xref: /freebsd/sys/vm/vm_reserv.c (revision d869a17e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_vm.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_phys.h>
67 #include <vm/vm_pagequeue.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70 
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77 
78 #if VM_NRESERVLEVEL > 0
79 
80 #ifndef VM_LEVEL_0_ORDER_MAX
81 #define	VM_LEVEL_0_ORDER_MAX	VM_LEVEL_0_ORDER
82 #endif
83 
84 /*
85  * The number of small pages that are contained in a level 0 reservation
86  */
87 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
88 #define	VM_LEVEL_0_NPAGES_MAX	(1 << VM_LEVEL_0_ORDER_MAX)
89 
90 /*
91  * The number of bits by which a physical address is shifted to obtain the
92  * reservation number
93  */
94 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
95 
96 /*
97  * The size of a level 0 reservation in bytes
98  */
99 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
100 
101 /*
102  * Computes the index of the small page underlying the given (object, pindex)
103  * within the reservation's array of small pages.
104  */
105 #define	VM_RESERV_INDEX(object, pindex)	\
106     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
107 
108 /*
109  * The size of a population map entry
110  */
111 typedef	u_long		popmap_t;
112 
113 /*
114  * The number of bits in a population map entry
115  */
116 #define	NBPOPMAP	(NBBY * sizeof(popmap_t))
117 
118 /*
119  * The number of population map entries in a reservation
120  */
121 #define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
122 #define	NPOPMAP_MAX	howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP)
123 
124 /*
125  * Number of elapsed ticks before we update the LRU queue position.  Used
126  * to reduce contention and churn on the list.
127  */
128 #define	PARTPOPSLOP	1
129 
130 /*
131  * Clear a bit in the population map.
132  */
133 static __inline void
134 popmap_clear(popmap_t popmap[], int i)
135 {
136 
137 	popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
138 }
139 
140 /*
141  * Set a bit in the population map.
142  */
143 static __inline void
144 popmap_set(popmap_t popmap[], int i)
145 {
146 
147 	popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
148 }
149 
150 /*
151  * Is a bit in the population map clear?
152  */
153 static __inline boolean_t
154 popmap_is_clear(popmap_t popmap[], int i)
155 {
156 
157 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
158 }
159 
160 /*
161  * Is a bit in the population map set?
162  */
163 static __inline boolean_t
164 popmap_is_set(popmap_t popmap[], int i)
165 {
166 
167 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
168 }
169 
170 /*
171  * The reservation structure
172  *
173  * A reservation structure is constructed whenever a large physical page is
174  * speculatively allocated to an object.  The reservation provides the small
175  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
176  * within that object.  The reservation's "popcnt" tracks the number of these
177  * small physical pages that are in use at any given time.  When and if the
178  * reservation is not fully utilized, it appears in the queue of partially
179  * populated reservations.  The reservation always appears on the containing
180  * object's list of reservations.
181  *
182  * A partially populated reservation can be broken and reclaimed at any time.
183  *
184  * c - constant after boot
185  * d - vm_reserv_domain_lock
186  * o - vm_reserv_object_lock
187  * r - vm_reserv_lock
188  * s - vm_reserv_domain_scan_lock
189  */
190 struct vm_reserv {
191 	struct mtx	lock;			/* reservation lock. */
192 	TAILQ_ENTRY(vm_reserv) partpopq;	/* (d, r) per-domain queue. */
193 	LIST_ENTRY(vm_reserv) objq;		/* (o, r) object queue */
194 	vm_object_t	object;			/* (o, r) containing object */
195 	vm_pindex_t	pindex;			/* (o, r) offset in object */
196 	vm_page_t	pages;			/* (c) first page  */
197 	uint16_t	popcnt;			/* (r) # of pages in use */
198 	uint8_t		domain;			/* (c) NUMA domain. */
199 	char		inpartpopq;		/* (d, r) */
200 	int		lasttick;		/* (r) last pop update tick. */
201 	popmap_t	popmap[NPOPMAP_MAX];	/* (r) bit vector, used pages */
202 };
203 
204 TAILQ_HEAD(vm_reserv_queue, vm_reserv);
205 
206 #define	vm_reserv_lockptr(rv)		(&(rv)->lock)
207 #define	vm_reserv_assert_locked(rv)					\
208 	    mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
209 #define	vm_reserv_lock(rv)		mtx_lock(vm_reserv_lockptr(rv))
210 #define	vm_reserv_trylock(rv)		mtx_trylock(vm_reserv_lockptr(rv))
211 #define	vm_reserv_unlock(rv)		mtx_unlock(vm_reserv_lockptr(rv))
212 
213 /*
214  * The reservation array
215  *
216  * This array is analoguous in function to vm_page_array.  It differs in the
217  * respect that it may contain a greater number of useful reservation
218  * structures than there are (physical) superpages.  These "invalid"
219  * reservation structures exist to trade-off space for time in the
220  * implementation of vm_reserv_from_page().  Invalid reservation structures are
221  * distinguishable from "valid" reservation structures by inspecting the
222  * reservation's "pages" field.  Invalid reservation structures have a NULL
223  * "pages" field.
224  *
225  * vm_reserv_from_page() maps a small (physical) page to an element of this
226  * array by computing a physical reservation number from the page's physical
227  * address.  The physical reservation number is used as the array index.
228  *
229  * An "active" reservation is a valid reservation structure that has a non-NULL
230  * "object" field and a non-zero "popcnt" field.  In other words, every active
231  * reservation belongs to a particular object.  Moreover, every active
232  * reservation has an entry in the containing object's list of reservations.
233  */
234 static vm_reserv_t vm_reserv_array;
235 
236 /*
237  * The per-domain partially populated reservation queues
238  *
239  * These queues enable the fast recovery of an unused free small page from a
240  * partially populated reservation.  The reservation at the head of a queue
241  * is the least recently changed, partially populated reservation.
242  *
243  * Access to this queue is synchronized by the per-domain reservation lock.
244  * Threads reclaiming free pages from the queue must hold the per-domain scan
245  * lock.
246  */
247 struct vm_reserv_domain {
248 	struct mtx 		lock;
249 	struct vm_reserv_queue	partpop;	/* (d) */
250 	struct vm_reserv	marker;		/* (d, s) scan marker/lock */
251 } __aligned(CACHE_LINE_SIZE);
252 
253 static struct vm_reserv_domain vm_rvd[MAXMEMDOM];
254 
255 #define	vm_reserv_domain_lockptr(d)	(&vm_rvd[(d)].lock)
256 #define	vm_reserv_domain_assert_locked(d)	\
257 	mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED)
258 #define	vm_reserv_domain_lock(d)	mtx_lock(vm_reserv_domain_lockptr(d))
259 #define	vm_reserv_domain_unlock(d)	mtx_unlock(vm_reserv_domain_lockptr(d))
260 
261 #define	vm_reserv_domain_scan_lock(d)	mtx_lock(&vm_rvd[(d)].marker.lock)
262 #define	vm_reserv_domain_scan_unlock(d)	mtx_unlock(&vm_rvd[(d)].marker.lock)
263 
264 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
265     "Reservation Info");
266 
267 static COUNTER_U64_DEFINE_EARLY(vm_reserv_broken);
268 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
269     &vm_reserv_broken, "Cumulative number of broken reservations");
270 
271 static COUNTER_U64_DEFINE_EARLY(vm_reserv_freed);
272 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
273     &vm_reserv_freed, "Cumulative number of freed reservations");
274 
275 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
276 
277 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD,
278     NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
279 
280 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
281 
282 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq,
283     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
284     sysctl_vm_reserv_partpopq, "A",
285     "Partially populated reservation queues");
286 
287 static COUNTER_U64_DEFINE_EARLY(vm_reserv_reclaimed);
288 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
289     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
290 
291 /*
292  * The object lock pool is used to synchronize the rvq.  We can not use a
293  * pool mutex because it is required before malloc works.
294  *
295  * The "hash" function could be made faster without divide and modulo.
296  */
297 #define	VM_RESERV_OBJ_LOCK_COUNT	MAXCPU
298 
299 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
300 
301 #define	vm_reserv_object_lock_idx(object)			\
302 	    (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
303 #define	vm_reserv_object_lock_ptr(object)			\
304 	    &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
305 #define	vm_reserv_object_lock(object)				\
306 	    mtx_lock(vm_reserv_object_lock_ptr((object)))
307 #define	vm_reserv_object_unlock(object)				\
308 	    mtx_unlock(vm_reserv_object_lock_ptr((object)))
309 
310 static void		vm_reserv_break(vm_reserv_t rv);
311 static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
312 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
313 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
314 			    vm_pindex_t pindex);
315 static void		vm_reserv_populate(vm_reserv_t rv, int index);
316 static void		vm_reserv_reclaim(vm_reserv_t rv);
317 
318 /*
319  * Returns the current number of full reservations.
320  *
321  * Since the number of full reservations is computed without acquiring any
322  * locks, the returned value is inexact.
323  */
324 static int
325 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
326 {
327 	vm_paddr_t paddr;
328 	struct vm_phys_seg *seg;
329 	vm_reserv_t rv;
330 	int fullpop, segind;
331 
332 	fullpop = 0;
333 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
334 		seg = &vm_phys_segs[segind];
335 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
336 		while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
337 		    VM_LEVEL_0_SIZE <= seg->end) {
338 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
339 			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
340 			paddr += VM_LEVEL_0_SIZE;
341 		}
342 	}
343 	return (sysctl_handle_int(oidp, &fullpop, 0, req));
344 }
345 
346 /*
347  * Describes the current state of the partially populated reservation queue.
348  */
349 static int
350 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
351 {
352 	struct sbuf sbuf;
353 	vm_reserv_t rv;
354 	int counter, error, domain, level, unused_pages;
355 
356 	error = sysctl_wire_old_buffer(req, 0);
357 	if (error != 0)
358 		return (error);
359 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
360 	sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
361 	for (domain = 0; domain < vm_ndomains; domain++) {
362 		for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
363 			counter = 0;
364 			unused_pages = 0;
365 			vm_reserv_domain_lock(domain);
366 			TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
367 				if (rv == &vm_rvd[domain].marker)
368 					continue;
369 				counter++;
370 				unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
371 			}
372 			vm_reserv_domain_unlock(domain);
373 			sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
374 			    domain, level,
375 			    unused_pages * ((int)PAGE_SIZE / 1024), counter);
376 		}
377 	}
378 	error = sbuf_finish(&sbuf);
379 	sbuf_delete(&sbuf);
380 	return (error);
381 }
382 
383 /*
384  * Remove a reservation from the object's objq.
385  */
386 static void
387 vm_reserv_remove(vm_reserv_t rv)
388 {
389 	vm_object_t object;
390 
391 	vm_reserv_assert_locked(rv);
392 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
393 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
394 	KASSERT(rv->object != NULL,
395 	    ("vm_reserv_remove: reserv %p is free", rv));
396 	KASSERT(!rv->inpartpopq,
397 	    ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
398 	object = rv->object;
399 	vm_reserv_object_lock(object);
400 	LIST_REMOVE(rv, objq);
401 	rv->object = NULL;
402 	vm_reserv_object_unlock(object);
403 }
404 
405 /*
406  * Insert a new reservation into the object's objq.
407  */
408 static void
409 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
410 {
411 	int i;
412 
413 	vm_reserv_assert_locked(rv);
414 	CTR6(KTR_VM,
415 	    "%s: rv %p(%p) object %p new %p popcnt %d",
416 	    __FUNCTION__, rv, rv->pages, rv->object, object,
417 	   rv->popcnt);
418 	KASSERT(rv->object == NULL,
419 	    ("vm_reserv_insert: reserv %p isn't free", rv));
420 	KASSERT(rv->popcnt == 0,
421 	    ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
422 	KASSERT(!rv->inpartpopq,
423 	    ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
424 	for (i = 0; i < NPOPMAP; i++)
425 		KASSERT(rv->popmap[i] == 0,
426 		    ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
427 	vm_reserv_object_lock(object);
428 	rv->pindex = pindex;
429 	rv->object = object;
430 	rv->lasttick = ticks;
431 	LIST_INSERT_HEAD(&object->rvq, rv, objq);
432 	vm_reserv_object_unlock(object);
433 }
434 
435 /*
436  * Reduces the given reservation's population count.  If the population count
437  * becomes zero, the reservation is destroyed.  Additionally, moves the
438  * reservation to the tail of the partially populated reservation queue if the
439  * population count is non-zero.
440  */
441 static void
442 vm_reserv_depopulate(vm_reserv_t rv, int index)
443 {
444 	struct vm_domain *vmd;
445 
446 	vm_reserv_assert_locked(rv);
447 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
448 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
449 	KASSERT(rv->object != NULL,
450 	    ("vm_reserv_depopulate: reserv %p is free", rv));
451 	KASSERT(popmap_is_set(rv->popmap, index),
452 	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
453 	    index));
454 	KASSERT(rv->popcnt > 0,
455 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
456 	KASSERT(rv->domain < vm_ndomains,
457 	    ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
458 	    rv, rv->domain));
459 	if (rv->popcnt == VM_LEVEL_0_NPAGES) {
460 		KASSERT(rv->pages->psind == 1,
461 		    ("vm_reserv_depopulate: reserv %p is already demoted",
462 		    rv));
463 		rv->pages->psind = 0;
464 	}
465 	popmap_clear(rv->popmap, index);
466 	rv->popcnt--;
467 	if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
468 	    rv->popcnt == 0) {
469 		vm_reserv_domain_lock(rv->domain);
470 		if (rv->inpartpopq) {
471 			TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
472 			rv->inpartpopq = FALSE;
473 		}
474 		if (rv->popcnt != 0) {
475 			rv->inpartpopq = TRUE;
476 			TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv,
477 			    partpopq);
478 		}
479 		vm_reserv_domain_unlock(rv->domain);
480 		rv->lasttick = ticks;
481 	}
482 	vmd = VM_DOMAIN(rv->domain);
483 	if (rv->popcnt == 0) {
484 		vm_reserv_remove(rv);
485 		vm_domain_free_lock(vmd);
486 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
487 		vm_domain_free_unlock(vmd);
488 		counter_u64_add(vm_reserv_freed, 1);
489 	}
490 	vm_domain_freecnt_inc(vmd, 1);
491 }
492 
493 /*
494  * Returns the reservation to which the given page might belong.
495  */
496 static __inline vm_reserv_t
497 vm_reserv_from_page(vm_page_t m)
498 {
499 
500 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
501 }
502 
503 /*
504  * Returns an existing reservation or NULL and initialized successor pointer.
505  */
506 static vm_reserv_t
507 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
508     vm_page_t mpred, vm_page_t *msuccp)
509 {
510 	vm_reserv_t rv;
511 	vm_page_t msucc;
512 
513 	msucc = NULL;
514 	if (mpred != NULL) {
515 		KASSERT(mpred->object == object,
516 		    ("vm_reserv_from_object: object doesn't contain mpred"));
517 		KASSERT(mpred->pindex < pindex,
518 		    ("vm_reserv_from_object: mpred doesn't precede pindex"));
519 		rv = vm_reserv_from_page(mpred);
520 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
521 			goto found;
522 		msucc = TAILQ_NEXT(mpred, listq);
523 	} else
524 		msucc = TAILQ_FIRST(&object->memq);
525 	if (msucc != NULL) {
526 		KASSERT(msucc->pindex > pindex,
527 		    ("vm_reserv_from_object: msucc doesn't succeed pindex"));
528 		rv = vm_reserv_from_page(msucc);
529 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
530 			goto found;
531 	}
532 	rv = NULL;
533 
534 found:
535 	*msuccp = msucc;
536 
537 	return (rv);
538 }
539 
540 /*
541  * Returns TRUE if the given reservation contains the given page index and
542  * FALSE otherwise.
543  */
544 static __inline boolean_t
545 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
546 {
547 
548 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
549 }
550 
551 /*
552  * Increases the given reservation's population count.  Moves the reservation
553  * to the tail of the partially populated reservation queue.
554  */
555 static void
556 vm_reserv_populate(vm_reserv_t rv, int index)
557 {
558 
559 	vm_reserv_assert_locked(rv);
560 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
561 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
562 	KASSERT(rv->object != NULL,
563 	    ("vm_reserv_populate: reserv %p is free", rv));
564 	KASSERT(popmap_is_clear(rv->popmap, index),
565 	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
566 	    index));
567 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
568 	    ("vm_reserv_populate: reserv %p is already full", rv));
569 	KASSERT(rv->pages->psind == 0,
570 	    ("vm_reserv_populate: reserv %p is already promoted", rv));
571 	KASSERT(rv->domain < vm_ndomains,
572 	    ("vm_reserv_populate: reserv %p's domain is corrupted %d",
573 	    rv, rv->domain));
574 	popmap_set(rv->popmap, index);
575 	rv->popcnt++;
576 	if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
577 	    rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
578 		return;
579 	rv->lasttick = ticks;
580 	vm_reserv_domain_lock(rv->domain);
581 	if (rv->inpartpopq) {
582 		TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
583 		rv->inpartpopq = FALSE;
584 	}
585 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
586 		rv->inpartpopq = TRUE;
587 		TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq);
588 	} else {
589 		KASSERT(rv->pages->psind == 0,
590 		    ("vm_reserv_populate: reserv %p is already promoted",
591 		    rv));
592 		rv->pages->psind = 1;
593 	}
594 	vm_reserv_domain_unlock(rv->domain);
595 }
596 
597 /*
598  * Allocates a contiguous set of physical pages of the given size "npages"
599  * from existing or newly created reservations.  All of the physical pages
600  * must be at or above the given physical address "low" and below the given
601  * physical address "high".  The given value "alignment" determines the
602  * alignment of the first physical page in the set.  If the given value
603  * "boundary" is non-zero, then the set of physical pages cannot cross any
604  * physical address boundary that is a multiple of that value.  Both
605  * "alignment" and "boundary" must be a power of two.
606  *
607  * The page "mpred" must immediately precede the offset "pindex" within the
608  * specified object.
609  *
610  * The object must be locked.
611  */
612 vm_page_t
613 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain,
614     int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high,
615     u_long alignment, vm_paddr_t boundary)
616 {
617 	struct vm_domain *vmd;
618 	vm_paddr_t pa, size;
619 	vm_page_t m, m_ret, msucc;
620 	vm_pindex_t first, leftcap, rightcap;
621 	vm_reserv_t rv;
622 	u_long allocpages, maxpages, minpages;
623 	int i, index, n;
624 
625 	VM_OBJECT_ASSERT_WLOCKED(object);
626 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
627 
628 	/*
629 	 * Is a reservation fundamentally impossible?
630 	 */
631 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
632 	    pindex + npages > object->size)
633 		return (NULL);
634 
635 	/*
636 	 * All reservations of a particular size have the same alignment.
637 	 * Assuming that the first page is allocated from a reservation, the
638 	 * least significant bits of its physical address can be determined
639 	 * from its offset from the beginning of the reservation and the size
640 	 * of the reservation.
641 	 *
642 	 * Could the specified index within a reservation of the smallest
643 	 * possible size satisfy the alignment and boundary requirements?
644 	 */
645 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
646 	if ((pa & (alignment - 1)) != 0)
647 		return (NULL);
648 	size = npages << PAGE_SHIFT;
649 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
650 		return (NULL);
651 
652 	/*
653 	 * Look for an existing reservation.
654 	 */
655 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
656 	if (rv != NULL) {
657 		KASSERT(object != kernel_object || rv->domain == domain,
658 		    ("vm_reserv_alloc_contig: domain mismatch"));
659 		index = VM_RESERV_INDEX(object, pindex);
660 		/* Does the allocation fit within the reservation? */
661 		if (index + npages > VM_LEVEL_0_NPAGES)
662 			return (NULL);
663 		domain = rv->domain;
664 		vmd = VM_DOMAIN(domain);
665 		vm_reserv_lock(rv);
666 		/* Handle reclaim race. */
667 		if (rv->object != object)
668 			goto out;
669 		m = &rv->pages[index];
670 		pa = VM_PAGE_TO_PHYS(m);
671 		if (pa < low || pa + size > high ||
672 		    (pa & (alignment - 1)) != 0 ||
673 		    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
674 			goto out;
675 		/* Handle vm_page_rename(m, new_object, ...). */
676 		for (i = 0; i < npages; i++)
677 			if (popmap_is_set(rv->popmap, index + i))
678 				goto out;
679 		if (!vm_domain_allocate(vmd, req, npages))
680 			goto out;
681 		for (i = 0; i < npages; i++)
682 			vm_reserv_populate(rv, index + i);
683 		vm_reserv_unlock(rv);
684 		return (m);
685 out:
686 		vm_reserv_unlock(rv);
687 		return (NULL);
688 	}
689 
690 	/*
691 	 * Could at least one reservation fit between the first index to the
692 	 * left that can be used ("leftcap") and the first index to the right
693 	 * that cannot be used ("rightcap")?
694 	 *
695 	 * We must synchronize with the reserv object lock to protect the
696 	 * pindex/object of the resulting reservations against rename while
697 	 * we are inspecting.
698 	 */
699 	first = pindex - VM_RESERV_INDEX(object, pindex);
700 	minpages = VM_RESERV_INDEX(object, pindex) + npages;
701 	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
702 	allocpages = maxpages;
703 	vm_reserv_object_lock(object);
704 	if (mpred != NULL) {
705 		if ((rv = vm_reserv_from_page(mpred))->object != object)
706 			leftcap = mpred->pindex + 1;
707 		else
708 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
709 		if (leftcap > first) {
710 			vm_reserv_object_unlock(object);
711 			return (NULL);
712 		}
713 	}
714 	if (msucc != NULL) {
715 		if ((rv = vm_reserv_from_page(msucc))->object != object)
716 			rightcap = msucc->pindex;
717 		else
718 			rightcap = rv->pindex;
719 		if (first + maxpages > rightcap) {
720 			if (maxpages == VM_LEVEL_0_NPAGES) {
721 				vm_reserv_object_unlock(object);
722 				return (NULL);
723 			}
724 
725 			/*
726 			 * At least one reservation will fit between "leftcap"
727 			 * and "rightcap".  However, a reservation for the
728 			 * last of the requested pages will not fit.  Reduce
729 			 * the size of the upcoming allocation accordingly.
730 			 */
731 			allocpages = minpages;
732 		}
733 	}
734 	vm_reserv_object_unlock(object);
735 
736 	/*
737 	 * Would the last new reservation extend past the end of the object?
738 	 *
739 	 * If the object is unlikely to grow don't allocate a reservation for
740 	 * the tail.
741 	 */
742 	if ((object->flags & OBJ_ANON) == 0 &&
743 	    first + maxpages > object->size) {
744 		if (maxpages == VM_LEVEL_0_NPAGES)
745 			return (NULL);
746 		allocpages = minpages;
747 	}
748 
749 	/*
750 	 * Allocate the physical pages.  The alignment and boundary specified
751 	 * for this allocation may be different from the alignment and
752 	 * boundary specified for the requested pages.  For instance, the
753 	 * specified index may not be the first page within the first new
754 	 * reservation.
755 	 */
756 	m = NULL;
757 	vmd = VM_DOMAIN(domain);
758 	if (vm_domain_allocate(vmd, req, npages)) {
759 		vm_domain_free_lock(vmd);
760 		m = vm_phys_alloc_contig(domain, allocpages, low, high,
761 		    ulmax(alignment, VM_LEVEL_0_SIZE),
762 		    boundary > VM_LEVEL_0_SIZE ? boundary : 0);
763 		vm_domain_free_unlock(vmd);
764 		if (m == NULL) {
765 			vm_domain_freecnt_inc(vmd, npages);
766 			return (NULL);
767 		}
768 	} else
769 		return (NULL);
770 	KASSERT(vm_phys_domain(m) == domain,
771 	    ("vm_reserv_alloc_contig: Page domain does not match requested."));
772 
773 	/*
774 	 * The allocated physical pages always begin at a reservation
775 	 * boundary, but they do not always end at a reservation boundary.
776 	 * Initialize every reservation that is completely covered by the
777 	 * allocated physical pages.
778 	 */
779 	m_ret = NULL;
780 	index = VM_RESERV_INDEX(object, pindex);
781 	do {
782 		rv = vm_reserv_from_page(m);
783 		KASSERT(rv->pages == m,
784 		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
785 		    rv));
786 		vm_reserv_lock(rv);
787 		vm_reserv_insert(rv, object, first);
788 		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
789 		for (i = 0; i < n; i++)
790 			vm_reserv_populate(rv, index + i);
791 		npages -= n;
792 		if (m_ret == NULL) {
793 			m_ret = &rv->pages[index];
794 			index = 0;
795 		}
796 		vm_reserv_unlock(rv);
797 		m += VM_LEVEL_0_NPAGES;
798 		first += VM_LEVEL_0_NPAGES;
799 		allocpages -= VM_LEVEL_0_NPAGES;
800 	} while (allocpages >= VM_LEVEL_0_NPAGES);
801 	return (m_ret);
802 }
803 
804 /*
805  * Allocate a physical page from an existing or newly created reservation.
806  *
807  * The page "mpred" must immediately precede the offset "pindex" within the
808  * specified object.
809  *
810  * The object must be locked.
811  */
812 vm_page_t
813 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain,
814     int req, vm_page_t mpred)
815 {
816 	struct vm_domain *vmd;
817 	vm_page_t m, msucc;
818 	vm_pindex_t first, leftcap, rightcap;
819 	vm_reserv_t rv;
820 	int index;
821 
822 	VM_OBJECT_ASSERT_WLOCKED(object);
823 
824 	/*
825 	 * Is a reservation fundamentally impossible?
826 	 */
827 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
828 	    pindex >= object->size)
829 		return (NULL);
830 
831 	/*
832 	 * Look for an existing reservation.
833 	 */
834 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
835 	if (rv != NULL) {
836 		KASSERT(object != kernel_object || rv->domain == domain,
837 		    ("vm_reserv_alloc_page: domain mismatch"));
838 		domain = rv->domain;
839 		vmd = VM_DOMAIN(domain);
840 		index = VM_RESERV_INDEX(object, pindex);
841 		m = &rv->pages[index];
842 		vm_reserv_lock(rv);
843 		/* Handle reclaim race. */
844 		if (rv->object != object ||
845 		    /* Handle vm_page_rename(m, new_object, ...). */
846 		    popmap_is_set(rv->popmap, index)) {
847 			m = NULL;
848 			goto out;
849 		}
850 		if (vm_domain_allocate(vmd, req, 1) == 0)
851 			m = NULL;
852 		else
853 			vm_reserv_populate(rv, index);
854 out:
855 		vm_reserv_unlock(rv);
856 		return (m);
857 	}
858 
859 	/*
860 	 * Could a reservation fit between the first index to the left that
861 	 * can be used and the first index to the right that cannot be used?
862 	 *
863 	 * We must synchronize with the reserv object lock to protect the
864 	 * pindex/object of the resulting reservations against rename while
865 	 * we are inspecting.
866 	 */
867 	first = pindex - VM_RESERV_INDEX(object, pindex);
868 	vm_reserv_object_lock(object);
869 	if (mpred != NULL) {
870 		if ((rv = vm_reserv_from_page(mpred))->object != object)
871 			leftcap = mpred->pindex + 1;
872 		else
873 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
874 		if (leftcap > first) {
875 			vm_reserv_object_unlock(object);
876 			return (NULL);
877 		}
878 	}
879 	if (msucc != NULL) {
880 		if ((rv = vm_reserv_from_page(msucc))->object != object)
881 			rightcap = msucc->pindex;
882 		else
883 			rightcap = rv->pindex;
884 		if (first + VM_LEVEL_0_NPAGES > rightcap) {
885 			vm_reserv_object_unlock(object);
886 			return (NULL);
887 		}
888 	}
889 	vm_reserv_object_unlock(object);
890 
891 	/*
892 	 * Would the last new reservation extend past the end of the object?
893 	 *
894 	 * If the object is unlikely to grow don't allocate a reservation for
895 	 * the tail.
896 	 */
897 	if ((object->flags & OBJ_ANON) == 0 &&
898 	    first + VM_LEVEL_0_NPAGES > object->size)
899 		return (NULL);
900 
901 	/*
902 	 * Allocate and populate the new reservation.
903 	 */
904 	m = NULL;
905 	vmd = VM_DOMAIN(domain);
906 	if (vm_domain_allocate(vmd, req, 1)) {
907 		vm_domain_free_lock(vmd);
908 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
909 		    VM_LEVEL_0_ORDER);
910 		vm_domain_free_unlock(vmd);
911 		if (m == NULL) {
912 			vm_domain_freecnt_inc(vmd, 1);
913 			return (NULL);
914 		}
915 	} else
916 		return (NULL);
917 	rv = vm_reserv_from_page(m);
918 	vm_reserv_lock(rv);
919 	KASSERT(rv->pages == m,
920 	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
921 	vm_reserv_insert(rv, object, first);
922 	index = VM_RESERV_INDEX(object, pindex);
923 	vm_reserv_populate(rv, index);
924 	vm_reserv_unlock(rv);
925 
926 	return (&rv->pages[index]);
927 }
928 
929 /*
930  * Breaks the given reservation.  All free pages in the reservation
931  * are returned to the physical memory allocator.  The reservation's
932  * population count and map are reset to their initial state.
933  *
934  * The given reservation must not be in the partially populated reservation
935  * queue.
936  */
937 static void
938 vm_reserv_break(vm_reserv_t rv)
939 {
940 	u_long changes;
941 	int bitpos, hi, i, lo;
942 
943 	vm_reserv_assert_locked(rv);
944 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
945 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
946 	vm_reserv_remove(rv);
947 	rv->pages->psind = 0;
948 	hi = lo = -1;
949 	for (i = 0; i <= NPOPMAP; i++) {
950 		/*
951 		 * "changes" is a bitmask that marks where a new sequence of
952 		 * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
953 		 * considered to be 1 if and only if lo == hi.  The bits of
954 		 * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
955 		 */
956 		if (i == NPOPMAP)
957 			changes = lo != hi;
958 		else {
959 			changes = rv->popmap[i];
960 			changes ^= (changes << 1) | (lo == hi);
961 			rv->popmap[i] = 0;
962 		}
963 		while (changes != 0) {
964 			/*
965 			 * If the next change marked begins a run of 0s, set
966 			 * lo to mark that position.  Otherwise set hi and
967 			 * free pages from lo up to hi.
968 			 */
969 			bitpos = ffsl(changes) - 1;
970 			changes ^= 1UL << bitpos;
971 			if (lo == hi)
972 				lo = NBPOPMAP * i + bitpos;
973 			else {
974 				hi = NBPOPMAP * i + bitpos;
975 				vm_domain_free_lock(VM_DOMAIN(rv->domain));
976 				vm_phys_enqueue_contig(&rv->pages[lo], hi - lo);
977 				vm_domain_free_unlock(VM_DOMAIN(rv->domain));
978 				lo = hi;
979 			}
980 		}
981 	}
982 	rv->popcnt = 0;
983 	counter_u64_add(vm_reserv_broken, 1);
984 }
985 
986 /*
987  * Breaks all reservations belonging to the given object.
988  */
989 void
990 vm_reserv_break_all(vm_object_t object)
991 {
992 	vm_reserv_t rv;
993 
994 	/*
995 	 * This access of object->rvq is unsynchronized so that the
996 	 * object rvq lock can nest after the domain_free lock.  We
997 	 * must check for races in the results.  However, the object
998 	 * lock prevents new additions, so we are guaranteed that when
999 	 * it returns NULL the object is properly empty.
1000 	 */
1001 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
1002 		vm_reserv_lock(rv);
1003 		/* Reclaim race. */
1004 		if (rv->object != object) {
1005 			vm_reserv_unlock(rv);
1006 			continue;
1007 		}
1008 		vm_reserv_domain_lock(rv->domain);
1009 		if (rv->inpartpopq) {
1010 			TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1011 			rv->inpartpopq = FALSE;
1012 		}
1013 		vm_reserv_domain_unlock(rv->domain);
1014 		vm_reserv_break(rv);
1015 		vm_reserv_unlock(rv);
1016 	}
1017 }
1018 
1019 /*
1020  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1021  * page is freed and FALSE otherwise.
1022  */
1023 boolean_t
1024 vm_reserv_free_page(vm_page_t m)
1025 {
1026 	vm_reserv_t rv;
1027 	boolean_t ret;
1028 
1029 	rv = vm_reserv_from_page(m);
1030 	if (rv->object == NULL)
1031 		return (FALSE);
1032 	vm_reserv_lock(rv);
1033 	/* Re-validate after lock. */
1034 	if (rv->object != NULL) {
1035 		vm_reserv_depopulate(rv, m - rv->pages);
1036 		ret = TRUE;
1037 	} else
1038 		ret = FALSE;
1039 	vm_reserv_unlock(rv);
1040 
1041 	return (ret);
1042 }
1043 
1044 /*
1045  * Initializes the reservation management system.  Specifically, initializes
1046  * the reservation array.
1047  *
1048  * Requires that vm_page_array and first_page are initialized!
1049  */
1050 void
1051 vm_reserv_init(void)
1052 {
1053 	vm_paddr_t paddr;
1054 	struct vm_phys_seg *seg;
1055 	struct vm_reserv *rv;
1056 	struct vm_reserv_domain *rvd;
1057 	int i, j, segind;
1058 
1059 	/*
1060 	 * Initialize the reservation array.  Specifically, initialize the
1061 	 * "pages" field for every element that has an underlying superpage.
1062 	 */
1063 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1064 		seg = &vm_phys_segs[segind];
1065 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1066 		while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
1067 		    VM_LEVEL_0_SIZE <= seg->end) {
1068 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
1069 			rv->pages = PHYS_TO_VM_PAGE(paddr);
1070 			rv->domain = seg->domain;
1071 			mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1072 			paddr += VM_LEVEL_0_SIZE;
1073 		}
1074 	}
1075 	for (i = 0; i < MAXMEMDOM; i++) {
1076 		rvd = &vm_rvd[i];
1077 		mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF);
1078 		TAILQ_INIT(&rvd->partpop);
1079 		mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF);
1080 
1081 		/*
1082 		 * Fully populated reservations should never be present in the
1083 		 * partially populated reservation queues.
1084 		 */
1085 		rvd->marker.popcnt = VM_LEVEL_0_NPAGES;
1086 		for (j = 0; j < NBPOPMAP; j++)
1087 			popmap_set(rvd->marker.popmap, j);
1088 	}
1089 
1090 	for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1091 		mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1092 		    MTX_DEF);
1093 }
1094 
1095 /*
1096  * Returns true if the given page belongs to a reservation and that page is
1097  * free.  Otherwise, returns false.
1098  */
1099 bool
1100 vm_reserv_is_page_free(vm_page_t m)
1101 {
1102 	vm_reserv_t rv;
1103 
1104 	rv = vm_reserv_from_page(m);
1105 	if (rv->object == NULL)
1106 		return (false);
1107 	return (popmap_is_clear(rv->popmap, m - rv->pages));
1108 }
1109 
1110 /*
1111  * If the given page belongs to a reservation, returns the level of that
1112  * reservation.  Otherwise, returns -1.
1113  */
1114 int
1115 vm_reserv_level(vm_page_t m)
1116 {
1117 	vm_reserv_t rv;
1118 
1119 	rv = vm_reserv_from_page(m);
1120 	return (rv->object != NULL ? 0 : -1);
1121 }
1122 
1123 /*
1124  * Returns a reservation level if the given page belongs to a fully populated
1125  * reservation and -1 otherwise.
1126  */
1127 int
1128 vm_reserv_level_iffullpop(vm_page_t m)
1129 {
1130 	vm_reserv_t rv;
1131 
1132 	rv = vm_reserv_from_page(m);
1133 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1134 }
1135 
1136 /*
1137  * Remove a partially populated reservation from the queue.
1138  */
1139 static void
1140 vm_reserv_dequeue(vm_reserv_t rv)
1141 {
1142 
1143 	vm_reserv_domain_assert_locked(rv->domain);
1144 	vm_reserv_assert_locked(rv);
1145 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1146 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1147 	KASSERT(rv->inpartpopq,
1148 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1149 
1150 	TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1151 	rv->inpartpopq = FALSE;
1152 }
1153 
1154 /*
1155  * Breaks the given partially populated reservation, releasing its free pages
1156  * to the physical memory allocator.
1157  */
1158 static void
1159 vm_reserv_reclaim(vm_reserv_t rv)
1160 {
1161 
1162 	vm_reserv_assert_locked(rv);
1163 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1164 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1165 	if (rv->inpartpopq) {
1166 		vm_reserv_domain_lock(rv->domain);
1167 		vm_reserv_dequeue(rv);
1168 		vm_reserv_domain_unlock(rv->domain);
1169 	}
1170 	vm_reserv_break(rv);
1171 	counter_u64_add(vm_reserv_reclaimed, 1);
1172 }
1173 
1174 /*
1175  * Breaks a reservation near the head of the partially populated reservation
1176  * queue, releasing its free pages to the physical memory allocator.  Returns
1177  * TRUE if a reservation is broken and FALSE otherwise.
1178  */
1179 bool
1180 vm_reserv_reclaim_inactive(int domain)
1181 {
1182 	vm_reserv_t rv;
1183 
1184 	vm_reserv_domain_lock(domain);
1185 	TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
1186 		/*
1187 		 * A locked reservation is likely being updated or reclaimed,
1188 		 * so just skip ahead.
1189 		 */
1190 		if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) {
1191 			vm_reserv_dequeue(rv);
1192 			break;
1193 		}
1194 	}
1195 	vm_reserv_domain_unlock(domain);
1196 	if (rv != NULL) {
1197 		vm_reserv_reclaim(rv);
1198 		vm_reserv_unlock(rv);
1199 		return (true);
1200 	}
1201 	return (false);
1202 }
1203 
1204 /*
1205  * Determine whether this reservation has free pages that satisfy the given
1206  * request for contiguous physical memory.  Start searching from the lower
1207  * bound, defined by low_index.
1208  */
1209 static bool
1210 vm_reserv_test_contig(vm_reserv_t rv, u_long npages, vm_paddr_t low,
1211     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1212 {
1213 	vm_paddr_t pa, size;
1214 	u_long changes;
1215 	int bitpos, bits_left, i, hi, lo, n;
1216 
1217 	vm_reserv_assert_locked(rv);
1218 	size = npages << PAGE_SHIFT;
1219 	pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1220 	lo = (pa < low) ?
1221 	    ((low + PAGE_MASK - pa) >> PAGE_SHIFT) : 0;
1222 	i = lo / NBPOPMAP;
1223 	changes = rv->popmap[i] | ((1UL << (lo % NBPOPMAP)) - 1);
1224 	hi = (pa + VM_LEVEL_0_SIZE > high) ?
1225 	    ((high + PAGE_MASK - pa) >> PAGE_SHIFT) : VM_LEVEL_0_NPAGES;
1226 	n = hi / NBPOPMAP;
1227 	bits_left = hi % NBPOPMAP;
1228 	hi = lo = -1;
1229 	for (;;) {
1230 		/*
1231 		 * "changes" is a bitmask that marks where a new sequence of
1232 		 * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
1233 		 * considered to be 1 if and only if lo == hi.  The bits of
1234 		 * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
1235 		 */
1236 		changes ^= (changes << 1) | (lo == hi);
1237 		while (changes != 0) {
1238 			/*
1239 			 * If the next change marked begins a run of 0s, set
1240 			 * lo to mark that position.  Otherwise set hi and
1241 			 * look for a satisfactory first page from lo up to hi.
1242 			 */
1243 			bitpos = ffsl(changes) - 1;
1244 			changes ^= 1UL << bitpos;
1245 			if (lo == hi) {
1246 				lo = NBPOPMAP * i + bitpos;
1247 				continue;
1248 			}
1249 			hi = NBPOPMAP * i + bitpos;
1250 			pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1251 			if ((pa & (alignment - 1)) != 0) {
1252 				/* Skip to next aligned page. */
1253 				lo += (((pa - 1) | (alignment - 1)) + 1) >>
1254 				    PAGE_SHIFT;
1255 				if (lo >= VM_LEVEL_0_NPAGES)
1256 					return (false);
1257 				pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1258 			}
1259 			if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1260 				/* Skip to next boundary-matching page. */
1261 				lo += (((pa - 1) | (boundary - 1)) + 1) >>
1262 				    PAGE_SHIFT;
1263 				if (lo >= VM_LEVEL_0_NPAGES)
1264 					return (false);
1265 				pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1266 			}
1267 			if (lo * PAGE_SIZE + size <= hi * PAGE_SIZE)
1268 				return (true);
1269 			lo = hi;
1270 		}
1271 		if (++i < n)
1272 			changes = rv->popmap[i];
1273 		else if (i == n)
1274 			changes = bits_left == 0 ? -1UL :
1275 			    (rv->popmap[n] | (-1UL << bits_left));
1276 		else
1277 			return (false);
1278 	}
1279 }
1280 
1281 /*
1282  * Searches the partially populated reservation queue for the least recently
1283  * changed reservation with free pages that satisfy the given request for
1284  * contiguous physical memory.  If a satisfactory reservation is found, it is
1285  * broken.  Returns true if a reservation is broken and false otherwise.
1286  */
1287 bool
1288 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1289     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1290 {
1291 	struct vm_reserv_queue *queue;
1292 	vm_paddr_t pa, size;
1293 	vm_reserv_t marker, rv, rvn;
1294 
1295 	if (npages > VM_LEVEL_0_NPAGES - 1)
1296 		return (false);
1297 	marker = &vm_rvd[domain].marker;
1298 	queue = &vm_rvd[domain].partpop;
1299 	size = npages << PAGE_SHIFT;
1300 
1301 	vm_reserv_domain_scan_lock(domain);
1302 	vm_reserv_domain_lock(domain);
1303 	TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) {
1304 		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1305 		if (pa + VM_LEVEL_0_SIZE - size < low) {
1306 			/* This entire reservation is too low; go to next. */
1307 			continue;
1308 		}
1309 		if (pa + size > high) {
1310 			/* This entire reservation is too high; go to next. */
1311 			continue;
1312 		}
1313 
1314 		if (vm_reserv_trylock(rv) == 0) {
1315 			TAILQ_INSERT_AFTER(queue, rv, marker, partpopq);
1316 			vm_reserv_domain_unlock(domain);
1317 			vm_reserv_lock(rv);
1318 			if (!rv->inpartpopq ||
1319 			    TAILQ_NEXT(rv, partpopq) != marker) {
1320 				vm_reserv_unlock(rv);
1321 				vm_reserv_domain_lock(domain);
1322 				rvn = TAILQ_NEXT(marker, partpopq);
1323 				TAILQ_REMOVE(queue, marker, partpopq);
1324 				continue;
1325 			}
1326 			vm_reserv_domain_lock(domain);
1327 			TAILQ_REMOVE(queue, marker, partpopq);
1328 		}
1329 		vm_reserv_domain_unlock(domain);
1330 		if (vm_reserv_test_contig(rv, npages, low, high,
1331 		    alignment, boundary)) {
1332 			vm_reserv_domain_scan_unlock(domain);
1333 			vm_reserv_reclaim(rv);
1334 			vm_reserv_unlock(rv);
1335 			return (true);
1336 		}
1337 		vm_reserv_unlock(rv);
1338 		vm_reserv_domain_lock(domain);
1339 	}
1340 	vm_reserv_domain_unlock(domain);
1341 	vm_reserv_domain_scan_unlock(domain);
1342 	return (false);
1343 }
1344 
1345 /*
1346  * Transfers the reservation underlying the given page to a new object.
1347  *
1348  * The object must be locked.
1349  */
1350 void
1351 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1352     vm_pindex_t old_object_offset)
1353 {
1354 	vm_reserv_t rv;
1355 
1356 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1357 	rv = vm_reserv_from_page(m);
1358 	if (rv->object == old_object) {
1359 		vm_reserv_lock(rv);
1360 		CTR6(KTR_VM,
1361 		    "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1362 		    __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1363 		    rv->inpartpopq);
1364 		if (rv->object == old_object) {
1365 			vm_reserv_object_lock(old_object);
1366 			rv->object = NULL;
1367 			LIST_REMOVE(rv, objq);
1368 			vm_reserv_object_unlock(old_object);
1369 			vm_reserv_object_lock(new_object);
1370 			rv->object = new_object;
1371 			rv->pindex -= old_object_offset;
1372 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1373 			vm_reserv_object_unlock(new_object);
1374 		}
1375 		vm_reserv_unlock(rv);
1376 	}
1377 }
1378 
1379 /*
1380  * Returns the size (in bytes) of a reservation of the specified level.
1381  */
1382 int
1383 vm_reserv_size(int level)
1384 {
1385 
1386 	switch (level) {
1387 	case 0:
1388 		return (VM_LEVEL_0_SIZE);
1389 	case -1:
1390 		return (PAGE_SIZE);
1391 	default:
1392 		return (0);
1393 	}
1394 }
1395 
1396 /*
1397  * Allocates the virtual and physical memory required by the reservation
1398  * management system's data structures, in particular, the reservation array.
1399  */
1400 vm_paddr_t
1401 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end)
1402 {
1403 	vm_paddr_t new_end, high_water;
1404 	size_t size;
1405 	int i;
1406 
1407 	high_water = phys_avail[1];
1408 	for (i = 0; i < vm_phys_nsegs; i++) {
1409 		if (vm_phys_segs[i].end > high_water)
1410 			high_water = vm_phys_segs[i].end;
1411 	}
1412 
1413 	/* Skip the first chunk.  It is already accounted for. */
1414 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
1415 		if (phys_avail[i + 1] > high_water)
1416 			high_water = phys_avail[i + 1];
1417 	}
1418 
1419 	/*
1420 	 * Calculate the size (in bytes) of the reservation array.  Round up
1421 	 * from "high_water" because every small page is mapped to an element
1422 	 * in the reservation array based on its physical address.  Thus, the
1423 	 * number of elements in the reservation array can be greater than the
1424 	 * number of superpages.
1425 	 */
1426 	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1427 
1428 	/*
1429 	 * Allocate and map the physical memory for the reservation array.  The
1430 	 * next available virtual address is returned by reference.
1431 	 */
1432 	new_end = end - round_page(size);
1433 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1434 	    VM_PROT_READ | VM_PROT_WRITE);
1435 	bzero(vm_reserv_array, size);
1436 
1437 	/*
1438 	 * Return the next available physical address.
1439 	 */
1440 	return (new_end);
1441 }
1442 
1443 /*
1444  * Returns the superpage containing the given page.
1445  */
1446 vm_page_t
1447 vm_reserv_to_superpage(vm_page_t m)
1448 {
1449 	vm_reserv_t rv;
1450 
1451 	VM_OBJECT_ASSERT_LOCKED(m->object);
1452 	rv = vm_reserv_from_page(m);
1453 	if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1454 		m = rv->pages;
1455 	else
1456 		m = NULL;
1457 
1458 	return (m);
1459 }
1460 
1461 #endif	/* VM_NRESERVLEVEL > 0 */
1462