xref: /freebsd/tools/tools/netmap/pkt-gen.c (revision 2b833162)
1 /*
2  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved.
3  * Copyright (C) 2013-2015 Universita` di Pisa. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *   1. Redistributions of source code must retain the above copyright
9  *      notice, this list of conditions and the following disclaimer.
10  *   2. Redistributions in binary form must reproduce the above copyright
11  *      notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * $FreeBSD$
29  * $Id: pkt-gen.c 12346 2013-06-12 17:36:25Z luigi $
30  *
31  * Example program to show how to build a multithreaded packet
32  * source/sink using the netmap device.
33  *
34  * In this example we create a programmable number of threads
35  * to take care of all the queues of the interface used to
36  * send or receive traffic.
37  *
38  */
39 
40 #define _GNU_SOURCE	/* for CPU_SET() */
41 #include <arpa/inet.h>	/* ntohs */
42 #include <assert.h>
43 #include <ctype.h>	// isprint()
44 #include <errno.h>
45 #include <fcntl.h>
46 #include <ifaddrs.h>	/* getifaddrs */
47 #include <libnetmap.h>
48 #include <math.h>
49 #include <net/ethernet.h>
50 #include <netinet/in.h>
51 #include <netinet/ip.h>
52 #include <netinet/ip6.h>
53 #include <netinet/udp.h>
54 #ifndef NO_PCAP
55 #include <pcap/pcap.h>
56 #endif
57 #include <pthread.h>
58 #include <signal.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <sys/ioctl.h>
63 #include <sys/poll.h>
64 #include <sys/stat.h>
65 #if !defined(_WIN32) && !defined(linux)
66 #include <sys/sysctl.h>	/* sysctl */
67 #endif
68 #include <sys/types.h>
69 #include <unistd.h>	// sysconf()
70 #ifdef linux
71 #define IPV6_VERSION	0x60
72 #define IPV6_DEFHLIM	64
73 #endif
74 
75 #include "ctrs.h"
76 
77 static void usage(int);
78 
79 #ifdef _WIN32
80 #define cpuset_t        DWORD_PTR   //uint64_t
81 static inline void CPU_ZERO(cpuset_t *p)
82 {
83 	*p = 0;
84 }
85 
86 static inline void CPU_SET(uint32_t i, cpuset_t *p)
87 {
88 	*p |= 1<< (i & 0x3f);
89 }
90 
91 #define pthread_setaffinity_np(a, b, c) !SetThreadAffinityMask(a, *c)    //((void)a, 0)
92 #define TAP_CLONEDEV	"/dev/tap"
93 #define AF_LINK	18	//defined in winsocks.h
94 #define CLOCK_REALTIME_PRECISE CLOCK_REALTIME
95 #include <net/if_dl.h>
96 
97 /*
98  * Convert an ASCII representation of an ethernet address to
99  * binary form.
100  */
101 struct ether_addr *
102 ether_aton(const char *a)
103 {
104 	int i;
105 	static struct ether_addr o;
106 	unsigned int o0, o1, o2, o3, o4, o5;
107 
108 	i = sscanf(a, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2, &o3, &o4, &o5);
109 
110 	if (i != 6)
111 		return (NULL);
112 
113 	o.octet[0]=o0;
114 	o.octet[1]=o1;
115 	o.octet[2]=o2;
116 	o.octet[3]=o3;
117 	o.octet[4]=o4;
118 	o.octet[5]=o5;
119 
120 	return ((struct ether_addr *)&o);
121 }
122 
123 /*
124  * Convert a binary representation of an ethernet address to
125  * an ASCII string.
126  */
127 char *
128 ether_ntoa(const struct ether_addr *n)
129 {
130 	int i;
131 	static char a[18];
132 
133 	i = sprintf(a, "%02x:%02x:%02x:%02x:%02x:%02x",
134 	    n->octet[0], n->octet[1], n->octet[2],
135 	    n->octet[3], n->octet[4], n->octet[5]);
136 	return (i < 17 ? NULL : (char *)&a);
137 }
138 #endif /* _WIN32 */
139 
140 #ifdef linux
141 
142 #define cpuset_t        cpu_set_t
143 
144 #define ifr_flagshigh  ifr_flags        /* only the low 16 bits here */
145 #define IFF_PPROMISC   IFF_PROMISC      /* IFF_PPROMISC does not exist */
146 #include <linux/ethtool.h>
147 #include <linux/sockios.h>
148 
149 #define CLOCK_REALTIME_PRECISE CLOCK_REALTIME
150 #include <netinet/ether.h>      /* ether_aton */
151 #include <linux/if_packet.h>    /* sockaddr_ll */
152 #endif  /* linux */
153 
154 #ifdef __FreeBSD__
155 #include <sys/endian.h> /* le64toh */
156 #include <machine/param.h>
157 
158 #include <pthread_np.h> /* pthread w/ affinity */
159 #include <sys/cpuset.h> /* cpu_set */
160 #include <net/if_dl.h>  /* LLADDR */
161 #endif  /* __FreeBSD__ */
162 
163 #ifdef __APPLE__
164 
165 #define cpuset_t        uint64_t        // XXX
166 static inline void CPU_ZERO(cpuset_t *p)
167 {
168 	*p = 0;
169 }
170 
171 static inline void CPU_SET(uint32_t i, cpuset_t *p)
172 {
173 	*p |= 1<< (i & 0x3f);
174 }
175 
176 #define pthread_setaffinity_np(a, b, c) ((void)a, 0)
177 
178 #define ifr_flagshigh  ifr_flags        // XXX
179 #define IFF_PPROMISC   IFF_PROMISC
180 #include <net/if_dl.h>  /* LLADDR */
181 #define clock_gettime(a,b)      \
182 	do {struct timespec t0 = {0,0}; *(b) = t0; } while (0)
183 #endif  /* __APPLE__ */
184 
185 static const char *default_payload = "netmap pkt-gen DIRECT payload\n"
186 	"http://info.iet.unipi.it/~luigi/netmap/ ";
187 
188 static const char *indirect_payload = "netmap pkt-gen indirect payload\n"
189 	"http://info.iet.unipi.it/~luigi/netmap/ ";
190 
191 static int verbose = 0;
192 static int normalize = 1;
193 
194 #define VIRT_HDR_1	10	/* length of a base vnet-hdr */
195 #define VIRT_HDR_2	12	/* length of the extenede vnet-hdr */
196 #define VIRT_HDR_MAX	VIRT_HDR_2
197 struct virt_header {
198 	uint8_t fields[VIRT_HDR_MAX];
199 };
200 
201 #define MAX_BODYSIZE	65536
202 
203 struct pkt {
204 	struct virt_header vh;
205 	struct ether_header eh;
206 	union {
207 		struct {
208 			struct ip ip;
209 			struct udphdr udp;
210 			uint8_t body[MAX_BODYSIZE];	/* hardwired */
211 		} ipv4;
212 		struct {
213 			struct ip6_hdr ip;
214 			struct udphdr udp;
215 			uint8_t body[MAX_BODYSIZE];	/* hardwired */
216 		} ipv6;
217 	};
218 } __attribute__((__packed__));
219 
220 #define	PKT(p, f, af)	\
221     ((af) == AF_INET ? (p)->ipv4.f: (p)->ipv6.f)
222 
223 struct ip_range {
224 	const char *name;
225 	union {
226 		struct {
227 			uint32_t start, end; /* same as struct in_addr */
228 		} ipv4;
229 		struct {
230 			struct in6_addr start, end;
231 			uint8_t sgroup, egroup;
232 		} ipv6;
233 	};
234 	uint16_t port0, port1;
235 };
236 
237 struct mac_range {
238 	const char *name;
239 	struct ether_addr start, end;
240 };
241 
242 /* ifname can be netmap:foo-xxxx */
243 #define MAX_IFNAMELEN	512	/* our buffer for ifname */
244 //#define MAX_PKTSIZE	1536
245 #define MAX_PKTSIZE	MAX_BODYSIZE	/* XXX: + IP_HDR + ETH_HDR */
246 
247 /* compact timestamp to fit into 60 byte packet. (enough to obtain RTT) */
248 struct tstamp {
249 	uint32_t sec;
250 	uint32_t nsec;
251 };
252 
253 /*
254  * global arguments for all threads
255  */
256 
257 struct glob_arg {
258 	int af;		/* address family AF_INET/AF_INET6 */
259 	struct ip_range src_ip;
260 	struct ip_range dst_ip;
261 	struct mac_range dst_mac;
262 	struct mac_range src_mac;
263 	int pkt_size;
264 	int pkt_min_size;
265 	int burst;
266 	int forever;
267 	uint64_t npackets;	/* total packets to send */
268 	int frags;		/* fragments per packet */
269 	u_int frag_size;	/* size of each fragment */
270 	int nthreads;
271 	int cpus;	/* cpus used for running */
272 	int system_cpus;	/* cpus on the system */
273 
274 	int options;	/* testing */
275 #define OPT_PREFETCH	1
276 #define OPT_ACCESS	2
277 #define OPT_COPY	4
278 #define OPT_MEMCPY	8
279 #define OPT_TS		16	/* add a timestamp */
280 #define OPT_INDIRECT	32	/* use indirect buffers, tx only */
281 #define OPT_DUMP	64	/* dump rx/tx traffic */
282 #define OPT_RUBBISH	256	/* send whatever the buffers contain */
283 #define OPT_RANDOM_SRC  512
284 #define OPT_RANDOM_DST  1024
285 #define OPT_PPS_STATS   2048
286 	int dev_type;
287 #ifndef NO_PCAP
288 	pcap_t *p;
289 #endif
290 
291 	int tx_rate;
292 	struct timespec tx_period;
293 
294 	int affinity;
295 	int main_fd;
296 	struct nmport_d *nmd;
297 	uint32_t orig_mode;
298 	int report_interval;		/* milliseconds between prints */
299 	void *(*td_body)(void *);
300 	int td_type;
301 	void *mmap_addr;
302 	char ifname[MAX_IFNAMELEN];
303 	const char *nmr_config;
304 	int dummy_send;
305 	int virt_header;	/* send also the virt_header */
306 	char *packet_file;	/* -P option */
307 #define	STATS_WIN	15
308 	int win_idx;
309 	int64_t win[STATS_WIN];
310 	int wait_link;
311 	int framing;		/* #bits of framing (for bw output) */
312 };
313 enum dev_type { DEV_NONE, DEV_NETMAP, DEV_PCAP, DEV_TAP };
314 
315 enum {
316 	TD_TYPE_SENDER = 1,
317 	TD_TYPE_RECEIVER,
318 	TD_TYPE_OTHER,
319 };
320 
321 /*
322  * Arguments for a new thread. The same structure is used by
323  * the source and the sink
324  */
325 struct targ {
326 	struct glob_arg *g;
327 	int used;
328 	int completed;
329 	int cancel;
330 	int fd;
331 	struct nmport_d *nmd;
332 	/* these ought to be volatile, but they are
333 	 * only sampled and errors should not accumulate
334 	 */
335 	struct my_ctrs ctr;
336 
337 	struct timespec tic, toc;
338 	int me;
339 	pthread_t thread;
340 	int affinity;
341 
342 	struct pkt pkt;
343 	void *frame;
344 	uint16_t seed[3];
345 	u_int frags;
346 	u_int frag_size;
347 };
348 
349 static __inline uint16_t
350 cksum_add(uint16_t sum, uint16_t a)
351 {
352 	uint16_t res;
353 
354 	res = sum + a;
355 	return (res + (res < a));
356 }
357 
358 static void
359 extract_ipv4_addr(char *name, uint32_t *addr, uint16_t *port)
360 {
361 	struct in_addr a;
362 	char *pp;
363 
364 	pp = strchr(name, ':');
365 	if (pp != NULL) {	/* do we have ports ? */
366 		*pp++ = '\0';
367 		*port = (uint16_t)strtol(pp, NULL, 0);
368 	}
369 
370 	inet_pton(AF_INET, name, &a);
371 	*addr = ntohl(a.s_addr);
372 }
373 
374 static void
375 extract_ipv6_addr(char *name, struct in6_addr *addr, uint16_t *port,
376     uint8_t *group)
377 {
378 	char *pp;
379 
380 	/*
381 	 * We accept IPv6 address in the following form:
382 	 *  group@[2001:DB8::1001]:port	(w/ brackets and port)
383 	 *  group@[2001:DB8::1]		(w/ brackets and w/o port)
384 	 *  group@2001:DB8::1234	(w/o brackets and w/o port)
385 	 */
386 	pp = strchr(name, '@');
387 	if (pp != NULL) {
388 		*pp++ = '\0';
389 		*group = (uint8_t)strtol(name, NULL, 0);
390 		if (*group > 7)
391 			*group = 7;
392 		name = pp;
393 	}
394 	if (name[0] == '[')
395 		name++;
396 	pp = strchr(name, ']');
397 	if (pp != NULL)
398 		*pp++ = '\0';
399 	if (pp != NULL && *pp != ':')
400 		pp = NULL;
401 	if (pp != NULL) {	/* do we have ports ? */
402 		*pp++ = '\0';
403 		*port = (uint16_t)strtol(pp, NULL, 0);
404 	}
405 	inet_pton(AF_INET6, name, addr);
406 }
407 /*
408  * extract the extremes from a range of ipv4 addresses.
409  * addr_lo[-addr_hi][:port_lo[-port_hi]]
410  */
411 static int
412 extract_ip_range(struct ip_range *r, int af)
413 {
414 	char *name, *ap, start[INET6_ADDRSTRLEN];
415 	char end[INET6_ADDRSTRLEN];
416 	struct in_addr a;
417 	uint32_t tmp;
418 
419 	if (verbose)
420 		D("extract IP range from %s", r->name);
421 
422 	name = strdup(r->name);
423 	if (name == NULL) {
424 		D("strdup failed");
425 		usage(-1);
426 	}
427 	/* the first - splits start/end of range */
428 	ap = strchr(name, '-');
429 	if (ap != NULL)
430 		*ap++ = '\0';
431 	r->port0 = 1234;	/* default port */
432 	if (af == AF_INET6) {
433 		r->ipv6.sgroup = 7; /* default group */
434 		extract_ipv6_addr(name, &r->ipv6.start, &r->port0,
435 		    &r->ipv6.sgroup);
436 	} else
437 		extract_ipv4_addr(name, &r->ipv4.start, &r->port0);
438 
439 	r->port1 = r->port0;
440 	if (af == AF_INET6) {
441 		if (ap != NULL) {
442 			r->ipv6.egroup = r->ipv6.sgroup;
443 			extract_ipv6_addr(ap, &r->ipv6.end, &r->port1,
444 			    &r->ipv6.egroup);
445 		} else {
446 			r->ipv6.end = r->ipv6.start;
447 			r->ipv6.egroup = r->ipv6.sgroup;
448 		}
449 	} else {
450 		if (ap != NULL) {
451 			extract_ipv4_addr(ap, &r->ipv4.end, &r->port1);
452 			if (r->ipv4.start > r->ipv4.end) {
453 				tmp = r->ipv4.end;
454 				r->ipv4.end = r->ipv4.start;
455 				r->ipv4.start = tmp;
456 			}
457 		} else
458 			r->ipv4.end = r->ipv4.start;
459 	}
460 
461 	if (r->port0 > r->port1) {
462 		tmp = r->port0;
463 		r->port0 = r->port1;
464 		r->port1 = tmp;
465 	}
466 	if (af == AF_INET) {
467 		a.s_addr = htonl(r->ipv4.start);
468 		inet_ntop(af, &a, start, sizeof(start));
469 		a.s_addr = htonl(r->ipv4.end);
470 		inet_ntop(af, &a, end, sizeof(end));
471 	} else {
472 		inet_ntop(af, &r->ipv6.start, start, sizeof(start));
473 		inet_ntop(af, &r->ipv6.end, end, sizeof(end));
474 	}
475 	if (af == AF_INET)
476 		D("range is %s:%d to %s:%d", start, r->port0, end, r->port1);
477 	else
478 		D("range is %d@[%s]:%d to %d@[%s]:%d", r->ipv6.sgroup,
479 		    start, r->port0, r->ipv6.egroup, end, r->port1);
480 
481 	free(name);
482 	if (r->port0 != r->port1 ||
483 	    (af == AF_INET && r->ipv4.start != r->ipv4.end) ||
484 	    (af == AF_INET6 &&
485 		!IN6_ARE_ADDR_EQUAL(&r->ipv6.start, &r->ipv6.end)))
486 		return (OPT_COPY);
487 	return (0);
488 }
489 
490 static int
491 extract_mac_range(struct mac_range *r)
492 {
493 	struct ether_addr *e;
494 	if (verbose)
495 	    D("extract MAC range from %s", r->name);
496 
497 	e = ether_aton(r->name);
498 	if (e == NULL) {
499 		D("invalid MAC address '%s'", r->name);
500 		return 1;
501 	}
502 	bcopy(e, &r->start, 6);
503 	bcopy(e, &r->end, 6);
504 #if 0
505 	bcopy(targ->src_mac, eh->ether_shost, 6);
506 	p = index(targ->g->src_mac, '-');
507 	if (p)
508 		targ->src_mac_range = atoi(p+1);
509 
510 	bcopy(ether_aton(targ->g->dst_mac), targ->dst_mac, 6);
511 	bcopy(targ->dst_mac, eh->ether_dhost, 6);
512 	p = index(targ->g->dst_mac, '-');
513 	if (p)
514 		targ->dst_mac_range = atoi(p+1);
515 #endif
516 	if (verbose)
517 		D("%s starts at %s", r->name, ether_ntoa(&r->start));
518 	return 0;
519 }
520 
521 static int
522 get_if_mtu(const struct glob_arg *g)
523 {
524 	struct ifreq ifreq;
525 	int s, ret;
526 	const char *ifname = g->nmd->hdr.nr_name;
527 	size_t len;
528 
529 	if (!strncmp(g->ifname, "netmap:", 7) && !strchr(ifname, '{')
530 			&& !strchr(ifname, '}')) {
531 
532 		len = strlen(ifname);
533 
534 		if (len > IFNAMSIZ) {
535 			D("'%s' too long, cannot ask for MTU", ifname);
536 			return -1;
537 		}
538 
539 		s = socket(AF_INET, SOCK_DGRAM, 0);
540 		if (s < 0) {
541 			D("socket() failed: %s", strerror(errno));
542 			return s;
543 		}
544 
545 		memset(&ifreq, 0, sizeof(ifreq));
546 		memcpy(ifreq.ifr_name, ifname, len);
547 
548 		ret = ioctl(s, SIOCGIFMTU, &ifreq);
549 		if (ret) {
550 			D("ioctl(SIOCGIFMTU) failed: %s", strerror(errno));
551 		}
552 
553 		close(s);
554 
555 		return ifreq.ifr_mtu;
556 	}
557 
558 	/* This is a pipe or a VALE port, where the MTU is very large,
559 	 * so we use some practical limit. */
560 	return 65536;
561 }
562 
563 static struct targ *targs;
564 static int global_nthreads;
565 
566 /* control-C handler */
567 static void
568 sigint_h(int sig)
569 {
570 	int i;
571 
572 	(void)sig;	/* UNUSED */
573 	D("received control-C on thread %p", (void *)pthread_self());
574 	for (i = 0; i < global_nthreads; i++) {
575 		targs[i].cancel = 1;
576 	}
577 }
578 
579 /* sysctl wrapper to return the number of active CPUs */
580 static int
581 system_ncpus(void)
582 {
583 	int ncpus;
584 #if defined (__FreeBSD__)
585 	int mib[2] = { CTL_HW, HW_NCPU };
586 	size_t len = sizeof(mib);
587 	sysctl(mib, 2, &ncpus, &len, NULL, 0);
588 #elif defined(linux)
589 	ncpus = sysconf(_SC_NPROCESSORS_ONLN);
590 #elif defined(_WIN32)
591 	{
592 		SYSTEM_INFO sysinfo;
593 		GetSystemInfo(&sysinfo);
594 		ncpus = sysinfo.dwNumberOfProcessors;
595 	}
596 #else /* others */
597 	ncpus = 1;
598 #endif /* others */
599 	return (ncpus);
600 }
601 
602 #ifdef __linux__
603 #define sockaddr_dl    sockaddr_ll
604 #define sdl_family     sll_family
605 #define AF_LINK        AF_PACKET
606 #define LLADDR(s)      s->sll_addr;
607 #include <linux/if_tun.h>
608 #define TAP_CLONEDEV	"/dev/net/tun"
609 #endif /* __linux__ */
610 
611 #ifdef __FreeBSD__
612 #include <net/if_tun.h>
613 #define TAP_CLONEDEV	"/dev/tap"
614 #endif /* __FreeBSD */
615 
616 #ifdef __APPLE__
617 // #warning TAP not supported on apple ?
618 #include <net/if_utun.h>
619 #define TAP_CLONEDEV	"/dev/tap"
620 #endif /* __APPLE__ */
621 
622 
623 /*
624  * parse the vale configuration in conf and put it in nmr.
625  * Return the flag set if necessary.
626  * The configuration may consist of 1 to 4 numbers separated
627  * by commas: #tx-slots,#rx-slots,#tx-rings,#rx-rings.
628  * Missing numbers or zeroes stand for default values.
629  * As an additional convenience, if exactly one number
630  * is specified, then this is assigned to both #tx-slots and #rx-slots.
631  * If there is no 4th number, then the 3rd is assigned to both #tx-rings
632  * and #rx-rings.
633  */
634 static int
635 parse_nmr_config(const char* conf, struct nmreq_register *nmr)
636 {
637 	char *w, *tok;
638 	int i, v;
639 
640 	if (conf == NULL || ! *conf)
641 		return 0;
642 	nmr->nr_tx_rings = nmr->nr_rx_rings = 0;
643 	nmr->nr_tx_slots = nmr->nr_rx_slots = 0;
644 	w = strdup(conf);
645 	for (i = 0, tok = strtok(w, ","); tok; i++, tok = strtok(NULL, ",")) {
646 		v = atoi(tok);
647 		switch (i) {
648 		case 0:
649 			nmr->nr_tx_slots = nmr->nr_rx_slots = v;
650 			break;
651 		case 1:
652 			nmr->nr_rx_slots = v;
653 			break;
654 		case 2:
655 			nmr->nr_tx_rings = nmr->nr_rx_rings = v;
656 			break;
657 		case 3:
658 			nmr->nr_rx_rings = v;
659 			break;
660 		default:
661 			D("ignored config: %s", tok);
662 			break;
663 		}
664 	}
665 	D("txr %d txd %d rxr %d rxd %d",
666 			nmr->nr_tx_rings, nmr->nr_tx_slots,
667 			nmr->nr_rx_rings, nmr->nr_rx_slots);
668 	free(w);
669 	return 0;
670 }
671 
672 
673 /*
674  * locate the src mac address for our interface, put it
675  * into the user-supplied buffer. return 0 if ok, -1 on error.
676  */
677 static int
678 source_hwaddr(const char *ifname, char *buf)
679 {
680 	struct ifaddrs *ifaphead, *ifap;
681 
682 	if (getifaddrs(&ifaphead) != 0) {
683 		D("getifaddrs %s failed", ifname);
684 		return (-1);
685 	}
686 
687 	/* remove 'netmap:' prefix before comparing interfaces */
688 	if (!strncmp(ifname, "netmap:", 7))
689 		ifname = &ifname[7];
690 
691 	for (ifap = ifaphead; ifap; ifap = ifap->ifa_next) {
692 		struct sockaddr_dl *sdl =
693 			(struct sockaddr_dl *)ifap->ifa_addr;
694 		uint8_t *mac;
695 
696 		if (!sdl || sdl->sdl_family != AF_LINK)
697 			continue;
698 		if (strncmp(ifap->ifa_name, ifname, IFNAMSIZ) != 0)
699 			continue;
700 		mac = (uint8_t *)LLADDR(sdl);
701 		sprintf(buf, "%02x:%02x:%02x:%02x:%02x:%02x",
702 			mac[0], mac[1], mac[2],
703 			mac[3], mac[4], mac[5]);
704 		if (verbose)
705 			D("source hwaddr %s", buf);
706 		break;
707 	}
708 	freeifaddrs(ifaphead);
709 	return ifap ? 0 : 1;
710 }
711 
712 
713 /* set the thread affinity. */
714 static int
715 setaffinity(pthread_t me, int i)
716 {
717 	cpuset_t cpumask;
718 
719 	if (i == -1)
720 		return 0;
721 
722 	/* Set thread affinity affinity.*/
723 	CPU_ZERO(&cpumask);
724 	CPU_SET(i, &cpumask);
725 
726 	if (pthread_setaffinity_np(me, sizeof(cpuset_t), &cpumask) != 0) {
727 		D("Unable to set affinity: %s", strerror(errno));
728 		return 1;
729 	}
730 	return 0;
731 }
732 
733 
734 /* Compute the checksum of the given ip header. */
735 static uint32_t
736 checksum(const void *data, uint16_t len, uint32_t sum)
737 {
738 	const uint8_t *addr = data;
739 	uint32_t i;
740 
741 	/* Checksum all the pairs of bytes first... */
742 	for (i = 0; i < (len & ~1U); i += 2) {
743 		sum += (uint16_t)ntohs(*((const uint16_t *)(addr + i)));
744 		if (sum > 0xFFFF)
745 			sum -= 0xFFFF;
746 	}
747 	/*
748 	 * If there's a single byte left over, checksum it, too.
749 	 * Network byte order is big-endian, so the remaining byte is
750 	 * the high byte.
751 	 */
752 	if (i < len) {
753 		sum += addr[i] << 8;
754 		if (sum > 0xFFFF)
755 			sum -= 0xFFFF;
756 	}
757 	return sum;
758 }
759 
760 static uint16_t
761 wrapsum(uint32_t sum)
762 {
763 	sum = ~sum & 0xFFFF;
764 	return (htons(sum));
765 }
766 
767 /* Check the payload of the packet for errors (use it for debug).
768  * Look for consecutive ascii representations of the size of the packet.
769  */
770 static void
771 dump_payload(const char *_p, int len, struct netmap_ring *ring, int cur)
772 {
773 	char buf[128];
774 	int i, j, i0;
775 	const unsigned char *p = (const unsigned char *)_p;
776 
777 	/* get the length in ASCII of the length of the packet. */
778 
779 	printf("ring %p cur %5d [buf %6d flags 0x%04x len %5d]\n",
780 		ring, cur, ring->slot[cur].buf_idx,
781 		ring->slot[cur].flags, len);
782 	/* hexdump routine */
783 	for (i = 0; i < len; ) {
784 		memset(buf, ' ', sizeof(buf));
785 		sprintf(buf, "%5d: ", i);
786 		i0 = i;
787 		for (j=0; j < 16 && i < len; i++, j++)
788 			sprintf(buf+7+j*3, "%02x ", (uint8_t)(p[i]));
789 		i = i0;
790 		for (j=0; j < 16 && i < len; i++, j++)
791 			sprintf(buf+7+j + 48, "%c",
792 				isprint(p[i]) ? p[i] : '.');
793 		printf("%s\n", buf);
794 	}
795 }
796 
797 /*
798  * Fill a packet with some payload.
799  * We create a UDP packet so the payload starts at
800  *	14+20+8 = 42 bytes.
801  */
802 #ifdef __linux__
803 #define uh_sport source
804 #define uh_dport dest
805 #define uh_ulen len
806 #define uh_sum check
807 #endif /* linux */
808 
809 static uint16_t
810 new_ip_sum(uint16_t ip_sum, uint32_t oaddr, uint32_t naddr)
811 {
812 	ip_sum = cksum_add(ip_sum, ~oaddr >> 16);
813 	ip_sum = cksum_add(ip_sum, ~oaddr & 0xffff);
814 	ip_sum = cksum_add(ip_sum, naddr >> 16);
815 	ip_sum = cksum_add(ip_sum, naddr & 0xffff);
816 	return ip_sum;
817 }
818 
819 static uint16_t
820 new_udp_sum(uint16_t udp_sum, uint16_t oport, uint16_t nport)
821 {
822 	udp_sum = cksum_add(udp_sum, ~oport);
823 	udp_sum = cksum_add(udp_sum, nport);
824 	return udp_sum;
825 }
826 
827 
828 static void
829 update_ip(struct pkt *pkt, struct targ *t)
830 {
831 	struct glob_arg *g = t->g;
832 	struct ip ip;
833 	struct udphdr udp;
834 	uint32_t oaddr, naddr;
835 	uint16_t oport, nport;
836 	uint16_t ip_sum = 0, udp_sum = 0;
837 
838 	memcpy(&ip, &pkt->ipv4.ip, sizeof(ip));
839 	memcpy(&udp, &pkt->ipv4.udp, sizeof(udp));
840 	do {
841 		ip_sum = udp_sum = 0;
842 		naddr = oaddr = ntohl(ip.ip_src.s_addr);
843 		nport = oport = ntohs(udp.uh_sport);
844 		if (g->options & OPT_RANDOM_SRC) {
845 			ip.ip_src.s_addr = nrand48(t->seed);
846 			udp.uh_sport = nrand48(t->seed);
847 			naddr = ntohl(ip.ip_src.s_addr);
848 			nport = ntohs(udp.uh_sport);
849 			ip_sum = new_ip_sum(ip_sum, oaddr, naddr);
850 			udp_sum = new_udp_sum(udp_sum, oport, nport);
851 		} else {
852 			if (oport < g->src_ip.port1) {
853 				nport = oport + 1;
854 				udp.uh_sport = htons(nport);
855 				udp_sum = new_udp_sum(udp_sum, oport, nport);
856 				break;
857 			}
858 			nport = g->src_ip.port0;
859 			udp.uh_sport = htons(nport);
860 			if (oaddr < g->src_ip.ipv4.end) {
861 				naddr = oaddr + 1;
862 				ip.ip_src.s_addr = htonl(naddr);
863 				ip_sum = new_ip_sum(ip_sum, oaddr, naddr);
864 				break;
865 			}
866 			naddr = g->src_ip.ipv4.start;
867 			ip.ip_src.s_addr = htonl(naddr);
868 			ip_sum = new_ip_sum(ip_sum, oaddr, naddr);
869 		}
870 
871 		naddr = oaddr = ntohl(ip.ip_dst.s_addr);
872 		nport = oport = ntohs(udp.uh_dport);
873 		if (g->options & OPT_RANDOM_DST) {
874 			ip.ip_dst.s_addr = nrand48(t->seed);
875 			udp.uh_dport = nrand48(t->seed);
876 			naddr = ntohl(ip.ip_dst.s_addr);
877 			nport = ntohs(udp.uh_dport);
878 			ip_sum = new_ip_sum(ip_sum, oaddr, naddr);
879 			udp_sum = new_udp_sum(udp_sum, oport, nport);
880 		} else {
881 			if (oport < g->dst_ip.port1) {
882 				nport = oport + 1;
883 				udp.uh_dport = htons(nport);
884 				udp_sum = new_udp_sum(udp_sum, oport, nport);
885 				break;
886 			}
887 			nport = g->dst_ip.port0;
888 			udp.uh_dport = htons(nport);
889 			if (oaddr < g->dst_ip.ipv4.end) {
890 				naddr = oaddr + 1;
891 				ip.ip_dst.s_addr = htonl(naddr);
892 				ip_sum = new_ip_sum(ip_sum, oaddr, naddr);
893 				break;
894 			}
895 			naddr = g->dst_ip.ipv4.start;
896 			ip.ip_dst.s_addr = htonl(naddr);
897 			ip_sum = new_ip_sum(ip_sum, oaddr, naddr);
898 		}
899 	} while (0);
900 	/* update checksums */
901 	if (udp_sum != 0)
902 		udp.uh_sum = ~cksum_add(~udp.uh_sum, htons(udp_sum));
903 	if (ip_sum != 0) {
904 		ip.ip_sum = ~cksum_add(~ip.ip_sum, htons(ip_sum));
905 		udp.uh_sum = ~cksum_add(~udp.uh_sum, htons(ip_sum));
906 	}
907 	memcpy(&pkt->ipv4.ip, &ip, sizeof(ip));
908 	memcpy(&pkt->ipv4.udp, &udp, sizeof(udp));
909 }
910 
911 #ifndef s6_addr16
912 #define	s6_addr16	__u6_addr.__u6_addr16
913 #endif
914 static void
915 update_ip6(struct pkt *pkt, struct targ *t)
916 {
917 	struct glob_arg *g = t->g;
918 	struct ip6_hdr ip6;
919 	struct udphdr udp;
920 	uint16_t udp_sum;
921 	uint16_t oaddr, naddr;
922 	uint16_t oport, nport;
923 	uint8_t group;
924 
925 	memcpy(&ip6, &pkt->ipv6.ip, sizeof(ip6));
926 	memcpy(&udp, &pkt->ipv6.udp, sizeof(udp));
927 	do {
928 		udp_sum = 0;
929 		group = g->src_ip.ipv6.sgroup;
930 		naddr = oaddr = ntohs(ip6.ip6_src.s6_addr16[group]);
931 		nport = oport = ntohs(udp.uh_sport);
932 		if (g->options & OPT_RANDOM_SRC) {
933 			ip6.ip6_src.s6_addr16[group] = nrand48(t->seed);
934 			udp.uh_sport = nrand48(t->seed);
935 			naddr = ntohs(ip6.ip6_src.s6_addr16[group]);
936 			nport = ntohs(udp.uh_sport);
937 			break;
938 		}
939 		if (oport < g->src_ip.port1) {
940 			nport = oport + 1;
941 			udp.uh_sport = htons(nport);
942 			break;
943 		}
944 		nport = g->src_ip.port0;
945 		udp.uh_sport = htons(nport);
946 		if (oaddr < ntohs(g->src_ip.ipv6.end.s6_addr16[group])) {
947 			naddr = oaddr + 1;
948 			ip6.ip6_src.s6_addr16[group] = htons(naddr);
949 			break;
950 		}
951 		naddr = ntohs(g->src_ip.ipv6.start.s6_addr16[group]);
952 		ip6.ip6_src.s6_addr16[group] = htons(naddr);
953 
954 		/* update checksums if needed */
955 		if (oaddr != naddr)
956 			udp_sum = cksum_add(~oaddr, naddr);
957 		if (oport != nport)
958 			udp_sum = cksum_add(udp_sum,
959 			    cksum_add(~oport, nport));
960 
961 		group = g->dst_ip.ipv6.egroup;
962 		naddr = oaddr = ntohs(ip6.ip6_dst.s6_addr16[group]);
963 		nport = oport = ntohs(udp.uh_dport);
964 		if (g->options & OPT_RANDOM_DST) {
965 			ip6.ip6_dst.s6_addr16[group] = nrand48(t->seed);
966 			udp.uh_dport = nrand48(t->seed);
967 			naddr = ntohs(ip6.ip6_dst.s6_addr16[group]);
968 			nport = ntohs(udp.uh_dport);
969 			break;
970 		}
971 		if (oport < g->dst_ip.port1) {
972 			nport = oport + 1;
973 			udp.uh_dport = htons(nport);
974 			break;
975 		}
976 		nport = g->dst_ip.port0;
977 		udp.uh_dport = htons(nport);
978 		if (oaddr < ntohs(g->dst_ip.ipv6.end.s6_addr16[group])) {
979 			naddr = oaddr + 1;
980 			ip6.ip6_dst.s6_addr16[group] = htons(naddr);
981 			break;
982 		}
983 		naddr = ntohs(g->dst_ip.ipv6.start.s6_addr16[group]);
984 		ip6.ip6_dst.s6_addr16[group] = htons(naddr);
985 	} while (0);
986 	/* update checksums */
987 	if (oaddr != naddr)
988 		udp_sum = cksum_add(udp_sum,
989 		    cksum_add(~oaddr, naddr));
990 	if (oport != nport)
991 		udp_sum = cksum_add(udp_sum,
992 		    cksum_add(~oport, nport));
993 	if (udp_sum != 0)
994 		udp.uh_sum = ~cksum_add(~udp.uh_sum, udp_sum);
995 	memcpy(&pkt->ipv6.ip, &ip6, sizeof(ip6));
996 	memcpy(&pkt->ipv6.udp, &udp, sizeof(udp));
997 }
998 
999 static void
1000 update_addresses(struct pkt *pkt, struct targ *t)
1001 {
1002 
1003 	if (t->g->af == AF_INET)
1004 		update_ip(pkt, t);
1005 	else
1006 		update_ip6(pkt, t);
1007 }
1008 /*
1009  * initialize one packet and prepare for the next one.
1010  * The copy could be done better instead of repeating it each time.
1011  */
1012 static void
1013 initialize_packet(struct targ *targ)
1014 {
1015 	struct pkt *pkt = &targ->pkt;
1016 	struct ether_header *eh;
1017 	struct ip6_hdr ip6;
1018 	struct ip ip;
1019 	struct udphdr udp;
1020 	void *udp_ptr;
1021 	uint16_t paylen;
1022 	uint32_t csum = 0;
1023 	const char *payload = targ->g->options & OPT_INDIRECT ?
1024 		indirect_payload : default_payload;
1025 	int i, l0 = strlen(payload);
1026 
1027 #ifndef NO_PCAP
1028 	char errbuf[PCAP_ERRBUF_SIZE];
1029 	pcap_t *file;
1030 	struct pcap_pkthdr *header;
1031 	const unsigned char *packet;
1032 
1033 	/* Read a packet from a PCAP file if asked. */
1034 	if (targ->g->packet_file != NULL) {
1035 		if ((file = pcap_open_offline(targ->g->packet_file,
1036 			    errbuf)) == NULL)
1037 			D("failed to open pcap file %s",
1038 			    targ->g->packet_file);
1039 		if (pcap_next_ex(file, &header, &packet) < 0)
1040 			D("failed to read packet from %s",
1041 			    targ->g->packet_file);
1042 		if ((targ->frame = malloc(header->caplen)) == NULL)
1043 			D("out of memory");
1044 		bcopy(packet, (unsigned char *)targ->frame, header->caplen);
1045 		targ->g->pkt_size = header->caplen;
1046 		pcap_close(file);
1047 		return;
1048 	}
1049 #endif
1050 
1051 	paylen = targ->g->pkt_size - sizeof(*eh) -
1052 	    (targ->g->af == AF_INET ? sizeof(ip): sizeof(ip6));
1053 
1054 	/* create a nice NUL-terminated string */
1055 	for (i = 0; i < paylen; i += l0) {
1056 		if (l0 > paylen - i)
1057 			l0 = paylen - i; // last round
1058 		bcopy(payload, PKT(pkt, body, targ->g->af) + i, l0);
1059 	}
1060 	PKT(pkt, body, targ->g->af)[i - 1] = '\0';
1061 
1062 	/* prepare the headers */
1063 	eh = &pkt->eh;
1064 	bcopy(&targ->g->src_mac.start, eh->ether_shost, 6);
1065 	bcopy(&targ->g->dst_mac.start, eh->ether_dhost, 6);
1066 
1067 	if (targ->g->af == AF_INET) {
1068 		eh->ether_type = htons(ETHERTYPE_IP);
1069 		memcpy(&ip, &pkt->ipv4.ip, sizeof(ip));
1070 		udp_ptr = &pkt->ipv4.udp;
1071 		ip.ip_v = IPVERSION;
1072 		ip.ip_hl = sizeof(ip) >> 2;
1073 		ip.ip_id = 0;
1074 		ip.ip_tos = IPTOS_LOWDELAY;
1075 		ip.ip_len = htons(targ->g->pkt_size - sizeof(*eh));
1076 		ip.ip_id = 0;
1077 		ip.ip_off = htons(IP_DF); /* Don't fragment */
1078 		ip.ip_ttl = IPDEFTTL;
1079 		ip.ip_p = IPPROTO_UDP;
1080 		ip.ip_dst.s_addr = htonl(targ->g->dst_ip.ipv4.start);
1081 		ip.ip_src.s_addr = htonl(targ->g->src_ip.ipv4.start);
1082 		ip.ip_sum = wrapsum(checksum(&ip, sizeof(ip), 0));
1083 		memcpy(&pkt->ipv4.ip, &ip, sizeof(ip));
1084 	} else {
1085 		eh->ether_type = htons(ETHERTYPE_IPV6);
1086 		memcpy(&ip6, &pkt->ipv4.ip, sizeof(ip6));
1087 		udp_ptr = &pkt->ipv6.udp;
1088 		ip6.ip6_flow = 0;
1089 		ip6.ip6_plen = htons(paylen);
1090 		ip6.ip6_vfc = IPV6_VERSION;
1091 		ip6.ip6_nxt = IPPROTO_UDP;
1092 		ip6.ip6_hlim = IPV6_DEFHLIM;
1093 		ip6.ip6_src = targ->g->src_ip.ipv6.start;
1094 		ip6.ip6_dst = targ->g->dst_ip.ipv6.start;
1095 	}
1096 	memcpy(&udp, udp_ptr, sizeof(udp));
1097 
1098 	udp.uh_sport = htons(targ->g->src_ip.port0);
1099 	udp.uh_dport = htons(targ->g->dst_ip.port0);
1100 	udp.uh_ulen = htons(paylen);
1101 	if (targ->g->af == AF_INET) {
1102 		/* Magic: taken from sbin/dhclient/packet.c */
1103 		udp.uh_sum = wrapsum(
1104 		    checksum(&udp, sizeof(udp),	/* udp header */
1105 		    checksum(pkt->ipv4.body,	/* udp payload */
1106 		    paylen - sizeof(udp),
1107 		    checksum(&pkt->ipv4.ip.ip_src, /* pseudo header */
1108 			2 * sizeof(pkt->ipv4.ip.ip_src),
1109 			IPPROTO_UDP + (u_int32_t)ntohs(udp.uh_ulen)))));
1110 		memcpy(&pkt->ipv4.ip, &ip, sizeof(ip));
1111 	} else {
1112 		/* Save part of pseudo header checksum into csum */
1113 		csum = IPPROTO_UDP << 24;
1114 		csum = checksum(&csum, sizeof(csum), paylen);
1115 		udp.uh_sum = wrapsum(
1116 		    checksum(udp_ptr, sizeof(udp),	/* udp header */
1117 		    checksum(pkt->ipv6.body,	/* udp payload */
1118 		    paylen - sizeof(udp),
1119 		    checksum(&pkt->ipv6.ip.ip6_src, /* pseudo header */
1120 			2 * sizeof(pkt->ipv6.ip.ip6_src), csum))));
1121 		memcpy(&pkt->ipv6.ip, &ip6, sizeof(ip6));
1122 	}
1123 	memcpy(udp_ptr, &udp, sizeof(udp));
1124 
1125 	bzero(&pkt->vh, sizeof(pkt->vh));
1126 	// dump_payload((void *)pkt, targ->g->pkt_size, NULL, 0);
1127 }
1128 
1129 static void
1130 get_vnet_hdr_len(struct glob_arg *g)
1131 {
1132 	struct nmreq_header hdr;
1133 	struct nmreq_port_hdr ph;
1134 	int err;
1135 
1136 	hdr = g->nmd->hdr; /* copy name and version */
1137 	hdr.nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
1138 	hdr.nr_options = 0;
1139 	memset(&ph, 0, sizeof(ph));
1140 	hdr.nr_body = (uintptr_t)&ph;
1141 	err = ioctl(g->main_fd, NIOCCTRL, &hdr);
1142 	if (err) {
1143 		D("Unable to get virtio-net header length");
1144 		return;
1145 	}
1146 
1147 	g->virt_header = ph.nr_hdr_len;
1148 	if (g->virt_header) {
1149 		D("Port requires virtio-net header, length = %d",
1150 		  g->virt_header);
1151 	}
1152 }
1153 
1154 static void
1155 set_vnet_hdr_len(struct glob_arg *g)
1156 {
1157 	int err, l = g->virt_header;
1158 	struct nmreq_header hdr;
1159 	struct nmreq_port_hdr ph;
1160 
1161 	if (l == 0)
1162 		return;
1163 
1164 	hdr = g->nmd->hdr; /* copy name and version */
1165 	hdr.nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
1166 	hdr.nr_options = 0;
1167 	memset(&ph, 0, sizeof(ph));
1168 	hdr.nr_body = (uintptr_t)&ph;
1169 	err = ioctl(g->main_fd, NIOCCTRL, &hdr);
1170 	if (err) {
1171 		D("Unable to set virtio-net header length %d", l);
1172 	}
1173 }
1174 
1175 /*
1176  * create and enqueue a batch of packets on a ring.
1177  * On the last one set NS_REPORT to tell the driver to generate
1178  * an interrupt when done.
1179  */
1180 static int
1181 send_packets(struct netmap_ring *ring, struct pkt *pkt, void *frame,
1182 		int size, struct targ *t, u_int count, int options)
1183 {
1184 	u_int n, sent, head = ring->head;
1185 	u_int frags = t->frags;
1186 	u_int frag_size = t->frag_size;
1187 	struct netmap_slot *slot = &ring->slot[head];
1188 
1189 	n = nm_ring_space(ring);
1190 #if 0
1191 	if (options & (OPT_COPY | OPT_PREFETCH) ) {
1192 		for (sent = 0; sent < count; sent++) {
1193 			struct netmap_slot *slot = &ring->slot[head];
1194 			char *p = NETMAP_BUF(ring, slot->buf_idx);
1195 
1196 			__builtin_prefetch(p);
1197 			head = nm_ring_next(ring, head);
1198 		}
1199 		head = ring->head;
1200 	}
1201 #endif
1202 	for (sent = 0; sent < count && n >= frags; sent++, n--) {
1203 		char *p;
1204 		int buf_changed;
1205 		u_int tosend = size;
1206 
1207 		slot = &ring->slot[head];
1208 		p = NETMAP_BUF(ring, slot->buf_idx);
1209 		buf_changed = slot->flags & NS_BUF_CHANGED;
1210 
1211 		slot->flags = 0;
1212 		if (options & OPT_RUBBISH) {
1213 			/* do nothing */
1214 		} else if (options & OPT_INDIRECT) {
1215 			slot->flags |= NS_INDIRECT;
1216 			slot->ptr = (uint64_t)((uintptr_t)frame);
1217 		} else if (frags > 1) {
1218 			u_int i;
1219 			const char *f = frame;
1220 			char *fp = p;
1221 			for (i = 0; i < frags - 1; i++) {
1222 				memcpy(fp, f, frag_size);
1223 				slot->len = frag_size;
1224 				slot->flags = NS_MOREFRAG;
1225 				if (options & OPT_DUMP)
1226 					dump_payload(fp, frag_size, ring, head);
1227 				tosend -= frag_size;
1228 				f += frag_size;
1229 				head = nm_ring_next(ring, head);
1230 				slot = &ring->slot[head];
1231 				fp = NETMAP_BUF(ring, slot->buf_idx);
1232 			}
1233 			n -= (frags - 1);
1234 			p = fp;
1235 			slot->flags = 0;
1236 			memcpy(p, f, tosend);
1237 			update_addresses(pkt, t);
1238 		} else if ((options & (OPT_COPY | OPT_MEMCPY)) || buf_changed) {
1239 			if (options & OPT_COPY)
1240 				nm_pkt_copy(frame, p, size);
1241 			else
1242 				memcpy(p, frame, size);
1243 			update_addresses(pkt, t);
1244 		} else if (options & OPT_PREFETCH) {
1245 			__builtin_prefetch(p);
1246 		}
1247 		slot->len = tosend;
1248 		if (options & OPT_DUMP)
1249 			dump_payload(p, tosend, ring, head);
1250 		head = nm_ring_next(ring, head);
1251 	}
1252 	if (sent) {
1253 		slot->flags |= NS_REPORT;
1254 		ring->head = ring->cur = head;
1255 	}
1256 	if (sent < count) {
1257 		/* tell netmap that we need more slots */
1258 		ring->cur = ring->tail;
1259 	}
1260 
1261 	return (sent);
1262 }
1263 
1264 /*
1265  * Index of the highest bit set
1266  */
1267 static uint32_t
1268 msb64(uint64_t x)
1269 {
1270 	uint64_t m = 1ULL << 63;
1271 	int i;
1272 
1273 	for (i = 63; i >= 0; i--, m >>=1)
1274 		if (m & x)
1275 			return i;
1276 	return 0;
1277 }
1278 
1279 /*
1280  * wait until ts, either busy or sleeping if more than 1ms.
1281  * Return wakeup time.
1282  */
1283 static struct timespec
1284 wait_time(struct timespec ts)
1285 {
1286 	for (;;) {
1287 		struct timespec w, cur;
1288 		clock_gettime(CLOCK_REALTIME_PRECISE, &cur);
1289 		w = timespec_sub(ts, cur);
1290 		if (w.tv_sec < 0)
1291 			return cur;
1292 		else if (w.tv_sec > 0 || w.tv_nsec > 1000000)
1293 			poll(NULL, 0, 1);
1294 	}
1295 }
1296 
1297 /*
1298  * Send a packet, and wait for a response.
1299  * The payload (after UDP header, ofs 42) has a 4-byte sequence
1300  * followed by a struct timeval (or bintime?)
1301  */
1302 
1303 static void *
1304 ping_body(void *data)
1305 {
1306 	struct targ *targ = (struct targ *) data;
1307 	struct pollfd pfd = { .fd = targ->fd, .events = POLLIN };
1308 	struct netmap_if *nifp = targ->nmd->nifp;
1309 	int i, m;
1310 	void *frame;
1311 	int size;
1312 	struct timespec ts, now, last_print;
1313 	struct timespec nexttime = {0, 0}; /* silence compiler */
1314 	uint64_t sent = 0, n = targ->g->npackets;
1315 	uint64_t count = 0, t_cur, t_min = ~0, av = 0;
1316 	uint64_t g_min = ~0, g_av = 0;
1317 	uint64_t buckets[64];	/* bins for delays, ns */
1318 	int rate_limit = targ->g->tx_rate, tosend = 0;
1319 
1320 	frame = (char*)&targ->pkt + sizeof(targ->pkt.vh) - targ->g->virt_header;
1321 	size = targ->g->pkt_size + targ->g->virt_header;
1322 
1323 
1324 	if (targ->g->nthreads > 1) {
1325 		D("can only ping with 1 thread");
1326 		return NULL;
1327 	}
1328 
1329 	if (targ->g->af == AF_INET6) {
1330 		D("Warning: ping-pong with IPv6 not supported");
1331 	}
1332 
1333 	bzero(&buckets, sizeof(buckets));
1334 	clock_gettime(CLOCK_REALTIME_PRECISE, &last_print);
1335 	now = last_print;
1336 	if (rate_limit) {
1337 		targ->tic = timespec_add(now, (struct timespec){2,0});
1338 		targ->tic.tv_nsec = 0;
1339 		wait_time(targ->tic);
1340 		nexttime = targ->tic;
1341 	}
1342 	while (!targ->cancel && (n == 0 || sent < n)) {
1343 		struct netmap_ring *ring = NETMAP_TXRING(nifp, targ->nmd->first_tx_ring);
1344 		struct netmap_slot *slot;
1345 		char *p;
1346 		int rv;
1347 		uint64_t limit, event = 0;
1348 
1349 		if (rate_limit && tosend <= 0) {
1350 			tosend = targ->g->burst;
1351 			nexttime = timespec_add(nexttime, targ->g->tx_period);
1352 			wait_time(nexttime);
1353 		}
1354 
1355 		limit = rate_limit ? tosend : targ->g->burst;
1356 		if (n > 0 && n - sent < limit)
1357 			limit = n - sent;
1358 		for (m = 0; (unsigned)m < limit; m++) {
1359 			slot = &ring->slot[ring->head];
1360 			slot->len = size;
1361 			p = NETMAP_BUF(ring, slot->buf_idx);
1362 
1363 			if (nm_ring_empty(ring)) {
1364 				D("-- ouch, cannot send");
1365 				break;
1366 			} else {
1367 				struct tstamp *tp;
1368 				nm_pkt_copy(frame, p, size);
1369 				clock_gettime(CLOCK_REALTIME_PRECISE, &ts);
1370 				bcopy(&sent, p+42, sizeof(sent));
1371 				tp = (struct tstamp *)(p+46);
1372 				tp->sec = (uint32_t)ts.tv_sec;
1373 				tp->nsec = (uint32_t)ts.tv_nsec;
1374 				sent++;
1375 				ring->head = ring->cur = nm_ring_next(ring, ring->head);
1376 			}
1377 		}
1378 		if (m > 0)
1379 			event++;
1380 		targ->ctr.pkts = sent;
1381 		targ->ctr.bytes = sent*size;
1382 		targ->ctr.events = event;
1383 		if (rate_limit)
1384 			tosend -= m;
1385 #ifdef BUSYWAIT
1386 		rv = ioctl(pfd.fd, NIOCTXSYNC, NULL);
1387 		if (rv < 0) {
1388 			D("TXSYNC error on queue %d: %s", targ->me,
1389 				strerror(errno));
1390 		}
1391 	again:
1392 		ioctl(pfd.fd, NIOCRXSYNC, NULL);
1393 #else
1394 		/* should use a parameter to decide how often to send */
1395 		if ( (rv = poll(&pfd, 1, 3000)) <= 0) {
1396 			D("poll error on queue %d: %s", targ->me,
1397 				(rv ? strerror(errno) : "timeout"));
1398 			continue;
1399 		}
1400 #endif /* BUSYWAIT */
1401 		/* see what we got back */
1402 #ifdef BUSYWAIT
1403 		int rx = 0;
1404 #endif
1405 		for (i = targ->nmd->first_rx_ring;
1406 			i <= targ->nmd->last_rx_ring; i++) {
1407 			ring = NETMAP_RXRING(nifp, i);
1408 			while (!nm_ring_empty(ring)) {
1409 				uint32_t seq;
1410 				struct tstamp *tp;
1411 				int pos;
1412 
1413 				slot = &ring->slot[ring->head];
1414 				p = NETMAP_BUF(ring, slot->buf_idx);
1415 
1416 				clock_gettime(CLOCK_REALTIME_PRECISE, &now);
1417 				bcopy(p+42, &seq, sizeof(seq));
1418 				tp = (struct tstamp *)(p+46);
1419 				ts.tv_sec = (time_t)tp->sec;
1420 				ts.tv_nsec = (long)tp->nsec;
1421 				ts.tv_sec = now.tv_sec - ts.tv_sec;
1422 				ts.tv_nsec = now.tv_nsec - ts.tv_nsec;
1423 				if (ts.tv_nsec < 0) {
1424 					ts.tv_nsec += 1000000000;
1425 					ts.tv_sec--;
1426 				}
1427 				if (0) D("seq %d/%llu delta %d.%09d", seq,
1428 					(unsigned long long)sent,
1429 					(int)ts.tv_sec, (int)ts.tv_nsec);
1430 				t_cur = ts.tv_sec * 1000000000UL + ts.tv_nsec;
1431 				if (t_cur < t_min)
1432 					t_min = t_cur;
1433 				count ++;
1434 				av += t_cur;
1435 				pos = msb64(t_cur);
1436 				buckets[pos]++;
1437 				/* now store it in a bucket */
1438 				ring->head = ring->cur = nm_ring_next(ring, ring->head);
1439 #ifdef BUSYWAIT
1440 				rx++;
1441 #endif
1442 			}
1443 		}
1444 		//D("tx %d rx %d", sent, rx);
1445 		//usleep(100000);
1446 		ts.tv_sec = now.tv_sec - last_print.tv_sec;
1447 		ts.tv_nsec = now.tv_nsec - last_print.tv_nsec;
1448 		if (ts.tv_nsec < 0) {
1449 			ts.tv_nsec += 1000000000;
1450 			ts.tv_sec--;
1451 		}
1452 		if (ts.tv_sec >= 1) {
1453 			D("count %d RTT: min %d av %d ns",
1454 				(int)count, (int)t_min, (int)(av/count));
1455 			int k, j, kmin, off;
1456 			char buf[512];
1457 
1458 			for (kmin = 0; kmin < 64; kmin ++)
1459 				if (buckets[kmin])
1460 					break;
1461 			for (k = 63; k >= kmin; k--)
1462 				if (buckets[k])
1463 					break;
1464 			buf[0] = '\0';
1465 			off = 0;
1466 			for (j = kmin; j <= k; j++) {
1467 				off += sprintf(buf + off, " %5d", (int)buckets[j]);
1468 			}
1469 			D("k: %d .. %d\n\t%s", 1<<kmin, 1<<k, buf);
1470 			bzero(&buckets, sizeof(buckets));
1471 			count = 0;
1472 			g_av += av;
1473 			av = 0;
1474 			if (t_min < g_min)
1475 				g_min = t_min;
1476 			t_min = ~0;
1477 			last_print = now;
1478 		}
1479 #ifdef BUSYWAIT
1480 		if (rx < m && ts.tv_sec <= 3 && !targ->cancel)
1481 			goto again;
1482 #endif /* BUSYWAIT */
1483 	}
1484 
1485 	if (sent > 0) {
1486 		D("RTT over %llu packets: min %d av %d ns",
1487 			(long long unsigned)sent, (int)g_min,
1488 			(int)((double)g_av/sent));
1489 	}
1490 	targ->completed = 1;
1491 
1492 	/* reset the ``used`` flag. */
1493 	targ->used = 0;
1494 
1495 	return NULL;
1496 }
1497 
1498 
1499 /*
1500  * reply to ping requests
1501  */
1502 static void *
1503 pong_body(void *data)
1504 {
1505 	struct targ *targ = (struct targ *) data;
1506 	struct pollfd pfd = { .fd = targ->fd, .events = POLLIN };
1507 	struct netmap_if *nifp = targ->nmd->nifp;
1508 	struct netmap_ring *txring, *rxring;
1509 	int i;
1510 	uint64_t sent = 0, n = targ->g->npackets;
1511 
1512 	if (targ->g->nthreads > 1) {
1513 		D("can only reply ping with 1 thread");
1514 		return NULL;
1515 	}
1516 	if (n > 0)
1517 		D("understood ponger %llu but don't know how to do it",
1518 			(unsigned long long)n);
1519 
1520 	if (targ->g->af == AF_INET6) {
1521 		D("Warning: ping-pong with IPv6 not supported");
1522 	}
1523 
1524 	while (!targ->cancel && (n == 0 || sent < n)) {
1525 		uint32_t txhead, txavail;
1526 //#define BUSYWAIT
1527 #ifdef BUSYWAIT
1528 		ioctl(pfd.fd, NIOCRXSYNC, NULL);
1529 #else
1530 		int rv;
1531 		if ( (rv = poll(&pfd, 1, 1000)) <= 0) {
1532 			D("poll error on queue %d: %s", targ->me,
1533 				rv ? strerror(errno) : "timeout");
1534 			continue;
1535 		}
1536 #endif
1537 		txring = NETMAP_TXRING(nifp, targ->nmd->first_tx_ring);
1538 		txhead = txring->head;
1539 		txavail = nm_ring_space(txring);
1540 		/* see what we got back */
1541 		for (i = targ->nmd->first_rx_ring; i <= targ->nmd->last_rx_ring; i++) {
1542 			rxring = NETMAP_RXRING(nifp, i);
1543 			while (!nm_ring_empty(rxring)) {
1544 				uint16_t *spkt, *dpkt;
1545 				uint32_t head = rxring->head;
1546 				struct netmap_slot *slot = &rxring->slot[head];
1547 				char *src, *dst;
1548 				src = NETMAP_BUF(rxring, slot->buf_idx);
1549 				//D("got pkt %p of size %d", src, slot->len);
1550 				rxring->head = rxring->cur = nm_ring_next(rxring, head);
1551 				if (txavail == 0)
1552 					continue;
1553 				dst = NETMAP_BUF(txring,
1554 				    txring->slot[txhead].buf_idx);
1555 				/* copy... */
1556 				dpkt = (uint16_t *)dst;
1557 				spkt = (uint16_t *)src;
1558 				nm_pkt_copy(src, dst, slot->len);
1559 				/* swap source and destination MAC */
1560 				dpkt[0] = spkt[3];
1561 				dpkt[1] = spkt[4];
1562 				dpkt[2] = spkt[5];
1563 				dpkt[3] = spkt[0];
1564 				dpkt[4] = spkt[1];
1565 				dpkt[5] = spkt[2];
1566 				/* swap source and destination IPv4 */
1567 				if (spkt[6] == htons(ETHERTYPE_IP)) {
1568 					dpkt[13] = spkt[15];
1569 					dpkt[14] = spkt[16];
1570 					dpkt[15] = spkt[13];
1571 					dpkt[16] = spkt[14];
1572 				}
1573 				txring->slot[txhead].len = slot->len;
1574 				//dump_payload(dst, slot->len, txring, txhead);
1575 				txhead = nm_ring_next(txring, txhead);
1576 				txavail--;
1577 				sent++;
1578 			}
1579 		}
1580 		txring->head = txring->cur = txhead;
1581 		targ->ctr.pkts = sent;
1582 #ifdef BUSYWAIT
1583 		ioctl(pfd.fd, NIOCTXSYNC, NULL);
1584 #endif
1585 	}
1586 
1587 	targ->completed = 1;
1588 
1589 	/* reset the ``used`` flag. */
1590 	targ->used = 0;
1591 
1592 	return NULL;
1593 }
1594 
1595 
1596 static void *
1597 sender_body(void *data)
1598 {
1599 	struct targ *targ = (struct targ *) data;
1600 	struct pollfd pfd = { .fd = targ->fd, .events = POLLOUT };
1601 	struct netmap_if *nifp;
1602 	struct netmap_ring *txring = NULL;
1603 	int i;
1604 	uint64_t n = targ->g->npackets / targ->g->nthreads;
1605 	uint64_t sent = 0;
1606 	uint64_t event = 0;
1607 	int options = targ->g->options;
1608 	struct timespec nexttime = { 0, 0}; // XXX silence compiler
1609 	int rate_limit = targ->g->tx_rate;
1610 	struct pkt *pkt = &targ->pkt;
1611 	void *frame;
1612 	int size;
1613 
1614 	if (targ->frame == NULL) {
1615 		frame = (char *)pkt + sizeof(pkt->vh) - targ->g->virt_header;
1616 		size = targ->g->pkt_size + targ->g->virt_header;
1617 	} else {
1618 		frame = targ->frame;
1619 		size = targ->g->pkt_size;
1620 	}
1621 
1622 	D("start, fd %d main_fd %d", targ->fd, targ->g->main_fd);
1623 	if (setaffinity(targ->thread, targ->affinity))
1624 		goto quit;
1625 
1626 	/* main loop.*/
1627 	clock_gettime(CLOCK_REALTIME_PRECISE, &targ->tic);
1628 	if (rate_limit) {
1629 		targ->tic = timespec_add(targ->tic, (struct timespec){2,0});
1630 		targ->tic.tv_nsec = 0;
1631 		wait_time(targ->tic);
1632 		nexttime = targ->tic;
1633 	}
1634 	if (targ->g->dev_type == DEV_TAP) {
1635 	    D("writing to file desc %d", targ->g->main_fd);
1636 
1637 	    for (i = 0; !targ->cancel && (n == 0 || sent < n); i++) {
1638 		if (write(targ->g->main_fd, frame, size) != -1)
1639 			sent++;
1640 		update_addresses(pkt, targ);
1641 		if (i > 10000) {
1642 			targ->ctr.pkts = sent;
1643 			targ->ctr.bytes = sent*size;
1644 			targ->ctr.events = sent;
1645 			i = 0;
1646 		}
1647 	    }
1648 #ifndef NO_PCAP
1649     } else if (targ->g->dev_type == DEV_PCAP) {
1650 	    pcap_t *p = targ->g->p;
1651 
1652 	    for (i = 0; !targ->cancel && (n == 0 || sent < n); i++) {
1653 		if (pcap_inject(p, frame, size) != -1)
1654 			sent++;
1655 		update_addresses(pkt, targ);
1656 		if (i > 10000) {
1657 			targ->ctr.pkts = sent;
1658 			targ->ctr.bytes = sent*size;
1659 			targ->ctr.events = sent;
1660 			i = 0;
1661 		}
1662 	    }
1663 #endif /* NO_PCAP */
1664     } else {
1665 	int tosend = 0;
1666 	u_int bufsz, frag_size = targ->g->frag_size;
1667 
1668 	nifp = targ->nmd->nifp;
1669 	txring = NETMAP_TXRING(nifp, targ->nmd->first_tx_ring);
1670 	bufsz = txring->nr_buf_size;
1671 	if (bufsz < frag_size)
1672 		frag_size = bufsz;
1673 	targ->frag_size = targ->g->pkt_size / targ->frags;
1674 	if (targ->frag_size > frag_size) {
1675 		targ->frags = targ->g->pkt_size / frag_size;
1676 		targ->frag_size = frag_size;
1677 		if (targ->g->pkt_size % frag_size != 0)
1678 			targ->frags++;
1679 	}
1680 	D("frags %u frag_size %u", targ->frags, targ->frag_size);
1681 
1682 	/* mark all slots of all rings as changed so initial copy will be done */
1683 	for (i = targ->nmd->first_tx_ring; i <= targ->nmd->last_tx_ring; i++) {
1684 		uint32_t j;
1685 		struct netmap_slot *slot;
1686 
1687 		txring = NETMAP_TXRING(nifp, i);
1688 		for (j = 0; j < txring->num_slots; j++) {
1689 			slot = &txring->slot[j];
1690 			slot->flags = NS_BUF_CHANGED;
1691 		}
1692 	}
1693 
1694 	while (!targ->cancel && (n == 0 || sent < n)) {
1695 		int rv;
1696 
1697 		if (rate_limit && tosend <= 0) {
1698 			tosend = targ->g->burst;
1699 			nexttime = timespec_add(nexttime, targ->g->tx_period);
1700 			wait_time(nexttime);
1701 		}
1702 
1703 		/*
1704 		 * wait for available room in the send queue(s)
1705 		 */
1706 #ifdef BUSYWAIT
1707 		(void)rv;
1708 		if (ioctl(pfd.fd, NIOCTXSYNC, NULL) < 0) {
1709 			D("ioctl error on queue %d: %s", targ->me,
1710 					strerror(errno));
1711 			goto quit;
1712 		}
1713 #else /* !BUSYWAIT */
1714 		if ( (rv = poll(&pfd, 1, 2000)) <= 0) {
1715 			if (targ->cancel)
1716 				break;
1717 			D("poll error on queue %d: %s", targ->me,
1718 				rv ? strerror(errno) : "timeout");
1719 			// goto quit;
1720 		}
1721 		if (pfd.revents & POLLERR) {
1722 			D("poll error on %d ring %d-%d", pfd.fd,
1723 				targ->nmd->first_tx_ring, targ->nmd->last_tx_ring);
1724 			goto quit;
1725 		}
1726 #endif /* !BUSYWAIT */
1727 		/*
1728 		 * scan our queues and send on those with room
1729 		 */
1730 		for (i = targ->nmd->first_tx_ring; i <= targ->nmd->last_tx_ring; i++) {
1731 			int m;
1732 			uint64_t limit = rate_limit ?  tosend : targ->g->burst;
1733 
1734 			if (n > 0 && n == sent)
1735 				break;
1736 
1737 			if (n > 0 && n - sent < limit)
1738 				limit = n - sent;
1739 			txring = NETMAP_TXRING(nifp, i);
1740 			if (nm_ring_empty(txring))
1741 				continue;
1742 
1743 			if (targ->g->pkt_min_size > 0) {
1744 				size = nrand48(targ->seed) %
1745 					(targ->g->pkt_size - targ->g->pkt_min_size) +
1746 					targ->g->pkt_min_size;
1747 			}
1748 			m = send_packets(txring, pkt, frame, size, targ,
1749 					 limit, options);
1750 			ND("limit %lu tail %d m %d",
1751 				limit, txring->tail, m);
1752 			sent += m;
1753 			if (m > 0) //XXX-ste: can m be 0?
1754 				event++;
1755 			targ->ctr.pkts = sent;
1756 			targ->ctr.bytes += m*size;
1757 			targ->ctr.events = event;
1758 			if (rate_limit) {
1759 				tosend -= m;
1760 				if (tosend <= 0)
1761 					break;
1762 			}
1763 		}
1764 	}
1765 	/* flush any remaining packets */
1766 	if (txring != NULL) {
1767 		D("flush tail %d head %d on thread %p",
1768 			txring->tail, txring->head,
1769 			(void *)pthread_self());
1770 		ioctl(pfd.fd, NIOCTXSYNC, NULL);
1771 	}
1772 
1773 	/* final part: wait all the TX queues to be empty. */
1774 	for (i = targ->nmd->first_tx_ring; i <= targ->nmd->last_tx_ring; i++) {
1775 		txring = NETMAP_TXRING(nifp, i);
1776 		while (!targ->cancel && nm_tx_pending(txring)) {
1777 			RD(5, "pending tx tail %d head %d on ring %d",
1778 				txring->tail, txring->head, i);
1779 			ioctl(pfd.fd, NIOCTXSYNC, NULL);
1780 			usleep(1); /* wait 1 tick */
1781 		}
1782 	}
1783     } /* end DEV_NETMAP */
1784 
1785 	clock_gettime(CLOCK_REALTIME_PRECISE, &targ->toc);
1786 	targ->completed = 1;
1787 	targ->ctr.pkts = sent;
1788 	targ->ctr.bytes = sent*size;
1789 	targ->ctr.events = event;
1790 quit:
1791 	/* reset the ``used`` flag. */
1792 	targ->used = 0;
1793 
1794 	return (NULL);
1795 }
1796 
1797 
1798 #ifndef NO_PCAP
1799 static void
1800 receive_pcap(u_char *user, const struct pcap_pkthdr * h,
1801 	const u_char * bytes)
1802 {
1803 	struct my_ctrs *ctr = (struct my_ctrs *)user;
1804 	(void)bytes;	/* UNUSED */
1805 	ctr->bytes += h->len;
1806 	ctr->pkts++;
1807 }
1808 #endif /* !NO_PCAP */
1809 
1810 
1811 static int
1812 receive_packets(struct netmap_ring *ring, u_int limit, int dump, uint64_t *bytes)
1813 {
1814 	u_int head, rx, n;
1815 	uint64_t b = 0;
1816 	u_int complete = 0;
1817 
1818 	if (bytes == NULL)
1819 		bytes = &b;
1820 
1821 	head = ring->head;
1822 	n = nm_ring_space(ring);
1823 	if (n < limit)
1824 		limit = n;
1825 	for (rx = 0; rx < limit; rx++) {
1826 		struct netmap_slot *slot = &ring->slot[head];
1827 		char *p = NETMAP_BUF(ring, slot->buf_idx);
1828 
1829 		*bytes += slot->len;
1830 		if (dump)
1831 			dump_payload(p, slot->len, ring, head);
1832 		if (!(slot->flags & NS_MOREFRAG))
1833 			complete++;
1834 
1835 		head = nm_ring_next(ring, head);
1836 	}
1837 	ring->head = ring->cur = head;
1838 
1839 	return (complete);
1840 }
1841 
1842 static void *
1843 receiver_body(void *data)
1844 {
1845 	struct targ *targ = (struct targ *) data;
1846 	struct pollfd pfd = { .fd = targ->fd, .events = POLLIN };
1847 	struct netmap_if *nifp;
1848 	struct netmap_ring *rxring;
1849 	int i;
1850 	struct my_ctrs cur;
1851 	uint64_t n = targ->g->npackets / targ->g->nthreads;
1852 
1853 	memset(&cur, 0, sizeof(cur));
1854 
1855 	if (setaffinity(targ->thread, targ->affinity))
1856 		goto quit;
1857 
1858 	D("reading from %s fd %d main_fd %d",
1859 		targ->g->ifname, targ->fd, targ->g->main_fd);
1860 	/* unbounded wait for the first packet. */
1861 	for (;!targ->cancel;) {
1862 		i = poll(&pfd, 1, 1000);
1863 		if (i > 0 && !(pfd.revents & POLLERR))
1864 			break;
1865 		if (i < 0) {
1866 			D("poll() error: %s", strerror(errno));
1867 			goto quit;
1868 		}
1869 		if (pfd.revents & POLLERR) {
1870 			D("fd error");
1871 			goto quit;
1872 		}
1873 		RD(1, "waiting for initial packets, poll returns %d %d",
1874 			i, pfd.revents);
1875 	}
1876 	/* main loop, exit after 1s silence */
1877 	clock_gettime(CLOCK_REALTIME_PRECISE, &targ->tic);
1878     if (targ->g->dev_type == DEV_TAP) {
1879 	while (!targ->cancel && (n == 0 || targ->ctr.pkts < n)) {
1880 		char buf[MAX_BODYSIZE];
1881 		/* XXX should we poll ? */
1882 		i = read(targ->g->main_fd, buf, sizeof(buf));
1883 		if (i > 0) {
1884 			targ->ctr.pkts++;
1885 			targ->ctr.bytes += i;
1886 			targ->ctr.events++;
1887 		}
1888 	}
1889 #ifndef NO_PCAP
1890     } else if (targ->g->dev_type == DEV_PCAP) {
1891 	while (!targ->cancel && (n == 0 || targ->ctr.pkts < n)) {
1892 		/* XXX should we poll ? */
1893 		pcap_dispatch(targ->g->p, targ->g->burst, receive_pcap,
1894 			(u_char *)&targ->ctr);
1895 		targ->ctr.events++;
1896 	}
1897 #endif /* !NO_PCAP */
1898     } else {
1899 	int dump = targ->g->options & OPT_DUMP;
1900 
1901 	nifp = targ->nmd->nifp;
1902 	while (!targ->cancel && (n == 0 || targ->ctr.pkts < n)) {
1903 		/* Once we started to receive packets, wait at most 1 seconds
1904 		   before quitting. */
1905 #ifdef BUSYWAIT
1906 		if (ioctl(pfd.fd, NIOCRXSYNC, NULL) < 0) {
1907 			D("ioctl error on queue %d: %s", targ->me,
1908 					strerror(errno));
1909 			goto quit;
1910 		}
1911 #else /* !BUSYWAIT */
1912 		if (poll(&pfd, 1, 1 * 1000) <= 0 && !targ->g->forever) {
1913 			clock_gettime(CLOCK_REALTIME_PRECISE, &targ->toc);
1914 			targ->toc.tv_sec -= 1; /* Subtract timeout time. */
1915 			goto out;
1916 		}
1917 
1918 		if (pfd.revents & POLLERR) {
1919 			D("poll err");
1920 			goto quit;
1921 		}
1922 #endif /* !BUSYWAIT */
1923 		uint64_t cur_space = 0;
1924 		for (i = targ->nmd->first_rx_ring; i <= targ->nmd->last_rx_ring; i++) {
1925 			int m;
1926 
1927 			rxring = NETMAP_RXRING(nifp, i);
1928 			/* compute free space in the ring */
1929 			m = rxring->head + rxring->num_slots - rxring->tail;
1930 			if (m >= (int) rxring->num_slots)
1931 				m -= rxring->num_slots;
1932 			cur_space += m;
1933 			if (nm_ring_empty(rxring))
1934 				continue;
1935 
1936 			m = receive_packets(rxring, targ->g->burst, dump, &cur.bytes);
1937 			cur.pkts += m;
1938 			if (m > 0)
1939 				cur.events++;
1940 		}
1941 		cur.min_space = targ->ctr.min_space;
1942 		if (cur_space < cur.min_space)
1943 			cur.min_space = cur_space;
1944 		targ->ctr = cur;
1945 	}
1946     }
1947 
1948 	clock_gettime(CLOCK_REALTIME_PRECISE, &targ->toc);
1949 
1950 #if !defined(BUSYWAIT)
1951 out:
1952 #endif
1953 	targ->completed = 1;
1954 	targ->ctr = cur;
1955 
1956 quit:
1957 	/* reset the ``used`` flag. */
1958 	targ->used = 0;
1959 
1960 	return (NULL);
1961 }
1962 
1963 static void *
1964 txseq_body(void *data)
1965 {
1966 	struct targ *targ = (struct targ *) data;
1967 	struct pollfd pfd = { .fd = targ->fd, .events = POLLOUT };
1968 	struct netmap_ring *ring;
1969 	int64_t sent = 0;
1970 	uint64_t event = 0;
1971 	int options = targ->g->options | OPT_COPY;
1972 	struct timespec nexttime = {0, 0};
1973 	int rate_limit = targ->g->tx_rate;
1974 	struct pkt *pkt = &targ->pkt;
1975 	int frags = targ->g->frags;
1976 	uint32_t sequence = 0;
1977 	int budget = 0;
1978 	void *frame;
1979 	int size;
1980 
1981 	if (targ->g->nthreads > 1) {
1982 		D("can only txseq ping with 1 thread");
1983 		return NULL;
1984 	}
1985 
1986 	if (targ->g->npackets > 0) {
1987 		D("Ignoring -n argument");
1988 	}
1989 
1990 	frame = (char *)pkt + sizeof(pkt->vh) - targ->g->virt_header;
1991 	size = targ->g->pkt_size + targ->g->virt_header;
1992 
1993 	D("start, fd %d main_fd %d", targ->fd, targ->g->main_fd);
1994 	if (setaffinity(targ->thread, targ->affinity))
1995 		goto quit;
1996 
1997 	clock_gettime(CLOCK_REALTIME_PRECISE, &targ->tic);
1998 	if (rate_limit) {
1999 		targ->tic = timespec_add(targ->tic, (struct timespec){2,0});
2000 		targ->tic.tv_nsec = 0;
2001 		wait_time(targ->tic);
2002 		nexttime = targ->tic;
2003 	}
2004 
2005 	/* Only use the first queue. */
2006 	ring = NETMAP_TXRING(targ->nmd->nifp, targ->nmd->first_tx_ring);
2007 
2008 	while (!targ->cancel) {
2009 		int64_t limit;
2010 		unsigned int space;
2011 		unsigned int head;
2012 		int fcnt;
2013 		uint16_t sum = 0;
2014 		int rv;
2015 
2016 		if (!rate_limit) {
2017 			budget = targ->g->burst;
2018 
2019 		} else if (budget <= 0) {
2020 			budget = targ->g->burst;
2021 			nexttime = timespec_add(nexttime, targ->g->tx_period);
2022 			wait_time(nexttime);
2023 		}
2024 
2025 		/* wait for available room in the send queue */
2026 #ifdef BUSYWAIT
2027 		(void)rv;
2028 		if (ioctl(pfd.fd, NIOCTXSYNC, NULL) < 0) {
2029 			D("ioctl error on queue %d: %s", targ->me,
2030 					strerror(errno));
2031 			goto quit;
2032 		}
2033 #else /* !BUSYWAIT */
2034 		if ( (rv = poll(&pfd, 1, 2000)) <= 0) {
2035 			if (targ->cancel)
2036 				break;
2037 			D("poll error on queue %d: %s", targ->me,
2038 				rv ? strerror(errno) : "timeout");
2039 			// goto quit;
2040 		}
2041 		if (pfd.revents & POLLERR) {
2042 			D("poll error on %d ring %d-%d", pfd.fd,
2043 				targ->nmd->first_tx_ring, targ->nmd->last_tx_ring);
2044 			goto quit;
2045 		}
2046 #endif /* !BUSYWAIT */
2047 
2048 		/* If no room poll() again. */
2049 		space = nm_ring_space(ring);
2050 		if (!space) {
2051 			continue;
2052 		}
2053 
2054 		limit = budget;
2055 
2056 		if (space < limit) {
2057 			limit = space;
2058 		}
2059 
2060 		/* Cut off ``limit`` to make sure is multiple of ``frags``. */
2061 		if (frags > 1) {
2062 			limit = (limit / frags) * frags;
2063 		}
2064 
2065 		limit = sent + limit; /* Convert to absolute. */
2066 
2067 		for (fcnt = frags, head = ring->head;
2068 				sent < limit; sent++, sequence++) {
2069 			struct netmap_slot *slot = &ring->slot[head];
2070 			char *p = NETMAP_BUF(ring, slot->buf_idx);
2071 			uint16_t *w = (uint16_t *)PKT(pkt, body, targ->g->af), t;
2072 
2073 			memcpy(&sum, targ->g->af == AF_INET ? &pkt->ipv4.udp.uh_sum : &pkt->ipv6.udp.uh_sum, sizeof(sum));
2074 
2075 			slot->flags = 0;
2076 			t = *w;
2077 			PKT(pkt, body, targ->g->af)[0] = sequence >> 24;
2078 			PKT(pkt, body, targ->g->af)[1] = (sequence >> 16) & 0xff;
2079 			sum = ~cksum_add(~sum, cksum_add(~t, *w));
2080 			t = *++w;
2081 			PKT(pkt, body, targ->g->af)[2] = (sequence >> 8) & 0xff;
2082 			PKT(pkt, body, targ->g->af)[3] = sequence & 0xff;
2083 			sum = ~cksum_add(~sum, cksum_add(~t, *w));
2084 			memcpy(targ->g->af == AF_INET ? &pkt->ipv4.udp.uh_sum : &pkt->ipv6.udp.uh_sum, &sum, sizeof(sum));
2085 			nm_pkt_copy(frame, p, size);
2086 			if (fcnt == frags) {
2087 				update_addresses(pkt, targ);
2088 			}
2089 
2090 			if (options & OPT_DUMP) {
2091 				dump_payload(p, size, ring, head);
2092 			}
2093 
2094 			slot->len = size;
2095 
2096 			if (--fcnt > 0) {
2097 				slot->flags |= NS_MOREFRAG;
2098 			} else {
2099 				fcnt = frags;
2100 			}
2101 
2102 			if (sent == limit - 1) {
2103 				/* Make sure we don't push an incomplete
2104 				 * packet. */
2105 				assert(!(slot->flags & NS_MOREFRAG));
2106 				slot->flags |= NS_REPORT;
2107 			}
2108 
2109 			head = nm_ring_next(ring, head);
2110 			if (rate_limit) {
2111 				budget--;
2112 			}
2113 		}
2114 
2115 		ring->cur = ring->head = head;
2116 
2117 		event ++;
2118 		targ->ctr.pkts = sent;
2119 		targ->ctr.bytes = sent * size;
2120 		targ->ctr.events = event;
2121 	}
2122 
2123 	/* flush any remaining packets */
2124 	D("flush tail %d head %d on thread %p",
2125 		ring->tail, ring->head,
2126 		(void *)pthread_self());
2127 	ioctl(pfd.fd, NIOCTXSYNC, NULL);
2128 
2129 	/* final part: wait the TX queues to become empty. */
2130 	while (!targ->cancel && nm_tx_pending(ring)) {
2131 		RD(5, "pending tx tail %d head %d on ring %d",
2132 				ring->tail, ring->head, targ->nmd->first_tx_ring);
2133 		ioctl(pfd.fd, NIOCTXSYNC, NULL);
2134 		usleep(1); /* wait 1 tick */
2135 	}
2136 
2137 	clock_gettime(CLOCK_REALTIME_PRECISE, &targ->toc);
2138 	targ->completed = 1;
2139 	targ->ctr.pkts = sent;
2140 	targ->ctr.bytes = sent * size;
2141 	targ->ctr.events = event;
2142 quit:
2143 	/* reset the ``used`` flag. */
2144 	targ->used = 0;
2145 
2146 	return (NULL);
2147 }
2148 
2149 
2150 static char *
2151 multi_slot_to_string(struct netmap_ring *ring, unsigned int head,
2152 		     unsigned int nfrags, char *strbuf, size_t strbuflen)
2153 {
2154 	unsigned int f;
2155 	char *ret = strbuf;
2156 
2157 	for (f = 0; f < nfrags; f++) {
2158 		struct netmap_slot *slot = &ring->slot[head];
2159 		int m = snprintf(strbuf, strbuflen, "|%u,%x|", slot->len,
2160 				 slot->flags);
2161 		if (m >= (int)strbuflen) {
2162 			break;
2163 		}
2164 		strbuf += m;
2165 		strbuflen -= m;
2166 
2167 		head = nm_ring_next(ring, head);
2168 	}
2169 
2170 	return ret;
2171 }
2172 
2173 static void *
2174 rxseq_body(void *data)
2175 {
2176 	struct targ *targ = (struct targ *) data;
2177 	struct pollfd pfd = { .fd = targ->fd, .events = POLLIN };
2178 	int dump = targ->g->options & OPT_DUMP;
2179 	struct netmap_ring *ring;
2180 	unsigned int frags_exp = 1;
2181 	struct my_ctrs cur;
2182 	unsigned int frags = 0;
2183 	int first_packet = 1;
2184 	int first_slot = 1;
2185 	int i, j, af, nrings;
2186 	uint32_t seq, *seq_exp = NULL;
2187 
2188 	memset(&cur, 0, sizeof(cur));
2189 
2190 	if (setaffinity(targ->thread, targ->affinity))
2191 		goto quit;
2192 
2193 	nrings = targ->nmd->last_rx_ring - targ->nmd->first_rx_ring + 1;
2194 	seq_exp = calloc(nrings, sizeof(uint32_t));
2195 	if (seq_exp == NULL) {
2196 		D("failed to allocate seq array");
2197 		goto quit;
2198 	}
2199 
2200 	D("reading from %s fd %d main_fd %d",
2201 		targ->g->ifname, targ->fd, targ->g->main_fd);
2202 	/* unbounded wait for the first packet. */
2203 	for (;!targ->cancel;) {
2204 		i = poll(&pfd, 1, 1000);
2205 		if (i > 0 && !(pfd.revents & POLLERR))
2206 			break;
2207 		RD(1, "waiting for initial packets, poll returns %d %d",
2208 			i, pfd.revents);
2209 	}
2210 
2211 	clock_gettime(CLOCK_REALTIME_PRECISE, &targ->tic);
2212 
2213 
2214 	while (!targ->cancel) {
2215 		unsigned int head;
2216 		int limit;
2217 
2218 #ifdef BUSYWAIT
2219 		if (ioctl(pfd.fd, NIOCRXSYNC, NULL) < 0) {
2220 			D("ioctl error on queue %d: %s", targ->me,
2221 					strerror(errno));
2222 			goto quit;
2223 		}
2224 #else /* !BUSYWAIT */
2225 		if (poll(&pfd, 1, 1 * 1000) <= 0 && !targ->g->forever) {
2226 			clock_gettime(CLOCK_REALTIME_PRECISE, &targ->toc);
2227 			targ->toc.tv_sec -= 1; /* Subtract timeout time. */
2228 			goto out;
2229 		}
2230 
2231 		if (pfd.revents & POLLERR) {
2232 			D("poll err");
2233 			goto quit;
2234 		}
2235 #endif /* !BUSYWAIT */
2236 
2237 		for (j = targ->nmd->first_rx_ring; j <= targ->nmd->last_rx_ring; j++) {
2238 			ring = NETMAP_RXRING(targ->nmd->nifp, j);
2239 			if (nm_ring_empty(ring))
2240 				continue;
2241 
2242 			limit = nm_ring_space(ring);
2243 			if (limit > targ->g->burst)
2244 				limit = targ->g->burst;
2245 
2246 #if 0
2247 			/* Enable this if
2248 			 *     1) we remove the early-return optimization from
2249 			 *        the netmap poll implementation, or
2250 			 *     2) pipes get NS_MOREFRAG support.
2251 			 * With the current netmap implementation, an experiment like
2252 			 *    pkt-gen -i vale:1{1 -f txseq -F 9
2253 			 *    pkt-gen -i vale:1}1 -f rxseq
2254 			 * would get stuck as soon as we find nm_ring_space(ring) < 9,
2255 			 * since here limit is rounded to 0 and
2256 			 * pipe rxsync is not called anymore by the poll() of this loop.
2257 			 */
2258 			if (frags_exp > 1) {
2259 				int o = limit;
2260 				/* Cut off to the closest smaller multiple. */
2261 				limit = (limit / frags_exp) * frags_exp;
2262 				RD(2, "LIMIT %d --> %d", o, limit);
2263 			}
2264 #endif
2265 
2266 			for (head = ring->head, i = 0; i < limit; i++) {
2267 				struct netmap_slot *slot = &ring->slot[head];
2268 				char *p = NETMAP_BUF(ring, slot->buf_idx);
2269 				int len = slot->len;
2270 				struct pkt *pkt;
2271 
2272 				if (dump) {
2273 					dump_payload(p, slot->len, ring, head);
2274 				}
2275 
2276 				frags++;
2277 				if (!(slot->flags & NS_MOREFRAG)) {
2278 					if (first_packet) {
2279 						first_packet = 0;
2280 					} else if (frags != frags_exp) {
2281 						char prbuf[512];
2282 						RD(1, "Received packets with %u frags, "
2283 								"expected %u, '%s'", frags, frags_exp,
2284 								multi_slot_to_string(ring, head-frags+1,
2285 							       	frags,
2286 									prbuf, sizeof(prbuf)));
2287 					}
2288 					first_packet = 0;
2289 					frags_exp = frags;
2290 					frags = 0;
2291 				}
2292 
2293 				p -= sizeof(pkt->vh) - targ->g->virt_header;
2294 				len += sizeof(pkt->vh) - targ->g->virt_header;
2295 				pkt = (struct pkt *)p;
2296 				if (ntohs(pkt->eh.ether_type) == ETHERTYPE_IP)
2297 					af = AF_INET;
2298 				else
2299 					af = AF_INET6;
2300 
2301 				if ((char *)pkt + len < ((char *)PKT(pkt, body, af)) +
2302 						sizeof(seq)) {
2303 					RD(1, "%s: packet too small (len=%u)", __func__,
2304 							slot->len);
2305 				} else {
2306 					seq = (PKT(pkt, body, af)[0] << 24) |
2307 						(PKT(pkt, body, af)[1] << 16) |
2308 						(PKT(pkt, body, af)[2] << 8) |
2309 						PKT(pkt, body, af)[3];
2310 					if (first_slot) {
2311 						/* Grab the first one, whatever it
2312 						   is. */
2313 						seq_exp[j] = seq;
2314 						first_slot = 0;
2315 					} else if (seq != seq_exp[j]) {
2316 						uint32_t delta = seq - seq_exp[j];
2317 
2318 						if (delta < (0xFFFFFFFF >> 1)) {
2319 							RD(2, "Sequence GAP: exp %u found %u",
2320 									seq_exp[j], seq);
2321 						} else {
2322 							RD(2, "Sequence OUT OF ORDER: "
2323 									"exp %u found %u", seq_exp[j], seq);
2324 						}
2325 						seq_exp[j] = seq;
2326 					}
2327 					seq_exp[j]++;
2328 				}
2329 
2330 				cur.bytes += slot->len;
2331 				head = nm_ring_next(ring, head);
2332 				cur.pkts++;
2333 			}
2334 
2335 			ring->cur = ring->head = head;
2336 
2337 			cur.events++;
2338 			targ->ctr = cur;
2339 		}
2340 	}
2341 	clock_gettime(CLOCK_REALTIME_PRECISE, &targ->toc);
2342 
2343 #ifndef BUSYWAIT
2344 out:
2345 #endif /* !BUSYWAIT */
2346 	targ->completed = 1;
2347 	targ->ctr = cur;
2348 
2349 quit:
2350 	if (seq_exp != NULL)
2351 		free(seq_exp);
2352 	/* reset the ``used`` flag. */
2353 	targ->used = 0;
2354 
2355 	return (NULL);
2356 }
2357 
2358 
2359 static void
2360 tx_output(struct glob_arg *g, struct my_ctrs *cur, double delta, const char *msg)
2361 {
2362 	double bw, raw_bw, pps, abs;
2363 	char b1[40], b2[80], b3[80];
2364 	int size;
2365 
2366 	if (cur->pkts == 0) {
2367 		printf("%s nothing.\n", msg);
2368 		return;
2369 	}
2370 
2371 	size = (int)(cur->bytes / cur->pkts);
2372 
2373 	printf("%s %llu packets %llu bytes %llu events %d bytes each in %.2f seconds.\n",
2374 		msg,
2375 		(unsigned long long)cur->pkts,
2376 		(unsigned long long)cur->bytes,
2377 		(unsigned long long)cur->events, size, delta);
2378 	if (delta == 0)
2379 		delta = 1e-6;
2380 	if (size < 60)		/* correct for min packet size */
2381 		size = 60;
2382 	pps = cur->pkts / delta;
2383 	bw = (8.0 * cur->bytes) / delta;
2384 	raw_bw = (8.0 * cur->bytes + cur->pkts * g->framing) / delta;
2385 	abs = cur->pkts / (double)(cur->events);
2386 
2387 	printf("Speed: %spps Bandwidth: %sbps (raw %sbps). Average batch: %.2f pkts\n",
2388 		norm(b1, pps, normalize), norm(b2, bw, normalize), norm(b3, raw_bw, normalize), abs);
2389 }
2390 
2391 static void
2392 usage(int errcode)
2393 {
2394 /* This usage is generated from the pkt-gen man page:
2395  *   $ man pkt-gen > x
2396  * and pasted here adding the string terminators and endlines with simple
2397  * regular expressions. */
2398 	const char *cmd = "pkt-gen";
2399 	fprintf(stderr,
2400 		"Usage:\n"
2401 		"%s arguments\n"
2402 "     -h      Show program usage and exit.\n"
2403 "\n"
2404 "     -i interface\n"
2405 "             Name of the network interface that pkt-gen operates on.  It can be a system network interface\n"
2406 "             (e.g., em0), the name of a vale(4) port (e.g., valeSSS:PPP), the name of a netmap pipe or\n"
2407 "             monitor, or any valid netmap port name accepted by the nm_open library function, as docu-\n"
2408 "             mented in netmap(4) (NIOCREGIF section).\n"
2409 "\n"
2410 "     -f function\n"
2411 "             The function to be executed by pkt-gen.  Specify tx for transmission, rx for reception, ping\n"
2412 "             for client-side ping-pong operation, and pong for server-side ping-pong operation.\n"
2413 "\n"
2414 "     -n count\n"
2415 "             Number of iterations of the pkt-gen function (with 0 meaning infinite).  In case of tx or rx,\n"
2416 "             count is the number of packets to receive or transmit.  In case of ping or pong, count is the\n"
2417 "             number of ping-pong transactions.\n"
2418 "\n"
2419 "     -l pkt_size\n"
2420 "             Packet size in bytes excluding CRC.  If passed a second time, use random sizes larger or\n"
2421 "             equal than the second one and lower than the first one.\n"
2422 "\n"
2423 "     -b burst_size\n"
2424 "             Transmit or receive up to burst_size packets at a time.\n"
2425 "\n"
2426 "     -4      Use IPv4 addresses.\n"
2427 "\n"
2428 "     -6      Use IPv6 addresses.\n"
2429 "\n"
2430 "     -d dst_ip[:port[-dst_ip:port]]\n"
2431 "             Destination IPv4/IPv6 address and port, single or range.\n"
2432 "\n"
2433 "     -s src_ip[:port[-src_ip:port]]\n"
2434 "             Source IPv4/IPv6 address and port, single or range.\n"
2435 "\n"
2436 "     -D dst_mac\n"
2437 "             Destination MAC address in colon notation (e.g., aa:bb:cc:dd:ee:00).\n"
2438 "\n"
2439 "     -S src_mac\n"
2440 "             Source MAC address in colon notation.\n"
2441 "\n"
2442 "     -a cpu_id\n"
2443 "             Pin the first thread of pkt-gen to a particular CPU using pthread_setaffinity_np(3).  If more\n"
2444 "             threads are used, they are pinned to the subsequent CPUs, one per thread.\n"
2445 "\n"
2446 "     -c cpus\n"
2447 "             Maximum number of CPUs to use (0 means to use all the available ones).\n"
2448 "\n"
2449 "     -p threads\n"
2450 "             Number of threads to use.  By default, only a single thread is used to handle all the netmap\n"
2451 "             rings.  If threads is larger than one, each thread handles a single TX ring (in tx mode), a\n"
2452 "             single RX ring (in rx mode), or a TX/RX ring pair.  The number of threads must be less than or\n"
2453 "             equal to the number of TX (or RX) rings available in the device specified by interface.\n"
2454 "\n"
2455 "     -T report_ms\n"
2456 "             Number of milliseconds between reports.\n"
2457 "\n"
2458 "     -w wait_for_link_time\n"
2459 "             Number of seconds to wait before starting the pkt-gen function, useful to make sure that the\n"
2460 "             network link is up.  A network device driver may take some time to enter netmap mode, or to\n"
2461 "             create a new transmit/receive ring pair when netmap(4) requests one.\n"
2462 "\n"
2463 "     -R rate\n"
2464 "             Packet transmission rate.  Not setting the packet transmission rate tells pkt-gen to transmit\n"
2465 "             packets as quickly as possible.  On servers from 2010 onward netmap(4) is able to com-\n"
2466 "             pletely use all of the bandwidth of a 10 or 40Gbps link, so this option should be used unless\n"
2467 "             your intention is to saturate the link.\n"
2468 "\n"
2469 "     -X      Dump payload of each packet transmitted or received.\n"
2470 "\n"
2471 "     -H len  Add empty virtio-net-header with size 'len'.  Valid sizes are 0, 10 and 12.  This option is\n"
2472 "             only used with Virtual Machine technologies that use virtio as a network interface.\n"
2473 "\n"
2474 "     -P file\n"
2475 "             Load the packet to be transmitted from a pcap file rather than constructing it within\n"
2476 "             pkt-gen.\n"
2477 "\n"
2478 "     -z      Use random IPv4/IPv6 src address/port.\n"
2479 "\n"
2480 "     -Z      Use random IPv4/IPv6 dst address/port.\n"
2481 "\n"
2482 "     -N      Do not normalize units (i.e., use bps, pps instead of Mbps, Kpps, etc.).\n"
2483 "\n"
2484 "     -F num_frags\n"
2485 "             Send multi-slot packets, each one with num_frags fragments.  A multi-slot packet is repre-\n"
2486 "             sented by two or more consecutive netmap slots with the NS_MOREFRAG flag set (except for the\n"
2487 "             last slot).  This is useful to transmit or receive packets larger than the netmap buffer\n"
2488 "             size.\n"
2489 "\n"
2490 "     -M frag_size\n"
2491 "             In multi-slot mode, frag_size specifies the size of each fragment, if smaller than the packet\n"
2492 "             length divided by num_frags.\n"
2493 "\n"
2494 "     -I      Use indirect buffers.  It is only valid for transmitting on VALE ports, and it is implemented\n"
2495 "             by setting the NS_INDIRECT flag in the netmap slots.\n"
2496 "\n"
2497 "     -W      Exit immediately if all the RX rings are empty the first time they are examined.\n"
2498 "\n"
2499 "     -v      Increase the verbosity level.\n"
2500 "\n"
2501 "     -r      In tx mode, do not initialize packets, but send whatever the content of the uninitialized\n"
2502 "             netmap buffers is (rubbish mode).\n"
2503 "\n"
2504 "     -A      Compute mean and standard deviation (over a sliding window) for the transmit or receive rate.\n"
2505 "\n"
2506 "     -B      Take Ethernet framing and CRC into account when computing the average bps.  This adds 4 bytes\n"
2507 "             of CRC and 20 bytes of framing to each packet.\n"
2508 "\n"
2509 "     -C tx_slots[,rx_slots[,tx_rings[,rx_rings]]]\n"
2510 "             Configuration in terms of number of rings and slots to be used when opening the netmap port.\n"
2511 "             Such configuration has an effect on software ports created on the fly, such as VALE ports and\n"
2512 "             netmap pipes.  The configuration may consist of 1 to 4 numbers separated by commas: tx_slots,\n"
2513 "             rx_slots, tx_rings, rx_rings.  Missing numbers or zeroes stand for default values.  As an\n"
2514 "             additional convenience, if exactly one number is specified, then this is assigned to both\n"
2515 "             tx_slots and rx_slots.  If there is no fourth number, then the third one is assigned to both\n"
2516 "             tx_rings and rx_rings.\n"
2517 "\n"
2518 "     -o options		data generation options (parsed using atoi)\n"
2519 "				OPT_PREFETCH	1\n"
2520 "				OPT_ACCESS	2\n"
2521 "				OPT_COPY	4\n"
2522 "				OPT_MEMCPY	8\n"
2523 "				OPT_TS		16 (add a timestamp)\n"
2524 "				OPT_INDIRECT	32 (use indirect buffers)\n"
2525 "				OPT_DUMP	64 (dump rx/tx traffic)\n"
2526 "				OPT_RUBBISH	256\n"
2527 "					(send whatever the buffers contain)\n"
2528 "				OPT_RANDOM_SRC  512\n"
2529 "				OPT_RANDOM_DST  1024\n"
2530 "				OPT_PPS_STATS   2048\n"
2531 		     "",
2532 		cmd);
2533 	exit(errcode);
2534 }
2535 
2536 static int
2537 start_threads(struct glob_arg *g) {
2538 	int i;
2539 
2540 	targs = calloc(g->nthreads, sizeof(*targs));
2541 	struct targ *t;
2542 	/*
2543 	 * Now create the desired number of threads, each one
2544 	 * using a single descriptor.
2545 	 */
2546 	for (i = 0; i < g->nthreads; i++) {
2547 		uint64_t seed = (uint64_t)time(0) | ((uint64_t)time(0) << 32);
2548 		t = &targs[i];
2549 
2550 		bzero(t, sizeof(*t));
2551 		t->fd = -1; /* default, with pcap */
2552 		t->g = g;
2553 		memcpy(t->seed, &seed, sizeof(t->seed));
2554 
2555 		if (g->dev_type == DEV_NETMAP) {
2556 			int m = -1;
2557 
2558 			/*
2559 			 * if the user wants both HW and SW rings, we need to
2560 			 * know when to switch from NR_REG_ONE_NIC to NR_REG_ONE_SW
2561 			 */
2562 			if (g->orig_mode == NR_REG_NIC_SW) {
2563 				m = (g->td_type == TD_TYPE_RECEIVER ?
2564 						g->nmd->reg.nr_rx_rings :
2565 						g->nmd->reg.nr_tx_rings);
2566 			}
2567 
2568 			if (i > 0) {
2569 				int j;
2570 				/* the first thread uses the fd opened by the main
2571 				 * thread, the other threads re-open /dev/netmap
2572 				 */
2573 				t->nmd = nmport_clone(g->nmd);
2574 				if (t->nmd == NULL)
2575 					return -1;
2576 
2577 				j = i;
2578 				if (m > 0 && j >= m) {
2579 					/* switch to the software rings */
2580 					t->nmd->reg.nr_mode = NR_REG_ONE_SW;
2581 					j -= m;
2582 				}
2583 				t->nmd->reg.nr_ringid = j & NETMAP_RING_MASK;
2584 				/* Only touch one of the rings (rx is already ok) */
2585 				if (g->td_type == TD_TYPE_RECEIVER)
2586 					t->nmd->reg.nr_flags |= NETMAP_NO_TX_POLL;
2587 
2588 				/* register interface. Override ifname and ringid etc. */
2589 				if (nmport_open_desc(t->nmd) < 0) {
2590 					nmport_undo_prepare(t->nmd);
2591 					t->nmd = NULL;
2592 					return -1;
2593 				}
2594 			} else {
2595 				t->nmd = g->nmd;
2596 			}
2597 			t->fd = t->nmd->fd;
2598 			t->frags = g->frags;
2599 		} else {
2600 			targs[i].fd = g->main_fd;
2601 		}
2602 		t->used = 1;
2603 		t->me = i;
2604 		if (g->affinity >= 0) {
2605 			t->affinity = (g->affinity + i) % g->cpus;
2606 		} else {
2607 			t->affinity = -1;
2608 		}
2609 		/* default, init packets */
2610 		initialize_packet(t);
2611 	}
2612 	/* Wait for PHY reset. */
2613 	D("Wait %d secs for phy reset", g->wait_link);
2614 	sleep(g->wait_link);
2615 	D("Ready...");
2616 
2617 	for (i = 0; i < g->nthreads; i++) {
2618 		t = &targs[i];
2619 		if (pthread_create(&t->thread, NULL, g->td_body, t) == -1) {
2620 			D("Unable to create thread %d: %s", i, strerror(errno));
2621 			t->used = 0;
2622 		}
2623 	}
2624 	return 0;
2625 }
2626 
2627 static void
2628 main_thread(struct glob_arg *g)
2629 {
2630 	int i;
2631 
2632 	struct my_ctrs prev, cur;
2633 	double delta_t;
2634 	struct timeval tic, toc;
2635 
2636 	prev.pkts = prev.bytes = prev.events = 0;
2637 	gettimeofday(&prev.t, NULL);
2638 	for (;;) {
2639 		char b1[40], b2[40], b3[40], b4[100];
2640 		uint64_t pps, usec;
2641 		struct my_ctrs x;
2642 		double abs;
2643 		int done = 0;
2644 
2645 		usec = wait_for_next_report(&prev.t, &cur.t,
2646 				g->report_interval);
2647 
2648 		cur.pkts = cur.bytes = cur.events = 0;
2649 		cur.min_space = 0;
2650 		if (usec < 10000) /* too short to be meaningful */
2651 			continue;
2652 		/* accumulate counts for all threads */
2653 		for (i = 0; i < g->nthreads; i++) {
2654 			cur.pkts += targs[i].ctr.pkts;
2655 			cur.bytes += targs[i].ctr.bytes;
2656 			cur.events += targs[i].ctr.events;
2657 			cur.min_space += targs[i].ctr.min_space;
2658 			targs[i].ctr.min_space = 99999;
2659 			if (targs[i].used == 0)
2660 				done++;
2661 		}
2662 		x.pkts = cur.pkts - prev.pkts;
2663 		x.bytes = cur.bytes - prev.bytes;
2664 		x.events = cur.events - prev.events;
2665 		pps = (x.pkts*1000000 + usec/2) / usec;
2666 		abs = (x.events > 0) ? (x.pkts / (double) x.events) : 0;
2667 
2668 		if (!(g->options & OPT_PPS_STATS)) {
2669 			strcpy(b4, "");
2670 		} else {
2671 			/* Compute some pps stats using a sliding window. */
2672 			double ppsavg = 0.0, ppsdev = 0.0;
2673 			int nsamples = 0;
2674 
2675 			g->win[g->win_idx] = pps;
2676 			g->win_idx = (g->win_idx + 1) % STATS_WIN;
2677 
2678 			for (i = 0; i < STATS_WIN; i++) {
2679 				ppsavg += g->win[i];
2680 				if (g->win[i]) {
2681 					nsamples ++;
2682 				}
2683 			}
2684 			ppsavg /= nsamples;
2685 
2686 			for (i = 0; i < STATS_WIN; i++) {
2687 				if (g->win[i] == 0) {
2688 					continue;
2689 				}
2690 				ppsdev += (g->win[i] - ppsavg) * (g->win[i] - ppsavg);
2691 			}
2692 			ppsdev /= nsamples;
2693 			ppsdev = sqrt(ppsdev);
2694 
2695 			snprintf(b4, sizeof(b4), "[avg/std %s/%s pps]",
2696 				 norm(b1, ppsavg, normalize), norm(b2, ppsdev, normalize));
2697 		}
2698 
2699 		D("%spps %s(%spkts %sbps in %llu usec) %.2f avg_batch %d min_space",
2700 			norm(b1, pps, normalize), b4,
2701 			norm(b2, (double)x.pkts, normalize),
2702 			norm(b3, 1000000*((double)x.bytes*8+(double)x.pkts*g->framing)/usec, normalize),
2703 			(unsigned long long)usec,
2704 			abs, (int)cur.min_space);
2705 		prev = cur;
2706 
2707 		if (done == g->nthreads)
2708 			break;
2709 	}
2710 
2711 	timerclear(&tic);
2712 	timerclear(&toc);
2713 	cur.pkts = cur.bytes = cur.events = 0;
2714 	/* final round */
2715 	for (i = 0; i < g->nthreads; i++) {
2716 		struct timespec t_tic, t_toc;
2717 		/*
2718 		 * Join active threads, unregister interfaces and close
2719 		 * file descriptors.
2720 		 */
2721 		if (targs[i].used)
2722 			pthread_join(targs[i].thread, NULL); /* blocking */
2723 		if (g->dev_type == DEV_NETMAP) {
2724 			nmport_close(targs[i].nmd);
2725 			targs[i].nmd = NULL;
2726 		} else {
2727 			close(targs[i].fd);
2728 		}
2729 
2730 		if (targs[i].completed == 0)
2731 			D("ouch, thread %d exited with error", i);
2732 
2733 		/*
2734 		 * Collect threads output and extract information about
2735 		 * how long it took to send all the packets.
2736 		 */
2737 		cur.pkts += targs[i].ctr.pkts;
2738 		cur.bytes += targs[i].ctr.bytes;
2739 		cur.events += targs[i].ctr.events;
2740 		/* collect the largest start (tic) and end (toc) times,
2741 		 * XXX maybe we should do the earliest tic, or do a weighted
2742 		 * average ?
2743 		 */
2744 		t_tic = timeval2spec(&tic);
2745 		t_toc = timeval2spec(&toc);
2746 		if (!timerisset(&tic) || timespec_ge(&targs[i].tic, &t_tic))
2747 			tic = timespec2val(&targs[i].tic);
2748 		if (!timerisset(&toc) || timespec_ge(&targs[i].toc, &t_toc))
2749 			toc = timespec2val(&targs[i].toc);
2750 	}
2751 
2752 	/* print output. */
2753 	timersub(&toc, &tic, &toc);
2754 	delta_t = toc.tv_sec + 1e-6* toc.tv_usec;
2755 	if (g->td_type == TD_TYPE_SENDER)
2756 		tx_output(g, &cur, delta_t, "Sent");
2757 	else if (g->td_type == TD_TYPE_RECEIVER)
2758 		tx_output(g, &cur, delta_t, "Received");
2759 }
2760 
2761 struct td_desc {
2762 	int ty;
2763 	const char *key;
2764 	void *f;
2765 	int default_burst;
2766 };
2767 
2768 static struct td_desc func[] = {
2769 	{ TD_TYPE_RECEIVER,	"rx",		receiver_body,	512},	/* default */
2770 	{ TD_TYPE_SENDER,	"tx",		sender_body,	512 },
2771 	{ TD_TYPE_OTHER,	"ping",		ping_body,	1 },
2772 	{ TD_TYPE_OTHER,	"pong",		pong_body,	1 },
2773 	{ TD_TYPE_SENDER,	"txseq",	txseq_body,	512 },
2774 	{ TD_TYPE_RECEIVER,	"rxseq",	rxseq_body,	512 },
2775 	{ 0,			NULL,		NULL, 		0 }
2776 };
2777 
2778 static int
2779 tap_alloc(char *dev)
2780 {
2781 	struct ifreq ifr;
2782 	int fd, err;
2783 	const char *clonedev = TAP_CLONEDEV;
2784 
2785 	(void)err;
2786 	(void)dev;
2787 	/* Arguments taken by the function:
2788 	 *
2789 	 * char *dev: the name of an interface (or '\0'). MUST have enough
2790 	 *   space to hold the interface name if '\0' is passed
2791 	 * int flags: interface flags (eg, IFF_TUN etc.)
2792 	 */
2793 
2794 #ifdef __FreeBSD__
2795 	if (dev[3]) { /* tapSomething */
2796 		static char buf[128];
2797 		snprintf(buf, sizeof(buf), "/dev/%s", dev);
2798 		clonedev = buf;
2799 	}
2800 #endif
2801 	/* open the device */
2802 	if( (fd = open(clonedev, O_RDWR)) < 0 ) {
2803 		return fd;
2804 	}
2805 	D("%s open successful", clonedev);
2806 
2807 	/* preparation of the struct ifr, of type "struct ifreq" */
2808 	memset(&ifr, 0, sizeof(ifr));
2809 
2810 #ifdef linux
2811 	ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
2812 
2813 	if (*dev) {
2814 		/* if a device name was specified, put it in the structure; otherwise,
2815 		* the kernel will try to allocate the "next" device of the
2816 		* specified type */
2817 		size_t len = strlen(dev);
2818 		if (len > IFNAMSIZ) {
2819 			D("%s too long", dev);
2820 			return -1;
2821 		}
2822 		memcpy(ifr.ifr_name, dev, len);
2823 	}
2824 
2825 	/* try to create the device */
2826 	if( (err = ioctl(fd, TUNSETIFF, (void *) &ifr)) < 0 ) {
2827 		D("failed to do a TUNSETIFF: %s", strerror(errno));
2828 		close(fd);
2829 		return err;
2830 	}
2831 
2832 	/* if the operation was successful, write back the name of the
2833 	* interface to the variable "dev", so the caller can know
2834 	* it. Note that the caller MUST reserve space in *dev (see calling
2835 	* code below) */
2836 	strcpy(dev, ifr.ifr_name);
2837 	D("new name is %s", dev);
2838 #endif /* linux */
2839 
2840 	/* this is the special file descriptor that the caller will use to talk
2841 	 * with the virtual interface */
2842 	return fd;
2843 }
2844 
2845 int
2846 main(int arc, char **argv)
2847 {
2848 	int i;
2849 	struct sigaction sa;
2850 	sigset_t ss;
2851 
2852 	struct glob_arg g;
2853 
2854 	int ch;
2855 	int devqueues = 1;	/* how many device queues */
2856 	int wait_link_arg = 0;
2857 
2858 	int pkt_size_done = 0;
2859 
2860 	struct td_desc *fn = func;
2861 
2862 	bzero(&g, sizeof(g));
2863 
2864 	g.main_fd = -1;
2865 	g.td_body = fn->f;
2866 	g.td_type = fn->ty;
2867 	g.report_interval = 1000;	/* report interval */
2868 	g.affinity = -1;
2869 	/* ip addresses can also be a range x.x.x.x-x.x.x.y */
2870 	g.af = AF_INET;		/* default */
2871 	g.src_ip.name = "10.0.0.1";
2872 	g.dst_ip.name = "10.1.0.1";
2873 	g.dst_mac.name = "ff:ff:ff:ff:ff:ff";
2874 	g.src_mac.name = NULL;
2875 	g.pkt_size = 60;
2876 	g.pkt_min_size = 0;
2877 	g.nthreads = 1;
2878 	g.cpus = 1;		/* default */
2879 	g.forever = 1;
2880 	g.tx_rate = 0;
2881 	g.frags = 1;
2882 	g.frag_size = (u_int)-1;	/* use the netmap buffer size by default */
2883 	g.nmr_config = "";
2884 	g.virt_header = 0;
2885 	g.wait_link = 2;	/* wait 2 seconds for physical ports */
2886 
2887 	while ((ch = getopt(arc, argv, "46a:f:F:Nn:i:Il:d:s:D:S:b:c:o:p:"
2888 	    "T:w:WvR:XC:H:rP:zZAhBM:")) != -1) {
2889 
2890 		switch(ch) {
2891 		default:
2892 			D("bad option %c %s", ch, optarg);
2893 			usage(-1);
2894 			break;
2895 
2896 		case 'h':
2897 			usage(0);
2898 			break;
2899 
2900 		case '4':
2901 			g.af = AF_INET;
2902 			break;
2903 
2904 		case '6':
2905 			g.af = AF_INET6;
2906 			break;
2907 
2908 		case 'N':
2909 			normalize = 0;
2910 			break;
2911 
2912 		case 'n':
2913 			g.npackets = strtoull(optarg, NULL, 10);
2914 			break;
2915 
2916 		case 'F':
2917 			i = atoi(optarg);
2918 			if (i < 1 || i > 63) {
2919 				D("invalid frags %d [1..63], ignore", i);
2920 				break;
2921 			}
2922 			g.frags = i;
2923 			break;
2924 
2925 		case 'M':
2926 			g.frag_size = atoi(optarg);
2927 			break;
2928 
2929 		case 'f':
2930 			for (fn = func; fn->key; fn++) {
2931 				if (!strcmp(fn->key, optarg))
2932 					break;
2933 			}
2934 			if (fn->key) {
2935 				g.td_body = fn->f;
2936 				g.td_type = fn->ty;
2937 			} else {
2938 				D("unrecognised function %s", optarg);
2939 			}
2940 			break;
2941 
2942 		case 'o':	/* data generation options */
2943 			g.options |= atoi(optarg);
2944 			break;
2945 
2946 		case 'a':       /* force affinity */
2947 			g.affinity = atoi(optarg);
2948 			break;
2949 
2950 		case 'i':	/* interface */
2951 			/* a prefix of tap: netmap: or pcap: forces the mode.
2952 			 * otherwise we guess
2953 			 */
2954 			D("interface is %s", optarg);
2955 			if (strlen(optarg) > MAX_IFNAMELEN - 8) {
2956 				D("ifname too long %s", optarg);
2957 				break;
2958 			}
2959 			strcpy(g.ifname, optarg);
2960 			if (!strcmp(optarg, "null")) {
2961 				g.dev_type = DEV_NETMAP;
2962 				g.dummy_send = 1;
2963 			} else if (!strncmp(optarg, "tap:", 4)) {
2964 				g.dev_type = DEV_TAP;
2965 				strcpy(g.ifname, optarg + 4);
2966 			} else if (!strncmp(optarg, "pcap:", 5)) {
2967 				g.dev_type = DEV_PCAP;
2968 				strcpy(g.ifname, optarg + 5);
2969 			} else if (!strncmp(optarg, "netmap:", 7) ||
2970 				   !strncmp(optarg, "vale", 4)) {
2971 				g.dev_type = DEV_NETMAP;
2972 			} else if (!strncmp(optarg, "tap", 3)) {
2973 				g.dev_type = DEV_TAP;
2974 			} else { /* prepend netmap: */
2975 				g.dev_type = DEV_NETMAP;
2976 				sprintf(g.ifname, "netmap:%s", optarg);
2977 			}
2978 			break;
2979 
2980 		case 'I':
2981 			g.options |= OPT_INDIRECT;	/* use indirect buffers */
2982 			break;
2983 
2984 		case 'l':	/* pkt_size */
2985 			if (pkt_size_done) {
2986 				g.pkt_min_size = atoi(optarg);
2987 			} else {
2988 				g.pkt_size = atoi(optarg);
2989 				pkt_size_done = 1;
2990 			}
2991 			break;
2992 
2993 		case 'd':
2994 			g.dst_ip.name = optarg;
2995 			break;
2996 
2997 		case 's':
2998 			g.src_ip.name = optarg;
2999 			break;
3000 
3001 		case 'T':	/* report interval */
3002 			g.report_interval = atoi(optarg);
3003 			break;
3004 
3005 		case 'w':
3006 			g.wait_link = atoi(optarg);
3007 			wait_link_arg = 1;
3008 			break;
3009 
3010 		case 'W':
3011 			g.forever = 0; /* exit RX with no traffic */
3012 			break;
3013 
3014 		case 'b':	/* burst */
3015 			g.burst = atoi(optarg);
3016 			break;
3017 		case 'c':
3018 			g.cpus = atoi(optarg);
3019 			break;
3020 		case 'p':
3021 			g.nthreads = atoi(optarg);
3022 			break;
3023 
3024 		case 'D': /* destination mac */
3025 			g.dst_mac.name = optarg;
3026 			break;
3027 
3028 		case 'S': /* source mac */
3029 			g.src_mac.name = optarg;
3030 			break;
3031 		case 'v':
3032 			verbose++;
3033 			break;
3034 		case 'R':
3035 			g.tx_rate = atoi(optarg);
3036 			break;
3037 		case 'X':
3038 			g.options |= OPT_DUMP;
3039 			break;
3040 		case 'C':
3041 			D("WARNING: the 'C' option is deprecated, use the '+conf:' libnetmap option instead");
3042 			g.nmr_config = strdup(optarg);
3043 			break;
3044 		case 'H':
3045 			g.virt_header = atoi(optarg);
3046 			break;
3047 		case 'P':
3048 			g.packet_file = strdup(optarg);
3049 			break;
3050 		case 'r':
3051 			g.options |= OPT_RUBBISH;
3052 			break;
3053 		case 'z':
3054 			g.options |= OPT_RANDOM_SRC;
3055 			break;
3056 		case 'Z':
3057 			g.options |= OPT_RANDOM_DST;
3058 			break;
3059 		case 'A':
3060 			g.options |= OPT_PPS_STATS;
3061 			break;
3062 		case 'B':
3063 			/* raw packets have4 bytes crc + 20 bytes framing */
3064 			// XXX maybe add an option to pass the IFG
3065 			g.framing = 24 * 8;
3066 			break;
3067 		}
3068 	}
3069 
3070 	if (strlen(g.ifname) <=0 ) {
3071 		D("missing ifname");
3072 		usage(-1);
3073 	}
3074 
3075 	if (g.burst == 0) {
3076 		g.burst = fn->default_burst;
3077 		D("using default burst size: %d", g.burst);
3078 	}
3079 
3080 	g.system_cpus = i = system_ncpus();
3081 	if (g.cpus < 0 || g.cpus > i) {
3082 		D("%d cpus is too high, have only %d cpus", g.cpus, i);
3083 		usage(-1);
3084 	}
3085 	D("running on %d cpus (have %d)", g.cpus, i);
3086 	if (g.cpus == 0)
3087 		g.cpus = i;
3088 
3089 	if (!wait_link_arg && !strncmp(g.ifname, "vale", 4)) {
3090 		g.wait_link = 0;
3091 	}
3092 
3093 	if (g.pkt_size < 16 || g.pkt_size > MAX_PKTSIZE) {
3094 		D("bad pktsize %d [16..%d]\n", g.pkt_size, MAX_PKTSIZE);
3095 		usage(-1);
3096 	}
3097 
3098 	if (g.pkt_min_size > 0 && (g.pkt_min_size < 16 || g.pkt_min_size > g.pkt_size)) {
3099 		D("bad pktminsize %d [16..%d]\n", g.pkt_min_size, g.pkt_size);
3100 		usage(-1);
3101 	}
3102 
3103 	if (g.src_mac.name == NULL) {
3104 		static char mybuf[20] = "00:00:00:00:00:00";
3105 		/* retrieve source mac address. */
3106 		if (source_hwaddr(g.ifname, mybuf) == -1) {
3107 			D("Unable to retrieve source mac");
3108 			// continue, fail later
3109 		}
3110 		g.src_mac.name = mybuf;
3111 	}
3112 	/* extract address ranges */
3113 	if (extract_mac_range(&g.src_mac) || extract_mac_range(&g.dst_mac))
3114 		usage(-1);
3115 	g.options |= extract_ip_range(&g.src_ip, g.af);
3116 	g.options |= extract_ip_range(&g.dst_ip, g.af);
3117 
3118 	if (g.virt_header != 0 && g.virt_header != VIRT_HDR_1
3119 			&& g.virt_header != VIRT_HDR_2) {
3120 		D("bad virtio-net-header length");
3121 		usage(-1);
3122 	}
3123 
3124     if (g.dev_type == DEV_TAP) {
3125 	D("want to use tap %s", g.ifname);
3126 	g.main_fd = tap_alloc(g.ifname);
3127 	if (g.main_fd < 0) {
3128 		D("cannot open tap %s", g.ifname);
3129 		usage(-1);
3130 	}
3131 #ifndef NO_PCAP
3132     } else if (g.dev_type == DEV_PCAP) {
3133 	char pcap_errbuf[PCAP_ERRBUF_SIZE];
3134 
3135 	pcap_errbuf[0] = '\0'; // init the buffer
3136 	g.p = pcap_open_live(g.ifname, 256 /* XXX */, 1, 100, pcap_errbuf);
3137 	if (g.p == NULL) {
3138 		D("cannot open pcap on %s", g.ifname);
3139 		usage(-1);
3140 	}
3141 	g.main_fd = pcap_fileno(g.p);
3142 	D("using pcap on %s fileno %d", g.ifname, g.main_fd);
3143 #endif /* !NO_PCAP */
3144     } else if (g.dummy_send) { /* but DEV_NETMAP */
3145 	D("using a dummy send routine");
3146     } else {
3147 	g.nmd = nmport_prepare(g.ifname);
3148 	if (g.nmd == NULL)
3149 		goto out;
3150 
3151 	parse_nmr_config(g.nmr_config, &g.nmd->reg);
3152 
3153 	g.nmd->reg.nr_flags |= NR_ACCEPT_VNET_HDR;
3154 
3155 	/*
3156 	 * Open the netmap device using nm_open().
3157 	 *
3158 	 * protocol stack and may cause a reset of the card,
3159 	 * which in turn may take some time for the PHY to
3160 	 * reconfigure. We do the open here to have time to reset.
3161 	 */
3162 	g.orig_mode = g.nmd->reg.nr_mode;
3163 	if (g.nthreads > 1) {
3164 		switch (g.orig_mode) {
3165 		case NR_REG_ALL_NIC:
3166 		case NR_REG_NIC_SW:
3167 			g.nmd->reg.nr_mode = NR_REG_ONE_NIC;
3168 			break;
3169 		case NR_REG_SW:
3170 			g.nmd->reg.nr_mode = NR_REG_ONE_SW;
3171 			break;
3172 		default:
3173 			break;
3174 		}
3175 		g.nmd->reg.nr_ringid = 0;
3176 	}
3177 	if (nmport_open_desc(g.nmd) < 0)
3178 		goto out;
3179 	g.main_fd = g.nmd->fd;
3180 	ND("mapped %luKB at %p", (unsigned long)(g.nmd->req.nr_memsize>>10),
3181 				g.nmd->mem);
3182 
3183 	if (g.virt_header) {
3184 		/* Set the virtio-net header length, since the user asked
3185 		 * for it explicitly. */
3186 		set_vnet_hdr_len(&g);
3187 	} else {
3188 		/* Check whether the netmap port we opened requires us to send
3189 		 * and receive frames with virtio-net header. */
3190 		get_vnet_hdr_len(&g);
3191 	}
3192 
3193 	/* get num of queues in tx or rx */
3194 	if (g.td_type == TD_TYPE_SENDER)
3195 		devqueues = g.nmd->reg.nr_tx_rings + g.nmd->reg.nr_host_tx_rings;
3196 	else
3197 		devqueues = g.nmd->reg.nr_rx_rings + g.nmd->reg.nr_host_rx_rings;
3198 
3199 	/* validate provided nthreads. */
3200 	if (g.nthreads < 1 || g.nthreads > devqueues) {
3201 		D("bad nthreads %d, have %d queues", g.nthreads, devqueues);
3202 		// continue, fail later
3203 	}
3204 
3205 	if (g.td_type == TD_TYPE_SENDER) {
3206 		int mtu = get_if_mtu(&g);
3207 
3208 		if (mtu > 0 && g.pkt_size > mtu) {
3209 			D("pkt_size (%d) must be <= mtu (%d)",
3210 				g.pkt_size, mtu);
3211 			return -1;
3212 		}
3213 	}
3214 
3215 	if (verbose) {
3216 		struct netmap_if *nifp = g.nmd->nifp;
3217 		struct nmreq_register *req = &g.nmd->reg;
3218 
3219 		D("nifp at offset %"PRIu64" ntxqs %d nrxqs %d memid %d",
3220 		    req->nr_offset, req->nr_tx_rings, req->nr_rx_rings,
3221 		    req->nr_mem_id);
3222 		for (i = 0; i < req->nr_tx_rings + req->nr_host_tx_rings; i++) {
3223 			struct netmap_ring *ring = NETMAP_TXRING(nifp, i);
3224 			D("   TX%d at offset %p slots %d", i,
3225 			    (void *)((char *)ring - (char *)nifp), ring->num_slots);
3226 		}
3227 		for (i = 0; i < req->nr_rx_rings + req->nr_host_rx_rings; i++) {
3228 			struct netmap_ring *ring = NETMAP_RXRING(nifp, i);
3229 			D("   RX%d at offset %p slots %d", i,
3230 			    (void *)((char *)ring - (char *)nifp), ring->num_slots);
3231 		}
3232 	}
3233 
3234 	/* Print some debug information. */
3235 	fprintf(stdout,
3236 		"%s %s: %d queues, %d threads and %d cpus.\n",
3237 		(g.td_type == TD_TYPE_SENDER) ? "Sending on" :
3238 			((g.td_type == TD_TYPE_RECEIVER) ? "Receiving from" :
3239 			"Working on"),
3240 		g.ifname,
3241 		devqueues,
3242 		g.nthreads,
3243 		g.cpus);
3244 	if (g.td_type == TD_TYPE_SENDER) {
3245 		fprintf(stdout, "%s -> %s (%s -> %s)\n",
3246 			g.src_ip.name, g.dst_ip.name,
3247 			g.src_mac.name, g.dst_mac.name);
3248 	}
3249 
3250 out:
3251 	/* Exit if something went wrong. */
3252 	if (g.main_fd < 0) {
3253 		D("aborting");
3254 		usage(-1);
3255 	}
3256     }
3257 
3258 
3259 	if (g.options) {
3260 		D("--- SPECIAL OPTIONS:%s%s%s%s%s%s\n",
3261 			g.options & OPT_PREFETCH ? " prefetch" : "",
3262 			g.options & OPT_ACCESS ? " access" : "",
3263 			g.options & OPT_MEMCPY ? " memcpy" : "",
3264 			g.options & OPT_INDIRECT ? " indirect" : "",
3265 			g.options & OPT_COPY ? " copy" : "",
3266 			g.options & OPT_RUBBISH ? " rubbish " : "");
3267 	}
3268 
3269 	g.tx_period.tv_sec = g.tx_period.tv_nsec = 0;
3270 	if (g.tx_rate > 0) {
3271 		/* try to have at least something every second,
3272 		 * reducing the burst size to some 0.01s worth of data
3273 		 * (but no less than one full set of fragments)
3274 	 	 */
3275 		uint64_t x;
3276 		int lim = (g.tx_rate)/300;
3277 		if (g.burst > lim)
3278 			g.burst = lim;
3279 		if (g.burst == 0)
3280 			g.burst = 1;
3281 		x = ((uint64_t)1000000000 * (uint64_t)g.burst) / (uint64_t) g.tx_rate;
3282 		g.tx_period.tv_nsec = x;
3283 		g.tx_period.tv_sec = g.tx_period.tv_nsec / 1000000000;
3284 		g.tx_period.tv_nsec = g.tx_period.tv_nsec % 1000000000;
3285 	}
3286 	if (g.td_type == TD_TYPE_SENDER)
3287 	    D("Sending %d packets every  %ld.%09ld s",
3288 			g.burst, g.tx_period.tv_sec, g.tx_period.tv_nsec);
3289 	/* Install ^C handler. */
3290 	global_nthreads = g.nthreads;
3291 	sigemptyset(&ss);
3292 	sigaddset(&ss, SIGINT);
3293 	/* block SIGINT now, so that all created threads will inherit the mask */
3294 	if (pthread_sigmask(SIG_BLOCK, &ss, NULL) < 0) {
3295 		D("failed to block SIGINT: %s", strerror(errno));
3296 	}
3297 	if (start_threads(&g) < 0)
3298 		return 1;
3299 	/* Install the handler and re-enable SIGINT for the main thread */
3300 	memset(&sa, 0, sizeof(sa));
3301 	sa.sa_handler = sigint_h;
3302 	if (sigaction(SIGINT, &sa, NULL) < 0) {
3303 		D("failed to install ^C handler: %s", strerror(errno));
3304 	}
3305 
3306 	if (pthread_sigmask(SIG_UNBLOCK, &ss, NULL) < 0) {
3307 		D("failed to re-enable SIGINT: %s", strerror(errno));
3308 	}
3309 	main_thread(&g);
3310 	free(targs);
3311 	return 0;
3312 }
3313 
3314 /* end of file */
3315