xref: /freebsd/sys/x86/x86/mp_x86.c (revision e17f5b1d)
1 /*-
2  * Copyright (c) 1996, by Steve Passe
3  * Copyright (c) 2003, by Peter Wemm
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. The name of the developer may NOT be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #ifdef __i386__
31 #include "opt_apic.h"
32 #endif
33 #include "opt_cpu.h"
34 #include "opt_ddb.h"
35 #include "opt_kstack_pages.h"
36 #include "opt_pmap.h"
37 #include "opt_sched.h"
38 #include "opt_smp.h"
39 #include "opt_stack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/cons.h>	/* cngetc() */
45 #include <sys/cpuset.h>
46 #include <sys/csan.h>
47 #ifdef GPROF
48 #include <sys/gmon.h>
49 #endif
50 #include <sys/kdb.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/memrange.h>
56 #include <sys/mutex.h>
57 #include <sys/pcpu.h>
58 #include <sys/proc.h>
59 #include <sys/sched.h>
60 #include <sys/smp.h>
61 #include <sys/sysctl.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_extern.h>
68 #include <vm/vm_map.h>
69 
70 #include <x86/apicreg.h>
71 #include <machine/clock.h>
72 #include <machine/cpu.h>
73 #include <machine/cputypes.h>
74 #include <x86/mca.h>
75 #include <machine/md_var.h>
76 #include <machine/pcb.h>
77 #include <machine/psl.h>
78 #include <machine/smp.h>
79 #include <machine/specialreg.h>
80 #include <machine/stack.h>
81 #include <x86/ucode.h>
82 
83 static MALLOC_DEFINE(M_CPUS, "cpus", "CPU items");
84 
85 /* lock region used by kernel profiling */
86 int	mcount_lock;
87 
88 int	mp_naps;		/* # of Applications processors */
89 int	boot_cpu_id = -1;	/* designated BSP */
90 
91 /* AP uses this during bootstrap.  Do not staticize.  */
92 char *bootSTK;
93 int bootAP;
94 
95 /* Free these after use */
96 void *bootstacks[MAXCPU];
97 void *dpcpu;
98 
99 struct pcb stoppcbs[MAXCPU];
100 struct susppcb **susppcbs;
101 
102 #ifdef COUNT_IPIS
103 /* Interrupt counts. */
104 static u_long *ipi_preempt_counts[MAXCPU];
105 static u_long *ipi_ast_counts[MAXCPU];
106 u_long *ipi_invltlb_counts[MAXCPU];
107 u_long *ipi_invlrng_counts[MAXCPU];
108 u_long *ipi_invlpg_counts[MAXCPU];
109 u_long *ipi_invlcache_counts[MAXCPU];
110 u_long *ipi_rendezvous_counts[MAXCPU];
111 static u_long *ipi_hardclock_counts[MAXCPU];
112 #endif
113 
114 /* Default cpu_ops implementation. */
115 struct cpu_ops cpu_ops;
116 
117 /*
118  * Local data and functions.
119  */
120 
121 static volatile cpuset_t ipi_stop_nmi_pending;
122 
123 volatile cpuset_t resuming_cpus;
124 volatile cpuset_t toresume_cpus;
125 
126 /* used to hold the AP's until we are ready to release them */
127 struct mtx ap_boot_mtx;
128 
129 /* Set to 1 once we're ready to let the APs out of the pen. */
130 volatile int aps_ready = 0;
131 
132 /*
133  * Store data from cpu_add() until later in the boot when we actually setup
134  * the APs.
135  */
136 struct cpu_info *cpu_info;
137 int *apic_cpuids;
138 int cpu_apic_ids[MAXCPU];
139 _Static_assert(MAXCPU <= MAX_APIC_ID,
140     "MAXCPU cannot be larger that MAX_APIC_ID");
141 _Static_assert(xAPIC_MAX_APIC_ID <= MAX_APIC_ID,
142     "xAPIC_MAX_APIC_ID cannot be larger that MAX_APIC_ID");
143 
144 static void	release_aps(void *dummy);
145 static void	cpustop_handler_post(u_int cpu);
146 
147 static int	hyperthreading_allowed = 1;
148 SYSCTL_INT(_machdep, OID_AUTO, hyperthreading_allowed, CTLFLAG_RDTUN,
149 	&hyperthreading_allowed, 0, "Use Intel HTT logical CPUs");
150 
151 static int	hyperthreading_intr_allowed = 0;
152 SYSCTL_INT(_machdep, OID_AUTO, hyperthreading_intr_allowed, CTLFLAG_RDTUN,
153 	&hyperthreading_intr_allowed, 0,
154 	"Allow interrupts on HTT logical CPUs");
155 
156 static struct topo_node topo_root;
157 
158 static int pkg_id_shift;
159 static int node_id_shift;
160 static int core_id_shift;
161 static int disabled_cpus;
162 
163 struct cache_info {
164 	int	id_shift;
165 	int	present;
166 } static caches[MAX_CACHE_LEVELS];
167 
168 unsigned int boot_address;
169 
170 static bool stop_mwait = false;
171 SYSCTL_BOOL(_machdep, OID_AUTO, stop_mwait, CTLFLAG_RWTUN, &stop_mwait, 0,
172     "Use MONITOR/MWAIT when stopping CPU, if available");
173 
174 #define MiB(v)	(v ## ULL << 20)
175 
176 void
177 mem_range_AP_init(void)
178 {
179 
180 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
181 		mem_range_softc.mr_op->initAP(&mem_range_softc);
182 }
183 
184 /*
185  * Round up to the next power of two, if necessary, and then
186  * take log2.
187  * Returns -1 if argument is zero.
188  */
189 static __inline int
190 mask_width(u_int x)
191 {
192 
193 	return (fls(x << (1 - powerof2(x))) - 1);
194 }
195 
196 /*
197  * Add a cache level to the cache topology description.
198  */
199 static int
200 add_deterministic_cache(int type, int level, int share_count)
201 {
202 
203 	if (type == 0)
204 		return (0);
205 	if (type > 3) {
206 		printf("unexpected cache type %d\n", type);
207 		return (1);
208 	}
209 	if (type == 2) /* ignore instruction cache */
210 		return (1);
211 	if (level == 0 || level > MAX_CACHE_LEVELS) {
212 		printf("unexpected cache level %d\n", type);
213 		return (1);
214 	}
215 
216 	if (caches[level - 1].present) {
217 		printf("WARNING: multiple entries for L%u data cache\n", level);
218 		printf("%u => %u\n", caches[level - 1].id_shift,
219 		    mask_width(share_count));
220 	}
221 	caches[level - 1].id_shift = mask_width(share_count);
222 	caches[level - 1].present = 1;
223 
224 	if (caches[level - 1].id_shift > pkg_id_shift) {
225 		printf("WARNING: L%u data cache covers more "
226 		    "APIC IDs than a package (%u > %u)\n", level,
227 		    caches[level - 1].id_shift, pkg_id_shift);
228 		caches[level - 1].id_shift = pkg_id_shift;
229 	}
230 	if (caches[level - 1].id_shift < core_id_shift) {
231 		printf("WARNING: L%u data cache covers fewer "
232 		    "APIC IDs than a core (%u < %u)\n", level,
233 		    caches[level - 1].id_shift, core_id_shift);
234 		caches[level - 1].id_shift = core_id_shift;
235 	}
236 
237 	return (1);
238 }
239 
240 /*
241  * Determine topology of processing units and caches for AMD CPUs.
242  * See:
243  *  - AMD CPUID Specification (Publication # 25481)
244  *  - BKDG for AMD NPT Family 0Fh Processors (Publication # 32559)
245  *  - BKDG For AMD Family 10h Processors (Publication # 31116)
246  *  - BKDG For AMD Family 15h Models 00h-0Fh Processors (Publication # 42301)
247  *  - BKDG For AMD Family 16h Models 00h-0Fh Processors (Publication # 48751)
248  *  - PPR For AMD Family 17h Models 00h-0Fh Processors (Publication # 54945)
249  */
250 static void
251 topo_probe_amd(void)
252 {
253 	u_int p[4];
254 	uint64_t v;
255 	int level;
256 	int nodes_per_socket;
257 	int share_count;
258 	int type;
259 	int i;
260 
261 	/* No multi-core capability. */
262 	if ((amd_feature2 & AMDID2_CMP) == 0)
263 		return;
264 
265 	/* For families 10h and newer. */
266 	pkg_id_shift = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
267 	    AMDID_COREID_SIZE_SHIFT;
268 
269 	/* For 0Fh family. */
270 	if (pkg_id_shift == 0)
271 		pkg_id_shift =
272 		    mask_width((cpu_procinfo2 & AMDID_CMP_CORES) + 1);
273 
274 	/*
275 	 * Families prior to 16h define the following value as
276 	 * cores per compute unit and we don't really care about the AMD
277 	 * compute units at the moment.  Perhaps we should treat them as
278 	 * cores and cores within the compute units as hardware threads,
279 	 * but that's up for debate.
280 	 * Later families define the value as threads per compute unit,
281 	 * so we are following AMD's nomenclature here.
282 	 */
283 	if ((amd_feature2 & AMDID2_TOPOLOGY) != 0 &&
284 	    CPUID_TO_FAMILY(cpu_id) >= 0x16) {
285 		cpuid_count(0x8000001e, 0, p);
286 		share_count = ((p[1] >> 8) & 0xff) + 1;
287 		core_id_shift = mask_width(share_count);
288 
289 		/*
290 		 * For Zen (17h), gather Nodes per Processor.  Each node is a
291 		 * Zeppelin die; TR and EPYC CPUs will have multiple dies per
292 		 * package.  Communication latency between dies is higher than
293 		 * within them.
294 		 */
295 		nodes_per_socket = ((p[2] >> 8) & 0x7) + 1;
296 		node_id_shift = pkg_id_shift - mask_width(nodes_per_socket);
297 	}
298 
299 	if ((amd_feature2 & AMDID2_TOPOLOGY) != 0) {
300 		for (i = 0; ; i++) {
301 			cpuid_count(0x8000001d, i, p);
302 			type = p[0] & 0x1f;
303 			level = (p[0] >> 5) & 0x7;
304 			share_count = 1 + ((p[0] >> 14) & 0xfff);
305 
306 			if (!add_deterministic_cache(type, level, share_count))
307 				break;
308 		}
309 	} else {
310 		if (cpu_exthigh >= 0x80000005) {
311 			cpuid_count(0x80000005, 0, p);
312 			if (((p[2] >> 24) & 0xff) != 0) {
313 				caches[0].id_shift = 0;
314 				caches[0].present = 1;
315 			}
316 		}
317 		if (cpu_exthigh >= 0x80000006) {
318 			cpuid_count(0x80000006, 0, p);
319 			if (((p[2] >> 16) & 0xffff) != 0) {
320 				caches[1].id_shift = 0;
321 				caches[1].present = 1;
322 			}
323 			if (((p[3] >> 18) & 0x3fff) != 0) {
324 				nodes_per_socket = 1;
325 				if ((amd_feature2 & AMDID2_NODE_ID) != 0) {
326 					/*
327 					 * Handle multi-node processors that
328 					 * have multiple chips, each with its
329 					 * own L3 cache, on the same die.
330 					 */
331 					v = rdmsr(0xc001100c);
332 					nodes_per_socket = 1 + ((v >> 3) & 0x7);
333 				}
334 				caches[2].id_shift =
335 				    pkg_id_shift - mask_width(nodes_per_socket);
336 				caches[2].present = 1;
337 			}
338 		}
339 	}
340 }
341 
342 /*
343  * Determine topology of processing units for Intel CPUs
344  * using CPUID Leaf 1 and Leaf 4, if supported.
345  * See:
346  *  - Intel 64 Architecture Processor Topology Enumeration
347  *  - Intel 64 and IA-32 ArchitecturesSoftware Developer’s Manual,
348  *    Volume 3A: System Programming Guide, PROGRAMMING CONSIDERATIONS
349  *    FOR HARDWARE MULTI-THREADING CAPABLE PROCESSORS
350  */
351 static void
352 topo_probe_intel_0x4(void)
353 {
354 	u_int p[4];
355 	int max_cores;
356 	int max_logical;
357 
358 	/* Both zero and one here mean one logical processor per package. */
359 	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
360 	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
361 	if (max_logical <= 1)
362 		return;
363 
364 	if (cpu_high >= 0x4) {
365 		cpuid_count(0x04, 0, p);
366 		max_cores = ((p[0] >> 26) & 0x3f) + 1;
367 	} else
368 		max_cores = 1;
369 
370 	core_id_shift = mask_width(max_logical/max_cores);
371 	KASSERT(core_id_shift >= 0,
372 	    ("intel topo: max_cores > max_logical\n"));
373 	pkg_id_shift = core_id_shift + mask_width(max_cores);
374 }
375 
376 /*
377  * Determine topology of processing units for Intel CPUs
378  * using CPUID Leaf 11, if supported.
379  * See:
380  *  - Intel 64 Architecture Processor Topology Enumeration
381  *  - Intel 64 and IA-32 ArchitecturesSoftware Developer’s Manual,
382  *    Volume 3A: System Programming Guide, PROGRAMMING CONSIDERATIONS
383  *    FOR HARDWARE MULTI-THREADING CAPABLE PROCESSORS
384  */
385 static void
386 topo_probe_intel_0xb(void)
387 {
388 	u_int p[4];
389 	int bits;
390 	int type;
391 	int i;
392 
393 	/* Fall back if CPU leaf 11 doesn't really exist. */
394 	cpuid_count(0x0b, 0, p);
395 	if (p[1] == 0) {
396 		topo_probe_intel_0x4();
397 		return;
398 	}
399 
400 	/* We only support three levels for now. */
401 	for (i = 0; ; i++) {
402 		cpuid_count(0x0b, i, p);
403 
404 		bits = p[0] & 0x1f;
405 		type = (p[2] >> 8) & 0xff;
406 
407 		if (type == 0)
408 			break;
409 
410 		/* TODO: check for duplicate (re-)assignment */
411 		if (type == CPUID_TYPE_SMT)
412 			core_id_shift = bits;
413 		else if (type == CPUID_TYPE_CORE)
414 			pkg_id_shift = bits;
415 		else
416 			printf("unknown CPU level type %d\n", type);
417 	}
418 
419 	if (pkg_id_shift < core_id_shift) {
420 		printf("WARNING: core covers more APIC IDs than a package\n");
421 		core_id_shift = pkg_id_shift;
422 	}
423 }
424 
425 /*
426  * Determine topology of caches for Intel CPUs.
427  * See:
428  *  - Intel 64 Architecture Processor Topology Enumeration
429  *  - Intel 64 and IA-32 Architectures Software Developer’s Manual
430  *    Volume 2A: Instruction Set Reference, A-M,
431  *    CPUID instruction
432  */
433 static void
434 topo_probe_intel_caches(void)
435 {
436 	u_int p[4];
437 	int level;
438 	int share_count;
439 	int type;
440 	int i;
441 
442 	if (cpu_high < 0x4) {
443 		/*
444 		 * Available cache level and sizes can be determined
445 		 * via CPUID leaf 2, but that requires a huge table of hardcoded
446 		 * values, so for now just assume L1 and L2 caches potentially
447 		 * shared only by HTT processing units, if HTT is present.
448 		 */
449 		caches[0].id_shift = pkg_id_shift;
450 		caches[0].present = 1;
451 		caches[1].id_shift = pkg_id_shift;
452 		caches[1].present = 1;
453 		return;
454 	}
455 
456 	for (i = 0; ; i++) {
457 		cpuid_count(0x4, i, p);
458 		type = p[0] & 0x1f;
459 		level = (p[0] >> 5) & 0x7;
460 		share_count = 1 + ((p[0] >> 14) & 0xfff);
461 
462 		if (!add_deterministic_cache(type, level, share_count))
463 			break;
464 	}
465 }
466 
467 /*
468  * Determine topology of processing units and caches for Intel CPUs.
469  * See:
470  *  - Intel 64 Architecture Processor Topology Enumeration
471  */
472 static void
473 topo_probe_intel(void)
474 {
475 
476 	/*
477 	 * Note that 0x1 <= cpu_high < 4 case should be
478 	 * compatible with topo_probe_intel_0x4() logic when
479 	 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
480 	 * or it should trigger the fallback otherwise.
481 	 */
482 	if (cpu_high >= 0xb)
483 		topo_probe_intel_0xb();
484 	else if (cpu_high >= 0x1)
485 		topo_probe_intel_0x4();
486 
487 	topo_probe_intel_caches();
488 }
489 
490 /*
491  * Topology information is queried only on BSP, on which this
492  * code runs and for which it can query CPUID information.
493  * Then topology is extrapolated on all packages using an
494  * assumption that APIC ID to hardware component ID mapping is
495  * homogenious.
496  * That doesn't necesserily imply that the topology is uniform.
497  */
498 void
499 topo_probe(void)
500 {
501 	static int cpu_topo_probed = 0;
502 	struct x86_topo_layer {
503 		int type;
504 		int subtype;
505 		int id_shift;
506 	} topo_layers[MAX_CACHE_LEVELS + 4];
507 	struct topo_node *parent;
508 	struct topo_node *node;
509 	int layer;
510 	int nlayers;
511 	int node_id;
512 	int i;
513 
514 	if (cpu_topo_probed)
515 		return;
516 
517 	CPU_ZERO(&logical_cpus_mask);
518 
519 	if (mp_ncpus <= 1)
520 		; /* nothing */
521 	else if (cpu_vendor_id == CPU_VENDOR_AMD ||
522 	    cpu_vendor_id == CPU_VENDOR_HYGON)
523 		topo_probe_amd();
524 	else if (cpu_vendor_id == CPU_VENDOR_INTEL)
525 		topo_probe_intel();
526 
527 	KASSERT(pkg_id_shift >= core_id_shift,
528 	    ("bug in APIC topology discovery"));
529 
530 	nlayers = 0;
531 	bzero(topo_layers, sizeof(topo_layers));
532 
533 	topo_layers[nlayers].type = TOPO_TYPE_PKG;
534 	topo_layers[nlayers].id_shift = pkg_id_shift;
535 	if (bootverbose)
536 		printf("Package ID shift: %u\n", topo_layers[nlayers].id_shift);
537 	nlayers++;
538 
539 	if (pkg_id_shift > node_id_shift && node_id_shift != 0) {
540 		topo_layers[nlayers].type = TOPO_TYPE_GROUP;
541 		topo_layers[nlayers].id_shift = node_id_shift;
542 		if (bootverbose)
543 			printf("Node ID shift: %u\n",
544 			    topo_layers[nlayers].id_shift);
545 		nlayers++;
546 	}
547 
548 	/*
549 	 * Consider all caches to be within a package/chip
550 	 * and "in front" of all sub-components like
551 	 * cores and hardware threads.
552 	 */
553 	for (i = MAX_CACHE_LEVELS - 1; i >= 0; --i) {
554 		if (caches[i].present) {
555 			if (node_id_shift != 0)
556 				KASSERT(caches[i].id_shift <= node_id_shift,
557 					("bug in APIC topology discovery"));
558 			KASSERT(caches[i].id_shift <= pkg_id_shift,
559 				("bug in APIC topology discovery"));
560 			KASSERT(caches[i].id_shift >= core_id_shift,
561 				("bug in APIC topology discovery"));
562 
563 			topo_layers[nlayers].type = TOPO_TYPE_CACHE;
564 			topo_layers[nlayers].subtype = i + 1;
565 			topo_layers[nlayers].id_shift = caches[i].id_shift;
566 			if (bootverbose)
567 				printf("L%u cache ID shift: %u\n",
568 				    topo_layers[nlayers].subtype,
569 				    topo_layers[nlayers].id_shift);
570 			nlayers++;
571 		}
572 	}
573 
574 	if (pkg_id_shift > core_id_shift) {
575 		topo_layers[nlayers].type = TOPO_TYPE_CORE;
576 		topo_layers[nlayers].id_shift = core_id_shift;
577 		if (bootverbose)
578 			printf("Core ID shift: %u\n",
579 			    topo_layers[nlayers].id_shift);
580 		nlayers++;
581 	}
582 
583 	topo_layers[nlayers].type = TOPO_TYPE_PU;
584 	topo_layers[nlayers].id_shift = 0;
585 	nlayers++;
586 
587 	topo_init_root(&topo_root);
588 	for (i = 0; i <= max_apic_id; ++i) {
589 		if (!cpu_info[i].cpu_present)
590 			continue;
591 
592 		parent = &topo_root;
593 		for (layer = 0; layer < nlayers; ++layer) {
594 			node_id = i >> topo_layers[layer].id_shift;
595 			parent = topo_add_node_by_hwid(parent, node_id,
596 			    topo_layers[layer].type,
597 			    topo_layers[layer].subtype);
598 		}
599 	}
600 
601 	parent = &topo_root;
602 	for (layer = 0; layer < nlayers; ++layer) {
603 		node_id = boot_cpu_id >> topo_layers[layer].id_shift;
604 		node = topo_find_node_by_hwid(parent, node_id,
605 		    topo_layers[layer].type,
606 		    topo_layers[layer].subtype);
607 		topo_promote_child(node);
608 		parent = node;
609 	}
610 
611 	cpu_topo_probed = 1;
612 }
613 
614 /*
615  * Assign logical CPU IDs to local APICs.
616  */
617 void
618 assign_cpu_ids(void)
619 {
620 	struct topo_node *node;
621 	u_int smt_mask;
622 	int nhyper;
623 
624 	smt_mask = (1u << core_id_shift) - 1;
625 
626 	/*
627 	 * Assign CPU IDs to local APIC IDs and disable any CPUs
628 	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
629 	 */
630 	mp_ncpus = 0;
631 	nhyper = 0;
632 	TOPO_FOREACH(node, &topo_root) {
633 		if (node->type != TOPO_TYPE_PU)
634 			continue;
635 
636 		if ((node->hwid & smt_mask) != (boot_cpu_id & smt_mask))
637 			cpu_info[node->hwid].cpu_hyperthread = 1;
638 
639 		if (resource_disabled("lapic", node->hwid)) {
640 			if (node->hwid != boot_cpu_id)
641 				cpu_info[node->hwid].cpu_disabled = 1;
642 			else
643 				printf("Cannot disable BSP, APIC ID = %d\n",
644 				    node->hwid);
645 		}
646 
647 		if (!hyperthreading_allowed &&
648 		    cpu_info[node->hwid].cpu_hyperthread)
649 			cpu_info[node->hwid].cpu_disabled = 1;
650 
651 		if (mp_ncpus >= MAXCPU)
652 			cpu_info[node->hwid].cpu_disabled = 1;
653 
654 		if (cpu_info[node->hwid].cpu_disabled) {
655 			disabled_cpus++;
656 			continue;
657 		}
658 
659 		if (cpu_info[node->hwid].cpu_hyperthread)
660 			nhyper++;
661 
662 		cpu_apic_ids[mp_ncpus] = node->hwid;
663 		apic_cpuids[node->hwid] = mp_ncpus;
664 		topo_set_pu_id(node, mp_ncpus);
665 		mp_ncpus++;
666 	}
667 
668 	KASSERT(mp_maxid >= mp_ncpus - 1,
669 	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
670 	    mp_ncpus));
671 
672 	mp_ncores = mp_ncpus - nhyper;
673 	smp_threads_per_core = mp_ncpus / mp_ncores;
674 }
675 
676 /*
677  * Print various information about the SMP system hardware and setup.
678  */
679 void
680 cpu_mp_announce(void)
681 {
682 	struct topo_node *node;
683 	const char *hyperthread;
684 	struct topo_analysis topology;
685 
686 	printf("FreeBSD/SMP: ");
687 	if (topo_analyze(&topo_root, 1, &topology)) {
688 		printf("%d package(s)", topology.entities[TOPO_LEVEL_PKG]);
689 		if (topology.entities[TOPO_LEVEL_GROUP] > 1)
690 			printf(" x %d groups",
691 			    topology.entities[TOPO_LEVEL_GROUP]);
692 		if (topology.entities[TOPO_LEVEL_CACHEGROUP] > 1)
693 			printf(" x %d cache groups",
694 			    topology.entities[TOPO_LEVEL_CACHEGROUP]);
695 		if (topology.entities[TOPO_LEVEL_CORE] > 0)
696 			printf(" x %d core(s)",
697 			    topology.entities[TOPO_LEVEL_CORE]);
698 		if (topology.entities[TOPO_LEVEL_THREAD] > 1)
699 			printf(" x %d hardware threads",
700 			    topology.entities[TOPO_LEVEL_THREAD]);
701 	} else {
702 		printf("Non-uniform topology");
703 	}
704 	printf("\n");
705 
706 	if (disabled_cpus) {
707 		printf("FreeBSD/SMP Online: ");
708 		if (topo_analyze(&topo_root, 0, &topology)) {
709 			printf("%d package(s)",
710 			    topology.entities[TOPO_LEVEL_PKG]);
711 			if (topology.entities[TOPO_LEVEL_GROUP] > 1)
712 				printf(" x %d groups",
713 				    topology.entities[TOPO_LEVEL_GROUP]);
714 			if (topology.entities[TOPO_LEVEL_CACHEGROUP] > 1)
715 				printf(" x %d cache groups",
716 				    topology.entities[TOPO_LEVEL_CACHEGROUP]);
717 			if (topology.entities[TOPO_LEVEL_CORE] > 0)
718 				printf(" x %d core(s)",
719 				    topology.entities[TOPO_LEVEL_CORE]);
720 			if (topology.entities[TOPO_LEVEL_THREAD] > 1)
721 				printf(" x %d hardware threads",
722 				    topology.entities[TOPO_LEVEL_THREAD]);
723 		} else {
724 			printf("Non-uniform topology");
725 		}
726 		printf("\n");
727 	}
728 
729 	if (!bootverbose)
730 		return;
731 
732 	TOPO_FOREACH(node, &topo_root) {
733 		switch (node->type) {
734 		case TOPO_TYPE_PKG:
735 			printf("Package HW ID = %u\n", node->hwid);
736 			break;
737 		case TOPO_TYPE_CORE:
738 			printf("\tCore HW ID = %u\n", node->hwid);
739 			break;
740 		case TOPO_TYPE_PU:
741 			if (cpu_info[node->hwid].cpu_hyperthread)
742 				hyperthread = "/HT";
743 			else
744 				hyperthread = "";
745 
746 			if (node->subtype == 0)
747 				printf("\t\tCPU (AP%s): APIC ID: %u"
748 				    "(disabled)\n", hyperthread, node->hwid);
749 			else if (node->id == 0)
750 				printf("\t\tCPU0 (BSP): APIC ID: %u\n",
751 				    node->hwid);
752 			else
753 				printf("\t\tCPU%u (AP%s): APIC ID: %u\n",
754 				    node->id, hyperthread, node->hwid);
755 			break;
756 		default:
757 			/* ignored */
758 			break;
759 		}
760 	}
761 }
762 
763 /*
764  * Add a scheduling group, a group of logical processors sharing
765  * a particular cache (and, thus having an affinity), to the scheduling
766  * topology.
767  * This function recursively works on lower level caches.
768  */
769 static void
770 x86topo_add_sched_group(struct topo_node *root, struct cpu_group *cg_root)
771 {
772 	struct topo_node *node;
773 	int nchildren;
774 	int ncores;
775 	int i;
776 
777 	KASSERT(root->type == TOPO_TYPE_SYSTEM || root->type == TOPO_TYPE_CACHE ||
778 	    root->type == TOPO_TYPE_GROUP,
779 	    ("x86topo_add_sched_group: bad type: %u", root->type));
780 	CPU_COPY(&root->cpuset, &cg_root->cg_mask);
781 	cg_root->cg_count = root->cpu_count;
782 	if (root->type == TOPO_TYPE_SYSTEM)
783 		cg_root->cg_level = CG_SHARE_NONE;
784 	else
785 		cg_root->cg_level = root->subtype;
786 
787 	/*
788 	 * Check how many core nodes we have under the given root node.
789 	 * If we have multiple logical processors, but not multiple
790 	 * cores, then those processors must be hardware threads.
791 	 */
792 	ncores = 0;
793 	node = root;
794 	while (node != NULL) {
795 		if (node->type != TOPO_TYPE_CORE) {
796 			node = topo_next_node(root, node);
797 			continue;
798 		}
799 
800 		ncores++;
801 		node = topo_next_nonchild_node(root, node);
802 	}
803 
804 	if (cg_root->cg_level != CG_SHARE_NONE &&
805 	    root->cpu_count > 1 && ncores < 2)
806 		cg_root->cg_flags = CG_FLAG_SMT;
807 
808 	/*
809 	 * Find out how many cache nodes we have under the given root node.
810 	 * We ignore cache nodes that cover all the same processors as the
811 	 * root node.  Also, we do not descend below found cache nodes.
812 	 * That is, we count top-level "non-redundant" caches under the root
813 	 * node.
814 	 */
815 	nchildren = 0;
816 	node = root;
817 	while (node != NULL) {
818 		if ((node->type != TOPO_TYPE_GROUP &&
819 		    node->type != TOPO_TYPE_CACHE) ||
820 		    (root->type != TOPO_TYPE_SYSTEM &&
821 		    CPU_CMP(&node->cpuset, &root->cpuset) == 0)) {
822 			node = topo_next_node(root, node);
823 			continue;
824 		}
825 		nchildren++;
826 		node = topo_next_nonchild_node(root, node);
827 	}
828 
829 	cg_root->cg_child = smp_topo_alloc(nchildren);
830 	cg_root->cg_children = nchildren;
831 
832 	/*
833 	 * Now find again the same cache nodes as above and recursively
834 	 * build scheduling topologies for them.
835 	 */
836 	node = root;
837 	i = 0;
838 	while (node != NULL) {
839 		if ((node->type != TOPO_TYPE_GROUP &&
840 		    node->type != TOPO_TYPE_CACHE) ||
841 		    (root->type != TOPO_TYPE_SYSTEM &&
842 		    CPU_CMP(&node->cpuset, &root->cpuset) == 0)) {
843 			node = topo_next_node(root, node);
844 			continue;
845 		}
846 		cg_root->cg_child[i].cg_parent = cg_root;
847 		x86topo_add_sched_group(node, &cg_root->cg_child[i]);
848 		i++;
849 		node = topo_next_nonchild_node(root, node);
850 	}
851 }
852 
853 /*
854  * Build the MI scheduling topology from the discovered hardware topology.
855  */
856 struct cpu_group *
857 cpu_topo(void)
858 {
859 	struct cpu_group *cg_root;
860 
861 	if (mp_ncpus <= 1)
862 		return (smp_topo_none());
863 
864 	cg_root = smp_topo_alloc(1);
865 	x86topo_add_sched_group(&topo_root, cg_root);
866 	return (cg_root);
867 }
868 
869 static void
870 cpu_alloc(void *dummy __unused)
871 {
872 	/*
873 	 * Dynamically allocate the arrays that depend on the
874 	 * maximum APIC ID.
875 	 */
876 	cpu_info = malloc(sizeof(*cpu_info) * (max_apic_id + 1), M_CPUS,
877 	    M_WAITOK | M_ZERO);
878 	apic_cpuids = malloc(sizeof(*apic_cpuids) * (max_apic_id + 1), M_CPUS,
879 	    M_WAITOK | M_ZERO);
880 }
881 SYSINIT(cpu_alloc, SI_SUB_CPU, SI_ORDER_FIRST, cpu_alloc, NULL);
882 
883 /*
884  * Add a logical CPU to the topology.
885  */
886 void
887 cpu_add(u_int apic_id, char boot_cpu)
888 {
889 
890 	if (apic_id > max_apic_id) {
891 		panic("SMP: APIC ID %d too high", apic_id);
892 		return;
893 	}
894 	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %u added twice",
895 	    apic_id));
896 	cpu_info[apic_id].cpu_present = 1;
897 	if (boot_cpu) {
898 		KASSERT(boot_cpu_id == -1,
899 		    ("CPU %u claims to be BSP, but CPU %u already is", apic_id,
900 		    boot_cpu_id));
901 		boot_cpu_id = apic_id;
902 		cpu_info[apic_id].cpu_bsp = 1;
903 	}
904 	if (bootverbose)
905 		printf("SMP: Added CPU %u (%s)\n", apic_id, boot_cpu ? "BSP" :
906 		    "AP");
907 }
908 
909 void
910 cpu_mp_setmaxid(void)
911 {
912 
913 	/*
914 	 * mp_ncpus and mp_maxid should be already set by calls to cpu_add().
915 	 * If there were no calls to cpu_add() assume this is a UP system.
916 	 */
917 	if (mp_ncpus == 0)
918 		mp_ncpus = 1;
919 }
920 
921 int
922 cpu_mp_probe(void)
923 {
924 
925 	/*
926 	 * Always record BSP in CPU map so that the mbuf init code works
927 	 * correctly.
928 	 */
929 	CPU_SETOF(0, &all_cpus);
930 	return (mp_ncpus > 1);
931 }
932 
933 /* Allocate memory for the AP trampoline. */
934 void
935 alloc_ap_trampoline(vm_paddr_t *physmap, unsigned int *physmap_idx)
936 {
937 	unsigned int i;
938 	bool allocated;
939 
940 	allocated = false;
941 	for (i = *physmap_idx; i <= *physmap_idx; i -= 2) {
942 		/*
943 		 * Find a memory region big enough and below the 1MB boundary
944 		 * for the trampoline code.
945 		 * NB: needs to be page aligned.
946 		 */
947 		if (physmap[i] >= MiB(1) ||
948 		    (trunc_page(physmap[i + 1]) - round_page(physmap[i])) <
949 		    round_page(bootMP_size))
950 			continue;
951 
952 		allocated = true;
953 		/*
954 		 * Try to steal from the end of the region to mimic previous
955 		 * behaviour, else fallback to steal from the start.
956 		 */
957 		if (physmap[i + 1] < MiB(1)) {
958 			boot_address = trunc_page(physmap[i + 1]);
959 			if ((physmap[i + 1] - boot_address) < bootMP_size)
960 				boot_address -= round_page(bootMP_size);
961 			physmap[i + 1] = boot_address;
962 		} else {
963 			boot_address = round_page(physmap[i]);
964 			physmap[i] = boot_address + round_page(bootMP_size);
965 		}
966 		if (physmap[i] == physmap[i + 1] && *physmap_idx != 0) {
967 			memmove(&physmap[i], &physmap[i + 2],
968 			    sizeof(*physmap) * (*physmap_idx - i + 2));
969 			*physmap_idx -= 2;
970 		}
971 		break;
972 	}
973 
974 	if (!allocated) {
975 		boot_address = basemem * 1024 - bootMP_size;
976 		if (bootverbose)
977 			printf(
978 "Cannot find enough space for the boot trampoline, placing it at %#x",
979 			    boot_address);
980 	}
981 }
982 
983 /*
984  * AP CPU's call this to initialize themselves.
985  */
986 void
987 init_secondary_tail(void)
988 {
989 	u_int cpuid;
990 
991 	pmap_activate_boot(vmspace_pmap(proc0.p_vmspace));
992 
993 	/*
994 	 * On real hardware, switch to x2apic mode if possible.  Do it
995 	 * after aps_ready was signalled, to avoid manipulating the
996 	 * mode while BSP might still want to send some IPI to us
997 	 * (second startup IPI is ignored on modern hardware etc).
998 	 */
999 	lapic_xapic_mode();
1000 
1001 	/* Initialize the PAT MSR. */
1002 	pmap_init_pat();
1003 
1004 	/* set up CPU registers and state */
1005 	cpu_setregs();
1006 
1007 	/* set up SSE/NX */
1008 	initializecpu();
1009 
1010 	/* set up FPU state on the AP */
1011 #ifdef __amd64__
1012 	fpuinit();
1013 #else
1014 	npxinit(false);
1015 #endif
1016 
1017 	if (cpu_ops.cpu_init)
1018 		cpu_ops.cpu_init();
1019 
1020 	/* A quick check from sanity claus */
1021 	cpuid = PCPU_GET(cpuid);
1022 	if (PCPU_GET(apic_id) != lapic_id()) {
1023 		printf("SMP: cpuid = %d\n", cpuid);
1024 		printf("SMP: actual apic_id = %d\n", lapic_id());
1025 		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
1026 		panic("cpuid mismatch! boom!!");
1027 	}
1028 
1029 	/* Initialize curthread. */
1030 	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
1031 	PCPU_SET(curthread, PCPU_GET(idlethread));
1032 
1033 	mtx_lock_spin(&ap_boot_mtx);
1034 
1035 	mca_init();
1036 
1037 	/* Init local apic for irq's */
1038 	lapic_setup(1);
1039 
1040 	/* Set memory range attributes for this CPU to match the BSP */
1041 	mem_range_AP_init();
1042 
1043 	smp_cpus++;
1044 
1045 	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
1046 	if (bootverbose)
1047 		printf("SMP: AP CPU #%d Launched!\n", cpuid);
1048 	else
1049 		printf("%s%d%s", smp_cpus == 2 ? "Launching APs: " : "",
1050 		    cpuid, smp_cpus == mp_ncpus ? "\n" : " ");
1051 
1052 	/* Determine if we are a logical CPU. */
1053 	if (cpu_info[PCPU_GET(apic_id)].cpu_hyperthread)
1054 		CPU_SET(cpuid, &logical_cpus_mask);
1055 
1056 	if (bootverbose)
1057 		lapic_dump("AP");
1058 
1059 	if (smp_cpus == mp_ncpus) {
1060 		/* enable IPI's, tlb shootdown, freezes etc */
1061 		atomic_store_rel_int(&smp_started, 1);
1062 	}
1063 
1064 #ifdef __amd64__
1065 	/*
1066 	 * Enable global pages TLB extension
1067 	 * This also implicitly flushes the TLB
1068 	 */
1069 	load_cr4(rcr4() | CR4_PGE);
1070 	if (pmap_pcid_enabled)
1071 		load_cr4(rcr4() | CR4_PCIDE);
1072 	load_ds(_udatasel);
1073 	load_es(_udatasel);
1074 	load_fs(_ufssel);
1075 #endif
1076 
1077 	mtx_unlock_spin(&ap_boot_mtx);
1078 
1079 	/* Wait until all the AP's are up. */
1080 	while (atomic_load_acq_int(&smp_started) == 0)
1081 		ia32_pause();
1082 
1083 #ifndef EARLY_AP_STARTUP
1084 	/* Start per-CPU event timers. */
1085 	cpu_initclocks_ap();
1086 #endif
1087 
1088 	kcsan_cpu_init(cpuid);
1089 
1090 	/*
1091 	 * Assert that smp_after_idle_runnable condition is reasonable.
1092 	 */
1093 	MPASS(PCPU_GET(curpcb) == NULL);
1094 
1095 	sched_throw(NULL);
1096 
1097 	panic("scheduler returned us to %s", __func__);
1098 	/* NOTREACHED */
1099 }
1100 
1101 static void
1102 smp_after_idle_runnable(void *arg __unused)
1103 {
1104 	struct pcpu *pc;
1105 	int cpu;
1106 
1107 	for (cpu = 1; cpu < mp_ncpus; cpu++) {
1108 		pc = pcpu_find(cpu);
1109 		while (atomic_load_ptr(&pc->pc_curpcb) == NULL)
1110 			cpu_spinwait();
1111 		kmem_free((vm_offset_t)bootstacks[cpu], kstack_pages *
1112 		    PAGE_SIZE);
1113 	}
1114 }
1115 SYSINIT(smp_after_idle_runnable, SI_SUB_SMP, SI_ORDER_ANY,
1116     smp_after_idle_runnable, NULL);
1117 
1118 /*
1119  * We tell the I/O APIC code about all the CPUs we want to receive
1120  * interrupts.  If we don't want certain CPUs to receive IRQs we
1121  * can simply not tell the I/O APIC code about them in this function.
1122  * We also do not tell it about the BSP since it tells itself about
1123  * the BSP internally to work with UP kernels and on UP machines.
1124  */
1125 void
1126 set_interrupt_apic_ids(void)
1127 {
1128 	u_int i, apic_id;
1129 
1130 	for (i = 0; i < MAXCPU; i++) {
1131 		apic_id = cpu_apic_ids[i];
1132 		if (apic_id == -1)
1133 			continue;
1134 		if (cpu_info[apic_id].cpu_bsp)
1135 			continue;
1136 		if (cpu_info[apic_id].cpu_disabled)
1137 			continue;
1138 
1139 		/* Don't let hyperthreads service interrupts. */
1140 		if (cpu_info[apic_id].cpu_hyperthread &&
1141 		    !hyperthreading_intr_allowed)
1142 			continue;
1143 
1144 		intr_add_cpu(i);
1145 	}
1146 }
1147 
1148 
1149 #ifdef COUNT_XINVLTLB_HITS
1150 u_int xhits_gbl[MAXCPU];
1151 u_int xhits_pg[MAXCPU];
1152 u_int xhits_rng[MAXCPU];
1153 static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1154     "");
1155 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1156     sizeof(xhits_gbl), "IU", "");
1157 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1158     sizeof(xhits_pg), "IU", "");
1159 SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1160     sizeof(xhits_rng), "IU", "");
1161 
1162 u_int ipi_global;
1163 u_int ipi_page;
1164 u_int ipi_range;
1165 u_int ipi_range_size;
1166 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1167 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1168 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1169 SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
1170     0, "");
1171 #endif /* COUNT_XINVLTLB_HITS */
1172 
1173 /*
1174  * Init and startup IPI.
1175  */
1176 void
1177 ipi_startup(int apic_id, int vector)
1178 {
1179 
1180 	/*
1181 	 * This attempts to follow the algorithm described in the
1182 	 * Intel Multiprocessor Specification v1.4 in section B.4.
1183 	 * For each IPI, we allow the local APIC ~20us to deliver the
1184 	 * IPI.  If that times out, we panic.
1185 	 */
1186 
1187 	/*
1188 	 * first we do an INIT IPI: this INIT IPI might be run, resetting
1189 	 * and running the target CPU. OR this INIT IPI might be latched (P5
1190 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1191 	 * ignored.
1192 	 */
1193 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
1194 	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1195 	lapic_ipi_wait(100);
1196 
1197 	/* Explicitly deassert the INIT IPI. */
1198 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
1199 	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT,
1200 	    apic_id);
1201 
1202 	DELAY(10000);		/* wait ~10mS */
1203 
1204 	/*
1205 	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1206 	 * latched, (P5 bug) this 1st STARTUP would then terminate
1207 	 * immediately, and the previously started INIT IPI would continue. OR
1208 	 * the previous INIT IPI has already run. and this STARTUP IPI will
1209 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1210 	 * will run.
1211 	 */
1212 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1213 	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1214 	    vector, apic_id);
1215 	if (!lapic_ipi_wait(100))
1216 		panic("Failed to deliver first STARTUP IPI to APIC %d",
1217 		    apic_id);
1218 	DELAY(200);		/* wait ~200uS */
1219 
1220 	/*
1221 	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1222 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1223 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1224 	 * recognized after hardware RESET or INIT IPI.
1225 	 */
1226 	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1227 	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1228 	    vector, apic_id);
1229 	if (!lapic_ipi_wait(100))
1230 		panic("Failed to deliver second STARTUP IPI to APIC %d",
1231 		    apic_id);
1232 
1233 	DELAY(200);		/* wait ~200uS */
1234 }
1235 
1236 /*
1237  * Send an IPI to specified CPU handling the bitmap logic.
1238  */
1239 void
1240 ipi_send_cpu(int cpu, u_int ipi)
1241 {
1242 	u_int bitmap, old, new;
1243 	u_int *cpu_bitmap;
1244 
1245 	KASSERT((u_int)cpu < MAXCPU && cpu_apic_ids[cpu] != -1,
1246 	    ("IPI to non-existent CPU %d", cpu));
1247 
1248 	if (IPI_IS_BITMAPED(ipi)) {
1249 		bitmap = 1 << ipi;
1250 		ipi = IPI_BITMAP_VECTOR;
1251 		cpu_bitmap = &cpuid_to_pcpu[cpu]->pc_ipi_bitmap;
1252 		old = *cpu_bitmap;
1253 		for (;;) {
1254 			if ((old & bitmap) == bitmap)
1255 				break;
1256 			new = old | bitmap;
1257 			if (atomic_fcmpset_int(cpu_bitmap, &old, new))
1258 				break;
1259 		}
1260 		if (old)
1261 			return;
1262 	}
1263 	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1264 }
1265 
1266 void
1267 ipi_bitmap_handler(struct trapframe frame)
1268 {
1269 	struct trapframe *oldframe;
1270 	struct thread *td;
1271 	int cpu = PCPU_GET(cpuid);
1272 	u_int ipi_bitmap;
1273 
1274 	td = curthread;
1275 	ipi_bitmap = atomic_readandclear_int(&cpuid_to_pcpu[cpu]->
1276 	    pc_ipi_bitmap);
1277 
1278 	/*
1279 	 * sched_preempt() must be called to clear the pending preempt
1280 	 * IPI to enable delivery of further preempts.  However, the
1281 	 * critical section will cause extra scheduler lock thrashing
1282 	 * when used unconditionally.  Only critical_enter() if
1283 	 * hardclock must also run, which requires the section entry.
1284 	 */
1285 	if (ipi_bitmap & (1 << IPI_HARDCLOCK))
1286 		critical_enter();
1287 
1288 	td->td_intr_nesting_level++;
1289 	oldframe = td->td_intr_frame;
1290 	td->td_intr_frame = &frame;
1291 #if defined(STACK) || defined(DDB)
1292 	if (ipi_bitmap & (1 << IPI_TRACE))
1293 		stack_capture_intr();
1294 #endif
1295 	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1296 #ifdef COUNT_IPIS
1297 		(*ipi_preempt_counts[cpu])++;
1298 #endif
1299 		sched_preempt(td);
1300 	}
1301 	if (ipi_bitmap & (1 << IPI_AST)) {
1302 #ifdef COUNT_IPIS
1303 		(*ipi_ast_counts[cpu])++;
1304 #endif
1305 		/* Nothing to do for AST */
1306 	}
1307 	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1308 #ifdef COUNT_IPIS
1309 		(*ipi_hardclock_counts[cpu])++;
1310 #endif
1311 		hardclockintr();
1312 	}
1313 	td->td_intr_frame = oldframe;
1314 	td->td_intr_nesting_level--;
1315 	if (ipi_bitmap & (1 << IPI_HARDCLOCK))
1316 		critical_exit();
1317 }
1318 
1319 /*
1320  * send an IPI to a set of cpus.
1321  */
1322 void
1323 ipi_selected(cpuset_t cpus, u_int ipi)
1324 {
1325 	int cpu;
1326 
1327 	/*
1328 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1329 	 * of help in order to understand what is the source.
1330 	 * Set the mask of receiving CPUs for this purpose.
1331 	 */
1332 	if (ipi == IPI_STOP_HARD)
1333 		CPU_OR_ATOMIC(&ipi_stop_nmi_pending, &cpus);
1334 
1335 	while ((cpu = CPU_FFS(&cpus)) != 0) {
1336 		cpu--;
1337 		CPU_CLR(cpu, &cpus);
1338 		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1339 		ipi_send_cpu(cpu, ipi);
1340 	}
1341 }
1342 
1343 /*
1344  * send an IPI to a specific CPU.
1345  */
1346 void
1347 ipi_cpu(int cpu, u_int ipi)
1348 {
1349 
1350 	/*
1351 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1352 	 * of help in order to understand what is the source.
1353 	 * Set the mask of receiving CPUs for this purpose.
1354 	 */
1355 	if (ipi == IPI_STOP_HARD)
1356 		CPU_SET_ATOMIC(cpu, &ipi_stop_nmi_pending);
1357 
1358 	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1359 	ipi_send_cpu(cpu, ipi);
1360 }
1361 
1362 /*
1363  * send an IPI to all CPUs EXCEPT myself
1364  */
1365 void
1366 ipi_all_but_self(u_int ipi)
1367 {
1368 	cpuset_t other_cpus;
1369 
1370 	other_cpus = all_cpus;
1371 	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
1372 	if (IPI_IS_BITMAPED(ipi)) {
1373 		ipi_selected(other_cpus, ipi);
1374 		return;
1375 	}
1376 
1377 	/*
1378 	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1379 	 * of help in order to understand what is the source.
1380 	 * Set the mask of receiving CPUs for this purpose.
1381 	 */
1382 	if (ipi == IPI_STOP_HARD)
1383 		CPU_OR_ATOMIC(&ipi_stop_nmi_pending, &other_cpus);
1384 
1385 	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1386 	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1387 }
1388 
1389 int
1390 ipi_nmi_handler(void)
1391 {
1392 	u_int cpuid;
1393 
1394 	/*
1395 	 * As long as there is not a simple way to know about a NMI's
1396 	 * source, if the bitmask for the current CPU is present in
1397 	 * the global pending bitword an IPI_STOP_HARD has been issued
1398 	 * and should be handled.
1399 	 */
1400 	cpuid = PCPU_GET(cpuid);
1401 	if (!CPU_ISSET(cpuid, &ipi_stop_nmi_pending))
1402 		return (1);
1403 
1404 	CPU_CLR_ATOMIC(cpuid, &ipi_stop_nmi_pending);
1405 	cpustop_handler();
1406 	return (0);
1407 }
1408 
1409 int nmi_kdb_lock;
1410 
1411 void
1412 nmi_call_kdb_smp(u_int type, struct trapframe *frame)
1413 {
1414 	int cpu;
1415 	bool call_post;
1416 
1417 	cpu = PCPU_GET(cpuid);
1418 	if (atomic_cmpset_acq_int(&nmi_kdb_lock, 0, 1)) {
1419 		nmi_call_kdb(cpu, type, frame);
1420 		call_post = false;
1421 	} else {
1422 		savectx(&stoppcbs[cpu]);
1423 		CPU_SET_ATOMIC(cpu, &stopped_cpus);
1424 		while (!atomic_cmpset_acq_int(&nmi_kdb_lock, 0, 1))
1425 			ia32_pause();
1426 		call_post = true;
1427 	}
1428 	atomic_store_rel_int(&nmi_kdb_lock, 0);
1429 	if (call_post)
1430 		cpustop_handler_post(cpu);
1431 }
1432 
1433 /*
1434  * Handle an IPI_STOP by saving our current context and spinning (or mwaiting,
1435  * if available) until we are resumed.
1436  */
1437 void
1438 cpustop_handler(void)
1439 {
1440 	struct monitorbuf *mb;
1441 	u_int cpu;
1442 	bool use_mwait;
1443 
1444 	cpu = PCPU_GET(cpuid);
1445 
1446 	savectx(&stoppcbs[cpu]);
1447 
1448 	use_mwait = (stop_mwait && (cpu_feature2 & CPUID2_MON) != 0 &&
1449 	    !mwait_cpustop_broken);
1450 	if (use_mwait) {
1451 		mb = PCPU_PTR(monitorbuf);
1452 		atomic_store_int(&mb->stop_state,
1453 		    MONITOR_STOPSTATE_STOPPED);
1454 	}
1455 
1456 	/* Indicate that we are stopped */
1457 	CPU_SET_ATOMIC(cpu, &stopped_cpus);
1458 
1459 	/* Wait for restart */
1460 	while (!CPU_ISSET(cpu, &started_cpus)) {
1461 		if (use_mwait) {
1462 			cpu_monitor(mb, 0, 0);
1463 			if (atomic_load_int(&mb->stop_state) ==
1464 			    MONITOR_STOPSTATE_STOPPED)
1465 				cpu_mwait(0, MWAIT_C1);
1466 			continue;
1467 		}
1468 
1469 		ia32_pause();
1470 
1471 		/*
1472 		 * Halt non-BSP CPUs on panic -- we're never going to need them
1473 		 * again, and might as well save power / release resources
1474 		 * (e.g., overprovisioned VM infrastructure).
1475 		 */
1476 		while (__predict_false(!IS_BSP() && KERNEL_PANICKED()))
1477 			halt();
1478 	}
1479 
1480 	cpustop_handler_post(cpu);
1481 }
1482 
1483 static void
1484 cpustop_handler_post(u_int cpu)
1485 {
1486 
1487 	CPU_CLR_ATOMIC(cpu, &started_cpus);
1488 	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1489 
1490 	/*
1491 	 * We don't broadcast TLB invalidations to other CPUs when they are
1492 	 * stopped. Hence, we clear the TLB before resuming.
1493 	 */
1494 	invltlb_glob();
1495 
1496 #if defined(__amd64__) && defined(DDB)
1497 	amd64_db_resume_dbreg();
1498 #endif
1499 
1500 	if (cpu == 0 && cpustop_restartfunc != NULL) {
1501 		cpustop_restartfunc();
1502 		cpustop_restartfunc = NULL;
1503 	}
1504 }
1505 
1506 /*
1507  * Handle an IPI_SUSPEND by saving our current context and spinning until we
1508  * are resumed.
1509  */
1510 void
1511 cpususpend_handler(void)
1512 {
1513 	u_int cpu;
1514 
1515 	mtx_assert(&smp_ipi_mtx, MA_NOTOWNED);
1516 
1517 	cpu = PCPU_GET(cpuid);
1518 	if (savectx(&susppcbs[cpu]->sp_pcb)) {
1519 #ifdef __amd64__
1520 		fpususpend(susppcbs[cpu]->sp_fpususpend);
1521 #else
1522 		npxsuspend(susppcbs[cpu]->sp_fpususpend);
1523 #endif
1524 		/*
1525 		 * suspended_cpus is cleared shortly after each AP is restarted
1526 		 * by a Startup IPI, so that the BSP can proceed to restarting
1527 		 * the next AP.
1528 		 *
1529 		 * resuming_cpus gets cleared when the AP completes
1530 		 * initialization after having been released by the BSP.
1531 		 * resuming_cpus is probably not the best name for the
1532 		 * variable, because it is actually a set of processors that
1533 		 * haven't resumed yet and haven't necessarily started resuming.
1534 		 *
1535 		 * Note that suspended_cpus is meaningful only for ACPI suspend
1536 		 * as it's not really used for Xen suspend since the APs are
1537 		 * automatically restored to the running state and the correct
1538 		 * context.  For the same reason resumectx is never called in
1539 		 * that case.
1540 		 */
1541 		CPU_SET_ATOMIC(cpu, &suspended_cpus);
1542 		CPU_SET_ATOMIC(cpu, &resuming_cpus);
1543 
1544 		/*
1545 		 * Invalidate the cache after setting the global status bits.
1546 		 * The last AP to set its bit may end up being an Owner of the
1547 		 * corresponding cache line in MOESI protocol.  The AP may be
1548 		 * stopped before the cache line is written to the main memory.
1549 		 */
1550 		wbinvd();
1551 	} else {
1552 #ifdef __amd64__
1553 		fpuresume(susppcbs[cpu]->sp_fpususpend);
1554 #else
1555 		npxresume(susppcbs[cpu]->sp_fpususpend);
1556 #endif
1557 		pmap_init_pat();
1558 		initializecpu();
1559 		PCPU_SET(switchtime, 0);
1560 		PCPU_SET(switchticks, ticks);
1561 
1562 		/* Indicate that we have restarted and restored the context. */
1563 		CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1564 	}
1565 
1566 	/* Wait for resume directive */
1567 	while (!CPU_ISSET(cpu, &toresume_cpus))
1568 		ia32_pause();
1569 
1570 	/* Re-apply microcode updates. */
1571 	ucode_reload();
1572 
1573 #ifdef __i386__
1574 	/* Finish removing the identity mapping of low memory for this AP. */
1575 	invltlb_glob();
1576 #endif
1577 
1578 	if (cpu_ops.cpu_resume)
1579 		cpu_ops.cpu_resume();
1580 #ifdef __amd64__
1581 	if (vmm_resume_p)
1582 		vmm_resume_p();
1583 #endif
1584 
1585 	/* Resume MCA and local APIC */
1586 	lapic_xapic_mode();
1587 	mca_resume();
1588 	lapic_setup(0);
1589 
1590 	/* Indicate that we are resumed */
1591 	CPU_CLR_ATOMIC(cpu, &resuming_cpus);
1592 	CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1593 	CPU_CLR_ATOMIC(cpu, &toresume_cpus);
1594 }
1595 
1596 /*
1597  * This is called once the rest of the system is up and running and we're
1598  * ready to let the AP's out of the pen.
1599  */
1600 static void
1601 release_aps(void *dummy __unused)
1602 {
1603 
1604 	if (mp_ncpus == 1)
1605 		return;
1606 	atomic_store_rel_int(&aps_ready, 1);
1607 	while (smp_started == 0)
1608 		ia32_pause();
1609 }
1610 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1611 
1612 #ifdef COUNT_IPIS
1613 /*
1614  * Setup interrupt counters for IPI handlers.
1615  */
1616 static void
1617 mp_ipi_intrcnt(void *dummy)
1618 {
1619 	char buf[64];
1620 	int i;
1621 
1622 	CPU_FOREACH(i) {
1623 		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1624 		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1625 		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1626 		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1627 		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1628 		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1629 		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1630 		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1631 		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1632 		intrcnt_add(buf, &ipi_preempt_counts[i]);
1633 		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1634 		intrcnt_add(buf, &ipi_ast_counts[i]);
1635 		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1636 		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1637 		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1638 		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1639 	}
1640 }
1641 SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1642 #endif
1643