xref: /freebsd/sys/x86/x86/mp_x86.c (revision 325151a3)
1 /*-
2  * Copyright (c) 1996, by Steve Passe
3  * Copyright (c) 2003, by Peter Wemm
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the developer may NOT be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #ifdef __i386__
31 #include "opt_apic.h"
32 #endif
33 #include "opt_cpu.h"
34 #include "opt_kstack_pages.h"
35 #include "opt_pmap.h"
36 #include "opt_sched.h"
37 #include "opt_smp.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/cons.h>	/* cngetc() */
43 #include <sys/cpuset.h>
44 #ifdef GPROF
45 #include <sys/gmon.h>
46 #endif
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/memrange.h>
52 #include <sys/mutex.h>
53 #include <sys/pcpu.h>
54 #include <sys/proc.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sysctl.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_extern.h>
64 
65 #include <x86/apicreg.h>
66 #include <machine/clock.h>
67 #include <machine/cputypes.h>
68 #include <x86/mca.h>
69 #include <machine/md_var.h>
70 #include <machine/pcb.h>
71 #include <machine/psl.h>
72 #include <machine/smp.h>
73 #include <machine/specialreg.h>
74 #include <machine/cpu.h>
75 
76 #define WARMBOOT_TARGET		0
77 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
78 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
79 
80 #define CMOS_REG		(0x70)
81 #define CMOS_DATA		(0x71)
82 #define BIOS_RESET		(0x0f)
83 #define BIOS_WARM		(0x0a)
84 
85 /* lock region used by kernel profiling */
86 int	mcount_lock;
87 
88 int	mp_naps;		/* # of Applications processors */
89 int	boot_cpu_id = -1;	/* designated BSP */
90 
91 extern	struct pcpu __pcpu[];
92 
93 /* AP uses this during bootstrap.  Do not staticize.  */
94 char *bootSTK;
95 int bootAP;
96 
97 /* Free these after use */
98 void *bootstacks[MAXCPU];
99 void *dpcpu;
100 
101 struct pcb stoppcbs[MAXCPU];
102 struct susppcb **susppcbs;
103 
104 #ifdef COUNT_IPIS
105 /* Interrupt counts. */
106 static u_long *ipi_preempt_counts[MAXCPU];
107 static u_long *ipi_ast_counts[MAXCPU];
108 u_long *ipi_invltlb_counts[MAXCPU];
109 u_long *ipi_invlrng_counts[MAXCPU];
110 u_long *ipi_invlpg_counts[MAXCPU];
111 u_long *ipi_invlcache_counts[MAXCPU];
112 u_long *ipi_rendezvous_counts[MAXCPU];
113 static u_long *ipi_hardclock_counts[MAXCPU];
114 #endif
115 
116 /* Default cpu_ops implementation. */
117 struct cpu_ops cpu_ops;
118 
119 /*
120  * Local data and functions.
121  */
122 
123 static volatile cpuset_t ipi_stop_nmi_pending;
124 
125 /* used to hold the AP's until we are ready to release them */
126 struct mtx ap_boot_mtx;
127 
128 /* Set to 1 once we're ready to let the APs out of the pen. */
129 volatile int aps_ready = 0;
130 
131 /*
132  * Store data from cpu_add() until later in the boot when we actually setup
133  * the APs.
134  */
135 struct cpu_info cpu_info[MAX_APIC_ID + 1];
136 int cpu_apic_ids[MAXCPU];
137 int apic_cpuids[MAX_APIC_ID + 1];
138 
139 /* Holds pending bitmap based IPIs per CPU */
140 volatile u_int cpu_ipi_pending[MAXCPU];
141 
142 int cpu_logical;		/* logical cpus per core */
143 int cpu_cores;			/* cores per package */
144 
145 static void	release_aps(void *dummy);
146 
147 static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
148 static int	hyperthreading_allowed = 1;
149 
150 void
151 mem_range_AP_init(void)
152 {
153 
154 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
155 		mem_range_softc.mr_op->initAP(&mem_range_softc);
156 }
157 
158 static void
159 topo_probe_amd(void)
160 {
161 	int core_id_bits;
162 	int id;
163 
164 	/* AMD processors do not support HTT. */
165 	cpu_logical = 1;
166 
167 	if ((amd_feature2 & AMDID2_CMP) == 0) {
168 		cpu_cores = 1;
169 		return;
170 	}
171 
172 	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
173 	    AMDID_COREID_SIZE_SHIFT;
174 	if (core_id_bits == 0) {
175 		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
176 		return;
177 	}
178 
179 	/* Fam 10h and newer should get here. */
180 	for (id = 0; id <= MAX_APIC_ID; id++) {
181 		/* Check logical CPU availability. */
182 		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
183 			continue;
184 		/* Check if logical CPU has the same package ID. */
185 		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
186 			continue;
187 		cpu_cores++;
188 	}
189 }
190 
191 /*
192  * Round up to the next power of two, if necessary, and then
193  * take log2.
194  * Returns -1 if argument is zero.
195  */
196 static __inline int
197 mask_width(u_int x)
198 {
199 
200 	return (fls(x << (1 - powerof2(x))) - 1);
201 }
202 
203 static void
204 topo_probe_0x4(void)
205 {
206 	u_int p[4];
207 	int pkg_id_bits;
208 	int core_id_bits;
209 	int max_cores;
210 	int max_logical;
211 	int id;
212 
213 	/* Both zero and one here mean one logical processor per package. */
214 	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
215 	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
216 	if (max_logical <= 1)
217 		return;
218 
219 	/*
220 	 * Because of uniformity assumption we examine only
221 	 * those logical processors that belong to the same
222 	 * package as BSP.  Further, we count number of
223 	 * logical processors that belong to the same core
224 	 * as BSP thus deducing number of threads per core.
225 	 */
226 	if (cpu_high >= 0x4) {
227 		cpuid_count(0x04, 0, p);
228 		max_cores = ((p[0] >> 26) & 0x3f) + 1;
229 	} else
230 		max_cores = 1;
231 	core_id_bits = mask_width(max_logical/max_cores);
232 	if (core_id_bits < 0)
233 		return;
234 	pkg_id_bits = core_id_bits + mask_width(max_cores);
235 
236 	for (id = 0; id <= MAX_APIC_ID; id++) {
237 		/* Check logical CPU availability. */
238 		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
239 			continue;
240 		/* Check if logical CPU has the same package ID. */
241 		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
242 			continue;
243 		cpu_cores++;
244 		/* Check if logical CPU has the same package and core IDs. */
245 		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
246 			cpu_logical++;
247 	}
248 
249 	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
250 	    ("topo_probe_0x4 couldn't find BSP"));
251 
252 	cpu_cores /= cpu_logical;
253 	hyperthreading_cpus = cpu_logical;
254 }
255 
256 static void
257 topo_probe_0xb(void)
258 {
259 	u_int p[4];
260 	int bits;
261 	int cnt;
262 	int i;
263 	int logical;
264 	int type;
265 	int x;
266 
267 	/* We only support three levels for now. */
268 	for (i = 0; i < 3; i++) {
269 		cpuid_count(0x0b, i, p);
270 
271 		/* Fall back if CPU leaf 11 doesn't really exist. */
272 		if (i == 0 && p[1] == 0) {
273 			topo_probe_0x4();
274 			return;
275 		}
276 
277 		bits = p[0] & 0x1f;
278 		logical = p[1] &= 0xffff;
279 		type = (p[2] >> 8) & 0xff;
280 		if (type == 0 || logical == 0)
281 			break;
282 		/*
283 		 * Because of uniformity assumption we examine only
284 		 * those logical processors that belong to the same
285 		 * package as BSP.
286 		 */
287 		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
288 			if (!cpu_info[x].cpu_present ||
289 			    cpu_info[x].cpu_disabled)
290 				continue;
291 			if (x >> bits == boot_cpu_id >> bits)
292 				cnt++;
293 		}
294 		if (type == CPUID_TYPE_SMT)
295 			cpu_logical = cnt;
296 		else if (type == CPUID_TYPE_CORE)
297 			cpu_cores = cnt;
298 	}
299 	if (cpu_logical == 0)
300 		cpu_logical = 1;
301 	cpu_cores /= cpu_logical;
302 }
303 
304 /*
305  * Both topology discovery code and code that consumes topology
306  * information assume top-down uniformity of the topology.
307  * That is, all physical packages must be identical and each
308  * core in a package must have the same number of threads.
309  * Topology information is queried only on BSP, on which this
310  * code runs and for which it can query CPUID information.
311  * Then topology is extrapolated on all packages using the
312  * uniformity assumption.
313  */
314 void
315 topo_probe(void)
316 {
317 	static int cpu_topo_probed = 0;
318 
319 	if (cpu_topo_probed)
320 		return;
321 
322 	CPU_ZERO(&logical_cpus_mask);
323 	if (mp_ncpus <= 1)
324 		cpu_cores = cpu_logical = 1;
325 	else if (cpu_vendor_id == CPU_VENDOR_AMD)
326 		topo_probe_amd();
327 	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
328 		/*
329 		 * See Intel(R) 64 Architecture Processor
330 		 * Topology Enumeration article for details.
331 		 *
332 		 * Note that 0x1 <= cpu_high < 4 case should be
333 		 * compatible with topo_probe_0x4() logic when
334 		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
335 		 * or it should trigger the fallback otherwise.
336 		 */
337 		if (cpu_high >= 0xb)
338 			topo_probe_0xb();
339 		else if (cpu_high >= 0x1)
340 			topo_probe_0x4();
341 	}
342 
343 	/*
344 	 * Fallback: assume each logical CPU is in separate
345 	 * physical package.  That is, no multi-core, no SMT.
346 	 */
347 	if (cpu_cores == 0 || cpu_logical == 0)
348 		cpu_cores = cpu_logical = 1;
349 	cpu_topo_probed = 1;
350 }
351 
352 struct cpu_group *
353 cpu_topo(void)
354 {
355 	int cg_flags;
356 
357 	/*
358 	 * Determine whether any threading flags are
359 	 * necessry.
360 	 */
361 	topo_probe();
362 	if (cpu_logical > 1 && hyperthreading_cpus)
363 		cg_flags = CG_FLAG_HTT;
364 	else if (cpu_logical > 1)
365 		cg_flags = CG_FLAG_SMT;
366 	else
367 		cg_flags = 0;
368 	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
369 		printf("WARNING: Non-uniform processors.\n");
370 		printf("WARNING: Using suboptimal topology.\n");
371 		return (smp_topo_none());
372 	}
373 	/*
374 	 * No multi-core or hyper-threaded.
375 	 */
376 	if (cpu_logical * cpu_cores == 1)
377 		return (smp_topo_none());
378 	/*
379 	 * Only HTT no multi-core.
380 	 */
381 	if (cpu_logical > 1 && cpu_cores == 1)
382 		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
383 	/*
384 	 * Only multi-core no HTT.
385 	 */
386 	if (cpu_cores > 1 && cpu_logical == 1)
387 		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
388 	/*
389 	 * Both HTT and multi-core.
390 	 */
391 	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
392 	    CG_SHARE_L1, cpu_logical, cg_flags));
393 }
394 
395 
396 void
397 cpu_add(u_int apic_id, char boot_cpu)
398 {
399 
400 	if (apic_id > MAX_APIC_ID) {
401 		panic("SMP: APIC ID %d too high", apic_id);
402 		return;
403 	}
404 	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
405 	    apic_id));
406 	cpu_info[apic_id].cpu_present = 1;
407 	if (boot_cpu) {
408 		KASSERT(boot_cpu_id == -1,
409 		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
410 		    boot_cpu_id));
411 		boot_cpu_id = apic_id;
412 		cpu_info[apic_id].cpu_bsp = 1;
413 	}
414 	if (mp_ncpus < MAXCPU) {
415 		mp_ncpus++;
416 		mp_maxid = mp_ncpus - 1;
417 	}
418 	if (bootverbose)
419 		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
420 		    "AP");
421 }
422 
423 void
424 cpu_mp_setmaxid(void)
425 {
426 
427 	/*
428 	 * mp_maxid should be already set by calls to cpu_add().
429 	 * Just sanity check its value here.
430 	 */
431 	if (mp_ncpus == 0)
432 		KASSERT(mp_maxid == 0,
433 		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
434 	else if (mp_ncpus == 1)
435 		mp_maxid = 0;
436 	else
437 		KASSERT(mp_maxid >= mp_ncpus - 1,
438 		    ("%s: counters out of sync: max %d, count %d", __func__,
439 			mp_maxid, mp_ncpus));
440 }
441 
442 int
443 cpu_mp_probe(void)
444 {
445 
446 	/*
447 	 * Always record BSP in CPU map so that the mbuf init code works
448 	 * correctly.
449 	 */
450 	CPU_SETOF(0, &all_cpus);
451 	if (mp_ncpus == 0) {
452 		/*
453 		 * No CPUs were found, so this must be a UP system.  Setup
454 		 * the variables to represent a system with a single CPU
455 		 * with an id of 0.
456 		 */
457 		mp_ncpus = 1;
458 		return (0);
459 	}
460 
461 	/* At least one CPU was found. */
462 	if (mp_ncpus == 1) {
463 		/*
464 		 * One CPU was found, so this must be a UP system with
465 		 * an I/O APIC.
466 		 */
467 		mp_maxid = 0;
468 		return (0);
469 	}
470 
471 	/* At least two CPUs were found. */
472 	return (1);
473 }
474 
475 /*
476  * Print various information about the SMP system hardware and setup.
477  */
478 void
479 cpu_mp_announce(void)
480 {
481 	const char *hyperthread;
482 	int i;
483 
484 	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
485 	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
486 	if (hyperthreading_cpus > 1)
487 	    printf(" x %d HTT threads", cpu_logical);
488 	else if (cpu_logical > 1)
489 	    printf(" x %d SMT threads", cpu_logical);
490 	printf("\n");
491 
492 	/* List active CPUs first. */
493 	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
494 	for (i = 1; i < mp_ncpus; i++) {
495 		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
496 			hyperthread = "/HT";
497 		else
498 			hyperthread = "";
499 		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
500 		    cpu_apic_ids[i]);
501 	}
502 
503 	/* List disabled CPUs last. */
504 	for (i = 0; i <= MAX_APIC_ID; i++) {
505 		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
506 			continue;
507 		if (cpu_info[i].cpu_hyperthread)
508 			hyperthread = "/HT";
509 		else
510 			hyperthread = "";
511 		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
512 		    i);
513 	}
514 }
515 
516 void
517 init_secondary_tail(void)
518 {
519 	u_int cpuid;
520 
521 	/*
522 	 * On real hardware, switch to x2apic mode if possible.  Do it
523 	 * after aps_ready was signalled, to avoid manipulating the
524 	 * mode while BSP might still want to send some IPI to us
525 	 * (second startup IPI is ignored on modern hardware etc).
526 	 */
527 	lapic_xapic_mode();
528 
529 	/* Initialize the PAT MSR. */
530 	pmap_init_pat();
531 
532 	/* set up CPU registers and state */
533 	cpu_setregs();
534 
535 	/* set up SSE/NX */
536 	initializecpu();
537 
538 	/* set up FPU state on the AP */
539 #ifdef __amd64__
540 	fpuinit();
541 #else
542 	npxinit(false);
543 #endif
544 
545 	if (cpu_ops.cpu_init)
546 		cpu_ops.cpu_init();
547 
548 	/* A quick check from sanity claus */
549 	cpuid = PCPU_GET(cpuid);
550 	if (PCPU_GET(apic_id) != lapic_id()) {
551 		printf("SMP: cpuid = %d\n", cpuid);
552 		printf("SMP: actual apic_id = %d\n", lapic_id());
553 		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
554 		panic("cpuid mismatch! boom!!");
555 	}
556 
557 	/* Initialize curthread. */
558 	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
559 	PCPU_SET(curthread, PCPU_GET(idlethread));
560 
561 	mca_init();
562 
563 	mtx_lock_spin(&ap_boot_mtx);
564 
565 	/* Init local apic for irq's */
566 	lapic_setup(1);
567 
568 	/* Set memory range attributes for this CPU to match the BSP */
569 	mem_range_AP_init();
570 
571 	smp_cpus++;
572 
573 	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
574 	printf("SMP: AP CPU #%d Launched!\n", cpuid);
575 
576 	/* Determine if we are a logical CPU. */
577 	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
578 	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
579 		CPU_SET(cpuid, &logical_cpus_mask);
580 
581 	if (bootverbose)
582 		lapic_dump("AP");
583 
584 	if (smp_cpus == mp_ncpus) {
585 		/* enable IPI's, tlb shootdown, freezes etc */
586 		atomic_store_rel_int(&smp_started, 1);
587 	}
588 
589 #ifdef __amd64__
590 	/*
591 	 * Enable global pages TLB extension
592 	 * This also implicitly flushes the TLB
593 	 */
594 	load_cr4(rcr4() | CR4_PGE);
595 	if (pmap_pcid_enabled)
596 		load_cr4(rcr4() | CR4_PCIDE);
597 	load_ds(_udatasel);
598 	load_es(_udatasel);
599 	load_fs(_ufssel);
600 #endif
601 
602 	mtx_unlock_spin(&ap_boot_mtx);
603 
604 	/* Wait until all the AP's are up. */
605 	while (atomic_load_acq_int(&smp_started) == 0)
606 		ia32_pause();
607 
608 	/* Start per-CPU event timers. */
609 	cpu_initclocks_ap();
610 
611 	sched_throw(NULL);
612 
613 	panic("scheduler returned us to %s", __func__);
614 	/* NOTREACHED */
615 }
616 
617 /*******************************************************************
618  * local functions and data
619  */
620 
621 /*
622  * We tell the I/O APIC code about all the CPUs we want to receive
623  * interrupts.  If we don't want certain CPUs to receive IRQs we
624  * can simply not tell the I/O APIC code about them in this function.
625  * We also do not tell it about the BSP since it tells itself about
626  * the BSP internally to work with UP kernels and on UP machines.
627  */
628 void
629 set_interrupt_apic_ids(void)
630 {
631 	u_int i, apic_id;
632 
633 	for (i = 0; i < MAXCPU; i++) {
634 		apic_id = cpu_apic_ids[i];
635 		if (apic_id == -1)
636 			continue;
637 		if (cpu_info[apic_id].cpu_bsp)
638 			continue;
639 		if (cpu_info[apic_id].cpu_disabled)
640 			continue;
641 
642 		/* Don't let hyperthreads service interrupts. */
643 		if (cpu_logical > 1 &&
644 		    apic_id % cpu_logical != 0)
645 			continue;
646 
647 		intr_add_cpu(i);
648 	}
649 }
650 
651 /*
652  * Assign logical CPU IDs to local APICs.
653  */
654 void
655 assign_cpu_ids(void)
656 {
657 	u_int i;
658 
659 	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
660 	    &hyperthreading_allowed);
661 
662 	/* Check for explicitly disabled CPUs. */
663 	for (i = 0; i <= MAX_APIC_ID; i++) {
664 		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
665 			continue;
666 
667 		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
668 			cpu_info[i].cpu_hyperthread = 1;
669 
670 			/*
671 			 * Don't use HT CPU if it has been disabled by a
672 			 * tunable.
673 			 */
674 			if (hyperthreading_allowed == 0) {
675 				cpu_info[i].cpu_disabled = 1;
676 				continue;
677 			}
678 		}
679 
680 		/* Don't use this CPU if it has been disabled by a tunable. */
681 		if (resource_disabled("lapic", i)) {
682 			cpu_info[i].cpu_disabled = 1;
683 			continue;
684 		}
685 	}
686 
687 	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
688 		hyperthreading_cpus = 0;
689 		cpu_logical = 1;
690 	}
691 
692 	/*
693 	 * Assign CPU IDs to local APIC IDs and disable any CPUs
694 	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
695 	 *
696 	 * To minimize confusion for userland, we attempt to number
697 	 * CPUs such that all threads and cores in a package are
698 	 * grouped together.  For now we assume that the BSP is always
699 	 * the first thread in a package and just start adding APs
700 	 * starting with the BSP's APIC ID.
701 	 */
702 	mp_ncpus = 1;
703 	cpu_apic_ids[0] = boot_cpu_id;
704 	apic_cpuids[boot_cpu_id] = 0;
705 	for (i = boot_cpu_id + 1; i != boot_cpu_id;
706 	     i == MAX_APIC_ID ? i = 0 : i++) {
707 		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
708 		    cpu_info[i].cpu_disabled)
709 			continue;
710 
711 		if (mp_ncpus < MAXCPU) {
712 			cpu_apic_ids[mp_ncpus] = i;
713 			apic_cpuids[i] = mp_ncpus;
714 			mp_ncpus++;
715 		} else
716 			cpu_info[i].cpu_disabled = 1;
717 	}
718 	KASSERT(mp_maxid >= mp_ncpus - 1,
719 	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
720 	    mp_ncpus));
721 }
722 
723 #ifdef COUNT_XINVLTLB_HITS
724 u_int xhits_gbl[MAXCPU];
725 u_int xhits_pg[MAXCPU];
726 u_int xhits_rng[MAXCPU];
727 static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
728 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
729     sizeof(xhits_gbl), "IU", "");
730 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
731     sizeof(xhits_pg), "IU", "");
732 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
733     sizeof(xhits_rng), "IU", "");
734 
735 u_int ipi_global;
736 u_int ipi_page;
737 u_int ipi_range;
738 u_int ipi_range_size;
739 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
740 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
741 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
742 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
743     0, "");
744 
745 u_int ipi_masked_global;
746 u_int ipi_masked_page;
747 u_int ipi_masked_range;
748 u_int ipi_masked_range_size;
749 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
750     &ipi_masked_global, 0, "");
751 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
752     &ipi_masked_page, 0, "");
753 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
754     &ipi_masked_range, 0, "");
755 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
756     &ipi_masked_range_size, 0, "");
757 #endif /* COUNT_XINVLTLB_HITS */
758 
759 /*
760  * Init and startup IPI.
761  */
762 void
763 ipi_startup(int apic_id, int vector)
764 {
765 
766 	/*
767 	 * This attempts to follow the algorithm described in the
768 	 * Intel Multiprocessor Specification v1.4 in section B.4.
769 	 * For each IPI, we allow the local APIC ~20us to deliver the
770 	 * IPI.  If that times out, we panic.
771 	 */
772 
773 	/*
774 	 * first we do an INIT IPI: this INIT IPI might be run, resetting
775 	 * and running the target CPU. OR this INIT IPI might be latched (P5
776 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
777 	 * ignored.
778 	 */
779 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
780 	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
781 	lapic_ipi_wait(100);
782 
783 	/* Explicitly deassert the INIT IPI. */
784 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
785 	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT,
786 	    apic_id);
787 
788 	DELAY(10000);		/* wait ~10mS */
789 
790 	/*
791 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
792 	 * latched, (P5 bug) this 1st STARTUP would then terminate
793 	 * immediately, and the previously started INIT IPI would continue. OR
794 	 * the previous INIT IPI has already run. and this STARTUP IPI will
795 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
796 	 * will run.
797 	 */
798 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
799 	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
800 	    vector, apic_id);
801 	if (!lapic_ipi_wait(100))
802 		panic("Failed to deliver first STARTUP IPI to APIC %d",
803 		    apic_id);
804 	DELAY(200);		/* wait ~200uS */
805 
806 	/*
807 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
808 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
809 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
810 	 * recognized after hardware RESET or INIT IPI.
811 	 */
812 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
813 	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
814 	    vector, apic_id);
815 	if (!lapic_ipi_wait(100))
816 		panic("Failed to deliver second STARTUP IPI to APIC %d",
817 		    apic_id);
818 
819 	DELAY(200);		/* wait ~200uS */
820 }
821 
822 /*
823  * Send an IPI to specified CPU handling the bitmap logic.
824  */
825 void
826 ipi_send_cpu(int cpu, u_int ipi)
827 {
828 	u_int bitmap, old_pending, new_pending;
829 
830 	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
831 
832 	if (IPI_IS_BITMAPED(ipi)) {
833 		bitmap = 1 << ipi;
834 		ipi = IPI_BITMAP_VECTOR;
835 		do {
836 			old_pending = cpu_ipi_pending[cpu];
837 			new_pending = old_pending | bitmap;
838 		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
839 		    old_pending, new_pending));
840 		if (old_pending)
841 			return;
842 	}
843 	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
844 }
845 
846 void
847 ipi_bitmap_handler(struct trapframe frame)
848 {
849 	struct trapframe *oldframe;
850 	struct thread *td;
851 	int cpu = PCPU_GET(cpuid);
852 	u_int ipi_bitmap;
853 
854 	critical_enter();
855 	td = curthread;
856 	td->td_intr_nesting_level++;
857 	oldframe = td->td_intr_frame;
858 	td->td_intr_frame = &frame;
859 	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
860 	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
861 #ifdef COUNT_IPIS
862 		(*ipi_preempt_counts[cpu])++;
863 #endif
864 		sched_preempt(td);
865 	}
866 	if (ipi_bitmap & (1 << IPI_AST)) {
867 #ifdef COUNT_IPIS
868 		(*ipi_ast_counts[cpu])++;
869 #endif
870 		/* Nothing to do for AST */
871 	}
872 	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
873 #ifdef COUNT_IPIS
874 		(*ipi_hardclock_counts[cpu])++;
875 #endif
876 		hardclockintr();
877 	}
878 	td->td_intr_frame = oldframe;
879 	td->td_intr_nesting_level--;
880 	critical_exit();
881 }
882 
883 /*
884  * send an IPI to a set of cpus.
885  */
886 void
887 ipi_selected(cpuset_t cpus, u_int ipi)
888 {
889 	int cpu;
890 
891 	/*
892 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
893 	 * of help in order to understand what is the source.
894 	 * Set the mask of receiving CPUs for this purpose.
895 	 */
896 	if (ipi == IPI_STOP_HARD)
897 		CPU_OR_ATOMIC(&ipi_stop_nmi_pending, &cpus);
898 
899 	while ((cpu = CPU_FFS(&cpus)) != 0) {
900 		cpu--;
901 		CPU_CLR(cpu, &cpus);
902 		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
903 		ipi_send_cpu(cpu, ipi);
904 	}
905 }
906 
907 /*
908  * send an IPI to a specific CPU.
909  */
910 void
911 ipi_cpu(int cpu, u_int ipi)
912 {
913 
914 	/*
915 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
916 	 * of help in order to understand what is the source.
917 	 * Set the mask of receiving CPUs for this purpose.
918 	 */
919 	if (ipi == IPI_STOP_HARD)
920 		CPU_SET_ATOMIC(cpu, &ipi_stop_nmi_pending);
921 
922 	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
923 	ipi_send_cpu(cpu, ipi);
924 }
925 
926 /*
927  * send an IPI to all CPUs EXCEPT myself
928  */
929 void
930 ipi_all_but_self(u_int ipi)
931 {
932 	cpuset_t other_cpus;
933 
934 	other_cpus = all_cpus;
935 	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
936 	if (IPI_IS_BITMAPED(ipi)) {
937 		ipi_selected(other_cpus, ipi);
938 		return;
939 	}
940 
941 	/*
942 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
943 	 * of help in order to understand what is the source.
944 	 * Set the mask of receiving CPUs for this purpose.
945 	 */
946 	if (ipi == IPI_STOP_HARD)
947 		CPU_OR_ATOMIC(&ipi_stop_nmi_pending, &other_cpus);
948 
949 	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
950 	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
951 }
952 
953 int
954 ipi_nmi_handler()
955 {
956 	u_int cpuid;
957 
958 	/*
959 	 * As long as there is not a simple way to know about a NMI's
960 	 * source, if the bitmask for the current CPU is present in
961 	 * the global pending bitword an IPI_STOP_HARD has been issued
962 	 * and should be handled.
963 	 */
964 	cpuid = PCPU_GET(cpuid);
965 	if (!CPU_ISSET(cpuid, &ipi_stop_nmi_pending))
966 		return (1);
967 
968 	CPU_CLR_ATOMIC(cpuid, &ipi_stop_nmi_pending);
969 	cpustop_handler();
970 	return (0);
971 }
972 
973 /*
974  * Handle an IPI_STOP by saving our current context and spinning until we
975  * are resumed.
976  */
977 void
978 cpustop_handler(void)
979 {
980 	u_int cpu;
981 
982 	cpu = PCPU_GET(cpuid);
983 
984 	savectx(&stoppcbs[cpu]);
985 
986 	/* Indicate that we are stopped */
987 	CPU_SET_ATOMIC(cpu, &stopped_cpus);
988 
989 	/* Wait for restart */
990 	while (!CPU_ISSET(cpu, &started_cpus))
991 	    ia32_pause();
992 
993 	CPU_CLR_ATOMIC(cpu, &started_cpus);
994 	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
995 
996 #if defined(__amd64__) && defined(DDB)
997 	amd64_db_resume_dbreg();
998 #endif
999 
1000 	if (cpu == 0 && cpustop_restartfunc != NULL) {
1001 		cpustop_restartfunc();
1002 		cpustop_restartfunc = NULL;
1003 	}
1004 }
1005 
1006 /*
1007  * Handle an IPI_SUSPEND by saving our current context and spinning until we
1008  * are resumed.
1009  */
1010 void
1011 cpususpend_handler(void)
1012 {
1013 	u_int cpu;
1014 
1015 	mtx_assert(&smp_ipi_mtx, MA_NOTOWNED);
1016 
1017 	cpu = PCPU_GET(cpuid);
1018 	if (savectx(&susppcbs[cpu]->sp_pcb)) {
1019 #ifdef __amd64__
1020 		fpususpend(susppcbs[cpu]->sp_fpususpend);
1021 #else
1022 		npxsuspend(susppcbs[cpu]->sp_fpususpend);
1023 #endif
1024 		wbinvd();
1025 		CPU_SET_ATOMIC(cpu, &suspended_cpus);
1026 	} else {
1027 #ifdef __amd64__
1028 		fpuresume(susppcbs[cpu]->sp_fpususpend);
1029 #else
1030 		npxresume(susppcbs[cpu]->sp_fpususpend);
1031 #endif
1032 		pmap_init_pat();
1033 		initializecpu();
1034 		PCPU_SET(switchtime, 0);
1035 		PCPU_SET(switchticks, ticks);
1036 
1037 		/* Indicate that we are resumed */
1038 		CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1039 	}
1040 
1041 	/* Wait for resume */
1042 	while (!CPU_ISSET(cpu, &started_cpus))
1043 		ia32_pause();
1044 
1045 	if (cpu_ops.cpu_resume)
1046 		cpu_ops.cpu_resume();
1047 #ifdef __amd64__
1048 	if (vmm_resume_p)
1049 		vmm_resume_p();
1050 #endif
1051 
1052 	/* Resume MCA and local APIC */
1053 	lapic_xapic_mode();
1054 	mca_resume();
1055 	lapic_setup(0);
1056 
1057 	/* Indicate that we are resumed */
1058 	CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1059 	CPU_CLR_ATOMIC(cpu, &started_cpus);
1060 }
1061 
1062 
1063 void
1064 invlcache_handler(void)
1065 {
1066 #ifdef COUNT_IPIS
1067 	(*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
1068 #endif /* COUNT_IPIS */
1069 
1070 	wbinvd();
1071 	atomic_add_int(&smp_tlb_wait, 1);
1072 }
1073 
1074 /*
1075  * This is called once the rest of the system is up and running and we're
1076  * ready to let the AP's out of the pen.
1077  */
1078 static void
1079 release_aps(void *dummy __unused)
1080 {
1081 
1082 	if (mp_ncpus == 1)
1083 		return;
1084 	atomic_store_rel_int(&aps_ready, 1);
1085 	while (smp_started == 0)
1086 		ia32_pause();
1087 }
1088 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1089 
1090 #ifdef COUNT_IPIS
1091 /*
1092  * Setup interrupt counters for IPI handlers.
1093  */
1094 static void
1095 mp_ipi_intrcnt(void *dummy)
1096 {
1097 	char buf[64];
1098 	int i;
1099 
1100 	CPU_FOREACH(i) {
1101 		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1102 		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1103 		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1104 		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1105 		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1106 		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1107 		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1108 		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1109 		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1110 		intrcnt_add(buf, &ipi_preempt_counts[i]);
1111 		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1112 		intrcnt_add(buf, &ipi_ast_counts[i]);
1113 		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1114 		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1115 		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1116 		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1117 	}
1118 }
1119 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1120 #endif
1121