xref: /freebsd/sys/vm/vm_reserv.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_vm.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_phys.h>
67 #include <vm/vm_pagequeue.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70 
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77 
78 #if VM_NRESERVLEVEL > 0
79 
80 #ifndef VM_LEVEL_0_ORDER_MAX
81 #define	VM_LEVEL_0_ORDER_MAX	VM_LEVEL_0_ORDER
82 #endif
83 
84 /*
85  * The number of small pages that are contained in a level 0 reservation
86  */
87 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
88 #define	VM_LEVEL_0_NPAGES_MAX	(1 << VM_LEVEL_0_ORDER_MAX)
89 
90 /*
91  * The number of bits by which a physical address is shifted to obtain the
92  * reservation number
93  */
94 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
95 
96 /*
97  * The size of a level 0 reservation in bytes
98  */
99 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
100 
101 /*
102  * Computes the index of the small page underlying the given (object, pindex)
103  * within the reservation's array of small pages.
104  */
105 #define	VM_RESERV_INDEX(object, pindex)	\
106     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
107 
108 /*
109  * The size of a population map entry
110  */
111 typedef	u_long		popmap_t;
112 
113 /*
114  * The number of bits in a population map entry
115  */
116 #define	NBPOPMAP	(NBBY * sizeof(popmap_t))
117 
118 /*
119  * The number of population map entries in a reservation
120  */
121 #define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
122 #define	NPOPMAP_MAX	howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP)
123 
124 /*
125  * Number of elapsed ticks before we update the LRU queue position.  Used
126  * to reduce contention and churn on the list.
127  */
128 #define	PARTPOPSLOP	1
129 
130 /*
131  * Clear a bit in the population map.
132  */
133 static __inline void
134 popmap_clear(popmap_t popmap[], int i)
135 {
136 
137 	popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
138 }
139 
140 /*
141  * Set a bit in the population map.
142  */
143 static __inline void
144 popmap_set(popmap_t popmap[], int i)
145 {
146 
147 	popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
148 }
149 
150 /*
151  * Is a bit in the population map clear?
152  */
153 static __inline boolean_t
154 popmap_is_clear(popmap_t popmap[], int i)
155 {
156 
157 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
158 }
159 
160 /*
161  * Is a bit in the population map set?
162  */
163 static __inline boolean_t
164 popmap_is_set(popmap_t popmap[], int i)
165 {
166 
167 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
168 }
169 
170 /*
171  * The reservation structure
172  *
173  * A reservation structure is constructed whenever a large physical page is
174  * speculatively allocated to an object.  The reservation provides the small
175  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
176  * within that object.  The reservation's "popcnt" tracks the number of these
177  * small physical pages that are in use at any given time.  When and if the
178  * reservation is not fully utilized, it appears in the queue of partially
179  * populated reservations.  The reservation always appears on the containing
180  * object's list of reservations.
181  *
182  * A partially populated reservation can be broken and reclaimed at any time.
183  *
184  * r - vm_reserv_lock
185  * d - vm_reserv_domain_lock
186  * o - vm_reserv_object_lock
187  * c - constant after boot
188  */
189 struct vm_reserv {
190 	struct mtx	lock;			/* reservation lock. */
191 	TAILQ_ENTRY(vm_reserv) partpopq;	/* (d) per-domain queue. */
192 	LIST_ENTRY(vm_reserv) objq;		/* (o, r) object queue */
193 	vm_object_t	object;			/* (o, r) containing object */
194 	vm_pindex_t	pindex;			/* (o, r) offset in object */
195 	vm_page_t	pages;			/* (c) first page  */
196 	uint16_t	domain;			/* (c) NUMA domain. */
197 	uint16_t	popcnt;			/* (r) # of pages in use */
198 	int		lasttick;		/* (r) last pop update tick. */
199 	char		inpartpopq;		/* (d) */
200 	popmap_t	popmap[NPOPMAP_MAX];	/* (r) bit vector, used pages */
201 };
202 
203 #define	vm_reserv_lockptr(rv)		(&(rv)->lock)
204 #define	vm_reserv_assert_locked(rv)					\
205 	    mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
206 #define	vm_reserv_lock(rv)		mtx_lock(vm_reserv_lockptr(rv))
207 #define	vm_reserv_trylock(rv)		mtx_trylock(vm_reserv_lockptr(rv))
208 #define	vm_reserv_unlock(rv)		mtx_unlock(vm_reserv_lockptr(rv))
209 
210 static struct mtx_padalign vm_reserv_domain_locks[MAXMEMDOM];
211 
212 #define	vm_reserv_domain_lockptr(d)	&vm_reserv_domain_locks[(d)]
213 #define	vm_reserv_domain_lock(d)	mtx_lock(vm_reserv_domain_lockptr(d))
214 #define	vm_reserv_domain_unlock(d)	mtx_unlock(vm_reserv_domain_lockptr(d))
215 
216 /*
217  * The reservation array
218  *
219  * This array is analoguous in function to vm_page_array.  It differs in the
220  * respect that it may contain a greater number of useful reservation
221  * structures than there are (physical) superpages.  These "invalid"
222  * reservation structures exist to trade-off space for time in the
223  * implementation of vm_reserv_from_page().  Invalid reservation structures are
224  * distinguishable from "valid" reservation structures by inspecting the
225  * reservation's "pages" field.  Invalid reservation structures have a NULL
226  * "pages" field.
227  *
228  * vm_reserv_from_page() maps a small (physical) page to an element of this
229  * array by computing a physical reservation number from the page's physical
230  * address.  The physical reservation number is used as the array index.
231  *
232  * An "active" reservation is a valid reservation structure that has a non-NULL
233  * "object" field and a non-zero "popcnt" field.  In other words, every active
234  * reservation belongs to a particular object.  Moreover, every active
235  * reservation has an entry in the containing object's list of reservations.
236  */
237 static vm_reserv_t vm_reserv_array;
238 
239 /*
240  * The partially populated reservation queue
241  *
242  * This queue enables the fast recovery of an unused free small page from a
243  * partially populated reservation.  The reservation at the head of this queue
244  * is the least recently changed, partially populated reservation.
245  *
246  * Access to this queue is synchronized by the free page queue lock.
247  */
248 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM];
249 
250 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
251 
252 static counter_u64_t vm_reserv_broken = EARLY_COUNTER;
253 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
254     &vm_reserv_broken, "Cumulative number of broken reservations");
255 
256 static counter_u64_t vm_reserv_freed = EARLY_COUNTER;
257 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
258     &vm_reserv_freed, "Cumulative number of freed reservations");
259 
260 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
261 
262 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
263     sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
264 
265 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
266 
267 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
268     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
269 
270 static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER;
271 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
272     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
273 
274 /*
275  * The object lock pool is used to synchronize the rvq.  We can not use a
276  * pool mutex because it is required before malloc works.
277  *
278  * The "hash" function could be made faster without divide and modulo.
279  */
280 #define	VM_RESERV_OBJ_LOCK_COUNT	MAXCPU
281 
282 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
283 
284 #define	vm_reserv_object_lock_idx(object)			\
285 	    (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
286 #define	vm_reserv_object_lock_ptr(object)			\
287 	    &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
288 #define	vm_reserv_object_lock(object)				\
289 	    mtx_lock(vm_reserv_object_lock_ptr((object)))
290 #define	vm_reserv_object_unlock(object)				\
291 	    mtx_unlock(vm_reserv_object_lock_ptr((object)))
292 
293 static void		vm_reserv_break(vm_reserv_t rv);
294 static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
295 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
296 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
297 			    vm_pindex_t pindex);
298 static void		vm_reserv_populate(vm_reserv_t rv, int index);
299 static void		vm_reserv_reclaim(vm_reserv_t rv);
300 
301 /*
302  * Returns the current number of full reservations.
303  *
304  * Since the number of full reservations is computed without acquiring the
305  * free page queue lock, the returned value may be inexact.
306  */
307 static int
308 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
309 {
310 	vm_paddr_t paddr;
311 	struct vm_phys_seg *seg;
312 	vm_reserv_t rv;
313 	int fullpop, segind;
314 
315 	fullpop = 0;
316 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
317 		seg = &vm_phys_segs[segind];
318 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
319 		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
320 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
321 			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
322 			paddr += VM_LEVEL_0_SIZE;
323 		}
324 	}
325 	return (sysctl_handle_int(oidp, &fullpop, 0, req));
326 }
327 
328 /*
329  * Describes the current state of the partially populated reservation queue.
330  */
331 static int
332 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
333 {
334 	struct sbuf sbuf;
335 	vm_reserv_t rv;
336 	int counter, error, domain, level, unused_pages;
337 
338 	error = sysctl_wire_old_buffer(req, 0);
339 	if (error != 0)
340 		return (error);
341 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
342 	sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
343 	for (domain = 0; domain < vm_ndomains; domain++) {
344 		for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
345 			counter = 0;
346 			unused_pages = 0;
347 			vm_reserv_domain_lock(domain);
348 			TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) {
349 				counter++;
350 				unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
351 			}
352 			vm_reserv_domain_unlock(domain);
353 			sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
354 			    domain, level,
355 			    unused_pages * ((int)PAGE_SIZE / 1024), counter);
356 		}
357 	}
358 	error = sbuf_finish(&sbuf);
359 	sbuf_delete(&sbuf);
360 	return (error);
361 }
362 
363 /*
364  * Remove a reservation from the object's objq.
365  */
366 static void
367 vm_reserv_remove(vm_reserv_t rv)
368 {
369 	vm_object_t object;
370 
371 	vm_reserv_assert_locked(rv);
372 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
373 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
374 	KASSERT(rv->object != NULL,
375 	    ("vm_reserv_remove: reserv %p is free", rv));
376 	KASSERT(!rv->inpartpopq,
377 	    ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
378 	object = rv->object;
379 	vm_reserv_object_lock(object);
380 	LIST_REMOVE(rv, objq);
381 	rv->object = NULL;
382 	vm_reserv_object_unlock(object);
383 }
384 
385 /*
386  * Insert a new reservation into the object's objq.
387  */
388 static void
389 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
390 {
391 	int i;
392 
393 	vm_reserv_assert_locked(rv);
394 	CTR6(KTR_VM,
395 	    "%s: rv %p(%p) object %p new %p popcnt %d",
396 	    __FUNCTION__, rv, rv->pages, rv->object, object,
397 	   rv->popcnt);
398 	KASSERT(rv->object == NULL,
399 	    ("vm_reserv_insert: reserv %p isn't free", rv));
400 	KASSERT(rv->popcnt == 0,
401 	    ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
402 	KASSERT(!rv->inpartpopq,
403 	    ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
404 	for (i = 0; i < NPOPMAP; i++)
405 		KASSERT(rv->popmap[i] == 0,
406 		    ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
407 	vm_reserv_object_lock(object);
408 	rv->pindex = pindex;
409 	rv->object = object;
410 	rv->lasttick = ticks;
411 	LIST_INSERT_HEAD(&object->rvq, rv, objq);
412 	vm_reserv_object_unlock(object);
413 }
414 
415 /*
416  * Reduces the given reservation's population count.  If the population count
417  * becomes zero, the reservation is destroyed.  Additionally, moves the
418  * reservation to the tail of the partially populated reservation queue if the
419  * population count is non-zero.
420  */
421 static void
422 vm_reserv_depopulate(vm_reserv_t rv, int index)
423 {
424 	struct vm_domain *vmd;
425 
426 	vm_reserv_assert_locked(rv);
427 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
428 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
429 	KASSERT(rv->object != NULL,
430 	    ("vm_reserv_depopulate: reserv %p is free", rv));
431 	KASSERT(popmap_is_set(rv->popmap, index),
432 	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
433 	    index));
434 	KASSERT(rv->popcnt > 0,
435 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
436 	KASSERT(rv->domain < vm_ndomains,
437 	    ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
438 	    rv, rv->domain));
439 	if (rv->popcnt == VM_LEVEL_0_NPAGES) {
440 		KASSERT(rv->pages->psind == 1,
441 		    ("vm_reserv_depopulate: reserv %p is already demoted",
442 		    rv));
443 		rv->pages->psind = 0;
444 	}
445 	popmap_clear(rv->popmap, index);
446 	rv->popcnt--;
447 	if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
448 	    rv->popcnt == 0) {
449 		vm_reserv_domain_lock(rv->domain);
450 		if (rv->inpartpopq) {
451 			TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
452 			rv->inpartpopq = FALSE;
453 		}
454 		if (rv->popcnt != 0) {
455 			rv->inpartpopq = TRUE;
456 			TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
457 		}
458 		vm_reserv_domain_unlock(rv->domain);
459 		rv->lasttick = ticks;
460 	}
461 	vmd = VM_DOMAIN(rv->domain);
462 	if (rv->popcnt == 0) {
463 		vm_reserv_remove(rv);
464 		vm_domain_free_lock(vmd);
465 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
466 		vm_domain_free_unlock(vmd);
467 		counter_u64_add(vm_reserv_freed, 1);
468 	}
469 	vm_domain_freecnt_inc(vmd, 1);
470 }
471 
472 /*
473  * Returns the reservation to which the given page might belong.
474  */
475 static __inline vm_reserv_t
476 vm_reserv_from_page(vm_page_t m)
477 {
478 
479 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
480 }
481 
482 /*
483  * Returns an existing reservation or NULL and initialized successor pointer.
484  */
485 static vm_reserv_t
486 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
487     vm_page_t mpred, vm_page_t *msuccp)
488 {
489 	vm_reserv_t rv;
490 	vm_page_t msucc;
491 
492 	msucc = NULL;
493 	if (mpred != NULL) {
494 		KASSERT(mpred->object == object,
495 		    ("vm_reserv_from_object: object doesn't contain mpred"));
496 		KASSERT(mpred->pindex < pindex,
497 		    ("vm_reserv_from_object: mpred doesn't precede pindex"));
498 		rv = vm_reserv_from_page(mpred);
499 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
500 			goto found;
501 		msucc = TAILQ_NEXT(mpred, listq);
502 	} else
503 		msucc = TAILQ_FIRST(&object->memq);
504 	if (msucc != NULL) {
505 		KASSERT(msucc->pindex > pindex,
506 		    ("vm_reserv_from_object: msucc doesn't succeed pindex"));
507 		rv = vm_reserv_from_page(msucc);
508 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
509 			goto found;
510 	}
511 	rv = NULL;
512 
513 found:
514 	*msuccp = msucc;
515 
516 	return (rv);
517 }
518 
519 /*
520  * Returns TRUE if the given reservation contains the given page index and
521  * FALSE otherwise.
522  */
523 static __inline boolean_t
524 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
525 {
526 
527 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
528 }
529 
530 /*
531  * Increases the given reservation's population count.  Moves the reservation
532  * to the tail of the partially populated reservation queue.
533  *
534  * The free page queue must be locked.
535  */
536 static void
537 vm_reserv_populate(vm_reserv_t rv, int index)
538 {
539 
540 	vm_reserv_assert_locked(rv);
541 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
542 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
543 	KASSERT(rv->object != NULL,
544 	    ("vm_reserv_populate: reserv %p is free", rv));
545 	KASSERT(popmap_is_clear(rv->popmap, index),
546 	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
547 	    index));
548 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
549 	    ("vm_reserv_populate: reserv %p is already full", rv));
550 	KASSERT(rv->pages->psind == 0,
551 	    ("vm_reserv_populate: reserv %p is already promoted", rv));
552 	KASSERT(rv->domain < vm_ndomains,
553 	    ("vm_reserv_populate: reserv %p's domain is corrupted %d",
554 	    rv, rv->domain));
555 	popmap_set(rv->popmap, index);
556 	rv->popcnt++;
557 	if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
558 	    rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
559 		return;
560 	rv->lasttick = ticks;
561 	vm_reserv_domain_lock(rv->domain);
562 	if (rv->inpartpopq) {
563 		TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
564 		rv->inpartpopq = FALSE;
565 	}
566 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
567 		rv->inpartpopq = TRUE;
568 		TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
569 	} else {
570 		KASSERT(rv->pages->psind == 0,
571 		    ("vm_reserv_populate: reserv %p is already promoted",
572 		    rv));
573 		rv->pages->psind = 1;
574 	}
575 	vm_reserv_domain_unlock(rv->domain);
576 }
577 
578 /*
579  * Attempts to allocate a contiguous set of physical pages from existing
580  * reservations.  See vm_reserv_alloc_contig() for a description of the
581  * function's parameters.
582  *
583  * The page "mpred" must immediately precede the offset "pindex" within the
584  * specified object.
585  *
586  * The object must be locked.
587  */
588 vm_page_t
589 vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex,
590     int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
591     u_long alignment, vm_paddr_t boundary, vm_page_t mpred)
592 {
593 	struct vm_domain *vmd;
594 	vm_paddr_t pa, size;
595 	vm_page_t m, msucc;
596 	vm_reserv_t rv;
597 	int i, index;
598 
599 	VM_OBJECT_ASSERT_WLOCKED(object);
600 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
601 
602 	/*
603 	 * Is a reservation fundamentally impossible?
604 	 */
605 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
606 	    pindex + npages > object->size || object->resident_page_count == 0)
607 		return (NULL);
608 
609 	/*
610 	 * All reservations of a particular size have the same alignment.
611 	 * Assuming that the first page is allocated from a reservation, the
612 	 * least significant bits of its physical address can be determined
613 	 * from its offset from the beginning of the reservation and the size
614 	 * of the reservation.
615 	 *
616 	 * Could the specified index within a reservation of the smallest
617 	 * possible size satisfy the alignment and boundary requirements?
618 	 */
619 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
620 	if ((pa & (alignment - 1)) != 0)
621 		return (NULL);
622 	size = npages << PAGE_SHIFT;
623 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
624 		return (NULL);
625 
626 	/*
627 	 * Look for an existing reservation.
628 	 */
629 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
630 	if (rv == NULL)
631 		return (NULL);
632 	KASSERT(object != kernel_object || rv->domain == domain,
633 	    ("vm_reserv_extend_contig: Domain mismatch from reservation."));
634 	index = VM_RESERV_INDEX(object, pindex);
635 	/* Does the allocation fit within the reservation? */
636 	if (index + npages > VM_LEVEL_0_NPAGES)
637 		return (NULL);
638 	domain = rv->domain;
639 	vmd = VM_DOMAIN(domain);
640 	vm_reserv_lock(rv);
641 	if (rv->object != object)
642 		goto out;
643 	m = &rv->pages[index];
644 	pa = VM_PAGE_TO_PHYS(m);
645 	if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
646 	    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
647 		goto out;
648 	/* Handle vm_page_rename(m, new_object, ...). */
649 	for (i = 0; i < npages; i++) {
650 		if (popmap_is_set(rv->popmap, index + i))
651 			goto out;
652 	}
653 	if (!vm_domain_allocate(vmd, req, npages))
654 		goto out;
655 	for (i = 0; i < npages; i++)
656 		vm_reserv_populate(rv, index + i);
657 	vm_reserv_unlock(rv);
658 	return (m);
659 
660 out:
661 	vm_reserv_unlock(rv);
662 	return (NULL);
663 }
664 
665 /*
666  * Allocates a contiguous set of physical pages of the given size "npages"
667  * from newly created reservations.  All of the physical pages
668  * must be at or above the given physical address "low" and below the given
669  * physical address "high".  The given value "alignment" determines the
670  * alignment of the first physical page in the set.  If the given value
671  * "boundary" is non-zero, then the set of physical pages cannot cross any
672  * physical address boundary that is a multiple of that value.  Both
673  * "alignment" and "boundary" must be a power of two.
674  *
675  * Callers should first invoke vm_reserv_extend_contig() to attempt an
676  * allocation from existing reservations.
677  *
678  * The page "mpred" must immediately precede the offset "pindex" within the
679  * specified object.
680  *
681  * The object and free page queue must be locked.
682  */
683 vm_page_t
684 vm_reserv_alloc_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain,
685     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
686     vm_paddr_t boundary, vm_page_t mpred)
687 {
688 	struct vm_domain *vmd;
689 	vm_paddr_t pa, size;
690 	vm_page_t m, m_ret, msucc;
691 	vm_pindex_t first, leftcap, rightcap;
692 	vm_reserv_t rv;
693 	u_long allocpages, maxpages, minpages;
694 	int i, index, n;
695 
696 	VM_OBJECT_ASSERT_WLOCKED(object);
697 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
698 
699 	/*
700 	 * Is a reservation fundamentally impossible?
701 	 */
702 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
703 	    pindex + npages > object->size)
704 		return (NULL);
705 
706 	/*
707 	 * All reservations of a particular size have the same alignment.
708 	 * Assuming that the first page is allocated from a reservation, the
709 	 * least significant bits of its physical address can be determined
710 	 * from its offset from the beginning of the reservation and the size
711 	 * of the reservation.
712 	 *
713 	 * Could the specified index within a reservation of the smallest
714 	 * possible size satisfy the alignment and boundary requirements?
715 	 */
716 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
717 	if ((pa & (alignment - 1)) != 0)
718 		return (NULL);
719 	size = npages << PAGE_SHIFT;
720 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
721 		return (NULL);
722 
723 	/*
724 	 * Callers should've extended an existing reservation prior to
725 	 * calling this function.  If a reservation exists it is
726 	 * incompatible with the allocation.
727 	 */
728 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
729 	if (rv != NULL)
730 		return (NULL);
731 
732 	/*
733 	 * Could at least one reservation fit between the first index to the
734 	 * left that can be used ("leftcap") and the first index to the right
735 	 * that cannot be used ("rightcap")?
736 	 *
737 	 * We must synchronize with the reserv object lock to protect the
738 	 * pindex/object of the resulting reservations against rename while
739 	 * we are inspecting.
740 	 */
741 	first = pindex - VM_RESERV_INDEX(object, pindex);
742 	minpages = VM_RESERV_INDEX(object, pindex) + npages;
743 	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
744 	allocpages = maxpages;
745 	vm_reserv_object_lock(object);
746 	if (mpred != NULL) {
747 		if ((rv = vm_reserv_from_page(mpred))->object != object)
748 			leftcap = mpred->pindex + 1;
749 		else
750 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
751 		if (leftcap > first) {
752 			vm_reserv_object_unlock(object);
753 			return (NULL);
754 		}
755 	}
756 	if (msucc != NULL) {
757 		if ((rv = vm_reserv_from_page(msucc))->object != object)
758 			rightcap = msucc->pindex;
759 		else
760 			rightcap = rv->pindex;
761 		if (first + maxpages > rightcap) {
762 			if (maxpages == VM_LEVEL_0_NPAGES) {
763 				vm_reserv_object_unlock(object);
764 				return (NULL);
765 			}
766 
767 			/*
768 			 * At least one reservation will fit between "leftcap"
769 			 * and "rightcap".  However, a reservation for the
770 			 * last of the requested pages will not fit.  Reduce
771 			 * the size of the upcoming allocation accordingly.
772 			 */
773 			allocpages = minpages;
774 		}
775 	}
776 	vm_reserv_object_unlock(object);
777 
778 	/*
779 	 * Would the last new reservation extend past the end of the object?
780 	 */
781 	if (first + maxpages > object->size) {
782 		/*
783 		 * Don't allocate the last new reservation if the object is a
784 		 * vnode or backed by another object that is a vnode.
785 		 */
786 		if (object->type == OBJT_VNODE ||
787 		    (object->backing_object != NULL &&
788 		    object->backing_object->type == OBJT_VNODE)) {
789 			if (maxpages == VM_LEVEL_0_NPAGES)
790 				return (NULL);
791 			allocpages = minpages;
792 		}
793 		/* Speculate that the object may grow. */
794 	}
795 
796 	/*
797 	 * Allocate the physical pages.  The alignment and boundary specified
798 	 * for this allocation may be different from the alignment and
799 	 * boundary specified for the requested pages.  For instance, the
800 	 * specified index may not be the first page within the first new
801 	 * reservation.
802 	 */
803 	m = NULL;
804 	vmd = VM_DOMAIN(domain);
805 	if (vm_domain_allocate(vmd, req, npages)) {
806 		vm_domain_free_lock(vmd);
807 		m = vm_phys_alloc_contig(domain, allocpages, low, high,
808 		    ulmax(alignment, VM_LEVEL_0_SIZE),
809 		    boundary > VM_LEVEL_0_SIZE ? boundary : 0);
810 		vm_domain_free_unlock(vmd);
811 		if (m == NULL) {
812 			vm_domain_freecnt_inc(vmd, npages);
813 			return (NULL);
814 		}
815 	} else
816 		return (NULL);
817 	KASSERT(vm_phys_domain(m) == domain,
818 	    ("vm_reserv_alloc_contig: Page domain does not match requested."));
819 
820 	/*
821 	 * The allocated physical pages always begin at a reservation
822 	 * boundary, but they do not always end at a reservation boundary.
823 	 * Initialize every reservation that is completely covered by the
824 	 * allocated physical pages.
825 	 */
826 	m_ret = NULL;
827 	index = VM_RESERV_INDEX(object, pindex);
828 	do {
829 		rv = vm_reserv_from_page(m);
830 		KASSERT(rv->pages == m,
831 		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
832 		    rv));
833 		vm_reserv_lock(rv);
834 		vm_reserv_insert(rv, object, first);
835 		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
836 		for (i = 0; i < n; i++)
837 			vm_reserv_populate(rv, index + i);
838 		npages -= n;
839 		if (m_ret == NULL) {
840 			m_ret = &rv->pages[index];
841 			index = 0;
842 		}
843 		vm_reserv_unlock(rv);
844 		m += VM_LEVEL_0_NPAGES;
845 		first += VM_LEVEL_0_NPAGES;
846 		allocpages -= VM_LEVEL_0_NPAGES;
847 	} while (allocpages >= VM_LEVEL_0_NPAGES);
848 	return (m_ret);
849 }
850 
851 /*
852  * Attempts to extend an existing reservation and allocate the page to the
853  * object.
854  *
855  * The page "mpred" must immediately precede the offset "pindex" within the
856  * specified object.
857  *
858  * The object must be locked.
859  */
860 vm_page_t
861 vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain,
862     vm_page_t mpred)
863 {
864 	struct vm_domain *vmd;
865 	vm_page_t m, msucc;
866 	vm_reserv_t rv;
867 	int index;
868 
869 	VM_OBJECT_ASSERT_WLOCKED(object);
870 
871 	/*
872 	 * Could a reservation currently exist?
873 	 */
874 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
875 	    pindex >= object->size || object->resident_page_count == 0)
876 		return (NULL);
877 
878 	/*
879 	 * Look for an existing reservation.
880 	 */
881 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
882 	if (rv == NULL)
883 		return (NULL);
884 
885 	KASSERT(object != kernel_object || rv->domain == domain,
886 	    ("vm_reserv_extend: Domain mismatch from reservation."));
887 	domain = rv->domain;
888 	vmd = VM_DOMAIN(domain);
889 	index = VM_RESERV_INDEX(object, pindex);
890 	m = &rv->pages[index];
891 	vm_reserv_lock(rv);
892 	/* Handle reclaim race. */
893 	if (rv->object != object ||
894 	    /* Handle vm_page_rename(m, new_object, ...). */
895 	    popmap_is_set(rv->popmap, index)) {
896 		m = NULL;
897 		goto out;
898 	}
899 	if (vm_domain_allocate(vmd, req, 1) == 0)
900 		m = NULL;
901 	else
902 		vm_reserv_populate(rv, index);
903 out:
904 	vm_reserv_unlock(rv);
905 
906 	return (m);
907 }
908 
909 /*
910  * Attempts to allocate a new reservation for the object, and allocates a
911  * page from that reservation.  Callers should first invoke vm_reserv_extend()
912  * to attempt an allocation from an existing reservation.
913  *
914  * The page "mpred" must immediately precede the offset "pindex" within the
915  * specified object.
916  *
917  * The object and free page queue must be locked.
918  */
919 vm_page_t
920 vm_reserv_alloc_page(int req, vm_object_t object, vm_pindex_t pindex, int domain,
921     vm_page_t mpred)
922 {
923 	struct vm_domain *vmd;
924 	vm_page_t m, msucc;
925 	vm_pindex_t first, leftcap, rightcap;
926 	vm_reserv_t rv;
927 	int index;
928 
929 	VM_OBJECT_ASSERT_WLOCKED(object);
930 
931 	/*
932 	 * Is a reservation fundamentally impossible?
933 	 */
934 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
935 	    pindex >= object->size)
936 		return (NULL);
937 
938 	/*
939 	 * Callers should've extended an existing reservation prior to
940 	 * calling this function.  If a reservation exists it is
941 	 * incompatible with the allocation.
942 	 */
943 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
944 	if (rv != NULL)
945 		return (NULL);
946 
947 	/*
948 	 * Could a reservation fit between the first index to the left that
949 	 * can be used and the first index to the right that cannot be used?
950 	 *
951 	 * We must synchronize with the reserv object lock to protect the
952 	 * pindex/object of the resulting reservations against rename while
953 	 * we are inspecting.
954 	 */
955 	first = pindex - VM_RESERV_INDEX(object, pindex);
956 	vm_reserv_object_lock(object);
957 	if (mpred != NULL) {
958 		if ((rv = vm_reserv_from_page(mpred))->object != object)
959 			leftcap = mpred->pindex + 1;
960 		else
961 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
962 		if (leftcap > first) {
963 			vm_reserv_object_unlock(object);
964 			return (NULL);
965 		}
966 	}
967 	if (msucc != NULL) {
968 		if ((rv = vm_reserv_from_page(msucc))->object != object)
969 			rightcap = msucc->pindex;
970 		else
971 			rightcap = rv->pindex;
972 		if (first + VM_LEVEL_0_NPAGES > rightcap) {
973 			vm_reserv_object_unlock(object);
974 			return (NULL);
975 		}
976 	}
977 	vm_reserv_object_unlock(object);
978 
979 	/*
980 	 * Would a new reservation extend past the end of the object?
981 	 */
982 	if (first + VM_LEVEL_0_NPAGES > object->size) {
983 		/*
984 		 * Don't allocate a new reservation if the object is a vnode or
985 		 * backed by another object that is a vnode.
986 		 */
987 		if (object->type == OBJT_VNODE ||
988 		    (object->backing_object != NULL &&
989 		    object->backing_object->type == OBJT_VNODE))
990 			return (NULL);
991 		/* Speculate that the object may grow. */
992 	}
993 
994 	/*
995 	 * Allocate and populate the new reservation.
996 	 */
997 	m = NULL;
998 	vmd = VM_DOMAIN(domain);
999 	if (vm_domain_allocate(vmd, req, 1)) {
1000 		vm_domain_free_lock(vmd);
1001 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
1002 		    VM_LEVEL_0_ORDER);
1003 		vm_domain_free_unlock(vmd);
1004 		if (m == NULL) {
1005 			vm_domain_freecnt_inc(vmd, 1);
1006 			return (NULL);
1007 		}
1008 	} else
1009 		return (NULL);
1010 	rv = vm_reserv_from_page(m);
1011 	vm_reserv_lock(rv);
1012 	KASSERT(rv->pages == m,
1013 	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
1014 	vm_reserv_insert(rv, object, first);
1015 	index = VM_RESERV_INDEX(object, pindex);
1016 	vm_reserv_populate(rv, index);
1017 	vm_reserv_unlock(rv);
1018 
1019 	return (&rv->pages[index]);
1020 }
1021 
1022 /*
1023  * Breaks the given reservation.  All free pages in the reservation
1024  * are returned to the physical memory allocator.  The reservation's
1025  * population count and map are reset to their initial state.
1026  *
1027  * The given reservation must not be in the partially populated reservation
1028  * queue.  The free page queue lock must be held.
1029  */
1030 static void
1031 vm_reserv_break(vm_reserv_t rv)
1032 {
1033 	int begin_zeroes, hi, i, lo;
1034 
1035 	vm_reserv_assert_locked(rv);
1036 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1037 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1038 	vm_reserv_remove(rv);
1039 	rv->pages->psind = 0;
1040 	i = hi = 0;
1041 	do {
1042 		/* Find the next 0 bit.  Any previous 0 bits are < "hi". */
1043 		lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1044 		if (lo == 0) {
1045 			/* Redundantly clears bits < "hi". */
1046 			rv->popmap[i] = 0;
1047 			rv->popcnt -= NBPOPMAP - hi;
1048 			while (++i < NPOPMAP) {
1049 				lo = ffsl(~rv->popmap[i]);
1050 				if (lo == 0) {
1051 					rv->popmap[i] = 0;
1052 					rv->popcnt -= NBPOPMAP;
1053 				} else
1054 					break;
1055 			}
1056 			if (i == NPOPMAP)
1057 				break;
1058 			hi = 0;
1059 		}
1060 		KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
1061 		/* Convert from ffsl() to ordinary bit numbering. */
1062 		lo--;
1063 		if (lo > 0) {
1064 			/* Redundantly clears bits < "hi". */
1065 			rv->popmap[i] &= ~((1UL << lo) - 1);
1066 			rv->popcnt -= lo - hi;
1067 		}
1068 		begin_zeroes = NBPOPMAP * i + lo;
1069 		/* Find the next 1 bit. */
1070 		do
1071 			hi = ffsl(rv->popmap[i]);
1072 		while (hi == 0 && ++i < NPOPMAP);
1073 		if (i != NPOPMAP)
1074 			/* Convert from ffsl() to ordinary bit numbering. */
1075 			hi--;
1076 		vm_domain_free_lock(VM_DOMAIN(rv->domain));
1077 		vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
1078 		    hi - begin_zeroes);
1079 		vm_domain_free_unlock(VM_DOMAIN(rv->domain));
1080 	} while (i < NPOPMAP);
1081 	KASSERT(rv->popcnt == 0,
1082 	    ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
1083 	counter_u64_add(vm_reserv_broken, 1);
1084 }
1085 
1086 /*
1087  * Breaks all reservations belonging to the given object.
1088  */
1089 void
1090 vm_reserv_break_all(vm_object_t object)
1091 {
1092 	vm_reserv_t rv;
1093 
1094 	/*
1095 	 * This access of object->rvq is unsynchronized so that the
1096 	 * object rvq lock can nest after the domain_free lock.  We
1097 	 * must check for races in the results.  However, the object
1098 	 * lock prevents new additions, so we are guaranteed that when
1099 	 * it returns NULL the object is properly empty.
1100 	 */
1101 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
1102 		vm_reserv_lock(rv);
1103 		/* Reclaim race. */
1104 		if (rv->object != object) {
1105 			vm_reserv_unlock(rv);
1106 			continue;
1107 		}
1108 		vm_reserv_domain_lock(rv->domain);
1109 		if (rv->inpartpopq) {
1110 			TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1111 			rv->inpartpopq = FALSE;
1112 		}
1113 		vm_reserv_domain_unlock(rv->domain);
1114 		vm_reserv_break(rv);
1115 		vm_reserv_unlock(rv);
1116 	}
1117 }
1118 
1119 /*
1120  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1121  * page is freed and FALSE otherwise.
1122  *
1123  * The free page queue lock must be held.
1124  */
1125 boolean_t
1126 vm_reserv_free_page(vm_page_t m)
1127 {
1128 	vm_reserv_t rv;
1129 	boolean_t ret;
1130 
1131 	rv = vm_reserv_from_page(m);
1132 	if (rv->object == NULL)
1133 		return (FALSE);
1134 	vm_reserv_lock(rv);
1135 	/* Re-validate after lock. */
1136 	if (rv->object != NULL) {
1137 		vm_reserv_depopulate(rv, m - rv->pages);
1138 		ret = TRUE;
1139 	} else
1140 		ret = FALSE;
1141 	vm_reserv_unlock(rv);
1142 
1143 	return (ret);
1144 }
1145 
1146 /*
1147  * Initializes the reservation management system.  Specifically, initializes
1148  * the reservation array.
1149  *
1150  * Requires that vm_page_array and first_page are initialized!
1151  */
1152 void
1153 vm_reserv_init(void)
1154 {
1155 	vm_paddr_t paddr;
1156 	struct vm_phys_seg *seg;
1157 	struct vm_reserv *rv;
1158 	int i, segind;
1159 
1160 	/*
1161 	 * Initialize the reservation array.  Specifically, initialize the
1162 	 * "pages" field for every element that has an underlying superpage.
1163 	 */
1164 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1165 		seg = &vm_phys_segs[segind];
1166 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1167 		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
1168 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
1169 			rv->pages = PHYS_TO_VM_PAGE(paddr);
1170 			rv->domain = seg->domain;
1171 			mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1172 			paddr += VM_LEVEL_0_SIZE;
1173 		}
1174 	}
1175 	for (i = 0; i < MAXMEMDOM; i++) {
1176 		mtx_init(&vm_reserv_domain_locks[i], "VM reserv domain", NULL,
1177 		    MTX_DEF);
1178 		TAILQ_INIT(&vm_rvq_partpop[i]);
1179 	}
1180 
1181 	for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1182 		mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1183 		    MTX_DEF);
1184 }
1185 
1186 /*
1187  * Returns true if the given page belongs to a reservation and that page is
1188  * free.  Otherwise, returns false.
1189  */
1190 bool
1191 vm_reserv_is_page_free(vm_page_t m)
1192 {
1193 	vm_reserv_t rv;
1194 
1195 	rv = vm_reserv_from_page(m);
1196 	if (rv->object == NULL)
1197 		return (false);
1198 	return (popmap_is_clear(rv->popmap, m - rv->pages));
1199 }
1200 
1201 /*
1202  * If the given page belongs to a reservation, returns the level of that
1203  * reservation.  Otherwise, returns -1.
1204  */
1205 int
1206 vm_reserv_level(vm_page_t m)
1207 {
1208 	vm_reserv_t rv;
1209 
1210 	rv = vm_reserv_from_page(m);
1211 	return (rv->object != NULL ? 0 : -1);
1212 }
1213 
1214 /*
1215  * Returns a reservation level if the given page belongs to a fully populated
1216  * reservation and -1 otherwise.
1217  */
1218 int
1219 vm_reserv_level_iffullpop(vm_page_t m)
1220 {
1221 	vm_reserv_t rv;
1222 
1223 	rv = vm_reserv_from_page(m);
1224 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1225 }
1226 
1227 /*
1228  * Breaks the given partially populated reservation, releasing its free pages
1229  * to the physical memory allocator.
1230  *
1231  * The free page queue lock must be held.
1232  */
1233 static void
1234 vm_reserv_reclaim(vm_reserv_t rv)
1235 {
1236 
1237 	vm_reserv_assert_locked(rv);
1238 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1239 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1240 	vm_reserv_domain_lock(rv->domain);
1241 	KASSERT(rv->inpartpopq,
1242 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1243 	KASSERT(rv->domain < vm_ndomains,
1244 	    ("vm_reserv_reclaim: reserv %p's domain is corrupted %d",
1245 	    rv, rv->domain));
1246 	TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1247 	rv->inpartpopq = FALSE;
1248 	vm_reserv_domain_unlock(rv->domain);
1249 	vm_reserv_break(rv);
1250 	counter_u64_add(vm_reserv_reclaimed, 1);
1251 }
1252 
1253 /*
1254  * Breaks the reservation at the head of the partially populated reservation
1255  * queue, releasing its free pages to the physical memory allocator.  Returns
1256  * TRUE if a reservation is broken and FALSE otherwise.
1257  *
1258  * The free page queue lock must be held.
1259  */
1260 boolean_t
1261 vm_reserv_reclaim_inactive(int domain)
1262 {
1263 	vm_reserv_t rv;
1264 
1265 	while ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) {
1266 		vm_reserv_lock(rv);
1267 		if (rv != TAILQ_FIRST(&vm_rvq_partpop[domain])) {
1268 			vm_reserv_unlock(rv);
1269 			continue;
1270 		}
1271 		vm_reserv_reclaim(rv);
1272 		vm_reserv_unlock(rv);
1273 		return (TRUE);
1274 	}
1275 	return (FALSE);
1276 }
1277 
1278 /*
1279  * Searches the partially populated reservation queue for the least recently
1280  * changed reservation with free pages that satisfy the given request for
1281  * contiguous physical memory.  If a satisfactory reservation is found, it is
1282  * broken.  Returns TRUE if a reservation is broken and FALSE otherwise.
1283  *
1284  * The free page queue lock must be held.
1285  */
1286 boolean_t
1287 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1288     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1289 {
1290 	vm_paddr_t pa, size;
1291 	vm_reserv_t rv, rvn;
1292 	int hi, i, lo, low_index, next_free;
1293 
1294 	if (npages > VM_LEVEL_0_NPAGES - 1)
1295 		return (FALSE);
1296 	size = npages << PAGE_SHIFT;
1297 	vm_reserv_domain_lock(domain);
1298 again:
1299 	for (rv = TAILQ_FIRST(&vm_rvq_partpop[domain]); rv != NULL; rv = rvn) {
1300 		rvn = TAILQ_NEXT(rv, partpopq);
1301 		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
1302 		if (pa + PAGE_SIZE - size < low) {
1303 			/* This entire reservation is too low; go to next. */
1304 			continue;
1305 		}
1306 		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1307 		if (pa + size > high) {
1308 			/* This entire reservation is too high; go to next. */
1309 			continue;
1310 		}
1311 		if (vm_reserv_trylock(rv) == 0) {
1312 			vm_reserv_domain_unlock(domain);
1313 			vm_reserv_lock(rv);
1314 			if (!rv->inpartpopq) {
1315 				vm_reserv_domain_lock(domain);
1316 				if (!rvn->inpartpopq)
1317 					goto again;
1318 				continue;
1319 			}
1320 		} else
1321 			vm_reserv_domain_unlock(domain);
1322 		if (pa < low) {
1323 			/* Start the search for free pages at "low". */
1324 			low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
1325 			i = low_index / NBPOPMAP;
1326 			hi = low_index % NBPOPMAP;
1327 		} else
1328 			i = hi = 0;
1329 		do {
1330 			/* Find the next free page. */
1331 			lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1332 			while (lo == 0 && ++i < NPOPMAP)
1333 				lo = ffsl(~rv->popmap[i]);
1334 			if (i == NPOPMAP)
1335 				break;
1336 			/* Convert from ffsl() to ordinary bit numbering. */
1337 			lo--;
1338 			next_free = NBPOPMAP * i + lo;
1339 			pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
1340 			KASSERT(pa >= low,
1341 			    ("vm_reserv_reclaim_contig: pa is too low"));
1342 			if (pa + size > high) {
1343 				/* The rest of this reservation is too high. */
1344 				break;
1345 			} else if ((pa & (alignment - 1)) != 0 ||
1346 			    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1347 				/*
1348 				 * The current page doesn't meet the alignment
1349 				 * and/or boundary requirements.  Continue
1350 				 * searching this reservation until the rest
1351 				 * of its free pages are either excluded or
1352 				 * exhausted.
1353 				 */
1354 				hi = lo + 1;
1355 				if (hi >= NBPOPMAP) {
1356 					hi = 0;
1357 					i++;
1358 				}
1359 				continue;
1360 			}
1361 			/* Find the next used page. */
1362 			hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1363 			while (hi == 0 && ++i < NPOPMAP) {
1364 				if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1365 				    size) {
1366 					vm_reserv_reclaim(rv);
1367 					vm_reserv_unlock(rv);
1368 					return (TRUE);
1369 				}
1370 				hi = ffsl(rv->popmap[i]);
1371 			}
1372 			/* Convert from ffsl() to ordinary bit numbering. */
1373 			if (i != NPOPMAP)
1374 				hi--;
1375 			if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1376 			    size) {
1377 				vm_reserv_reclaim(rv);
1378 				vm_reserv_unlock(rv);
1379 				return (TRUE);
1380 			}
1381 		} while (i < NPOPMAP);
1382 		vm_reserv_unlock(rv);
1383 		vm_reserv_domain_lock(domain);
1384 		if (rvn != NULL && !rvn->inpartpopq)
1385 			goto again;
1386 	}
1387 	vm_reserv_domain_unlock(domain);
1388 	return (FALSE);
1389 }
1390 
1391 /*
1392  * Transfers the reservation underlying the given page to a new object.
1393  *
1394  * The object must be locked.
1395  */
1396 void
1397 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1398     vm_pindex_t old_object_offset)
1399 {
1400 	vm_reserv_t rv;
1401 
1402 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1403 	rv = vm_reserv_from_page(m);
1404 	if (rv->object == old_object) {
1405 		vm_reserv_lock(rv);
1406 		CTR6(KTR_VM,
1407 		    "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1408 		    __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1409 		    rv->inpartpopq);
1410 		if (rv->object == old_object) {
1411 			vm_reserv_object_lock(old_object);
1412 			rv->object = NULL;
1413 			LIST_REMOVE(rv, objq);
1414 			vm_reserv_object_unlock(old_object);
1415 			vm_reserv_object_lock(new_object);
1416 			rv->object = new_object;
1417 			rv->pindex -= old_object_offset;
1418 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1419 			vm_reserv_object_unlock(new_object);
1420 		}
1421 		vm_reserv_unlock(rv);
1422 	}
1423 }
1424 
1425 /*
1426  * Returns the size (in bytes) of a reservation of the specified level.
1427  */
1428 int
1429 vm_reserv_size(int level)
1430 {
1431 
1432 	switch (level) {
1433 	case 0:
1434 		return (VM_LEVEL_0_SIZE);
1435 	case -1:
1436 		return (PAGE_SIZE);
1437 	default:
1438 		return (0);
1439 	}
1440 }
1441 
1442 /*
1443  * Allocates the virtual and physical memory required by the reservation
1444  * management system's data structures, in particular, the reservation array.
1445  */
1446 vm_paddr_t
1447 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1448 {
1449 	vm_paddr_t new_end;
1450 	size_t size;
1451 
1452 	/*
1453 	 * Calculate the size (in bytes) of the reservation array.  Round up
1454 	 * from "high_water" because every small page is mapped to an element
1455 	 * in the reservation array based on its physical address.  Thus, the
1456 	 * number of elements in the reservation array can be greater than the
1457 	 * number of superpages.
1458 	 */
1459 	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1460 
1461 	/*
1462 	 * Allocate and map the physical memory for the reservation array.  The
1463 	 * next available virtual address is returned by reference.
1464 	 */
1465 	new_end = end - round_page(size);
1466 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1467 	    VM_PROT_READ | VM_PROT_WRITE);
1468 	bzero(vm_reserv_array, size);
1469 
1470 	/*
1471 	 * Return the next available physical address.
1472 	 */
1473 	return (new_end);
1474 }
1475 
1476 /*
1477  * Initializes the reservation management system.  Specifically, initializes
1478  * the reservation counters.
1479  */
1480 static void
1481 vm_reserv_counter_init(void *unused)
1482 {
1483 
1484 	vm_reserv_freed = counter_u64_alloc(M_WAITOK);
1485 	vm_reserv_broken = counter_u64_alloc(M_WAITOK);
1486 	vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK);
1487 }
1488 SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY,
1489     vm_reserv_counter_init, NULL);
1490 
1491 /*
1492  * Returns the superpage containing the given page.
1493  */
1494 vm_page_t
1495 vm_reserv_to_superpage(vm_page_t m)
1496 {
1497 	vm_reserv_t rv;
1498 
1499 	VM_OBJECT_ASSERT_LOCKED(m->object);
1500 	rv = vm_reserv_from_page(m);
1501 	if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1502 		m = rv->pages;
1503 	else
1504 		m = NULL;
1505 
1506 	return (m);
1507 }
1508 
1509 #endif	/* VM_NRESERVLEVEL > 0 */
1510