xref: /freebsd/sys/x86/isa/atrtc.c (revision c03c5b1c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008 Poul-Henning Kamp
5  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_acpi.h"
36 #include "opt_isa.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/clock.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/kdb.h>
45 #include <sys/kernel.h>
46 #include <sys/module.h>
47 #include <sys/proc.h>
48 #include <sys/rman.h>
49 #include <sys/timeet.h>
50 
51 #include <isa/rtc.h>
52 #ifdef DEV_ISA
53 #include <isa/isareg.h>
54 #include <isa/isavar.h>
55 #endif
56 #include <machine/intr_machdep.h>
57 #include "clock_if.h"
58 #ifdef DEV_ACPI
59 #include <contrib/dev/acpica/include/acpi.h>
60 #include <contrib/dev/acpica/include/accommon.h>
61 #include <dev/acpica/acpivar.h>
62 #include <machine/md_var.h>
63 #endif
64 
65 /*
66  * atrtc_lock protects low-level access to individual hardware registers.
67  * atrtc_time_lock protects the entire sequence of accessing multiple registers
68  * to read or write the date and time.
69  */
70 static struct mtx atrtc_lock;
71 MTX_SYSINIT(atrtc_lock_init, &atrtc_lock, "atrtc", MTX_SPIN);
72 
73 /* Force RTC enabled/disabled. */
74 static int atrtc_enabled = -1;
75 TUNABLE_INT("hw.atrtc.enabled", &atrtc_enabled);
76 
77 struct mtx atrtc_time_lock;
78 MTX_SYSINIT(atrtc_time_lock_init, &atrtc_time_lock, "atrtc_time", MTX_DEF);
79 
80 int	atrtcclock_disable = 0;
81 
82 static	int	rtc_century = 0;
83 static	int	rtc_reg = -1;
84 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
85 static	u_char	rtc_statusb = RTCSB_24HR;
86 
87 #ifdef DEV_ACPI
88 #define	_COMPONENT	ACPI_TIMER
89 ACPI_MODULE_NAME("ATRTC")
90 #endif
91 
92 /*
93  * RTC support routines
94  */
95 
96 static inline u_char
97 rtcin_locked(int reg)
98 {
99 
100 	if (rtc_reg != reg) {
101 		inb(0x84);
102 		outb(IO_RTC, reg);
103 		rtc_reg = reg;
104 		inb(0x84);
105 	}
106 	return (inb(IO_RTC + 1));
107 }
108 
109 static inline void
110 rtcout_locked(int reg, u_char val)
111 {
112 
113 	if (rtc_reg != reg) {
114 		inb(0x84);
115 		outb(IO_RTC, reg);
116 		rtc_reg = reg;
117 		inb(0x84);
118 	}
119 	outb(IO_RTC + 1, val);
120 	inb(0x84);
121 }
122 
123 int
124 rtcin(int reg)
125 {
126 	u_char val;
127 
128 	mtx_lock_spin(&atrtc_lock);
129 	val = rtcin_locked(reg);
130 	mtx_unlock_spin(&atrtc_lock);
131 	return (val);
132 }
133 
134 void
135 writertc(int reg, u_char val)
136 {
137 
138 	mtx_lock_spin(&atrtc_lock);
139 	rtcout_locked(reg, val);
140 	mtx_unlock_spin(&atrtc_lock);
141 }
142 
143 static void
144 atrtc_start(void)
145 {
146 
147 	mtx_lock_spin(&atrtc_lock);
148 	rtcout_locked(RTC_STATUSA, rtc_statusa);
149 	rtcout_locked(RTC_STATUSB, RTCSB_24HR);
150 	mtx_unlock_spin(&atrtc_lock);
151 }
152 
153 static void
154 atrtc_rate(unsigned rate)
155 {
156 
157 	rtc_statusa = RTCSA_DIVIDER | rate;
158 	writertc(RTC_STATUSA, rtc_statusa);
159 }
160 
161 static void
162 atrtc_enable_intr(void)
163 {
164 
165 	rtc_statusb |= RTCSB_PINTR;
166 	mtx_lock_spin(&atrtc_lock);
167 	rtcout_locked(RTC_STATUSB, rtc_statusb);
168 	rtcin_locked(RTC_INTR);
169 	mtx_unlock_spin(&atrtc_lock);
170 }
171 
172 static void
173 atrtc_disable_intr(void)
174 {
175 
176 	rtc_statusb &= ~RTCSB_PINTR;
177 	mtx_lock_spin(&atrtc_lock);
178 	rtcout_locked(RTC_STATUSB, rtc_statusb);
179 	rtcin_locked(RTC_INTR);
180 	mtx_unlock_spin(&atrtc_lock);
181 }
182 
183 void
184 atrtc_restore(void)
185 {
186 
187 	/* Restore all of the RTC's "status" (actually, control) registers. */
188 	mtx_lock_spin(&atrtc_lock);
189 	rtcin_locked(RTC_STATUSA);	/* dummy to get rtc_reg set */
190 	rtcout_locked(RTC_STATUSB, RTCSB_24HR);
191 	rtcout_locked(RTC_STATUSA, rtc_statusa);
192 	rtcout_locked(RTC_STATUSB, rtc_statusb);
193 	rtcin_locked(RTC_INTR);
194 	mtx_unlock_spin(&atrtc_lock);
195 }
196 
197 /**********************************************************************
198  * RTC driver for subr_rtc
199  */
200 
201 struct atrtc_softc {
202 	int port_rid, intr_rid;
203 	struct resource *port_res;
204 	struct resource *intr_res;
205 	void *intr_handler;
206 	struct eventtimer et;
207 #ifdef DEV_ACPI
208 	ACPI_HANDLE acpi_handle;
209 #endif
210 };
211 
212 static int
213 rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
214 {
215 
216 	atrtc_rate(max(fls(period + (period >> 1)) - 17, 1));
217 	atrtc_enable_intr();
218 	return (0);
219 }
220 
221 static int
222 rtc_stop(struct eventtimer *et)
223 {
224 
225 	atrtc_disable_intr();
226 	return (0);
227 }
228 
229 /*
230  * This routine receives statistical clock interrupts from the RTC.
231  * As explained above, these occur at 128 interrupts per second.
232  * When profiling, we receive interrupts at a rate of 1024 Hz.
233  *
234  * This does not actually add as much overhead as it sounds, because
235  * when the statistical clock is active, the hardclock driver no longer
236  * needs to keep (inaccurate) statistics on its own.  This decouples
237  * statistics gathering from scheduling interrupts.
238  *
239  * The RTC chip requires that we read status register C (RTC_INTR)
240  * to acknowledge an interrupt, before it will generate the next one.
241  * Under high interrupt load, rtcintr() can be indefinitely delayed and
242  * the clock can tick immediately after the read from RTC_INTR.  In this
243  * case, the mc146818A interrupt signal will not drop for long enough
244  * to register with the 8259 PIC.  If an interrupt is missed, the stat
245  * clock will halt, considerably degrading system performance.  This is
246  * why we use 'while' rather than a more straightforward 'if' below.
247  * Stat clock ticks can still be lost, causing minor loss of accuracy
248  * in the statistics, but the stat clock will no longer stop.
249  */
250 static int
251 rtc_intr(void *arg)
252 {
253 	struct atrtc_softc *sc = (struct atrtc_softc *)arg;
254 	int flag = 0;
255 
256 	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
257 		flag = 1;
258 		if (sc->et.et_active)
259 			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
260 	}
261 	return(flag ? FILTER_HANDLED : FILTER_STRAY);
262 }
263 
264 #ifdef DEV_ACPI
265 /*
266  *  ACPI RTC CMOS address space handler
267  */
268 #define	ATRTC_LAST_REG	0x40
269 
270 static void
271 rtcin_region(int reg, void *buf, int len)
272 {
273 	u_char *ptr = buf;
274 
275 	/* Drop lock after each IO as intr and settime have greater priority */
276 	while (len-- > 0)
277 		*ptr++ = rtcin(reg++) & 0xff;
278 }
279 
280 static void
281 rtcout_region(int reg, const void *buf, int len)
282 {
283 	const u_char *ptr = buf;
284 
285 	while (len-- > 0)
286 		writertc(reg++, *ptr++);
287 }
288 
289 static bool
290 atrtc_check_cmos_access(bool is_read, ACPI_PHYSICAL_ADDRESS addr, UINT32 len)
291 {
292 
293 	/* Block address space wrapping on out-of-bound access */
294 	if (addr >= ATRTC_LAST_REG || addr + len > ATRTC_LAST_REG)
295 		return (false);
296 
297 	if (is_read) {
298 		/* Reading 0x0C will muck with interrupts */
299 		if (addr <= RTC_INTR && addr + len > RTC_INTR)
300 			return (false);
301 	} else {
302 		/*
303 		 * Allow single-byte writes to alarm registers and
304 		 * multi-byte writes to addr >= 0x30, else deny.
305 		 */
306 		if (!((len == 1 && (addr == RTC_SECALRM ||
307 				    addr == RTC_MINALRM ||
308 				    addr == RTC_HRSALRM)) ||
309 		      addr >= 0x30))
310 			return (false);
311 	}
312 	return (true);
313 }
314 
315 static ACPI_STATUS
316 atrtc_acpi_cmos_handler(UINT32 func, ACPI_PHYSICAL_ADDRESS addr,
317     UINT32 bitwidth, UINT64 *value, void *context, void *region_context)
318 {
319 	device_t dev = context;
320 	UINT32 bytewidth = howmany(bitwidth, 8);
321 	bool is_read = func == ACPI_READ;
322 
323 	/* ACPICA is very verbose on CMOS handler failures, so we, too */
324 #define	CMOS_HANDLER_ERR(fmt, ...) \
325 	device_printf(dev, "ACPI [SystemCMOS] handler: " fmt, ##__VA_ARGS__)
326 
327 	ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
328 
329 	if (value == NULL) {
330 		CMOS_HANDLER_ERR("NULL parameter\n");
331 		return (AE_BAD_PARAMETER);
332 	}
333 	if (bitwidth == 0 || (bitwidth & 0x07) != 0) {
334 		CMOS_HANDLER_ERR("Invalid bitwidth: %u\n", bitwidth);
335 		return (AE_BAD_PARAMETER);
336 	}
337 	if (!atrtc_check_cmos_access(is_read, addr, bytewidth)) {
338 		CMOS_HANDLER_ERR("%s access rejected: addr=%#04jx, len=%u\n",
339 		    is_read ? "Read" : "Write", (uintmax_t)addr, bytewidth);
340 		return (AE_BAD_PARAMETER);
341 	}
342 
343 	switch (func) {
344 	case ACPI_READ:
345 		rtcin_region(addr, value, bytewidth);
346 		break;
347 	case ACPI_WRITE:
348 		rtcout_region(addr, value, bytewidth);
349 		break;
350 	default:
351 		CMOS_HANDLER_ERR("Invalid function: %u\n", func);
352 		return (AE_BAD_PARAMETER);
353 	}
354 
355 	ACPI_VPRINT(dev, acpi_device_get_parent_softc(dev),
356 	    "ACPI RTC CMOS %s access: addr=%#04x, len=%u, val=%*D\n",
357 	    is_read ? "read" : "write", (unsigned)addr, bytewidth,
358 	    bytewidth, value, " ");
359 
360 	return (AE_OK);
361 }
362 
363 static int
364 atrtc_reg_acpi_cmos_handler(device_t dev)
365 {
366 	struct atrtc_softc *sc = device_get_softc(dev);
367 
368 	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
369 
370 	/* Don't handle address space events if driver is disabled. */
371 	if (acpi_disabled("atrtc"))
372 		return (ENXIO);
373 
374 	if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sc->acpi_handle))) {
375 		return (ENXIO);
376 	}
377 
378 	if (sc->acpi_handle == NULL ||
379 	    ACPI_FAILURE(AcpiInstallAddressSpaceHandler(sc->acpi_handle,
380 	      ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler, NULL, dev))) {
381 		sc->acpi_handle = NULL;
382 		device_printf(dev,
383 		    "Can't register ACPI CMOS address space handler\n");
384 		return (ENXIO);
385         }
386 
387         return (0);
388 }
389 
390 static int
391 atrtc_unreg_acpi_cmos_handler(device_t dev)
392 {
393 	struct atrtc_softc *sc = device_get_softc(dev);
394 
395 	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
396 
397 	if (sc->acpi_handle != NULL)
398 		AcpiRemoveAddressSpaceHandler(sc->acpi_handle,
399 		    ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler);
400 
401 	return (0);
402 }
403 #endif	/* DEV_ACPI */
404 
405 /*
406  * Attach to the ISA PnP descriptors for the timer and realtime clock.
407  */
408 static struct isa_pnp_id atrtc_ids[] = {
409 	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
410 	{ 0 }
411 };
412 
413 static bool
414 atrtc_acpi_disabled(void)
415 {
416 #ifdef DEV_ACPI
417 	uint16_t flags;
418 
419 	if (!acpi_get_fadt_bootflags(&flags))
420 		return (false);
421 	return ((flags & ACPI_FADT_NO_CMOS_RTC) != 0);
422 #else
423 	return (false);
424 #endif
425 }
426 
427 static int
428 rtc_acpi_century_get(void)
429 {
430 #ifdef DEV_ACPI
431 	ACPI_TABLE_FADT *fadt;
432 	vm_paddr_t physaddr;
433 	int century;
434 
435 	physaddr = acpi_find_table(ACPI_SIG_FADT);
436 	if (physaddr == 0)
437 		return (0);
438 
439 	fadt = acpi_map_table(physaddr, ACPI_SIG_FADT);
440 	if (fadt == NULL)
441 		return (0);
442 
443 	century = fadt->Century;
444 	acpi_unmap_table(fadt);
445 
446 	return (century);
447 #else
448 	return (0);
449 #endif
450 }
451 
452 static int
453 atrtc_probe(device_t dev)
454 {
455 	int result;
456 
457 	if ((atrtc_enabled == -1 && atrtc_acpi_disabled()) ||
458 	    (atrtc_enabled == 0))
459 		return (ENXIO);
460 
461 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids);
462 	/* ENOENT means no PnP-ID, device is hinted. */
463 	if (result == ENOENT) {
464 		device_set_desc(dev, "AT realtime clock");
465 		return (BUS_PROBE_LOW_PRIORITY);
466 	}
467 	rtc_century = rtc_acpi_century_get();
468 	return (result);
469 }
470 
471 static int
472 atrtc_attach(device_t dev)
473 {
474 	struct atrtc_softc *sc;
475 	rman_res_t s;
476 	int i;
477 
478 	sc = device_get_softc(dev);
479 	sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
480 	    IO_RTC, IO_RTC + 1, 2, RF_ACTIVE);
481 	if (sc->port_res == NULL)
482 		device_printf(dev, "Warning: Couldn't map I/O.\n");
483 	atrtc_start();
484 	clock_register(dev, 1000000);
485 	bzero(&sc->et, sizeof(struct eventtimer));
486 	if (!atrtcclock_disable &&
487 	    (resource_int_value(device_get_name(dev), device_get_unit(dev),
488 	     "clock", &i) != 0 || i != 0)) {
489 		sc->intr_rid = 0;
490 		while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid,
491 		    &s, NULL) == 0 && s != 8)
492 			sc->intr_rid++;
493 		sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
494 		    &sc->intr_rid, 8, 8, 1, RF_ACTIVE);
495 		if (sc->intr_res == NULL) {
496 			device_printf(dev, "Can't map interrupt.\n");
497 			return (0);
498 		} else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
499 		    rtc_intr, NULL, sc, &sc->intr_handler))) {
500 			device_printf(dev, "Can't setup interrupt.\n");
501 			return (0);
502 		} else {
503 			/* Bind IRQ to BSP to avoid live migration. */
504 			bus_bind_intr(dev, sc->intr_res, 0);
505 		}
506 		sc->et.et_name = "RTC";
507 		sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV;
508 		sc->et.et_quality = 0;
509 		sc->et.et_frequency = 32768;
510 		sc->et.et_min_period = 0x00080000;
511 		sc->et.et_max_period = 0x80000000;
512 		sc->et.et_start = rtc_start;
513 		sc->et.et_stop = rtc_stop;
514 		sc->et.et_priv = dev;
515 		et_register(&sc->et);
516 	}
517 	return(0);
518 }
519 
520 static int
521 atrtc_isa_attach(device_t dev)
522 {
523 
524 	return (atrtc_attach(dev));
525 }
526 
527 #ifdef DEV_ACPI
528 static int
529 atrtc_acpi_attach(device_t dev)
530 {
531 	int ret;
532 
533 	ret = atrtc_attach(dev);
534 	if (ret)
535 		return (ret);
536 
537 	(void)atrtc_reg_acpi_cmos_handler(dev);
538 
539 	return (0);
540 }
541 
542 static int
543 atrtc_acpi_detach(device_t dev)
544 {
545 
546 	(void)atrtc_unreg_acpi_cmos_handler(dev);
547 	return (0);
548 }
549 #endif	/* DEV_ACPI */
550 
551 static int
552 atrtc_resume(device_t dev)
553 {
554 
555 	atrtc_restore();
556 	return(0);
557 }
558 
559 static int
560 atrtc_settime(device_t dev __unused, struct timespec *ts)
561 {
562 	struct bcd_clocktime bct;
563 
564 	clock_ts_to_bcd(ts, &bct, false);
565 	clock_dbgprint_bcd(dev, CLOCK_DBG_WRITE, &bct);
566 
567 	mtx_lock(&atrtc_time_lock);
568 	mtx_lock_spin(&atrtc_lock);
569 
570 	/* Disable RTC updates and interrupts.  */
571 	rtcout_locked(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
572 
573 	/* Write all the time registers. */
574 	rtcout_locked(RTC_SEC,   bct.sec);
575 	rtcout_locked(RTC_MIN,   bct.min);
576 	rtcout_locked(RTC_HRS,   bct.hour);
577 	rtcout_locked(RTC_WDAY,  bct.dow + 1);
578 	rtcout_locked(RTC_DAY,   bct.day);
579 	rtcout_locked(RTC_MONTH, bct.mon);
580 	rtcout_locked(RTC_YEAR,  bct.year & 0xff);
581 	if (rtc_century)
582 		rtcout_locked(rtc_century, bct.year >> 8);
583 
584 	/*
585 	 * Re-enable RTC updates and interrupts.
586 	 */
587 	rtcout_locked(RTC_STATUSB, rtc_statusb);
588 	rtcin_locked(RTC_INTR);
589 
590 	mtx_unlock_spin(&atrtc_lock);
591 	mtx_unlock(&atrtc_time_lock);
592 
593 	return (0);
594 }
595 
596 static int
597 atrtc_gettime(device_t dev, struct timespec *ts)
598 {
599 	struct bcd_clocktime bct;
600 
601 	/* Look if we have a RTC present and the time is valid */
602 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) {
603 		device_printf(dev, "WARNING: Battery failure indication\n");
604 		return (EINVAL);
605 	}
606 
607 	/*
608 	 * wait for time update to complete
609 	 * If RTCSA_TUP is zero, we have at least 244us before next update.
610 	 * This is fast enough on most hardware, but a refinement would be
611 	 * to make sure that no more than 240us pass after we start reading,
612 	 * and try again if so.
613 	 */
614 	mtx_lock(&atrtc_time_lock);
615 	while (rtcin(RTC_STATUSA) & RTCSA_TUP)
616 		continue;
617 	mtx_lock_spin(&atrtc_lock);
618 	bct.sec  = rtcin_locked(RTC_SEC);
619 	bct.min  = rtcin_locked(RTC_MIN);
620 	bct.hour = rtcin_locked(RTC_HRS);
621 	bct.day  = rtcin_locked(RTC_DAY);
622 	bct.mon  = rtcin_locked(RTC_MONTH);
623 	bct.year = rtcin_locked(RTC_YEAR);
624 	if (rtc_century)
625 		bct.year |= rtcin_locked(rtc_century) << 8;
626 	mtx_unlock_spin(&atrtc_lock);
627 	mtx_unlock(&atrtc_time_lock);
628 	/* dow is unused in timespec conversion and we have no nsec info. */
629 	bct.dow  = 0;
630 	bct.nsec = 0;
631 	clock_dbgprint_bcd(dev, CLOCK_DBG_READ, &bct);
632 	return (clock_bcd_to_ts(&bct, ts, false));
633 }
634 
635 static device_method_t atrtc_isa_methods[] = {
636 	/* Device interface */
637 	DEVMETHOD(device_probe,		atrtc_probe),
638 	DEVMETHOD(device_attach,	atrtc_isa_attach),
639 	DEVMETHOD(device_detach,	bus_generic_detach),
640 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
641 	DEVMETHOD(device_suspend,	bus_generic_suspend),
642 		/* XXX stop statclock? */
643 	DEVMETHOD(device_resume,	atrtc_resume),
644 
645 	/* clock interface */
646 	DEVMETHOD(clock_gettime,	atrtc_gettime),
647 	DEVMETHOD(clock_settime,	atrtc_settime),
648 	{ 0, 0 }
649 };
650 
651 static driver_t atrtc_isa_driver = {
652 	"atrtc",
653 	atrtc_isa_methods,
654 	sizeof(struct atrtc_softc),
655 };
656 
657 #ifdef DEV_ACPI
658 static device_method_t atrtc_acpi_methods[] = {
659 	/* Device interface */
660 	DEVMETHOD(device_probe,		atrtc_probe),
661 	DEVMETHOD(device_attach,	atrtc_acpi_attach),
662 	DEVMETHOD(device_detach,	atrtc_acpi_detach),
663 		/* XXX stop statclock? */
664 	DEVMETHOD(device_resume,	atrtc_resume),
665 
666 	/* clock interface */
667 	DEVMETHOD(clock_gettime,	atrtc_gettime),
668 	DEVMETHOD(clock_settime,	atrtc_settime),
669 	{ 0, 0 }
670 };
671 
672 static driver_t atrtc_acpi_driver = {
673 	"atrtc",
674 	atrtc_acpi_methods,
675 	sizeof(struct atrtc_softc),
676 };
677 #endif	/* DEV_ACPI */
678 
679 static devclass_t atrtc_devclass;
680 
681 DRIVER_MODULE(atrtc, isa, atrtc_isa_driver, atrtc_devclass, 0, 0);
682 #ifdef DEV_ACPI
683 DRIVER_MODULE(atrtc, acpi, atrtc_acpi_driver, atrtc_devclass, 0, 0);
684 #endif
685 ISA_PNP_INFO(atrtc_ids);
686