xref: /freebsd/sys/x86/x86/identcpu.c (revision 716fd348)
1 /*-
2  * Copyright (c) 1992 Terrence R. Lambert.
3  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4  * Copyright (c) 1997 KATO Takenori.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: Id: machdep.c,v 1.193 1996/06/18 01:22:04 bde Exp
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_cpu.h"
45 
46 #include <sys/param.h>
47 #include <sys/bus.h>
48 #include <sys/cpu.h>
49 #include <sys/eventhandler.h>
50 #include <sys/limits.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/sysctl.h>
54 #include <sys/power.h>
55 
56 #include <vm/vm.h>
57 #include <vm/pmap.h>
58 
59 #include <machine/asmacros.h>
60 #include <machine/clock.h>
61 #include <machine/cputypes.h>
62 #include <machine/frame.h>
63 #include <machine/intr_machdep.h>
64 #include <machine/md_var.h>
65 #include <machine/segments.h>
66 #include <machine/specialreg.h>
67 
68 #include <amd64/vmm/intel/vmx_controls.h>
69 #include <x86/isa/icu.h>
70 #include <x86/vmware.h>
71 
72 #ifdef __i386__
73 #define	IDENTBLUE_CYRIX486	0
74 #define	IDENTBLUE_IBMCPU	1
75 #define	IDENTBLUE_CYRIXM2	2
76 
77 static void identifycyrix(void);
78 static void print_transmeta_info(void);
79 #endif
80 static u_int find_cpu_vendor_id(void);
81 static void print_AMD_info(void);
82 static void print_INTEL_info(void);
83 static void print_INTEL_TLB(u_int data);
84 static void print_hypervisor_info(void);
85 static void print_svm_info(void);
86 static void print_via_padlock_info(void);
87 static void print_vmx_info(void);
88 
89 #ifdef __i386__
90 int	cpu;			/* Are we 386, 386sx, 486, etc? */
91 int	cpu_class;
92 #endif
93 u_int	cpu_feature;		/* Feature flags */
94 u_int	cpu_feature2;		/* Feature flags */
95 u_int	amd_feature;		/* AMD feature flags */
96 u_int	amd_feature2;		/* AMD feature flags */
97 u_int	amd_rascap;		/* AMD RAS capabilities */
98 u_int	amd_pminfo;		/* AMD advanced power management info */
99 u_int	amd_extended_feature_extensions;
100 u_int	via_feature_rng;	/* VIA RNG features */
101 u_int	via_feature_xcrypt;	/* VIA ACE features */
102 u_int	cpu_high;		/* Highest arg to CPUID */
103 u_int	cpu_exthigh;		/* Highest arg to extended CPUID */
104 u_int	cpu_id;			/* Stepping ID */
105 u_int	cpu_procinfo;		/* HyperThreading Info / Brand Index / CLFUSH */
106 u_int	cpu_procinfo2;		/* Multicore info */
107 char	cpu_vendor[20];		/* CPU Origin code */
108 u_int	cpu_vendor_id;		/* CPU vendor ID */
109 u_int	cpu_fxsr;		/* SSE enabled */
110 u_int	cpu_mxcsr_mask;		/* Valid bits in mxcsr */
111 u_int	cpu_clflush_line_size = 32;
112 u_int	cpu_stdext_feature;	/* %ebx */
113 u_int	cpu_stdext_feature2;	/* %ecx */
114 u_int	cpu_stdext_feature3;	/* %edx */
115 uint64_t cpu_ia32_arch_caps;
116 u_int	cpu_max_ext_state_size;
117 u_int	cpu_mon_mwait_flags;	/* MONITOR/MWAIT flags (CPUID.05H.ECX) */
118 u_int	cpu_mon_min_size;	/* MONITOR minimum range size, bytes */
119 u_int	cpu_mon_max_size;	/* MONITOR minimum range size, bytes */
120 u_int	cpu_maxphyaddr;		/* Max phys addr width in bits */
121 u_int	cpu_power_eax;		/* 06H: Power management leaf, %eax */
122 u_int	cpu_power_ebx;		/* 06H: Power management leaf, %ebx */
123 u_int	cpu_power_ecx;		/* 06H: Power management leaf, %ecx */
124 u_int	cpu_power_edx;		/* 06H: Power management leaf, %edx */
125 char machine[] = MACHINE;
126 
127 SYSCTL_UINT(_hw, OID_AUTO, via_feature_rng, CTLFLAG_RD,
128     &via_feature_rng, 0,
129     "VIA RNG feature available in CPU");
130 SYSCTL_UINT(_hw, OID_AUTO, via_feature_xcrypt, CTLFLAG_RD,
131     &via_feature_xcrypt, 0,
132     "VIA xcrypt feature available in CPU");
133 
134 #ifdef __amd64__
135 #ifdef SCTL_MASK32
136 extern int adaptive_machine_arch;
137 #endif
138 
139 static int
140 sysctl_hw_machine(SYSCTL_HANDLER_ARGS)
141 {
142 #ifdef SCTL_MASK32
143 	static const char machine32[] = "i386";
144 #endif
145 	int error;
146 
147 #ifdef SCTL_MASK32
148 	if ((req->flags & SCTL_MASK32) != 0 && adaptive_machine_arch)
149 		error = SYSCTL_OUT(req, machine32, sizeof(machine32));
150 	else
151 #endif
152 		error = SYSCTL_OUT(req, machine, sizeof(machine));
153 	return (error);
154 
155 }
156 SYSCTL_PROC(_hw, HW_MACHINE, machine, CTLTYPE_STRING | CTLFLAG_RD |
157     CTLFLAG_MPSAFE, NULL, 0, sysctl_hw_machine, "A", "Machine class");
158 #else
159 SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD,
160     machine, 0, "Machine class");
161 #endif
162 
163 static char cpu_model[128];
164 SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD | CTLFLAG_MPSAFE,
165     cpu_model, 0, "Machine model");
166 
167 static int hw_clockrate;
168 SYSCTL_INT(_hw, OID_AUTO, clockrate, CTLFLAG_RD,
169     &hw_clockrate, 0, "CPU instruction clock rate");
170 
171 u_int hv_base;
172 u_int hv_high;
173 char hv_vendor[16];
174 SYSCTL_STRING(_hw, OID_AUTO, hv_vendor, CTLFLAG_RD | CTLFLAG_MPSAFE, hv_vendor,
175     0, "Hypervisor vendor");
176 
177 static eventhandler_tag tsc_post_tag;
178 
179 static char cpu_brand[48];
180 
181 #ifdef __i386__
182 #define	MAX_BRAND_INDEX	8
183 
184 static const char *cpu_brandtable[MAX_BRAND_INDEX + 1] = {
185 	NULL,			/* No brand */
186 	"Intel Celeron",
187 	"Intel Pentium III",
188 	"Intel Pentium III Xeon",
189 	NULL,
190 	NULL,
191 	NULL,
192 	NULL,
193 	"Intel Pentium 4"
194 };
195 
196 static struct {
197 	char	*cpu_name;
198 	int	cpu_class;
199 } cpus[] = {
200 	{ "Intel 80286",	CPUCLASS_286 },		/* CPU_286   */
201 	{ "i386SX",		CPUCLASS_386 },		/* CPU_386SX */
202 	{ "i386DX",		CPUCLASS_386 },		/* CPU_386   */
203 	{ "i486SX",		CPUCLASS_486 },		/* CPU_486SX */
204 	{ "i486DX",		CPUCLASS_486 },		/* CPU_486   */
205 	{ "Pentium",		CPUCLASS_586 },		/* CPU_586   */
206 	{ "Cyrix 486",		CPUCLASS_486 },		/* CPU_486DLC */
207 	{ "Pentium Pro",	CPUCLASS_686 },		/* CPU_686 */
208 	{ "Cyrix 5x86",		CPUCLASS_486 },		/* CPU_M1SC */
209 	{ "Cyrix 6x86",		CPUCLASS_486 },		/* CPU_M1 */
210 	{ "Blue Lightning",	CPUCLASS_486 },		/* CPU_BLUE */
211 	{ "Cyrix 6x86MX",	CPUCLASS_686 },		/* CPU_M2 */
212 	{ "NexGen 586",		CPUCLASS_386 },		/* CPU_NX586 (XXX) */
213 	{ "Cyrix 486S/DX",	CPUCLASS_486 },		/* CPU_CY486DX */
214 	{ "Pentium II",		CPUCLASS_686 },		/* CPU_PII */
215 	{ "Pentium III",	CPUCLASS_686 },		/* CPU_PIII */
216 	{ "Pentium 4",		CPUCLASS_686 },		/* CPU_P4 */
217 };
218 #endif
219 
220 static struct {
221 	char	*vendor;
222 	u_int	vendor_id;
223 } cpu_vendors[] = {
224 	{ INTEL_VENDOR_ID,	CPU_VENDOR_INTEL },	/* GenuineIntel */
225 	{ AMD_VENDOR_ID,	CPU_VENDOR_AMD },	/* AuthenticAMD */
226 	{ HYGON_VENDOR_ID,	CPU_VENDOR_HYGON },	/* HygonGenuine */
227 	{ CENTAUR_VENDOR_ID,	CPU_VENDOR_CENTAUR },	/* CentaurHauls */
228 #ifdef __i386__
229 	{ NSC_VENDOR_ID,	CPU_VENDOR_NSC },	/* Geode by NSC */
230 	{ CYRIX_VENDOR_ID,	CPU_VENDOR_CYRIX },	/* CyrixInstead */
231 	{ TRANSMETA_VENDOR_ID,	CPU_VENDOR_TRANSMETA },	/* GenuineTMx86 */
232 	{ SIS_VENDOR_ID,	CPU_VENDOR_SIS },	/* SiS SiS SiS  */
233 	{ UMC_VENDOR_ID,	CPU_VENDOR_UMC },	/* UMC UMC UMC  */
234 	{ NEXGEN_VENDOR_ID,	CPU_VENDOR_NEXGEN },	/* NexGenDriven */
235 	{ RISE_VENDOR_ID,	CPU_VENDOR_RISE },	/* RiseRiseRise */
236 #if 0
237 	/* XXX CPUID 8000_0000h and 8086_0000h, not 0000_0000h */
238 	{ "TransmetaCPU",	CPU_VENDOR_TRANSMETA },
239 #endif
240 #endif
241 };
242 
243 void
244 printcpuinfo(void)
245 {
246 	u_int regs[4], i;
247 	char *brand;
248 
249 	printf("CPU: ");
250 #ifdef __i386__
251 	cpu_class = cpus[cpu].cpu_class;
252 	strncpy(cpu_model, cpus[cpu].cpu_name, sizeof (cpu_model));
253 #else
254 	strncpy(cpu_model, "Hammer", sizeof (cpu_model));
255 #endif
256 
257 	/* Check for extended CPUID information and a processor name. */
258 	if (cpu_exthigh >= 0x80000004) {
259 		brand = cpu_brand;
260 		for (i = 0x80000002; i < 0x80000005; i++) {
261 			do_cpuid(i, regs);
262 			memcpy(brand, regs, sizeof(regs));
263 			brand += sizeof(regs);
264 		}
265 	}
266 
267 	switch (cpu_vendor_id) {
268 	case CPU_VENDOR_INTEL:
269 #ifdef __i386__
270 		if ((cpu_id & 0xf00) > 0x300) {
271 			u_int brand_index;
272 
273 			cpu_model[0] = '\0';
274 
275 			switch (cpu_id & 0x3000) {
276 			case 0x1000:
277 				strcpy(cpu_model, "Overdrive ");
278 				break;
279 			case 0x2000:
280 				strcpy(cpu_model, "Dual ");
281 				break;
282 			}
283 
284 			switch (cpu_id & 0xf00) {
285 			case 0x400:
286 				strcat(cpu_model, "i486 ");
287 				/* Check the particular flavor of 486 */
288 				switch (cpu_id & 0xf0) {
289 				case 0x00:
290 				case 0x10:
291 					strcat(cpu_model, "DX");
292 					break;
293 				case 0x20:
294 					strcat(cpu_model, "SX");
295 					break;
296 				case 0x30:
297 					strcat(cpu_model, "DX2");
298 					break;
299 				case 0x40:
300 					strcat(cpu_model, "SL");
301 					break;
302 				case 0x50:
303 					strcat(cpu_model, "SX2");
304 					break;
305 				case 0x70:
306 					strcat(cpu_model,
307 					    "DX2 Write-Back Enhanced");
308 					break;
309 				case 0x80:
310 					strcat(cpu_model, "DX4");
311 					break;
312 				}
313 				break;
314 			case 0x500:
315 				/* Check the particular flavor of 586 */
316 				strcat(cpu_model, "Pentium");
317 				switch (cpu_id & 0xf0) {
318 				case 0x00:
319 					strcat(cpu_model, " A-step");
320 					break;
321 				case 0x10:
322 					strcat(cpu_model, "/P5");
323 					break;
324 				case 0x20:
325 					strcat(cpu_model, "/P54C");
326 					break;
327 				case 0x30:
328 					strcat(cpu_model, "/P24T");
329 					break;
330 				case 0x40:
331 					strcat(cpu_model, "/P55C");
332 					break;
333 				case 0x70:
334 					strcat(cpu_model, "/P54C");
335 					break;
336 				case 0x80:
337 					strcat(cpu_model, "/P55C (quarter-micron)");
338 					break;
339 				default:
340 					/* nothing */
341 					break;
342 				}
343 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
344 				/*
345 				 * XXX - If/when Intel fixes the bug, this
346 				 * should also check the version of the
347 				 * CPU, not just that it's a Pentium.
348 				 */
349 				has_f00f_bug = 1;
350 #endif
351 				break;
352 			case 0x600:
353 				/* Check the particular flavor of 686 */
354 				switch (cpu_id & 0xf0) {
355 				case 0x00:
356 					strcat(cpu_model, "Pentium Pro A-step");
357 					break;
358 				case 0x10:
359 					strcat(cpu_model, "Pentium Pro");
360 					break;
361 				case 0x30:
362 				case 0x50:
363 				case 0x60:
364 					strcat(cpu_model,
365 				"Pentium II/Pentium II Xeon/Celeron");
366 					cpu = CPU_PII;
367 					break;
368 				case 0x70:
369 				case 0x80:
370 				case 0xa0:
371 				case 0xb0:
372 					strcat(cpu_model,
373 					"Pentium III/Pentium III Xeon/Celeron");
374 					cpu = CPU_PIII;
375 					break;
376 				default:
377 					strcat(cpu_model, "Unknown 80686");
378 					break;
379 				}
380 				break;
381 			case 0xf00:
382 				strcat(cpu_model, "Pentium 4");
383 				cpu = CPU_P4;
384 				break;
385 			default:
386 				strcat(cpu_model, "unknown");
387 				break;
388 			}
389 
390 			/*
391 			 * If we didn't get a brand name from the extended
392 			 * CPUID, try to look it up in the brand table.
393 			 */
394 			if (cpu_high > 0 && *cpu_brand == '\0') {
395 				brand_index = cpu_procinfo & CPUID_BRAND_INDEX;
396 				if (brand_index <= MAX_BRAND_INDEX &&
397 				    cpu_brandtable[brand_index] != NULL)
398 					strcpy(cpu_brand,
399 					    cpu_brandtable[brand_index]);
400 			}
401 		}
402 #else
403 		/* Please make up your mind folks! */
404 		strcat(cpu_model, "EM64T");
405 #endif
406 		break;
407 	case CPU_VENDOR_AMD:
408 		/*
409 		 * Values taken from AMD Processor Recognition
410 		 * http://www.amd.com/K6/k6docs/pdf/20734g.pdf
411 		 * (also describes ``Features'' encodings.
412 		 */
413 		strcpy(cpu_model, "AMD ");
414 #ifdef __i386__
415 		switch (cpu_id & 0xFF0) {
416 		case 0x410:
417 			strcat(cpu_model, "Standard Am486DX");
418 			break;
419 		case 0x430:
420 			strcat(cpu_model, "Enhanced Am486DX2 Write-Through");
421 			break;
422 		case 0x470:
423 			strcat(cpu_model, "Enhanced Am486DX2 Write-Back");
424 			break;
425 		case 0x480:
426 			strcat(cpu_model, "Enhanced Am486DX4/Am5x86 Write-Through");
427 			break;
428 		case 0x490:
429 			strcat(cpu_model, "Enhanced Am486DX4/Am5x86 Write-Back");
430 			break;
431 		case 0x4E0:
432 			strcat(cpu_model, "Am5x86 Write-Through");
433 			break;
434 		case 0x4F0:
435 			strcat(cpu_model, "Am5x86 Write-Back");
436 			break;
437 		case 0x500:
438 			strcat(cpu_model, "K5 model 0");
439 			break;
440 		case 0x510:
441 			strcat(cpu_model, "K5 model 1");
442 			break;
443 		case 0x520:
444 			strcat(cpu_model, "K5 PR166 (model 2)");
445 			break;
446 		case 0x530:
447 			strcat(cpu_model, "K5 PR200 (model 3)");
448 			break;
449 		case 0x560:
450 			strcat(cpu_model, "K6");
451 			break;
452 		case 0x570:
453 			strcat(cpu_model, "K6 266 (model 1)");
454 			break;
455 		case 0x580:
456 			strcat(cpu_model, "K6-2");
457 			break;
458 		case 0x590:
459 			strcat(cpu_model, "K6-III");
460 			break;
461 		case 0x5a0:
462 			strcat(cpu_model, "Geode LX");
463 			break;
464 		default:
465 			strcat(cpu_model, "Unknown");
466 			break;
467 		}
468 #else
469 		if ((cpu_id & 0xf00) == 0xf00)
470 			strcat(cpu_model, "AMD64 Processor");
471 		else
472 			strcat(cpu_model, "Unknown");
473 #endif
474 		break;
475 #ifdef __i386__
476 	case CPU_VENDOR_CYRIX:
477 		strcpy(cpu_model, "Cyrix ");
478 		switch (cpu_id & 0xff0) {
479 		case 0x440:
480 			strcat(cpu_model, "MediaGX");
481 			break;
482 		case 0x520:
483 			strcat(cpu_model, "6x86");
484 			break;
485 		case 0x540:
486 			cpu_class = CPUCLASS_586;
487 			strcat(cpu_model, "GXm");
488 			break;
489 		case 0x600:
490 			strcat(cpu_model, "6x86MX");
491 			break;
492 		default:
493 			/*
494 			 * Even though CPU supports the cpuid
495 			 * instruction, it can be disabled.
496 			 * Therefore, this routine supports all Cyrix
497 			 * CPUs.
498 			 */
499 			switch (cyrix_did & 0xf0) {
500 			case 0x00:
501 				switch (cyrix_did & 0x0f) {
502 				case 0x00:
503 					strcat(cpu_model, "486SLC");
504 					break;
505 				case 0x01:
506 					strcat(cpu_model, "486DLC");
507 					break;
508 				case 0x02:
509 					strcat(cpu_model, "486SLC2");
510 					break;
511 				case 0x03:
512 					strcat(cpu_model, "486DLC2");
513 					break;
514 				case 0x04:
515 					strcat(cpu_model, "486SRx");
516 					break;
517 				case 0x05:
518 					strcat(cpu_model, "486DRx");
519 					break;
520 				case 0x06:
521 					strcat(cpu_model, "486SRx2");
522 					break;
523 				case 0x07:
524 					strcat(cpu_model, "486DRx2");
525 					break;
526 				case 0x08:
527 					strcat(cpu_model, "486SRu");
528 					break;
529 				case 0x09:
530 					strcat(cpu_model, "486DRu");
531 					break;
532 				case 0x0a:
533 					strcat(cpu_model, "486SRu2");
534 					break;
535 				case 0x0b:
536 					strcat(cpu_model, "486DRu2");
537 					break;
538 				default:
539 					strcat(cpu_model, "Unknown");
540 					break;
541 				}
542 				break;
543 			case 0x10:
544 				switch (cyrix_did & 0x0f) {
545 				case 0x00:
546 					strcat(cpu_model, "486S");
547 					break;
548 				case 0x01:
549 					strcat(cpu_model, "486S2");
550 					break;
551 				case 0x02:
552 					strcat(cpu_model, "486Se");
553 					break;
554 				case 0x03:
555 					strcat(cpu_model, "486S2e");
556 					break;
557 				case 0x0a:
558 					strcat(cpu_model, "486DX");
559 					break;
560 				case 0x0b:
561 					strcat(cpu_model, "486DX2");
562 					break;
563 				case 0x0f:
564 					strcat(cpu_model, "486DX4");
565 					break;
566 				default:
567 					strcat(cpu_model, "Unknown");
568 					break;
569 				}
570 				break;
571 			case 0x20:
572 				if ((cyrix_did & 0x0f) < 8)
573 					strcat(cpu_model, "6x86");	/* Where did you get it? */
574 				else
575 					strcat(cpu_model, "5x86");
576 				break;
577 			case 0x30:
578 				strcat(cpu_model, "6x86");
579 				break;
580 			case 0x40:
581 				if ((cyrix_did & 0xf000) == 0x3000) {
582 					cpu_class = CPUCLASS_586;
583 					strcat(cpu_model, "GXm");
584 				} else
585 					strcat(cpu_model, "MediaGX");
586 				break;
587 			case 0x50:
588 				strcat(cpu_model, "6x86MX");
589 				break;
590 			case 0xf0:
591 				switch (cyrix_did & 0x0f) {
592 				case 0x0d:
593 					strcat(cpu_model, "Overdrive CPU");
594 					break;
595 				case 0x0e:
596 					strcpy(cpu_model, "Texas Instruments 486SXL");
597 					break;
598 				case 0x0f:
599 					strcat(cpu_model, "486SLC/DLC");
600 					break;
601 				default:
602 					strcat(cpu_model, "Unknown");
603 					break;
604 				}
605 				break;
606 			default:
607 				strcat(cpu_model, "Unknown");
608 				break;
609 			}
610 			break;
611 		}
612 		break;
613 	case CPU_VENDOR_RISE:
614 		strcpy(cpu_model, "Rise ");
615 		switch (cpu_id & 0xff0) {
616 		case 0x500:	/* 6401 and 6441 (Kirin) */
617 		case 0x520:	/* 6510 (Lynx) */
618 			strcat(cpu_model, "mP6");
619 			break;
620 		default:
621 			strcat(cpu_model, "Unknown");
622 		}
623 		break;
624 #endif
625 	case CPU_VENDOR_CENTAUR:
626 #ifdef __i386__
627 		switch (cpu_id & 0xff0) {
628 		case 0x540:
629 			strcpy(cpu_model, "IDT WinChip C6");
630 			break;
631 		case 0x580:
632 			strcpy(cpu_model, "IDT WinChip 2");
633 			break;
634 		case 0x590:
635 			strcpy(cpu_model, "IDT WinChip 3");
636 			break;
637 		case 0x660:
638 			strcpy(cpu_model, "VIA C3 Samuel");
639 			break;
640 		case 0x670:
641 			if (cpu_id & 0x8)
642 				strcpy(cpu_model, "VIA C3 Ezra");
643 			else
644 				strcpy(cpu_model, "VIA C3 Samuel 2");
645 			break;
646 		case 0x680:
647 			strcpy(cpu_model, "VIA C3 Ezra-T");
648 			break;
649 		case 0x690:
650 			strcpy(cpu_model, "VIA C3 Nehemiah");
651 			break;
652 		case 0x6a0:
653 		case 0x6d0:
654 			strcpy(cpu_model, "VIA C7 Esther");
655 			break;
656 		case 0x6f0:
657 			strcpy(cpu_model, "VIA Nano");
658 			break;
659 		default:
660 			strcpy(cpu_model, "VIA/IDT Unknown");
661 		}
662 #else
663 		strcpy(cpu_model, "VIA ");
664 		if ((cpu_id & 0xff0) == 0x6f0)
665 			strcat(cpu_model, "Nano Processor");
666 		else
667 			strcat(cpu_model, "Unknown");
668 #endif
669 		break;
670 #ifdef __i386__
671 	case CPU_VENDOR_IBM:
672 		strcpy(cpu_model, "Blue Lightning CPU");
673 		break;
674 	case CPU_VENDOR_NSC:
675 		switch (cpu_id & 0xff0) {
676 		case 0x540:
677 			strcpy(cpu_model, "Geode SC1100");
678 			cpu = CPU_GEODE1100;
679 			break;
680 		default:
681 			strcpy(cpu_model, "Geode/NSC unknown");
682 			break;
683 		}
684 		break;
685 #endif
686 	case CPU_VENDOR_HYGON:
687 		strcpy(cpu_model, "Hygon ");
688 #ifdef __i386__
689 		strcat(cpu_model, "Unknown");
690 #else
691 		if ((cpu_id & 0xf00) == 0xf00)
692 			strcat(cpu_model, "AMD64 Processor");
693 		else
694 			strcat(cpu_model, "Unknown");
695 #endif
696 		break;
697 
698 	default:
699 		strcat(cpu_model, "Unknown");
700 		break;
701 	}
702 
703 	/*
704 	 * Replace cpu_model with cpu_brand minus leading spaces if
705 	 * we have one.
706 	 */
707 	brand = cpu_brand;
708 	while (*brand == ' ')
709 		++brand;
710 	if (*brand != '\0')
711 		strcpy(cpu_model, brand);
712 
713 	printf("%s (", cpu_model);
714 	if (tsc_freq != 0) {
715 		hw_clockrate = (tsc_freq + 5000) / 1000000;
716 		printf("%jd.%02d-MHz ",
717 		    (intmax_t)(tsc_freq + 4999) / 1000000,
718 		    (u_int)((tsc_freq + 4999) / 10000) % 100);
719 	}
720 #ifdef __i386__
721 	switch(cpu_class) {
722 	case CPUCLASS_286:
723 		printf("286");
724 		break;
725 	case CPUCLASS_386:
726 		printf("386");
727 		break;
728 #if defined(I486_CPU)
729 	case CPUCLASS_486:
730 		printf("486");
731 		break;
732 #endif
733 #if defined(I586_CPU)
734 	case CPUCLASS_586:
735 		printf("586");
736 		break;
737 #endif
738 #if defined(I686_CPU)
739 	case CPUCLASS_686:
740 		printf("686");
741 		break;
742 #endif
743 	default:
744 		printf("Unknown");	/* will panic below... */
745 	}
746 #else
747 	printf("K8");
748 #endif
749 	printf("-class CPU)\n");
750 	if (*cpu_vendor)
751 		printf("  Origin=\"%s\"", cpu_vendor);
752 	if (cpu_id)
753 		printf("  Id=0x%x", cpu_id);
754 
755 	if (cpu_vendor_id == CPU_VENDOR_INTEL ||
756 	    cpu_vendor_id == CPU_VENDOR_AMD ||
757 	    cpu_vendor_id == CPU_VENDOR_HYGON ||
758 	    cpu_vendor_id == CPU_VENDOR_CENTAUR ||
759 #ifdef __i386__
760 	    cpu_vendor_id == CPU_VENDOR_TRANSMETA ||
761 	    cpu_vendor_id == CPU_VENDOR_RISE ||
762 	    cpu_vendor_id == CPU_VENDOR_NSC ||
763 	    (cpu_vendor_id == CPU_VENDOR_CYRIX && ((cpu_id & 0xf00) > 0x500)) ||
764 #endif
765 	    0) {
766 		printf("  Family=0x%x", CPUID_TO_FAMILY(cpu_id));
767 		printf("  Model=0x%x", CPUID_TO_MODEL(cpu_id));
768 		printf("  Stepping=%u", cpu_id & CPUID_STEPPING);
769 #ifdef __i386__
770 		if (cpu_vendor_id == CPU_VENDOR_CYRIX)
771 			printf("\n  DIR=0x%04x", cyrix_did);
772 #endif
773 
774 		/*
775 		 * AMD CPUID Specification
776 		 * http://support.amd.com/us/Embedded_TechDocs/25481.pdf
777 		 *
778 		 * Intel Processor Identification and CPUID Instruction
779 		 * http://www.intel.com/assets/pdf/appnote/241618.pdf
780 		 */
781 		if (cpu_high > 0) {
782 			/*
783 			 * Here we should probably set up flags indicating
784 			 * whether or not various features are available.
785 			 * The interesting ones are probably VME, PSE, PAE,
786 			 * and PGE.  The code already assumes without bothering
787 			 * to check that all CPUs >= Pentium have a TSC and
788 			 * MSRs.
789 			 */
790 			printf("\n  Features=0x%b", cpu_feature,
791 			"\020"
792 			"\001FPU"	/* Integral FPU */
793 			"\002VME"	/* Extended VM86 mode support */
794 			"\003DE"	/* Debugging Extensions (CR4.DE) */
795 			"\004PSE"	/* 4MByte page tables */
796 			"\005TSC"	/* Timestamp counter */
797 			"\006MSR"	/* Machine specific registers */
798 			"\007PAE"	/* Physical address extension */
799 			"\010MCE"	/* Machine Check support */
800 			"\011CX8"	/* CMPEXCH8 instruction */
801 			"\012APIC"	/* SMP local APIC */
802 			"\013oldMTRR"	/* Previous implementation of MTRR */
803 			"\014SEP"	/* Fast System Call */
804 			"\015MTRR"	/* Memory Type Range Registers */
805 			"\016PGE"	/* PG_G (global bit) support */
806 			"\017MCA"	/* Machine Check Architecture */
807 			"\020CMOV"	/* CMOV instruction */
808 			"\021PAT"	/* Page attributes table */
809 			"\022PSE36"	/* 36 bit address space support */
810 			"\023PN"	/* Processor Serial number */
811 			"\024CLFLUSH"	/* Has the CLFLUSH instruction */
812 			"\025<b20>"
813 			"\026DTS"	/* Debug Trace Store */
814 			"\027ACPI"	/* ACPI support */
815 			"\030MMX"	/* MMX instructions */
816 			"\031FXSR"	/* FXSAVE/FXRSTOR */
817 			"\032SSE"	/* Streaming SIMD Extensions */
818 			"\033SSE2"	/* Streaming SIMD Extensions #2 */
819 			"\034SS"	/* Self snoop */
820 			"\035HTT"	/* Hyperthreading (see EBX bit 16-23) */
821 			"\036TM"	/* Thermal Monitor clock slowdown */
822 			"\037IA64"	/* CPU can execute IA64 instructions */
823 			"\040PBE"	/* Pending Break Enable */
824 			);
825 
826 			if (cpu_feature2 != 0) {
827 				printf("\n  Features2=0x%b", cpu_feature2,
828 				"\020"
829 				"\001SSE3"	/* SSE3 */
830 				"\002PCLMULQDQ"	/* Carry-Less Mul Quadword */
831 				"\003DTES64"	/* 64-bit Debug Trace */
832 				"\004MON"	/* MONITOR/MWAIT Instructions */
833 				"\005DS_CPL"	/* CPL Qualified Debug Store */
834 				"\006VMX"	/* Virtual Machine Extensions */
835 				"\007SMX"	/* Safer Mode Extensions */
836 				"\010EST"	/* Enhanced SpeedStep */
837 				"\011TM2"	/* Thermal Monitor 2 */
838 				"\012SSSE3"	/* SSSE3 */
839 				"\013CNXT-ID"	/* L1 context ID available */
840 				"\014SDBG"	/* IA32 silicon debug */
841 				"\015FMA"	/* Fused Multiply Add */
842 				"\016CX16"	/* CMPXCHG16B Instruction */
843 				"\017xTPR"	/* Send Task Priority Messages*/
844 				"\020PDCM"	/* Perf/Debug Capability MSR */
845 				"\021<b16>"
846 				"\022PCID"	/* Process-context Identifiers*/
847 				"\023DCA"	/* Direct Cache Access */
848 				"\024SSE4.1"	/* SSE 4.1 */
849 				"\025SSE4.2"	/* SSE 4.2 */
850 				"\026x2APIC"	/* xAPIC Extensions */
851 				"\027MOVBE"	/* MOVBE Instruction */
852 				"\030POPCNT"	/* POPCNT Instruction */
853 				"\031TSCDLT"	/* TSC-Deadline Timer */
854 				"\032AESNI"	/* AES Crypto */
855 				"\033XSAVE"	/* XSAVE/XRSTOR States */
856 				"\034OSXSAVE"	/* OS-Enabled State Management*/
857 				"\035AVX"	/* Advanced Vector Extensions */
858 				"\036F16C"	/* Half-precision conversions */
859 				"\037RDRAND"	/* RDRAND Instruction */
860 				"\040HV"	/* Hypervisor */
861 				);
862 			}
863 
864 			if (amd_feature != 0) {
865 				printf("\n  AMD Features=0x%b", amd_feature,
866 				"\020"		/* in hex */
867 				"\001<s0>"	/* Same */
868 				"\002<s1>"	/* Same */
869 				"\003<s2>"	/* Same */
870 				"\004<s3>"	/* Same */
871 				"\005<s4>"	/* Same */
872 				"\006<s5>"	/* Same */
873 				"\007<s6>"	/* Same */
874 				"\010<s7>"	/* Same */
875 				"\011<s8>"	/* Same */
876 				"\012<s9>"	/* Same */
877 				"\013<b10>"	/* Undefined */
878 				"\014SYSCALL"	/* Have SYSCALL/SYSRET */
879 				"\015<s12>"	/* Same */
880 				"\016<s13>"	/* Same */
881 				"\017<s14>"	/* Same */
882 				"\020<s15>"	/* Same */
883 				"\021<s16>"	/* Same */
884 				"\022<s17>"	/* Same */
885 				"\023<b18>"	/* Reserved, unknown */
886 				"\024MP"	/* Multiprocessor Capable */
887 				"\025NX"	/* Has EFER.NXE, NX */
888 				"\026<b21>"	/* Undefined */
889 				"\027MMX+"	/* AMD MMX Extensions */
890 				"\030<s23>"	/* Same */
891 				"\031<s24>"	/* Same */
892 				"\032FFXSR"	/* Fast FXSAVE/FXRSTOR */
893 				"\033Page1GB"	/* 1-GB large page support */
894 				"\034RDTSCP"	/* RDTSCP */
895 				"\035<b28>"	/* Undefined */
896 				"\036LM"	/* 64 bit long mode */
897 				"\0373DNow!+"	/* AMD 3DNow! Extensions */
898 				"\0403DNow!"	/* AMD 3DNow! */
899 				);
900 			}
901 
902 			if (amd_feature2 != 0) {
903 				printf("\n  AMD Features2=0x%b", amd_feature2,
904 				"\020"
905 				"\001LAHF"	/* LAHF/SAHF in long mode */
906 				"\002CMP"	/* CMP legacy */
907 				"\003SVM"	/* Secure Virtual Mode */
908 				"\004ExtAPIC"	/* Extended APIC register */
909 				"\005CR8"	/* CR8 in legacy mode */
910 				"\006ABM"	/* LZCNT instruction */
911 				"\007SSE4A"	/* SSE4A */
912 				"\010MAS"	/* Misaligned SSE mode */
913 				"\011Prefetch"	/* 3DNow! Prefetch/PrefetchW */
914 				"\012OSVW"	/* OS visible workaround */
915 				"\013IBS"	/* Instruction based sampling */
916 				"\014XOP"	/* XOP extended instructions */
917 				"\015SKINIT"	/* SKINIT/STGI */
918 				"\016WDT"	/* Watchdog timer */
919 				"\017<b14>"
920 				"\020LWP"	/* Lightweight Profiling */
921 				"\021FMA4"	/* 4-operand FMA instructions */
922 				"\022TCE"	/* Translation Cache Extension */
923 				"\023<b18>"
924 				"\024NodeId"	/* NodeId MSR support */
925 				"\025<b20>"
926 				"\026TBM"	/* Trailing Bit Manipulation */
927 				"\027Topology"	/* Topology Extensions */
928 				"\030PCXC"	/* Core perf count */
929 				"\031PNXC"	/* NB perf count */
930 				"\032<b25>"
931 				"\033DBE"	/* Data Breakpoint extension */
932 				"\034PTSC"	/* Performance TSC */
933 				"\035PL2I"	/* L2I perf count */
934 				"\036MWAITX"	/* MONITORX/MWAITX instructions */
935 				"\037ADMSKX"	/* Address mask extension */
936 				"\040<b31>"
937 				);
938 			}
939 
940 			if (cpu_stdext_feature != 0) {
941 				printf("\n  Structured Extended Features=0x%b",
942 				    cpu_stdext_feature,
943 				       "\020"
944 				       /* RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE */
945 				       "\001FSGSBASE"
946 				       "\002TSCADJ"
947 				       "\003SGX"
948 				       /* Bit Manipulation Instructions */
949 				       "\004BMI1"
950 				       /* Hardware Lock Elision */
951 				       "\005HLE"
952 				       /* Advanced Vector Instructions 2 */
953 				       "\006AVX2"
954 				       /* FDP_EXCPTN_ONLY */
955 				       "\007FDPEXC"
956 				       /* Supervisor Mode Execution Prot. */
957 				       "\010SMEP"
958 				       /* Bit Manipulation Instructions */
959 				       "\011BMI2"
960 				       "\012ERMS"
961 				       /* Invalidate Processor Context ID */
962 				       "\013INVPCID"
963 				       /* Restricted Transactional Memory */
964 				       "\014RTM"
965 				       "\015PQM"
966 				       "\016NFPUSG"
967 				       /* Intel Memory Protection Extensions */
968 				       "\017MPX"
969 				       "\020PQE"
970 				       /* AVX512 Foundation */
971 				       "\021AVX512F"
972 				       "\022AVX512DQ"
973 				       /* Enhanced NRBG */
974 				       "\023RDSEED"
975 				       /* ADCX + ADOX */
976 				       "\024ADX"
977 				       /* Supervisor Mode Access Prevention */
978 				       "\025SMAP"
979 				       "\026AVX512IFMA"
980 				       /* Formerly PCOMMIT */
981 				       "\027<b22>"
982 				       "\030CLFLUSHOPT"
983 				       "\031CLWB"
984 				       "\032PROCTRACE"
985 				       "\033AVX512PF"
986 				       "\034AVX512ER"
987 				       "\035AVX512CD"
988 				       "\036SHA"
989 				       "\037AVX512BW"
990 				       "\040AVX512VL"
991 				       );
992 			}
993 
994 			if (cpu_stdext_feature2 != 0) {
995 				printf("\n  Structured Extended Features2=0x%b",
996 				    cpu_stdext_feature2,
997 				       "\020"
998 				       "\001PREFETCHWT1"
999 				       "\002AVX512VBMI"
1000 				       "\003UMIP"
1001 				       "\004PKU"
1002 				       "\005OSPKE"
1003 				       "\006WAITPKG"
1004 				       "\007AVX512VBMI2"
1005 				       "\011GFNI"
1006 				       "\012VAES"
1007 				       "\013VPCLMULQDQ"
1008 				       "\014AVX512VNNI"
1009 				       "\015AVX512BITALG"
1010 				       "\016TME"
1011 				       "\017AVX512VPOPCNTDQ"
1012 				       "\021LA57"
1013 				       "\027RDPID"
1014 				       "\032CLDEMOTE"
1015 				       "\034MOVDIRI"
1016 				       "\035MOVDIR64B"
1017 				       "\036ENQCMD"
1018 				       "\037SGXLC"
1019 				       );
1020 			}
1021 
1022 			if (cpu_stdext_feature3 != 0) {
1023 				printf("\n  Structured Extended Features3=0x%b",
1024 				    cpu_stdext_feature3,
1025 				       "\020"
1026 				       "\003AVX512_4VNNIW"
1027 				       "\004AVX512_4FMAPS"
1028 				       "\005FSRM"
1029 				       "\011AVX512VP2INTERSECT"
1030 				       "\012MCUOPT"
1031 				       "\013MD_CLEAR"
1032 				       "\016TSXFA"
1033 				       "\023PCONFIG"
1034 				       "\025IBT"
1035 				       "\033IBPB"
1036 				       "\034STIBP"
1037 				       "\035L1DFL"
1038 				       "\036ARCH_CAP"
1039 				       "\037CORE_CAP"
1040 				       "\040SSBD"
1041 				       );
1042 			}
1043 
1044 			if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
1045 				cpuid_count(0xd, 0x1, regs);
1046 				if (regs[0] != 0) {
1047 					printf("\n  XSAVE Features=0x%b",
1048 					    regs[0],
1049 					    "\020"
1050 					    "\001XSAVEOPT"
1051 					    "\002XSAVEC"
1052 					    "\003XINUSE"
1053 					    "\004XSAVES");
1054 				}
1055 			}
1056 
1057 			if (cpu_ia32_arch_caps != 0) {
1058 				printf("\n  IA32_ARCH_CAPS=0x%b",
1059 				    (u_int)cpu_ia32_arch_caps,
1060 				       "\020"
1061 				       "\001RDCL_NO"
1062 				       "\002IBRS_ALL"
1063 				       "\003RSBA"
1064 				       "\004SKIP_L1DFL_VME"
1065 				       "\005SSB_NO"
1066 				       "\006MDS_NO"
1067 				       "\010TSX_CTRL"
1068 				       "\011TAA_NO"
1069 				       );
1070 			}
1071 
1072 			if (amd_extended_feature_extensions != 0) {
1073 				u_int amd_fe_masked;
1074 
1075 				amd_fe_masked = amd_extended_feature_extensions;
1076 				if ((amd_fe_masked & AMDFEID_IBRS) == 0)
1077 					amd_fe_masked &=
1078 					    ~(AMDFEID_IBRS_ALWAYSON |
1079 						AMDFEID_PREFER_IBRS);
1080 				if ((amd_fe_masked & AMDFEID_STIBP) == 0)
1081 					amd_fe_masked &=
1082 					    ~AMDFEID_STIBP_ALWAYSON;
1083 
1084 				printf("\n  "
1085 				    "AMD Extended Feature Extensions ID EBX="
1086 				    "0x%b", amd_fe_masked,
1087 				    "\020"
1088 				    "\001CLZERO"
1089 				    "\002IRPerf"
1090 				    "\003XSaveErPtr"
1091 				    "\005RDPRU"
1092 				    "\011MCOMMIT"
1093 				    "\012WBNOINVD"
1094 				    "\015IBPB"
1095 				    "\017IBRS"
1096 				    "\020STIBP"
1097 				    "\021IBRS_ALWAYSON"
1098 				    "\022STIBP_ALWAYSON"
1099 				    "\023PREFER_IBRS"
1100 				    "\030PPIN"
1101 				    "\031SSBD"
1102 				    "\032VIRT_SSBD"
1103 				    "\033SSB_NO"
1104 				    );
1105 			}
1106 
1107 			if (via_feature_rng != 0 || via_feature_xcrypt != 0)
1108 				print_via_padlock_info();
1109 
1110 			if (cpu_feature2 & CPUID2_VMX)
1111 				print_vmx_info();
1112 
1113 			if (amd_feature2 & AMDID2_SVM)
1114 				print_svm_info();
1115 
1116 			if ((cpu_feature & CPUID_HTT) &&
1117 			    (cpu_vendor_id == CPU_VENDOR_AMD ||
1118 			     cpu_vendor_id == CPU_VENDOR_HYGON))
1119 				cpu_feature &= ~CPUID_HTT;
1120 
1121 			/*
1122 			 * If this CPU supports P-state invariant TSC then
1123 			 * mention the capability.
1124 			 */
1125 			if (tsc_is_invariant) {
1126 				printf("\n  TSC: P-state invariant");
1127 				if (tsc_perf_stat)
1128 					printf(", performance statistics");
1129 			}
1130 		}
1131 #ifdef __i386__
1132 	} else if (cpu_vendor_id == CPU_VENDOR_CYRIX) {
1133 		printf("  DIR=0x%04x", cyrix_did);
1134 		printf("  Stepping=%u", (cyrix_did & 0xf000) >> 12);
1135 		printf("  Revision=%u", (cyrix_did & 0x0f00) >> 8);
1136 #ifndef CYRIX_CACHE_REALLY_WORKS
1137 		if (cpu == CPU_M1 && (cyrix_did & 0xff00) < 0x1700)
1138 			printf("\n  CPU cache: write-through mode");
1139 #endif
1140 #endif
1141 	}
1142 
1143 	/* Avoid ugly blank lines: only print newline when we have to. */
1144 	if (*cpu_vendor || cpu_id)
1145 		printf("\n");
1146 
1147 	if (bootverbose) {
1148 		if (cpu_vendor_id == CPU_VENDOR_AMD ||
1149 		    cpu_vendor_id == CPU_VENDOR_HYGON)
1150 			print_AMD_info();
1151 		else if (cpu_vendor_id == CPU_VENDOR_INTEL)
1152 			print_INTEL_info();
1153 #ifdef __i386__
1154 		else if (cpu_vendor_id == CPU_VENDOR_TRANSMETA)
1155 			print_transmeta_info();
1156 #endif
1157 	}
1158 
1159 	print_hypervisor_info();
1160 }
1161 
1162 #ifdef __i386__
1163 void
1164 panicifcpuunsupported(void)
1165 {
1166 
1167 #if !defined(lint)
1168 #if !defined(I486_CPU) && !defined(I586_CPU) && !defined(I686_CPU)
1169 #error This kernel is not configured for one of the supported CPUs
1170 #endif
1171 #else /* lint */
1172 #endif /* lint */
1173 	/*
1174 	 * Now that we have told the user what they have,
1175 	 * let them know if that machine type isn't configured.
1176 	 */
1177 	switch (cpu_class) {
1178 	case CPUCLASS_286:	/* a 286 should not make it this far, anyway */
1179 	case CPUCLASS_386:
1180 #if !defined(I486_CPU)
1181 	case CPUCLASS_486:
1182 #endif
1183 #if !defined(I586_CPU)
1184 	case CPUCLASS_586:
1185 #endif
1186 #if !defined(I686_CPU)
1187 	case CPUCLASS_686:
1188 #endif
1189 		panic("CPU class not configured");
1190 	default:
1191 		break;
1192 	}
1193 }
1194 
1195 static	volatile u_int trap_by_rdmsr;
1196 
1197 /*
1198  * Special exception 6 handler.
1199  * The rdmsr instruction generates invalid opcodes fault on 486-class
1200  * Cyrix CPU.  Stacked eip register points the rdmsr instruction in the
1201  * function identblue() when this handler is called.  Stacked eip should
1202  * be advanced.
1203  */
1204 inthand_t	bluetrap6;
1205 __asm
1206 ("									\n\
1207 	.text								\n\
1208 	.p2align 2,0x90							\n\
1209 	.type	" __XSTRING(CNAME(bluetrap6)) ",@function		\n\
1210 " __XSTRING(CNAME(bluetrap6)) ":					\n\
1211 	ss								\n\
1212 	movl	$0xa8c1d," __XSTRING(CNAME(trap_by_rdmsr)) "		\n\
1213 	addl	$2, (%esp)	/* rdmsr is a 2-byte instruction */	\n\
1214 	iret								\n\
1215 ");
1216 
1217 /*
1218  * Special exception 13 handler.
1219  * Accessing non-existent MSR generates general protection fault.
1220  */
1221 inthand_t	bluetrap13;
1222 __asm
1223 ("									\n\
1224 	.text								\n\
1225 	.p2align 2,0x90							\n\
1226 	.type	" __XSTRING(CNAME(bluetrap13)) ",@function		\n\
1227 " __XSTRING(CNAME(bluetrap13)) ":					\n\
1228 	ss								\n\
1229 	movl	$0xa89c4," __XSTRING(CNAME(trap_by_rdmsr)) "		\n\
1230 	popl	%eax		/* discard error code */		\n\
1231 	addl	$2, (%esp)	/* rdmsr is a 2-byte instruction */	\n\
1232 	iret								\n\
1233 ");
1234 
1235 /*
1236  * Distinguish IBM Blue Lightning CPU from Cyrix CPUs that does not
1237  * support cpuid instruction.  This function should be called after
1238  * loading interrupt descriptor table register.
1239  *
1240  * I don't like this method that handles fault, but I couldn't get
1241  * information for any other methods.  Does blue giant know?
1242  */
1243 static int
1244 identblue(void)
1245 {
1246 
1247 	trap_by_rdmsr = 0;
1248 
1249 	/*
1250 	 * Cyrix 486-class CPU does not support rdmsr instruction.
1251 	 * The rdmsr instruction generates invalid opcode fault, and exception
1252 	 * will be trapped by bluetrap6() on Cyrix 486-class CPU.  The
1253 	 * bluetrap6() set the magic number to trap_by_rdmsr.
1254 	 */
1255 	setidt(IDT_UD, bluetrap6, SDT_SYS386TGT, SEL_KPL,
1256 	    GSEL(GCODE_SEL, SEL_KPL));
1257 
1258 	/*
1259 	 * Certain BIOS disables cpuid instruction of Cyrix 6x86MX CPU.
1260 	 * In this case, rdmsr generates general protection fault, and
1261 	 * exception will be trapped by bluetrap13().
1262 	 */
1263 	setidt(IDT_GP, bluetrap13, SDT_SYS386TGT, SEL_KPL,
1264 	    GSEL(GCODE_SEL, SEL_KPL));
1265 
1266 	rdmsr(0x1002);		/* Cyrix CPU generates fault. */
1267 
1268 	if (trap_by_rdmsr == 0xa8c1d)
1269 		return IDENTBLUE_CYRIX486;
1270 	else if (trap_by_rdmsr == 0xa89c4)
1271 		return IDENTBLUE_CYRIXM2;
1272 	return IDENTBLUE_IBMCPU;
1273 }
1274 
1275 /*
1276  * identifycyrix() set lower 16 bits of cyrix_did as follows:
1277  *
1278  *  F E D C B A 9 8 7 6 5 4 3 2 1 0
1279  * +-------+-------+---------------+
1280  * |  SID  |  RID  |   Device ID   |
1281  * |    (DIR 1)    |    (DIR 0)    |
1282  * +-------+-------+---------------+
1283  */
1284 static void
1285 identifycyrix(void)
1286 {
1287 	register_t saveintr;
1288 	int	ccr2_test = 0, dir_test = 0;
1289 	u_char	ccr2, ccr3;
1290 
1291 	saveintr = intr_disable();
1292 
1293 	ccr2 = read_cyrix_reg(CCR2);
1294 	write_cyrix_reg(CCR2, ccr2 ^ CCR2_LOCK_NW);
1295 	read_cyrix_reg(CCR2);
1296 	if (read_cyrix_reg(CCR2) != ccr2)
1297 		ccr2_test = 1;
1298 	write_cyrix_reg(CCR2, ccr2);
1299 
1300 	ccr3 = read_cyrix_reg(CCR3);
1301 	write_cyrix_reg(CCR3, ccr3 ^ CCR3_MAPEN3);
1302 	read_cyrix_reg(CCR3);
1303 	if (read_cyrix_reg(CCR3) != ccr3)
1304 		dir_test = 1;					/* CPU supports DIRs. */
1305 	write_cyrix_reg(CCR3, ccr3);
1306 
1307 	if (dir_test) {
1308 		/* Device ID registers are available. */
1309 		cyrix_did = read_cyrix_reg(DIR1) << 8;
1310 		cyrix_did += read_cyrix_reg(DIR0);
1311 	} else if (ccr2_test)
1312 		cyrix_did = 0x0010;		/* 486S A-step */
1313 	else
1314 		cyrix_did = 0x00ff;		/* Old 486SLC/DLC and TI486SXLC/SXL */
1315 
1316 	intr_restore(saveintr);
1317 }
1318 #endif
1319 
1320 /* Update TSC freq with the value indicated by the caller. */
1321 static void
1322 tsc_freq_changed(void *arg __unused, const struct cf_level *level, int status)
1323 {
1324 
1325 	/* If there was an error during the transition, don't do anything. */
1326 	if (status != 0)
1327 		return;
1328 
1329 	/* Total setting for this level gives the new frequency in MHz. */
1330 	hw_clockrate = level->total_set.freq;
1331 }
1332 
1333 static void
1334 hook_tsc_freq(void *arg __unused)
1335 {
1336 
1337 	if (tsc_is_invariant)
1338 		return;
1339 
1340 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
1341 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_ANY);
1342 }
1343 
1344 SYSINIT(hook_tsc_freq, SI_SUB_CONFIGURE, SI_ORDER_ANY, hook_tsc_freq, NULL);
1345 
1346 static const struct {
1347 	const char *	vm_bname;
1348 	int		vm_guest;
1349 } vm_bnames[] = {
1350 	{ "QEMU",	VM_GUEST_VM },		/* QEMU */
1351 	{ "Plex86",	VM_GUEST_VM },		/* Plex86 */
1352 	{ "Bochs",	VM_GUEST_VM },		/* Bochs */
1353 	{ "Xen",	VM_GUEST_XEN },		/* Xen */
1354 	{ "BHYVE",	VM_GUEST_BHYVE },	/* bhyve */
1355 	{ "Seabios",	VM_GUEST_KVM },		/* KVM */
1356 };
1357 
1358 static const struct {
1359 	const char *	vm_pname;
1360 	int		vm_guest;
1361 } vm_pnames[] = {
1362 	{ "VMware Virtual Platform",	VM_GUEST_VMWARE },
1363 	{ "Virtual Machine",		VM_GUEST_VM }, /* Microsoft VirtualPC */
1364 	{ "VirtualBox",			VM_GUEST_VBOX },
1365 	{ "Parallels Virtual Platform",	VM_GUEST_PARALLELS },
1366 	{ "KVM",			VM_GUEST_KVM },
1367 };
1368 
1369 static struct {
1370 	const char	*vm_cpuid;
1371 	int		vm_guest;
1372 } vm_cpuids[] = {
1373 	{ "XenVMMXenVMM",	VM_GUEST_XEN },		/* XEN */
1374 	{ "Microsoft Hv",	VM_GUEST_HV },		/* Microsoft Hyper-V */
1375 	{ "VMwareVMware",	VM_GUEST_VMWARE },	/* VMware VM */
1376 	{ "KVMKVMKVM",		VM_GUEST_KVM },		/* KVM */
1377 	{ "bhyve bhyve ",	VM_GUEST_BHYVE },	/* bhyve */
1378 	{ "VBoxVBoxVBox",	VM_GUEST_VBOX },	/* VirtualBox */
1379 };
1380 
1381 static void
1382 identify_hypervisor_cpuid_base(void)
1383 {
1384 	u_int leaf, regs[4];
1385 	int i;
1386 
1387 	/*
1388 	 * [RFC] CPUID usage for interaction between Hypervisors and Linux.
1389 	 * http://lkml.org/lkml/2008/10/1/246
1390 	 *
1391 	 * KB1009458: Mechanisms to determine if software is running in
1392 	 * a VMware virtual machine
1393 	 * http://kb.vmware.com/kb/1009458
1394 	 *
1395 	 * Search for a hypervisor that we recognize. If we cannot find
1396 	 * a specific hypervisor, return the first information about the
1397 	 * hypervisor that we found, as others may be able to use.
1398 	 */
1399 	for (leaf = 0x40000000; leaf < 0x40010000; leaf += 0x100) {
1400 		do_cpuid(leaf, regs);
1401 
1402 		/*
1403 		 * KVM from Linux kernels prior to commit
1404 		 * 57c22e5f35aa4b9b2fe11f73f3e62bbf9ef36190 set %eax
1405 		 * to 0 rather than a valid hv_high value.  Check for
1406 		 * the KVM signature bytes and fixup %eax to the
1407 		 * highest supported leaf in that case.
1408 		 */
1409 		if (regs[0] == 0 && regs[1] == 0x4b4d564b &&
1410 		    regs[2] == 0x564b4d56 && regs[3] == 0x0000004d)
1411 			regs[0] = leaf + 1;
1412 
1413 		if (regs[0] >= leaf) {
1414 			for (i = 0; i < nitems(vm_cpuids); i++)
1415 				if (strncmp((const char *)&regs[1],
1416 				    vm_cpuids[i].vm_cpuid, 12) == 0) {
1417 					vm_guest = vm_cpuids[i].vm_guest;
1418 					break;
1419 				}
1420 
1421 			/*
1422 			 * If this is the first entry or we found a
1423 			 * specific hypervisor, record the base, high value,
1424 			 * and vendor identifier.
1425 			 */
1426 			if (vm_guest != VM_GUEST_VM || leaf == 0x40000000) {
1427 				hv_base = leaf;
1428 				hv_high = regs[0];
1429 				((u_int *)&hv_vendor)[0] = regs[1];
1430 				((u_int *)&hv_vendor)[1] = regs[2];
1431 				((u_int *)&hv_vendor)[2] = regs[3];
1432 				hv_vendor[12] = '\0';
1433 
1434 				/*
1435 				 * If we found a specific hypervisor, then
1436 				 * we are finished.
1437 				 */
1438 				if (vm_guest != VM_GUEST_VM)
1439 					return;
1440 			}
1441 		}
1442 	}
1443 }
1444 
1445 void
1446 identify_hypervisor(void)
1447 {
1448 	u_int regs[4];
1449 	char *p;
1450 	int i;
1451 
1452 	/*
1453 	 * If CPUID2_HV is set, we are running in a hypervisor environment.
1454 	 */
1455 	if (cpu_feature2 & CPUID2_HV) {
1456 		vm_guest = VM_GUEST_VM;
1457 		identify_hypervisor_cpuid_base();
1458 
1459 		/* If we have a definitive vendor, we can return now. */
1460 		if (*hv_vendor != '\0')
1461 			return;
1462 	}
1463 
1464 	/*
1465 	 * Examine SMBIOS strings for older hypervisors.
1466 	 */
1467 	p = kern_getenv("smbios.system.serial");
1468 	if (p != NULL) {
1469 		if (strncmp(p, "VMware-", 7) == 0 || strncmp(p, "VMW", 3) == 0) {
1470 			vmware_hvcall(VMW_HVCMD_GETVERSION, regs);
1471 			if (regs[1] == VMW_HVMAGIC) {
1472 				vm_guest = VM_GUEST_VMWARE;
1473 				freeenv(p);
1474 				return;
1475 			}
1476 		}
1477 		freeenv(p);
1478 	}
1479 
1480 	/*
1481 	 * XXX: Some of these entries may not be needed since they were
1482 	 * added to FreeBSD before the checks above.
1483 	 */
1484 	p = kern_getenv("smbios.bios.vendor");
1485 	if (p != NULL) {
1486 		for (i = 0; i < nitems(vm_bnames); i++)
1487 			if (strcmp(p, vm_bnames[i].vm_bname) == 0) {
1488 				vm_guest = vm_bnames[i].vm_guest;
1489 				/* If we have a specific match, return */
1490 				if (vm_guest != VM_GUEST_VM) {
1491 					freeenv(p);
1492 					return;
1493 				}
1494 				/*
1495 				 * We are done with bnames, but there might be
1496 				 * a more specific match in the pnames
1497 				 */
1498 				break;
1499 			}
1500 		freeenv(p);
1501 	}
1502 	p = kern_getenv("smbios.system.product");
1503 	if (p != NULL) {
1504 		for (i = 0; i < nitems(vm_pnames); i++)
1505 			if (strcmp(p, vm_pnames[i].vm_pname) == 0) {
1506 				vm_guest = vm_pnames[i].vm_guest;
1507 				freeenv(p);
1508 				return;
1509 			}
1510 		freeenv(p);
1511 	}
1512 }
1513 
1514 bool
1515 fix_cpuid(void)
1516 {
1517 	uint64_t msr;
1518 
1519 	/*
1520 	 * Clear "Limit CPUID Maxval" bit and return true if the caller should
1521 	 * get the largest standard CPUID function number again if it is set
1522 	 * from BIOS.  It is necessary for probing correct CPU topology later
1523 	 * and for the correct operation of the AVX-aware userspace.
1524 	 */
1525 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
1526 	    ((CPUID_TO_FAMILY(cpu_id) == 0xf &&
1527 	    CPUID_TO_MODEL(cpu_id) >= 0x3) ||
1528 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
1529 	    CPUID_TO_MODEL(cpu_id) >= 0xe))) {
1530 		msr = rdmsr(MSR_IA32_MISC_ENABLE);
1531 		if ((msr & IA32_MISC_EN_LIMCPUID) != 0) {
1532 			msr &= ~IA32_MISC_EN_LIMCPUID;
1533 			wrmsr(MSR_IA32_MISC_ENABLE, msr);
1534 			return (true);
1535 		}
1536 	}
1537 
1538 	/*
1539 	 * Re-enable AMD Topology Extension that could be disabled by BIOS
1540 	 * on some notebook processors.  Without the extension it's really
1541 	 * hard to determine the correct CPU cache topology.
1542 	 * See BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h
1543 	 * Models 60h-6Fh Processors, Publication # 50742.
1544 	 */
1545 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_AMD &&
1546 	    CPUID_TO_FAMILY(cpu_id) == 0x15) {
1547 		msr = rdmsr(MSR_EXTFEATURES);
1548 		if ((msr & ((uint64_t)1 << 54)) == 0) {
1549 			msr |= (uint64_t)1 << 54;
1550 			wrmsr(MSR_EXTFEATURES, msr);
1551 			return (true);
1552 		}
1553 	}
1554 	return (false);
1555 }
1556 
1557 void
1558 identify_cpu1(void)
1559 {
1560 	u_int regs[4];
1561 
1562 	do_cpuid(0, regs);
1563 	cpu_high = regs[0];
1564 	((u_int *)&cpu_vendor)[0] = regs[1];
1565 	((u_int *)&cpu_vendor)[1] = regs[3];
1566 	((u_int *)&cpu_vendor)[2] = regs[2];
1567 	cpu_vendor[12] = '\0';
1568 
1569 	do_cpuid(1, regs);
1570 	cpu_id = regs[0];
1571 	cpu_procinfo = regs[1];
1572 	cpu_feature = regs[3];
1573 	cpu_feature2 = regs[2];
1574 }
1575 
1576 void
1577 identify_cpu2(void)
1578 {
1579 	u_int regs[4], cpu_stdext_disable;
1580 
1581 	if (cpu_high >= 6) {
1582 		cpuid_count(6, 0, regs);
1583 		cpu_power_eax = regs[0];
1584 		cpu_power_ebx = regs[1];
1585 		cpu_power_ecx = regs[2];
1586 		cpu_power_edx = regs[3];
1587 	}
1588 
1589 	if (cpu_high >= 7) {
1590 		cpuid_count(7, 0, regs);
1591 		cpu_stdext_feature = regs[1];
1592 
1593 		/*
1594 		 * Some hypervisors failed to filter out unsupported
1595 		 * extended features.  Allow to disable the
1596 		 * extensions, activation of which requires setting a
1597 		 * bit in CR4, and which VM monitors do not support.
1598 		 */
1599 		cpu_stdext_disable = 0;
1600 		TUNABLE_INT_FETCH("hw.cpu_stdext_disable", &cpu_stdext_disable);
1601 		cpu_stdext_feature &= ~cpu_stdext_disable;
1602 
1603 		cpu_stdext_feature2 = regs[2];
1604 		cpu_stdext_feature3 = regs[3];
1605 
1606 		if ((cpu_stdext_feature3 & CPUID_STDEXT3_ARCH_CAP) != 0)
1607 			cpu_ia32_arch_caps = rdmsr(MSR_IA32_ARCH_CAP);
1608 	}
1609 }
1610 
1611 void
1612 identify_cpu_fixup_bsp(void)
1613 {
1614 	u_int regs[4];
1615 
1616 	cpu_vendor_id = find_cpu_vendor_id();
1617 
1618 	if (fix_cpuid()) {
1619 		do_cpuid(0, regs);
1620 		cpu_high = regs[0];
1621 	}
1622 }
1623 
1624 /*
1625  * Final stage of CPU identification.
1626  */
1627 void
1628 finishidentcpu(void)
1629 {
1630 	u_int regs[4];
1631 #ifdef __i386__
1632 	u_char ccr3;
1633 #endif
1634 
1635 	identify_cpu_fixup_bsp();
1636 
1637 	if (cpu_high >= 5 && (cpu_feature2 & CPUID2_MON) != 0) {
1638 		do_cpuid(5, regs);
1639 		cpu_mon_mwait_flags = regs[2];
1640 		cpu_mon_min_size = regs[0] &  CPUID5_MON_MIN_SIZE;
1641 		cpu_mon_max_size = regs[1] &  CPUID5_MON_MAX_SIZE;
1642 	}
1643 
1644 	identify_cpu2();
1645 
1646 #ifdef __i386__
1647 	if (cpu_high > 0 &&
1648 	    (cpu_vendor_id == CPU_VENDOR_INTEL ||
1649 	     cpu_vendor_id == CPU_VENDOR_AMD ||
1650 	     cpu_vendor_id == CPU_VENDOR_HYGON ||
1651 	     cpu_vendor_id == CPU_VENDOR_TRANSMETA ||
1652 	     cpu_vendor_id == CPU_VENDOR_CENTAUR ||
1653 	     cpu_vendor_id == CPU_VENDOR_NSC)) {
1654 		do_cpuid(0x80000000, regs);
1655 		if (regs[0] >= 0x80000000)
1656 			cpu_exthigh = regs[0];
1657 	}
1658 #else
1659 	if (cpu_vendor_id == CPU_VENDOR_INTEL ||
1660 	    cpu_vendor_id == CPU_VENDOR_AMD ||
1661 	    cpu_vendor_id == CPU_VENDOR_HYGON ||
1662 	    cpu_vendor_id == CPU_VENDOR_CENTAUR) {
1663 		do_cpuid(0x80000000, regs);
1664 		cpu_exthigh = regs[0];
1665 	}
1666 #endif
1667 	if (cpu_exthigh >= 0x80000001) {
1668 		do_cpuid(0x80000001, regs);
1669 		amd_feature = regs[3] & ~(cpu_feature & 0x0183f3ff);
1670 		amd_feature2 = regs[2];
1671 	}
1672 	if (cpu_exthigh >= 0x80000007) {
1673 		do_cpuid(0x80000007, regs);
1674 		amd_rascap = regs[1];
1675 		amd_pminfo = regs[3];
1676 	}
1677 	if (cpu_exthigh >= 0x80000008) {
1678 		do_cpuid(0x80000008, regs);
1679 		cpu_maxphyaddr = regs[0] & 0xff;
1680 		amd_extended_feature_extensions = regs[1];
1681 		cpu_procinfo2 = regs[2];
1682 	} else {
1683 		cpu_maxphyaddr = (cpu_feature & CPUID_PAE) != 0 ? 36 : 32;
1684 	}
1685 
1686 #ifdef __i386__
1687 	if (cpu_vendor_id == CPU_VENDOR_CYRIX) {
1688 		if (cpu == CPU_486) {
1689 			/*
1690 			 * These conditions are equivalent to:
1691 			 *     - CPU does not support cpuid instruction.
1692 			 *     - Cyrix/IBM CPU is detected.
1693 			 */
1694 			if (identblue() == IDENTBLUE_IBMCPU) {
1695 				strcpy(cpu_vendor, "IBM");
1696 				cpu_vendor_id = CPU_VENDOR_IBM;
1697 				cpu = CPU_BLUE;
1698 				return;
1699 			}
1700 		}
1701 		switch (cpu_id & 0xf00) {
1702 		case 0x600:
1703 			/*
1704 			 * Cyrix's datasheet does not describe DIRs.
1705 			 * Therefor, I assume it does not have them
1706 			 * and use the result of the cpuid instruction.
1707 			 * XXX they seem to have it for now at least. -Peter
1708 			 */
1709 			identifycyrix();
1710 			cpu = CPU_M2;
1711 			break;
1712 		default:
1713 			identifycyrix();
1714 			/*
1715 			 * This routine contains a trick.
1716 			 * Don't check (cpu_id & 0x00f0) == 0x50 to detect M2, now.
1717 			 */
1718 			switch (cyrix_did & 0x00f0) {
1719 			case 0x00:
1720 			case 0xf0:
1721 				cpu = CPU_486DLC;
1722 				break;
1723 			case 0x10:
1724 				cpu = CPU_CY486DX;
1725 				break;
1726 			case 0x20:
1727 				if ((cyrix_did & 0x000f) < 8)
1728 					cpu = CPU_M1;
1729 				else
1730 					cpu = CPU_M1SC;
1731 				break;
1732 			case 0x30:
1733 				cpu = CPU_M1;
1734 				break;
1735 			case 0x40:
1736 				/* MediaGX CPU */
1737 				cpu = CPU_M1SC;
1738 				break;
1739 			default:
1740 				/* M2 and later CPUs are treated as M2. */
1741 				cpu = CPU_M2;
1742 
1743 				/*
1744 				 * enable cpuid instruction.
1745 				 */
1746 				ccr3 = read_cyrix_reg(CCR3);
1747 				write_cyrix_reg(CCR3, CCR3_MAPEN0);
1748 				write_cyrix_reg(CCR4, read_cyrix_reg(CCR4) | CCR4_CPUID);
1749 				write_cyrix_reg(CCR3, ccr3);
1750 
1751 				do_cpuid(0, regs);
1752 				cpu_high = regs[0];	/* eax */
1753 				do_cpuid(1, regs);
1754 				cpu_id = regs[0];	/* eax */
1755 				cpu_feature = regs[3];	/* edx */
1756 				break;
1757 			}
1758 		}
1759 	} else if (cpu == CPU_486 && *cpu_vendor == '\0') {
1760 		/*
1761 		 * There are BlueLightning CPUs that do not change
1762 		 * undefined flags by dividing 5 by 2.  In this case,
1763 		 * the CPU identification routine in locore.s leaves
1764 		 * cpu_vendor null string and puts CPU_486 into the
1765 		 * cpu.
1766 		 */
1767 		if (identblue() == IDENTBLUE_IBMCPU) {
1768 			strcpy(cpu_vendor, "IBM");
1769 			cpu_vendor_id = CPU_VENDOR_IBM;
1770 			cpu = CPU_BLUE;
1771 			return;
1772 		}
1773 	}
1774 #endif
1775 }
1776 
1777 int
1778 pti_get_default(void)
1779 {
1780 
1781 	if (strcmp(cpu_vendor, AMD_VENDOR_ID) == 0 ||
1782 	    strcmp(cpu_vendor, HYGON_VENDOR_ID) == 0)
1783 		return (0);
1784 	if ((cpu_ia32_arch_caps & IA32_ARCH_CAP_RDCL_NO) != 0)
1785 		return (0);
1786 	return (1);
1787 }
1788 
1789 static u_int
1790 find_cpu_vendor_id(void)
1791 {
1792 	int	i;
1793 
1794 	for (i = 0; i < nitems(cpu_vendors); i++)
1795 		if (strcmp(cpu_vendor, cpu_vendors[i].vendor) == 0)
1796 			return (cpu_vendors[i].vendor_id);
1797 	return (0);
1798 }
1799 
1800 static void
1801 print_AMD_assoc(int i)
1802 {
1803 	if (i == 255)
1804 		printf(", fully associative\n");
1805 	else
1806 		printf(", %d-way associative\n", i);
1807 }
1808 
1809 static void
1810 print_AMD_l2_assoc(int i)
1811 {
1812 	switch (i & 0x0f) {
1813 	case 0: printf(", disabled/not present\n"); break;
1814 	case 1: printf(", direct mapped\n"); break;
1815 	case 2: printf(", 2-way associative\n"); break;
1816 	case 4: printf(", 4-way associative\n"); break;
1817 	case 6: printf(", 8-way associative\n"); break;
1818 	case 8: printf(", 16-way associative\n"); break;
1819 	case 15: printf(", fully associative\n"); break;
1820 	default: printf(", reserved configuration\n"); break;
1821 	}
1822 }
1823 
1824 static void
1825 print_AMD_info(void)
1826 {
1827 #ifdef __i386__
1828 	uint64_t amd_whcr;
1829 #endif
1830 	u_int regs[4];
1831 
1832 	if (cpu_exthigh >= 0x80000005) {
1833 		do_cpuid(0x80000005, regs);
1834 		printf("L1 2MB data TLB: %d entries", (regs[0] >> 16) & 0xff);
1835 		print_AMD_assoc(regs[0] >> 24);
1836 
1837 		printf("L1 2MB instruction TLB: %d entries", regs[0] & 0xff);
1838 		print_AMD_assoc((regs[0] >> 8) & 0xff);
1839 
1840 		printf("L1 4KB data TLB: %d entries", (regs[1] >> 16) & 0xff);
1841 		print_AMD_assoc(regs[1] >> 24);
1842 
1843 		printf("L1 4KB instruction TLB: %d entries", regs[1] & 0xff);
1844 		print_AMD_assoc((regs[1] >> 8) & 0xff);
1845 
1846 		printf("L1 data cache: %d kbytes", regs[2] >> 24);
1847 		printf(", %d bytes/line", regs[2] & 0xff);
1848 		printf(", %d lines/tag", (regs[2] >> 8) & 0xff);
1849 		print_AMD_assoc((regs[2] >> 16) & 0xff);
1850 
1851 		printf("L1 instruction cache: %d kbytes", regs[3] >> 24);
1852 		printf(", %d bytes/line", regs[3] & 0xff);
1853 		printf(", %d lines/tag", (regs[3] >> 8) & 0xff);
1854 		print_AMD_assoc((regs[3] >> 16) & 0xff);
1855 	}
1856 
1857 	if (cpu_exthigh >= 0x80000006) {
1858 		do_cpuid(0x80000006, regs);
1859 		if ((regs[0] >> 16) != 0) {
1860 			printf("L2 2MB data TLB: %d entries",
1861 			    (regs[0] >> 16) & 0xfff);
1862 			print_AMD_l2_assoc(regs[0] >> 28);
1863 			printf("L2 2MB instruction TLB: %d entries",
1864 			    regs[0] & 0xfff);
1865 			print_AMD_l2_assoc((regs[0] >> 28) & 0xf);
1866 		} else {
1867 			printf("L2 2MB unified TLB: %d entries",
1868 			    regs[0] & 0xfff);
1869 			print_AMD_l2_assoc((regs[0] >> 28) & 0xf);
1870 		}
1871 		if ((regs[1] >> 16) != 0) {
1872 			printf("L2 4KB data TLB: %d entries",
1873 			    (regs[1] >> 16) & 0xfff);
1874 			print_AMD_l2_assoc(regs[1] >> 28);
1875 
1876 			printf("L2 4KB instruction TLB: %d entries",
1877 			    (regs[1] >> 16) & 0xfff);
1878 			print_AMD_l2_assoc((regs[1] >> 28) & 0xf);
1879 		} else {
1880 			printf("L2 4KB unified TLB: %d entries",
1881 			    (regs[1] >> 16) & 0xfff);
1882 			print_AMD_l2_assoc((regs[1] >> 28) & 0xf);
1883 		}
1884 		printf("L2 unified cache: %d kbytes", regs[2] >> 16);
1885 		printf(", %d bytes/line", regs[2] & 0xff);
1886 		printf(", %d lines/tag", (regs[2] >> 8) & 0x0f);
1887 		print_AMD_l2_assoc((regs[2] >> 12) & 0x0f);
1888 	}
1889 
1890 #ifdef __i386__
1891 	if (((cpu_id & 0xf00) == 0x500)
1892 	    && (((cpu_id & 0x0f0) > 0x80)
1893 		|| (((cpu_id & 0x0f0) == 0x80)
1894 		    && (cpu_id & 0x00f) > 0x07))) {
1895 		/* K6-2(new core [Stepping 8-F]), K6-III or later */
1896 		amd_whcr = rdmsr(0xc0000082);
1897 		if (!(amd_whcr & (0x3ff << 22))) {
1898 			printf("Write Allocate Disable\n");
1899 		} else {
1900 			printf("Write Allocate Enable Limit: %dM bytes\n",
1901 			    (u_int32_t)((amd_whcr & (0x3ff << 22)) >> 22) * 4);
1902 			printf("Write Allocate 15-16M bytes: %s\n",
1903 			    (amd_whcr & (1 << 16)) ? "Enable" : "Disable");
1904 		}
1905 	} else if (((cpu_id & 0xf00) == 0x500)
1906 		   && ((cpu_id & 0x0f0) > 0x50)) {
1907 		/* K6, K6-2(old core) */
1908 		amd_whcr = rdmsr(0xc0000082);
1909 		if (!(amd_whcr & (0x7f << 1))) {
1910 			printf("Write Allocate Disable\n");
1911 		} else {
1912 			printf("Write Allocate Enable Limit: %dM bytes\n",
1913 			    (u_int32_t)((amd_whcr & (0x7f << 1)) >> 1) * 4);
1914 			printf("Write Allocate 15-16M bytes: %s\n",
1915 			    (amd_whcr & 0x0001) ? "Enable" : "Disable");
1916 			printf("Hardware Write Allocate Control: %s\n",
1917 			    (amd_whcr & 0x0100) ? "Enable" : "Disable");
1918 		}
1919 	}
1920 #endif
1921 	/*
1922 	 * Opteron Rev E shows a bug as in very rare occasions a read memory
1923 	 * barrier is not performed as expected if it is followed by a
1924 	 * non-atomic read-modify-write instruction.
1925 	 * As long as that bug pops up very rarely (intensive machine usage
1926 	 * on other operating systems generally generates one unexplainable
1927 	 * crash any 2 months) and as long as a model specific fix would be
1928 	 * impractical at this stage, print out a warning string if the broken
1929 	 * model and family are identified.
1930 	 */
1931 	if (CPUID_TO_FAMILY(cpu_id) == 0xf && CPUID_TO_MODEL(cpu_id) >= 0x20 &&
1932 	    CPUID_TO_MODEL(cpu_id) <= 0x3f)
1933 		printf("WARNING: This architecture revision has known SMP "
1934 		    "hardware bugs which may cause random instability\n");
1935 }
1936 
1937 static void
1938 print_INTEL_info(void)
1939 {
1940 	u_int regs[4];
1941 	u_int rounds, regnum;
1942 	u_int nwaycode, nway;
1943 
1944 	if (cpu_high >= 2) {
1945 		rounds = 0;
1946 		do {
1947 			do_cpuid(0x2, regs);
1948 			if (rounds == 0 && (rounds = (regs[0] & 0xff)) == 0)
1949 				break;	/* we have a buggy CPU */
1950 
1951 			for (regnum = 0; regnum <= 3; ++regnum) {
1952 				if (regs[regnum] & (1<<31))
1953 					continue;
1954 				if (regnum != 0)
1955 					print_INTEL_TLB(regs[regnum] & 0xff);
1956 				print_INTEL_TLB((regs[regnum] >> 8) & 0xff);
1957 				print_INTEL_TLB((regs[regnum] >> 16) & 0xff);
1958 				print_INTEL_TLB((regs[regnum] >> 24) & 0xff);
1959 			}
1960 		} while (--rounds > 0);
1961 	}
1962 
1963 	if (cpu_exthigh >= 0x80000006) {
1964 		do_cpuid(0x80000006, regs);
1965 		nwaycode = (regs[2] >> 12) & 0x0f;
1966 		if (nwaycode >= 0x02 && nwaycode <= 0x08)
1967 			nway = 1 << (nwaycode / 2);
1968 		else
1969 			nway = 0;
1970 		printf("L2 cache: %u kbytes, %u-way associative, %u bytes/line\n",
1971 		    (regs[2] >> 16) & 0xffff, nway, regs[2] & 0xff);
1972 	}
1973 }
1974 
1975 static void
1976 print_INTEL_TLB(u_int data)
1977 {
1978 	switch (data) {
1979 	case 0x0:
1980 	case 0x40:
1981 	default:
1982 		break;
1983 	case 0x1:
1984 		printf("Instruction TLB: 4 KB pages, 4-way set associative, 32 entries\n");
1985 		break;
1986 	case 0x2:
1987 		printf("Instruction TLB: 4 MB pages, fully associative, 2 entries\n");
1988 		break;
1989 	case 0x3:
1990 		printf("Data TLB: 4 KB pages, 4-way set associative, 64 entries\n");
1991 		break;
1992 	case 0x4:
1993 		printf("Data TLB: 4 MB Pages, 4-way set associative, 8 entries\n");
1994 		break;
1995 	case 0x6:
1996 		printf("1st-level instruction cache: 8 KB, 4-way set associative, 32 byte line size\n");
1997 		break;
1998 	case 0x8:
1999 		printf("1st-level instruction cache: 16 KB, 4-way set associative, 32 byte line size\n");
2000 		break;
2001 	case 0x9:
2002 		printf("1st-level instruction cache: 32 KB, 4-way set associative, 64 byte line size\n");
2003 		break;
2004 	case 0xa:
2005 		printf("1st-level data cache: 8 KB, 2-way set associative, 32 byte line size\n");
2006 		break;
2007 	case 0xb:
2008 		printf("Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries\n");
2009 		break;
2010 	case 0xc:
2011 		printf("1st-level data cache: 16 KB, 4-way set associative, 32 byte line size\n");
2012 		break;
2013 	case 0xd:
2014 		printf("1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size");
2015 		break;
2016 	case 0xe:
2017 		printf("1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size\n");
2018 		break;
2019 	case 0x1d:
2020 		printf("2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size\n");
2021 		break;
2022 	case 0x21:
2023 		printf("2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size\n");
2024 		break;
2025 	case 0x22:
2026 		printf("3rd-level cache: 512 KB, 4-way set associative, sectored cache, 64 byte line size\n");
2027 		break;
2028 	case 0x23:
2029 		printf("3rd-level cache: 1 MB, 8-way set associative, sectored cache, 64 byte line size\n");
2030 		break;
2031 	case 0x24:
2032 		printf("2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size\n");
2033 		break;
2034 	case 0x25:
2035 		printf("3rd-level cache: 2 MB, 8-way set associative, sectored cache, 64 byte line size\n");
2036 		break;
2037 	case 0x29:
2038 		printf("3rd-level cache: 4 MB, 8-way set associative, sectored cache, 64 byte line size\n");
2039 		break;
2040 	case 0x2c:
2041 		printf("1st-level data cache: 32 KB, 8-way set associative, 64 byte line size\n");
2042 		break;
2043 	case 0x30:
2044 		printf("1st-level instruction cache: 32 KB, 8-way set associative, 64 byte line size\n");
2045 		break;
2046 	case 0x39: /* De-listed in SDM rev. 54 */
2047 		printf("2nd-level cache: 128 KB, 4-way set associative, sectored cache, 64 byte line size\n");
2048 		break;
2049 	case 0x3b: /* De-listed in SDM rev. 54 */
2050 		printf("2nd-level cache: 128 KB, 2-way set associative, sectored cache, 64 byte line size\n");
2051 		break;
2052 	case 0x3c: /* De-listed in SDM rev. 54 */
2053 		printf("2nd-level cache: 256 KB, 4-way set associative, sectored cache, 64 byte line size\n");
2054 		break;
2055 	case 0x41:
2056 		printf("2nd-level cache: 128 KB, 4-way set associative, 32 byte line size\n");
2057 		break;
2058 	case 0x42:
2059 		printf("2nd-level cache: 256 KB, 4-way set associative, 32 byte line size\n");
2060 		break;
2061 	case 0x43:
2062 		printf("2nd-level cache: 512 KB, 4-way set associative, 32 byte line size\n");
2063 		break;
2064 	case 0x44:
2065 		printf("2nd-level cache: 1 MB, 4-way set associative, 32 byte line size\n");
2066 		break;
2067 	case 0x45:
2068 		printf("2nd-level cache: 2 MB, 4-way set associative, 32 byte line size\n");
2069 		break;
2070 	case 0x46:
2071 		printf("3rd-level cache: 4 MB, 4-way set associative, 64 byte line size\n");
2072 		break;
2073 	case 0x47:
2074 		printf("3rd-level cache: 8 MB, 8-way set associative, 64 byte line size\n");
2075 		break;
2076 	case 0x48:
2077 		printf("2nd-level cache: 3MByte, 12-way set associative, 64 byte line size\n");
2078 		break;
2079 	case 0x49:
2080 		if (CPUID_TO_FAMILY(cpu_id) == 0xf &&
2081 		    CPUID_TO_MODEL(cpu_id) == 0x6)
2082 			printf("3rd-level cache: 4MB, 16-way set associative, 64-byte line size\n");
2083 		else
2084 			printf("2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size");
2085 		break;
2086 	case 0x4a:
2087 		printf("3rd-level cache: 6MByte, 12-way set associative, 64 byte line size\n");
2088 		break;
2089 	case 0x4b:
2090 		printf("3rd-level cache: 8MByte, 16-way set associative, 64 byte line size\n");
2091 		break;
2092 	case 0x4c:
2093 		printf("3rd-level cache: 12MByte, 12-way set associative, 64 byte line size\n");
2094 		break;
2095 	case 0x4d:
2096 		printf("3rd-level cache: 16MByte, 16-way set associative, 64 byte line size\n");
2097 		break;
2098 	case 0x4e:
2099 		printf("2nd-level cache: 6MByte, 24-way set associative, 64 byte line size\n");
2100 		break;
2101 	case 0x4f:
2102 		printf("Instruction TLB: 4 KByte pages, 32 entries\n");
2103 		break;
2104 	case 0x50:
2105 		printf("Instruction TLB: 4 KB, 2 MB or 4 MB pages, fully associative, 64 entries\n");
2106 		break;
2107 	case 0x51:
2108 		printf("Instruction TLB: 4 KB, 2 MB or 4 MB pages, fully associative, 128 entries\n");
2109 		break;
2110 	case 0x52:
2111 		printf("Instruction TLB: 4 KB, 2 MB or 4 MB pages, fully associative, 256 entries\n");
2112 		break;
2113 	case 0x55:
2114 		printf("Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries\n");
2115 		break;
2116 	case 0x56:
2117 		printf("Data TLB0: 4 MByte pages, 4-way set associative, 16 entries\n");
2118 		break;
2119 	case 0x57:
2120 		printf("Data TLB0: 4 KByte pages, 4-way associative, 16 entries\n");
2121 		break;
2122 	case 0x59:
2123 		printf("Data TLB0: 4 KByte pages, fully associative, 16 entries\n");
2124 		break;
2125 	case 0x5a:
2126 		printf("Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries\n");
2127 		break;
2128 	case 0x5b:
2129 		printf("Data TLB: 4 KB or 4 MB pages, fully associative, 64 entries\n");
2130 		break;
2131 	case 0x5c:
2132 		printf("Data TLB: 4 KB or 4 MB pages, fully associative, 128 entries\n");
2133 		break;
2134 	case 0x5d:
2135 		printf("Data TLB: 4 KB or 4 MB pages, fully associative, 256 entries\n");
2136 		break;
2137 	case 0x60:
2138 		printf("1st-level data cache: 16 KB, 8-way set associative, sectored cache, 64 byte line size\n");
2139 		break;
2140 	case 0x61:
2141 		printf("Instruction TLB: 4 KByte pages, fully associative, 48 entries\n");
2142 		break;
2143 	case 0x63:
2144 		printf("Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte pages, 4-way set associative, 4 entries\n");
2145 		break;
2146 	case 0x64:
2147 		printf("Data TLB: 4 KBytes pages, 4-way set associative, 512 entries\n");
2148 		break;
2149 	case 0x66:
2150 		printf("1st-level data cache: 8 KB, 4-way set associative, sectored cache, 64 byte line size\n");
2151 		break;
2152 	case 0x67:
2153 		printf("1st-level data cache: 16 KB, 4-way set associative, sectored cache, 64 byte line size\n");
2154 		break;
2155 	case 0x68:
2156 		printf("1st-level data cache: 32 KB, 4 way set associative, sectored cache, 64 byte line size\n");
2157 		break;
2158 	case 0x6a:
2159 		printf("uTLB: 4KByte pages, 8-way set associative, 64 entries\n");
2160 		break;
2161 	case 0x6b:
2162 		printf("DTLB: 4KByte pages, 8-way set associative, 256 entries\n");
2163 		break;
2164 	case 0x6c:
2165 		printf("DTLB: 2M/4M pages, 8-way set associative, 128 entries\n");
2166 		break;
2167 	case 0x6d:
2168 		printf("DTLB: 1 GByte pages, fully associative, 16 entries\n");
2169 		break;
2170 	case 0x70:
2171 		printf("Trace cache: 12K-uops, 8-way set associative\n");
2172 		break;
2173 	case 0x71:
2174 		printf("Trace cache: 16K-uops, 8-way set associative\n");
2175 		break;
2176 	case 0x72:
2177 		printf("Trace cache: 32K-uops, 8-way set associative\n");
2178 		break;
2179 	case 0x76:
2180 		printf("Instruction TLB: 2M/4M pages, fully associative, 8 entries\n");
2181 		break;
2182 	case 0x78:
2183 		printf("2nd-level cache: 1 MB, 4-way set associative, 64-byte line size\n");
2184 		break;
2185 	case 0x79:
2186 		printf("2nd-level cache: 128 KB, 8-way set associative, sectored cache, 64 byte line size\n");
2187 		break;
2188 	case 0x7a:
2189 		printf("2nd-level cache: 256 KB, 8-way set associative, sectored cache, 64 byte line size\n");
2190 		break;
2191 	case 0x7b:
2192 		printf("2nd-level cache: 512 KB, 8-way set associative, sectored cache, 64 byte line size\n");
2193 		break;
2194 	case 0x7c:
2195 		printf("2nd-level cache: 1 MB, 8-way set associative, sectored cache, 64 byte line size\n");
2196 		break;
2197 	case 0x7d:
2198 		printf("2nd-level cache: 2-MB, 8-way set associative, 64-byte line size\n");
2199 		break;
2200 	case 0x7f:
2201 		printf("2nd-level cache: 512-KB, 2-way set associative, 64-byte line size\n");
2202 		break;
2203 	case 0x80:
2204 		printf("2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size\n");
2205 		break;
2206 	case 0x82:
2207 		printf("2nd-level cache: 256 KB, 8-way set associative, 32 byte line size\n");
2208 		break;
2209 	case 0x83:
2210 		printf("2nd-level cache: 512 KB, 8-way set associative, 32 byte line size\n");
2211 		break;
2212 	case 0x84:
2213 		printf("2nd-level cache: 1 MB, 8-way set associative, 32 byte line size\n");
2214 		break;
2215 	case 0x85:
2216 		printf("2nd-level cache: 2 MB, 8-way set associative, 32 byte line size\n");
2217 		break;
2218 	case 0x86:
2219 		printf("2nd-level cache: 512 KB, 4-way set associative, 64 byte line size\n");
2220 		break;
2221 	case 0x87:
2222 		printf("2nd-level cache: 1 MB, 8-way set associative, 64 byte line size\n");
2223 		break;
2224 	case 0xa0:
2225 		printf("DTLB: 4k pages, fully associative, 32 entries\n");
2226 		break;
2227 	case 0xb0:
2228 		printf("Instruction TLB: 4 KB Pages, 4-way set associative, 128 entries\n");
2229 		break;
2230 	case 0xb1:
2231 		printf("Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries\n");
2232 		break;
2233 	case 0xb2:
2234 		printf("Instruction TLB: 4KByte pages, 4-way set associative, 64 entries\n");
2235 		break;
2236 	case 0xb3:
2237 		printf("Data TLB: 4 KB Pages, 4-way set associative, 128 entries\n");
2238 		break;
2239 	case 0xb4:
2240 		printf("Data TLB1: 4 KByte pages, 4-way associative, 256 entries\n");
2241 		break;
2242 	case 0xb5:
2243 		printf("Instruction TLB: 4KByte pages, 8-way set associative, 64 entries\n");
2244 		break;
2245 	case 0xb6:
2246 		printf("Instruction TLB: 4KByte pages, 8-way set associative, 128 entries\n");
2247 		break;
2248 	case 0xba:
2249 		printf("Data TLB1: 4 KByte pages, 4-way associative, 64 entries\n");
2250 		break;
2251 	case 0xc0:
2252 		printf("Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries\n");
2253 		break;
2254 	case 0xc1:
2255 		printf("Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries\n");
2256 		break;
2257 	case 0xc2:
2258 		printf("DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries\n");
2259 		break;
2260 	case 0xc3:
2261 		printf("Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way, 16 entries\n");
2262 		break;
2263 	case 0xc4:
2264 		printf("DTLB: 2M/4M Byte pages, 4-way associative, 32 entries\n");
2265 		break;
2266 	case 0xca:
2267 		printf("Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries\n");
2268 		break;
2269 	case 0xd0:
2270 		printf("3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size\n");
2271 		break;
2272 	case 0xd1:
2273 		printf("3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size\n");
2274 		break;
2275 	case 0xd2:
2276 		printf("3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size\n");
2277 		break;
2278 	case 0xd6:
2279 		printf("3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size\n");
2280 		break;
2281 	case 0xd7:
2282 		printf("3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size\n");
2283 		break;
2284 	case 0xd8:
2285 		printf("3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size\n");
2286 		break;
2287 	case 0xdc:
2288 		printf("3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size\n");
2289 		break;
2290 	case 0xdd:
2291 		printf("3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size\n");
2292 		break;
2293 	case 0xde:
2294 		printf("3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size\n");
2295 		break;
2296 	case 0xe2:
2297 		printf("3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size\n");
2298 		break;
2299 	case 0xe3:
2300 		printf("3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size\n");
2301 		break;
2302 	case 0xe4:
2303 		printf("3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size\n");
2304 		break;
2305 	case 0xea:
2306 		printf("3rd-level cache: 12MByte, 24-way set associative, 64 byte line size\n");
2307 		break;
2308 	case 0xeb:
2309 		printf("3rd-level cache: 18MByte, 24-way set associative, 64 byte line size\n");
2310 		break;
2311 	case 0xec:
2312 		printf("3rd-level cache: 24MByte, 24-way set associative, 64 byte line size\n");
2313 		break;
2314 	case 0xf0:
2315 		printf("64-Byte prefetching\n");
2316 		break;
2317 	case 0xf1:
2318 		printf("128-Byte prefetching\n");
2319 		break;
2320 	}
2321 }
2322 
2323 static void
2324 print_svm_info(void)
2325 {
2326 	u_int features, regs[4];
2327 	uint64_t msr;
2328 	int comma;
2329 
2330 	printf("\n  SVM: ");
2331 	do_cpuid(0x8000000A, regs);
2332 	features = regs[3];
2333 
2334 	msr = rdmsr(MSR_VM_CR);
2335 	if ((msr & VM_CR_SVMDIS) == VM_CR_SVMDIS)
2336 		printf("(disabled in BIOS) ");
2337 
2338 	if (!bootverbose) {
2339 		comma = 0;
2340 		if (features & (1 << 0)) {
2341 			printf("%sNP", comma ? "," : "");
2342 			comma = 1;
2343 		}
2344 		if (features & (1 << 3)) {
2345 			printf("%sNRIP", comma ? "," : "");
2346 			comma = 1;
2347 		}
2348 		if (features & (1 << 5)) {
2349 			printf("%sVClean", comma ? "," : "");
2350 			comma = 1;
2351 		}
2352 		if (features & (1 << 6)) {
2353 			printf("%sAFlush", comma ? "," : "");
2354 			comma = 1;
2355 		}
2356 		if (features & (1 << 7)) {
2357 			printf("%sDAssist", comma ? "," : "");
2358 			comma = 1;
2359 		}
2360 		printf("%sNAsids=%d", comma ? "," : "", regs[1]);
2361 		return;
2362 	}
2363 
2364 	printf("Features=0x%b", features,
2365 	       "\020"
2366 	       "\001NP"			/* Nested paging */
2367 	       "\002LbrVirt"		/* LBR virtualization */
2368 	       "\003SVML"		/* SVM lock */
2369 	       "\004NRIPS"		/* NRIP save */
2370 	       "\005TscRateMsr"		/* MSR based TSC rate control */
2371 	       "\006VmcbClean"		/* VMCB clean bits */
2372 	       "\007FlushByAsid"	/* Flush by ASID */
2373 	       "\010DecodeAssist"	/* Decode assist */
2374 	       "\011<b8>"
2375 	       "\012<b9>"
2376 	       "\013PauseFilter"	/* PAUSE intercept filter */
2377 	       "\014EncryptedMcodePatch"
2378 	       "\015PauseFilterThreshold" /* PAUSE filter threshold */
2379 	       "\016AVIC"		/* virtual interrupt controller */
2380 	       "\017<b14>"
2381 	       "\020V_VMSAVE_VMLOAD"
2382 	       "\021vGIF"
2383 	       "\022GMET"		/* Guest Mode Execute Trap */
2384 	       "\023<b18>"
2385 	       "\024<b19>"
2386 	       "\025GuesSpecCtl"	/* Guest Spec_ctl */
2387 	       "\026<b21>"
2388 	       "\027<b22>"
2389 	       "\030<b23>"
2390 	       "\031<b24>"
2391 	       "\032<b25>"
2392 	       "\033<b26>"
2393 	       "\034<b27>"
2394 	       "\035<b28>"
2395 	       "\036<b29>"
2396 	       "\037<b30>"
2397 	       "\040<b31>"
2398 	       );
2399 	printf("\nRevision=%d, ASIDs=%d", regs[0] & 0xff, regs[1]);
2400 }
2401 
2402 #ifdef __i386__
2403 static void
2404 print_transmeta_info(void)
2405 {
2406 	u_int regs[4], nreg = 0;
2407 
2408 	do_cpuid(0x80860000, regs);
2409 	nreg = regs[0];
2410 	if (nreg >= 0x80860001) {
2411 		do_cpuid(0x80860001, regs);
2412 		printf("  Processor revision %u.%u.%u.%u\n",
2413 		       (regs[1] >> 24) & 0xff,
2414 		       (regs[1] >> 16) & 0xff,
2415 		       (regs[1] >> 8) & 0xff,
2416 		       regs[1] & 0xff);
2417 	}
2418 	if (nreg >= 0x80860002) {
2419 		do_cpuid(0x80860002, regs);
2420 		printf("  Code Morphing Software revision %u.%u.%u-%u-%u\n",
2421 		       (regs[1] >> 24) & 0xff,
2422 		       (regs[1] >> 16) & 0xff,
2423 		       (regs[1] >> 8) & 0xff,
2424 		       regs[1] & 0xff,
2425 		       regs[2]);
2426 	}
2427 	if (nreg >= 0x80860006) {
2428 		char info[65];
2429 		do_cpuid(0x80860003, (u_int*) &info[0]);
2430 		do_cpuid(0x80860004, (u_int*) &info[16]);
2431 		do_cpuid(0x80860005, (u_int*) &info[32]);
2432 		do_cpuid(0x80860006, (u_int*) &info[48]);
2433 		info[64] = 0;
2434 		printf("  %s\n", info);
2435 	}
2436 }
2437 #endif
2438 
2439 static void
2440 print_via_padlock_info(void)
2441 {
2442 	u_int regs[4];
2443 
2444 	do_cpuid(0xc0000001, regs);
2445 	printf("\n  VIA Padlock Features=0x%b", regs[3],
2446 	"\020"
2447 	"\003RNG"		/* RNG */
2448 	"\007AES"		/* ACE */
2449 	"\011AES-CTR"		/* ACE2 */
2450 	"\013SHA1,SHA256"	/* PHE */
2451 	"\015RSA"		/* PMM */
2452 	);
2453 }
2454 
2455 static uint32_t
2456 vmx_settable(uint64_t basic, int msr, int true_msr)
2457 {
2458 	uint64_t val;
2459 
2460 	if (basic & (1ULL << 55))
2461 		val = rdmsr(true_msr);
2462 	else
2463 		val = rdmsr(msr);
2464 
2465 	/* Just report the controls that can be set to 1. */
2466 	return (val >> 32);
2467 }
2468 
2469 static void
2470 print_vmx_info(void)
2471 {
2472 	uint64_t basic, msr;
2473 	uint32_t entry, exit, mask, pin, proc, proc2;
2474 	int comma;
2475 
2476 	printf("\n  VT-x: ");
2477 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2478 	if (!(msr & IA32_FEATURE_CONTROL_VMX_EN))
2479 		printf("(disabled in BIOS) ");
2480 	basic = rdmsr(MSR_VMX_BASIC);
2481 	pin = vmx_settable(basic, MSR_VMX_PINBASED_CTLS,
2482 	    MSR_VMX_TRUE_PINBASED_CTLS);
2483 	proc = vmx_settable(basic, MSR_VMX_PROCBASED_CTLS,
2484 	    MSR_VMX_TRUE_PROCBASED_CTLS);
2485 	if (proc & PROCBASED_SECONDARY_CONTROLS)
2486 		proc2 = vmx_settable(basic, MSR_VMX_PROCBASED_CTLS2,
2487 		    MSR_VMX_PROCBASED_CTLS2);
2488 	else
2489 		proc2 = 0;
2490 	exit = vmx_settable(basic, MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS);
2491 	entry = vmx_settable(basic, MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS);
2492 
2493 	if (!bootverbose) {
2494 		comma = 0;
2495 		if (exit & VM_EXIT_SAVE_PAT && exit & VM_EXIT_LOAD_PAT &&
2496 		    entry & VM_ENTRY_LOAD_PAT) {
2497 			printf("%sPAT", comma ? "," : "");
2498 			comma = 1;
2499 		}
2500 		if (proc & PROCBASED_HLT_EXITING) {
2501 			printf("%sHLT", comma ? "," : "");
2502 			comma = 1;
2503 		}
2504 		if (proc & PROCBASED_MTF) {
2505 			printf("%sMTF", comma ? "," : "");
2506 			comma = 1;
2507 		}
2508 		if (proc & PROCBASED_PAUSE_EXITING) {
2509 			printf("%sPAUSE", comma ? "," : "");
2510 			comma = 1;
2511 		}
2512 		if (proc2 & PROCBASED2_ENABLE_EPT) {
2513 			printf("%sEPT", comma ? "," : "");
2514 			comma = 1;
2515 		}
2516 		if (proc2 & PROCBASED2_UNRESTRICTED_GUEST) {
2517 			printf("%sUG", comma ? "," : "");
2518 			comma = 1;
2519 		}
2520 		if (proc2 & PROCBASED2_ENABLE_VPID) {
2521 			printf("%sVPID", comma ? "," : "");
2522 			comma = 1;
2523 		}
2524 		if (proc & PROCBASED_USE_TPR_SHADOW &&
2525 		    proc2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES &&
2526 		    proc2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE &&
2527 		    proc2 & PROCBASED2_APIC_REGISTER_VIRTUALIZATION &&
2528 		    proc2 & PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY) {
2529 			printf("%sVID", comma ? "," : "");
2530 			comma = 1;
2531 			if (pin & PINBASED_POSTED_INTERRUPT)
2532 				printf(",PostIntr");
2533 		}
2534 		return;
2535 	}
2536 
2537 	mask = basic >> 32;
2538 	printf("Basic Features=0x%b", mask,
2539 	"\020"
2540 	"\02132PA"		/* 32-bit physical addresses */
2541 	"\022SMM"		/* SMM dual-monitor */
2542 	"\027INS/OUTS"		/* VM-exit info for INS and OUTS */
2543 	"\030TRUE"		/* TRUE_CTLS MSRs */
2544 	);
2545 	printf("\n        Pin-Based Controls=0x%b", pin,
2546 	"\020"
2547 	"\001ExtINT"		/* External-interrupt exiting */
2548 	"\004NMI"		/* NMI exiting */
2549 	"\006VNMI"		/* Virtual NMIs */
2550 	"\007PreTmr"		/* Activate VMX-preemption timer */
2551 	"\010PostIntr"		/* Process posted interrupts */
2552 	);
2553 	printf("\n        Primary Processor Controls=0x%b", proc,
2554 	"\020"
2555 	"\003INTWIN"		/* Interrupt-window exiting */
2556 	"\004TSCOff"		/* Use TSC offsetting */
2557 	"\010HLT"		/* HLT exiting */
2558 	"\012INVLPG"		/* INVLPG exiting */
2559 	"\013MWAIT"		/* MWAIT exiting */
2560 	"\014RDPMC"		/* RDPMC exiting */
2561 	"\015RDTSC"		/* RDTSC exiting */
2562 	"\020CR3-LD"		/* CR3-load exiting */
2563 	"\021CR3-ST"		/* CR3-store exiting */
2564 	"\024CR8-LD"		/* CR8-load exiting */
2565 	"\025CR8-ST"		/* CR8-store exiting */
2566 	"\026TPR"		/* Use TPR shadow */
2567 	"\027NMIWIN"		/* NMI-window exiting */
2568 	"\030MOV-DR"		/* MOV-DR exiting */
2569 	"\031IO"		/* Unconditional I/O exiting */
2570 	"\032IOmap"		/* Use I/O bitmaps */
2571 	"\034MTF"		/* Monitor trap flag */
2572 	"\035MSRmap"		/* Use MSR bitmaps */
2573 	"\036MONITOR"		/* MONITOR exiting */
2574 	"\037PAUSE"		/* PAUSE exiting */
2575 	);
2576 	if (proc & PROCBASED_SECONDARY_CONTROLS)
2577 		printf("\n        Secondary Processor Controls=0x%b", proc2,
2578 		"\020"
2579 		"\001APIC"		/* Virtualize APIC accesses */
2580 		"\002EPT"		/* Enable EPT */
2581 		"\003DT"		/* Descriptor-table exiting */
2582 		"\004RDTSCP"		/* Enable RDTSCP */
2583 		"\005x2APIC"		/* Virtualize x2APIC mode */
2584 		"\006VPID"		/* Enable VPID */
2585 		"\007WBINVD"		/* WBINVD exiting */
2586 		"\010UG"		/* Unrestricted guest */
2587 		"\011APIC-reg"		/* APIC-register virtualization */
2588 		"\012VID"		/* Virtual-interrupt delivery */
2589 		"\013PAUSE-loop"	/* PAUSE-loop exiting */
2590 		"\014RDRAND"		/* RDRAND exiting */
2591 		"\015INVPCID"		/* Enable INVPCID */
2592 		"\016VMFUNC"		/* Enable VM functions */
2593 		"\017VMCS"		/* VMCS shadowing */
2594 		"\020EPT#VE"		/* EPT-violation #VE */
2595 		"\021XSAVES"		/* Enable XSAVES/XRSTORS */
2596 		);
2597 	printf("\n        Exit Controls=0x%b", mask,
2598 	"\020"
2599 	"\003DR"		/* Save debug controls */
2600 				/* Ignore Host address-space size */
2601 	"\015PERF"		/* Load MSR_PERF_GLOBAL_CTRL */
2602 	"\020AckInt"		/* Acknowledge interrupt on exit */
2603 	"\023PAT-SV"		/* Save MSR_PAT */
2604 	"\024PAT-LD"		/* Load MSR_PAT */
2605 	"\025EFER-SV"		/* Save MSR_EFER */
2606 	"\026EFER-LD"		/* Load MSR_EFER */
2607 	"\027PTMR-SV"		/* Save VMX-preemption timer value */
2608 	);
2609 	printf("\n        Entry Controls=0x%b", mask,
2610 	"\020"
2611 	"\003DR"		/* Save debug controls */
2612 				/* Ignore IA-32e mode guest */
2613 				/* Ignore Entry to SMM */
2614 				/* Ignore Deactivate dual-monitor treatment */
2615 	"\016PERF"		/* Load MSR_PERF_GLOBAL_CTRL */
2616 	"\017PAT"		/* Load MSR_PAT */
2617 	"\020EFER"		/* Load MSR_EFER */
2618 	);
2619 	if (proc & PROCBASED_SECONDARY_CONTROLS &&
2620 	    (proc2 & (PROCBASED2_ENABLE_EPT | PROCBASED2_ENABLE_VPID)) != 0) {
2621 		msr = rdmsr(MSR_VMX_EPT_VPID_CAP);
2622 		mask = msr;
2623 		printf("\n        EPT Features=0x%b", mask,
2624 		"\020"
2625 		"\001XO"		/* Execute-only translations */
2626 		"\007PW4"		/* Page-walk length of 4 */
2627 		"\011UC"		/* EPT paging-structure mem can be UC */
2628 		"\017WB"		/* EPT paging-structure mem can be WB */
2629 		"\0212M"		/* EPT PDE can map a 2-Mbyte page */
2630 		"\0221G"		/* EPT PDPTE can map a 1-Gbyte page */
2631 		"\025INVEPT"		/* INVEPT is supported */
2632 		"\026AD"		/* Accessed and dirty flags for EPT */
2633 		"\032single"		/* INVEPT single-context type */
2634 		"\033all"		/* INVEPT all-context type */
2635 		);
2636 		mask = msr >> 32;
2637 		printf("\n        VPID Features=0x%b", mask,
2638 		"\020"
2639 		"\001INVVPID"		/* INVVPID is supported */
2640 		"\011individual"	/* INVVPID individual-address type */
2641 		"\012single"		/* INVVPID single-context type */
2642 		"\013all"		/* INVVPID all-context type */
2643 		 /* INVVPID single-context-retaining-globals type */
2644 		"\014single-globals"
2645 		);
2646 	}
2647 }
2648 
2649 static void
2650 print_hypervisor_info(void)
2651 {
2652 
2653 	if (*hv_vendor != '\0')
2654 		printf("Hypervisor: Origin = \"%s\"\n", hv_vendor);
2655 }
2656 
2657 /*
2658  * Returns the maximum physical address that can be used with the
2659  * current system.
2660  */
2661 vm_paddr_t
2662 cpu_getmaxphyaddr(void)
2663 {
2664 
2665 #if defined(__i386__)
2666 	if (!pae_mode)
2667 		return (0xffffffff);
2668 #endif
2669 	return ((1ULL << cpu_maxphyaddr) - 1);
2670 }
2671