generation count.
1589 	 */
1590 	if (pmap_page_is_write_mapped(m))
1591 		vm_object_set_writeable_dirty(object);
1592 }
1593 
1594 /*
1595  * Do the work to remove a page from its object.  The caller is responsible for
1596  * updating the page's fields to reflect this removal.
1597  */
1598 static void
1599 vm_page_object_remove(vm_page_t m)
1600 {
1601 	vm_object_t object;
1602 	vm_page_t mrem;
1603 
1604 	vm_page_assert_xbusied(m);
1605 	object = m->object;
1606 	VM_OBJECT_ASSERT_WLOCKED(object);
1607 	KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1608 	    ("page %p is missing its object ref", m));
1609 
1610 	/* Deferred free of swap space. */
1611 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1612 		vm_pager_page_unswapped(m);
1613 
1614 	m->object = NULL;
1615 	mrem = vm_radix_remove(&object->rtree, m->pindex);
1616 	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1617 
1618 	/*
1619 	 * Now remove from the object's list of backed pages.
1620 	 */
1621 	TAILQ_REMOVE(&object->memq, m, listq);
1622 
1623 	/*
1624 	 * And show that the object has one fewer resident page.
1625 	 */
1626 	object->resident_page_count--;
1627 
1628 	/*
1629 	 * The vnode may now be recycled.
1630 	 */
1631 	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1632 		vdrop(object->handle);
1633 }
1634 
1635 /*
1636  *	vm_page_remove:
1637  *
1638  *	Removes the specified page from its containing object, but does not
1639  *	invalidate any backing storage.  Returns true if the object's reference
1640  *	was the last reference to the page, and false otherwise.
1641  *
1642  *	The object must be locked and the page must be exclusively busied.
1643  *	The exclusive busy will be released on return.  If this is not the
1644  *	final ref and the caller does not hold a wire reference it may not
1645  *	continue to access the page.
1646  */
1647 bool
1648 vm_page_remove(vm_page_t m)
1649 {
1650 	bool dropped;
1651 
1652 	dropped = vm_page_remove_xbusy(m);
1653 	vm_page_xunbusy(m);
1654 
1655 	return (dropped);
1656 }
1657 
1658 /*
1659  *	vm_page_remove_xbusy
1660  *
1661  *	Removes the page but leaves the xbusy held.  Returns true if this
1662  *	removed the final ref and false otherwise.
1663  */
1664 bool
1665 vm_page_remove_xbusy(vm_page_t m)
1666 {
1667 
1668 	vm_page_object_remove(m);
1669 	return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1670 }
1671 
1672 /*
1673  *	vm_page_lookup:
1674  *
1675  *	Returns the page associated with the object/offset
1676  *	pair specified; if none is found, NULL is returned.
1677  *
1678  *	The object must be locked.
1679  */
1680 vm_page_t
1681 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1682 {
1683 
1684 	VM_OBJECT_ASSERT_LOCKED(object);
1685 	return (vm_radix_lookup(&object->rtree, pindex));
1686 }
1687 
1688 /*
1689  *	vm_page_relookup:
1690  *
1691  *	Returns a page that must already have been busied by
1692  *	the caller.  Used for bogus page replacement.
1693  */
1694 vm_page_t
1695 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1696 {
1697 	vm_page_t m;
1698 
1699 	m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1700 	KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1701 	    m->object == object && m->pindex == pindex,
1702 	    ("vm_page_relookup: Invalid page %p", m));
1703 	return (m);
1704 }
1705 
1706 /*
1707  * This should only be used by lockless functions for releasing transient
1708  * incorrect acquires.  The page may have been freed after we acquired a
1709  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1710  * further to do.
1711  */
1712 static void
1713 vm_page_busy_release(vm_page_t m)
1714 {
1715 	u_int x;
1716 
1717 	x = atomic_load_int(&m->busy_lock);
1718 	for (;;) {
1719 		if (x == VPB_FREED)
1720 			break;
1721 		if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1722 			if (atomic_fcmpset_int(&m->busy_lock, &x,
1723 			    x - VPB_ONE_SHARER))
1724 				break;
1725 			continue;
1726 		}
1727 		KASSERT((x & VPB_BIT_SHARED) != 0 ||
1728 		    (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1729 		    ("vm_page_busy_release: %p xbusy not owned.", m));
1730 		if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1731 			continue;
1732 		if ((x & VPB_BIT_WAITERS) != 0)
1733 			wakeup(m);
1734 		break;
1735 	}
1736 }
1737 
1738 /*
1739  *	vm_page_find_least:
1740  *
1741  *	Returns the page associated with the object with least pindex
1742  *	greater than or equal to the parameter pindex, or NULL.
1743  *
1744  *	The object must be locked.
1745  */
1746 vm_page_t
1747 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1748 {
1749 	vm_page_t m;
1750 
1751 	VM_OBJECT_ASSERT_LOCKED(object);
1752 	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1753 		m = vm_radix_lookup_ge(&object->rtree, pindex);
1754 	return (m);
1755 }
1756 
1757 /*
1758  * Returns the given page's successor (by pindex) within the object if it is
1759  * resident; if none is found, NULL is returned.
1760  *
1761  * The object must be locked.
1762  */
1763 vm_page_t
1764 vm_page_next(vm_page_t m)
1765 {
1766 	vm_page_t next;
1767 
1768 	VM_OBJECT_ASSERT_LOCKED(m->object);
1769 	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1770 		MPASS(next->object == m->object);
1771 		if (next->pindex != m->pindex + 1)
1772 			next = NULL;
1773 	}
1774 	return (next);
1775 }
1776 
1777 /*
1778  * Returns the given page's predecessor (by pindex) within the object if it is
1779  * resident; if none is found, NULL is returned.
1780  *
1781  * The object must be locked.
1782  */
1783 vm_page_t
1784 vm_page_prev(vm_page_t m)
1785 {
1786 	vm_page_t prev;
1787 
1788 	VM_OBJECT_ASSERT_LOCKED(m->object);
1789 	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1790 		MPASS(prev->object == m->object);
1791 		if (prev->pindex != m->pindex - 1)
1792 			prev = NULL;
1793 	}
1794 	return (prev);
1795 }
1796 
1797 /*
1798  * Uses the page mnew as a replacement for an existing page at index
1799  * pindex which must be already present in the object.
1800  *
1801  * Both pages must be exclusively busied on enter.  The old page is
1802  * unbusied on exit.
1803  *
1804  * A return value of true means mold is now free.  If this is not the
1805  * final ref and the caller does not hold a wire reference it may not
1806  * continue to access the page.
1807  */
1808 static bool
1809 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1810     vm_page_t mold)
1811 {
1812 	vm_page_t mret;
1813 	bool dropped;
1814 
1815 	VM_OBJECT_ASSERT_WLOCKED(object);
1816 	vm_page_assert_xbusied(mold);
1817 	KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1818 	    ("vm_page_replace: page %p already in object", mnew));
1819 
1820 	/*
1821 	 * This function mostly follows vm_page_insert() and
1822 	 * vm_page_remove() without the radix, object count and vnode
1823 	 * dance.  Double check such functions for more comments.
1824 	 */
1825 
1826 	mnew->object = object;
1827 	mnew->pindex = pindex;
1828 	atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1829 	mret = vm_radix_replace(&object->rtree, mnew);
1830 	KASSERT(mret == mold,
1831 	    ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1832 	KASSERT((mold->oflags & VPO_UNMANAGED) ==
1833 	    (mnew->oflags & VPO_UNMANAGED),
1834 	    ("vm_page_replace: mismatched VPO_UNMANAGED"));
1835 
1836 	/* Keep the resident page list in sorted order. */
1837 	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1838 	TAILQ_REMOVE(&object->memq, mold, listq);
1839 	mold->object = NULL;
1840 
1841 	/*
1842 	 * The object's resident_page_count does not change because we have
1843 	 * swapped one page for another, but the generation count should
1844 	 * change if the page is dirty.
1845 	 */
1846 	if (pmap_page_is_write_mapped(mnew))
1847 		vm_object_set_writeable_dirty(object);
1848 	dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1849 	vm_page_xunbusy(mold);
1850 
1851 	return (dropped);
1852 }
1853 
1854 void
1855 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1856     vm_page_t mold)
1857 {
1858 
1859 	vm_page_assert_xbusied(mnew);
1860 
1861 	if (vm_page_replace_hold(mnew, object, pindex, mold))
1862 		vm_page_free(mold);
1863 }
1864 
1865 /*
1866  *	vm_page_rename:
1867  *
1868  *	Move the given memory entry from its
1869  *	current object to the specified target object/offset.
1870  *
1871  *	Note: swap associated with the page must be invalidated by the move.  We
1872  *	      have to do this for several reasons:  (1) we aren't freeing the
1873  *	      page, (2) we are dirtying the page, (3) the VM system is probably
1874  *	      moving the page from object A to B, and will then later move
1875  *	      the backing store from A to B and we can't have a conflict.
1876  *
1877  *	Note: we *always* dirty the page.  It is necessary both for the
1878  *	      fact that we moved it, and because we may be invalidating
1879  *	      swap.
1880  *
1881  *	The objects must be locked.
1882  */
1883 int
1884 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1885 {
1886 	vm_page_t mpred;
1887 	vm_pindex_t opidx;
1888 
1889 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1890 
1891 	KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1892 	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1893 	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1894 	    ("vm_page_rename: pindex already renamed"));
1895 
1896 	/*
1897 	 * Create a custom version of vm_page_insert() which does not depend
1898 	 * by m_prev and can cheat on the implementation aspects of the
1899 	 * function.
1900 	 */
1901 	opidx = m->pindex;
1902 	m->pindex = new_pindex;
1903 	if (vm_radix_insert(&new_object->rtree, m)) {
1904 		m->pindex = opidx;
1905 		return (1);
1906 	}
1907 
1908 	/*
1909 	 * The operation cannot fail anymore.  The removal must happen before
1910 	 * the listq iterator is tainted.
1911 	 */
1912 	m->pindex = opidx;
1913 	vm_page_object_remove(m);
1914 
1915 	/* Return back to the new pindex to complete vm_page_insert(). */
1916 	m->pindex = new_pindex;
1917 	m->object = new_object;
1918 
1919 	vm_page_insert_radixdone(m, new_object, mpred);
1920 	vm_page_dirty(m);
1921 	return (0);
1922 }
1923 
1924 /*
1925  *	vm_page_alloc:
1926  *
1927  *	Allocate and return a page that is associated with the specified
1928  *	object and offset pair.  By default, this page is exclusive busied.
1929  *
1930  *	The caller must always specify an allocation class.
1931  *
1932  *	allocation classes:
1933  *	VM_ALLOC_NORMAL		normal process request
1934  *	VM_ALLOC_SYSTEM		system *really* needs a page
1935  *	VM_ALLOC_INTERRUPT	interrupt time request
1936  *
1937  *	optional allocation flags:
1938  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
1939  *				intends to allocate
1940  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
1941  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
1942  *	VM_ALLOC_NOOBJ		page is not associated with an object and
1943  *				should not be exclusive busy
1944  *	VM_ALLOC_SBUSY		shared busy the allocated page
1945  *	VM_ALLOC_WIRED		wire the allocated page
1946  *	VM_ALLOC_ZERO		prefer a zeroed page
1947  */
1948 vm_page_t
1949 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1950 {
1951 
1952 	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1953 	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1954 }
1955 
1956 vm_page_t
1957 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1958     int req)
1959 {
1960 
1961 	return (vm_page_alloc_domain_after(object, pindex, domain, req,
1962 	    object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1963 	    NULL));
1964 }
1965 
1966 /*
1967  * Allocate a page in the specified object with the given page index.  To
1968  * optimize insertion of the page into the object, the caller must also specifiy
1969  * the resident page in the object with largest index smaller than the given
1970  * page index, or NULL if no such page exists.
1971  */
1972 vm_page_t
1973 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1974     int req, vm_page_t mpred)
1975 {
1976 	struct vm_domainset_iter di;
1977 	vm_page_t m;
1978 	int domain;
1979 
1980 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1981 	do {
1982 		m = vm_page_alloc_domain_after(object, pindex, domain, req,
1983 		    mpred);
1984 		if (m != NULL)
1985 			break;
1986 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
1987 
1988 	return (m);
1989 }
1990 
1991 /*
1992  * Returns true if the number of free pages exceeds the minimum
1993  * for the request class and false otherwise.
1994  */
1995 static int
1996 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1997 {
1998 	u_int limit, old, new;
1999 
2000 	if (req_class == VM_ALLOC_INTERRUPT)
2001 		limit = 0;
2002 	else if (req_class == VM_ALLOC_SYSTEM)
2003 		limit = vmd->vmd_interrupt_free_min;
2004 	else
2005 		limit = vmd->vmd_free_reserved;
2006 
2007 	/*
2008 	 * Attempt to reserve the pages.  Fail if we're below the limit.
2009 	 */
2010 	limit += npages;
2011 	old = vmd->vmd_free_count;
2012 	do {
2013 		if (old < limit)
2014 			return (0);
2015 		new = old - npages;
2016 	} while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2017 
2018 	/* Wake the page daemon if we've crossed the threshold. */
2019 	if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2020 		pagedaemon_wakeup(vmd->vmd_domain);
2021 
2022 	/* Only update bitsets on transitions. */
2023 	if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2024 	    (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2025 		vm_domain_set(vmd);
2026 
2027 	return (1);
2028 }
2029 
2030 int
2031 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2032 {
2033 	int req_class;
2034 
2035 	/*
2036 	 * The page daemon is allowed to dig deeper into the free page list.
2037 	 */
2038 	req_class = req & VM_ALLOC_CLASS_MASK;
2039 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2040 		req_class = VM_ALLOC_SYSTEM;
2041 	return (_vm_domain_allocate(vmd, req_class, npages));
2042 }
2043 
2044 vm_page_t
2045 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2046     int req, vm_page_t mpred)
2047 {
2048 	struct vm_domain *vmd;
2049 	vm_page_t m;
2050 	int flags, pool;
2051 
2052 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2053 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2054 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2055 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2056 	    ("inconsistent object(%p)/req(%x)", object, req));
2057 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2058 	    ("Can't sleep and retry object insertion."));
2059 	KASSERT(mpred == NULL || mpred->pindex < pindex,
2060 	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
2061 	    (uintmax_t)pindex));
2062 	if (object != NULL)
2063 		VM_OBJECT_ASSERT_WLOCKED(object);
2064 
2065 	flags = 0;
2066 	m = NULL;
2067 	pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
2068 again:
2069 #if VM_NRESERVLEVEL > 0
2070 	/*
2071 	 * Can we allocate the page from a reservation?
2072 	 */
2073 	if (vm_object_reserv(object) &&
2074 	    (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2075 	    NULL) {
2076 		goto found;
2077 	}
2078 #endif
2079 	vmd = VM_DOMAIN(domain);
2080 	if (vmd->vmd_pgcache[pool].zone != NULL) {
2081 		m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT | M_NOVM);
2082 		if (m != NULL) {
2083 			flags |= PG_PCPU_CACHE;
2084 			goto found;
2085 		}
2086 	}
2087 	if (vm_domain_allocate(vmd, req, 1)) {
2088 		/*
2089 		 * If not, allocate it from the free page queues.
2090 		 */
2091 		vm_domain_free_lock(vmd);
2092 		m = vm_phys_alloc_pages(domain, pool, 0);
2093 		vm_domain_free_unlock(vmd);
2094 		if (m == NULL) {
2095 			vm_domain_freecnt_inc(vmd, 1);
2096 #if VM_NRESERVLEVEL > 0
2097 			if (vm_reserv_reclaim_inactive(domain))
2098 				goto again;
2099 #endif
2100 		}
2101 	}
2102 	if (m == NULL) {
2103 		/*
2104 		 * Not allocatable, give up.
2105 		 */
2106 		if (vm_domain_alloc_fail(vmd, object, req))
2107 			goto again;
2108 		return (NULL);
2109 	}
2110 
2111 	/*
2112 	 * At this point we had better have found a good page.
2113 	 */
2114 found:
2115 	vm_page_dequeue(m);
2116 	vm_page_alloc_check(m);
2117 
2118 	/*
2119 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2120 	 */
2121 	if ((req & VM_ALLOC_ZERO) != 0)
2122 		flags |= (m->flags & PG_ZERO);
2123 	if ((req & VM_ALLOC_NODUMP) != 0)
2124 		flags |= PG_NODUMP;
2125 	m->flags = flags;
2126 	m->a.flags = 0;
2127 	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2128 	    VPO_UNMANAGED : 0;
2129 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2130 		m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2131 	else if ((req & VM_ALLOC_SBUSY) != 0)
2132 		m->busy_lock = VPB_SHARERS_WORD(1);
2133 	else
2134 		m->busy_lock = VPB_UNBUSIED;
2135 	if (req & VM_ALLOC_WIRED) {
2136 		vm_wire_add(1);
2137 		m->ref_count = 1;
2138 	}
2139 	m->a.act_count = 0;
2140 
2141 	if (object != NULL) {
2142 		if (vm_page_insert_after(m, object, pindex, mpred)) {
2143 			if (req & VM_ALLOC_WIRED) {
2144 				vm_wire_sub(1);
2145 				m->ref_count = 0;
2146 			}
2147 			KASSERT(m->object == NULL, ("page %p has object", m));
2148 			m->oflags = VPO_UNMANAGED;
2149 			m->busy_lock = VPB_UNBUSIED;
2150 			/* Don't change PG_ZERO. */
2151 			vm_page_free_toq(m);
2152 			if (req & VM_ALLOC_WAITFAIL) {
2153 				VM_OBJECT_WUNLOCK(object);
2154 				vm_radix_wait();
2155 				VM_OBJECT_WLOCK(object);
2156 			}
2157 			return (NULL);
2158 		}
2159 
2160 		/* Ignore device objects; the pager sets "memattr" for them. */
2161 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2162 		    (object->flags & OBJ_FICTITIOUS) == 0)
2163 			pmap_page_set_memattr(m, object->memattr);
2164 	} else
2165 		m->pindex = pindex;
2166 
2167 	return (m);
2168 }
2169 
2170 /*
2171  *	vm_page_alloc_contig:
2172  *
2173  *	Allocate a contiguous set of physical pages of the given size "npages"
2174  *	from the free lists.  All of the physical pages must be at or above
2175  *	the given physical address "low" and below the given physical address
2176  *	"high".  The given value "alignment" determines the alignment of the
2177  *	first physical page in the set.  If the given value "boundary" is
2178  *	non-zero, then the set of physical pages cannot cross any physical
2179  *	address boundary that is a multiple of that value.  Both "alignment"
2180  *	and "boundary" must be a power of two.
2181  *
2182  *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2183  *	then the memory attribute setting for the physical pages is configured
2184  *	to the object's memory attribute setting.  Otherwise, the memory
2185  *	attribute setting for the physical pages is configured to "memattr",
2186  *	overriding the object's memory attribute setting.  However, if the
2187  *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2188  *	memory attribute setting for the physical pages cannot be configured
2189  *	to VM_MEMATTR_DEFAULT.
2190  *
2191  *	The specified object may not contain fictitious pages.
2192  *
2193  *	The caller must always specify an allocation class.
2194  *
2195  *	allocation classes:
2196  *	VM_ALLOC_NORMAL		normal process request
2197  *	VM_ALLOC_SYSTEM		system *really* needs a page
2198  *	VM_ALLOC_INTERRUPT	interrupt time request
2199  *
2200  *	optional allocation flags:
2201  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
2202  *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
2203  *	VM_ALLOC_NOOBJ		page is not associated with an object and
2204  *				should not be exclusive busy
2205  *	VM_ALLOC_SBUSY		shared busy the allocated page
2206  *	VM_ALLOC_WIRED		wire the allocated page
2207  *	VM_ALLOC_ZERO		prefer a zeroed page
2208  */
2209 vm_page_t
2210 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2211     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2212     vm_paddr_t boundary, vm_memattr_t memattr)
2213 {
2214 	struct vm_domainset_iter di;
2215 	vm_page_t m;
2216 	int domain;
2217 
2218 	vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2219 	do {
2220 		m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2221 		    npages, low, high, alignment, boundary, memattr);
2222 		if (m != NULL)
2223 			break;
2224 	} while (vm_domainset_iter_page(&di, object, &domain) == 0);
2225 
2226 	return (m);
2227 }
2228 
2229 vm_page_t
2230 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2231     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2232     vm_paddr_t boundary, vm_memattr_t memattr)
2233 {
2234 	struct vm_domain *vmd;
2235 	vm_page_t m, m_ret, mpred;
2236 	u_int busy_lock, flags, oflags;
2237 
2238 	mpred = NULL;	/* XXX: pacify gcc */
2239 	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2240 	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2241 	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2242 	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2243 	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2244 	    req));
2245 	KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2246 	    ("Can't sleep and retry object insertion."));
2247 	if (object != NULL) {
2248 		VM_OBJECT_ASSERT_WLOCKED(object);
2249 		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2250 		    ("vm_page_alloc_contig: object %p has fictitious pages",
2251 		    object));
2252 	}
2253 	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2254 
2255 	if (object != NULL) {
2256 		mpred = vm_radix_lookup_le(&object->rtree, pindex);
2257 		KASSERT(mpred == NULL || mpred->pindex != pindex,
2258 		    ("vm_page_alloc_contig: pindex already allocated"));
2259 	}
2260 
2261 	/*
2262 	 * Can we allocate the pages without the number of free pages falling
2263 	 * below the lower bound for the allocation class?
2264 	 */
2265 	m_ret = NULL;
2266 again:
2267 #if VM_NRESERVLEVEL > 0
2268 	/*
2269 	 * Can we allocate the pages from a reservation?
2270 	 */
2271 	if (vm_object_reserv(object) &&
2272 	    (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2273 	    mpred, npages, low, high, alignment, boundary)) != NULL) {
2274 		goto found;
2275 	}
2276 #endif
2277 	vmd = VM_DOMAIN(domain);
2278 	if (vm_domain_allocate(vmd, req, npages)) {
2279 		/*
2280 		 * allocate them from the free page queues.
2281 		 */
2282 		vm_domain_free_lock(vmd);
2283 		m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2284 		    alignment, boundary);
2285 		vm_domain_free_unlock(vmd);
2286 		if (m_ret == NULL) {
2287 			vm_domain_freecnt_inc(vmd, npages);
2288 #if VM_NRESERVLEVEL > 0
2289 			if (vm_reserv_reclaim_contig(domain, npages, low,
2290 			    high, alignment, boundary))
2291 				goto again;
2292 #endif
2293 		}
2294 	}
2295 	if (m_ret == NULL) {
2296 		if (vm_domain_alloc_fail(vmd, object, req))
2297 			goto again;
2298 		return (NULL);
2299 	}
2300 #if VM_NRESERVLEVEL > 0
2301 found:
2302 #endif
2303 	for (m = m_ret; m < &m_ret[npages]; m++) {
2304 		vm_page_dequeue(m);
2305 		vm_page_alloc_check(m);
2306 	}
2307 
2308 	/*
2309 	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
2310 	 */
2311 	flags = 0;
2312 	if ((req & VM_ALLOC_ZERO) != 0)
2313 		flags = PG_ZERO;
2314 	if ((req & VM_ALLOC_NODUMP) != 0)
2315 		flags |= PG_NODUMP;
2316 	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2317 	    VPO_UNMANAGED : 0;
2318 	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2319 		busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2320 	else if ((req & VM_ALLOC_SBUSY) != 0)
2321 		busy_lock = VPB_SHARERS_WORD(1);
2322 	else
2323 		busy_lock = VPB_UNBUSIED;
2324 	if ((req & VM_ALLOC_WIRED) != 0)
2325 		vm_wire_add(npages);
2326 	if (object != NULL) {
2327 		if (object->memattr != VM_MEMATTR_DEFAULT &&
2328 		    memattr == VM_MEMATTR_DEFAULT)
2329 			memattr = object->memattr;
2330 	}
2331 	for (m = m_ret; m < &m_ret[npages]; m++) {
2332 		m->a.flags = 0;
2333 		m->flags = (m->flags | PG_NODUMP) & flags;
2334 		m->busy_lock = busy_lock;
2335 		if ((req & VM_ALLOC_WIRED) != 0)
2336 			m->ref_count = 1;
2337 		m->a.act_count = 0;
2338 		m->oflags = oflags;
2339 		if (object != NULL) {
2340 			if (vm_page_insert_after(m, object, pindex, mpred)) {
2341 				if ((req & VM_ALLOC_WIRED) != 0)
2342 					vm_wire_sub(npages);
2343 				KASSERT(m->object == NULL,
2344 				    ("page %p has object", m));
2345 				mpred = m;
2346 				for (m = m_ret; m < &m_ret[npages]; m++) {
2347 					if (m <= mpred &&
2348 					    (req & VM_ALLOC_WIRED) != 0)
2349 						m->ref_count = 0;
2350 					m->oflags = VPO_UNMANAGED;
2351 					m->busy_lock = VPB_UNBUSIED;
2352 					/* Don't change PG_ZERO. */
2353 					vm_page_free_toq(m);
2354 				}
2355 				if (req & VM_ALLOC_WAITFAIL) {
2356 					VM_OBJECT_WUNLOCK(object);
2357 					vm_radix_wait();
2358 					VM_OBJECT_WLOCK(object);
2359 				}
2360 				return (NULL);
2361 			}
2362 			mpred = m;
2363 		} else
2364 			m->pindex = pindex;
2365 		if (memattr != VM_MEMATTR_DEFAULT)
2366 			pmap_page_set_memattr(m, memattr);
2367 		pindex++;
2368 	}
2369 	return (m_ret);
2370 }
2371 
2372 /*
2373  * Check a page that has been freshly dequeued from a freelist.
2374  */
2375 static void
2376 vm_page_alloc_check(vm_page_t m)
2377 {
2378 
2379 	KASSERT(m->object == NULL, ("page %p has object", m));
2380 	KASSERT(m->a.queue == PQ_NONE &&
2381 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2382 	    ("page %p has unexpected queue %d, flags %#x",
2383 	    m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2384 	KASSERT(m->ref_count == 0, ("page %p has references", m));
2385 	KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2386 	KASSERT(m->dirty == 0, ("page %p is dirty", m));
2387 	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2388 	    ("page %p has unexpected memattr %d",
2389 	    m, pmap_page_get_memattr(m)));
2390 	KASSERT(m->valid == 0, ("free page %p is valid", m));
2391 }
2392 
2393 /*
2394  * 	vm_page_alloc_freelist:
2395  *
2396  *	Allocate a physical page from the specified free page list.
2397  *
2398  *	The caller must always specify an allocation class.
2399  *
2400  *	allocation classes:
2401  *	VM_ALLOC_NORMAL		normal process request
2402  *	VM_ALLOC_SYSTEM		system *really* needs a page
2403  *	VM_ALLOC_INTERRUPT	interrupt time request
2404  *
2405  *	optional allocation flags:
2406  *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
2407  *				intends to allocate
2408  *	VM_ALLOC_WIRED		wire the allocated page
2409  *	VM_ALLOC_ZERO		prefer a zeroed page
2410  */
2411 vm_page_t
2412 vm_page_alloc_freelist(int freelist, int req)
2413 {
2414 	struct vm_domainset_iter di;
2415 	vm_page_t m;
2416 	int domain;
2417 
2418 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2419 	do {
2420 		m = vm_page_alloc_freelist_domain(domain, freelist, req);
2421 		if (m != NULL)
2422 			break;
2423 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2424 
2425 	return (m);
2426 }
2427 
2428 vm_page_t
2429 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2430 {
2431 	struct vm_domain *vmd;
2432 	vm_page_t m;
2433 	u_int flags;
2434 
2435 	m = NULL;
2436 	vmd = VM_DOMAIN(domain);
2437 again:
2438 	if (vm_domain_allocate(vmd, req, 1)) {
2439 		vm_domain_free_lock(vmd);
2440 		m = vm_phys_alloc_freelist_pages(domain, freelist,
2441 		    VM_FREEPOOL_DIRECT, 0);
2442 		vm_domain_free_unlock(vmd);
2443 		if (m == NULL)
2444 			vm_domain_freecnt_inc(vmd, 1);
2445 	}
2446 	if (m == NULL) {
2447 		if (vm_domain_alloc_fail(vmd, NULL, req))
2448 			goto again;
2449 		return (NULL);
2450 	}
2451 	vm_page_dequeue(m);
2452 	vm_page_alloc_check(m);
2453 
2454 	/*
2455 	 * Initialize the page.  Only the PG_ZERO flag is inherited.
2456 	 */
2457 	m->a.flags = 0;
2458 	flags = 0;
2459 	if ((req & VM_ALLOC_ZERO) != 0)
2460 		flags = PG_ZERO;
2461 	m->flags &= flags;
2462 	if ((req & VM_ALLOC_WIRED) != 0) {
2463 		vm_wire_add(1);
2464 		m->ref_count = 1;
2465 	}
2466 	/* Unmanaged pages don't use "act_count". */
2467 	m->oflags = VPO_UNMANAGED;
2468 	return (m);
2469 }
2470 
2471 static int
2472 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2473 {
2474 	struct vm_domain *vmd;
2475 	struct vm_pgcache *pgcache;
2476 	int i;
2477 
2478 	pgcache = arg;
2479 	vmd = VM_DOMAIN(pgcache->domain);
2480 
2481 	/*
2482 	 * The page daemon should avoid creating extra memory pressure since its
2483 	 * main purpose is to replenish the store of free pages.
2484 	 */
2485 	if (vmd->vmd_severeset || curproc == pageproc ||
2486 	    !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2487 		return (0);
2488 	domain = vmd->vmd_domain;
2489 	vm_domain_free_lock(vmd);
2490 	i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2491 	    (vm_page_t *)store);
2492 	vm_domain_free_unlock(vmd);
2493 	if (cnt != i)
2494 		vm_domain_freecnt_inc(vmd, cnt - i);
2495 
2496 	return (i);
2497 }
2498 
2499 static void
2500 vm_page_zone_release(void *arg, void **store, int cnt)
2501 {
2502 	struct vm_domain *vmd;
2503 	struct vm_pgcache *pgcache;
2504 	vm_page_t m;
2505 	int i;
2506 
2507 	pgcache = arg;
2508 	vmd = VM_DOMAIN(pgcache->domain);
2509 	vm_domain_free_lock(vmd);
2510 	for (i = 0; i < cnt; i++) {
2511 		m = (vm_page_t)store[i];
2512 		vm_phys_free_pages(m, 0);
2513 	}
2514 	vm_domain_free_unlock(vmd);
2515 	vm_domain_freecnt_inc(vmd, cnt);
2516 }
2517 
2518 #define	VPSC_ANY	0	/* No restrictions. */
2519 #define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
2520 #define	VPSC_NOSUPER	2	/* Skip superpages. */
2521 
2522 /*
2523  *	vm_page_scan_contig:
2524  *
2525  *	Scan vm_page_array[] between the specified entries "m_start" and
2526  *	"m_end" for a run of contiguous physical pages that satisfy the
2527  *	specified conditions, and return the lowest page in the run.  The
2528  *	specified "alignment" determines the alignment of the lowest physical
2529  *	page in the run.  If the specified "boundary" is non-zero, then the
2530  *	run of physical pages cannot span a physical address that is a
2531  *	multiple of "boundary".
2532  *
2533  *	"m_end" is never dereferenced, so it need not point to a vm_page
2534  *	structure within vm_page_array[].
2535  *
2536  *	"npages" must be greater than zero.  "m_start" and "m_end" must not
2537  *	span a hole (or discontiguity) in the physical address space.  Both
2538  *	"alignment" and "boundary" must be a power of two.
2539  */
2540 vm_page_t
2541 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2542     u_long alignment, vm_paddr_t boundary, int options)
2543 {
2544 	vm_object_t object;
2545 	vm_paddr_t pa;
2546 	vm_page_t m, m_run;
2547 #if VM_NRESERVLEVEL > 0
2548 	int level;
2549 #endif
2550 	int m_inc, order, run_ext, run_len;
2551 
2552 	KASSERT(npages > 0, ("npages is 0"));
2553 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2554 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2555 	m_run = NULL;
2556 	run_len = 0;
2557 	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2558 		KASSERT((m->flags & PG_MARKER) == 0,
2559 		    ("page %p is PG_MARKER", m));
2560 		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2561 		    ("fictitious page %p has invalid ref count", m));
2562 
2563 		/*
2564 		 * If the current page would be the start of a run, check its
2565 		 * physical address against the end, alignment, and boundary
2566 		 * conditions.  If it doesn't satisfy these conditions, either
2567 		 * terminate the scan or advance to the next page that
2568 		 * satisfies the failed condition.
2569 		 */
2570 		if (run_len == 0) {
2571 			KASSERT(m_run == NULL, ("m_run != NULL"));
2572 			if (m + npages > m_end)
2573 				break;
2574 			pa = VM_PAGE_TO_PHYS(m);
2575 			if ((pa & (alignment - 1)) != 0) {
2576 				m_inc = atop(roundup2(pa, alignment) - pa);
2577 				continue;
2578 			}
2579 			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2580 			    boundary) != 0) {
2581 				m_inc = atop(roundup2(pa, boundary) - pa);
2582 				continue;
2583 			}
2584 		} else
2585 			KASSERT(m_run != NULL, ("m_run == NULL"));
2586 
2587 retry:
2588 		m_inc = 1;
2589 		if (vm_page_wired(m))
2590 			run_ext = 0;
2591 #if VM_NRESERVLEVEL > 0
2592 		else if ((level = vm_reserv_level(m)) >= 0 &&
2593 		    (options & VPSC_NORESERV) != 0) {
2594 			run_ext = 0;
2595 			/* Advance to the end of the reservation. */
2596 			pa = VM_PAGE_TO_PHYS(m);
2597 			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2598 			    pa);
2599 		}
2600 #endif
2601 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2602 			/*
2603 			 * The page is considered eligible for relocation if
2604 			 * and only if it could be laundered or reclaimed by
2605 			 * the page daemon.
2606 			 */
2607 			VM_OBJECT_RLOCK(object);
2608 			if (object != m->object) {
2609 				VM_OBJECT_RUNLOCK(object);
2610 				goto retry;
2611 			}
2612 			/* Don't care: PG_NODUMP, PG_ZERO. */
2613 			if (object->type != OBJT_DEFAULT &&
2614 			    object->type != OBJT_SWAP &&
2615 			    object->type != OBJT_VNODE) {
2616 				run_ext = 0;
2617 #if VM_NRESERVLEVEL > 0
2618 			} else if ((options & VPSC_NOSUPER) != 0 &&
2619 			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
2620 				run_ext = 0;
2621 				/* Advance to the end of the superpage. */
2622 				pa = VM_PAGE_TO_PHYS(m);
2623 				m_inc = atop(roundup2(pa + 1,
2624 				    vm_reserv_size(level)) - pa);
2625 #endif
2626 			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
2627 			    vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2628 				/*
2629 				 * The page is allocated but eligible for
2630 				 * relocation.  Extend the current run by one
2631 				 * page.
2632 				 */
2633 				KASSERT(pmap_page_get_memattr(m) ==
2634 				    VM_MEMATTR_DEFAULT,
2635 				    ("page %p has an unexpected memattr", m));
2636 				KASSERT((m->oflags & (VPO_SWAPINPROG |
2637 				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2638 				    ("page %p has unexpected oflags", m));
2639 				/* Don't care: PGA_NOSYNC. */
2640 				run_ext = 1;
2641 			} else
2642 				run_ext = 0;
2643 			VM_OBJECT_RUNLOCK(object);
2644 #if VM_NRESERVLEVEL > 0
2645 		} else if (level >= 0) {
2646 			/*
2647 			 * The page is reserved but not yet allocated.  In
2648 			 * other words, it is still free.  Extend the current
2649 			 * run by one page.
2650 			 */
2651 			run_ext = 1;
2652 #endif
2653 		} else if ((order = m->order) < VM_NFREEORDER) {
2654 			/*
2655 			 * The page is enqueued in the physical memory
2656 			 * allocator's free page queues.  Moreover, it is the
2657 			 * first page in a power-of-two-sized run of
2658 			 * contiguous free pages.  Add these pages to the end
2659 			 * of the current run, and jump ahead.
2660 			 */
2661 			run_ext = 1 << order;
2662 			m_inc = 1 << order;
2663 		} else {
2664 			/*
2665 			 * Skip the page for one of the following reasons: (1)
2666 			 * It is enqueued in the physical memory allocator's
2667 			 * free page queues.  However, it is not the first
2668 			 * page in a run of contiguous free pages.  (This case
2669 			 * rarely occurs because the scan is performed in
2670 			 * ascending order.) (2) It is not reserved, and it is
2671 			 * transitioning from free to allocated.  (Conversely,
2672 			 * the transition from allocated to free for managed
2673 			 * pages is blocked by the page lock.) (3) It is
2674 			 * allocated but not contained by an object and not
2675 			 * wired, e.g., allocated by Xen's balloon driver.
2676 			 */
2677 			run_ext = 0;
2678 		}
2679 
2680 		/*
2681 		 * Extend or reset the current run of pages.
2682 		 */
2683 		if (run_ext > 0) {
2684 			if (run_len == 0)
2685 				m_run = m;
2686 			run_len += run_ext;
2687 		} else {
2688 			if (run_len > 0) {
2689 				m_run = NULL;
2690 				run_len = 0;
2691 			}
2692 		}
2693 	}
2694 	if (run_len >= npages)
2695 		return (m_run);
2696 	return (NULL);
2697 }
2698 
2699 /*
2700  *	vm_page_reclaim_run:
2701  *
2702  *	Try to relocate each of the allocated virtual pages within the
2703  *	specified run of physical pages to a new physical address.  Free the
2704  *	physical pages underlying the relocated virtual pages.  A virtual page
2705  *	is relocatable if and only if it could be laundered or reclaimed by
2706  *	the page daemon.  Whenever possible, a virtual page is relocated to a
2707  *	physical address above "high".
2708  *
2709  *	Returns 0 if every physical page within the run was already free or
2710  *	just freed by a successful relocation.  Otherwise, returns a non-zero
2711  *	value indicating why the last attempt to relocate a virtual page was
2712  *	unsuccessful.
2713  *
2714  *	"req_class" must be an allocation class.
2715  */
2716 static int
2717 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2718     vm_paddr_t high)
2719 {
2720 	struct vm_domain *vmd;
2721 	struct spglist free;
2722 	vm_object_t object;
2723 	vm_paddr_t pa;
2724 	vm_page_t m, m_end, m_new;
2725 	int error, order, req;
2726 
2727 	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2728 	    ("req_class is not an allocation class"));
2729 	SLIST_INIT(&free);
2730 	error = 0;
2731 	m = m_run;
2732 	m_end = m_run + npages;
2733 	for (; error == 0 && m < m_end; m++) {
2734 		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2735 		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2736 
2737 		/*
2738 		 * Racily check for wirings.  Races are handled once the object
2739 		 * lock is held and the page is unmapped.
2740 		 */
2741 		if (vm_page_wired(m))
2742 			error = EBUSY;
2743 		else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2744 			/*
2745 			 * The page is relocated if and only if it could be
2746 			 * laundered or reclaimed by the page daemon.
2747 			 */
2748 			VM_OBJECT_WLOCK(object);
2749 			/* Don't care: PG_NODUMP, PG_ZERO. */
2750 			if (m->object != object ||
2751 			    (object->type != OBJT_DEFAULT &&
2752 			    object->type != OBJT_SWAP &&
2753 			    object->type != OBJT_VNODE))
2754 				error = EINVAL;
2755 			else if (object->memattr != VM_MEMATTR_DEFAULT)
2756 				error = EINVAL;
2757 			else if (vm_page_queue(m) != PQ_NONE &&
2758 			    vm_page_tryxbusy(m) != 0) {
2759 				if (vm_page_wired(m)) {
2760 					vm_page_xunbusy(m);
2761 					error = EBUSY;
2762 					goto unlock;
2763 				}
2764 				KASSERT(pmap_page_get_memattr(m) ==
2765 				    VM_MEMATTR_DEFAULT,
2766 				    ("page %p has an unexpected memattr", m));
2767 				KASSERT(m->oflags == 0,
2768 				    ("page %p has unexpected oflags", m));
2769 				/* Don't care: PGA_NOSYNC. */
2770 				if (!vm_page_none_valid(m)) {
2771 					/*
2772 					 * First, try to allocate a new page
2773 					 * that is above "high".  Failing
2774 					 * that, try to allocate a new page
2775 					 * that is below "m_run".  Allocate
2776 					 * the new page between the end of
2777 					 * "m_run" and "high" only as a last
2778 					 * resort.
2779 					 */
2780 					req = req_class | VM_ALLOC_NOOBJ;
2781 					if ((m->flags & PG_NODUMP) != 0)
2782 						req |= VM_ALLOC_NODUMP;
2783 					if (trunc_page(high) !=
2784 					    ~(vm_paddr_t)PAGE_MASK) {
2785 						m_new = vm_page_alloc_contig(
2786 						    NULL, 0, req, 1,
2787 						    round_page(high),
2788 						    ~(vm_paddr_t)0,
2789 						    PAGE_SIZE, 0,
2790 						    VM_MEMATTR_DEFAULT);
2791 					} else
2792 						m_new = NULL;
2793 					if (m_new == NULL) {
2794 						pa = VM_PAGE_TO_PHYS(m_run);
2795 						m_new = vm_page_alloc_contig(
2796 						    NULL, 0, req, 1,
2797 						    0, pa - 1, PAGE_SIZE, 0,
2798 						    VM_MEMATTR_DEFAULT);
2799 					}
2800 					if (m_new == NULL) {
2801 						pa += ptoa(npages);
2802 						m_new = vm_page_alloc_contig(
2803 						    NULL, 0, req, 1,
2804 						    pa, high, PAGE_SIZE, 0,
2805 						    VM_MEMATTR_DEFAULT);
2806 					}
2807 					if (m_new == NULL) {
2808 						vm_page_xunbusy(m);
2809 						error = ENOMEM;
2810 						goto unlock;
2811 					}
2812 
2813 					/*
2814 					 * Unmap the page and check for new
2815 					 * wirings that may have been acquired
2816 					 * through a pmap lookup.
2817 					 */
2818 					if (object->ref_count != 0 &&
2819 					    !vm_page_try_remove_all(m)) {
2820 						vm_page_xunbusy(m);
2821 						vm_page_free(m_new);
2822 						error = EBUSY;
2823 						goto unlock;
2824 					}
2825 
2826 					/*
2827 					 * Replace "m" with the new page.  For
2828 					 * vm_page_replace(), "m" must be busy
2829 					 * and dequeued.  Finally, change "m"
2830 					 * as if vm_page_free() was called.
2831 					 */
2832 					m_new->a.flags = m->a.flags &
2833 					    ~PGA_QUEUE_STATE_MASK;
2834 					KASSERT(m_new->oflags == VPO_UNMANAGED,
2835 					    ("page %p is managed", m_new));
2836 					m_new->oflags = 0;
2837 					pmap_copy_page(m, m_new);
2838 					m_new->valid = m->valid;
2839 					m_new->dirty = m->dirty;
2840 					m->flags &= ~PG_ZERO;
2841 					vm_page_dequeue(m);
2842 					if (vm_page_replace_hold(m_new, object,
2843 					    m->pindex, m) &&
2844 					    vm_page_free_prep(m))
2845 						SLIST_INSERT_HEAD(&free, m,
2846 						    plinks.s.ss);
2847 
2848 					/*
2849 					 * The new page must be deactivated
2850 					 * before the object is unlocked.
2851 					 */
2852 					vm_page_deactivate(m_new);
2853 				} else {
2854 					m->flags &= ~PG_ZERO;
2855 					vm_page_dequeue(m);
2856 					if (vm_page_free_prep(m))
2857 						SLIST_INSERT_HEAD(&free, m,
2858 						    plinks.s.ss);
2859 					KASSERT(m->dirty == 0,
2860 					    ("page %p is dirty", m));
2861 				}
2862 			} else
2863 				error = EBUSY;
2864 unlock:
2865 			VM_OBJECT_WUNLOCK(object);
2866 		} else {
2867 			MPASS(vm_phys_domain(m) == domain);
2868 			vmd = VM_DOMAIN(domain);
2869 			vm_domain_free_lock(vmd);
2870 			order = m->order;
2871 			if (order < VM_NFREEORDER) {
2872 				/*
2873 				 * The page is enqueued in the physical memory
2874 				 * allocator's free page queues.  Moreover, it
2875 				 * is the first page in a power-of-two-sized
2876 				 * run of contiguous free pages.  Jump ahead
2877 				 * to the last page within that run, and
2878 				 * continue from there.
2879 				 */
2880 				m += (1 << order) - 1;
2881 			}
2882 #if VM_NRESERVLEVEL > 0
2883 			else if (vm_reserv_is_page_free(m))
2884 				order = 0;
2885 #endif
2886 			vm_domain_free_unlock(vmd);
2887 			if (order == VM_NFREEORDER)
2888 				error = EINVAL;
2889 		}
2890 	}
2891 	if ((m = SLIST_FIRST(&free)) != NULL) {
2892 		int cnt;
2893 
2894 		vmd = VM_DOMAIN(domain);
2895 		cnt = 0;
2896 		vm_domain_free_lock(vmd);
2897 		do {
2898 			MPASS(vm_phys_domain(m) == domain);
2899 			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2900 			vm_phys_free_pages(m, 0);
2901 			cnt++;
2902 		} while ((m = SLIST_FIRST(&free)) != NULL);
2903 		vm_domain_free_unlock(vmd);
2904 		vm_domain_freecnt_inc(vmd, cnt);
2905 	}
2906 	return (error);
2907 }
2908 
2909 #define	NRUNS	16
2910 
2911 CTASSERT(powerof2(NRUNS));
2912 
2913 #define	RUN_INDEX(count)	((count) & (NRUNS - 1))
2914 
2915 #define	MIN_RECLAIM	8
2916 
2917 /*
2918  *	vm_page_reclaim_contig:
2919  *
2920  *	Reclaim allocated, contiguous physical memory satisfying the specified
2921  *	conditions by relocating the virtual pages using that physical memory.
2922  *	Returns true if reclamation is successful and false otherwise.  Since
2923  *	relocation requires the allocation of physical pages, reclamation may
2924  *	fail due to a shortage of free pages.  When reclamation fails, callers
2925  *	are expected to perform vm_wait() before retrying a failed allocation
2926  *	operation, e.g., vm_page_alloc_contig().
2927  *
2928  *	The caller must always specify an allocation class through "req".
2929  *
2930  *	allocation classes:
2931  *	VM_ALLOC_NORMAL		normal process request
2932  *	VM_ALLOC_SYSTEM		system *really* needs a page
2933  *	VM_ALLOC_INTERRUPT	interrupt time request
2934  *
2935  *	The optional allocation flags are ignored.
2936  *
2937  *	"npages" must be greater than zero.  Both "alignment" and "boundary"
2938  *	must be a power of two.
2939  */
2940 bool
2941 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2942     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2943 {
2944 	struct vm_domain *vmd;
2945 	vm_paddr_t curr_low;
2946 	vm_page_t m_run, m_runs[NRUNS];
2947 	u_long count, reclaimed;
2948 	int error, i, options, req_class;
2949 
2950 	KASSERT(npages > 0, ("npages is 0"));
2951 	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2952 	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2953 	req_class = req & VM_ALLOC_CLASS_MASK;
2954 
2955 	/*
2956 	 * The page daemon is allowed to dig deeper into the free page list.
2957 	 */
2958 	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2959 		req_class = VM_ALLOC_SYSTEM;
2960 
2961 	/*
2962 	 * Return if the number of free pages cannot satisfy the requested
2963 	 * allocation.
2964 	 */
2965 	vmd = VM_DOMAIN(domain);
2966 	count = vmd->vmd_free_count;
2967 	if (count < npages + vmd->vmd_free_reserved || (count < npages +
2968 	    vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2969 	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
2970 		return (false);
2971 
2972 	/*
2973 	 * Scan up to three times, relaxing the restrictions ("options") on
2974 	 * the reclamation of reservations and superpages each time.
2975 	 */
2976 	for (options = VPSC_NORESERV;;) {
2977 		/*
2978 		 * Find the highest runs that satisfy the given constraints
2979 		 * and restrictions, and record them in "m_runs".
2980 		 */
2981 		curr_low = low;
2982 		count = 0;
2983 		for (;;) {
2984 			m_run = vm_phys_scan_contig(domain, npages, curr_low,
2985 			    high, alignment, boundary, options);
2986 			if (m_run == NULL)
2987 				break;
2988 			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2989 			m_runs[RUN_INDEX(count)] = m_run;
2990 			count++;
2991 		}
2992 
2993 		/*
2994 		 * Reclaim the highest runs in LIFO (descending) order until
2995 		 * the number of reclaimed pages, "reclaimed", is at least
2996 		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
2997 		 * reclamation is idempotent, and runs will (likely) recur
2998 		 * from one scan to the next as restrictions are relaxed.
2999 		 */
3000 		reclaimed = 0;
3001 		for (i = 0; count > 0 && i < NRUNS; i++) {
3002 			count--;
3003 			m_run = m_runs[RUN_INDEX(count)];
3004 			error = vm_page_reclaim_run(req_class, domain, npages,
3005 			    m_run, high);
3006 			if (error == 0) {
3007 				reclaimed += npages;
3008 				if (reclaimed >= MIN_RECLAIM)
3009 					return (true);
3010 			}
3011 		}
3012 
3013 		/*
3014 		 * Either relax the restrictions on the next scan or return if
3015 		 * the last scan had no restrictions.
3016 		 */
3017 		if (options == VPSC_NORESERV)
3018 			options = VPSC_NOSUPER;
3019 		else if (options == VPSC_NOSUPER)
3020 			options = VPSC_ANY;
3021 		else if (options == VPSC_ANY)
3022 			return (reclaimed != 0);
3023 	}
3024 }
3025 
3026 bool
3027 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3028     u_long alignment, vm_paddr_t boundary)
3029 {
3030 	struct vm_domainset_iter di;
3031 	int domain;
3032 	bool ret;
3033 
3034 	vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3035 	do {
3036 		ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3037 		    high, alignment, boundary);
3038 		if (ret)
3039 			break;
3040 	} while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3041 
3042 	return (ret);
3043 }
3044 
3045 /*
3046  * Set the domain in the appropriate page level domainset.
3047  */
3048 void
3049 vm_domain_set(struct vm_domain *vmd)
3050 {
3051 
3052 	mtx_lock(&vm_domainset_lock);
3053 	if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3054 		vmd->vmd_minset = 1;
3055 		DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3056 	}
3057 	if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3058 		vmd->vmd_severeset = 1;
3059 		DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3060 	}
3061 	mtx_unlock(&vm_domainset_lock);
3062 }
3063 
3064 /*
3065  * Clear the domain from the appropriate page level domainset.
3066  */
3067 void
3068 vm_domain_clear(struct vm_domain *vmd)
3069 {
3070 
3071 	mtx_lock(&vm_domainset_lock);
3072 	if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3073 		vmd->vmd_minset = 0;
3074 		DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3075 		if (vm_min_waiters != 0) {
3076 			vm_min_waiters = 0;
3077 			wakeup(&vm_min_domains);
3078 		}
3079 	}
3080 	if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3081 		vmd->vmd_severeset = 0;
3082 		DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3083 		if (vm_severe_waiters != 0) {
3084 			vm_severe_waiters = 0;
3085 			wakeup(&vm_severe_domains);
3086 		}
3087 	}
3088 
3089 	/*
3090 	 * If pageout daemon needs pages, then tell it that there are
3091 	 * some free.
3092 	 */
3093 	if (vmd->vmd_pageout_pages_needed &&
3094 	    vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3095 		wakeup(&vmd->vmd_pageout_pages_needed);
3096 		vmd->vmd_pageout_pages_needed = 0;
3097 	}
3098 
3099 	/* See comments in vm_wait_doms(). */
3100 	if (vm_pageproc_waiters) {
3101 		vm_pageproc_waiters = 0;
3102 		wakeup(&vm_pageproc_waiters);
3103 	}
3104 	mtx_unlock(&vm_domainset_lock);
3105 }
3106 
3107 /*
3108  * Wait for free pages to exceed the min threshold globally.
3109  */
3110 void
3111 vm_wait_min(void)
3112 {
3113 
3114 	mtx_lock(&vm_domainset_lock);
3115 	while (vm_page_count_min()) {
3116 		vm_min_waiters++;
3117 		msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3118 	}
3119 	mtx_unlock(&vm_domainset_lock);
3120 }
3121 
3122 /*
3123  * Wait for free pages to exceed the severe threshold globally.
3124  */
3125 void
3126 vm_wait_severe(void)
3127 {
3128 
3129 	mtx_lock(&vm_domainset_lock);
3130 	while (vm_page_count_severe()) {
3131 		vm_severe_waiters++;
3132 		msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3133 		    "vmwait", 0);
3134 	}
3135 	mtx_unlock(&vm_domainset_lock);
3136 }
3137 
3138 u_int
3139 vm_wait_count(void)
3140 {
3141 
3142 	return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3143 }
3144 
3145 void
3146 vm_wait_doms(const domainset_t *wdoms)
3147 {
3148 
3149 	/*
3150 	 * We use racey wakeup synchronization to avoid expensive global
3151 	 * locking for the pageproc when sleeping with a non-specific vm_wait.
3152 	 * To handle this, we only sleep for one tick in this instance.  It
3153 	 * is expected that most allocations for the pageproc will come from
3154 	 * kmem or vm_page_grab* which will use the more specific and
3155 	 * race-free vm_wait_domain().
3156 	 */
3157 	if (curproc == pageproc) {
3158 		mtx_lock(&vm_domainset_lock);
3159 		vm_pageproc_waiters++;
3160 		msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3161 		    "pageprocwait", 1);
3162 	} else {
3163 		/*
3164 		 * XXX Ideally we would wait only until the allocation could
3165 		 * be satisfied.  This condition can cause new allocators to
3166 		 * consume all freed pages while old allocators wait.
3167 		 */
3168 		mtx_lock(&vm_domainset_lock);
3169 		if (vm_page_count_min_set(wdoms)) {
3170 			vm_min_waiters++;
3171 			msleep(&vm_min_domains, &vm_domainset_lock,
3172 			    PVM | PDROP, "vmwait", 0);
3173 		} else
3174 			mtx_unlock(&vm_domainset_lock);
3175 	}
3176 }
3177 
3178 /*
3179  *	vm_wait_domain:
3180  *
3181  *	Sleep until free pages are available for allocation.
3182  *	- Called in various places after failed memory allocations.
3183  */
3184 void
3185 vm_wait_domain(int domain)
3186 {
3187 	struct vm_domain *vmd;
3188 	domainset_t wdom;
3189 
3190 	vmd = VM_DOMAIN(domain);
3191 	vm_domain_free_assert_unlocked(vmd);
3192 
3193 	if (curproc == pageproc) {
3194 		mtx_lock(&vm_domainset_lock);
3195 		if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3196 			vmd->vmd_pageout_pages_needed = 1;
3197 			msleep(&vmd->vmd_pageout_pages_needed,
3198 			    &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3199 		} else
3200 			mtx_unlock(&vm_domainset_lock);
3201 	} else {
3202 		if (pageproc == NULL)
3203 			panic("vm_wait in early boot");
3204 		DOMAINSET_ZERO(&wdom);
3205 		DOMAINSET_SET(vmd->vmd_domain, &wdom);
3206 		vm_wait_doms(&wdom);
3207 	}
3208 }
3209 
3210 /*
3211  *	vm_wait:
3212  *
3213  *	Sleep until free pages are available for allocation in the
3214  *	affinity domains of the obj.  If obj is NULL, the domain set
3215  *	for the calling thread is used.
3216  *	Called in various places after failed memory allocations.
3217  */
3218 void
3219 vm_wait(vm_object_t obj)
3220 {
3221 	struct domainset *d;
3222 
3223 	d = NULL;
3224 
3225 	/*
3226 	 * Carefully fetch pointers only once: the struct domainset
3227 	 * itself is ummutable but the pointer might change.
3228 	 */
3229 	if (obj != NULL)
3230 		d = obj->domain.dr_policy;
3231 	if (d == NULL)
3232 		d = curthread->td_domain.dr_policy;
3233 
3234 	vm_wait_doms(&d->ds_mask);
3235 }
3236 
3237 /*
3238  *	vm_domain_alloc_fail:
3239  *
3240  *	Called when a page allocation function fails.  Informs the
3241  *	pagedaemon and performs the requested wait.  Requires the
3242  *	domain_free and object lock on entry.  Returns with the
3243  *	object lock held and free lock released.  Returns an error when
3244  *	retry is necessary.
3245  *
3246  */
3247 static int
3248 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3249 {
3250 
3251 	vm_domain_free_assert_unlocked(vmd);
3252 
3253 	atomic_add_int(&vmd->vmd_pageout_deficit,
3254 	    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3255 	if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3256 		if (object != NULL)
3257 			VM_OBJECT_WUNLOCK(object);
3258 		vm_wait_domain(vmd->vmd_domain);
3259 		if (object != NULL)
3260 			VM_OBJECT_WLOCK(object);
3261 		if (req & VM_ALLOC_WAITOK)
3262 			return (EAGAIN);
3263 	}
3264 
3265 	return (0);
3266 }
3267 
3268 /*
3269  *	vm_waitpfault:
3270  *
3271  *	Sleep until free pages are available for allocation.
3272  *	- Called only in vm_fault so that processes page faulting
3273  *	  can be easily tracked.
3274  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3275  *	  processes will be able to grab memory first.  Do not change
3276  *	  this balance without careful testing first.
3277  */
3278 void
3279 vm_waitpfault(struct domainset *dset, int timo)
3280 {
3281 
3282 	/*
3283 	 * XXX Ideally we would wait only until the allocation could
3284 	 * be satisfied.  This condition can cause new allocators to
3285 	 * consume all freed pages while old allocators wait.
3286 	 */
3287 	mtx_lock(&vm_domainset_lock);
3288 	if (vm_page_count_min_set(&dset->ds_mask)) {
3289 		vm_min_waiters++;
3290 		msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3291 		    "pfault", timo);
3292 	} else
3293 		mtx_unlock(&vm_domainset_lock);
3294 }
3295 
3296 static struct vm_pagequeue *
3297 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3298 {
3299 
3300 	return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3301 }
3302 
3303 #ifdef INVARIANTS
3304 static struct vm_pagequeue *
3305 vm_page_pagequeue(vm_page_t m)
3306 {
3307 
3308 	return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3309 }
3310 #endif
3311 
3312 static __always_inline bool
3313 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3314 {
3315 	vm_page_astate_t tmp;
3316 
3317 	tmp = *old;
3318 	do {
3319 		if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3320 			return (true);
3321 		counter_u64_add(pqstate_commit_retries, 1);
3322 	} while (old->_bits == tmp._bits);
3323 
3324 	return (false);
3325 }
3326 
3327 /*
3328  * Do the work of committing a queue state update that moves the page out of
3329  * its current queue.
3330  */
3331 static bool
3332 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3333     vm_page_astate_t *old, vm_page_astate_t new)
3334 {
3335 	vm_page_t next;
3336 
3337 	vm_pagequeue_assert_locked(pq);
3338 	KASSERT(vm_page_pagequeue(m) == pq,
3339 	    ("%s: queue %p does not match page %p", __func__, pq, m));
3340 	KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3341 	    ("%s: invalid queue indices %d %d",
3342 	    __func__, old->queue, new.queue));
3343 
3344 	/*
3345 	 * Once the queue index of the page changes there is nothing
3346 	 * synchronizing with further updates to the page's physical
3347 	 * queue state.  Therefore we must speculatively remove the page
3348 	 * from the queue now and be prepared to roll back if the queue
3349 	 * state update fails.  If the page is not physically enqueued then
3350 	 * we just update its queue index.
3351 	 */
3352 	if ((old->flags & PGA_ENQUEUED) != 0) {
3353 		new.flags &= ~PGA_ENQUEUED;
3354 		next = TAILQ_NEXT(m, plinks.q);
3355 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3356 		vm_pagequeue_cnt_dec(pq);
3357 		if (!vm_page_pqstate_fcmpset(m, old, new)) {
3358 			if (next == NULL)
3359 				TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3360 			else
3361 				TAILQ_INSERT_BEFORE(next, m, plinks.q);
3362 			vm_pagequeue_cnt_inc(pq);
3363 			return (false);
3364 		} else {
3365 			return (true);
3366 		}
3367 	} else {
3368 		return (vm_page_pqstate_fcmpset(m, old, new));
3369 	}
3370 }
3371 
3372 static bool
3373 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3374     vm_page_astate_t new)
3375 {
3376 	struct vm_pagequeue *pq;
3377 	vm_page_astate_t as;
3378 	bool ret;
3379 
3380 	pq = _vm_page_pagequeue(m, old->queue);
3381 
3382 	/*
3383 	 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3384 	 * corresponding page queue lock is held.
3385 	 */
3386 	vm_pagequeue_lock(pq);
3387 	as = vm_page_astate_load(m);
3388 	if (__predict_false(as._bits != old->_bits)) {
3389 		*old = as;
3390 		ret = false;
3391 	} else {
3392 		ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3393 	}
3394 	vm_pagequeue_unlock(pq);
3395 	return (ret);
3396 }
3397 
3398 /*
3399  * Commit a queue state update that enqueues or requeues a page.
3400  */
3401 static bool
3402 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3403     vm_page_astate_t *old, vm_page_astate_t new)
3404 {
3405 	struct vm_domain *vmd;
3406 
3407 	vm_pagequeue_assert_locked(pq);
3408 	KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3409 	    ("%s: invalid queue indices %d %d",
3410 	    __func__, old->queue, new.queue));
3411 
3412 	new.flags |= PGA_ENQUEUED;
3413 	if (!vm_page_pqstate_fcmpset(m, old, new))
3414 		return (false);
3415 
3416 	if ((old->flags & PGA_ENQUEUED) != 0)
3417 		TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3418 	else
3419 		vm_pagequeue_cnt_inc(pq);
3420 
3421 	/*
3422 	 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3423 	 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3424 	 * applied, even if it was set first.
3425 	 */
3426 	if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3427 		vmd = vm_pagequeue_domain(m);
3428 		KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3429 		    ("%s: invalid page queue for page %p", __func__, m));
3430 		TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3431 	} else {
3432 		TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3433 	}
3434 	return (true);
3435 }
3436 
3437 /*
3438  * Commit a queue state update that encodes a request for a deferred queue
3439  * operation.
3440  */
3441 static bool
3442 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3443     vm_page_astate_t new)
3444 {
3445 
3446 	KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3447 	    ("%s: invalid state, queue %d flags %x",
3448 	    __func__, new.queue, new.flags));
3449 
3450 	if (old->_bits != new._bits &&
3451 	    !vm_page_pqstate_fcmpset(m, old, new))
3452 		return (false);
3453 	vm_page_pqbatch_submit(m, new.queue);
3454 	return (true);
3455 }
3456 
3457 /*
3458  * A generic queue state update function.  This handles more cases than the
3459  * specialized functions above.
3460  */
3461 bool
3462 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3463 {
3464 
3465 	if (old->_bits == new._bits)
3466 		return (true);
3467 
3468 	if (old->queue != PQ_NONE && new.queue != old->queue) {
3469 		if (!vm_page_pqstate_commit_dequeue(m, old, new))
3470 			return (false);
3471 		if (new.queue != PQ_NONE)
3472 			vm_page_pqbatch_submit(m, new.queue);
3473 	} else {
3474 		if (!vm_page_pqstate_fcmpset(m, old, new))
3475 			return (false);
3476 		if (new.queue != PQ_NONE &&
3477 		    ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3478 			vm_page_pqbatch_submit(m, new.queue);
3479 	}
3480 	return (true);
3481 }
3482 
3483 /*
3484  * Apply deferred queue state updates to a page.
3485  */
3486 static inline void
3487 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3488 {
3489 	vm_page_astate_t new, old;
3490 
3491 	CRITICAL_ASSERT(curthread);
3492 	vm_pagequeue_assert_locked(pq);
3493 	KASSERT(queue < PQ_COUNT,
3494 	    ("%s: invalid queue index %d", __func__, queue));
3495 	KASSERT(pq == _vm_page_pagequeue(m, queue),
3496 	    ("%s: page %p does not belong to queue %p", __func__, m, pq));
3497 
3498 	for (old = vm_page_astate_load(m);;) {
3499 		if (__predict_false(old.queue != queue ||
3500 		    (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3501 			counter_u64_add(queue_nops, 1);
3502 			break;
3503 		}
3504 		KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3505 		    ("%s: page %p has unexpected queue state", __func__, m));
3506 
3507 		new = old;
3508 		if ((old.flags & PGA_DEQUEUE) != 0) {
3509 			new.flags &= ~PGA_QUEUE_OP_MASK;
3510 			new.queue = PQ_NONE;
3511 			if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3512 			    m, &old, new))) {
3513 				counter_u64_add(queue_ops, 1);
3514 				break;
3515 			}
3516 		} else {
3517 			new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3518 			if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3519 			    m, &old, new))) {
3520 				counter_u64_add(queue_ops, 1);
3521 				break;
3522 			}
3523 		}
3524 	}
3525 }
3526 
3527 static void
3528 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3529     uint8_t queue)
3530 {
3531 	int i;
3532 
3533 	for (i = 0; i < bq->bq_cnt; i++)
3534 		vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3535 	vm_batchqueue_init(bq);
3536 }
3537 
3538 /*
3539  *	vm_page_pqbatch_submit:		[ internal use only ]
3540  *
3541  *	Enqueue a page in the specified page queue's batched work queue.
3542  *	The caller must have encoded the requested operation in the page
3543  *	structure's a.flags field.
3544  */
3545 void
3546 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3547 {
3548 	struct vm_batchqueue *bq;
3549 	struct vm_pagequeue *pq;
3550 	int domain;
3551 
3552 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3553 	    ("page %p is unmanaged", m));
3554 	KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3555 
3556 	domain = vm_phys_domain(m);
3557 	pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3558 
3559 	critical_enter();
3560 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3561 	if (vm_batchqueue_insert(bq, m)) {
3562 		critical_exit();
3563 		return;
3564 	}
3565 	critical_exit();
3566 	vm_pagequeue_lock(pq);
3567 	critical_enter();
3568 	bq = DPCPU_PTR(pqbatch[domain][queue]);
3569 	vm_pqbatch_process(pq, bq, queue);
3570 	vm_pqbatch_process_page(pq, m, queue);
3571 	vm_pagequeue_unlock(pq);
3572 	critical_exit();
3573 }
3574 
3575 /*
3576  *	vm_page_pqbatch_drain:		[ internal use only ]
3577  *
3578  *	Force all per-CPU page queue batch queues to be drained.  This is
3579  *	intended for use in severe memory shortages, to ensure that pages
3580  *	do not remain stuck in the batch queues.
3581  */
3582 void
3583 vm_page_pqbatch_drain(void)
3584 {
3585 	struct thread *td;
3586 	struct vm_domain *vmd;
3587 	struct vm_pagequeue *pq;
3588 	int cpu, domain, queue;
3589 
3590 	td = curthread;
3591 	CPU_FOREACH(cpu) {
3592 		thread_lock(td);
3593 		sched_bind(td, cpu);
3594 		thread_unlock(td);
3595 
3596 		for (domain = 0; domain < vm_ndomains; domain++) {
3597 			vmd = VM_DOMAIN(domain);
3598 			for (queue = 0; queue < PQ_COUNT; queue++) {
3599 				pq = &vmd->vmd_pagequeues[queue];
3600 				vm_pagequeue_lock(pq);
3601 				critical_enter();
3602 				vm_pqbatch_process(pq,
3603 				    DPCPU_PTR(pqbatch[domain][queue]), queue);
3604 				critical_exit();
3605 				vm_pagequeue_unlock(pq);
3606 			}
3607 		}
3608 	}
3609 	thread_lock(td);
3610 	sched_unbind(td);
3611 	thread_unlock(td);
3612 }
3613 
3614 /*
3615  *	vm_page_dequeue_deferred:	[ internal use only ]
3616  *
3617  *	Request removal of the given page from its current page
3618  *	queue.  Physical removal from the queue may be deferred
3619  *	indefinitely.
3620  *
3621  *	The page must be locked.
3622  */
3623 void
3624 vm_page_dequeue_deferred(vm_page_t m)
3625 {
3626 	vm_page_astate_t new, old;
3627 
3628 	old = vm_page_astate_load(m);
3629 	do {
3630 		if (old.queue == PQ_NONE) {
3631 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3632 			    ("%s: page %p has unexpected queue state",
3633 			    __func__, m));
3634 			break;
3635 		}
3636 		new = old;
3637 		new.flags |= PGA_DEQUEUE;
3638 	} while (!vm_page_pqstate_commit_request(m, &old, new));
3639 }
3640 
3641 /*
3642  *	vm_page_dequeue:
3643  *
3644  *	Remove the page from whichever page queue it's in, if any, before
3645  *	returning.
3646  */
3647 void
3648 vm_page_dequeue(vm_page_t m)
3649 {
3650 	vm_page_astate_t new, old;
3651 
3652 	old = vm_page_astate_load(m);
3653 	do {
3654 		if (old.queue == PQ_NONE) {
3655 			KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3656 			    ("%s: page %p has unexpected queue state",
3657 			    __func__, m));
3658 			break;
3659 		}
3660 		new = old;
3661 		new.flags &= ~PGA_QUEUE_OP_MASK;
3662 		new.queue = PQ_NONE;
3663 	} while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3664 
3665 }
3666 
3667 /*
3668  * Schedule the given page for insertion into the specified page queue.
3669  * Physical insertion of the page may be deferred indefinitely.
3670  */
3671 static void
3672 vm_page_enqueue(vm_page_t m, uint8_t queue)
3673 {
3674 
3675 	KASSERT(m->a.queue == PQ_NONE &&
3676 	    (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3677 	    ("%s: page %p is already enqueued", __func__, m));
3678 	KASSERT(m->ref_count > 0,
3679 	    ("%s: page %p does not carry any references", __func__, m));
3680 
3681 	m->a.queue = queue;
3682 	if ((m->a.flags & PGA_REQUEUE) == 0)
3683 		vm_page_aflag_set(m, PGA_REQUEUE);
3684 	vm_page_pqbatch_submit(m, queue);
3685 }
3686 
3687 /*
3688  *	vm_page_free_prep:
3689  *
3690  *	Prepares the given page to be put on the free list,
3691  *	disassociating it from any VM object. The caller may return
3692  *	the page to the free list only if this function returns true.
3693  *
3694  *	The object, if it exists, must be locked, and then the page must
3695  *	be xbusy.  Otherwise the page must be not busied.  A managed
3696  *	page must be unmapped.
3697  */
3698 static bool
3699 vm_page_free_prep(vm_page_t m)
3700 {
3701 
3702 	/*
3703 	 * Synchronize with threads that have dropped a reference to this
3704 	 * page.
3705 	 */
3706 	atomic_thread_fence_acq();
3707 
3708 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3709 	if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3710 		uint64_t *p;
3711 		int i;
3712 		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3713 		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3714 			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3715 			    m, i, (uintmax_t)*p));
3716 	}
3717 #endif
3718 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3719 		KASSERT(!pmap_page_is_mapped(m),
3720 		    ("vm_page_free_prep: freeing mapped page %p", m));
3721 		KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3722 		    ("vm_page_free_prep: mapping flags set in page %p", m));
3723 	} else {
3724 		KASSERT(m->a.queue == PQ_NONE,
3725 		    ("vm_page_free_prep: unmanaged page %p is queued", m));
3726 	}
3727 	VM_CNT_INC(v_tfree);
3728 
3729 	if (m->object != NULL) {
3730 		KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3731 		    ((m->object->flags & OBJ_UNMANAGED) != 0),
3732 		    ("vm_page_free_prep: managed flag mismatch for page %p",
3733 		    m));
3734 		vm_page_assert_xbusied(m);
3735 
3736 		/*
3737 		 * The object reference can be released without an atomic
3738 		 * operation.
3739 		 */
3740 		KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3741 		    m->ref_count == VPRC_OBJREF,
3742 		    ("vm_page_free_prep: page %p has unexpected ref_count %u",
3743 		    m, m->ref_count));
3744 		vm_page_object_remove(m);
3745 		m->ref_count -= VPRC_OBJREF;
3746 	} else
3747 		vm_page_assert_unbusied(m);
3748 
3749 	vm_page_busy_free(m);
3750 
3751 	/*
3752 	 * If fictitious remove object association and
3753 	 * return.
3754 	 */
3755 	if ((m->flags & PG_FICTITIOUS) != 0) {
3756 		KASSERT(m->ref_count == 1,
3757 		    ("fictitious page %p is referenced", m));
3758 		KASSERT(m->a.queue == PQ_NONE,
3759 		    ("fictitious page %p is queued", m));
3760 		return (false);
3761 	}
3762 
3763 	/*
3764 	 * Pages need not be dequeued before they are returned to the physical
3765 	 * memory allocator, but they must at least be marked for a deferred
3766 	 * dequeue.
3767 	 */
3768 	if ((m->oflags & VPO_UNMANAGED) == 0)
3769 		vm_page_dequeue_deferred(m);
3770 
3771 	m->valid = 0;
3772 	vm_page_undirty(m);
3773 
3774 	if (m->ref_count != 0)
3775 		panic("vm_page_free_prep: page %p has references", m);
3776 
3777 	/*
3778 	 * Restore the default memory attribute to the page.
3779 	 */
3780 	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3781 		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3782 
3783 #if VM_NRESERVLEVEL > 0
3784 	/*
3785 	 * Determine whether the page belongs to a reservation.  If the page was
3786 	 * allocated from a per-CPU cache, it cannot belong to a reservation, so
3787 	 * as an optimization, we avoid the check in that case.
3788 	 */
3789 	if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3790 		return (false);
3791 #endif
3792 
3793 	return (true);
3794 }
3795 
3796 /*
3797  *	vm_page_free_toq:
3798  *
3799  *	Returns the given page to the free list, disassociating it
3800  *	from any VM object.
3801  *
3802  *	The object must be locked.  The page must be locked if it is
3803  *	managed.
3804  */
3805 static void
3806 vm_page_free_toq(vm_page_t m)
3807 {
3808 	struct vm_domain *vmd;
3809 	uma_zone_t zone;
3810 
3811 	if (!vm_page_free_prep(m))
3812 		return;
3813 
3814 	vmd = vm_pagequeue_domain(m);
3815 	zone = vmd->vmd_pgcache[m->pool].zone;
3816 	if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3817 		uma_zfree(zone, m);
3818 		return;
3819 	}
3820 	vm_domain_free_lock(vmd);
3821 	vm_phys_free_pages(m, 0);
3822 	vm_domain_free_unlock(vmd);
3823 	vm_domain_freecnt_inc(vmd, 1);
3824 }
3825 
3826 /*
3827  *	vm_page_free_pages_toq:
3828  *
3829  *	Returns a list of pages to the free list, disassociating it
3830  *	from any VM object.  In other words, this is equivalent to
3831  *	calling vm_page_free_toq() for each page of a list of VM objects.
3832  *
3833  *	The objects must be locked.  The pages must be locked if it is
3834  *	managed.
3835  */
3836 void
3837 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3838 {
3839 	vm_page_t m;
3840 	int count;
3841 
3842 	if (SLIST_EMPTY(free))
3843 		return;
3844 
3845 	count = 0;
3846 	while ((m = SLIST_FIRST(free)) != NULL) {
3847 		count++;
3848 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
3849 		vm_page_free_toq(m);
3850 	}
3851 
3852 	if (update_wire_count)
3853 		vm_wire_sub(count);
3854 }
3855 
3856 /*
3857  * Mark this page as wired down, preventing reclamation by the page daemon
3858  * or when the containing object is destroyed.
3859  */
3860 void
3861 vm_page_wire(vm_page_t m)
3862 {
3863 	u_int old;
3864 
3865 	KASSERT(m->object != NULL,
3866 	    ("vm_page_wire: page %p does not belong to an object", m));
3867 	if (!vm_page_busied(m) && !vm_object_busied(m->object))
3868 		VM_OBJECT_ASSERT_LOCKED(m->object);
3869 	KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3870 	    VPRC_WIRE_COUNT(m->ref_count) >= 1,
3871 	    ("vm_page_wire: fictitious page %p has zero wirings", m));
3872 
3873 	old = atomic_fetchadd_int(&m->ref_count, 1);
3874 	KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3875 	    ("vm_page_wire: counter overflow for page %p", m));
3876 	if (VPRC_WIRE_COUNT(old) == 0) {
3877 		if ((m->oflags & VPO_UNMANAGED) == 0)
3878 			vm_page_aflag_set(m, PGA_DEQUEUE);
3879 		vm_wire_add(1);
3880 	}
3881 }
3882 
3883 /*
3884  * Attempt to wire a mapped page following a pmap lookup of that page.
3885  * This may fail if a thread is concurrently tearing down mappings of the page.
3886  * The transient failure is acceptable because it translates to the
3887  * failure of the caller pmap_extract_and_hold(), which should be then
3888  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3889  */
3890 bool
3891 vm_page_wire_mapped(vm_page_t m)
3892 {
3893 	u_int old;
3894 
3895 	old = m->ref_count;
3896 	do {
3897 		KASSERT(old > 0,
3898 		    ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3899 		if ((old & VPRC_BLOCKED) != 0)
3900 			return (false);
3901 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3902 
3903 	if (VPRC_WIRE_COUNT(old) == 0) {
3904 		if ((m->oflags & VPO_UNMANAGED) == 0)
3905 			vm_page_aflag_set(m, PGA_DEQUEUE);
3906 		vm_wire_add(1);
3907 	}
3908 	return (true);
3909 }
3910 
3911 /*
3912  * Release a wiring reference to a managed page.  If the page still belongs to
3913  * an object, update its position in the page queues to reflect the reference.
3914  * If the wiring was the last reference to the page, free the page.
3915  */
3916 static void
3917 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3918 {
3919 	u_int old;
3920 
3921 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3922 	    ("%s: page %p is unmanaged", __func__, m));
3923 
3924 	/*
3925 	 * Update LRU state before releasing the wiring reference.
3926 	 * Use a release store when updating the reference count to
3927 	 * synchronize with vm_page_free_prep().
3928 	 */
3929 	old = m->ref_count;
3930 	do {
3931 		KASSERT(VPRC_WIRE_COUNT(old) > 0,
3932 		    ("vm_page_unwire: wire count underflow for page %p", m));
3933 
3934 		if (old > VPRC_OBJREF + 1) {
3935 			/*
3936 			 * The page has at least one other wiring reference.  An
3937 			 * earlier iteration of this loop may have called
3938 			 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3939 			 * re-set it if necessary.
3940 			 */
3941 			if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3942 				vm_page_aflag_set(m, PGA_DEQUEUE);
3943 		} else if (old == VPRC_OBJREF + 1) {
3944 			/*
3945 			 * This is the last wiring.  Clear PGA_DEQUEUE and
3946 			 * update the page's queue state to reflect the
3947 			 * reference.  If the page does not belong to an object
3948 			 * (i.e., the VPRC_OBJREF bit is clear), we only need to
3949 			 * clear leftover queue state.
3950 			 */
3951 			vm_page_release_toq(m, nqueue, false);
3952 		} else if (old == 1) {
3953 			vm_page_aflag_clear(m, PGA_DEQUEUE);
3954 		}
3955 	} while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3956 
3957 	if (VPRC_WIRE_COUNT(old) == 1) {
3958 		vm_wire_sub(1);
3959 		if (old == 1)
3960 			vm_page_free(m);
3961 	}
3962 }
3963 
3964 /*
3965  * Release one wiring of the specified page, potentially allowing it to be
3966  * paged out.
3967  *
3968  * Only managed pages belonging to an object can be paged out.  If the number
3969  * of wirings transitions to zero and the page is eligible for page out, then
3970  * the page is added to the specified paging queue.  If the released wiring
3971  * represented the last reference to the page, the page is freed.
3972  *
3973  * A managed page must be locked.
3974  */
3975 void
3976 vm_page_unwire(vm_page_t m, uint8_t nqueue)
3977 {
3978 
3979 	KASSERT(nqueue < PQ_COUNT,
3980 	    ("vm_page_unwire: invalid queue %u request for page %p",
3981 	    nqueue, m));
3982 
3983 	if ((m->oflags & VPO_UNMANAGED) != 0) {
3984 		if (vm_page_unwire_noq(m) && m->ref_count == 0)
3985 			vm_page_free(m);
3986 		return;
3987 	}
3988 	vm_page_unwire_managed(m, nqueue, false);
3989 }
3990 
3991 /*
3992  * Unwire a page without (re-)inserting it into a page queue.  It is up
3993  * to the caller to enqueue, requeue, or free the page as appropriate.
3994  * In most cases involving managed pages, vm_page_unwire() should be used
3995  * instead.
3996  */
3997 bool
3998 vm_page_unwire_noq(vm_page_t m)
3999 {
4000 	u_int old;
4001 
4002 	old = vm_page_drop(m, 1);
4003 	KASSERT(VPRC_WIRE_COUNT(old) != 0,
4004 	    ("vm_page_unref: counter underflow for page %p", m));
4005 	KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4006 	    ("vm_page_unref: missing ref on fictitious page %p", m));
4007 
4008 	if (VPRC_WIRE_COUNT(old) > 1)
4009 		return (false);
4010 	if ((m->oflags & VPO_UNMANAGED) == 0)
4011 		vm_page_aflag_clear(m, PGA_DEQUEUE);
4012 	vm_wire_sub(1);
4013 	return (true);
4014 }
4015 
4016 /*
4017  * Ensure that the page ends up in the specified page queue.  If the page is
4018  * active or being moved to the active queue, ensure that its act_count is
4019  * at least ACT_INIT but do not otherwise mess with it.
4020  *
4021  * A managed page must be locked.
4022  */
4023 static __always_inline void
4024 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4025 {
4026 	vm_page_astate_t old, new;
4027 
4028 	KASSERT(m->ref_count > 0,
4029 	    ("%s: page %p does not carry any references", __func__, m));
4030 	KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4031 	    ("%s: invalid flags %x", __func__, nflag));
4032 
4033 	if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4034 		return;
4035 
4036 	old = vm_page_astate_load(m);
4037 	do {
4038 		if ((old.flags & PGA_DEQUEUE) != 0)
4039 			break;
4040 		new = old;
4041 		new.flags &= ~PGA_QUEUE_OP_MASK;
4042 		if (nqueue == PQ_ACTIVE)
4043 			new.act_count = max(old.act_count, ACT_INIT);
4044 		if (old.queue == nqueue) {
4045 			if (nqueue != PQ_ACTIVE)
4046 				new.flags |= nflag;
4047 		} else {
4048 			new.flags |= nflag;
4049 			new.queue = nqueue;
4050 		}
4051 	} while (!vm_page_pqstate_commit(m, &old, new));
4052 }
4053 
4054 /*
4055  * Put the specified page on the active list (if appropriate).
4056  */
4057 void
4058 vm_page_activate(vm_page_t m)
4059 {
4060 
4061 	vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4062 }
4063 
4064 /*
4065  * Move the specified page to the tail of the inactive queue, or requeue
4066  * the page if it is already in the inactive queue.
4067  */
4068 void
4069 vm_page_deactivate(vm_page_t m)
4070 {
4071 
4072 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4073 }
4074 
4075 void
4076 vm_page_deactivate_noreuse(vm_page_t m)
4077 {
4078 
4079 	vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4080 }
4081 
4082 /*
4083  * Put a page in the laundry, or requeue it if it is already there.
4084  */
4085 void
4086 vm_page_launder(vm_page_t m)
4087 {
4088 
4089 	vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4090 }
4091 
4092 /*
4093  * Put a page in the PQ_UNSWAPPABLE holding queue.
4094  */
4095 void
4096 vm_page_unswappable(vm_page_t m)
4097 {
4098 
4099 	KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4100 	    ("page %p already unswappable", m));
4101 
4102 	vm_page_dequeue(m);
4103 	vm_page_enqueue(m, PQ_UNSWAPPABLE);
4104 }
4105 
4106 /*
4107  * Release a page back to the page queues in preparation for unwiring.
4108  */
4109 static void
4110 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4111 {
4112 	vm_page_astate_t old, new;
4113 	uint16_t nflag;
4114 
4115 	/*
4116 	 * Use a check of the valid bits to determine whether we should
4117 	 * accelerate reclamation of the page.  The object lock might not be
4118 	 * held here, in which case the check is racy.  At worst we will either
4119 	 * accelerate reclamation of a valid page and violate LRU, or
4120 	 * unnecessarily defer reclamation of an invalid page.
4121 	 *
4122 	 * If we were asked to not cache the page, place it near the head of the
4123 	 * inactive queue so that is reclaimed sooner.
4124 	 */
4125 	if (noreuse || m->valid == 0) {
4126 		nqueue = PQ_INACTIVE;
4127 		nflag = PGA_REQUEUE_HEAD;
4128 	} else {
4129 		nflag = PGA_REQUEUE;
4130 	}
4131 
4132 	old = vm_page_astate_load(m);
4133 	do {
4134 		new = old;
4135 
4136 		/*
4137 		 * If the page is already in the active queue and we are not
4138 		 * trying to accelerate reclamation, simply mark it as
4139 		 * referenced and avoid any queue operations.
4140 		 */
4141 		new.flags &= ~PGA_QUEUE_OP_MASK;
4142 		if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4143 			new.flags |= PGA_REFERENCED;
4144 		else {
4145 			new.flags |= nflag;
4146 			new.queue = nqueue;
4147 		}
4148 	} while (!vm_page_pqstate_commit(m, &old, new));
4149 }
4150 
4151 /*
4152  * Unwire a page and either attempt to free it or re-add it to the page queues.
4153  */
4154 void
4155 vm_page_release(vm_page_t m, int flags)
4156 {
4157 	vm_object_t object;
4158 
4159 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4160 	    ("vm_page_release: page %p is unmanaged", m));
4161 
4162 	if ((flags & VPR_TRYFREE) != 0) {
4163 		for (;;) {
4164 			object = atomic_load_ptr(&m->object);
4165 			if (object == NULL)
4166 				break;
4167 			/* Depends on type-stability. */
4168 			if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4169 				break;
4170 			if (object == m->object) {
4171 				vm_page_release_locked(m, flags);
4172 				VM_OBJECT_WUNLOCK(object);
4173 				return;
4174 			}
4175 			VM_OBJECT_WUNLOCK(object);
4176 		}
4177 	}
4178 	vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4179 }
4180 
4181 /* See vm_page_release(). */
4182 void
4183 vm_page_release_locked(vm_page_t m, int flags)
4184 {
4185 
4186 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4187 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4188 	    ("vm_page_release_locked: page %p is unmanaged", m));
4189 
4190 	if (vm_page_unwire_noq(m)) {
4191 		if ((flags & VPR_TRYFREE) != 0 &&
4192 		    (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4193 		    m->dirty == 0 && vm_page_tryxbusy(m)) {
4194 			/*
4195 			 * An unlocked lookup may have wired the page before the
4196 			 * busy lock was acquired, in which case the page must
4197 			 * not be freed.
4198 			 */
4199 			if (__predict_true(!vm_page_wired(m))) {
4200 				vm_page_free(m);
4201 				return;
4202 			}
4203 			vm_page_xunbusy(m);
4204 		} else {
4205 			vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4206 		}
4207 	}
4208 }
4209 
4210 static bool
4211 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4212 {
4213 	u_int old;
4214 
4215 	KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4216 	    ("vm_page_try_blocked_op: page %p has no object", m));
4217 	KASSERT(vm_page_busied(m),
4218 	    ("vm_page_try_blocked_op: page %p is not busy", m));
4219 	VM_OBJECT_ASSERT_LOCKED(m->object);
4220 
4221 	old = m->ref_count;
4222 	do {
4223 		KASSERT(old != 0,
4224 		    ("vm_page_try_blocked_op: page %p has no references", m));
4225 		if (VPRC_WIRE_COUNT(old) != 0)
4226 			return (false);
4227 	} while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4228 
4229 	(op)(m);
4230 
4231 	/*
4232 	 * If the object is read-locked, new wirings may be created via an
4233 	 * object lookup.
4234 	 */
4235 	old = vm_page_drop(m, VPRC_BLOCKED);
4236 	KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4237 	    old == (VPRC_BLOCKED | VPRC_OBJREF),
4238 	    ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4239 	    old, m));
4240 	return (true);
4241 }
4242 
4243 /*
4244  * Atomically check for wirings and remove all mappings of the page.
4245  */
4246 bool
4247 vm_page_try_remove_all(vm_page_t m)
4248 {
4249 
4250 	return (vm_page_try_blocked_op(m, pmap_remove_all));
4251 }
4252 
4253 /*
4254  * Atomically check for wirings and remove all writeable mappings of the page.
4255  */
4256 bool
4257 vm_page_try_remove_write(vm_page_t m)
4258 {
4259 
4260 	return (vm_page_try_blocked_op(m, pmap_remove_write));
4261 }
4262 
4263 /*
4264  * vm_page_advise
4265  *
4266  * 	Apply the specified advice to the given page.
4267  *
4268  *	The object and page must be locked.
4269  */
4270 void
4271 vm_page_advise(vm_page_t m, int advice)
4272 {
4273 
4274 	VM_OBJECT_ASSERT_WLOCKED(m->object);
4275 	if (advice == MADV_FREE)
4276 		/*
4277 		 * Mark the page clean.  This will allow the page to be freed
4278 		 * without first paging it out.  MADV_FREE pages are often
4279 		 * quickly reused by malloc(3), so we do not do anything that
4280 		 * would result in a page fault on a later access.
4281 		 */
4282 		vm_page_undirty(m);
4283 	else if (advice != MADV_DONTNEED) {
4284 		if (advice == MADV_WILLNEED)
4285 			vm_page_activate(m);
4286 		return;
4287 	}
4288 
4289 	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4290 		vm_page_dirty(m);
4291 
4292 	/*
4293 	 * Clear any references to the page.  Otherwise, the page daemon will
4294 	 * immediately reactivate the page.
4295 	 */
4296 	vm_page_aflag_clear(m, PGA_REFERENCED);
4297 
4298 	/*
4299 	 * Place clean pages near the head of the inactive queue rather than
4300 	 * the tail, thus defeating the queue's LRU operation and ensuring that
4301 	 * the page will be reused quickly.  Dirty pages not already in the
4302 	 * laundry are moved there.
4303 	 */
4304 	if (m->dirty == 0)
4305 		vm_page_deactivate_noreuse(m);
4306 	else if (!vm_page_in_laundry(m))
4307 		vm_page_launder(m);
4308 }
4309 
4310 /*
4311  *	vm_page_grab_release
4312  *
4313  *	Helper routine for grab functions to release busy on return.
4314  */
4315 static inline void
4316 vm_page_grab_release(vm_page_t m, int allocflags)
4317 {
4318 
4319 	if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4320 		if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4321 			vm_page_sunbusy(m);
4322 		else
4323 			vm_page_xunbusy(m);
4324 	}
4325 }
4326 
4327 /*
4328  *	vm_page_grab_sleep
4329  *
4330  *	Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4331  *	if the caller should retry and false otherwise.
4332  *
4333  *	If the object is locked on entry the object will be unlocked with
4334  *	false returns and still locked but possibly having been dropped
4335  *	with true returns.
4336  */
4337 static bool
4338 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4339     const char *wmesg, int allocflags, bool locked)
4340 {
4341 
4342 	if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4343 		return (false);
4344 
4345 	/*
4346 	 * Reference the page before unlocking and sleeping so that
4347 	 * the page daemon is less likely to reclaim it.
4348 	 */
4349 	if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4350 		vm_page_reference(m);
4351 
4352 	if (_vm_page_busy_sleep(object, m, m->pindex, wmesg, allocflags,
4353 	    locked) && locked)
4354 		VM_OBJECT_WLOCK(object);
4355 	if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4356 		return (false);
4357 
4358 	return (true);
4359 }
4360 
4361 /*
4362  * Assert that the grab flags are valid.
4363  */
4364 static inline void
4365 vm_page_grab_check(int allocflags)
4366 {
4367 
4368 	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4369 	    (allocflags & VM_ALLOC_WIRED) != 0,
4370 	    ("vm_page_grab*: the pages must be busied or wired"));
4371 
4372 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4373 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4374 	    ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4375 }
4376 
4377 /*
4378  * Calculate the page allocation flags for grab.
4379  */
4380 static inline int
4381 vm_page_grab_pflags(int allocflags)
4382 {
4383 	int pflags;
4384 
4385 	pflags = allocflags &
4386 	    ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4387 	    VM_ALLOC_NOBUSY);
4388 	if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4389 		pflags |= VM_ALLOC_WAITFAIL;
4390 	if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4391 		pflags |= VM_ALLOC_SBUSY;
4392 
4393 	return (pflags);
4394 }
4395 
4396 /*
4397  * Grab a page, waiting until we are waken up due to the page
4398  * changing state.  We keep on waiting, if the page continues
4399  * to be in the object.  If the page doesn't exist, first allocate it
4400  * and then conditionally zero it.
4401  *
4402  * This routine may sleep.
4403  *
4404  * The object must be locked on entry.  The lock will, however, be released
4405  * and reacquired if the routine sleeps.
4406  */
4407 vm_page_t
4408 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4409 {
4410 	vm_page_t m;
4411 
4412 	VM_OBJECT_ASSERT_WLOCKED(object);
4413 	vm_page_grab_check(allocflags);
4414 
4415 retrylookup:
4416 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4417 		if (!vm_page_tryacquire(m, allocflags)) {
4418 			if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4419 			    allocflags, true))
4420 				goto retrylookup;
4421 			return (NULL);
4422 		}
4423 		goto out;
4424 	}
4425 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4426 		return (NULL);
4427 	m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4428 	if (m == NULL) {
4429 		if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4430 			return (NULL);
4431 		goto retrylookup;
4432 	}
4433 	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4434 		pmap_zero_page(m);
4435 
4436 out:
4437 	vm_page_grab_release(m, allocflags);
4438 
4439 	return (m);
4440 }
4441 
4442 /*
4443  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4444  * and an optional previous page to avoid the radix lookup.  The resulting
4445  * page will be validated against the identity tuple and busied or wired
4446  * as requested.  A NULL *mp return guarantees that the page was not in
4447  * radix at the time of the call but callers must perform higher level
4448  * synchronization or retry the operation under a lock if they require
4449  * an atomic answer.  This is the only lock free validation routine,
4450  * other routines can depend on the resulting page state.
4451  *
4452  * The return value indicates whether the operation failed due to caller
4453  * flags.  The return is tri-state with mp:
4454  *
4455  * (true, *mp != NULL) - The operation was successful.
4456  * (true, *mp == NULL) - The page was not found in tree.
4457  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4458  */
4459 static bool
4460 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4461     vm_page_t prev, vm_page_t *mp, int allocflags)
4462 {
4463 	vm_page_t m;
4464 
4465 	vm_page_grab_check(allocflags);
4466 	MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4467 
4468 	*mp = NULL;
4469 	for (;;) {
4470 		/*
4471 		 * We may see a false NULL here because the previous page
4472 		 * has been removed or just inserted and the list is loaded
4473 		 * without barriers.  Switch to radix to verify.
4474 		 */
4475 		if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4476 		    QMD_IS_TRASHED(m) || m->pindex != pindex ||
4477 		    atomic_load_ptr(&m->object) != object) {
4478 			prev = NULL;
4479 			/*
4480 			 * This guarantees the result is instantaneously
4481 			 * correct.
4482 			 */
4483 			m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4484 		}
4485 		if (m == NULL)
4486 			return (true);
4487 		if (vm_page_trybusy(m, allocflags)) {
4488 			if (m->object == object && m->pindex == pindex)
4489 				break;
4490 			/* relookup. */
4491 			vm_page_busy_release(m);
4492 			cpu_spinwait();
4493 			continue;
4494 		}
4495 		if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4496 		    allocflags, false))
4497 			return (false);
4498 	}
4499 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4500 		vm_page_wire(m);
4501 	vm_page_grab_release(m, allocflags);
4502 	*mp = m;
4503 	return (true);
4504 }
4505 
4506 /*
4507  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4508  * is not set.
4509  */
4510 vm_page_t
4511 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4512 {
4513 	vm_page_t m;
4514 
4515 	vm_page_grab_check(allocflags);
4516 
4517 	if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4518 		return (NULL);
4519 	if (m != NULL)
4520 		return (m);
4521 
4522 	/*
4523 	 * The radix lockless lookup should never return a false negative
4524 	 * errors.  If the user specifies NOCREAT they are guaranteed there
4525 	 * was no page present at the instant of the call.  A NOCREAT caller
4526 	 * must handle create races gracefully.
4527 	 */
4528 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4529 		return (NULL);
4530 
4531 	VM_OBJECT_WLOCK(object);
4532 	m = vm_page_grab(object, pindex, allocflags);
4533 	VM_OBJECT_WUNLOCK(object);
4534 
4535 	return (m);
4536 }
4537 
4538 /*
4539  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4540  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4541  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4542  * in simultaneously.  Additional pages will be left on a paging queue but
4543  * will neither be wired nor busy regardless of allocflags.
4544  */
4545 int
4546 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4547 {
4548 	vm_page_t m;
4549 	vm_page_t ma[VM_INITIAL_PAGEIN];
4550 	int after, i, pflags, rv;
4551 
4552 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4553 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4554 	    ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4555 	KASSERT((allocflags &
4556 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4557 	    ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4558 	VM_OBJECT_ASSERT_WLOCKED(object);
4559 	pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4560 	    VM_ALLOC_WIRED);
4561 	pflags |= VM_ALLOC_WAITFAIL;
4562 
4563 retrylookup:
4564 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
4565 		/*
4566 		 * If the page is fully valid it can only become invalid
4567 		 * with the object lock held.  If it is not valid it can
4568 		 * become valid with the busy lock held.  Therefore, we
4569 		 * may unnecessarily lock the exclusive busy here if we
4570 		 * race with I/O completion not using the object lock.
4571 		 * However, we will not end up with an invalid page and a
4572 		 * shared lock.
4573 		 */
4574 		if (!vm_page_trybusy(m,
4575 		    vm_page_all_valid(m) ? allocflags : 0)) {
4576 			(void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4577 			    allocflags, true);
4578 			goto retrylookup;
4579 		}
4580 		if (vm_page_all_valid(m))
4581 			goto out;
4582 		if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4583 			vm_page_busy_release(m);
4584 			*mp = NULL;
4585 			return (VM_PAGER_FAIL);
4586 		}
4587 	} else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4588 		*mp = NULL;
4589 		return (VM_PAGER_FAIL);
4590 	} else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4591 		goto retrylookup;
4592 	}
4593 
4594 	vm_page_assert_xbusied(m);
4595 	if (vm_pager_has_page(object, pindex, NULL, &after)) {
4596 		after = MIN(after, VM_INITIAL_PAGEIN);
4597 		after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4598 		after = MAX(after, 1);
4599 		ma[0] = m;
4600 		for (i = 1; i < after; i++) {
4601 			if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4602 				if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4603 					break;
4604 			} else {
4605 				ma[i] = vm_page_alloc(object, m->pindex + i,
4606 				    VM_ALLOC_NORMAL);
4607 				if (ma[i] == NULL)
4608 					break;
4609 			}
4610 		}
4611 		after = i;
4612 		vm_object_pip_add(object, after);
4613 		VM_OBJECT_WUNLOCK(object);
4614 		rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4615 		VM_OBJECT_WLOCK(object);
4616 		vm_object_pip_wakeupn(object, after);
4617 		/* Pager may have replaced a page. */
4618 		m = ma[0];
4619 		if (rv != VM_PAGER_OK) {
4620 			for (i = 0; i < after; i++) {
4621 				if (!vm_page_wired(ma[i]))
4622 					vm_page_free(ma[i]);
4623 				else
4624 					vm_page_xunbusy(ma[i]);
4625 			}
4626 			*mp = NULL;
4627 			return (rv);
4628 		}
4629 		for (i = 1; i < after; i++)
4630 			vm_page_readahead_finish(ma[i]);
4631 		MPASS(vm_page_all_valid(m));
4632 	} else {
4633 		vm_page_zero_invalid(m, TRUE);
4634 	}
4635 out:
4636 	if ((allocflags & VM_ALLOC_WIRED) != 0)
4637 		vm_page_wire(m);
4638 	if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4639 		vm_page_busy_downgrade(m);
4640 	else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4641 		vm_page_busy_release(m);
4642 	*mp = m;
4643 	return (VM_PAGER_OK);
4644 }
4645 
4646 /*
4647  * Locklessly grab a valid page.  If the page is not valid or not yet
4648  * allocated this will fall back to the object lock method.
4649  */
4650 int
4651 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4652     vm_pindex_t pindex, int allocflags)
4653 {
4654 	vm_page_t m;
4655 	int flags;
4656 	int error;
4657 
4658 	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4659 	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4660 	    ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4661 	    "mismatch"));
4662 	KASSERT((allocflags &
4663 	    (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4664 	    ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4665 
4666 	/*
4667 	 * Attempt a lockless lookup and busy.  We need at least an sbusy
4668 	 * before we can inspect the valid field and return a wired page.
4669 	 */
4670 	flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4671 	if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4672 		return (VM_PAGER_FAIL);
4673 	if ((m = *mp) != NULL) {
4674 		if (vm_page_all_valid(m)) {
4675 			if ((allocflags & VM_ALLOC_WIRED) != 0)
4676 				vm_page_wire(m);
4677 			vm_page_grab_release(m, allocflags);
4678 			return (VM_PAGER_OK);
4679 		}
4680 		vm_page_busy_release(m);
4681 	}
4682 	if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4683 		*mp = NULL;
4684 		return (VM_PAGER_FAIL);
4685 	}
4686 	VM_OBJECT_WLOCK(object);
4687 	error = vm_page_grab_valid(mp, object, pindex, allocflags);
4688 	VM_OBJECT_WUNLOCK(object);
4689 
4690 	return (error);
4691 }
4692 
4693 /*
4694  * Return the specified range of pages from the given object.  For each
4695  * page offset within the range, if a page already exists within the object
4696  * at that offset and it is busy, then wait for it to change state.  If,
4697  * instead, the page doesn't exist, then allocate it.
4698  *
4699  * The caller must always specify an allocation class.
4700  *
4701  * allocation classes:
4702  *	VM_ALLOC_NORMAL		normal process request
4703  *	VM_ALLOC_SYSTEM		system *really* needs the pages
4704  *
4705  * The caller must always specify that the pages are to be busied and/or
4706  * wired.
4707  *
4708  * optional allocation flags:
4709  *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
4710  *	VM_ALLOC_NOBUSY		do not exclusive busy the page
4711  *	VM_ALLOC_NOWAIT		do not sleep
4712  *	VM_ALLOC_SBUSY		set page to sbusy state
4713  *	VM_ALLOC_WIRED		wire the pages
4714  *	VM_ALLOC_ZERO		zero and validate any invalid pages
4715  *
4716  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4717  * may return a partial prefix of the requested range.
4718  */
4719 int
4720 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4721     vm_page_t *ma, int count)
4722 {
4723 	vm_page_t m, mpred;
4724 	int pflags;
4725 	int i;
4726 
4727 	VM_OBJECT_ASSERT_WLOCKED(object);
4728 	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4729 	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4730 	vm_page_grab_check(allocflags);
4731 
4732 	pflags = vm_page_grab_pflags(allocflags);
4733 	if (count == 0)
4734 		return (0);
4735 
4736 	i = 0;
4737 retrylookup:
4738 	m = vm_radix_lookup_le(&object->rtree, pindex + i);
4739 	if (m == NULL || m->pindex != pindex + i) {
4740 		mpred = m;
4741 		m = NULL;
4742 	} else
4743 		mpred = TAILQ_PREV(m, pglist, listq);
4744 	for (; i < count; i++) {
4745 		if (m != NULL) {
4746 			if (!vm_page_tryacquire(m, allocflags)) {
4747 				if (vm_page_grab_sleep(object, m, pindex,
4748 				    "grbmaw", allocflags, true))
4749 					goto retrylookup;
4750 				break;
4751 			}
4752 		} else {
4753 			if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4754 				break;
4755 			m = vm_page_alloc_after(object, pindex + i,
4756 			    pflags | VM_ALLOC_COUNT(count - i), mpred);
4757 			if (m == NULL) {
4758 				if ((allocflags & (VM_ALLOC_NOWAIT |
4759 				    VM_ALLOC_WAITFAIL)) != 0)
4760 					break;
4761 				goto retrylookup;
4762 			}
4763 		}
4764 		if (vm_page_none_valid(m) &&
4765 		    (allocflags & VM_ALLOC_ZERO) != 0) {
4766 			if ((m->flags & PG_ZERO) == 0)
4767 				pmap_zero_page(m);
4768 			vm_page_valid(m);
4769 		}
4770 		vm_page_grab_release(m, allocflags);
4771 		ma[i] = mpred = m;
4772 		m = vm_page_next(m);
4773 	}
4774 	return (i);
4775 }
4776 
4777 /*
4778  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4779  * and will fall back to the locked variant to handle allocation.
4780  */
4781 int
4782 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4783     int allocflags, vm_page_t *ma, int count)
4784 {
4785 	vm_page_t m, pred;
4786 	int flags;
4787 	int i;
4788 
4789 	vm_page_grab_check(allocflags);
4790 
4791 	/*
4792 	 * Modify flags for lockless acquire to hold the page until we
4793 	 * set it valid if necessary.
4794 	 */
4795 	flags = allocflags & ~VM_ALLOC_NOBUSY;
4796 	pred = NULL;
4797 	for (i = 0; i < count; i++, pindex++) {
4798 		if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4799 			return (i);
4800 		if (m == NULL)
4801 			break;
4802 		if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4803 			if ((m->flags & PG_ZERO) == 0)
4804 				pmap_zero_page(m);
4805 			vm_page_valid(m);
4806 		}
4807 		/* m will still be wired or busy according to flags. */
4808 		vm_page_grab_release(m, allocflags);
4809 		pred = ma[i] = m;
4810 	}
4811 	if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4812 		return (i);
4813 	count -= i;
4814 	VM_OBJECT_WLOCK(object);
4815 	i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4816 	VM_OBJECT_WUNLOCK(object);
4817 
4818 	return (i);
4819 }
4820 
4821 /*
4822  * Mapping function for valid or dirty bits in a page.
4823  *
4824  * Inputs are required to range within a page.
4825  */
4826 vm_page_bits_t
4827 vm_page_bits(int base, int size)
4828 {
4829 	int first_bit;
4830 	int last_bit;
4831 
4832 	KASSERT(
4833 	    base + size <= PAGE_SIZE,
4834 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
4835 	);
4836 
4837 	if (size == 0)		/* handle degenerate case */
4838 		return (0);
4839 
4840 	first_bit = base >> DEV_BSHIFT;
4841 	last_bit = (base + size - 1) >> DEV_BSHIFT;
4842 
4843 	return (((vm_page_bits_t)2 << last_bit) -
4844 	    ((vm_page_bits_t)1 << first_bit));
4845 }
4846 
4847 void
4848 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4849 {
4850 
4851 #if PAGE_SIZE == 32768
4852 	atomic_set_64((uint64_t *)bits, set);
4853 #elif PAGE_SIZE == 16384
4854 	atomic_set_32((uint32_t *)bits, set);
4855 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4856 	atomic_set_16((uint16_t *)bits, set);
4857 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4858 	atomic_set_8((uint8_t *)bits, set);
4859 #else		/* PAGE_SIZE <= 8192 */
4860 	uintptr_t addr;
4861 	int shift;
4862 
4863 	addr = (uintptr_t)bits;
4864 	/*
4865 	 * Use a trick to perform a 32-bit atomic on the
4866 	 * containing aligned word, to not depend on the existence
4867 	 * of atomic_{set, clear}_{8, 16}.
4868 	 */
4869 	shift = addr & (sizeof(uint32_t) - 1);
4870 #if BYTE_ORDER == BIG_ENDIAN
4871 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4872 #else
4873 	shift *= NBBY;
4874 #endif
4875 	addr &= ~(sizeof(uint32_t) - 1);
4876 	atomic_set_32((uint32_t *)addr, set << shift);
4877 #endif		/* PAGE_SIZE */
4878 }
4879 
4880 static inline void
4881 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4882 {
4883 
4884 #if PAGE_SIZE == 32768
4885 	atomic_clear_64((uint64_t *)bits, clear);
4886 #elif PAGE_SIZE == 16384
4887 	atomic_clear_32((uint32_t *)bits, clear);
4888 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4889 	atomic_clear_16((uint16_t *)bits, clear);
4890 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4891 	atomic_clear_8((uint8_t *)bits, clear);
4892 #else		/* PAGE_SIZE <= 8192 */
4893 	uintptr_t addr;
4894 	int shift;
4895 
4896 	addr = (uintptr_t)bits;
4897 	/*
4898 	 * Use a trick to perform a 32-bit atomic on the
4899 	 * containing aligned word, to not depend on the existence
4900 	 * of atomic_{set, clear}_{8, 16}.
4901 	 */
4902 	shift = addr & (sizeof(uint32_t) - 1);
4903 #if BYTE_ORDER == BIG_ENDIAN
4904 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4905 #else
4906 	shift *= NBBY;
4907 #endif
4908 	addr &= ~(sizeof(uint32_t) - 1);
4909 	atomic_clear_32((uint32_t *)addr, clear << shift);
4910 #endif		/* PAGE_SIZE */
4911 }
4912 
4913 static inline vm_page_bits_t
4914 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4915 {
4916 #if PAGE_SIZE == 32768
4917 	uint64_t old;
4918 
4919 	old = *bits;
4920 	while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4921 	return (old);
4922 #elif PAGE_SIZE == 16384
4923 	uint32_t old;
4924 
4925 	old = *bits;
4926 	while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4927 	return (old);
4928 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4929 	uint16_t old;
4930 
4931 	old = *bits;
4932 	while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4933 	return (old);
4934 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4935 	uint8_t old;
4936 
4937 	old = *bits;
4938 	while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4939 	return (old);
4940 #else		/* PAGE_SIZE <= 4096*/
4941 	uintptr_t addr;
4942 	uint32_t old, new, mask;
4943 	int shift;
4944 
4945 	addr = (uintptr_t)bits;
4946 	/*
4947 	 * Use a trick to perform a 32-bit atomic on the
4948 	 * containing aligned word, to not depend on the existence
4949 	 * of atomic_{set, swap, clear}_{8, 16}.
4950 	 */
4951 	shift = addr & (sizeof(uint32_t) - 1);
4952 #if BYTE_ORDER == BIG_ENDIAN
4953 	shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4954 #else
4955 	shift *= NBBY;
4956 #endif
4957 	addr &= ~(sizeof(uint32_t) - 1);
4958 	mask = VM_PAGE_BITS_ALL << shift;
4959 
4960 	old = *bits;
4961 	do {
4962 		new = old & ~mask;
4963 		new |= newbits << shift;
4964 	} while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4965 	return (old >> shift);
4966 #endif		/* PAGE_SIZE */
4967 }
4968 
4969 /*
4970  *	vm_page_set_valid_range:
4971  *
4972  *	Sets portions of a page valid.  The arguments are expected
4973  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4974  *	of any partial chunks touched by the range.  The invalid portion of
4975  *	such chunks will be zeroed.
4976  *
4977  *	(base + size) must be less then or equal to PAGE_SIZE.
4978  */
4979 void
4980 vm_page_set_valid_range(vm_page_t m, int base, int size)
4981 {
4982 	int endoff, frag;
4983 	vm_page_bits_t pagebits;
4984 
4985 	vm_page_assert_busied(m);
4986 	if (size == 0)	/* handle degenerate case */
4987 		return;
4988 
4989 	/*
4990 	 * If the base is not DEV_BSIZE aligned and the valid
4991 	 * bit is clear, we have to zero out a portion of the
4992 	 * first block.
4993 	 */
4994 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4995 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4996 		pmap_zero_page_area(m, frag, base - frag);
4997 
4998 	/*
4999 	 * If the ending offset is not DEV_BSIZE aligned and the
5000 	 * valid bit is clear, we have to zero out a portion of
5001 	 * the last block.
5002 	 */
5003 	endoff = base + size;
5004 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5005 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5006 		pmap_zero_page_area(m, endoff,
5007 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5008 
5009 	/*
5010 	 * Assert that no previously invalid block that is now being validated
5011 	 * is already dirty.
5012 	 */
5013 	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5014 	    ("vm_page_set_valid_range: page %p is dirty", m));
5015 
5016 	/*
5017 	 * Set valid bits inclusive of any overlap.
5018 	 */
5019 	pagebits = vm_page_bits(base, size);
5020 	if (vm_page_xbusied(m))
5021 		m->valid |= pagebits;
5022 	else
5023 		vm_page_bits_set(m, &m->valid, pagebits);
5024 }
5025 
5026 /*
5027  * Set the page dirty bits and free the invalid swap space if
5028  * present.  Returns the previous dirty bits.
5029  */
5030 vm_page_bits_t
5031 vm_page_set_dirty(vm_page_t m)
5032 {
5033 	vm_page_bits_t old;
5034 
5035 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
5036 
5037 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5038 		old = m->dirty;
5039 		m->dirty = VM_PAGE_BITS_ALL;
5040 	} else
5041 		old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5042 	if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5043 		vm_pager_page_unswapped(m);
5044 
5045 	return (old);
5046 }
5047 
5048 /*
5049  * Clear the given bits from the specified page's dirty field.
5050  */
5051 static __inline void
5052 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5053 {
5054 
5055 	vm_page_assert_busied(m);
5056 
5057 	/*
5058 	 * If the page is xbusied and not write mapped we are the
5059 	 * only thread that can modify dirty bits.  Otherwise, The pmap
5060 	 * layer can call vm_page_dirty() without holding a distinguished
5061 	 * lock.  The combination of page busy and atomic operations
5062 	 * suffice to guarantee consistency of the page dirty field.
5063 	 */
5064 	if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5065 		m->dirty &= ~pagebits;
5066 	else
5067 		vm_page_bits_clear(m, &m->dirty, pagebits);
5068 }
5069 
5070 /*
5071  *	vm_page_set_validclean:
5072  *
5073  *	Sets portions of a page valid and clean.  The arguments are expected
5074  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5075  *	of any partial chunks touched by the range.  The invalid portion of
5076  *	such chunks will be zero'd.
5077  *
5078  *	(base + size) must be less then or equal to PAGE_SIZE.
5079  */
5080 void
5081 vm_page_set_validclean(vm_page_t m, int base, int size)
5082 {
5083 	vm_page_bits_t oldvalid, pagebits;
5084 	int endoff, frag;
5085 
5086 	vm_page_assert_busied(m);
5087 	if (size == 0)	/* handle degenerate case */
5088 		return;
5089 
5090 	/*
5091 	 * If the base is not DEV_BSIZE aligned and the valid
5092 	 * bit is clear, we have to zero out a portion of the
5093 	 * first block.
5094 	 */
5095 	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5096 	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5097 		pmap_zero_page_area(m, frag, base - frag);
5098 
5099 	/*
5100 	 * If the ending offset is not DEV_BSIZE aligned and the
5101 	 * valid bit is clear, we have to zero out a portion of
5102 	 * the last block.
5103 	 */
5104 	endoff = base + size;
5105 	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5106 	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5107 		pmap_zero_page_area(m, endoff,
5108 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5109 
5110 	/*
5111 	 * Set valid, clear dirty bits.  If validating the entire
5112 	 * page we can safely clear the pmap modify bit.  We also
5113 	 * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5114 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
5115 	 * be set again.
5116 	 *
5117 	 * We set valid bits inclusive of any overlap, but we can only
5118 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
5119 	 * the range.
5120 	 */
5121 	oldvalid = m->valid;
5122 	pagebits = vm_page_bits(base, size);
5123 	if (vm_page_xbusied(m))
5124 		m->valid |= pagebits;
5125 	else
5126 		vm_page_bits_set(m, &m->valid, pagebits);
5127 #if 0	/* NOT YET */
5128 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5129 		frag = DEV_BSIZE - frag;
5130 		base += frag;
5131 		size -= frag;
5132 		if (size < 0)
5133 			size = 0;
5134 	}
5135 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5136 #endif
5137 	if (base == 0 && size == PAGE_SIZE) {
5138 		/*
5139 		 * The page can only be modified within the pmap if it is
5140 		 * mapped, and it can only be mapped if it was previously
5141 		 * fully valid.
5142 		 */
5143 		if (oldvalid == VM_PAGE_BITS_ALL)
5144 			/*
5145 			 * Perform the pmap_clear_modify() first.  Otherwise,
5146 			 * a concurrent pmap operation, such as
5147 			 * pmap_protect(), could clear a modification in the
5148 			 * pmap and set the dirty field on the page before
5149 			 * pmap_clear_modify() had begun and after the dirty
5150 			 * field was cleared here.
5151 			 */
5152 			pmap_clear_modify(m);
5153 		m->dirty = 0;
5154 		vm_page_aflag_clear(m, PGA_NOSYNC);
5155 	} else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5156 		m->dirty &= ~pagebits;
5157 	else
5158 		vm_page_clear_dirty_mask(m, pagebits);
5159 }
5160 
5161 void
5162 vm_page_clear_dirty(vm_page_t m, int base, int size)
5163 {
5164 
5165 	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5166 }
5167 
5168 /*
5169  *	vm_page_set_invalid:
5170  *
5171  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
5172  *	valid and dirty bits for the effected areas are cleared.
5173  */
5174 void
5175 vm_page_set_invalid(vm_page_t m, int base, int size)
5176 {
5177 	vm_page_bits_t bits;
5178 	vm_object_t object;
5179 
5180 	/*
5181 	 * The object lock is required so that pages can't be mapped
5182 	 * read-only while we're in the process of invalidating them.
5183 	 */
5184 	object = m->object;
5185 	VM_OBJECT_ASSERT_WLOCKED(object);
5186 	vm_page_assert_busied(m);
5187 
5188 	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5189 	    size >= object->un_pager.vnp.vnp_size)
5190 		bits = VM_PAGE_BITS_ALL;
5191 	else
5192 		bits = vm_page_bits(base, size);
5193 	if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5194 		pmap_remove_all(m);
5195 	KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5196 	    !pmap_page_is_mapped(m),
5197 	    ("vm_page_set_invalid: page %p is mapped", m));
5198 	if (vm_page_xbusied(m)) {
5199 		m->valid &= ~bits;
5200 		m->dirty &= ~bits;
5201 	} else {
5202 		vm_page_bits_clear(m, &m->valid, bits);
5203 		vm_page_bits_clear(m, &m->dirty, bits);
5204 	}
5205 }
5206 
5207 /*
5208  *	vm_page_invalid:
5209  *
5210  *	Invalidates the entire page.  The page must be busy, unmapped, and
5211  *	the enclosing object must be locked.  The object locks protects
5212  *	against concurrent read-only pmap enter which is done without
5213  *	busy.
5214  */
5215 void
5216 vm_page_invalid(vm_page_t m)
5217 {
5218 
5219 	vm_page_assert_busied(m);
5220 	VM_OBJECT_ASSERT_LOCKED(m->object);
5221 	MPASS(!pmap_page_is_mapped(m));
5222 
5223 	if (vm_page_xbusied(m))
5224 		m->valid = 0;
5225 	else
5226 		vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5227 }
5228 
5229 /*
5230  * vm_page_zero_invalid()
5231  *
5232  *	The kernel assumes that the invalid portions of a page contain
5233  *	garbage, but such pages can be mapped into memory by user code.
5234  *	When this occurs, we must zero out the non-valid portions of the
5235  *	page so user code sees what it expects.
5236  *
5237  *	Pages are most often semi-valid when the end of a file is mapped
5238  *	into memory and the file's size is not page aligned.
5239  */
5240 void
5241 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5242 {
5243 	int b;
5244 	int i;
5245 
5246 	/*
5247 	 * Scan the valid bits looking for invalid sections that
5248 	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5249 	 * valid bit may be set ) have already been zeroed by
5250 	 * vm_page_set_validclean().
5251 	 */
5252 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5253 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
5254 		    (m->valid & ((vm_page_bits_t)1 << i))) {
5255 			if (i > b) {
5256 				pmap_zero_page_area(m,
5257 				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5258 			}
5259 			b = i + 1;
5260 		}
5261 	}
5262 
5263 	/*
5264 	 * setvalid is TRUE when we can safely set the zero'd areas
5265 	 * as being valid.  We can do this if there are no cache consistancy
5266 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5267 	 */
5268 	if (setvalid)
5269 		vm_page_valid(m);
5270 }
5271 
5272 /*
5273  *	vm_page_is_valid:
5274  *
5275  *	Is (partial) page valid?  Note that the case where size == 0
5276  *	will return FALSE in the degenerate case where the page is
5277  *	entirely invalid, and TRUE otherwise.
5278  *
5279  *	Some callers envoke this routine without the busy lock held and
5280  *	handle races via higher level locks.  Typical callers should
5281  *	hold a busy lock to prevent invalidation.
5282  */
5283 int
5284 vm_page_is_valid(vm_page_t m, int base, int size)
5285 {
5286 	vm_page_bits_t bits;
5287 
5288 	bits = vm_page_bits(base, size);
5289 	return (m->valid != 0 && (m->valid & bits) == bits);
5290 }
5291 
5292 /*
5293  * Returns true if all of the specified predicates are true for the entire
5294  * (super)page and false otherwise.
5295  */
5296 bool
5297 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5298 {
5299 	vm_object_t object;
5300 	int i, npages;
5301 
5302 	object = m->object;
5303 	if (skip_m != NULL && skip_m->object != object)
5304 		return (false);
5305 	VM_OBJECT_ASSERT_LOCKED(object);
5306 	npages = atop(pagesizes[m->psind]);
5307 
5308 	/*
5309 	 * The physically contiguous pages that make up a superpage, i.e., a
5310 	 * page with a page size index ("psind") greater than zero, will
5311 	 * occupy adjacent entries in vm_page_array[].
5312 	 */
5313 	for (i = 0; i < npages; i++) {
5314 		/* Always test object consistency, including "skip_m". */
5315 		if (m[i].object != object)
5316 			return (false);
5317 		if (&m[i] == skip_m)
5318 			continue;
5319 		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5320 			return (false);
5321 		if ((flags & PS_ALL_DIRTY) != 0) {
5322 			/*
5323 			 * Calling vm_page_test_dirty() or pmap_is_modified()
5324 			 * might stop this case from spuriously returning
5325 			 * "false".  However, that would require a write lock
5326 			 * on the object containing "m[i]".
5327 			 */
5328 			if (m[i].dirty != VM_PAGE_BITS_ALL)
5329 				return (false);
5330 		}
5331 		if ((flags & PS_ALL_VALID) != 0 &&
5332 		    m[i].valid != VM_PAGE_BITS_ALL)
5333 			return (false);
5334 	}
5335 	return (true);
5336 }
5337 
5338 /*
5339  * Set the page's dirty bits if the page is modified.
5340  */
5341 void
5342 vm_page_test_dirty(vm_page_t m)
5343 {
5344 
5345 	vm_page_assert_busied(m);
5346 	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5347 		vm_page_dirty(m);
5348 }
5349 
5350 void
5351 vm_page_valid(vm_page_t m)
5352 {
5353 
5354 	vm_page_assert_busied(m);
5355 	if (vm_page_xbusied(m))
5356 		m->valid = VM_PAGE_BITS_ALL;
5357 	else
5358 		vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5359 }
5360 
5361 void
5362 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5363 {
5364 
5365 	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5366 }
5367 
5368 void
5369 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5370 {
5371 
5372 	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5373 }
5374 
5375 int
5376 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5377 {
5378 
5379 	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5380 }
5381 
5382 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5383 void
5384 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5385 {
5386 
5387 	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5388 }
5389 
5390 void
5391 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5392 {
5393 
5394 	mtx_assert_(vm_page_lockptr(m), a, file, line);
5395 }
5396 #endif
5397 
5398 #ifdef INVARIANTS
5399 void
5400 vm_page_object_busy_assert(vm_page_t m)
5401 {
5402 
5403 	/*
5404 	 * Certain of the page's fields may only be modified by the
5405 	 * holder of a page or object busy.
5406 	 */
5407 	if (m->object != NULL && !vm_page_busied(m))
5408 		VM_OBJECT_ASSERT_BUSY(m->object);
5409 }
5410 
5411 void
5412 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5413 {
5414 
5415 	if ((bits & PGA_WRITEABLE) == 0)
5416 		return;
5417 
5418 	/*
5419 	 * The PGA_WRITEABLE flag can only be set if the page is
5420 	 * managed, is exclusively busied or the object is locked.
5421 	 * Currently, this flag is only set by pmap_enter().
5422 	 */
5423 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5424 	    ("PGA_WRITEABLE on unmanaged page"));
5425 	if (!vm_page_xbusied(m))
5426 		VM_OBJECT_ASSERT_BUSY(m->object);
5427 }
5428 #endif
5429 
5430 #include "opt_ddb.h"
5431 #ifdef DDB
5432 #include <sys/kernel.h>
5433 
5434 #include <ddb/ddb.h>
5435 
5436 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5437 {
5438 
5439 	db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5440 	db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5441 	db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5442 	db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5443 	db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5444 	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5445 	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5446 	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5447 	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5448 }
5449 
5450 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5451 {
5452 	int dom;
5453 
5454 	db_printf("pq_free %d\n", vm_free_count());
5455 	for (dom = 0; dom < vm_ndomains; dom++) {
5456 		db_printf(
5457     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5458 		    dom,
5459 		    vm_dom[dom].vmd_page_count,
5460 		    vm_dom[dom].vmd_free_count,
5461 		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5462 		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5463 		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5464 		    vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5465 	}
5466 }
5467 
5468 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5469 {
5470 	vm_page_t m;
5471 	boolean_t phys, virt;
5472 
5473 	if (!have_addr) {
5474 		db_printf("show pginfo addr\n");
5475 		return;
5476 	}
5477 
5478 	phys = strchr(modif, 'p') != NULL;
5479 	virt = strchr(modif, 'v') != NULL;
5480 	if (virt)
5481 		m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5482 	else if (phys)
5483 		m = PHYS_TO_VM_PAGE(addr);
5484 	else
5485 		m = (vm_page_t)addr;
5486 	db_printf(
5487     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5488     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5489 	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5490 	    m->a.queue, m->ref_count, m->a.flags, m->oflags,
5491 	    m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5492 }
5493 #endif /* DDB */
5494