xref: /freebsd/sys/vm/vm_reserv.c (revision 681ce946)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_vm.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_pagequeue.h>
67 #include <vm/vm_phys.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70 
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77 
78 #if VM_NRESERVLEVEL > 0
79 
80 #ifndef VM_LEVEL_0_ORDER_MAX
81 #define	VM_LEVEL_0_ORDER_MAX	VM_LEVEL_0_ORDER
82 #endif
83 
84 /*
85  * The number of small pages that are contained in a level 0 reservation
86  */
87 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
88 #define	VM_LEVEL_0_NPAGES_MAX	(1 << VM_LEVEL_0_ORDER_MAX)
89 
90 /*
91  * The number of bits by which a physical address is shifted to obtain the
92  * reservation number
93  */
94 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
95 
96 /*
97  * The size of a level 0 reservation in bytes
98  */
99 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
100 
101 /*
102  * Computes the index of the small page underlying the given (object, pindex)
103  * within the reservation's array of small pages.
104  */
105 #define	VM_RESERV_INDEX(object, pindex)	\
106     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
107 
108 /*
109  * The size of a population map entry
110  */
111 typedef	u_long		popmap_t;
112 
113 /*
114  * The number of bits in a population map entry
115  */
116 #define	NBPOPMAP	(NBBY * sizeof(popmap_t))
117 
118 /*
119  * The number of population map entries in a reservation
120  */
121 #define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
122 #define	NPOPMAP_MAX	howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP)
123 
124 /*
125  * Number of elapsed ticks before we update the LRU queue position.  Used
126  * to reduce contention and churn on the list.
127  */
128 #define	PARTPOPSLOP	1
129 
130 /*
131  * Clear a bit in the population map.
132  */
133 static __inline void
134 popmap_clear(popmap_t popmap[], int i)
135 {
136 
137 	popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
138 }
139 
140 /*
141  * Set a bit in the population map.
142  */
143 static __inline void
144 popmap_set(popmap_t popmap[], int i)
145 {
146 
147 	popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
148 }
149 
150 /*
151  * Is a bit in the population map clear?
152  */
153 static __inline boolean_t
154 popmap_is_clear(popmap_t popmap[], int i)
155 {
156 
157 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
158 }
159 
160 /*
161  * Is a bit in the population map set?
162  */
163 static __inline boolean_t
164 popmap_is_set(popmap_t popmap[], int i)
165 {
166 
167 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
168 }
169 
170 /*
171  * The reservation structure
172  *
173  * A reservation structure is constructed whenever a large physical page is
174  * speculatively allocated to an object.  The reservation provides the small
175  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
176  * within that object.  The reservation's "popcnt" tracks the number of these
177  * small physical pages that are in use at any given time.  When and if the
178  * reservation is not fully utilized, it appears in the queue of partially
179  * populated reservations.  The reservation always appears on the containing
180  * object's list of reservations.
181  *
182  * A partially populated reservation can be broken and reclaimed at any time.
183  *
184  * c - constant after boot
185  * d - vm_reserv_domain_lock
186  * o - vm_reserv_object_lock
187  * r - vm_reserv_lock
188  * s - vm_reserv_domain_scan_lock
189  */
190 struct vm_reserv {
191 	struct mtx	lock;			/* reservation lock. */
192 	TAILQ_ENTRY(vm_reserv) partpopq;	/* (d, r) per-domain queue. */
193 	LIST_ENTRY(vm_reserv) objq;		/* (o, r) object queue */
194 	vm_object_t	object;			/* (o, r) containing object */
195 	vm_pindex_t	pindex;			/* (o, r) offset in object */
196 	vm_page_t	pages;			/* (c) first page  */
197 	uint16_t	popcnt;			/* (r) # of pages in use */
198 	uint8_t		domain;			/* (c) NUMA domain. */
199 	char		inpartpopq;		/* (d, r) */
200 	int		lasttick;		/* (r) last pop update tick. */
201 	popmap_t	popmap[NPOPMAP_MAX];	/* (r) bit vector, used pages */
202 };
203 
204 TAILQ_HEAD(vm_reserv_queue, vm_reserv);
205 
206 #define	vm_reserv_lockptr(rv)		(&(rv)->lock)
207 #define	vm_reserv_assert_locked(rv)					\
208 	    mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
209 #define	vm_reserv_lock(rv)		mtx_lock(vm_reserv_lockptr(rv))
210 #define	vm_reserv_trylock(rv)		mtx_trylock(vm_reserv_lockptr(rv))
211 #define	vm_reserv_unlock(rv)		mtx_unlock(vm_reserv_lockptr(rv))
212 
213 /*
214  * The reservation array
215  *
216  * This array is analoguous in function to vm_page_array.  It differs in the
217  * respect that it may contain a greater number of useful reservation
218  * structures than there are (physical) superpages.  These "invalid"
219  * reservation structures exist to trade-off space for time in the
220  * implementation of vm_reserv_from_page().  Invalid reservation structures are
221  * distinguishable from "valid" reservation structures by inspecting the
222  * reservation's "pages" field.  Invalid reservation structures have a NULL
223  * "pages" field.
224  *
225  * vm_reserv_from_page() maps a small (physical) page to an element of this
226  * array by computing a physical reservation number from the page's physical
227  * address.  The physical reservation number is used as the array index.
228  *
229  * An "active" reservation is a valid reservation structure that has a non-NULL
230  * "object" field and a non-zero "popcnt" field.  In other words, every active
231  * reservation belongs to a particular object.  Moreover, every active
232  * reservation has an entry in the containing object's list of reservations.
233  */
234 static vm_reserv_t vm_reserv_array;
235 
236 /*
237  * The per-domain partially populated reservation queues
238  *
239  * These queues enable the fast recovery of an unused free small page from a
240  * partially populated reservation.  The reservation at the head of a queue
241  * is the least recently changed, partially populated reservation.
242  *
243  * Access to this queue is synchronized by the per-domain reservation lock.
244  * Threads reclaiming free pages from the queue must hold the per-domain scan
245  * lock.
246  */
247 struct vm_reserv_domain {
248 	struct mtx 		lock;
249 	struct vm_reserv_queue	partpop;	/* (d) */
250 	struct vm_reserv	marker;		/* (d, s) scan marker/lock */
251 } __aligned(CACHE_LINE_SIZE);
252 
253 static struct vm_reserv_domain vm_rvd[MAXMEMDOM];
254 
255 #define	vm_reserv_domain_lockptr(d)	(&vm_rvd[(d)].lock)
256 #define	vm_reserv_domain_assert_locked(d)	\
257 	mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED)
258 #define	vm_reserv_domain_lock(d)	mtx_lock(vm_reserv_domain_lockptr(d))
259 #define	vm_reserv_domain_unlock(d)	mtx_unlock(vm_reserv_domain_lockptr(d))
260 
261 #define	vm_reserv_domain_scan_lock(d)	mtx_lock(&vm_rvd[(d)].marker.lock)
262 #define	vm_reserv_domain_scan_unlock(d)	mtx_unlock(&vm_rvd[(d)].marker.lock)
263 
264 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
265     "Reservation Info");
266 
267 static COUNTER_U64_DEFINE_EARLY(vm_reserv_broken);
268 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
269     &vm_reserv_broken, "Cumulative number of broken reservations");
270 
271 static COUNTER_U64_DEFINE_EARLY(vm_reserv_freed);
272 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
273     &vm_reserv_freed, "Cumulative number of freed reservations");
274 
275 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
276 
277 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD,
278     NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
279 
280 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
281 
282 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq,
283     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
284     sysctl_vm_reserv_partpopq, "A",
285     "Partially populated reservation queues");
286 
287 static COUNTER_U64_DEFINE_EARLY(vm_reserv_reclaimed);
288 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
289     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
290 
291 /*
292  * The object lock pool is used to synchronize the rvq.  We can not use a
293  * pool mutex because it is required before malloc works.
294  *
295  * The "hash" function could be made faster without divide and modulo.
296  */
297 #define	VM_RESERV_OBJ_LOCK_COUNT	MAXCPU
298 
299 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
300 
301 #define	vm_reserv_object_lock_idx(object)			\
302 	    (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
303 #define	vm_reserv_object_lock_ptr(object)			\
304 	    &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
305 #define	vm_reserv_object_lock(object)				\
306 	    mtx_lock(vm_reserv_object_lock_ptr((object)))
307 #define	vm_reserv_object_unlock(object)				\
308 	    mtx_unlock(vm_reserv_object_lock_ptr((object)))
309 
310 static void		vm_reserv_break(vm_reserv_t rv);
311 static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
312 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
313 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
314 			    vm_pindex_t pindex);
315 static void		vm_reserv_populate(vm_reserv_t rv, int index);
316 static void		vm_reserv_reclaim(vm_reserv_t rv);
317 
318 /*
319  * Returns the current number of full reservations.
320  *
321  * Since the number of full reservations is computed without acquiring any
322  * locks, the returned value is inexact.
323  */
324 static int
325 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
326 {
327 	vm_paddr_t paddr;
328 	struct vm_phys_seg *seg;
329 	vm_reserv_t rv;
330 	int fullpop, segind;
331 
332 	fullpop = 0;
333 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
334 		seg = &vm_phys_segs[segind];
335 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
336 #ifdef VM_PHYSSEG_SPARSE
337 		rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) -
338 		    (seg->start >> VM_LEVEL_0_SHIFT);
339 #else
340 		rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
341 #endif
342 		while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
343 		    VM_LEVEL_0_SIZE <= seg->end) {
344 			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
345 			paddr += VM_LEVEL_0_SIZE;
346 			rv++;
347 		}
348 	}
349 	return (sysctl_handle_int(oidp, &fullpop, 0, req));
350 }
351 
352 /*
353  * Describes the current state of the partially populated reservation queue.
354  */
355 static int
356 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
357 {
358 	struct sbuf sbuf;
359 	vm_reserv_t rv;
360 	int counter, error, domain, level, unused_pages;
361 
362 	error = sysctl_wire_old_buffer(req, 0);
363 	if (error != 0)
364 		return (error);
365 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
366 	sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
367 	for (domain = 0; domain < vm_ndomains; domain++) {
368 		for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
369 			counter = 0;
370 			unused_pages = 0;
371 			vm_reserv_domain_lock(domain);
372 			TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
373 				if (rv == &vm_rvd[domain].marker)
374 					continue;
375 				counter++;
376 				unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
377 			}
378 			vm_reserv_domain_unlock(domain);
379 			sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
380 			    domain, level,
381 			    unused_pages * ((int)PAGE_SIZE / 1024), counter);
382 		}
383 	}
384 	error = sbuf_finish(&sbuf);
385 	sbuf_delete(&sbuf);
386 	return (error);
387 }
388 
389 /*
390  * Remove a reservation from the object's objq.
391  */
392 static void
393 vm_reserv_remove(vm_reserv_t rv)
394 {
395 	vm_object_t object;
396 
397 	vm_reserv_assert_locked(rv);
398 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
399 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
400 	KASSERT(rv->object != NULL,
401 	    ("vm_reserv_remove: reserv %p is free", rv));
402 	KASSERT(!rv->inpartpopq,
403 	    ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
404 	object = rv->object;
405 	vm_reserv_object_lock(object);
406 	LIST_REMOVE(rv, objq);
407 	rv->object = NULL;
408 	vm_reserv_object_unlock(object);
409 }
410 
411 /*
412  * Insert a new reservation into the object's objq.
413  */
414 static void
415 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
416 {
417 	int i;
418 
419 	vm_reserv_assert_locked(rv);
420 	CTR6(KTR_VM,
421 	    "%s: rv %p(%p) object %p new %p popcnt %d",
422 	    __FUNCTION__, rv, rv->pages, rv->object, object,
423 	   rv->popcnt);
424 	KASSERT(rv->object == NULL,
425 	    ("vm_reserv_insert: reserv %p isn't free", rv));
426 	KASSERT(rv->popcnt == 0,
427 	    ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
428 	KASSERT(!rv->inpartpopq,
429 	    ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
430 	for (i = 0; i < NPOPMAP; i++)
431 		KASSERT(rv->popmap[i] == 0,
432 		    ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
433 	vm_reserv_object_lock(object);
434 	rv->pindex = pindex;
435 	rv->object = object;
436 	rv->lasttick = ticks;
437 	LIST_INSERT_HEAD(&object->rvq, rv, objq);
438 	vm_reserv_object_unlock(object);
439 }
440 
441 /*
442  * Reduces the given reservation's population count.  If the population count
443  * becomes zero, the reservation is destroyed.  Additionally, moves the
444  * reservation to the tail of the partially populated reservation queue if the
445  * population count is non-zero.
446  */
447 static void
448 vm_reserv_depopulate(vm_reserv_t rv, int index)
449 {
450 	struct vm_domain *vmd;
451 
452 	vm_reserv_assert_locked(rv);
453 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
454 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
455 	KASSERT(rv->object != NULL,
456 	    ("vm_reserv_depopulate: reserv %p is free", rv));
457 	KASSERT(popmap_is_set(rv->popmap, index),
458 	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
459 	    index));
460 	KASSERT(rv->popcnt > 0,
461 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
462 	KASSERT(rv->domain < vm_ndomains,
463 	    ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
464 	    rv, rv->domain));
465 	if (rv->popcnt == VM_LEVEL_0_NPAGES) {
466 		KASSERT(rv->pages->psind == 1,
467 		    ("vm_reserv_depopulate: reserv %p is already demoted",
468 		    rv));
469 		rv->pages->psind = 0;
470 	}
471 	popmap_clear(rv->popmap, index);
472 	rv->popcnt--;
473 	if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
474 	    rv->popcnt == 0) {
475 		vm_reserv_domain_lock(rv->domain);
476 		if (rv->inpartpopq) {
477 			TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
478 			rv->inpartpopq = FALSE;
479 		}
480 		if (rv->popcnt != 0) {
481 			rv->inpartpopq = TRUE;
482 			TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv,
483 			    partpopq);
484 		}
485 		vm_reserv_domain_unlock(rv->domain);
486 		rv->lasttick = ticks;
487 	}
488 	vmd = VM_DOMAIN(rv->domain);
489 	if (rv->popcnt == 0) {
490 		vm_reserv_remove(rv);
491 		vm_domain_free_lock(vmd);
492 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
493 		vm_domain_free_unlock(vmd);
494 		counter_u64_add(vm_reserv_freed, 1);
495 	}
496 	vm_domain_freecnt_inc(vmd, 1);
497 }
498 
499 /*
500  * Returns the reservation to which the given page might belong.
501  */
502 static __inline vm_reserv_t
503 vm_reserv_from_page(vm_page_t m)
504 {
505 #ifdef VM_PHYSSEG_SPARSE
506 	struct vm_phys_seg *seg;
507 
508 	seg = &vm_phys_segs[m->segind];
509 	return (seg->first_reserv + (VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT) -
510 	    (seg->start >> VM_LEVEL_0_SHIFT));
511 #else
512 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
513 #endif
514 }
515 
516 /*
517  * Returns an existing reservation or NULL and initialized successor pointer.
518  */
519 static vm_reserv_t
520 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
521     vm_page_t mpred, vm_page_t *msuccp)
522 {
523 	vm_reserv_t rv;
524 	vm_page_t msucc;
525 
526 	msucc = NULL;
527 	if (mpred != NULL) {
528 		KASSERT(mpred->object == object,
529 		    ("vm_reserv_from_object: object doesn't contain mpred"));
530 		KASSERT(mpred->pindex < pindex,
531 		    ("vm_reserv_from_object: mpred doesn't precede pindex"));
532 		rv = vm_reserv_from_page(mpred);
533 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
534 			goto found;
535 		msucc = TAILQ_NEXT(mpred, listq);
536 	} else
537 		msucc = TAILQ_FIRST(&object->memq);
538 	if (msucc != NULL) {
539 		KASSERT(msucc->pindex > pindex,
540 		    ("vm_reserv_from_object: msucc doesn't succeed pindex"));
541 		rv = vm_reserv_from_page(msucc);
542 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
543 			goto found;
544 	}
545 	rv = NULL;
546 
547 found:
548 	*msuccp = msucc;
549 
550 	return (rv);
551 }
552 
553 /*
554  * Returns TRUE if the given reservation contains the given page index and
555  * FALSE otherwise.
556  */
557 static __inline boolean_t
558 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
559 {
560 
561 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
562 }
563 
564 /*
565  * Increases the given reservation's population count.  Moves the reservation
566  * to the tail of the partially populated reservation queue.
567  */
568 static void
569 vm_reserv_populate(vm_reserv_t rv, int index)
570 {
571 
572 	vm_reserv_assert_locked(rv);
573 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
574 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
575 	KASSERT(rv->object != NULL,
576 	    ("vm_reserv_populate: reserv %p is free", rv));
577 	KASSERT(popmap_is_clear(rv->popmap, index),
578 	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
579 	    index));
580 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
581 	    ("vm_reserv_populate: reserv %p is already full", rv));
582 	KASSERT(rv->pages->psind == 0,
583 	    ("vm_reserv_populate: reserv %p is already promoted", rv));
584 	KASSERT(rv->domain < vm_ndomains,
585 	    ("vm_reserv_populate: reserv %p's domain is corrupted %d",
586 	    rv, rv->domain));
587 	popmap_set(rv->popmap, index);
588 	rv->popcnt++;
589 	if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
590 	    rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
591 		return;
592 	rv->lasttick = ticks;
593 	vm_reserv_domain_lock(rv->domain);
594 	if (rv->inpartpopq) {
595 		TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
596 		rv->inpartpopq = FALSE;
597 	}
598 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
599 		rv->inpartpopq = TRUE;
600 		TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq);
601 	} else {
602 		KASSERT(rv->pages->psind == 0,
603 		    ("vm_reserv_populate: reserv %p is already promoted",
604 		    rv));
605 		rv->pages->psind = 1;
606 	}
607 	vm_reserv_domain_unlock(rv->domain);
608 }
609 
610 /*
611  * Allocates a contiguous set of physical pages of the given size "npages"
612  * from existing or newly created reservations.  All of the physical pages
613  * must be at or above the given physical address "low" and below the given
614  * physical address "high".  The given value "alignment" determines the
615  * alignment of the first physical page in the set.  If the given value
616  * "boundary" is non-zero, then the set of physical pages cannot cross any
617  * physical address boundary that is a multiple of that value.  Both
618  * "alignment" and "boundary" must be a power of two.
619  *
620  * The page "mpred" must immediately precede the offset "pindex" within the
621  * specified object.
622  *
623  * The object must be locked.
624  */
625 vm_page_t
626 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain,
627     int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high,
628     u_long alignment, vm_paddr_t boundary)
629 {
630 	struct vm_domain *vmd;
631 	vm_paddr_t pa, size;
632 	vm_page_t m, m_ret, msucc;
633 	vm_pindex_t first, leftcap, rightcap;
634 	vm_reserv_t rv;
635 	u_long allocpages, maxpages, minpages;
636 	int i, index, n;
637 
638 	VM_OBJECT_ASSERT_WLOCKED(object);
639 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
640 
641 	/*
642 	 * Is a reservation fundamentally impossible?
643 	 */
644 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
645 	    pindex + npages > object->size)
646 		return (NULL);
647 
648 	/*
649 	 * All reservations of a particular size have the same alignment.
650 	 * Assuming that the first page is allocated from a reservation, the
651 	 * least significant bits of its physical address can be determined
652 	 * from its offset from the beginning of the reservation and the size
653 	 * of the reservation.
654 	 *
655 	 * Could the specified index within a reservation of the smallest
656 	 * possible size satisfy the alignment and boundary requirements?
657 	 */
658 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
659 	if ((pa & (alignment - 1)) != 0)
660 		return (NULL);
661 	size = npages << PAGE_SHIFT;
662 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
663 		return (NULL);
664 
665 	/*
666 	 * Look for an existing reservation.
667 	 */
668 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
669 	if (rv != NULL) {
670 		KASSERT(object != kernel_object || rv->domain == domain,
671 		    ("vm_reserv_alloc_contig: domain mismatch"));
672 		index = VM_RESERV_INDEX(object, pindex);
673 		/* Does the allocation fit within the reservation? */
674 		if (index + npages > VM_LEVEL_0_NPAGES)
675 			return (NULL);
676 		domain = rv->domain;
677 		vmd = VM_DOMAIN(domain);
678 		vm_reserv_lock(rv);
679 		/* Handle reclaim race. */
680 		if (rv->object != object)
681 			goto out;
682 		m = &rv->pages[index];
683 		pa = VM_PAGE_TO_PHYS(m);
684 		if (pa < low || pa + size > high ||
685 		    (pa & (alignment - 1)) != 0 ||
686 		    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
687 			goto out;
688 		/* Handle vm_page_rename(m, new_object, ...). */
689 		for (i = 0; i < npages; i++)
690 			if (popmap_is_set(rv->popmap, index + i))
691 				goto out;
692 		if (!vm_domain_allocate(vmd, req, npages))
693 			goto out;
694 		for (i = 0; i < npages; i++)
695 			vm_reserv_populate(rv, index + i);
696 		vm_reserv_unlock(rv);
697 		return (m);
698 out:
699 		vm_reserv_unlock(rv);
700 		return (NULL);
701 	}
702 
703 	/*
704 	 * Could at least one reservation fit between the first index to the
705 	 * left that can be used ("leftcap") and the first index to the right
706 	 * that cannot be used ("rightcap")?
707 	 *
708 	 * We must synchronize with the reserv object lock to protect the
709 	 * pindex/object of the resulting reservations against rename while
710 	 * we are inspecting.
711 	 */
712 	first = pindex - VM_RESERV_INDEX(object, pindex);
713 	minpages = VM_RESERV_INDEX(object, pindex) + npages;
714 	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
715 	allocpages = maxpages;
716 	vm_reserv_object_lock(object);
717 	if (mpred != NULL) {
718 		if ((rv = vm_reserv_from_page(mpred))->object != object)
719 			leftcap = mpred->pindex + 1;
720 		else
721 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
722 		if (leftcap > first) {
723 			vm_reserv_object_unlock(object);
724 			return (NULL);
725 		}
726 	}
727 	if (msucc != NULL) {
728 		if ((rv = vm_reserv_from_page(msucc))->object != object)
729 			rightcap = msucc->pindex;
730 		else
731 			rightcap = rv->pindex;
732 		if (first + maxpages > rightcap) {
733 			if (maxpages == VM_LEVEL_0_NPAGES) {
734 				vm_reserv_object_unlock(object);
735 				return (NULL);
736 			}
737 
738 			/*
739 			 * At least one reservation will fit between "leftcap"
740 			 * and "rightcap".  However, a reservation for the
741 			 * last of the requested pages will not fit.  Reduce
742 			 * the size of the upcoming allocation accordingly.
743 			 */
744 			allocpages = minpages;
745 		}
746 	}
747 	vm_reserv_object_unlock(object);
748 
749 	/*
750 	 * Would the last new reservation extend past the end of the object?
751 	 *
752 	 * If the object is unlikely to grow don't allocate a reservation for
753 	 * the tail.
754 	 */
755 	if ((object->flags & OBJ_ANON) == 0 &&
756 	    first + maxpages > object->size) {
757 		if (maxpages == VM_LEVEL_0_NPAGES)
758 			return (NULL);
759 		allocpages = minpages;
760 	}
761 
762 	/*
763 	 * Allocate the physical pages.  The alignment and boundary specified
764 	 * for this allocation may be different from the alignment and
765 	 * boundary specified for the requested pages.  For instance, the
766 	 * specified index may not be the first page within the first new
767 	 * reservation.
768 	 */
769 	m = NULL;
770 	vmd = VM_DOMAIN(domain);
771 	if (vm_domain_allocate(vmd, req, npages)) {
772 		vm_domain_free_lock(vmd);
773 		m = vm_phys_alloc_contig(domain, allocpages, low, high,
774 		    ulmax(alignment, VM_LEVEL_0_SIZE),
775 		    boundary > VM_LEVEL_0_SIZE ? boundary : 0);
776 		vm_domain_free_unlock(vmd);
777 		if (m == NULL) {
778 			vm_domain_freecnt_inc(vmd, npages);
779 			return (NULL);
780 		}
781 	} else
782 		return (NULL);
783 	KASSERT(vm_page_domain(m) == domain,
784 	    ("vm_reserv_alloc_contig: Page domain does not match requested."));
785 
786 	/*
787 	 * The allocated physical pages always begin at a reservation
788 	 * boundary, but they do not always end at a reservation boundary.
789 	 * Initialize every reservation that is completely covered by the
790 	 * allocated physical pages.
791 	 */
792 	m_ret = NULL;
793 	index = VM_RESERV_INDEX(object, pindex);
794 	do {
795 		rv = vm_reserv_from_page(m);
796 		KASSERT(rv->pages == m,
797 		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
798 		    rv));
799 		vm_reserv_lock(rv);
800 		vm_reserv_insert(rv, object, first);
801 		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
802 		for (i = 0; i < n; i++)
803 			vm_reserv_populate(rv, index + i);
804 		npages -= n;
805 		if (m_ret == NULL) {
806 			m_ret = &rv->pages[index];
807 			index = 0;
808 		}
809 		vm_reserv_unlock(rv);
810 		m += VM_LEVEL_0_NPAGES;
811 		first += VM_LEVEL_0_NPAGES;
812 		allocpages -= VM_LEVEL_0_NPAGES;
813 	} while (allocpages >= VM_LEVEL_0_NPAGES);
814 	return (m_ret);
815 }
816 
817 /*
818  * Allocate a physical page from an existing or newly created reservation.
819  *
820  * The page "mpred" must immediately precede the offset "pindex" within the
821  * specified object.
822  *
823  * The object must be locked.
824  */
825 vm_page_t
826 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain,
827     int req, vm_page_t mpred)
828 {
829 	struct vm_domain *vmd;
830 	vm_page_t m, msucc;
831 	vm_pindex_t first, leftcap, rightcap;
832 	vm_reserv_t rv;
833 	int index;
834 
835 	VM_OBJECT_ASSERT_WLOCKED(object);
836 
837 	/*
838 	 * Is a reservation fundamentally impossible?
839 	 */
840 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
841 	    pindex >= object->size)
842 		return (NULL);
843 
844 	/*
845 	 * Look for an existing reservation.
846 	 */
847 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
848 	if (rv != NULL) {
849 		KASSERT(object != kernel_object || rv->domain == domain,
850 		    ("vm_reserv_alloc_page: domain mismatch"));
851 		domain = rv->domain;
852 		vmd = VM_DOMAIN(domain);
853 		index = VM_RESERV_INDEX(object, pindex);
854 		m = &rv->pages[index];
855 		vm_reserv_lock(rv);
856 		/* Handle reclaim race. */
857 		if (rv->object != object ||
858 		    /* Handle vm_page_rename(m, new_object, ...). */
859 		    popmap_is_set(rv->popmap, index)) {
860 			m = NULL;
861 			goto out;
862 		}
863 		if (vm_domain_allocate(vmd, req, 1) == 0)
864 			m = NULL;
865 		else
866 			vm_reserv_populate(rv, index);
867 out:
868 		vm_reserv_unlock(rv);
869 		return (m);
870 	}
871 
872 	/*
873 	 * Could a reservation fit between the first index to the left that
874 	 * can be used and the first index to the right that cannot be used?
875 	 *
876 	 * We must synchronize with the reserv object lock to protect the
877 	 * pindex/object of the resulting reservations against rename while
878 	 * we are inspecting.
879 	 */
880 	first = pindex - VM_RESERV_INDEX(object, pindex);
881 	vm_reserv_object_lock(object);
882 	if (mpred != NULL) {
883 		if ((rv = vm_reserv_from_page(mpred))->object != object)
884 			leftcap = mpred->pindex + 1;
885 		else
886 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
887 		if (leftcap > first) {
888 			vm_reserv_object_unlock(object);
889 			return (NULL);
890 		}
891 	}
892 	if (msucc != NULL) {
893 		if ((rv = vm_reserv_from_page(msucc))->object != object)
894 			rightcap = msucc->pindex;
895 		else
896 			rightcap = rv->pindex;
897 		if (first + VM_LEVEL_0_NPAGES > rightcap) {
898 			vm_reserv_object_unlock(object);
899 			return (NULL);
900 		}
901 	}
902 	vm_reserv_object_unlock(object);
903 
904 	/*
905 	 * Would the last new reservation extend past the end of the object?
906 	 *
907 	 * If the object is unlikely to grow don't allocate a reservation for
908 	 * the tail.
909 	 */
910 	if ((object->flags & OBJ_ANON) == 0 &&
911 	    first + VM_LEVEL_0_NPAGES > object->size)
912 		return (NULL);
913 
914 	/*
915 	 * Allocate and populate the new reservation.
916 	 */
917 	m = NULL;
918 	vmd = VM_DOMAIN(domain);
919 	if (vm_domain_allocate(vmd, req, 1)) {
920 		vm_domain_free_lock(vmd);
921 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
922 		    VM_LEVEL_0_ORDER);
923 		vm_domain_free_unlock(vmd);
924 		if (m == NULL) {
925 			vm_domain_freecnt_inc(vmd, 1);
926 			return (NULL);
927 		}
928 	} else
929 		return (NULL);
930 	rv = vm_reserv_from_page(m);
931 	vm_reserv_lock(rv);
932 	KASSERT(rv->pages == m,
933 	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
934 	vm_reserv_insert(rv, object, first);
935 	index = VM_RESERV_INDEX(object, pindex);
936 	vm_reserv_populate(rv, index);
937 	vm_reserv_unlock(rv);
938 
939 	return (&rv->pages[index]);
940 }
941 
942 /*
943  * Breaks the given reservation.  All free pages in the reservation
944  * are returned to the physical memory allocator.  The reservation's
945  * population count and map are reset to their initial state.
946  *
947  * The given reservation must not be in the partially populated reservation
948  * queue.
949  */
950 static void
951 vm_reserv_break(vm_reserv_t rv)
952 {
953 	u_long changes;
954 	int bitpos, hi, i, lo;
955 
956 	vm_reserv_assert_locked(rv);
957 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
958 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
959 	vm_reserv_remove(rv);
960 	rv->pages->psind = 0;
961 	hi = lo = -1;
962 	for (i = 0; i <= NPOPMAP; i++) {
963 		/*
964 		 * "changes" is a bitmask that marks where a new sequence of
965 		 * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
966 		 * considered to be 1 if and only if lo == hi.  The bits of
967 		 * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
968 		 */
969 		if (i == NPOPMAP)
970 			changes = lo != hi;
971 		else {
972 			changes = rv->popmap[i];
973 			changes ^= (changes << 1) | (lo == hi);
974 			rv->popmap[i] = 0;
975 		}
976 		while (changes != 0) {
977 			/*
978 			 * If the next change marked begins a run of 0s, set
979 			 * lo to mark that position.  Otherwise set hi and
980 			 * free pages from lo up to hi.
981 			 */
982 			bitpos = ffsl(changes) - 1;
983 			changes ^= 1UL << bitpos;
984 			if (lo == hi)
985 				lo = NBPOPMAP * i + bitpos;
986 			else {
987 				hi = NBPOPMAP * i + bitpos;
988 				vm_domain_free_lock(VM_DOMAIN(rv->domain));
989 				vm_phys_enqueue_contig(&rv->pages[lo], hi - lo);
990 				vm_domain_free_unlock(VM_DOMAIN(rv->domain));
991 				lo = hi;
992 			}
993 		}
994 	}
995 	rv->popcnt = 0;
996 	counter_u64_add(vm_reserv_broken, 1);
997 }
998 
999 /*
1000  * Breaks all reservations belonging to the given object.
1001  */
1002 void
1003 vm_reserv_break_all(vm_object_t object)
1004 {
1005 	vm_reserv_t rv;
1006 
1007 	/*
1008 	 * This access of object->rvq is unsynchronized so that the
1009 	 * object rvq lock can nest after the domain_free lock.  We
1010 	 * must check for races in the results.  However, the object
1011 	 * lock prevents new additions, so we are guaranteed that when
1012 	 * it returns NULL the object is properly empty.
1013 	 */
1014 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
1015 		vm_reserv_lock(rv);
1016 		/* Reclaim race. */
1017 		if (rv->object != object) {
1018 			vm_reserv_unlock(rv);
1019 			continue;
1020 		}
1021 		vm_reserv_domain_lock(rv->domain);
1022 		if (rv->inpartpopq) {
1023 			TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1024 			rv->inpartpopq = FALSE;
1025 		}
1026 		vm_reserv_domain_unlock(rv->domain);
1027 		vm_reserv_break(rv);
1028 		vm_reserv_unlock(rv);
1029 	}
1030 }
1031 
1032 /*
1033  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1034  * page is freed and FALSE otherwise.
1035  */
1036 boolean_t
1037 vm_reserv_free_page(vm_page_t m)
1038 {
1039 	vm_reserv_t rv;
1040 	boolean_t ret;
1041 
1042 	rv = vm_reserv_from_page(m);
1043 	if (rv->object == NULL)
1044 		return (FALSE);
1045 	vm_reserv_lock(rv);
1046 	/* Re-validate after lock. */
1047 	if (rv->object != NULL) {
1048 		vm_reserv_depopulate(rv, m - rv->pages);
1049 		ret = TRUE;
1050 	} else
1051 		ret = FALSE;
1052 	vm_reserv_unlock(rv);
1053 
1054 	return (ret);
1055 }
1056 
1057 /*
1058  * Initializes the reservation management system.  Specifically, initializes
1059  * the reservation array.
1060  *
1061  * Requires that vm_page_array and first_page are initialized!
1062  */
1063 void
1064 vm_reserv_init(void)
1065 {
1066 	vm_paddr_t paddr;
1067 	struct vm_phys_seg *seg;
1068 	struct vm_reserv *rv;
1069 	struct vm_reserv_domain *rvd;
1070 #ifdef VM_PHYSSEG_SPARSE
1071 	vm_pindex_t used;
1072 #endif
1073 	int i, j, segind;
1074 
1075 	/*
1076 	 * Initialize the reservation array.  Specifically, initialize the
1077 	 * "pages" field for every element that has an underlying superpage.
1078 	 */
1079 #ifdef VM_PHYSSEG_SPARSE
1080 	used = 0;
1081 #endif
1082 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1083 		seg = &vm_phys_segs[segind];
1084 #ifdef VM_PHYSSEG_SPARSE
1085 		seg->first_reserv = &vm_reserv_array[used];
1086 		used += howmany(seg->end, VM_LEVEL_0_SIZE) -
1087 		    seg->start / VM_LEVEL_0_SIZE;
1088 #else
1089 		seg->first_reserv =
1090 		    &vm_reserv_array[seg->start >> VM_LEVEL_0_SHIFT];
1091 #endif
1092 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1093 		rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) -
1094 		    (seg->start >> VM_LEVEL_0_SHIFT);
1095 		while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
1096 		    VM_LEVEL_0_SIZE <= seg->end) {
1097 			rv->pages = PHYS_TO_VM_PAGE(paddr);
1098 			rv->domain = seg->domain;
1099 			mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1100 			paddr += VM_LEVEL_0_SIZE;
1101 			rv++;
1102 		}
1103 	}
1104 	for (i = 0; i < MAXMEMDOM; i++) {
1105 		rvd = &vm_rvd[i];
1106 		mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF);
1107 		TAILQ_INIT(&rvd->partpop);
1108 		mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF);
1109 
1110 		/*
1111 		 * Fully populated reservations should never be present in the
1112 		 * partially populated reservation queues.
1113 		 */
1114 		rvd->marker.popcnt = VM_LEVEL_0_NPAGES;
1115 		for (j = 0; j < VM_LEVEL_0_NPAGES; j++)
1116 			popmap_set(rvd->marker.popmap, j);
1117 	}
1118 
1119 	for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1120 		mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1121 		    MTX_DEF);
1122 }
1123 
1124 /*
1125  * Returns true if the given page belongs to a reservation and that page is
1126  * free.  Otherwise, returns false.
1127  */
1128 bool
1129 vm_reserv_is_page_free(vm_page_t m)
1130 {
1131 	vm_reserv_t rv;
1132 
1133 	rv = vm_reserv_from_page(m);
1134 	if (rv->object == NULL)
1135 		return (false);
1136 	return (popmap_is_clear(rv->popmap, m - rv->pages));
1137 }
1138 
1139 /*
1140  * If the given page belongs to a reservation, returns the level of that
1141  * reservation.  Otherwise, returns -1.
1142  */
1143 int
1144 vm_reserv_level(vm_page_t m)
1145 {
1146 	vm_reserv_t rv;
1147 
1148 	rv = vm_reserv_from_page(m);
1149 	return (rv->object != NULL ? 0 : -1);
1150 }
1151 
1152 /*
1153  * Returns a reservation level if the given page belongs to a fully populated
1154  * reservation and -1 otherwise.
1155  */
1156 int
1157 vm_reserv_level_iffullpop(vm_page_t m)
1158 {
1159 	vm_reserv_t rv;
1160 
1161 	rv = vm_reserv_from_page(m);
1162 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1163 }
1164 
1165 /*
1166  * Remove a partially populated reservation from the queue.
1167  */
1168 static void
1169 vm_reserv_dequeue(vm_reserv_t rv)
1170 {
1171 
1172 	vm_reserv_domain_assert_locked(rv->domain);
1173 	vm_reserv_assert_locked(rv);
1174 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1175 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1176 	KASSERT(rv->inpartpopq,
1177 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1178 
1179 	TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1180 	rv->inpartpopq = FALSE;
1181 }
1182 
1183 /*
1184  * Breaks the given partially populated reservation, releasing its free pages
1185  * to the physical memory allocator.
1186  */
1187 static void
1188 vm_reserv_reclaim(vm_reserv_t rv)
1189 {
1190 
1191 	vm_reserv_assert_locked(rv);
1192 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1193 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1194 	if (rv->inpartpopq) {
1195 		vm_reserv_domain_lock(rv->domain);
1196 		vm_reserv_dequeue(rv);
1197 		vm_reserv_domain_unlock(rv->domain);
1198 	}
1199 	vm_reserv_break(rv);
1200 	counter_u64_add(vm_reserv_reclaimed, 1);
1201 }
1202 
1203 /*
1204  * Breaks a reservation near the head of the partially populated reservation
1205  * queue, releasing its free pages to the physical memory allocator.  Returns
1206  * TRUE if a reservation is broken and FALSE otherwise.
1207  */
1208 bool
1209 vm_reserv_reclaim_inactive(int domain)
1210 {
1211 	vm_reserv_t rv;
1212 
1213 	vm_reserv_domain_lock(domain);
1214 	TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
1215 		/*
1216 		 * A locked reservation is likely being updated or reclaimed,
1217 		 * so just skip ahead.
1218 		 */
1219 		if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) {
1220 			vm_reserv_dequeue(rv);
1221 			break;
1222 		}
1223 	}
1224 	vm_reserv_domain_unlock(domain);
1225 	if (rv != NULL) {
1226 		vm_reserv_reclaim(rv);
1227 		vm_reserv_unlock(rv);
1228 		return (true);
1229 	}
1230 	return (false);
1231 }
1232 
1233 /*
1234  * Determine whether this reservation has free pages that satisfy the given
1235  * request for contiguous physical memory.  Start searching from the lower
1236  * bound, defined by low_index.
1237  */
1238 static bool
1239 vm_reserv_test_contig(vm_reserv_t rv, u_long npages, vm_paddr_t low,
1240     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1241 {
1242 	vm_paddr_t pa, size;
1243 	u_long changes;
1244 	int bitpos, bits_left, i, hi, lo, n;
1245 
1246 	vm_reserv_assert_locked(rv);
1247 	size = npages << PAGE_SHIFT;
1248 	pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1249 	lo = (pa < low) ?
1250 	    ((low + PAGE_MASK - pa) >> PAGE_SHIFT) : 0;
1251 	i = lo / NBPOPMAP;
1252 	changes = rv->popmap[i] | ((1UL << (lo % NBPOPMAP)) - 1);
1253 	hi = (pa + VM_LEVEL_0_SIZE > high) ?
1254 	    ((high + PAGE_MASK - pa) >> PAGE_SHIFT) : VM_LEVEL_0_NPAGES;
1255 	n = hi / NBPOPMAP;
1256 	bits_left = hi % NBPOPMAP;
1257 	hi = lo = -1;
1258 	for (;;) {
1259 		/*
1260 		 * "changes" is a bitmask that marks where a new sequence of
1261 		 * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
1262 		 * considered to be 1 if and only if lo == hi.  The bits of
1263 		 * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
1264 		 */
1265 		changes ^= (changes << 1) | (lo == hi);
1266 		while (changes != 0) {
1267 			/*
1268 			 * If the next change marked begins a run of 0s, set
1269 			 * lo to mark that position.  Otherwise set hi and
1270 			 * look for a satisfactory first page from lo up to hi.
1271 			 */
1272 			bitpos = ffsl(changes) - 1;
1273 			changes ^= 1UL << bitpos;
1274 			if (lo == hi) {
1275 				lo = NBPOPMAP * i + bitpos;
1276 				continue;
1277 			}
1278 			hi = NBPOPMAP * i + bitpos;
1279 			pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1280 			if ((pa & (alignment - 1)) != 0) {
1281 				/* Skip to next aligned page. */
1282 				lo += (((pa - 1) | (alignment - 1)) + 1) >>
1283 				    PAGE_SHIFT;
1284 				if (lo >= VM_LEVEL_0_NPAGES)
1285 					return (false);
1286 				pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1287 			}
1288 			if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1289 				/* Skip to next boundary-matching page. */
1290 				lo += (((pa - 1) | (boundary - 1)) + 1) >>
1291 				    PAGE_SHIFT;
1292 				if (lo >= VM_LEVEL_0_NPAGES)
1293 					return (false);
1294 				pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1295 			}
1296 			if (lo * PAGE_SIZE + size <= hi * PAGE_SIZE)
1297 				return (true);
1298 			lo = hi;
1299 		}
1300 		if (++i < n)
1301 			changes = rv->popmap[i];
1302 		else if (i == n)
1303 			changes = bits_left == 0 ? -1UL :
1304 			    (rv->popmap[n] | (-1UL << bits_left));
1305 		else
1306 			return (false);
1307 	}
1308 }
1309 
1310 /*
1311  * Searches the partially populated reservation queue for the least recently
1312  * changed reservation with free pages that satisfy the given request for
1313  * contiguous physical memory.  If a satisfactory reservation is found, it is
1314  * broken.  Returns true if a reservation is broken and false otherwise.
1315  */
1316 bool
1317 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1318     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1319 {
1320 	struct vm_reserv_queue *queue;
1321 	vm_paddr_t pa, size;
1322 	vm_reserv_t marker, rv, rvn;
1323 
1324 	if (npages > VM_LEVEL_0_NPAGES - 1)
1325 		return (false);
1326 	marker = &vm_rvd[domain].marker;
1327 	queue = &vm_rvd[domain].partpop;
1328 	size = npages << PAGE_SHIFT;
1329 
1330 	vm_reserv_domain_scan_lock(domain);
1331 	vm_reserv_domain_lock(domain);
1332 	TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) {
1333 		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1334 		if (pa + VM_LEVEL_0_SIZE - size < low) {
1335 			/* This entire reservation is too low; go to next. */
1336 			continue;
1337 		}
1338 		if (pa + size > high) {
1339 			/* This entire reservation is too high; go to next. */
1340 			continue;
1341 		}
1342 
1343 		if (vm_reserv_trylock(rv) == 0) {
1344 			TAILQ_INSERT_AFTER(queue, rv, marker, partpopq);
1345 			vm_reserv_domain_unlock(domain);
1346 			vm_reserv_lock(rv);
1347 			if (TAILQ_PREV(marker, vm_reserv_queue, partpopq) !=
1348 			    rv) {
1349 				vm_reserv_unlock(rv);
1350 				vm_reserv_domain_lock(domain);
1351 				rvn = TAILQ_NEXT(marker, partpopq);
1352 				TAILQ_REMOVE(queue, marker, partpopq);
1353 				continue;
1354 			}
1355 			vm_reserv_domain_lock(domain);
1356 			TAILQ_REMOVE(queue, marker, partpopq);
1357 		}
1358 		vm_reserv_domain_unlock(domain);
1359 		if (vm_reserv_test_contig(rv, npages, low, high,
1360 		    alignment, boundary)) {
1361 			vm_reserv_domain_scan_unlock(domain);
1362 			vm_reserv_reclaim(rv);
1363 			vm_reserv_unlock(rv);
1364 			return (true);
1365 		}
1366 		vm_reserv_domain_lock(domain);
1367 		rvn = TAILQ_NEXT(rv, partpopq);
1368 		vm_reserv_unlock(rv);
1369 	}
1370 	vm_reserv_domain_unlock(domain);
1371 	vm_reserv_domain_scan_unlock(domain);
1372 	return (false);
1373 }
1374 
1375 /*
1376  * Transfers the reservation underlying the given page to a new object.
1377  *
1378  * The object must be locked.
1379  */
1380 void
1381 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1382     vm_pindex_t old_object_offset)
1383 {
1384 	vm_reserv_t rv;
1385 
1386 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1387 	rv = vm_reserv_from_page(m);
1388 	if (rv->object == old_object) {
1389 		vm_reserv_lock(rv);
1390 		CTR6(KTR_VM,
1391 		    "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1392 		    __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1393 		    rv->inpartpopq);
1394 		if (rv->object == old_object) {
1395 			vm_reserv_object_lock(old_object);
1396 			rv->object = NULL;
1397 			LIST_REMOVE(rv, objq);
1398 			vm_reserv_object_unlock(old_object);
1399 			vm_reserv_object_lock(new_object);
1400 			rv->object = new_object;
1401 			rv->pindex -= old_object_offset;
1402 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1403 			vm_reserv_object_unlock(new_object);
1404 		}
1405 		vm_reserv_unlock(rv);
1406 	}
1407 }
1408 
1409 /*
1410  * Returns the size (in bytes) of a reservation of the specified level.
1411  */
1412 int
1413 vm_reserv_size(int level)
1414 {
1415 
1416 	switch (level) {
1417 	case 0:
1418 		return (VM_LEVEL_0_SIZE);
1419 	case -1:
1420 		return (PAGE_SIZE);
1421 	default:
1422 		return (0);
1423 	}
1424 }
1425 
1426 /*
1427  * Allocates the virtual and physical memory required by the reservation
1428  * management system's data structures, in particular, the reservation array.
1429  */
1430 vm_paddr_t
1431 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end)
1432 {
1433 	vm_paddr_t new_end;
1434 	vm_pindex_t count;
1435 	size_t size;
1436 	int i;
1437 
1438 	count = 0;
1439 	for (i = 0; i < vm_phys_nsegs; i++) {
1440 #ifdef VM_PHYSSEG_SPARSE
1441 		count += howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE) -
1442 		    vm_phys_segs[i].start / VM_LEVEL_0_SIZE;
1443 #else
1444 		count = MAX(count,
1445 		    howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE));
1446 #endif
1447 	}
1448 
1449 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1450 #ifdef VM_PHYSSEG_SPARSE
1451 		count += howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE) -
1452 		    phys_avail[i] / VM_LEVEL_0_SIZE;
1453 #else
1454 		count = MAX(count,
1455 		    howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE));
1456 #endif
1457 	}
1458 
1459 	/*
1460 	 * Calculate the size (in bytes) of the reservation array.  Rounding up
1461 	 * for partial superpages at boundaries, as every small page is mapped
1462 	 * to an element in the reservation array based on its physical address.
1463 	 * Thus, the number of elements in the reservation array can be greater
1464 	 * than the number of superpages.
1465 	 */
1466 	size = count * sizeof(struct vm_reserv);
1467 
1468 	/*
1469 	 * Allocate and map the physical memory for the reservation array.  The
1470 	 * next available virtual address is returned by reference.
1471 	 */
1472 	new_end = end - round_page(size);
1473 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1474 	    VM_PROT_READ | VM_PROT_WRITE);
1475 	bzero(vm_reserv_array, size);
1476 
1477 	/*
1478 	 * Return the next available physical address.
1479 	 */
1480 	return (new_end);
1481 }
1482 
1483 /*
1484  * Returns the superpage containing the given page.
1485  */
1486 vm_page_t
1487 vm_reserv_to_superpage(vm_page_t m)
1488 {
1489 	vm_reserv_t rv;
1490 
1491 	VM_OBJECT_ASSERT_LOCKED(m->object);
1492 	rv = vm_reserv_from_page(m);
1493 	if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1494 		m = rv->pages;
1495 	else
1496 		m = NULL;
1497 
1498 	return (m);
1499 }
1500 
1501 #endif	/* VM_NRESERVLEVEL > 0 */
1502