xref: /freebsd/sys/x86/iommu/intel_idpgtbl.c (revision 5b9c547c)
1 /*-
2  * Copyright (c) 2013 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
6  * under sponsorship from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/kernel.h>
39 #include <sys/ktr.h>
40 #include <sys/lock.h>
41 #include <sys/memdesc.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/rwlock.h>
45 #include <sys/rman.h>
46 #include <sys/sf_buf.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49 #include <sys/tree.h>
50 #include <sys/uio.h>
51 #include <sys/vmem.h>
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_pager.h>
58 #include <vm/vm_map.h>
59 #include <machine/atomic.h>
60 #include <machine/bus.h>
61 #include <machine/cpu.h>
62 #include <machine/md_var.h>
63 #include <machine/specialreg.h>
64 #include <x86/include/busdma_impl.h>
65 #include <x86/iommu/intel_reg.h>
66 #include <x86/iommu/busdma_dmar.h>
67 #include <x86/iommu/intel_dmar.h>
68 
69 static int ctx_unmap_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base,
70     dmar_gaddr_t size, int flags);
71 
72 /*
73  * The cache of the identity mapping page tables for the DMARs.  Using
74  * the cache saves significant amount of memory for page tables by
75  * reusing the page tables, since usually DMARs are identical and have
76  * the same capabilities.  Still, cache records the information needed
77  * to match DMAR capabilities and page table format, to correctly
78  * handle different DMARs.
79  */
80 
81 struct idpgtbl {
82 	dmar_gaddr_t maxaddr;	/* Page table covers the guest address
83 				   range [0..maxaddr) */
84 	int pglvl;		/* Total page table levels ignoring
85 				   superpages */
86 	int leaf;		/* The last materialized page table
87 				   level, it is non-zero if superpages
88 				   are supported */
89 	vm_object_t pgtbl_obj;	/* The page table pages */
90 	LIST_ENTRY(idpgtbl) link;
91 };
92 
93 static struct sx idpgtbl_lock;
94 SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl");
95 static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls);
96 static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl",
97     "Intel DMAR Identity mappings cache elements");
98 
99 /*
100  * Build the next level of the page tables for the identity mapping.
101  * - lvl is the level to build;
102  * - idx is the index of the page table page in the pgtbl_obj, which is
103  *   being allocated filled now;
104  * - addr is the starting address in the bus address space which is
105  *   mapped by the page table page.
106  */
107 static void
108 ctx_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx,
109     dmar_gaddr_t addr)
110 {
111 	vm_page_t m, m1;
112 	dmar_pte_t *pte;
113 	struct sf_buf *sf;
114 	dmar_gaddr_t f, pg_sz;
115 	vm_pindex_t base;
116 	int i;
117 
118 	VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj);
119 	if (addr >= tbl->maxaddr)
120 		return;
121 	m = dmar_pgalloc(tbl->pgtbl_obj, idx, DMAR_PGF_OBJL | DMAR_PGF_WAITOK |
122 	    DMAR_PGF_ZERO);
123 	base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */
124 	pg_sz = pglvl_page_size(tbl->pglvl, lvl);
125 	if (lvl != tbl->leaf) {
126 		for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz)
127 			ctx_idmap_nextlvl(tbl, lvl + 1, base + i, f);
128 	}
129 	VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
130 	pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, DMAR_PGF_WAITOK, &sf);
131 	if (lvl == tbl->leaf) {
132 		for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
133 			if (f >= tbl->maxaddr)
134 				break;
135 			pte[i].pte = (DMAR_PTE_ADDR_MASK & f) |
136 			    DMAR_PTE_R | DMAR_PTE_W;
137 		}
138 	} else {
139 		for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
140 			if (f >= tbl->maxaddr)
141 				break;
142 			m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i,
143 			    DMAR_PGF_NOALLOC);
144 			KASSERT(m1 != NULL, ("lost page table page"));
145 			pte[i].pte = (DMAR_PTE_ADDR_MASK &
146 			    VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W;
147 		}
148 	}
149 	/* ctx_get_idmap_pgtbl flushes CPU cache if needed. */
150 	dmar_unmap_pgtbl(sf);
151 	VM_OBJECT_WLOCK(tbl->pgtbl_obj);
152 }
153 
154 /*
155  * Find a ready and compatible identity-mapping page table in the
156  * cache. If not found, populate the identity-mapping page table for
157  * the context, up to the maxaddr. The maxaddr byte is allowed to be
158  * not mapped, which is aligned with the definition of Maxmem as the
159  * highest usable physical address + 1.  If superpages are used, the
160  * maxaddr is typically mapped.
161  */
162 vm_object_t
163 ctx_get_idmap_pgtbl(struct dmar_ctx *ctx, dmar_gaddr_t maxaddr)
164 {
165 	struct dmar_unit *unit;
166 	struct idpgtbl *tbl;
167 	vm_object_t res;
168 	vm_page_t m;
169 	int leaf, i;
170 
171 	leaf = 0; /* silence gcc */
172 
173 	/*
174 	 * First, determine where to stop the paging structures.
175 	 */
176 	for (i = 0; i < ctx->pglvl; i++) {
177 		if (i == ctx->pglvl - 1 || ctx_is_sp_lvl(ctx, i)) {
178 			leaf = i;
179 			break;
180 		}
181 	}
182 
183 	/*
184 	 * Search the cache for a compatible page table.  Qualified
185 	 * page table must map up to maxaddr, its level must be
186 	 * supported by the DMAR and leaf should be equal to the
187 	 * calculated value.  The later restriction could be lifted
188 	 * but I believe it is currently impossible to have any
189 	 * deviations for existing hardware.
190 	 */
191 	sx_slock(&idpgtbl_lock);
192 	LIST_FOREACH(tbl, &idpgtbls, link) {
193 		if (tbl->maxaddr >= maxaddr &&
194 		    dmar_pglvl_supported(ctx->dmar, tbl->pglvl) &&
195 		    tbl->leaf == leaf) {
196 			res = tbl->pgtbl_obj;
197 			vm_object_reference(res);
198 			sx_sunlock(&idpgtbl_lock);
199 			ctx->pglvl = tbl->pglvl; /* XXXKIB ? */
200 			goto end;
201 		}
202 	}
203 
204 	/*
205 	 * Not found in cache, relock the cache into exclusive mode to
206 	 * be able to add element, and recheck cache again after the
207 	 * relock.
208 	 */
209 	sx_sunlock(&idpgtbl_lock);
210 	sx_xlock(&idpgtbl_lock);
211 	LIST_FOREACH(tbl, &idpgtbls, link) {
212 		if (tbl->maxaddr >= maxaddr &&
213 		    dmar_pglvl_supported(ctx->dmar, tbl->pglvl) &&
214 		    tbl->leaf == leaf) {
215 			res = tbl->pgtbl_obj;
216 			vm_object_reference(res);
217 			sx_xunlock(&idpgtbl_lock);
218 			ctx->pglvl = tbl->pglvl; /* XXXKIB ? */
219 			return (res);
220 		}
221 	}
222 
223 	/*
224 	 * Still not found, create new page table.
225 	 */
226 	tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK);
227 	tbl->pglvl = ctx->pglvl;
228 	tbl->leaf = leaf;
229 	tbl->maxaddr = maxaddr;
230 	tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
231 	    IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL);
232 	VM_OBJECT_WLOCK(tbl->pgtbl_obj);
233 	ctx_idmap_nextlvl(tbl, 0, 0, 0);
234 	VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
235 	LIST_INSERT_HEAD(&idpgtbls, tbl, link);
236 	res = tbl->pgtbl_obj;
237 	vm_object_reference(res);
238 	sx_xunlock(&idpgtbl_lock);
239 
240 end:
241 	/*
242 	 * Table was found or created.
243 	 *
244 	 * If DMAR does not snoop paging structures accesses, flush
245 	 * CPU cache to memory.  Note that dmar_unmap_pgtbl() coherent
246 	 * argument was possibly invalid at the time of the identity
247 	 * page table creation, since DMAR which was passed at the
248 	 * time of creation could be coherent, while current DMAR is
249 	 * not.
250 	 *
251 	 * If DMAR cannot look into the chipset write buffer, flush it
252 	 * as well.
253 	 */
254 	unit = ctx->dmar;
255 	if (!DMAR_IS_COHERENT(unit)) {
256 		VM_OBJECT_WLOCK(res);
257 		for (m = vm_page_lookup(res, 0); m != NULL;
258 		     m = vm_page_next(m))
259 			pmap_invalidate_cache_pages(&m, 1);
260 		VM_OBJECT_WUNLOCK(res);
261 	}
262 	if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
263 		DMAR_LOCK(unit);
264 		dmar_flush_write_bufs(unit);
265 		DMAR_UNLOCK(unit);
266 	}
267 
268 	return (res);
269 }
270 
271 /*
272  * Return a reference to the identity mapping page table to the cache.
273  */
274 void
275 put_idmap_pgtbl(vm_object_t obj)
276 {
277 	struct idpgtbl *tbl, *tbl1;
278 	vm_object_t rmobj;
279 
280 	sx_slock(&idpgtbl_lock);
281 	KASSERT(obj->ref_count >= 2, ("lost cache reference"));
282 	vm_object_deallocate(obj);
283 
284 	/*
285 	 * Cache always owns one last reference on the page table object.
286 	 * If there is an additional reference, object must stay.
287 	 */
288 	if (obj->ref_count > 1) {
289 		sx_sunlock(&idpgtbl_lock);
290 		return;
291 	}
292 
293 	/*
294 	 * Cache reference is the last, remove cache element and free
295 	 * page table object, returning the page table pages to the
296 	 * system.
297 	 */
298 	sx_sunlock(&idpgtbl_lock);
299 	sx_xlock(&idpgtbl_lock);
300 	LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) {
301 		rmobj = tbl->pgtbl_obj;
302 		if (rmobj->ref_count == 1) {
303 			LIST_REMOVE(tbl, link);
304 			atomic_subtract_int(&dmar_tbl_pagecnt,
305 			    rmobj->resident_page_count);
306 			vm_object_deallocate(rmobj);
307 			free(tbl, M_DMAR_IDPGTBL);
308 		}
309 	}
310 	sx_xunlock(&idpgtbl_lock);
311 }
312 
313 /*
314  * The core routines to map and unmap host pages at the given guest
315  * address.  Support superpages.
316  */
317 
318 /*
319  * Index of the pte for the guest address base in the page table at
320  * the level lvl.
321  */
322 static int
323 ctx_pgtbl_pte_off(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl)
324 {
325 
326 	base >>= DMAR_PAGE_SHIFT + (ctx->pglvl - lvl - 1) * DMAR_NPTEPGSHIFT;
327 	return (base & DMAR_PTEMASK);
328 }
329 
330 /*
331  * Returns the page index of the page table page in the page table
332  * object, which maps the given address base at the page table level
333  * lvl.
334  */
335 static vm_pindex_t
336 ctx_pgtbl_get_pindex(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl)
337 {
338 	vm_pindex_t idx, pidx;
339 	int i;
340 
341 	KASSERT(lvl >= 0 && lvl < ctx->pglvl, ("wrong lvl %p %d", ctx, lvl));
342 
343 	for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx)
344 		idx = ctx_pgtbl_pte_off(ctx, base, i) + pidx * DMAR_NPTEPG + 1;
345 	return (idx);
346 }
347 
348 static dmar_pte_t *
349 ctx_pgtbl_map_pte(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl, int flags,
350     vm_pindex_t *idxp, struct sf_buf **sf)
351 {
352 	vm_page_t m;
353 	struct sf_buf *sfp;
354 	dmar_pte_t *pte, *ptep;
355 	vm_pindex_t idx, idx1;
356 
357 	DMAR_CTX_ASSERT_PGLOCKED(ctx);
358 	KASSERT((flags & DMAR_PGF_OBJL) != 0, ("lost PGF_OBJL"));
359 
360 	idx = ctx_pgtbl_get_pindex(ctx, base, lvl);
361 	if (*sf != NULL && idx == *idxp) {
362 		pte = (dmar_pte_t *)sf_buf_kva(*sf);
363 	} else {
364 		if (*sf != NULL)
365 			dmar_unmap_pgtbl(*sf);
366 		*idxp = idx;
367 retry:
368 		pte = dmar_map_pgtbl(ctx->pgtbl_obj, idx, flags, sf);
369 		if (pte == NULL) {
370 			KASSERT(lvl > 0, ("lost root page table page %p", ctx));
371 			/*
372 			 * Page table page does not exists, allocate
373 			 * it and create pte in the up level.
374 			 */
375 			m = dmar_pgalloc(ctx->pgtbl_obj, idx, flags |
376 			    DMAR_PGF_ZERO);
377 			if (m == NULL)
378 				return (NULL);
379 
380 			/*
381 			 * Prevent potential free while pgtbl_obj is
382 			 * unlocked in the recursive call to
383 			 * ctx_pgtbl_map_pte(), if other thread did
384 			 * pte write and clean while the lock if
385 			 * dropped.
386 			 */
387 			m->wire_count++;
388 
389 			sfp = NULL;
390 			ptep = ctx_pgtbl_map_pte(ctx, base, lvl - 1, flags,
391 			    &idx1, &sfp);
392 			if (ptep == NULL) {
393 				KASSERT(m->pindex != 0,
394 				    ("loosing root page %p", ctx));
395 				m->wire_count--;
396 				dmar_pgfree(ctx->pgtbl_obj, m->pindex, flags);
397 				return (NULL);
398 			}
399 			dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W |
400 			    VM_PAGE_TO_PHYS(m));
401 			dmar_flush_pte_to_ram(ctx->dmar, ptep);
402 			sf_buf_page(sfp)->wire_count += 1;
403 			m->wire_count--;
404 			dmar_unmap_pgtbl(sfp);
405 			/* Only executed once. */
406 			goto retry;
407 		}
408 	}
409 	pte += ctx_pgtbl_pte_off(ctx, base, lvl);
410 	return (pte);
411 }
412 
413 static int
414 ctx_map_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
415     vm_page_t *ma, uint64_t pflags, int flags)
416 {
417 	dmar_pte_t *pte;
418 	struct sf_buf *sf;
419 	dmar_gaddr_t pg_sz, base1, size1;
420 	vm_pindex_t pi, c, idx, run_sz;
421 	int lvl;
422 	bool superpage;
423 
424 	DMAR_CTX_ASSERT_PGLOCKED(ctx);
425 
426 	base1 = base;
427 	size1 = size;
428 	flags |= DMAR_PGF_OBJL;
429 	TD_PREP_PINNED_ASSERT;
430 
431 	for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz,
432 	    pi += run_sz) {
433 		for (lvl = 0, c = 0, superpage = false;; lvl++) {
434 			pg_sz = ctx_page_size(ctx, lvl);
435 			run_sz = pg_sz >> DMAR_PAGE_SHIFT;
436 			if (lvl == ctx->pglvl - 1)
437 				break;
438 			/*
439 			 * Check if the current base suitable for the
440 			 * superpage mapping.  First, verify the level.
441 			 */
442 			if (!ctx_is_sp_lvl(ctx, lvl))
443 				continue;
444 			/*
445 			 * Next, look at the size of the mapping and
446 			 * alignment of both guest and host addresses.
447 			 */
448 			if (size < pg_sz || (base & (pg_sz - 1)) != 0 ||
449 			    (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0)
450 				continue;
451 			/* All passed, check host pages contiguouty. */
452 			if (c == 0) {
453 				for (c = 1; c < run_sz; c++) {
454 					if (VM_PAGE_TO_PHYS(ma[pi + c]) !=
455 					    VM_PAGE_TO_PHYS(ma[pi + c - 1]) +
456 					    PAGE_SIZE)
457 						break;
458 				}
459 			}
460 			if (c >= run_sz) {
461 				superpage = true;
462 				break;
463 			}
464 		}
465 		KASSERT(size >= pg_sz,
466 		    ("mapping loop overflow %p %jx %jx %jx", ctx,
467 		    (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
468 		KASSERT(pg_sz > 0, ("pg_sz 0 lvl %d", lvl));
469 		pte = ctx_pgtbl_map_pte(ctx, base, lvl, flags, &idx, &sf);
470 		if (pte == NULL) {
471 			KASSERT((flags & DMAR_PGF_WAITOK) == 0,
472 			    ("failed waitable pte alloc %p", ctx));
473 			if (sf != NULL)
474 				dmar_unmap_pgtbl(sf);
475 			ctx_unmap_buf_locked(ctx, base1, base - base1, flags);
476 			TD_PINNED_ASSERT;
477 			return (ENOMEM);
478 		}
479 		dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags |
480 		    (superpage ? DMAR_PTE_SP : 0));
481 		dmar_flush_pte_to_ram(ctx->dmar, pte);
482 		sf_buf_page(sf)->wire_count += 1;
483 	}
484 	if (sf != NULL)
485 		dmar_unmap_pgtbl(sf);
486 	TD_PINNED_ASSERT;
487 	return (0);
488 }
489 
490 int
491 ctx_map_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
492     vm_page_t *ma, uint64_t pflags, int flags)
493 {
494 	struct dmar_unit *unit;
495 	int error;
496 
497 	unit = ctx->dmar;
498 
499 	KASSERT((ctx->flags & DMAR_CTX_IDMAP) == 0,
500 	    ("modifying idmap pagetable ctx %p", ctx));
501 	KASSERT((base & DMAR_PAGE_MASK) == 0,
502 	    ("non-aligned base %p %jx %jx", ctx, (uintmax_t)base,
503 	    (uintmax_t)size));
504 	KASSERT((size & DMAR_PAGE_MASK) == 0,
505 	    ("non-aligned size %p %jx %jx", ctx, (uintmax_t)base,
506 	    (uintmax_t)size));
507 	KASSERT(size > 0, ("zero size %p %jx %jx", ctx, (uintmax_t)base,
508 	    (uintmax_t)size));
509 	KASSERT(base < (1ULL << ctx->agaw),
510 	    ("base too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
511 	    (uintmax_t)size, ctx->agaw));
512 	KASSERT(base + size < (1ULL << ctx->agaw),
513 	    ("end too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
514 	    (uintmax_t)size, ctx->agaw));
515 	KASSERT(base + size > base,
516 	    ("size overflow %p %jx %jx", ctx, (uintmax_t)base,
517 	    (uintmax_t)size));
518 	KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0,
519 	    ("neither read nor write %jx", (uintmax_t)pflags));
520 	KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP |
521 	    DMAR_PTE_TM)) == 0,
522 	    ("invalid pte flags %jx", (uintmax_t)pflags));
523 	KASSERT((pflags & DMAR_PTE_SNP) == 0 ||
524 	    (unit->hw_ecap & DMAR_ECAP_SC) != 0,
525 	    ("PTE_SNP for dmar without snoop control %p %jx",
526 	    ctx, (uintmax_t)pflags));
527 	KASSERT((pflags & DMAR_PTE_TM) == 0 ||
528 	    (unit->hw_ecap & DMAR_ECAP_DI) != 0,
529 	    ("PTE_TM for dmar without DIOTLB %p %jx",
530 	    ctx, (uintmax_t)pflags));
531 	KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
532 
533 	DMAR_CTX_PGLOCK(ctx);
534 	error = ctx_map_buf_locked(ctx, base, size, ma, pflags, flags);
535 	DMAR_CTX_PGUNLOCK(ctx);
536 	if (error != 0)
537 		return (error);
538 
539 	if ((unit->hw_cap & DMAR_CAP_CM) != 0)
540 		ctx_flush_iotlb_sync(ctx, base, size);
541 	else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
542 		/* See 11.1 Write Buffer Flushing. */
543 		DMAR_LOCK(unit);
544 		dmar_flush_write_bufs(unit);
545 		DMAR_UNLOCK(unit);
546 	}
547 	return (0);
548 }
549 
550 static void ctx_unmap_clear_pte(struct dmar_ctx *ctx, dmar_gaddr_t base,
551     int lvl, int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_fs);
552 
553 static void
554 ctx_free_pgtbl_pde(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl, int flags)
555 {
556 	struct sf_buf *sf;
557 	dmar_pte_t *pde;
558 	vm_pindex_t idx;
559 
560 	sf = NULL;
561 	pde = ctx_pgtbl_map_pte(ctx, base, lvl, flags, &idx, &sf);
562 	ctx_unmap_clear_pte(ctx, base, lvl, flags, pde, &sf, true);
563 }
564 
565 static void
566 ctx_unmap_clear_pte(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl,
567     int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf)
568 {
569 	vm_page_t m;
570 
571 	dmar_pte_clear(&pte->pte);
572 	dmar_flush_pte_to_ram(ctx->dmar, pte);
573 	m = sf_buf_page(*sf);
574 	if (free_sf) {
575 		dmar_unmap_pgtbl(*sf);
576 		*sf = NULL;
577 	}
578 	m->wire_count--;
579 	if (m->wire_count != 0)
580 		return;
581 	KASSERT(lvl != 0,
582 	    ("lost reference (lvl) on root pg ctx %p base %jx lvl %d",
583 	    ctx, (uintmax_t)base, lvl));
584 	KASSERT(m->pindex != 0,
585 	    ("lost reference (idx) on root pg ctx %p base %jx lvl %d",
586 	    ctx, (uintmax_t)base, lvl));
587 	dmar_pgfree(ctx->pgtbl_obj, m->pindex, flags);
588 	ctx_free_pgtbl_pde(ctx, base, lvl - 1, flags);
589 }
590 
591 /*
592  * Assumes that the unmap is never partial.
593  */
594 static int
595 ctx_unmap_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base,
596     dmar_gaddr_t size, int flags)
597 {
598 	dmar_pte_t *pte;
599 	struct sf_buf *sf;
600 	vm_pindex_t idx;
601 	dmar_gaddr_t pg_sz, base1, size1;
602 	int lvl;
603 
604 	DMAR_CTX_ASSERT_PGLOCKED(ctx);
605 	if (size == 0)
606 		return (0);
607 
608 	KASSERT((ctx->flags & DMAR_CTX_IDMAP) == 0,
609 	    ("modifying idmap pagetable ctx %p", ctx));
610 	KASSERT((base & DMAR_PAGE_MASK) == 0,
611 	    ("non-aligned base %p %jx %jx", ctx, (uintmax_t)base,
612 	    (uintmax_t)size));
613 	KASSERT((size & DMAR_PAGE_MASK) == 0,
614 	    ("non-aligned size %p %jx %jx", ctx, (uintmax_t)base,
615 	    (uintmax_t)size));
616 	KASSERT(base < (1ULL << ctx->agaw),
617 	    ("base too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
618 	    (uintmax_t)size, ctx->agaw));
619 	KASSERT(base + size < (1ULL << ctx->agaw),
620 	    ("end too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
621 	    (uintmax_t)size, ctx->agaw));
622 	KASSERT(base + size > base,
623 	    ("size overflow %p %jx %jx", ctx, (uintmax_t)base,
624 	    (uintmax_t)size));
625 	KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
626 
627 	pg_sz = 0; /* silence gcc */
628 	base1 = base;
629 	size1 = size;
630 	flags |= DMAR_PGF_OBJL;
631 	TD_PREP_PINNED_ASSERT;
632 
633 	for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) {
634 		for (lvl = 0; lvl < ctx->pglvl; lvl++) {
635 			if (lvl != ctx->pglvl - 1 && !ctx_is_sp_lvl(ctx, lvl))
636 				continue;
637 			pg_sz = ctx_page_size(ctx, lvl);
638 			if (pg_sz > size)
639 				continue;
640 			pte = ctx_pgtbl_map_pte(ctx, base, lvl, flags,
641 			    &idx, &sf);
642 			KASSERT(pte != NULL,
643 			    ("sleeping or page missed %p %jx %d 0x%x",
644 			    ctx, (uintmax_t)base, lvl, flags));
645 			if ((pte->pte & DMAR_PTE_SP) != 0 ||
646 			    lvl == ctx->pglvl - 1) {
647 				ctx_unmap_clear_pte(ctx, base, lvl, flags,
648 				    pte, &sf, false);
649 				break;
650 			}
651 		}
652 		KASSERT(size >= pg_sz,
653 		    ("unmapping loop overflow %p %jx %jx %jx", ctx,
654 		    (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
655 	}
656 	if (sf != NULL)
657 		dmar_unmap_pgtbl(sf);
658 	/*
659 	 * See 11.1 Write Buffer Flushing for an explanation why RWBF
660 	 * can be ignored there.
661 	 */
662 
663 	TD_PINNED_ASSERT;
664 	return (0);
665 }
666 
667 int
668 ctx_unmap_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
669     int flags)
670 {
671 	int error;
672 
673 	DMAR_CTX_PGLOCK(ctx);
674 	error = ctx_unmap_buf_locked(ctx, base, size, flags);
675 	DMAR_CTX_PGUNLOCK(ctx);
676 	return (error);
677 }
678 
679 int
680 ctx_alloc_pgtbl(struct dmar_ctx *ctx)
681 {
682 	vm_page_t m;
683 
684 	KASSERT(ctx->pgtbl_obj == NULL, ("already initialized %p", ctx));
685 
686 	ctx->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
687 	    IDX_TO_OFF(pglvl_max_pages(ctx->pglvl)), 0, 0, NULL);
688 	DMAR_CTX_PGLOCK(ctx);
689 	m = dmar_pgalloc(ctx->pgtbl_obj, 0, DMAR_PGF_WAITOK |
690 	    DMAR_PGF_ZERO | DMAR_PGF_OBJL);
691 	/* No implicit free of the top level page table page. */
692 	m->wire_count = 1;
693 	DMAR_CTX_PGUNLOCK(ctx);
694 	return (0);
695 }
696 
697 void
698 ctx_free_pgtbl(struct dmar_ctx *ctx)
699 {
700 	vm_object_t obj;
701 	vm_page_t m;
702 
703 	obj = ctx->pgtbl_obj;
704 	if (obj == NULL) {
705 		KASSERT((ctx->dmar->hw_ecap & DMAR_ECAP_PT) != 0 &&
706 		    (ctx->flags & DMAR_CTX_IDMAP) != 0,
707 		    ("lost pagetable object ctx %p", ctx));
708 		return;
709 	}
710 	DMAR_CTX_ASSERT_PGLOCKED(ctx);
711 	ctx->pgtbl_obj = NULL;
712 
713 	if ((ctx->flags & DMAR_CTX_IDMAP) != 0) {
714 		put_idmap_pgtbl(obj);
715 		ctx->flags &= ~DMAR_CTX_IDMAP;
716 		return;
717 	}
718 
719 	/* Obliterate wire_counts */
720 	VM_OBJECT_ASSERT_WLOCKED(obj);
721 	for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m))
722 		m->wire_count = 0;
723 	VM_OBJECT_WUNLOCK(obj);
724 	vm_object_deallocate(obj);
725 }
726 
727 static inline uint64_t
728 ctx_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro)
729 {
730 	uint64_t iotlbr;
731 
732 	dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
733 	    DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt);
734 	for (;;) {
735 		iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF);
736 		if ((iotlbr & DMAR_IOTLB_IVT) == 0)
737 			break;
738 		cpu_spinwait();
739 	}
740 	return (iotlbr);
741 }
742 
743 void
744 ctx_flush_iotlb_sync(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size)
745 {
746 	struct dmar_unit *unit;
747 	dmar_gaddr_t isize;
748 	uint64_t iotlbr;
749 	int am, iro;
750 
751 	unit = ctx->dmar;
752 	KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call",
753 	    unit->unit));
754 	iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16;
755 	DMAR_LOCK(unit);
756 	if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) {
757 		iotlbr = ctx_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM |
758 		    DMAR_IOTLB_DID(ctx->domain), iro);
759 		KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
760 		    DMAR_IOTLB_IAIG_INVLD,
761 		    ("dmar%d: invalidation failed %jx", unit->unit,
762 		    (uintmax_t)iotlbr));
763 	} else {
764 		for (; size > 0; base += isize, size -= isize) {
765 			am = calc_am(unit, base, size, &isize);
766 			dmar_write8(unit, iro, base | am);
767 			iotlbr = ctx_wait_iotlb_flush(unit,
768 			    DMAR_IOTLB_IIRG_PAGE | DMAR_IOTLB_DID(ctx->domain),
769 			    iro);
770 			KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
771 			    DMAR_IOTLB_IAIG_INVLD,
772 			    ("dmar%d: PSI invalidation failed "
773 			    "iotlbr 0x%jx base 0x%jx size 0x%jx am %d",
774 			    unit->unit, (uintmax_t)iotlbr,
775 			    (uintmax_t)base, (uintmax_t)size, am));
776 			/*
777 			 * Any non-page granularity covers whole guest
778 			 * address space for the domain.
779 			 */
780 			if ((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
781 			    DMAR_IOTLB_IAIG_PAGE)
782 				break;
783 		}
784 	}
785 	DMAR_UNLOCK(unit);
786 }
787