xref: /freebsd/tools/tools/ath/athrd/athrd.c (revision f05cddf9)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  *
29  * $FreeBSD$
30  */
31 #include "opt_ah.h"
32 
33 #include "ah.h"
34 
35 #include <net80211/_ieee80211.h>
36 #include <net80211/ieee80211_regdomain.h>
37 
38 #include "ah_internal.h"
39 #include "ah_eeprom_v3.h"		/* XXX */
40 
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <stdarg.h>
44 #include <string.h>
45 #include <unistd.h>
46 #include <ctype.h>
47 
48 int		ath_hal_debug = 0;
49 HAL_CTRY_CODE	cc = CTRY_DEFAULT;
50 HAL_REG_DOMAIN	rd = 169;		/* FCC */
51 HAL_BOOL	Amode = 1;
52 HAL_BOOL	Bmode = 1;
53 HAL_BOOL	Gmode = 1;
54 HAL_BOOL	HT20mode = 1;
55 HAL_BOOL	HT40mode = 1;
56 HAL_BOOL	turbo5Disable = AH_FALSE;
57 HAL_BOOL	turbo2Disable = AH_FALSE;
58 
59 u_int16_t	_numCtls = 8;
60 u_int16_t	_ctl[32] =
61 	{ 0x10, 0x13, 0x40, 0x30, 0x11, 0x31, 0x12, 0x32 };
62 RD_EDGES_POWER	_rdEdgesPower[NUM_EDGES*NUM_CTLS] = {
63 	{ 5180, 28, 0 },	/* 0x10 */
64 	{ 5240, 60, 0 },
65 	{ 5260, 36, 0 },
66 	{ 5320, 27, 0 },
67 	{ 5745, 36, 0 },
68 	{ 5765, 36, 0 },
69 	{ 5805, 36, 0 },
70 	{ 5825, 36, 0 },
71 
72 	{ 5210, 28, 0 },	/* 0x13 */
73 	{ 5250, 28, 0 },
74 	{ 5290, 30, 0 },
75 	{ 5760, 36, 0 },
76 	{ 5800, 36, 0 },
77 	{ 0, 0, 0 },
78 	{ 0, 0, 0 },
79 	{ 0, 0, 0 },
80 
81 	{ 5170, 60, 0 },	/* 0x40 */
82 	{ 5230, 60, 0 },
83 	{ 0, 0, 0 },
84 	{ 0, 0, 0 },
85 	{ 0, 0, 0 },
86 	{ 0, 0, 0 },
87 	{ 0, 0, 0 },
88 	{ 0, 0, 0 },
89 
90 	{ 5180, 33, 0 },	/* 0x30 */
91 	{ 5320, 33, 0 },
92 	{ 5500, 34, 0 },
93 	{ 5700, 34, 0 },
94 	{ 5745, 35, 0 },
95 	{ 5765, 35, 0 },
96 	{ 5785, 35, 0 },
97 	{ 5825, 35, 0 },
98 
99 	{ 2412, 36, 0 },	/* 0x11 */
100 	{ 2417, 36, 0 },
101 	{ 2422, 36, 0 },
102 	{ 2432, 36, 0 },
103 	{ 2442, 36, 0 },
104 	{ 2457, 36, 0 },
105 	{ 2467, 36, 0 },
106 	{ 2472, 36, 0 },
107 
108 	{ 2412, 36, 0 },	/* 0x31 */
109 	{ 2417, 36, 0 },
110 	{ 2422, 36, 0 },
111 	{ 2432, 36, 0 },
112 	{ 2442, 36, 0 },
113 	{ 2457, 36, 0 },
114 	{ 2467, 36, 0 },
115 	{ 2472, 36, 0 },
116 
117 	{ 2412, 36, 0 },	/* 0x12 */
118 	{ 2417, 36, 0 },
119 	{ 2422, 36, 0 },
120 	{ 2432, 36, 0 },
121 	{ 2442, 36, 0 },
122 	{ 2457, 36, 0 },
123 	{ 2467, 36, 0 },
124 	{ 2472, 36, 0 },
125 
126 	{ 2412, 28, 0 },	/* 0x32 */
127 	{ 2417, 28, 0 },
128 	{ 2422, 28, 0 },
129 	{ 2432, 28, 0 },
130 	{ 2442, 28, 0 },
131 	{ 2457, 28, 0 },
132 	{ 2467, 28, 0 },
133 	{ 2472, 28, 0 },
134 };
135 
136 u_int16_t	turbo2WMaxPower5 = 32;
137 u_int16_t	turbo2WMaxPower2;
138 int8_t		antennaGainMax[2] = { 0, 0 };	/* XXX */
139 int		eeversion = AR_EEPROM_VER3_1;
140 TRGT_POWER_ALL_MODES tpow = {
141 	8, {
142 	    { 22, 24, 28, 32, 5180 },
143 	    { 22, 24, 28, 32, 5200 },
144 	    { 22, 24, 28, 32, 5320 },
145 	    { 26, 30, 34, 34, 5500 },
146 	    { 26, 30, 34, 34, 5700 },
147 	    { 20, 30, 34, 36, 5745 },
148 	    { 20, 30, 34, 36, 5825 },
149 	    { 20, 30, 34, 36, 5850 },
150 	},
151 	2, {
152 	    { 23, 27, 31, 34, 2412 },
153 	    { 23, 27, 31, 34, 2447 },
154 	},
155 	2, {
156 	    { 36, 36, 36, 36, 2412 },
157 	    { 36, 36, 36, 36, 2484 },
158 	}
159 };
160 #define	numTargetPwr_11a	tpow.numTargetPwr_11a
161 #define	trgtPwr_11a		tpow.trgtPwr_11a
162 #define	numTargetPwr_11g	tpow.numTargetPwr_11g
163 #define	trgtPwr_11g		tpow.trgtPwr_11g
164 #define	numTargetPwr_11b	tpow.numTargetPwr_11b
165 #define	trgtPwr_11b		tpow.trgtPwr_11b
166 
167 static HAL_BOOL
168 getChannelEdges(struct ath_hal *ah, u_int16_t flags, u_int16_t *low, u_int16_t *high)
169 {
170 	struct ath_hal_private *ahp = AH_PRIVATE(ah);
171 	HAL_CAPABILITIES *pCap = &ahp->ah_caps;
172 
173 	if (flags & IEEE80211_CHAN_5GHZ) {
174 		*low = pCap->halLow5GhzChan;
175 		*high = pCap->halHigh5GhzChan;
176 		return AH_TRUE;
177 	}
178 	if (flags & IEEE80211_CHAN_2GHZ) {
179 		*low = pCap->halLow2GhzChan;
180 		*high = pCap->halHigh2GhzChan;
181 		return AH_TRUE;
182 	}
183 	return AH_FALSE;
184 }
185 
186 static u_int
187 getWirelessModes(struct ath_hal *ah)
188 {
189 	u_int mode = 0;
190 
191 	if (Amode) {
192 		mode = HAL_MODE_11A;
193 		if (!turbo5Disable)
194 			mode |= HAL_MODE_TURBO;
195 	}
196 	if (Bmode)
197 		mode |= HAL_MODE_11B;
198 	if (Gmode) {
199 		mode |= HAL_MODE_11G;
200 		if (!turbo2Disable)
201 			mode |= HAL_MODE_108G;
202 	}
203 	if (HT20mode)
204 		mode |= HAL_MODE_11NG_HT20|HAL_MODE_11NA_HT20;
205 	if (HT40mode)
206 		mode |= HAL_MODE_11NG_HT40PLUS|HAL_MODE_11NA_HT40PLUS
207 		     |  HAL_MODE_11NG_HT40MINUS|HAL_MODE_11NA_HT40MINUS
208 		     ;
209 	return mode;
210 }
211 
212 /* Enumerated Regulatory Domain Information 8 bit values indicate that
213  * the regdomain is really a pair of unitary regdomains.  12 bit values
214  * are the real unitary regdomains and are the only ones which have the
215  * frequency bitmasks and flags set.
216  */
217 
218 enum EnumRd {
219 	/*
220 	 * The following regulatory domain definitions are
221 	 * found in the EEPROM. Each regulatory domain
222 	 * can operate in either a 5GHz or 2.4GHz wireless mode or
223 	 * both 5GHz and 2.4GHz wireless modes.
224 	 * In general, the value holds no special
225 	 * meaning and is used to decode into either specific
226 	 * 2.4GHz or 5GHz wireless mode for that particular
227 	 * regulatory domain.
228 	 */
229 	NO_ENUMRD	= 0x00,
230 	NULL1_WORLD	= 0x03,		/* For 11b-only countries (no 11a allowed) */
231 	NULL1_ETSIB	= 0x07,		/* Israel */
232 	NULL1_ETSIC	= 0x08,
233 	FCC1_FCCA	= 0x10,		/* USA */
234 	FCC1_WORLD	= 0x11,		/* Hong Kong */
235 	FCC4_FCCA	= 0x12,		/* USA - Public Safety */
236 
237 	FCC2_FCCA	= 0x20,		/* Canada */
238 	FCC2_WORLD	= 0x21,		/* Australia & HK */
239 	FCC2_ETSIC	= 0x22,
240 	FRANCE_RES	= 0x31,		/* Legacy France for OEM */
241 	FCC3_FCCA	= 0x3A,		/* USA & Canada w/5470 band, 11h, DFS enabled */
242 	FCC3_WORLD  = 0x3B,     /* USA & Canada w/5470 band, 11h, DFS enabled */
243 
244 	ETSI1_WORLD	= 0x37,
245 	ETSI3_ETSIA	= 0x32,		/* France (optional) */
246 	ETSI2_WORLD	= 0x35,		/* Hungary & others */
247 	ETSI3_WORLD	= 0x36,		/* France & others */
248 	ETSI4_WORLD	= 0x30,
249 	ETSI4_ETSIC	= 0x38,
250 	ETSI5_WORLD	= 0x39,
251 	ETSI6_WORLD	= 0x34,		/* Bulgaria */
252 	ETSI_RESERVED	= 0x33,		/* Reserved (Do not used) */
253 
254 	MKK1_MKKA	= 0x40,		/* Japan (JP1) */
255 	MKK1_MKKB	= 0x41,		/* Japan (JP0) */
256 	APL4_WORLD	= 0x42,		/* Singapore */
257 	MKK2_MKKA	= 0x43,		/* Japan with 4.9G channels */
258 	APL_RESERVED	= 0x44,		/* Reserved (Do not used)  */
259 	APL2_WORLD	= 0x45,		/* Korea */
260 	APL2_APLC	= 0x46,
261 	APL3_WORLD	= 0x47,
262 	MKK1_FCCA	= 0x48,		/* Japan (JP1-1) */
263 	APL2_APLD	= 0x49,		/* Korea with 2.3G channels */
264 	MKK1_MKKA1	= 0x4A,		/* Japan (JE1) */
265 	MKK1_MKKA2	= 0x4B,		/* Japan (JE2) */
266 	MKK1_MKKC	= 0x4C,		/* Japan (MKK1_MKKA,except Ch14) */
267 
268 	APL3_FCCA   = 0x50,
269 	APL1_WORLD	= 0x52,		/* Latin America */
270 	APL1_FCCA	= 0x53,
271 	APL1_APLA	= 0x54,
272 	APL1_ETSIC	= 0x55,
273 	APL2_ETSIC	= 0x56,		/* Venezuela */
274 	APL5_WORLD	= 0x58,		/* Chile */
275 	APL6_WORLD	= 0x5B,		/* Singapore */
276 	APL7_FCCA   = 0x5C,     /* Taiwan 5.47 Band */
277 	APL8_WORLD  = 0x5D,     /* Malaysia 5GHz */
278 	APL9_WORLD  = 0x5E,     /* Korea 5GHz */
279 
280 	/*
281 	 * World mode SKUs
282 	 */
283 	WOR0_WORLD	= 0x60,		/* World0 (WO0 SKU) */
284 	WOR1_WORLD	= 0x61,		/* World1 (WO1 SKU) */
285 	WOR2_WORLD	= 0x62,		/* World2 (WO2 SKU) */
286 	WOR3_WORLD	= 0x63,		/* World3 (WO3 SKU) */
287 	WOR4_WORLD	= 0x64,		/* World4 (WO4 SKU) */
288 	WOR5_ETSIC	= 0x65,		/* World5 (WO5 SKU) */
289 
290 	WOR01_WORLD	= 0x66,		/* World0-1 (WW0-1 SKU) */
291 	WOR02_WORLD	= 0x67,		/* World0-2 (WW0-2 SKU) */
292 	EU1_WORLD	= 0x68,		/* Same as World0-2 (WW0-2 SKU), except active scan ch1-13. No ch14 */
293 
294 	WOR9_WORLD	= 0x69,		/* World9 (WO9 SKU) */
295 	WORA_WORLD	= 0x6A,		/* WorldA (WOA SKU) */
296 
297 	MKK3_MKKB	= 0x80,		/* Japan UNI-1 even + MKKB */
298 	MKK3_MKKA2	= 0x81,		/* Japan UNI-1 even + MKKA2 */
299 	MKK3_MKKC	= 0x82,		/* Japan UNI-1 even + MKKC */
300 
301 	MKK4_MKKB	= 0x83,		/* Japan UNI-1 even + UNI-2 + MKKB */
302 	MKK4_MKKA2	= 0x84,		/* Japan UNI-1 even + UNI-2 + MKKA2 */
303 	MKK4_MKKC	= 0x85,		/* Japan UNI-1 even + UNI-2 + MKKC */
304 
305 	MKK5_MKKB	= 0x86,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKB */
306 	MKK5_MKKA2	= 0x87,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKA2 */
307 	MKK5_MKKC	= 0x88,		/* Japan UNI-1 even + UNI-2 + mid-band + MKKC */
308 
309 	MKK6_MKKB	= 0x89,		/* Japan UNI-1 even + UNI-1 odd MKKB */
310 	MKK6_MKKA2	= 0x8A,		/* Japan UNI-1 even + UNI-1 odd + MKKA2 */
311 	MKK6_MKKC	= 0x8B,		/* Japan UNI-1 even + UNI-1 odd + MKKC */
312 
313 	MKK7_MKKB	= 0x8C,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKB */
314 	MKK7_MKKA2	= 0x8D,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKA2 */
315 	MKK7_MKKC	= 0x8E,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKC */
316 
317 	MKK8_MKKB	= 0x8F,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKB */
318 	MKK8_MKKA2	= 0x90,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKA2 */
319 	MKK8_MKKC	= 0x91,		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKC */
320 
321 	/* Following definitions are used only by s/w to map old
322  	 * Japan SKUs.
323 	 */
324 	MKK3_MKKA       = 0xF0,         /* Japan UNI-1 even + MKKA */
325 	MKK3_MKKA1      = 0xF1,         /* Japan UNI-1 even + MKKA1 */
326 	MKK3_FCCA       = 0xF2,         /* Japan UNI-1 even + FCCA */
327 	MKK4_MKKA       = 0xF3,         /* Japan UNI-1 even + UNI-2 + MKKA */
328 	MKK4_MKKA1      = 0xF4,         /* Japan UNI-1 even + UNI-2 + MKKA1 */
329 	MKK4_FCCA       = 0xF5,         /* Japan UNI-1 even + UNI-2 + FCCA */
330 	MKK9_MKKA       = 0xF6,         /* Japan UNI-1 even + 4.9GHz */
331 	MKK10_MKKA      = 0xF7,         /* Japan UNI-1 even + UNI-2 + 4.9GHz */
332 
333 	/*
334 	 * Regulator domains ending in a number (e.g. APL1,
335 	 * MK1, ETSI4, etc) apply to 5GHz channel and power
336 	 * information.  Regulator domains ending in a letter
337 	 * (e.g. APLA, FCCA, etc) apply to 2.4GHz channel and
338 	 * power information.
339 	 */
340 	APL1		= 0x0150,	/* LAT & Asia */
341 	APL2		= 0x0250,	/* LAT & Asia */
342 	APL3		= 0x0350,	/* Taiwan */
343 	APL4		= 0x0450,	/* Jordan */
344 	APL5		= 0x0550,	/* Chile */
345 	APL6		= 0x0650,	/* Singapore */
346 	APL8		= 0x0850,	/* Malaysia */
347 	APL9		= 0x0950,	/* Korea (South) ROC 3 */
348 
349 	ETSI1		= 0x0130,	/* Europe & others */
350 	ETSI2		= 0x0230,	/* Europe & others */
351 	ETSI3		= 0x0330,	/* Europe & others */
352 	ETSI4		= 0x0430,	/* Europe & others */
353 	ETSI5		= 0x0530,	/* Europe & others */
354 	ETSI6		= 0x0630,	/* Europe & others */
355 	ETSIA		= 0x0A30,	/* France */
356 	ETSIB		= 0x0B30,	/* Israel */
357 	ETSIC		= 0x0C30,	/* Latin America */
358 
359 	FCC1		= 0x0110,	/* US & others */
360 	FCC2		= 0x0120,	/* Canada, Australia & New Zealand */
361 	FCC3		= 0x0160,	/* US w/new middle band & DFS */
362 	FCC4          	= 0x0165,     	/* US Public Safety */
363 	FCCA		= 0x0A10,
364 
365 	APLD		= 0x0D50,	/* South Korea */
366 
367 	MKK1		= 0x0140,	/* Japan (UNI-1 odd)*/
368 	MKK2		= 0x0240,	/* Japan (4.9 GHz + UNI-1 odd) */
369 	MKK3		= 0x0340,	/* Japan (UNI-1 even) */
370 	MKK4		= 0x0440,	/* Japan (UNI-1 even + UNI-2) */
371 	MKK5		= 0x0540,	/* Japan (UNI-1 even + UNI-2 + mid-band) */
372 	MKK6		= 0x0640,	/* Japan (UNI-1 odd + UNI-1 even) */
373 	MKK7		= 0x0740,	/* Japan (UNI-1 odd + UNI-1 even + UNI-2 */
374 	MKK8		= 0x0840,	/* Japan (UNI-1 odd + UNI-1 even + UNI-2 + mid-band) */
375 	MKK9            = 0x0940,       /* Japan (UNI-1 even + 4.9 GHZ) */
376 	MKK10           = 0x0B40,       /* Japan (UNI-1 even + UNI-2 + 4.9 GHZ) */
377 	MKKA		= 0x0A40,	/* Japan */
378 	MKKC		= 0x0A50,
379 
380 	NULL1		= 0x0198,
381 	WORLD		= 0x0199,
382 	DEBUG_REG_DMN	= 0x01ff,
383 };
384 #define DEF_REGDMN		FCC1_FCCA
385 
386 static struct {
387 	const char *name;
388 	HAL_REG_DOMAIN rd;
389 } domains[] = {
390 #define	D(_x)	{ #_x, _x }
391 	D(NO_ENUMRD),
392 	D(NULL1_WORLD),		/* For 11b-only countries (no 11a allowed) */
393 	D(NULL1_ETSIB),		/* Israel */
394 	D(NULL1_ETSIC),
395 	D(FCC1_FCCA),		/* USA */
396 	D(FCC1_WORLD),		/* Hong Kong */
397 	D(FCC4_FCCA),		/* USA - Public Safety */
398 
399 	D(FCC2_FCCA),		/* Canada */
400 	D(FCC2_WORLD),		/* Australia & HK */
401 	D(FCC2_ETSIC),
402 	D(FRANCE_RES),		/* Legacy France for OEM */
403 	D(FCC3_FCCA),
404 	D(FCC3_WORLD),
405 
406 	D(ETSI1_WORLD),
407 	D(ETSI3_ETSIA),		/* France (optional) */
408 	D(ETSI2_WORLD),		/* Hungary & others */
409 	D(ETSI3_WORLD),		/* France & others */
410 	D(ETSI4_WORLD),
411 	D(ETSI4_ETSIC),
412 	D(ETSI5_WORLD),
413 	D(ETSI6_WORLD),		/* Bulgaria */
414 	D(ETSI_RESERVED),		/* Reserved (Do not used) */
415 
416 	D(MKK1_MKKA),		/* Japan (JP1) */
417 	D(MKK1_MKKB),		/* Japan (JP0) */
418 	D(APL4_WORLD),		/* Singapore */
419 	D(MKK2_MKKA),		/* Japan with 4.9G channels */
420 	D(APL_RESERVED),		/* Reserved (Do not used)  */
421 	D(APL2_WORLD),		/* Korea */
422 	D(APL2_APLC),
423 	D(APL3_WORLD),
424 	D(MKK1_FCCA),		/* Japan (JP1-1) */
425 	D(APL2_APLD),		/* Korea with 2.3G channels */
426 	D(MKK1_MKKA1),		/* Japan (JE1) */
427 	D(MKK1_MKKA2),		/* Japan (JE2) */
428 	D(MKK1_MKKC),
429 
430 	D(APL3_FCCA),
431 	D(APL1_WORLD),		/* Latin America */
432 	D(APL1_FCCA),
433 	D(APL1_APLA),
434 	D(APL1_ETSIC),
435 	D(APL2_ETSIC),		/* Venezuela */
436 	D(APL5_WORLD),		/* Chile */
437 	D(APL6_WORLD),		/* Singapore */
438 	D(APL7_FCCA),     /* Taiwan 5.47 Band */
439 	D(APL8_WORLD),     /* Malaysia 5GHz */
440 	D(APL9_WORLD),     /* Korea 5GHz */
441 
442 	D(WOR0_WORLD),		/* World0 (WO0 SKU) */
443 	D(WOR1_WORLD),		/* World1 (WO1 SKU) */
444 	D(WOR2_WORLD),		/* World2 (WO2 SKU) */
445 	D(WOR3_WORLD),		/* World3 (WO3 SKU) */
446 	D(WOR4_WORLD),		/* World4 (WO4 SKU) */
447 	D(WOR5_ETSIC),		/* World5 (WO5 SKU) */
448 
449 	D(WOR01_WORLD),		/* World0-1 (WW0-1 SKU) */
450 	D(WOR02_WORLD),		/* World0-2 (WW0-2 SKU) */
451 	D(EU1_WORLD),
452 
453 	D(WOR9_WORLD),		/* World9 (WO9 SKU) */
454 	D(WORA_WORLD),		/* WorldA (WOA SKU) */
455 
456 	D(MKK3_MKKB),		/* Japan UNI-1 even + MKKB */
457 	D(MKK3_MKKA2),		/* Japan UNI-1 even + MKKA2 */
458 	D(MKK3_MKKC),		/* Japan UNI-1 even + MKKC */
459 
460 	D(MKK4_MKKB),		/* Japan UNI-1 even + UNI-2 + MKKB */
461 	D(MKK4_MKKA2),		/* Japan UNI-1 even + UNI-2 + MKKA2 */
462 	D(MKK4_MKKC),		/* Japan UNI-1 even + UNI-2 + MKKC */
463 
464 	D(MKK5_MKKB),		/* Japan UNI-1 even + UNI-2 + mid-band + MKKB */
465 	D(MKK5_MKKA2),		/* Japan UNI-1 even + UNI-2 + mid-band + MKKA2 */
466 	D(MKK5_MKKC),		/* Japan UNI-1 even + UNI-2 + mid-band + MKKC */
467 
468 	D(MKK6_MKKB),		/* Japan UNI-1 even + UNI-1 odd MKKB */
469 	D(MKK6_MKKA2),		/* Japan UNI-1 even + UNI-1 odd + MKKA2 */
470 	D(MKK6_MKKC),		/* Japan UNI-1 even + UNI-1 odd + MKKC */
471 
472 	D(MKK7_MKKB),		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKB */
473 	D(MKK7_MKKA2),		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKA2 */
474 	D(MKK7_MKKC),		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + MKKC */
475 
476 	D(MKK8_MKKB),		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKB */
477 	D(MKK8_MKKA2),		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKA2 */
478 	D(MKK8_MKKC),		/* Japan UNI-1 even + UNI-1 odd + UNI-2 + mid-band + MKKC */
479 
480 	D(MKK3_MKKA),         /* Japan UNI-1 even + MKKA */
481 	D(MKK3_MKKA1),         /* Japan UNI-1 even + MKKA1 */
482 	D(MKK3_FCCA),         /* Japan UNI-1 even + FCCA */
483 	D(MKK4_MKKA),         /* Japan UNI-1 even + UNI-2 + MKKA */
484 	D(MKK4_MKKA1),         /* Japan UNI-1 even + UNI-2 + MKKA1 */
485 	D(MKK4_FCCA),         /* Japan UNI-1 even + UNI-2 + FCCA */
486 	D(MKK9_MKKA),         /* Japan UNI-1 even + 4.9GHz */
487 	D(MKK10_MKKA),         /* Japan UNI-1 even + UNI-2 + 4.9GHz */
488 
489 	D(APL1),	/* LAT & Asia */
490 	D(APL2),	/* LAT & Asia */
491 	D(APL3),	/* Taiwan */
492 	D(APL4),	/* Jordan */
493 	D(APL5),	/* Chile */
494 	D(APL6),	/* Singapore */
495 	D(APL8),	/* Malaysia */
496 	D(APL9),	/* Korea (South) ROC 3 */
497 
498 	D(ETSI1),	/* Europe & others */
499 	D(ETSI2),	/* Europe & others */
500 	D(ETSI3),	/* Europe & others */
501 	D(ETSI4),	/* Europe & others */
502 	D(ETSI5),	/* Europe & others */
503 	D(ETSI6),	/* Europe & others */
504 	D(ETSIA),	/* France */
505 	D(ETSIB),	/* Israel */
506 	D(ETSIC),	/* Latin America */
507 
508 	D(FCC1),	/* US & others */
509 	D(FCC2),
510 	D(FCC3),	/* US w/new middle band & DFS */
511 	D(FCC4),     	/* US Public Safety */
512 	D(FCCA),
513 
514 	D(APLD),	/* South Korea */
515 
516 	D(MKK1),	/* Japan (UNI-1 odd)*/
517 	D(MKK2),	/* Japan (4.9 GHz + UNI-1 odd) */
518 	D(MKK3),	/* Japan (UNI-1 even) */
519 	D(MKK4),	/* Japan (UNI-1 even + UNI-2) */
520 	D(MKK5),	/* Japan (UNI-1 even + UNI-2 + mid-band) */
521 	D(MKK6),	/* Japan (UNI-1 odd + UNI-1 even) */
522 	D(MKK7),	/* Japan (UNI-1 odd + UNI-1 even + UNI-2 */
523 	D(MKK8),	/* Japan (UNI-1 odd + UNI-1 even + UNI-2 + mid-band) */
524 	D(MKK9),       /* Japan (UNI-1 even + 4.9 GHZ) */
525 	D(MKK10),       /* Japan (UNI-1 even + UNI-2 + 4.9 GHZ) */
526 	D(MKKA),	/* Japan */
527 	D(MKKC),
528 
529 	D(NULL1),
530 	D(WORLD),
531 	D(DEBUG_REG_DMN),
532 #undef D
533 };
534 
535 static HAL_BOOL
536 rdlookup(const char *name, HAL_REG_DOMAIN *rd)
537 {
538 #define	N(a)	(sizeof(a)/sizeof(a[0]))
539 	int i;
540 
541 	for (i = 0; i < N(domains); i++)
542 		if (strcasecmp(domains[i].name, name) == 0) {
543 			*rd = domains[i].rd;
544 			return AH_TRUE;
545 		}
546 	return AH_FALSE;
547 #undef N
548 }
549 
550 static const char *
551 getrdname(HAL_REG_DOMAIN rd)
552 {
553 #define	N(a)	(sizeof(a)/sizeof(a[0]))
554 	int i;
555 
556 	for (i = 0; i < N(domains); i++)
557 		if (domains[i].rd == rd)
558 			return domains[i].name;
559 	return NULL;
560 #undef N
561 }
562 
563 static void
564 rdlist()
565 {
566 #define	N(a)	(sizeof(a)/sizeof(a[0]))
567 	int i;
568 
569 	printf("\nRegulatory domains:\n\n");
570 	for (i = 0; i < N(domains); i++)
571 		printf("%-15s%s", domains[i].name,
572 			((i+1)%5) == 0 ? "\n" : "");
573 	printf("\n");
574 #undef N
575 }
576 
577 typedef struct {
578 	HAL_CTRY_CODE	countryCode;
579 	HAL_REG_DOMAIN	regDmnEnum;
580 	const char*	isoName;
581 	const char*	name;
582 } COUNTRY_CODE_TO_ENUM_RD;
583 
584 /*
585  * Country Code Table to Enumerated RD
586  */
587 static COUNTRY_CODE_TO_ENUM_RD allCountries[] = {
588     {CTRY_DEBUG,       NO_ENUMRD,     "DB", "DEBUG" },
589     {CTRY_DEFAULT,     DEF_REGDMN,    "NA", "NO_COUNTRY_SET" },
590     {CTRY_ALBANIA,     NULL1_WORLD,   "AL", "ALBANIA" },
591     {CTRY_ALGERIA,     NULL1_WORLD,   "DZ", "ALGERIA" },
592     {CTRY_ARGENTINA,   APL3_WORLD,    "AR", "ARGENTINA" },
593     {CTRY_ARMENIA,     ETSI4_WORLD,   "AM", "ARMENIA" },
594     {CTRY_AUSTRALIA,   FCC2_WORLD,    "AU", "AUSTRALIA" },
595     {CTRY_AUSTRIA,     ETSI1_WORLD,   "AT", "AUSTRIA" },
596     {CTRY_AZERBAIJAN,  ETSI4_WORLD,   "AZ", "AZERBAIJAN" },
597     {CTRY_BAHRAIN,     APL6_WORLD,   "BH", "BAHRAIN" },
598     {CTRY_BELARUS,     NULL1_WORLD,   "BY", "BELARUS" },
599     {CTRY_BELGIUM,     ETSI1_WORLD,   "BE", "BELGIUM" },
600     {CTRY_BELIZE,      APL1_ETSIC,    "BZ", "BELIZE" },
601     {CTRY_BOLIVIA,     APL1_ETSIC,    "BO", "BOLVIA" },
602     {CTRY_BRAZIL,      FCC3_WORLD,    "BR", "BRAZIL" },
603     {CTRY_BRUNEI_DARUSSALAM,APL1_WORLD,"BN", "BRUNEI DARUSSALAM" },
604     {CTRY_BULGARIA,    ETSI6_WORLD,   "BG", "BULGARIA" },
605     {CTRY_CANADA,      FCC2_FCCA,     "CA", "CANADA" },
606     {CTRY_CHILE,       APL6_WORLD,    "CL", "CHILE" },
607     {CTRY_CHINA,       APL1_WORLD,    "CN", "CHINA" },
608     {CTRY_COLOMBIA,    FCC1_FCCA,     "CO", "COLOMBIA" },
609     {CTRY_COSTA_RICA,  NULL1_WORLD,   "CR", "COSTA RICA" },
610     {CTRY_CROATIA,     ETSI3_WORLD,   "HR", "CROATIA" },
611     {CTRY_CYPRUS,      ETSI1_WORLD,   "CY", "CYPRUS" },
612     {CTRY_CZECH,       ETSI3_WORLD,   "CZ", "CZECH REPUBLIC" },
613     {CTRY_DENMARK,     ETSI1_WORLD,   "DK", "DENMARK" },
614     {CTRY_DOMINICAN_REPUBLIC,FCC1_FCCA,"DO", "DOMINICAN REPUBLIC" },
615     {CTRY_ECUADOR,     NULL1_WORLD,   "EC", "ECUADOR" },
616     {CTRY_EGYPT,       ETSI3_WORLD,   "EG", "EGYPT" },
617     {CTRY_EL_SALVADOR, NULL1_WORLD,   "SV", "EL SALVADOR" },
618     {CTRY_ESTONIA,     ETSI1_WORLD,   "EE", "ESTONIA" },
619     {CTRY_FINLAND,     ETSI1_WORLD,   "FI", "FINLAND" },
620     {CTRY_FRANCE,      ETSI3_WORLD,   "FR", "FRANCE" },
621     {CTRY_FRANCE2,     ETSI3_WORLD,   "F2", "FRANCE_RES" },
622     {CTRY_GEORGIA,     ETSI4_WORLD,   "GE", "GEORGIA" },
623     {CTRY_GERMANY,     ETSI1_WORLD,   "DE", "GERMANY" },
624     {CTRY_GREECE,      ETSI1_WORLD,   "GR", "GREECE" },
625     {CTRY_GUATEMALA,   FCC1_FCCA,     "GT", "GUATEMALA" },
626     {CTRY_HONDURAS,    NULL1_WORLD,   "HN", "HONDURAS" },
627     {CTRY_HONG_KONG,   FCC2_WORLD,    "HK", "HONG KONG" },
628     {CTRY_HUNGARY,     ETSI1_WORLD,   "HU", "HUNGARY" },
629     {CTRY_ICELAND,     ETSI1_WORLD,   "IS", "ICELAND" },
630     {CTRY_INDIA,       APL6_WORLD,    "IN", "INDIA" },
631     {CTRY_INDONESIA,   APL1_WORLD,    "ID", "INDONESIA" },
632     {CTRY_IRAN,        APL1_WORLD,    "IR", "IRAN" },
633     {CTRY_IRELAND,     ETSI1_WORLD,   "IE", "IRELAND" },
634     {CTRY_ISRAEL,      NULL1_WORLD,   "IL", "ISRAEL" },
635     {CTRY_ITALY,       ETSI1_WORLD,   "IT", "ITALY" },
636     {CTRY_JAPAN,       MKK1_MKKA,     "JP", "JAPAN" },
637     {CTRY_JAPAN1,      MKK1_MKKB,     "JP", "JAPAN1" },
638     {CTRY_JAPAN2,      MKK1_FCCA,     "JP", "JAPAN2" },
639     {CTRY_JAPAN3,      MKK2_MKKA,     "JP", "JAPAN3" },
640     {CTRY_JAPAN4,      MKK1_MKKA1,    "JP", "JAPAN4" },
641     {CTRY_JAPAN5,      MKK1_MKKA2,    "JP", "JAPAN5" },
642     {CTRY_JAPAN6,      MKK1_MKKC,     "JP", "JAPAN6" },
643 
644     {CTRY_JAPAN7,      MKK3_MKKB,     "JP", "JAPAN7" },
645     {CTRY_JAPAN8,      MKK3_MKKA2,    "JP", "JAPAN8" },
646     {CTRY_JAPAN9,      MKK3_MKKC,     "JP", "JAPAN9" },
647 
648     {CTRY_JAPAN10,      MKK4_MKKB,     "JP", "JAPAN10" },
649     {CTRY_JAPAN11,      MKK4_MKKA2,    "JP", "JAPAN11" },
650     {CTRY_JAPAN12,      MKK4_MKKC,     "JP", "JAPAN12" },
651 
652     {CTRY_JAPAN13,      MKK5_MKKB,     "JP", "JAPAN13" },
653     {CTRY_JAPAN14,      MKK5_MKKA2,    "JP", "JAPAN14" },
654     {CTRY_JAPAN15,      MKK5_MKKC,     "JP", "JAPAN15" },
655 
656     {CTRY_JAPAN16,      MKK6_MKKB,     "JP", "JAPAN16" },
657     {CTRY_JAPAN17,      MKK6_MKKA2,    "JP", "JAPAN17" },
658     {CTRY_JAPAN18,      MKK6_MKKC,     "JP", "JAPAN18" },
659 
660     {CTRY_JAPAN19,      MKK7_MKKB,     "JP", "JAPAN19" },
661     {CTRY_JAPAN20,      MKK7_MKKA2,    "JP", "JAPAN20" },
662     {CTRY_JAPAN21,      MKK7_MKKC,     "JP", "JAPAN21" },
663 
664     {CTRY_JAPAN22,      MKK8_MKKB,     "JP", "JAPAN22" },
665     {CTRY_JAPAN23,      MKK8_MKKA2,    "JP", "JAPAN23" },
666     {CTRY_JAPAN24,      MKK8_MKKC,     "JP", "JAPAN24" },
667 
668     {CTRY_JORDAN,      APL4_WORLD,    "JO", "JORDAN" },
669     {CTRY_KAZAKHSTAN,  NULL1_WORLD,   "KZ", "KAZAKHSTAN" },
670     {CTRY_KOREA_NORTH, APL2_WORLD,    "KP", "NORTH KOREA" },
671     {CTRY_KOREA_ROC,   APL2_WORLD,    "KR", "KOREA REPUBLIC" },
672     {CTRY_KOREA_ROC2,  APL2_WORLD,    "K2", "KOREA REPUBLIC2" },
673     {CTRY_KOREA_ROC3,  APL9_WORLD,    "K3", "KOREA REPUBLIC3" },
674     {CTRY_KUWAIT,      NULL1_WORLD,   "KW", "KUWAIT" },
675     {CTRY_LATVIA,      ETSI1_WORLD,   "LV", "LATVIA" },
676     {CTRY_LEBANON,     NULL1_WORLD,   "LB", "LEBANON" },
677     {CTRY_LIECHTENSTEIN,ETSI1_WORLD,  "LI", "LIECHTENSTEIN" },
678     {CTRY_LITHUANIA,   ETSI1_WORLD,   "LT", "LITHUANIA" },
679     {CTRY_LUXEMBOURG,  ETSI1_WORLD,   "LU", "LUXEMBOURG" },
680     {CTRY_MACAU,       FCC2_WORLD,    "MO", "MACAU" },
681     {CTRY_MACEDONIA,   NULL1_WORLD,   "MK", "MACEDONIA" },
682     {CTRY_MALAYSIA,    APL8_WORLD,    "MY", "MALAYSIA" },
683     {CTRY_MALTA,       ETSI1_WORLD,   "MT", "MALTA" },
684     {CTRY_MEXICO,      FCC1_FCCA,     "MX", "MEXICO" },
685     {CTRY_MONACO,      ETSI4_WORLD,   "MC", "MONACO" },
686     {CTRY_MOROCCO,     NULL1_WORLD,   "MA", "MOROCCO" },
687     {CTRY_NETHERLANDS, ETSI1_WORLD,   "NL", "NETHERLANDS" },
688     {CTRY_NEW_ZEALAND, FCC2_ETSIC,    "NZ", "NEW ZEALAND" },
689     {CTRY_NORWAY,      ETSI1_WORLD,   "NO", "NORWAY" },
690     {CTRY_OMAN,        APL6_WORLD,    "OM", "OMAN" },
691     {CTRY_PAKISTAN,    NULL1_WORLD,   "PK", "PAKISTAN" },
692     {CTRY_PANAMA,      FCC1_FCCA,     "PA", "PANAMA" },
693     {CTRY_PERU,        APL1_WORLD,    "PE", "PERU" },
694     {CTRY_PHILIPPINES, APL1_WORLD,    "PH", "PHILIPPINES" },
695     {CTRY_POLAND,      ETSI1_WORLD,   "PL", "POLAND" },
696     {CTRY_PORTUGAL,    ETSI1_WORLD,   "PT", "PORTUGAL" },
697     {CTRY_PUERTO_RICO, FCC1_FCCA,     "PR", "PUERTO RICO" },
698     {CTRY_QATAR,       NULL1_WORLD,   "QA", "QATAR" },
699     {CTRY_ROMANIA,     NULL1_WORLD,   "RO", "ROMANIA" },
700     {CTRY_RUSSIA,      NULL1_WORLD,   "RU", "RUSSIA" },
701     {CTRY_SAUDI_ARABIA,NULL1_WORLD,   "SA", "SAUDI ARABIA" },
702     {CTRY_SINGAPORE,   APL6_WORLD,    "SG", "SINGAPORE" },
703     {CTRY_SLOVAKIA,    ETSI1_WORLD,   "SK", "SLOVAK REPUBLIC" },
704     {CTRY_SLOVENIA,    ETSI1_WORLD,   "SI", "SLOVENIA" },
705     {CTRY_SOUTH_AFRICA,FCC3_WORLD,    "ZA", "SOUTH AFRICA" },
706     {CTRY_SPAIN,       ETSI1_WORLD,   "ES", "SPAIN" },
707     {CTRY_SWEDEN,      ETSI1_WORLD,   "SE", "SWEDEN" },
708     {CTRY_SWITZERLAND, ETSI1_WORLD,   "CH", "SWITZERLAND" },
709     {CTRY_SYRIA,       NULL1_WORLD,   "SY", "SYRIA" },
710     {CTRY_TAIWAN,      APL3_FCCA,    "TW", "TAIWAN" },
711     {CTRY_THAILAND,    NULL1_WORLD,   "TH", "THAILAND" },
712     {CTRY_TRINIDAD_Y_TOBAGO,ETSI4_WORLD,"TT", "TRINIDAD & TOBAGO" },
713     {CTRY_TUNISIA,     ETSI3_WORLD,   "TN", "TUNISIA" },
714     {CTRY_TURKEY,      ETSI3_WORLD,   "TR", "TURKEY" },
715     {CTRY_UKRAINE,     NULL1_WORLD,   "UA", "UKRAINE" },
716     {CTRY_UAE,         NULL1_WORLD,   "AE", "UNITED ARAB EMIRATES" },
717     {CTRY_UNITED_KINGDOM, ETSI1_WORLD,"GB", "UNITED KINGDOM" },
718     {CTRY_UNITED_STATES, FCC1_FCCA,   "US", "UNITED STATES" },
719     {CTRY_UNITED_STATES_FCC49, FCC4_FCCA,   "PS", "UNITED STATES (PUBLIC SAFETY)" },
720     {CTRY_URUGUAY,     APL2_WORLD,    "UY", "URUGUAY" },
721     {CTRY_UZBEKISTAN,  FCC3_FCCA,     "UZ", "UZBEKISTAN" },
722     {CTRY_VENEZUELA,   APL2_ETSIC,    "VE", "VENEZUELA" },
723     {CTRY_VIET_NAM,    NULL1_WORLD,   "VN", "VIET NAM" },
724     {CTRY_YEMEN,       NULL1_WORLD,   "YE", "YEMEN" },
725     {CTRY_ZIMBABWE,    NULL1_WORLD,   "ZW", "ZIMBABWE" }
726 };
727 
728 static HAL_BOOL
729 cclookup(const char *name, HAL_REG_DOMAIN *rd, HAL_CTRY_CODE *cc)
730 {
731 #define	N(a)	(sizeof(a)/sizeof(a[0]))
732 	int i;
733 
734 	for (i = 0; i < N(allCountries); i++)
735 		if (strcasecmp(allCountries[i].isoName, name) == 0 ||
736 		    strcasecmp(allCountries[i].name, name) == 0) {
737 			*rd = allCountries[i].regDmnEnum;
738 			*cc = allCountries[i].countryCode;
739 			return AH_TRUE;
740 		}
741 	return AH_FALSE;
742 #undef N
743 }
744 
745 static const char *
746 getccname(HAL_CTRY_CODE cc)
747 {
748 #define	N(a)	(sizeof(a)/sizeof(a[0]))
749 	int i;
750 
751 	for (i = 0; i < N(allCountries); i++)
752 		if (allCountries[i].countryCode == cc)
753 			return allCountries[i].name;
754 	return NULL;
755 #undef N
756 }
757 
758 static const char *
759 getccisoname(HAL_CTRY_CODE cc)
760 {
761 #define	N(a)	(sizeof(a)/sizeof(a[0]))
762 	int i;
763 
764 	for (i = 0; i < N(allCountries); i++)
765 		if (allCountries[i].countryCode == cc)
766 			return allCountries[i].isoName;
767 	return NULL;
768 #undef N
769 }
770 
771 static void
772 cclist()
773 {
774 #define	N(a)	(sizeof(a)/sizeof(a[0]))
775 	int i;
776 
777 	printf("\nCountry codes:\n");
778 	for (i = 0; i < N(allCountries); i++)
779 		printf("%2s %-15.15s%s",
780 			allCountries[i].isoName,
781 			allCountries[i].name,
782 			((i+1)%4) == 0 ? "\n" : " ");
783 	printf("\n");
784 #undef N
785 }
786 
787 static HAL_BOOL
788 setRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan,
789 		   int16_t tpcScaleReduction, int16_t powerLimit,
790                    int16_t *pMinPower, int16_t *pMaxPower);
791 
792 static void
793 calctxpower(struct ath_hal *ah,
794 	int nchan, const struct ieee80211_channel *chans,
795 	int16_t tpcScaleReduction, int16_t powerLimit, int16_t *txpow)
796 {
797 	int16_t minpow;
798 	int i;
799 
800 	for (i = 0; i < nchan; i++)
801 		if (!setRateTable(ah, &chans[i],
802 		    tpcScaleReduction, powerLimit, &minpow, &txpow[i])) {
803 			printf("unable to set rate table\n");
804 			exit(-1);
805 		}
806 }
807 
808 int	n = 1;
809 const char *sep = "";
810 int	dopassive = 0;
811 int	showchannels = 0;
812 int	isdfs = 0;
813 int	is4ms = 0;
814 
815 static int
816 anychan(const struct ieee80211_channel *chans, int nc, int flag)
817 {
818 	int i;
819 
820 	for (i = 0; i < nc; i++)
821 		if ((chans[i].ic_flags & flag) != 0)
822 			return 1;
823 	return 0;
824 }
825 
826 static __inline int
827 mapgsm(u_int freq, u_int flags)
828 {
829 	freq *= 10;
830 	if (flags & IEEE80211_CHAN_QUARTER)
831 		freq += 5;
832 	else if (flags & IEEE80211_CHAN_HALF)
833 		freq += 10;
834 	else
835 		freq += 20;
836 	return (freq - 24220) / 5;
837 }
838 
839 static __inline int
840 mappsb(u_int freq, u_int flags)
841 {
842 	return ((freq * 10) + (((freq % 5) == 2) ? 5 : 0) - 49400) / 5;
843 }
844 
845 /*
846  * Convert GHz frequency to IEEE channel number.
847  */
848 int
849 ath_hal_mhz2ieee(struct ath_hal *ah, u_int freq, u_int flags)
850 {
851 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
852 		if (freq == 2484)
853 			return 14;
854 		if (freq < 2484)
855 			return ((int)freq - 2407) / 5;
856 		else
857 			return 15 + ((freq - 2512) / 20);
858 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
859 		if (IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq))
860 			return mappsb(freq, flags);
861 		else if ((flags & IEEE80211_CHAN_A) && (freq <= 5000))
862 			return (freq - 4000) / 5;
863 		else
864 			return (freq - 5000) / 5;
865 	} else {			/* either, guess */
866 		if (freq == 2484)
867 			return 14;
868 		if (freq < 2484)
869 			return ((int)freq - 2407) / 5;
870 		if (freq < 5000) {
871 			if (IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq))
872 				return mappsb(freq, flags);
873 			else if (freq > 4900)
874 				return (freq - 4000) / 5;
875 			else
876 				return 15 + ((freq - 2512) / 20);
877 		}
878 		return (freq - 5000) / 5;
879 	}
880 }
881 
882 #define	IEEE80211_IS_CHAN_4MS(_c) \
883 	(((_c)->ic_flags & IEEE80211_CHAN_4MSXMIT) != 0)
884 
885 static void
886 dumpchannels(struct ath_hal *ah, int nc,
887 	const struct ieee80211_channel *chans, int16_t *txpow)
888 {
889 	int i;
890 
891 	for (i = 0; i < nc; i++) {
892 		const struct ieee80211_channel *c = &chans[i];
893 		int type;
894 
895 		if (showchannels)
896 			printf("%s%3d", sep,
897 			    ath_hal_mhz2ieee(ah, c->ic_freq, c->ic_flags));
898 		else
899 			printf("%s%u", sep, c->ic_freq);
900 		if (IEEE80211_IS_CHAN_HALF(c))
901 			type = 'H';
902 		else if (IEEE80211_IS_CHAN_QUARTER(c))
903 			type = 'Q';
904 		else if (IEEE80211_IS_CHAN_TURBO(c))
905 			type = 'T';
906 		else if (IEEE80211_IS_CHAN_HT(c))
907 			type = 'N';
908 		else if (IEEE80211_IS_CHAN_A(c))
909 			type = 'A';
910 		else if (IEEE80211_IS_CHAN_108G(c))
911 			type = 'T';
912 		else if (IEEE80211_IS_CHAN_G(c))
913 			type = 'G';
914 		else
915 			type = 'B';
916 		if (dopassive && IEEE80211_IS_CHAN_PASSIVE(c))
917 			type = tolower(type);
918 		if (isdfs && is4ms)
919 			printf("%c%c%c %d.%d", type,
920 			    IEEE80211_IS_CHAN_DFS(c) ? '*' : ' ',
921 			    IEEE80211_IS_CHAN_4MS(c) ? '4' : ' ',
922 			    txpow[i]/2, (txpow[i]%2)*5);
923 		else if (isdfs)
924 			printf("%c%c %d.%d", type,
925 			    IEEE80211_IS_CHAN_DFS(c) ? '*' : ' ',
926 			    txpow[i]/2, (txpow[i]%2)*5);
927 		else if (is4ms)
928 			printf("%c%c %d.%d", type,
929 			    IEEE80211_IS_CHAN_4MS(c) ? '4' : ' ',
930 			    txpow[i]/2, (txpow[i]%2)*5);
931 		else
932 			printf("%c %d.%d", type, txpow[i]/2, (txpow[i]%2)*5);
933 		if ((n++ % (showchannels ? 7 : 6)) == 0)
934 			sep = "\n";
935 		else
936 			sep = " ";
937 	}
938 }
939 
940 static void
941 intersect(struct ieee80211_channel *dst, int16_t *dtxpow, int *nd,
942     const struct ieee80211_channel *src, int16_t *stxpow, int ns)
943 {
944 	int i = 0, j, k, l;
945 	while (i < *nd) {
946 		for (j = 0; j < ns && dst[i].ic_freq != src[j].ic_freq; j++)
947 			;
948 		if (j < ns && dtxpow[i] == stxpow[j]) {
949 			for (k = i+1, l = i; k < *nd; k++, l++)
950 				dst[l] = dst[k];
951 			(*nd)--;
952 		} else
953 			i++;
954 	}
955 }
956 
957 static void
958 usage(const char *progname)
959 {
960 	printf("usage: %s [-acdefoilpr4ABGT] [-m opmode] [cc | rd]\n", progname);
961 	exit(-1);
962 }
963 
964 static HAL_BOOL
965 getChipPowerLimits(struct ath_hal *ah, struct ieee80211_channel *chan)
966 {
967 }
968 
969 static HAL_BOOL
970 eepromRead(struct ath_hal *ah, u_int off, u_int16_t *data)
971 {
972 	/* emulate enough stuff to handle japan channel shift */
973 	switch (off) {
974 	case AR_EEPROM_VERSION:
975 		*data = eeversion;
976 		return AH_TRUE;
977 	case AR_EEPROM_REG_CAPABILITIES_OFFSET:
978 		*data = AR_EEPROM_EEREGCAP_EN_KK_NEW_11A;
979 		return AH_TRUE;
980 	case AR_EEPROM_REG_CAPABILITIES_OFFSET_PRE4_0:
981 		*data = AR_EEPROM_EEREGCAP_EN_KK_NEW_11A_PRE4_0;
982 		return AH_TRUE;
983 	}
984 	return AH_FALSE;
985 }
986 
987 HAL_STATUS
988 getCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
989 	uint32_t capability, uint32_t *result)
990 {
991 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
992 
993 	switch (type) {
994 	case HAL_CAP_REG_DMN:		/* regulatory domain */
995 		*result = AH_PRIVATE(ah)->ah_currentRD;
996 		return HAL_OK;
997 	default:
998 		return HAL_EINVAL;
999 	}
1000 }
1001 
1002 #define HAL_MODE_HT20 \
1003 	(HAL_MODE_11NG_HT20 |  HAL_MODE_11NA_HT20)
1004 #define	HAL_MODE_HT40 \
1005 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
1006 	 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
1007 #define	HAL_MODE_HT	(HAL_MODE_HT20 | HAL_MODE_HT40)
1008 
1009 int
1010 main(int argc, char *argv[])
1011 {
1012 	static const u_int16_t tpcScaleReductionTable[5] =
1013 		{ 0, 3, 6, 9, MAX_RATE_POWER };
1014 	struct ath_hal_private ahp;
1015 	struct ieee80211_channel achans[IEEE80211_CHAN_MAX];
1016 	int16_t atxpow[IEEE80211_CHAN_MAX];
1017 	struct ieee80211_channel bchans[IEEE80211_CHAN_MAX];
1018 	int16_t btxpow[IEEE80211_CHAN_MAX];
1019 	struct ieee80211_channel gchans[IEEE80211_CHAN_MAX];
1020 	int16_t gtxpow[IEEE80211_CHAN_MAX];
1021 	struct ieee80211_channel tchans[IEEE80211_CHAN_MAX];
1022 	int16_t ttxpow[IEEE80211_CHAN_MAX];
1023 	struct ieee80211_channel tgchans[IEEE80211_CHAN_MAX];
1024 	int16_t tgtxpow[IEEE80211_CHAN_MAX];
1025 	struct ieee80211_channel nchans[IEEE80211_CHAN_MAX];
1026 	int16_t ntxpow[IEEE80211_CHAN_MAX];
1027 	int i, na, nb, ng, nt, ntg, nn;
1028 	HAL_BOOL showall = AH_FALSE;
1029 	HAL_BOOL extendedChanMode = AH_TRUE;
1030 	int modes = 0;
1031 	int16_t tpcReduction, powerLimit;
1032 	int showdfs = 0;
1033 	int show4ms = 0;
1034 
1035 	memset(&ahp, 0, sizeof(ahp));
1036 	ahp.ah_getChannelEdges = getChannelEdges;
1037 	ahp.ah_getWirelessModes = getWirelessModes;
1038 	ahp.ah_eepromRead = eepromRead;
1039 	ahp.ah_getChipPowerLimits = getChipPowerLimits;
1040 	ahp.ah_caps.halWirelessModes = HAL_MODE_ALL;
1041 	ahp.ah_caps.halLow5GhzChan = 4920;
1042 	ahp.ah_caps.halHigh5GhzChan = 6100;
1043 	ahp.ah_caps.halLow2GhzChan = 2312;
1044 	ahp.ah_caps.halHigh2GhzChan = 2732;
1045 	ahp.ah_caps.halChanHalfRate = AH_TRUE;
1046 	ahp.ah_caps.halChanQuarterRate = AH_TRUE;
1047 	ahp.h.ah_getCapability = getCapability;
1048 	ahp.ah_opmode = HAL_M_STA;
1049 
1050 	tpcReduction = tpcScaleReductionTable[0];
1051 	powerLimit =  MAX_RATE_POWER;
1052 
1053 	while ((i = getopt(argc, argv, "acdeflm:pr4ABGhHNT")) != -1)
1054 		switch (i) {
1055 		case 'a':
1056 			showall = AH_TRUE;
1057 			break;
1058 		case 'c':
1059 			showchannels = AH_TRUE;
1060 			break;
1061 		case 'd':
1062 			ath_hal_debug = HAL_DEBUG_ANY;
1063 			break;
1064 		case 'e':
1065 			extendedChanMode = AH_FALSE;
1066 			break;
1067 		case 'f':
1068 			showchannels = AH_FALSE;
1069 			break;
1070 		case 'l':
1071 			cclist();
1072 			rdlist();
1073 			exit(0);
1074 		case 'm':
1075 			if (strncasecmp(optarg, "sta", 2) == 0)
1076 				ahp.ah_opmode = HAL_M_STA;
1077 			else if (strncasecmp(optarg, "ibss", 2) == 0)
1078 				ahp.ah_opmode = HAL_M_IBSS;
1079 			else if (strncasecmp(optarg, "adhoc", 2) == 0)
1080 				ahp.ah_opmode = HAL_M_IBSS;
1081 			else if (strncasecmp(optarg, "ap", 2) == 0)
1082 				ahp.ah_opmode = HAL_M_HOSTAP;
1083 			else if (strncasecmp(optarg, "hostap", 2) == 0)
1084 				ahp.ah_opmode = HAL_M_HOSTAP;
1085 			else if (strncasecmp(optarg, "monitor", 2) == 0)
1086 				ahp.ah_opmode = HAL_M_MONITOR;
1087 			else
1088 				usage(argv[0]);
1089 			break;
1090 		case 'p':
1091 			dopassive = 1;
1092 			break;
1093 		case 'A':
1094 			modes |= HAL_MODE_11A;
1095 			break;
1096 		case 'B':
1097 			modes |= HAL_MODE_11B;
1098 			break;
1099 		case 'G':
1100 			modes |= HAL_MODE_11G;
1101 			break;
1102 		case 'h':
1103 			modes |= HAL_MODE_HT20;
1104 			break;
1105 		case 'H':
1106 			modes |= HAL_MODE_HT40;
1107 			break;
1108 		case 'N':
1109 			modes |= HAL_MODE_HT;
1110 			break;
1111 		case 'T':
1112 			modes |= HAL_MODE_TURBO | HAL_MODE_108G;
1113 			break;
1114 		case 'r':
1115 			showdfs = 1;
1116 			break;
1117 		case '4':
1118 			show4ms = 1;
1119 			break;
1120 		default:
1121 			usage(argv[0]);
1122 		}
1123 	switch (argc - optind)  {
1124 	case 0:
1125 		if (!cclookup("US", &rd, &cc)) {
1126 			printf("%s: unknown country code\n", "US");
1127 			exit(-1);
1128 		}
1129 		break;
1130 	case 1:			/* cc/regdomain */
1131 		if (!cclookup(argv[optind], &rd, &cc)) {
1132 			if (!rdlookup(argv[optind], &rd)) {
1133 				const char* rdname;
1134 
1135 				rd = strtoul(argv[optind], NULL, 0);
1136 				rdname = getrdname(rd);
1137 				if (rdname == NULL) {
1138 					printf("%s: unknown country/regulatory "
1139 						"domain code\n", argv[optind]);
1140 					exit(-1);
1141 				}
1142 			}
1143 			cc = CTRY_DEFAULT;
1144 		}
1145 		break;
1146 	default:		/* regdomain cc */
1147 		if (!rdlookup(argv[optind], &rd)) {
1148 			const char* rdname;
1149 
1150 			rd = strtoul(argv[optind], NULL, 0);
1151 			rdname = getrdname(rd);
1152 			if (rdname == NULL) {
1153 				printf("%s: unknown country/regulatory "
1154 					"domain code\n", argv[optind]);
1155 				exit(-1);
1156 			}
1157 		}
1158 		if (!cclookup(argv[optind+1], &rd, &cc))
1159 			cc = strtoul(argv[optind+1], NULL, 0);
1160 		break;
1161 	}
1162 	if (cc != CTRY_DEFAULT)
1163 		printf("\n%s (%s, 0x%x, %u) %s (0x%x, %u)\n",
1164 			getccname(cc), getccisoname(cc), cc, cc,
1165 			getrdname(rd), rd, rd);
1166 	else
1167 		printf("\n%s (0x%x, %u)\n",
1168 			getrdname(rd), rd, rd);
1169 
1170 	if (modes == 0) {
1171 		/* NB: no HAL_MODE_HT */
1172 		modes = HAL_MODE_11A | HAL_MODE_11B |
1173 			HAL_MODE_11G | HAL_MODE_TURBO | HAL_MODE_108G;
1174 	}
1175 	na = nb = ng = nt = ntg = nn = 0;
1176 	if (modes & HAL_MODE_11G) {
1177 		ahp.ah_currentRD = rd;
1178 		if (ath_hal_getchannels(&ahp.h, gchans, IEEE80211_CHAN_MAX, &ng,
1179 		    HAL_MODE_11G, cc, rd, extendedChanMode) == HAL_OK) {
1180 			calctxpower(&ahp.h, ng, gchans, tpcReduction, powerLimit, gtxpow);
1181 			if (showdfs)
1182 				isdfs |= anychan(gchans, ng, IEEE80211_CHAN_DFS);
1183 			if (show4ms)
1184 				is4ms |= anychan(gchans, ng, IEEE80211_CHAN_4MSXMIT);
1185 		}
1186 	}
1187 	if (modes & HAL_MODE_11B) {
1188 		ahp.ah_currentRD = rd;
1189 		if (ath_hal_getchannels(&ahp.h, bchans, IEEE80211_CHAN_MAX, &nb,
1190 		    HAL_MODE_11B, cc, rd, extendedChanMode) == HAL_OK) {
1191 			calctxpower(&ahp.h, nb, bchans, tpcReduction, powerLimit, btxpow);
1192 			if (showdfs)
1193 				isdfs |= anychan(bchans, nb, IEEE80211_CHAN_DFS);
1194 			if (show4ms)
1195 				is4ms |= anychan(bchans, nb, IEEE80211_CHAN_4MSXMIT);
1196 		}
1197 	}
1198 	if (modes & HAL_MODE_11A) {
1199 		ahp.ah_currentRD = rd;
1200 		if (ath_hal_getchannels(&ahp.h, achans, IEEE80211_CHAN_MAX, &na,
1201 		    HAL_MODE_11A, cc, rd, extendedChanMode) == HAL_OK) {
1202 			calctxpower(&ahp.h, na, achans, tpcReduction, powerLimit, atxpow);
1203 			if (showdfs)
1204 				isdfs |= anychan(achans, na, IEEE80211_CHAN_DFS);
1205 			if (show4ms)
1206 				is4ms |= anychan(achans, na, IEEE80211_CHAN_4MSXMIT);
1207 		}
1208 	}
1209 	if (modes & HAL_MODE_TURBO) {
1210 		ahp.ah_currentRD = rd;
1211 		if (ath_hal_getchannels(&ahp.h, tchans, IEEE80211_CHAN_MAX, &nt,
1212 		    HAL_MODE_TURBO, cc, rd, extendedChanMode) == HAL_OK) {
1213 			calctxpower(&ahp.h, nt, tchans, tpcReduction, powerLimit, ttxpow);
1214 			if (showdfs)
1215 				isdfs |= anychan(tchans, nt, IEEE80211_CHAN_DFS);
1216 			if (show4ms)
1217 				is4ms |= anychan(tchans, nt, IEEE80211_CHAN_4MSXMIT);
1218 		}
1219 	}
1220 	if (modes & HAL_MODE_108G) {
1221 		ahp.ah_currentRD = rd;
1222 		if (ath_hal_getchannels(&ahp.h, tgchans, IEEE80211_CHAN_MAX, &ntg,
1223 		    HAL_MODE_108G, cc, rd, extendedChanMode) == HAL_OK) {
1224 			calctxpower(&ahp.h, ntg, tgchans, tpcReduction, powerLimit, tgtxpow);
1225 			if (showdfs)
1226 				isdfs |= anychan(tgchans, ntg, IEEE80211_CHAN_DFS);
1227 			if (show4ms)
1228 				is4ms |= anychan(tgchans, ntg, IEEE80211_CHAN_4MSXMIT);
1229 		}
1230 	}
1231 	if (modes & HAL_MODE_HT) {
1232 		ahp.ah_currentRD = rd;
1233 		if (ath_hal_getchannels(&ahp.h, nchans, IEEE80211_CHAN_MAX, &nn,
1234 		    modes & HAL_MODE_HT, cc, rd, extendedChanMode) == HAL_OK) {
1235 			calctxpower(&ahp.h, nn, nchans, tpcReduction, powerLimit, ntxpow);
1236 			if (showdfs)
1237 				isdfs |= anychan(nchans, nn, IEEE80211_CHAN_DFS);
1238 			if (show4ms)
1239 				is4ms |= anychan(nchans, nn, IEEE80211_CHAN_4MSXMIT);
1240 		}
1241 	}
1242 
1243 	if (!showall) {
1244 #define	CHECKMODES(_modes, _m)	((_modes & (_m)) == (_m))
1245 		if (CHECKMODES(modes, HAL_MODE_11B|HAL_MODE_11G)) {
1246 			/* b ^= g */
1247 			intersect(bchans, btxpow, &nb, gchans, gtxpow, ng);
1248 		}
1249 		if (CHECKMODES(modes, HAL_MODE_11A|HAL_MODE_TURBO)) {
1250 			/* t ^= a */
1251 			intersect(tchans, ttxpow, &nt, achans, atxpow, na);
1252 		}
1253 		if (CHECKMODES(modes, HAL_MODE_11G|HAL_MODE_108G)) {
1254 			/* tg ^= g */
1255 			intersect(tgchans, tgtxpow, &ntg, gchans, gtxpow, ng);
1256 		}
1257 		if (CHECKMODES(modes, HAL_MODE_11G|HAL_MODE_HT)) {
1258 			/* g ^= n */
1259 			intersect(gchans, gtxpow, &ng, nchans, ntxpow, nn);
1260 		}
1261 		if (CHECKMODES(modes, HAL_MODE_11A|HAL_MODE_HT)) {
1262 			/* a ^= n */
1263 			intersect(achans, atxpow, &na, nchans, ntxpow, nn);
1264 		}
1265 #undef CHECKMODES
1266 	}
1267 
1268 	if (modes & HAL_MODE_11G)
1269 		dumpchannels(&ahp.h, ng, gchans, gtxpow);
1270 	if (modes & HAL_MODE_11B)
1271 		dumpchannels(&ahp.h, nb, bchans, btxpow);
1272 	if (modes & HAL_MODE_11A)
1273 		dumpchannels(&ahp.h, na, achans, atxpow);
1274 	if (modes & HAL_MODE_108G)
1275 		dumpchannels(&ahp.h, ntg, tgchans, tgtxpow);
1276 	if (modes & HAL_MODE_TURBO)
1277 		dumpchannels(&ahp.h, nt, tchans, ttxpow);
1278 	if (modes & HAL_MODE_HT)
1279 		dumpchannels(&ahp.h, nn, nchans, ntxpow);
1280 	printf("\n");
1281 	return (0);
1282 }
1283 
1284 /*
1285  * Search a list for a specified value v that is within
1286  * EEP_DELTA of the search values.  Return the closest
1287  * values in the list above and below the desired value.
1288  * EEP_DELTA is a factional value; everything is scaled
1289  * so only integer arithmetic is used.
1290  *
1291  * NB: the input list is assumed to be sorted in ascending order
1292  */
1293 static void
1294 ar5212GetLowerUpperValues(u_int16_t v, u_int16_t *lp, u_int16_t listSize,
1295                           u_int16_t *vlo, u_int16_t *vhi)
1296 {
1297 	u_int32_t target = v * EEP_SCALE;
1298 	u_int16_t *ep = lp+listSize;
1299 
1300 	/*
1301 	 * Check first and last elements for out-of-bounds conditions.
1302 	 */
1303 	if (target < (u_int32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
1304 		*vlo = *vhi = lp[0];
1305 		return;
1306 	}
1307 	if (target > (u_int32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
1308 		*vlo = *vhi = ep[-1];
1309 		return;
1310 	}
1311 
1312 	/* look for value being near or between 2 values in list */
1313 	for (; lp < ep; lp++) {
1314 		/*
1315 		 * If value is close to the current value of the list
1316 		 * then target is not between values, it is one of the values
1317 		 */
1318 		if (abs(lp[0] * EEP_SCALE - target) < EEP_DELTA) {
1319 			*vlo = *vhi = lp[0];
1320 			return;
1321 		}
1322 		/*
1323 		 * Look for value being between current value and next value
1324 		 * if so return these 2 values
1325 		 */
1326 		if (target < (u_int32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
1327 			*vlo = lp[0];
1328 			*vhi = lp[1];
1329 			return;
1330 		}
1331 	}
1332 }
1333 
1334 /*
1335  * Find the maximum conformance test limit for the given channel and CTL info
1336  */
1337 static u_int16_t
1338 ar5212GetMaxEdgePower(u_int16_t channel, RD_EDGES_POWER *pRdEdgesPower)
1339 {
1340 	/* temp array for holding edge channels */
1341 	u_int16_t tempChannelList[NUM_EDGES];
1342 	u_int16_t clo, chi, twiceMaxEdgePower;
1343 	int i, numEdges;
1344 
1345 	/* Get the edge power */
1346 	for (i = 0; i < NUM_EDGES; i++) {
1347 		if (pRdEdgesPower[i].rdEdge == 0)
1348 			break;
1349 		tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1350 	}
1351 	numEdges = i;
1352 
1353 	ar5212GetLowerUpperValues(channel, tempChannelList,
1354 		numEdges, &clo, &chi);
1355 	/* Get the index for the lower channel */
1356 	for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
1357 		;
1358 	/* Is lower channel ever outside the rdEdge? */
1359 	HALASSERT(i != numEdges);
1360 
1361 	if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
1362 		/*
1363 		 * If there's an exact channel match or an inband flag set
1364 		 * on the lower channel use the given rdEdgePower
1365 		 */
1366 		twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1367 		HALASSERT(twiceMaxEdgePower > 0);
1368 	} else
1369 		twiceMaxEdgePower = MAX_RATE_POWER;
1370 	return twiceMaxEdgePower;
1371 }
1372 
1373 /*
1374  * Returns interpolated or the scaled up interpolated value
1375  */
1376 static u_int16_t
1377 interpolate(u_int16_t target, u_int16_t srcLeft, u_int16_t srcRight,
1378 	u_int16_t targetLeft, u_int16_t targetRight)
1379 {
1380 	u_int16_t rv;
1381 	int16_t lRatio;
1382 
1383 	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1384 	if ((targetLeft * targetRight) == 0)
1385 		return 0;
1386 
1387 	if (srcRight != srcLeft) {
1388 		/*
1389 		 * Note the ratio always need to be scaled,
1390 		 * since it will be a fraction.
1391 		 */
1392 		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1393 		if (lRatio < 0) {
1394 		    /* Return as Left target if value would be negative */
1395 		    rv = targetLeft;
1396 		} else if (lRatio > EEP_SCALE) {
1397 		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
1398 		    rv = targetRight;
1399 		} else {
1400 			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1401 					targetLeft) / EEP_SCALE;
1402 		}
1403 	} else {
1404 		rv = targetLeft;
1405 	}
1406 	return rv;
1407 }
1408 
1409 /*
1410  * Return the four rates of target power for the given target power table
1411  * channel, and number of channels
1412  */
1413 static void
1414 ar5212GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
1415 	TRGT_POWER_INFO *powInfo,
1416 	u_int16_t numChannels, TRGT_POWER_INFO *pNewPower)
1417 {
1418 	/* temp array for holding target power channels */
1419 	u_int16_t tempChannelList[NUM_TEST_FREQUENCIES];
1420 	u_int16_t clo, chi, ixlo, ixhi;
1421 	int i;
1422 
1423 	/* Copy the target powers into the temp channel list */
1424 	for (i = 0; i < numChannels; i++)
1425 		tempChannelList[i] = powInfo[i].testChannel;
1426 
1427 	ar5212GetLowerUpperValues(chan->ic_freq, tempChannelList,
1428 		numChannels, &clo, &chi);
1429 
1430 	/* Get the indices for the channel */
1431 	ixlo = ixhi = 0;
1432 	for (i = 0; i < numChannels; i++) {
1433 		if (clo == tempChannelList[i]) {
1434 			ixlo = i;
1435 		}
1436 		if (chi == tempChannelList[i]) {
1437 			ixhi = i;
1438 			break;
1439 		}
1440 	}
1441 
1442 	/*
1443 	 * Get the lower and upper channels, target powers,
1444 	 * and interpolate between them.
1445 	 */
1446 	pNewPower->twicePwr6_24 = interpolate(chan->ic_freq, clo, chi,
1447 		powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
1448 	pNewPower->twicePwr36 = interpolate(chan->ic_freq, clo, chi,
1449 		powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
1450 	pNewPower->twicePwr48 = interpolate(chan->ic_freq, clo, chi,
1451 		powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
1452 	pNewPower->twicePwr54 = interpolate(chan->ic_freq, clo, chi,
1453 		powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
1454 }
1455 
1456 static RD_EDGES_POWER*
1457 findEdgePower(struct ath_hal *ah, u_int ctl)
1458 {
1459 	int i;
1460 
1461 	for (i = 0; i < _numCtls; i++)
1462 		if (_ctl[i] == ctl)
1463 			return &_rdEdgesPower[i * NUM_EDGES];
1464 	return AH_NULL;
1465 }
1466 
1467 /*
1468  * Sets the transmit power in the baseband for the given
1469  * operating channel and mode.
1470  */
1471 static HAL_BOOL
1472 setRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan,
1473 		   int16_t tpcScaleReduction, int16_t powerLimit,
1474                    int16_t *pMinPower, int16_t *pMaxPower)
1475 {
1476 	u_int16_t ratesArray[16];
1477 	u_int16_t *rpow = ratesArray;
1478 	u_int16_t twiceMaxRDPower, twiceMaxEdgePower, twiceMaxEdgePowerCck;
1479 	int8_t twiceAntennaGain, twiceAntennaReduction;
1480 	TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
1481 	RD_EDGES_POWER *rep;
1482 	int16_t scaledPower;
1483 	u_int8_t cfgCtl;
1484 
1485 	twiceMaxRDPower = chan->ic_maxregpower * 2;
1486 	*pMaxPower = -MAX_RATE_POWER;
1487 	*pMinPower = MAX_RATE_POWER;
1488 
1489 	/* Get conformance test limit maximum for this channel */
1490 	cfgCtl = ath_hal_getctl(ah, chan);
1491 	rep = findEdgePower(ah, cfgCtl);
1492 	if (rep != AH_NULL)
1493 		twiceMaxEdgePower = ar5212GetMaxEdgePower(chan->ic_freq, rep);
1494 	else
1495 		twiceMaxEdgePower = MAX_RATE_POWER;
1496 
1497 	if (IEEE80211_IS_CHAN_G(chan)) {
1498 		/* Check for a CCK CTL for 11G CCK powers */
1499 		cfgCtl = (cfgCtl & 0xFC) | 0x01;
1500 		rep = findEdgePower(ah, cfgCtl);
1501 		if (rep != AH_NULL)
1502 			twiceMaxEdgePowerCck = ar5212GetMaxEdgePower(chan->ic_freq, rep);
1503 		else
1504 			twiceMaxEdgePowerCck = MAX_RATE_POWER;
1505 	} else {
1506 		/* Set the 11B cck edge power to the one found before */
1507 		twiceMaxEdgePowerCck = twiceMaxEdgePower;
1508 	}
1509 
1510 	/* Get Antenna Gain reduction */
1511 	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
1512 		twiceAntennaGain = antennaGainMax[0];
1513 	} else {
1514 		twiceAntennaGain = antennaGainMax[1];
1515 	}
1516 	twiceAntennaReduction =
1517 		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1518 
1519 	if (IEEE80211_IS_CHAN_OFDM(chan)) {
1520 		/* Get final OFDM target powers */
1521 		if (IEEE80211_IS_CHAN_G(chan)) {
1522 			/* TODO - add Turbo 2.4 to this mode check */
1523 			ar5212GetTargetPowers(ah, chan, trgtPwr_11g,
1524 				numTargetPwr_11g, &targetPowerOfdm);
1525 		} else {
1526 			ar5212GetTargetPowers(ah, chan, trgtPwr_11a,
1527 				numTargetPwr_11a, &targetPowerOfdm);
1528 		}
1529 
1530 		/* Get Maximum OFDM power */
1531 		/* Minimum of target and edge powers */
1532 		scaledPower = AH_MIN(twiceMaxEdgePower,
1533 				twiceMaxRDPower - twiceAntennaReduction);
1534 
1535 		/*
1536 		 * If turbo is set, reduce power to keep power
1537 		 * consumption under 2 Watts.  Note that we always do
1538 		 * this unless specially configured.  Then we limit
1539 		 * power only for non-AP operation.
1540 		 */
1541 		if (IEEE80211_IS_CHAN_TURBO(chan)
1542 #ifdef AH_ENABLE_AP_SUPPORT
1543 		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1544 #endif
1545 		) {
1546 			/*
1547 			 * If turbo is set, reduce power to keep power
1548 			 * consumption under 2 Watts
1549 			 */
1550 			if (eeversion >= AR_EEPROM_VER3_1)
1551 				scaledPower = AH_MIN(scaledPower,
1552 					turbo2WMaxPower5);
1553 			/*
1554 			 * EEPROM version 4.0 added an additional
1555 			 * constraint on 2.4GHz channels.
1556 			 */
1557 			if (eeversion >= AR_EEPROM_VER4_0 &&
1558 			    IEEE80211_IS_CHAN_2GHZ(chan))
1559 				scaledPower = AH_MIN(scaledPower,
1560 					turbo2WMaxPower2);
1561 		}
1562 		/* Reduce power by max regulatory domain allowed restrictions */
1563 		scaledPower -= (tpcScaleReduction * 2);
1564 		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
1565 		scaledPower = AH_MIN(scaledPower, powerLimit);
1566 
1567 		scaledPower = AH_MIN(scaledPower, targetPowerOfdm.twicePwr6_24);
1568 
1569 		/* Set OFDM rates 9, 12, 18, 24, 36, 48, 54, XR */
1570 		rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
1571 		rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
1572 		rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
1573 		rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
1574 
1575 #ifdef notyet
1576 		if (eeversion >= AR_EEPROM_VER4_0) {
1577 			/* Setup XR target power from EEPROM */
1578 			rpow[15] = AH_MIN(scaledPower, IS_CHAN_2GHZ(chan) ?
1579 				xrTargetPower2 : xrTargetPower5);
1580 		} else {
1581 			/* XR uses 6mb power */
1582 			rpow[15] = rpow[0];
1583 		}
1584 #else
1585 		rpow[15] = rpow[0];
1586 #endif
1587 
1588 		*pMinPower = rpow[7];
1589 		*pMaxPower = rpow[0];
1590 
1591 #if 0
1592 		ahp->ah_ofdmTxPower = rpow[0];
1593 #endif
1594 
1595 		HALDEBUG(ah, HAL_DEBUG_ANY,
1596 		    "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
1597 		    "TPC_Reduction %d\n", __func__,
1598 		    twiceMaxRDPower, turbo2WMaxPower5,
1599 		    twiceMaxEdgePower, tpcScaleReduction * 2);
1600 	}
1601 
1602 	if (IEEE80211_IS_CHAN_CCK(chan)) {
1603 		/* Get final CCK target powers */
1604 		ar5212GetTargetPowers(ah, chan, trgtPwr_11b,
1605 			numTargetPwr_11b, &targetPowerCck);
1606 
1607 		/* Reduce power by max regulatory domain allowed restrictions */
1608 		scaledPower = AH_MIN(twiceMaxEdgePowerCck,
1609 			twiceMaxRDPower - twiceAntennaReduction);
1610 
1611 		scaledPower -= (tpcScaleReduction * 2);
1612 		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
1613 		scaledPower = AH_MIN(scaledPower, powerLimit);
1614 
1615 		rpow[8] = (scaledPower < 1) ? 1 : scaledPower;
1616 
1617 		/* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
1618 		rpow[8]  = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
1619 		rpow[9]  = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
1620 		rpow[10] = rpow[9];
1621 		rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
1622 		rpow[12] = rpow[11];
1623 		rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
1624 		rpow[14] = rpow[13];
1625 
1626 		/* Set min/max power based off OFDM values or initialization */
1627 		if (rpow[13] < *pMinPower)
1628 		    *pMinPower = rpow[13];
1629 		if (rpow[9] > *pMaxPower)
1630 		    *pMaxPower = rpow[9];
1631 
1632 	}
1633 #if 0
1634 	ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
1635 #endif
1636 	return AH_TRUE;
1637 }
1638 
1639 void*
1640 ath_hal_malloc(size_t size)
1641 {
1642 	return calloc(1, size);
1643 }
1644 
1645 void
1646 ath_hal_free(void* p)
1647 {
1648 	return free(p);
1649 }
1650 
1651 void
1652 ath_hal_vprintf(struct ath_hal *ah, const char* fmt, va_list ap)
1653 {
1654 	vprintf(fmt, ap);
1655 }
1656 
1657 void
1658 ath_hal_printf(struct ath_hal *ah, const char* fmt, ...)
1659 {
1660 	va_list ap;
1661 	va_start(ap, fmt);
1662 	ath_hal_vprintf(ah, fmt, ap);
1663 	va_end(ap);
1664 }
1665 
1666 void
1667 DO_HALDEBUG(struct ath_hal *ah, u_int mask, const char* fmt, ...)
1668 {
1669 	__va_list ap;
1670 	va_start(ap, fmt);
1671 	ath_hal_vprintf(ah, fmt, ap);
1672 	va_end(ap);
1673 }
1674