xref: /freebsd/usr.sbin/bhyve/pci_emul.c (revision 4b9d6057)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/linker_set.h>
31 #include <sys/mman.h>
32 
33 #include <ctype.h>
34 #include <err.h>
35 #include <errno.h>
36 #include <pthread.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <strings.h>
41 #include <assert.h>
42 #include <stdbool.h>
43 #include <sysexits.h>
44 
45 #include <machine/vmm.h>
46 #include <machine/vmm_snapshot.h>
47 #include <vmmapi.h>
48 
49 #include "acpi.h"
50 #include "bhyverun.h"
51 #include "config.h"
52 #include "debug.h"
53 #ifdef __amd64__
54 #include "amd64/inout.h"
55 #include "amd64/ioapic.h"
56 #endif
57 #include "mem.h"
58 #include "pci_emul.h"
59 #ifdef __amd64__
60 #include "amd64/pci_irq.h"
61 #include "amd64/pci_lpc.h"
62 #endif
63 #include "pci_passthru.h"
64 #include "qemu_fwcfg.h"
65 
66 #define CONF1_ADDR_PORT	   0x0cf8
67 #define CONF1_DATA_PORT	   0x0cfc
68 
69 #define CONF1_ENABLE	   0x80000000ul
70 
71 #define	MAXBUSES	(PCI_BUSMAX + 1)
72 #define MAXSLOTS	(PCI_SLOTMAX + 1)
73 #define	MAXFUNCS	(PCI_FUNCMAX + 1)
74 
75 #define GB		(1024 * 1024 * 1024UL)
76 
77 struct funcinfo {
78 	nvlist_t *fi_config;
79 	struct pci_devemu *fi_pde;
80 	struct pci_devinst *fi_devi;
81 };
82 
83 struct intxinfo {
84 	int	ii_count;
85 	int	ii_pirq_pin;
86 	int	ii_ioapic_irq;
87 };
88 
89 struct slotinfo {
90 	struct intxinfo si_intpins[4];
91 	struct funcinfo si_funcs[MAXFUNCS];
92 };
93 
94 struct businfo {
95 	uint16_t iobase, iolimit;		/* I/O window */
96 	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
97 	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
98 	struct slotinfo slotinfo[MAXSLOTS];
99 };
100 
101 static struct businfo *pci_businfo[MAXBUSES];
102 
103 SET_DECLARE(pci_devemu_set, struct pci_devemu);
104 
105 static uint64_t pci_emul_iobase;
106 static uint8_t *pci_emul_rombase;
107 static uint64_t pci_emul_romoffset;
108 static uint8_t *pci_emul_romlim;
109 static uint64_t pci_emul_membase32;
110 static uint64_t pci_emul_membase64;
111 static uint64_t pci_emul_memlim64;
112 
113 struct pci_bar_allocation {
114 	TAILQ_ENTRY(pci_bar_allocation) chain;
115 	struct pci_devinst *pdi;
116 	int idx;
117 	enum pcibar_type type;
118 	uint64_t size;
119 };
120 
121 static TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars =
122     TAILQ_HEAD_INITIALIZER(pci_bars);
123 
124 struct boot_device {
125 	TAILQ_ENTRY(boot_device) boot_device_chain;
126 	struct pci_devinst *pdi;
127 	int bootindex;
128 };
129 static TAILQ_HEAD(boot_list, boot_device) boot_devices = TAILQ_HEAD_INITIALIZER(
130     boot_devices);
131 
132 #define	PCI_EMUL_IOBASE		0x2000
133 #define	PCI_EMUL_IOLIMIT	0x10000
134 
135 #define PCI_EMUL_ROMSIZE 0x10000000
136 
137 #define	PCI_EMUL_ECFG_BASE	0xE0000000		    /* 3.5GB */
138 #define	PCI_EMUL_ECFG_SIZE	(MAXBUSES * 1024 * 1024)    /* 1MB per bus */
139 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
140 
141 /*
142  * OVMF always uses 0xC0000000 as base address for 32 bit PCI MMIO. Don't
143  * change this address without changing it in OVMF.
144  */
145 #define PCI_EMUL_MEMBASE32 0xC0000000
146 #define	PCI_EMUL_MEMLIMIT32	PCI_EMUL_ECFG_BASE
147 #define PCI_EMUL_MEMSIZE64	(32*GB)
148 
149 #ifdef __amd64__
150 static void pci_lintr_route(struct pci_devinst *pi);
151 static void pci_lintr_update(struct pci_devinst *pi);
152 #endif
153 
154 static struct pci_devemu *pci_emul_finddev(const char *name);
155 static void pci_cfgrw(int in, int bus, int slot, int func, int coff,
156     int bytes, uint32_t *val);
157 
158 static __inline void
159 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
160 {
161 
162 	if (bytes == 1)
163 		pci_set_cfgdata8(pi, coff, val);
164 	else if (bytes == 2)
165 		pci_set_cfgdata16(pi, coff, val);
166 	else
167 		pci_set_cfgdata32(pi, coff, val);
168 }
169 
170 static __inline uint32_t
171 CFGREAD(struct pci_devinst *pi, int coff, int bytes)
172 {
173 
174 	if (bytes == 1)
175 		return (pci_get_cfgdata8(pi, coff));
176 	else if (bytes == 2)
177 		return (pci_get_cfgdata16(pi, coff));
178 	else
179 		return (pci_get_cfgdata32(pi, coff));
180 }
181 
182 static int
183 is_pcir_bar(int coff)
184 {
185 	return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1));
186 }
187 
188 static int
189 is_pcir_bios(int coff)
190 {
191 	return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4);
192 }
193 
194 /*
195  * I/O access
196  */
197 
198 /*
199  * Slot options are in the form:
200  *
201  *  <bus>:<slot>:<func>,<emul>[,<config>]
202  *  <slot>[:<func>],<emul>[,<config>]
203  *
204  *  slot is 0..31
205  *  func is 0..7
206  *  emul is a string describing the type of PCI device e.g. virtio-net
207  *  config is an optional string, depending on the device, that can be
208  *  used for configuration.
209  *   Examples are:
210  *     1,virtio-net,tap0
211  *     3:0,dummy
212  */
213 static void
214 pci_parse_slot_usage(char *aopt)
215 {
216 
217 	EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
218 }
219 
220 /*
221  * Helper function to parse a list of comma-separated options where
222  * each option is formatted as "name[=value]".  If no value is
223  * provided, the option is treated as a boolean and is given a value
224  * of true.
225  */
226 int
227 pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
228 {
229 	char *config, *name, *tofree, *value;
230 
231 	if (opt == NULL)
232 		return (0);
233 
234 	config = tofree = strdup(opt);
235 	while ((name = strsep(&config, ",")) != NULL) {
236 		value = strchr(name, '=');
237 		if (value != NULL) {
238 			*value = '\0';
239 			value++;
240 			set_config_value_node(nvl, name, value);
241 		} else
242 			set_config_bool_node(nvl, name, true);
243 	}
244 	free(tofree);
245 	return (0);
246 }
247 
248 /*
249  * PCI device configuration is stored in MIBs that encode the device's
250  * location:
251  *
252  * pci.<bus>.<slot>.<func>
253  *
254  * Where "bus", "slot", and "func" are all decimal values without
255  * leading zeroes.  Each valid device must have a "device" node which
256  * identifies the driver model of the device.
257  *
258  * Device backends can provide a parser for the "config" string.  If
259  * a custom parser is not provided, pci_parse_legacy_config() is used
260  * to parse the string.
261  */
262 int
263 pci_parse_slot(char *opt)
264 {
265 	char node_name[sizeof("pci.XXX.XX.X")];
266 	struct pci_devemu *pde;
267 	char *emul, *config, *str, *cp;
268 	int error, bnum, snum, fnum;
269 	nvlist_t *nvl;
270 
271 	error = -1;
272 	str = strdup(opt);
273 
274 	emul = config = NULL;
275 	if ((cp = strchr(str, ',')) != NULL) {
276 		*cp = '\0';
277 		emul = cp + 1;
278 		if ((cp = strchr(emul, ',')) != NULL) {
279 			*cp = '\0';
280 			config = cp + 1;
281 		}
282 	} else {
283 		pci_parse_slot_usage(opt);
284 		goto done;
285 	}
286 
287 	/* <bus>:<slot>:<func> */
288 	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
289 		bnum = 0;
290 		/* <slot>:<func> */
291 		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
292 			fnum = 0;
293 			/* <slot> */
294 			if (sscanf(str, "%d", &snum) != 1) {
295 				snum = -1;
296 			}
297 		}
298 	}
299 
300 	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
301 	    fnum < 0 || fnum >= MAXFUNCS) {
302 		pci_parse_slot_usage(opt);
303 		goto done;
304 	}
305 
306 	pde = pci_emul_finddev(emul);
307 	if (pde == NULL) {
308 		EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
309 		    fnum, emul);
310 		goto done;
311 	}
312 
313 	snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
314 	    fnum);
315 	nvl = find_config_node(node_name);
316 	if (nvl != NULL) {
317 		EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
318 		    fnum);
319 		goto done;
320 	}
321 	nvl = create_config_node(node_name);
322 	if (pde->pe_alias != NULL)
323 		set_config_value_node(nvl, "device", pde->pe_alias);
324 	else
325 		set_config_value_node(nvl, "device", pde->pe_emu);
326 
327 	if (pde->pe_legacy_config != NULL)
328 		error = pde->pe_legacy_config(nvl, config);
329 	else
330 		error = pci_parse_legacy_config(nvl, config);
331 done:
332 	free(str);
333 	return (error);
334 }
335 
336 void
337 pci_print_supported_devices(void)
338 {
339 	struct pci_devemu **pdpp, *pdp;
340 
341 	SET_FOREACH(pdpp, pci_devemu_set) {
342 		pdp = *pdpp;
343 		printf("%s\n", pdp->pe_emu);
344 	}
345 }
346 
347 uint32_t
348 pci_config_read_reg(const struct pcisel *const host_sel, nvlist_t *nvl,
349     const uint32_t reg, const uint8_t size, const uint32_t def)
350 {
351 	const char *config;
352 	const nvlist_t *pci_regs;
353 
354 	assert(size == 1 || size == 2 || size == 4);
355 
356 	pci_regs = find_relative_config_node(nvl, "pcireg");
357 	if (pci_regs == NULL) {
358 		return def;
359 	}
360 
361 	switch (reg) {
362 	case PCIR_DEVICE:
363 		config = get_config_value_node(pci_regs, "device");
364 		break;
365 	case PCIR_VENDOR:
366 		config = get_config_value_node(pci_regs, "vendor");
367 		break;
368 	case PCIR_REVID:
369 		config = get_config_value_node(pci_regs, "revid");
370 		break;
371 	case PCIR_SUBVEND_0:
372 		config = get_config_value_node(pci_regs, "subvendor");
373 		break;
374 	case PCIR_SUBDEV_0:
375 		config = get_config_value_node(pci_regs, "subdevice");
376 		break;
377 	default:
378 		return (-1);
379 	}
380 
381 	if (config == NULL) {
382 		return def;
383 	} else if (host_sel != NULL && strcmp(config, "host") == 0) {
384 		return pci_host_read_config(host_sel, reg, size);
385 	} else {
386 		return strtol(config, NULL, 16);
387 	}
388 }
389 
390 static int
391 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
392 {
393 
394 	if (offset < pi->pi_msix.pba_offset)
395 		return (0);
396 
397 	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
398 		return (0);
399 	}
400 
401 	return (1);
402 }
403 
404 int
405 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
406 		     uint64_t value)
407 {
408 	int msix_entry_offset;
409 	int tab_index;
410 	char *dest;
411 
412 	/* support only 4 or 8 byte writes */
413 	if (size != 4 && size != 8)
414 		return (-1);
415 
416 	/*
417 	 * Return if table index is beyond what device supports
418 	 */
419 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
420 	if (tab_index >= pi->pi_msix.table_count)
421 		return (-1);
422 
423 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
424 
425 	/* support only aligned writes */
426 	if ((msix_entry_offset % size) != 0)
427 		return (-1);
428 
429 	dest = (char *)(pi->pi_msix.table + tab_index);
430 	dest += msix_entry_offset;
431 
432 	if (size == 4)
433 		*((uint32_t *)dest) = value;
434 	else
435 		*((uint64_t *)dest) = value;
436 
437 	return (0);
438 }
439 
440 uint64_t
441 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
442 {
443 	char *dest;
444 	int msix_entry_offset;
445 	int tab_index;
446 	uint64_t retval = ~0;
447 
448 	/*
449 	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
450 	 * table but we also allow 1 byte access to accommodate reads from
451 	 * ddb.
452 	 */
453 	if (size != 1 && size != 4 && size != 8)
454 		return (retval);
455 
456 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
457 
458 	/* support only aligned reads */
459 	if ((msix_entry_offset % size) != 0) {
460 		return (retval);
461 	}
462 
463 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
464 
465 	if (tab_index < pi->pi_msix.table_count) {
466 		/* valid MSI-X Table access */
467 		dest = (char *)(pi->pi_msix.table + tab_index);
468 		dest += msix_entry_offset;
469 
470 		if (size == 1)
471 			retval = *((uint8_t *)dest);
472 		else if (size == 4)
473 			retval = *((uint32_t *)dest);
474 		else
475 			retval = *((uint64_t *)dest);
476 	} else if (pci_valid_pba_offset(pi, offset)) {
477 		/* return 0 for PBA access */
478 		retval = 0;
479 	}
480 
481 	return (retval);
482 }
483 
484 int
485 pci_msix_table_bar(struct pci_devinst *pi)
486 {
487 
488 	if (pi->pi_msix.table != NULL)
489 		return (pi->pi_msix.table_bar);
490 	else
491 		return (-1);
492 }
493 
494 int
495 pci_msix_pba_bar(struct pci_devinst *pi)
496 {
497 
498 	if (pi->pi_msix.table != NULL)
499 		return (pi->pi_msix.pba_bar);
500 	else
501 		return (-1);
502 }
503 
504 #ifdef __amd64__
505 static int
506 pci_emul_io_handler(struct vmctx *ctx __unused, int in, int port,
507     int bytes, uint32_t *eax, void *arg)
508 {
509 	struct pci_devinst *pdi = arg;
510 	struct pci_devemu *pe = pdi->pi_d;
511 	uint64_t offset;
512 	int i;
513 
514 	assert(port >= 0);
515 
516 	for (i = 0; i <= PCI_BARMAX; i++) {
517 		if (pdi->pi_bar[i].type == PCIBAR_IO &&
518 		    (uint64_t)port >= pdi->pi_bar[i].addr &&
519 		    (uint64_t)port + bytes <=
520 		    pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
521 			offset = port - pdi->pi_bar[i].addr;
522 			if (in)
523 				*eax = (*pe->pe_barread)(pdi, i,
524 							 offset, bytes);
525 			else
526 				(*pe->pe_barwrite)(pdi, i, offset,
527 						   bytes, *eax);
528 			return (0);
529 		}
530 	}
531 	return (-1);
532 }
533 #else
534 static int
535 pci_emul_iomem_handler(struct vcpu *vcpu __unused, int dir,
536     uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
537 {
538 	struct pci_devinst *pdi = arg1;
539 	struct pci_devemu *pe = pdi->pi_d;
540 	uint64_t offset;
541 	int bidx = (int)arg2;
542 
543 	assert(bidx <= PCI_BARMAX);
544 	assert(pdi->pi_bar[bidx].type == PCIBAR_IO);
545 	assert(addr >= pdi->pi_bar[bidx].addr &&
546 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
547 	assert(size == 1 || size == 2 || size == 4);
548 
549 	offset = addr - pdi->pi_bar[bidx].addr;
550 	if (dir == MEM_F_READ)
551 		*val = (*pe->pe_barread)(pdi, bidx, offset, size);
552 	else
553 		(*pe->pe_barwrite)(pdi, bidx, offset, size, *val);
554 
555 	return (0);
556 }
557 #endif /* !__amd64__ */
558 
559 static int
560 pci_emul_mem_handler(struct vcpu *vcpu __unused, int dir,
561     uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
562 {
563 	struct pci_devinst *pdi = arg1;
564 	struct pci_devemu *pe = pdi->pi_d;
565 	uint64_t offset;
566 	int bidx = (int)arg2;
567 
568 	assert(bidx <= PCI_BARMAX);
569 	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
570 	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
571 	assert(addr >= pdi->pi_bar[bidx].addr &&
572 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
573 
574 	offset = addr - pdi->pi_bar[bidx].addr;
575 
576 	if (dir == MEM_F_WRITE) {
577 		if (size == 8) {
578 			(*pe->pe_barwrite)(pdi, bidx, offset,
579 					   4, *val & 0xffffffff);
580 			(*pe->pe_barwrite)(pdi, bidx, offset + 4,
581 					   4, *val >> 32);
582 		} else {
583 			(*pe->pe_barwrite)(pdi, bidx, offset,
584 					   size, *val);
585 		}
586 	} else {
587 		if (size == 8) {
588 			*val = (*pe->pe_barread)(pdi, bidx,
589 						 offset, 4);
590 			*val |= (*pe->pe_barread)(pdi, bidx,
591 						  offset + 4, 4) << 32;
592 		} else {
593 			*val = (*pe->pe_barread)(pdi, bidx,
594 						 offset, size);
595 		}
596 	}
597 
598 	return (0);
599 }
600 
601 
602 static int
603 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
604 			uint64_t *addr)
605 {
606 	uint64_t base;
607 
608 	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
609 
610 	base = roundup2(*baseptr, size);
611 
612 	if (base + size <= limit) {
613 		*addr = base;
614 		*baseptr = base + size;
615 		return (0);
616 	} else
617 		return (-1);
618 }
619 
620 /*
621  * Register (or unregister) the MMIO or I/O region associated with the BAR
622  * register 'idx' of an emulated pci device.
623  */
624 static void
625 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
626 {
627 	struct pci_devemu *pe;
628 	int error;
629 	enum pcibar_type type;
630 
631 	pe = pi->pi_d;
632 	type = pi->pi_bar[idx].type;
633 	switch (type) {
634 	case PCIBAR_IO:
635 	{
636 #ifdef __amd64__
637 		struct inout_port iop;
638 
639 		bzero(&iop, sizeof(struct inout_port));
640 		iop.name = pi->pi_name;
641 		iop.port = pi->pi_bar[idx].addr;
642 		iop.size = pi->pi_bar[idx].size;
643 		if (registration) {
644 			iop.flags = IOPORT_F_INOUT;
645 			iop.handler = pci_emul_io_handler;
646 			iop.arg = pi;
647 			error = register_inout(&iop);
648 		} else
649 			error = unregister_inout(&iop);
650 #else
651 		struct mem_range mr;
652 
653 		bzero(&mr, sizeof(struct mem_range));
654 		mr.name = pi->pi_name;
655 		mr.base = pi->pi_bar[idx].addr;
656 		mr.size = pi->pi_bar[idx].size;
657 		if (registration) {
658 			mr.flags = MEM_F_RW;
659 			mr.handler = pci_emul_iomem_handler;
660 			mr.arg1 = pi;
661 			mr.arg2 = idx;
662 			error = register_mem(&mr);
663 		} else
664 			error = unregister_mem(&mr);
665 #endif
666 		break;
667 	}
668 	case PCIBAR_MEM32:
669 	case PCIBAR_MEM64:
670 	{
671 		struct mem_range mr;
672 
673 		bzero(&mr, sizeof(struct mem_range));
674 		mr.name = pi->pi_name;
675 		mr.base = pi->pi_bar[idx].addr;
676 		mr.size = pi->pi_bar[idx].size;
677 		if (registration) {
678 			mr.flags = MEM_F_RW;
679 			mr.handler = pci_emul_mem_handler;
680 			mr.arg1 = pi;
681 			mr.arg2 = idx;
682 			error = register_mem(&mr);
683 		} else
684 			error = unregister_mem(&mr);
685 		break;
686 	}
687 	case PCIBAR_ROM:
688 		error = 0;
689 		break;
690 	default:
691 		error = EINVAL;
692 		break;
693 	}
694 	assert(error == 0);
695 
696 	if (pe->pe_baraddr != NULL)
697 		(*pe->pe_baraddr)(pi, idx, registration, pi->pi_bar[idx].addr);
698 }
699 
700 static void
701 unregister_bar(struct pci_devinst *pi, int idx)
702 {
703 
704 	modify_bar_registration(pi, idx, 0);
705 }
706 
707 static void
708 register_bar(struct pci_devinst *pi, int idx)
709 {
710 
711 	modify_bar_registration(pi, idx, 1);
712 }
713 
714 /* Is the ROM enabled for the emulated pci device? */
715 static int
716 romen(struct pci_devinst *pi)
717 {
718 	return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) ==
719 	    PCIM_BIOS_ENABLE;
720 }
721 
722 /* Are we decoding i/o port accesses for the emulated pci device? */
723 static int
724 porten(struct pci_devinst *pi)
725 {
726 	uint16_t cmd;
727 
728 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
729 
730 	return (cmd & PCIM_CMD_PORTEN);
731 }
732 
733 /* Are we decoding memory accesses for the emulated pci device? */
734 static int
735 memen(struct pci_devinst *pi)
736 {
737 	uint16_t cmd;
738 
739 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
740 
741 	return (cmd & PCIM_CMD_MEMEN);
742 }
743 
744 /*
745  * Update the MMIO or I/O address that is decoded by the BAR register.
746  *
747  * If the pci device has enabled the address space decoding then intercept
748  * the address range decoded by the BAR register.
749  */
750 static void
751 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
752 {
753 	int decode;
754 
755 	if (pi->pi_bar[idx].type == PCIBAR_IO)
756 		decode = porten(pi);
757 	else
758 		decode = memen(pi);
759 
760 	if (decode)
761 		unregister_bar(pi, idx);
762 
763 	switch (type) {
764 	case PCIBAR_IO:
765 	case PCIBAR_MEM32:
766 		pi->pi_bar[idx].addr = addr;
767 		break;
768 	case PCIBAR_MEM64:
769 		pi->pi_bar[idx].addr &= ~0xffffffffUL;
770 		pi->pi_bar[idx].addr |= addr;
771 		break;
772 	case PCIBAR_MEMHI64:
773 		pi->pi_bar[idx].addr &= 0xffffffff;
774 		pi->pi_bar[idx].addr |= addr;
775 		break;
776 	default:
777 		assert(0);
778 	}
779 
780 	if (decode)
781 		register_bar(pi, idx);
782 }
783 
784 int
785 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
786     uint64_t size)
787 {
788 	assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX));
789 	assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX));
790 
791 	if ((size & (size - 1)) != 0)
792 		size = 1UL << flsl(size);	/* round up to a power of 2 */
793 
794 	/* Enforce minimum BAR sizes required by the PCI standard */
795 	if (type == PCIBAR_IO) {
796 		if (size < 4)
797 			size = 4;
798 	} else if (type == PCIBAR_ROM) {
799 		if (size < ~PCIM_BIOS_ADDR_MASK + 1)
800 			size = ~PCIM_BIOS_ADDR_MASK + 1;
801 	} else {
802 		if (size < 16)
803 			size = 16;
804 	}
805 
806 	/*
807 	 * To reduce fragmentation of the MMIO space, we allocate the BARs by
808 	 * size. Therefore, don't allocate the BAR yet. We create a list of all
809 	 * BAR allocation which is sorted by BAR size. When all PCI devices are
810 	 * initialized, we will assign an address to the BARs.
811 	 */
812 
813 	/* create a new list entry */
814 	struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar));
815 	memset(new_bar, 0, sizeof(*new_bar));
816 	new_bar->pdi = pdi;
817 	new_bar->idx = idx;
818 	new_bar->type = type;
819 	new_bar->size = size;
820 
821 	/*
822 	 * Search for a BAR which size is lower than the size of our newly
823 	 * allocated BAR.
824 	 */
825 	struct pci_bar_allocation *bar = NULL;
826 	TAILQ_FOREACH(bar, &pci_bars, chain) {
827 		if (bar->size < size) {
828 			break;
829 		}
830 	}
831 
832 	if (bar == NULL) {
833 		/*
834 		 * Either the list is empty or new BAR is the smallest BAR of
835 		 * the list. Append it to the end of our list.
836 		 */
837 		TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain);
838 	} else {
839 		/*
840 		 * The found BAR is smaller than our new BAR. For that reason,
841 		 * insert our new BAR before the found BAR.
842 		 */
843 		TAILQ_INSERT_BEFORE(bar, new_bar, chain);
844 	}
845 
846 	/*
847 	 * pci_passthru devices synchronize their physical and virtual command
848 	 * register on init. For that reason, the virtual cmd reg should be
849 	 * updated as early as possible.
850 	 */
851 	uint16_t enbit = 0;
852 	switch (type) {
853 	case PCIBAR_IO:
854 		enbit = PCIM_CMD_PORTEN;
855 		break;
856 	case PCIBAR_MEM64:
857 	case PCIBAR_MEM32:
858 		enbit = PCIM_CMD_MEMEN;
859 		break;
860 	default:
861 		enbit = 0;
862 		break;
863 	}
864 
865 	const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
866 	pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
867 
868 	return (0);
869 }
870 
871 static int
872 pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx,
873     const enum pcibar_type type, const uint64_t size)
874 {
875 	int error;
876 	uint64_t *baseptr, limit, addr, mask, lobits, bar;
877 
878 	switch (type) {
879 	case PCIBAR_NONE:
880 		baseptr = NULL;
881 		addr = mask = lobits = 0;
882 		break;
883 	case PCIBAR_IO:
884 		baseptr = &pci_emul_iobase;
885 		limit = PCI_EMUL_IOLIMIT;
886 		mask = PCIM_BAR_IO_BASE;
887 		lobits = PCIM_BAR_IO_SPACE;
888 		break;
889 	case PCIBAR_MEM64:
890 		/*
891 		 * XXX
892 		 * Some drivers do not work well if the 64-bit BAR is allocated
893 		 * above 4GB. Allow for this by allocating small requests under
894 		 * 4GB unless then allocation size is larger than some arbitrary
895 		 * number (128MB currently).
896 		 */
897 		if (size > 128 * 1024 * 1024) {
898 			baseptr = &pci_emul_membase64;
899 			limit = pci_emul_memlim64;
900 			mask = PCIM_BAR_MEM_BASE;
901 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
902 				 PCIM_BAR_MEM_PREFETCH;
903 		} else {
904 			baseptr = &pci_emul_membase32;
905 			limit = PCI_EMUL_MEMLIMIT32;
906 			mask = PCIM_BAR_MEM_BASE;
907 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
908 		}
909 		break;
910 	case PCIBAR_MEM32:
911 		baseptr = &pci_emul_membase32;
912 		limit = PCI_EMUL_MEMLIMIT32;
913 		mask = PCIM_BAR_MEM_BASE;
914 		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
915 		break;
916 	case PCIBAR_ROM:
917 		/* do not claim memory for ROM. OVMF will do it for us. */
918 		baseptr = NULL;
919 		limit = 0;
920 		mask = PCIM_BIOS_ADDR_MASK;
921 		lobits = 0;
922 		break;
923 	default:
924 		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
925 		assert(0);
926 	}
927 
928 	if (baseptr != NULL) {
929 		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
930 		if (error != 0)
931 			return (error);
932 	} else {
933 		addr = 0;
934 	}
935 
936 	pdi->pi_bar[idx].type = type;
937 	pdi->pi_bar[idx].addr = addr;
938 	pdi->pi_bar[idx].size = size;
939 	/*
940 	 * passthru devices are using same lobits as physical device they set
941 	 * this property
942 	 */
943 	if (pdi->pi_bar[idx].lobits != 0) {
944 		lobits = pdi->pi_bar[idx].lobits;
945 	} else {
946 		pdi->pi_bar[idx].lobits = lobits;
947 	}
948 
949 	/* Initialize the BAR register in config space */
950 	bar = (addr & mask) | lobits;
951 	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
952 
953 	if (type == PCIBAR_MEM64) {
954 		assert(idx + 1 <= PCI_BARMAX);
955 		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
956 		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
957 	}
958 
959 	if (type != PCIBAR_ROM) {
960 		register_bar(pdi, idx);
961 	}
962 
963 	return (0);
964 }
965 
966 int
967 pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size,
968     void **const addr)
969 {
970 	/* allocate ROM space once on first call */
971 	if (pci_emul_rombase == 0) {
972 		pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM,
973 		    "pcirom", PCI_EMUL_ROMSIZE);
974 		if (pci_emul_rombase == MAP_FAILED) {
975 			warnx("%s: failed to create rom segment", __func__);
976 			return (-1);
977 		}
978 		pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE;
979 		pci_emul_romoffset = 0;
980 	}
981 
982 	/* ROM size should be a power of 2 and greater than 2 KB */
983 	const uint64_t rom_size = MAX(1UL << flsl(size),
984 	    ~PCIM_BIOS_ADDR_MASK + 1);
985 
986 	/* check if ROM fits into ROM space */
987 	if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) {
988 		warnx("%s: no space left in rom segment:", __func__);
989 		warnx("%16lu bytes left",
990 		    PCI_EMUL_ROMSIZE - pci_emul_romoffset);
991 		warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus,
992 		    pdi->pi_slot, pdi->pi_func);
993 		return (-1);
994 	}
995 
996 	/* allocate ROM BAR */
997 	const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM,
998 	    rom_size);
999 	if (error)
1000 		return error;
1001 
1002 	/* return address */
1003 	*addr = pci_emul_rombase + pci_emul_romoffset;
1004 
1005 	/* save offset into ROM Space */
1006 	pdi->pi_romoffset = pci_emul_romoffset;
1007 
1008 	/* increase offset for next ROM */
1009 	pci_emul_romoffset += rom_size;
1010 
1011 	return (0);
1012 }
1013 
1014 int
1015 pci_emul_add_boot_device(struct pci_devinst *pi, int bootindex)
1016 {
1017 	struct boot_device *new_device, *device;
1018 
1019 	/* don't permit a negative bootindex */
1020 	if (bootindex < 0) {
1021 		errx(4, "Invalid bootindex %d for %s", bootindex, pi->pi_name);
1022 	}
1023 
1024 	/* alloc new boot device */
1025 	new_device = calloc(1, sizeof(struct boot_device));
1026 	if (new_device == NULL) {
1027 		return (ENOMEM);
1028 	}
1029 	new_device->pdi = pi;
1030 	new_device->bootindex = bootindex;
1031 
1032 	/* search for boot device with higher boot index */
1033 	TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
1034 		if (device->bootindex == bootindex) {
1035 			errx(4,
1036 			    "Could not set bootindex %d for %s. Bootindex already occupied by %s",
1037 			    bootindex, pi->pi_name, device->pdi->pi_name);
1038 		} else if (device->bootindex > bootindex) {
1039 			break;
1040 		}
1041 	}
1042 
1043 	/* add boot device to queue */
1044 	if (device == NULL) {
1045 		TAILQ_INSERT_TAIL(&boot_devices, new_device, boot_device_chain);
1046 	} else {
1047 		TAILQ_INSERT_BEFORE(device, new_device, boot_device_chain);
1048 	}
1049 
1050 	return (0);
1051 }
1052 
1053 #define	CAP_START_OFFSET	0x40
1054 static int
1055 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
1056 {
1057 	int i, capoff, reallen;
1058 	uint16_t sts;
1059 
1060 	assert(caplen > 0);
1061 
1062 	reallen = roundup2(caplen, 4);		/* dword aligned */
1063 
1064 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1065 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
1066 		capoff = CAP_START_OFFSET;
1067 	else
1068 		capoff = pi->pi_capend + 1;
1069 
1070 	/* Check if we have enough space */
1071 	if (capoff + reallen > PCI_REGMAX + 1)
1072 		return (-1);
1073 
1074 	/* Set the previous capability pointer */
1075 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
1076 		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
1077 		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
1078 	} else
1079 		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
1080 
1081 	/* Copy the capability */
1082 	for (i = 0; i < caplen; i++)
1083 		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
1084 
1085 	/* Set the next capability pointer */
1086 	pci_set_cfgdata8(pi, capoff + 1, 0);
1087 
1088 	pi->pi_prevcap = capoff;
1089 	pi->pi_capend = capoff + reallen - 1;
1090 	return (0);
1091 }
1092 
1093 static struct pci_devemu *
1094 pci_emul_finddev(const char *name)
1095 {
1096 	struct pci_devemu **pdpp, *pdp;
1097 
1098 	SET_FOREACH(pdpp, pci_devemu_set) {
1099 		pdp = *pdpp;
1100 		if (!strcmp(pdp->pe_emu, name)) {
1101 			return (pdp);
1102 		}
1103 	}
1104 
1105 	return (NULL);
1106 }
1107 
1108 static int
1109 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
1110     int func, struct funcinfo *fi)
1111 {
1112 	struct pci_devinst *pdi;
1113 	int err;
1114 
1115 	pdi = calloc(1, sizeof(struct pci_devinst));
1116 
1117 	pdi->pi_vmctx = ctx;
1118 	pdi->pi_bus = bus;
1119 	pdi->pi_slot = slot;
1120 	pdi->pi_func = func;
1121 #ifdef __amd64__
1122 	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
1123 	pdi->pi_lintr.pin = 0;
1124 	pdi->pi_lintr.state = IDLE;
1125 	pdi->pi_lintr.pirq_pin = 0;
1126 	pdi->pi_lintr.ioapic_irq = 0;
1127 #endif
1128 	pdi->pi_d = pde;
1129 	snprintf(pdi->pi_name, PI_NAMESZ, "%s@pci.%d.%d.%d", pde->pe_emu, bus,
1130 	    slot, func);
1131 
1132 	/* Disable legacy interrupts */
1133 	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
1134 	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
1135 
1136 	pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
1137 
1138 	err = (*pde->pe_init)(pdi, fi->fi_config);
1139 	if (err == 0)
1140 		fi->fi_devi = pdi;
1141 	else
1142 		free(pdi);
1143 
1144 	return (err);
1145 }
1146 
1147 void
1148 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
1149 {
1150 	int mmc;
1151 
1152 	/* Number of msi messages must be a power of 2 between 1 and 32 */
1153 	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
1154 	mmc = ffs(msgnum) - 1;
1155 
1156 	bzero(msicap, sizeof(struct msicap));
1157 	msicap->capid = PCIY_MSI;
1158 	msicap->nextptr = nextptr;
1159 	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
1160 }
1161 
1162 int
1163 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
1164 {
1165 	struct msicap msicap;
1166 
1167 	pci_populate_msicap(&msicap, msgnum, 0);
1168 
1169 	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
1170 }
1171 
1172 static void
1173 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
1174 		     uint32_t msix_tab_size)
1175 {
1176 
1177 	assert(msix_tab_size % 4096 == 0);
1178 
1179 	bzero(msixcap, sizeof(struct msixcap));
1180 	msixcap->capid = PCIY_MSIX;
1181 
1182 	/*
1183 	 * Message Control Register, all fields set to
1184 	 * zero except for the Table Size.
1185 	 * Note: Table size N is encoded as N-1
1186 	 */
1187 	msixcap->msgctrl = msgnum - 1;
1188 
1189 	/*
1190 	 * MSI-X BAR setup:
1191 	 * - MSI-X table start at offset 0
1192 	 * - PBA table starts at a 4K aligned offset after the MSI-X table
1193 	 */
1194 	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
1195 	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
1196 }
1197 
1198 static void
1199 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
1200 {
1201 	int i, table_size;
1202 
1203 	assert(table_entries > 0);
1204 	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
1205 
1206 	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
1207 	pi->pi_msix.table = calloc(1, table_size);
1208 
1209 	/* set mask bit of vector control register */
1210 	for (i = 0; i < table_entries; i++)
1211 		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
1212 }
1213 
1214 int
1215 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
1216 {
1217 	uint32_t tab_size;
1218 	struct msixcap msixcap;
1219 
1220 	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
1221 	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
1222 
1223 	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
1224 
1225 	/* Align table size to nearest 4K */
1226 	tab_size = roundup2(tab_size, 4096);
1227 
1228 	pi->pi_msix.table_bar = barnum;
1229 	pi->pi_msix.pba_bar   = barnum;
1230 	pi->pi_msix.table_offset = 0;
1231 	pi->pi_msix.table_count = msgnum;
1232 	pi->pi_msix.pba_offset = tab_size;
1233 	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
1234 
1235 	pci_msix_table_init(pi, msgnum);
1236 
1237 	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
1238 
1239 	/* allocate memory for MSI-X Table and PBA */
1240 	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
1241 				tab_size + pi->pi_msix.pba_size);
1242 
1243 	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
1244 					sizeof(msixcap)));
1245 }
1246 
1247 static void
1248 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1249 		 int bytes, uint32_t val)
1250 {
1251 	uint16_t msgctrl, rwmask;
1252 	int off;
1253 
1254 	off = offset - capoff;
1255 	/* Message Control Register */
1256 	if (off == 2 && bytes == 2) {
1257 		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
1258 		msgctrl = pci_get_cfgdata16(pi, offset);
1259 		msgctrl &= ~rwmask;
1260 		msgctrl |= val & rwmask;
1261 		val = msgctrl;
1262 
1263 		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
1264 		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
1265 #ifdef __amd64__
1266 		pci_lintr_update(pi);
1267 #endif
1268 	}
1269 
1270 	CFGWRITE(pi, offset, val, bytes);
1271 }
1272 
1273 static void
1274 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1275 		int bytes, uint32_t val)
1276 {
1277 	uint16_t msgctrl, rwmask, msgdata, mme;
1278 	uint32_t addrlo;
1279 
1280 	/*
1281 	 * If guest is writing to the message control register make sure
1282 	 * we do not overwrite read-only fields.
1283 	 */
1284 	if ((offset - capoff) == 2 && bytes == 2) {
1285 		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
1286 		msgctrl = pci_get_cfgdata16(pi, offset);
1287 		msgctrl &= ~rwmask;
1288 		msgctrl |= val & rwmask;
1289 		val = msgctrl;
1290 	}
1291 	CFGWRITE(pi, offset, val, bytes);
1292 
1293 	msgctrl = pci_get_cfgdata16(pi, capoff + 2);
1294 	addrlo = pci_get_cfgdata32(pi, capoff + 4);
1295 	if (msgctrl & PCIM_MSICTRL_64BIT)
1296 		msgdata = pci_get_cfgdata16(pi, capoff + 12);
1297 	else
1298 		msgdata = pci_get_cfgdata16(pi, capoff + 8);
1299 
1300 	mme = msgctrl & PCIM_MSICTRL_MME_MASK;
1301 	pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
1302 	if (pi->pi_msi.enabled) {
1303 		pi->pi_msi.addr = addrlo;
1304 		pi->pi_msi.msg_data = msgdata;
1305 		pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
1306 	} else {
1307 		pi->pi_msi.maxmsgnum = 0;
1308 	}
1309 #ifdef __amd64__
1310 	pci_lintr_update(pi);
1311 #endif
1312 }
1313 
1314 static void
1315 pciecap_cfgwrite(struct pci_devinst *pi, int capoff __unused, int offset,
1316     int bytes, uint32_t val)
1317 {
1318 
1319 	/* XXX don't write to the readonly parts */
1320 	CFGWRITE(pi, offset, val, bytes);
1321 }
1322 
1323 #define	PCIECAP_VERSION	0x2
1324 int
1325 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
1326 {
1327 	int err;
1328 	struct pciecap pciecap;
1329 
1330 	bzero(&pciecap, sizeof(pciecap));
1331 
1332 	/*
1333 	 * Use the integrated endpoint type for endpoints on a root complex bus.
1334 	 *
1335 	 * NB: bhyve currently only supports a single PCI bus that is the root
1336 	 * complex bus, so all endpoints are integrated.
1337 	 */
1338 	if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
1339 		type = PCIEM_TYPE_ROOT_INT_EP;
1340 
1341 	pciecap.capid = PCIY_EXPRESS;
1342 	pciecap.pcie_capabilities = PCIECAP_VERSION | type;
1343 	if (type != PCIEM_TYPE_ROOT_INT_EP) {
1344 		pciecap.link_capabilities = 0x411;	/* gen1, x1 */
1345 		pciecap.link_status = 0x11;		/* gen1, x1 */
1346 	}
1347 
1348 	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
1349 	return (err);
1350 }
1351 
1352 /*
1353  * This function assumes that 'coff' is in the capabilities region of the
1354  * config space. A capoff parameter of zero will force a search for the
1355  * offset and type.
1356  */
1357 void
1358 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
1359     uint8_t capoff, int capid)
1360 {
1361 	uint8_t nextoff;
1362 
1363 	/* Do not allow un-aligned writes */
1364 	if ((offset & (bytes - 1)) != 0)
1365 		return;
1366 
1367 	if (capoff == 0) {
1368 		/* Find the capability that we want to update */
1369 		capoff = CAP_START_OFFSET;
1370 		while (1) {
1371 			nextoff = pci_get_cfgdata8(pi, capoff + 1);
1372 			if (nextoff == 0)
1373 				break;
1374 			if (offset >= capoff && offset < nextoff)
1375 				break;
1376 
1377 			capoff = nextoff;
1378 		}
1379 		assert(offset >= capoff);
1380 		capid = pci_get_cfgdata8(pi, capoff);
1381 	}
1382 
1383 	/*
1384 	 * Capability ID and Next Capability Pointer are readonly.
1385 	 * However, some o/s's do 4-byte writes that include these.
1386 	 * For this case, trim the write back to 2 bytes and adjust
1387 	 * the data.
1388 	 */
1389 	if (offset == capoff || offset == capoff + 1) {
1390 		if (offset == capoff && bytes == 4) {
1391 			bytes = 2;
1392 			offset += 2;
1393 			val >>= 16;
1394 		} else
1395 			return;
1396 	}
1397 
1398 	switch (capid) {
1399 	case PCIY_MSI:
1400 		msicap_cfgwrite(pi, capoff, offset, bytes, val);
1401 		break;
1402 	case PCIY_MSIX:
1403 		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
1404 		break;
1405 	case PCIY_EXPRESS:
1406 		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
1407 		break;
1408 	default:
1409 		break;
1410 	}
1411 }
1412 
1413 static int
1414 pci_emul_iscap(struct pci_devinst *pi, int offset)
1415 {
1416 	uint16_t sts;
1417 
1418 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1419 	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1420 		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1421 			return (1);
1422 	}
1423 	return (0);
1424 }
1425 
1426 static int
1427 pci_emul_fallback_handler(struct vcpu *vcpu __unused, int dir,
1428     uint64_t addr __unused, int size __unused, uint64_t *val,
1429     void *arg1 __unused, long arg2 __unused)
1430 {
1431 	/*
1432 	 * Ignore writes; return 0xff's for reads. The mem read code
1433 	 * will take care of truncating to the correct size.
1434 	 */
1435 	if (dir == MEM_F_READ) {
1436 		*val = 0xffffffffffffffff;
1437 	}
1438 
1439 	return (0);
1440 }
1441 
1442 static int
1443 pci_emul_ecfg_handler(struct vcpu *vcpu __unused, int dir, uint64_t addr,
1444     int bytes, uint64_t *val, void *arg1 __unused, long arg2 __unused)
1445 {
1446 	int bus, slot, func, coff, in;
1447 
1448 	coff = addr & 0xfff;
1449 	func = (addr >> 12) & 0x7;
1450 	slot = (addr >> 15) & 0x1f;
1451 	bus = (addr >> 20) & 0xff;
1452 	in = (dir == MEM_F_READ);
1453 	if (in)
1454 		*val = ~0UL;
1455 	pci_cfgrw(in, bus, slot, func, coff, bytes, (uint32_t *)val);
1456 	return (0);
1457 }
1458 
1459 uint64_t
1460 pci_ecfg_base(void)
1461 {
1462 
1463 	return (PCI_EMUL_ECFG_BASE);
1464 }
1465 
1466 static int
1467 init_bootorder(void)
1468 {
1469 	struct boot_device *device;
1470 	FILE *fp;
1471 	char *bootorder;
1472 	size_t bootorder_len;
1473 
1474 	if (TAILQ_EMPTY(&boot_devices))
1475 		return (0);
1476 
1477 	fp = open_memstream(&bootorder, &bootorder_len);
1478 	TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
1479 		fprintf(fp, "/pci@i0cf8/pci@%d,%d\n",
1480 		    device->pdi->pi_slot, device->pdi->pi_func);
1481 	}
1482 	fclose(fp);
1483 
1484 	return (qemu_fwcfg_add_file("bootorder", bootorder_len, bootorder));
1485 }
1486 
1487 #define	BUSIO_ROUNDUP		32
1488 #define	BUSMEM32_ROUNDUP	(1024 * 1024)
1489 #define	BUSMEM64_ROUNDUP	(512 * 1024 * 1024)
1490 
1491 int
1492 init_pci(struct vmctx *ctx)
1493 {
1494 	char node_name[sizeof("pci.XXX.XX.X")];
1495 	struct mem_range mr;
1496 	struct pci_devemu *pde;
1497 	struct businfo *bi;
1498 	struct slotinfo *si;
1499 	struct funcinfo *fi;
1500 	nvlist_t *nvl;
1501 	const char *emul;
1502 	size_t lowmem;
1503 	int bus, slot, func;
1504 	int error;
1505 
1506 	if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32)
1507 		errx(EX_OSERR, "Invalid lowmem limit");
1508 
1509 	pci_emul_iobase = PCI_EMUL_IOBASE;
1510 	pci_emul_membase32 = PCI_EMUL_MEMBASE32;
1511 
1512 	pci_emul_membase64 = 4*GB + vm_get_highmem_size(ctx);
1513 	pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64);
1514 	pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64;
1515 
1516 	TAILQ_INIT(&boot_devices);
1517 
1518 	for (bus = 0; bus < MAXBUSES; bus++) {
1519 		snprintf(node_name, sizeof(node_name), "pci.%d", bus);
1520 		nvl = find_config_node(node_name);
1521 		if (nvl == NULL)
1522 			continue;
1523 		pci_businfo[bus] = calloc(1, sizeof(struct businfo));
1524 		bi = pci_businfo[bus];
1525 
1526 		/*
1527 		 * Keep track of the i/o and memory resources allocated to
1528 		 * this bus.
1529 		 */
1530 		bi->iobase = pci_emul_iobase;
1531 		bi->membase32 = pci_emul_membase32;
1532 		bi->membase64 = pci_emul_membase64;
1533 
1534 		/* first run: init devices */
1535 		for (slot = 0; slot < MAXSLOTS; slot++) {
1536 			si = &bi->slotinfo[slot];
1537 			for (func = 0; func < MAXFUNCS; func++) {
1538 				fi = &si->si_funcs[func];
1539 				snprintf(node_name, sizeof(node_name),
1540 				    "pci.%d.%d.%d", bus, slot, func);
1541 				nvl = find_config_node(node_name);
1542 				if (nvl == NULL)
1543 					continue;
1544 
1545 				fi->fi_config = nvl;
1546 				emul = get_config_value_node(nvl, "device");
1547 				if (emul == NULL) {
1548 					EPRINTLN("pci slot %d:%d:%d: missing "
1549 					    "\"device\" value", bus, slot, func);
1550 					return (EINVAL);
1551 				}
1552 				pde = pci_emul_finddev(emul);
1553 				if (pde == NULL) {
1554 					EPRINTLN("pci slot %d:%d:%d: unknown "
1555 					    "device \"%s\"", bus, slot, func,
1556 					    emul);
1557 					return (EINVAL);
1558 				}
1559 				if (pde->pe_alias != NULL) {
1560 					EPRINTLN("pci slot %d:%d:%d: legacy "
1561 					    "device \"%s\", use \"%s\" instead",
1562 					    bus, slot, func, emul,
1563 					    pde->pe_alias);
1564 					return (EINVAL);
1565 				}
1566 				fi->fi_pde = pde;
1567 				error = pci_emul_init(ctx, pde, bus, slot,
1568 				    func, fi);
1569 				if (error)
1570 					return (error);
1571 			}
1572 		}
1573 
1574 		/* second run: assign BARs and free list */
1575 		struct pci_bar_allocation *bar;
1576 		struct pci_bar_allocation *bar_tmp;
1577 		TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) {
1578 			pci_emul_assign_bar(bar->pdi, bar->idx, bar->type,
1579 			    bar->size);
1580 			free(bar);
1581 		}
1582 		TAILQ_INIT(&pci_bars);
1583 
1584 		/*
1585 		 * Add some slop to the I/O and memory resources decoded by
1586 		 * this bus to give a guest some flexibility if it wants to
1587 		 * reprogram the BARs.
1588 		 */
1589 		pci_emul_iobase += BUSIO_ROUNDUP;
1590 		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1591 		bi->iolimit = pci_emul_iobase;
1592 
1593 		pci_emul_membase32 += BUSMEM32_ROUNDUP;
1594 		pci_emul_membase32 = roundup2(pci_emul_membase32,
1595 		    BUSMEM32_ROUNDUP);
1596 		bi->memlimit32 = pci_emul_membase32;
1597 
1598 		pci_emul_membase64 += BUSMEM64_ROUNDUP;
1599 		pci_emul_membase64 = roundup2(pci_emul_membase64,
1600 		    BUSMEM64_ROUNDUP);
1601 		bi->memlimit64 = pci_emul_membase64;
1602 	}
1603 
1604 #ifdef __amd64__
1605 	/*
1606 	 * PCI backends are initialized before routing INTx interrupts
1607 	 * so that LPC devices are able to reserve ISA IRQs before
1608 	 * routing PIRQ pins.
1609 	 */
1610 	for (bus = 0; bus < MAXBUSES; bus++) {
1611 		if ((bi = pci_businfo[bus]) == NULL)
1612 			continue;
1613 
1614 		for (slot = 0; slot < MAXSLOTS; slot++) {
1615 			si = &bi->slotinfo[slot];
1616 			for (func = 0; func < MAXFUNCS; func++) {
1617 				fi = &si->si_funcs[func];
1618 				if (fi->fi_devi == NULL)
1619 					continue;
1620 				pci_lintr_route(fi->fi_devi);
1621 			}
1622 		}
1623 	}
1624 	lpc_pirq_routed();
1625 #endif
1626 
1627 	if ((error = init_bootorder()) != 0) {
1628 		warnx("%s: Unable to init bootorder", __func__);
1629 		return (error);
1630 	}
1631 
1632 	/*
1633 	 * The guest physical memory map looks like the following:
1634 	 * [0,		    lowmem)		guest system memory
1635 	 * [lowmem,	    0xC0000000)		memory hole (may be absent)
1636 	 * [0xC0000000,     0xE0000000)		PCI hole (32-bit BAR allocation)
1637 	 * [0xE0000000,	    0xF0000000)		PCI extended config window
1638 	 * [0xF0000000,	    4GB)		LAPIC, IOAPIC, HPET, firmware
1639 	 * [4GB,	    4GB + highmem)
1640 	 */
1641 
1642 	/*
1643 	 * Accesses to memory addresses that are not allocated to system
1644 	 * memory or PCI devices return 0xff's.
1645 	 */
1646 	lowmem = vm_get_lowmem_size(ctx);
1647 	bzero(&mr, sizeof(struct mem_range));
1648 	mr.name = "PCI hole";
1649 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1650 	mr.base = lowmem;
1651 	mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1652 	mr.handler = pci_emul_fallback_handler;
1653 	error = register_mem_fallback(&mr);
1654 	assert(error == 0);
1655 
1656 	/* PCI extended config space */
1657 	bzero(&mr, sizeof(struct mem_range));
1658 	mr.name = "PCI ECFG";
1659 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1660 	mr.base = PCI_EMUL_ECFG_BASE;
1661 	mr.size = PCI_EMUL_ECFG_SIZE;
1662 	mr.handler = pci_emul_ecfg_handler;
1663 	error = register_mem(&mr);
1664 	assert(error == 0);
1665 
1666 	return (0);
1667 }
1668 
1669 #ifdef __amd64__
1670 static void
1671 pci_apic_prt_entry(int bus __unused, int slot, int pin, int pirq_pin __unused,
1672     int ioapic_irq, void *arg __unused)
1673 {
1674 
1675 	dsdt_line("  Package ()");
1676 	dsdt_line("  {");
1677 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1678 	dsdt_line("    0x%02X,", pin - 1);
1679 	dsdt_line("    Zero,");
1680 	dsdt_line("    0x%X", ioapic_irq);
1681 	dsdt_line("  },");
1682 }
1683 
1684 static void
1685 pci_pirq_prt_entry(int bus __unused, int slot, int pin, int pirq_pin,
1686     int ioapic_irq __unused, void *arg __unused)
1687 {
1688 	char *name;
1689 
1690 	name = lpc_pirq_name(pirq_pin);
1691 	if (name == NULL)
1692 		return;
1693 	dsdt_line("  Package ()");
1694 	dsdt_line("  {");
1695 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1696 	dsdt_line("    0x%02X,", pin - 1);
1697 	dsdt_line("    %s,", name);
1698 	dsdt_line("    0x00");
1699 	dsdt_line("  },");
1700 	free(name);
1701 }
1702 #endif
1703 
1704 /*
1705  * A bhyve virtual machine has a flat PCI hierarchy with a root port
1706  * corresponding to each PCI bus.
1707  */
1708 static void
1709 pci_bus_write_dsdt(int bus)
1710 {
1711 	struct businfo *bi;
1712 	struct slotinfo *si;
1713 	struct pci_devinst *pi;
1714 	int func, slot;
1715 
1716 	/*
1717 	 * If there are no devices on this 'bus' then just return.
1718 	 */
1719 	if ((bi = pci_businfo[bus]) == NULL) {
1720 		/*
1721 		 * Bus 0 is special because it decodes the I/O ports used
1722 		 * for PCI config space access even if there are no devices
1723 		 * on it.
1724 		 */
1725 		if (bus != 0)
1726 			return;
1727 	}
1728 
1729 	dsdt_line("  Device (PC%02X)", bus);
1730 	dsdt_line("  {");
1731 	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1732 
1733 	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1734 	dsdt_line("    {");
1735 	dsdt_line("        Return (0x%08X)", bus);
1736 	dsdt_line("    }");
1737 	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1738 	dsdt_line("    {");
1739 	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1740 	    "MaxFixed, PosDecode,");
1741 	dsdt_line("        0x0000,             // Granularity");
1742 	dsdt_line("        0x%04X,             // Range Minimum", bus);
1743 	dsdt_line("        0x%04X,             // Range Maximum", bus);
1744 	dsdt_line("        0x0000,             // Translation Offset");
1745 	dsdt_line("        0x0001,             // Length");
1746 	dsdt_line("        ,, )");
1747 
1748 	if (bus == 0) {
1749 		dsdt_indent(3);
1750 		dsdt_fixed_ioport(0xCF8, 8);
1751 		dsdt_unindent(3);
1752 
1753 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1754 		    "PosDecode, EntireRange,");
1755 		dsdt_line("        0x0000,             // Granularity");
1756 		dsdt_line("        0x0000,             // Range Minimum");
1757 		dsdt_line("        0x0CF7,             // Range Maximum");
1758 		dsdt_line("        0x0000,             // Translation Offset");
1759 		dsdt_line("        0x0CF8,             // Length");
1760 		dsdt_line("        ,, , TypeStatic)");
1761 
1762 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1763 		    "PosDecode, EntireRange,");
1764 		dsdt_line("        0x0000,             // Granularity");
1765 		dsdt_line("        0x0D00,             // Range Minimum");
1766 		dsdt_line("        0x%04X,             // Range Maximum",
1767 		    PCI_EMUL_IOBASE - 1);
1768 		dsdt_line("        0x0000,             // Translation Offset");
1769 		dsdt_line("        0x%04X,             // Length",
1770 		    PCI_EMUL_IOBASE - 0x0D00);
1771 		dsdt_line("        ,, , TypeStatic)");
1772 
1773 		if (bi == NULL) {
1774 			dsdt_line("    })");
1775 			goto done;
1776 		}
1777 	}
1778 	assert(bi != NULL);
1779 
1780 	/* i/o window */
1781 	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1782 	    "PosDecode, EntireRange,");
1783 	dsdt_line("        0x0000,             // Granularity");
1784 	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1785 	dsdt_line("        0x%04X,             // Range Maximum",
1786 	    bi->iolimit - 1);
1787 	dsdt_line("        0x0000,             // Translation Offset");
1788 	dsdt_line("        0x%04X,             // Length",
1789 	    bi->iolimit - bi->iobase);
1790 	dsdt_line("        ,, , TypeStatic)");
1791 
1792 	/* mmio window (32-bit) */
1793 	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1794 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1795 	dsdt_line("        0x00000000,         // Granularity");
1796 	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1797 	dsdt_line("        0x%08X,         // Range Maximum\n",
1798 	    bi->memlimit32 - 1);
1799 	dsdt_line("        0x00000000,         // Translation Offset");
1800 	dsdt_line("        0x%08X,         // Length\n",
1801 	    bi->memlimit32 - bi->membase32);
1802 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1803 
1804 	/* mmio window (64-bit) */
1805 	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1806 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1807 	dsdt_line("        0x0000000000000000, // Granularity");
1808 	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1809 	dsdt_line("        0x%016lX, // Range Maximum\n",
1810 	    bi->memlimit64 - 1);
1811 	dsdt_line("        0x0000000000000000, // Translation Offset");
1812 	dsdt_line("        0x%016lX, // Length\n",
1813 	    bi->memlimit64 - bi->membase64);
1814 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1815 	dsdt_line("    })");
1816 
1817 #ifdef __amd64__
1818 	if (pci_count_lintr(bus) != 0) {
1819 		dsdt_indent(2);
1820 		dsdt_line("Name (PPRT, Package ()");
1821 		dsdt_line("{");
1822 		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1823 		dsdt_line("})");
1824 		dsdt_line("Name (APRT, Package ()");
1825 		dsdt_line("{");
1826 		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1827 		dsdt_line("})");
1828 		dsdt_line("Method (_PRT, 0, NotSerialized)");
1829 		dsdt_line("{");
1830 		dsdt_line("  If (PICM)");
1831 		dsdt_line("  {");
1832 		dsdt_line("    Return (APRT)");
1833 		dsdt_line("  }");
1834 		dsdt_line("  Else");
1835 		dsdt_line("  {");
1836 		dsdt_line("    Return (PPRT)");
1837 		dsdt_line("  }");
1838 		dsdt_line("}");
1839 		dsdt_unindent(2);
1840 	}
1841 #endif
1842 
1843 	dsdt_indent(2);
1844 	for (slot = 0; slot < MAXSLOTS; slot++) {
1845 		si = &bi->slotinfo[slot];
1846 		for (func = 0; func < MAXFUNCS; func++) {
1847 			pi = si->si_funcs[func].fi_devi;
1848 			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1849 				pi->pi_d->pe_write_dsdt(pi);
1850 		}
1851 	}
1852 	dsdt_unindent(2);
1853 done:
1854 	dsdt_line("  }");
1855 }
1856 
1857 void
1858 pci_write_dsdt(void)
1859 {
1860 	int bus;
1861 
1862 	dsdt_indent(1);
1863 	dsdt_line("Name (PICM, 0x00)");
1864 	dsdt_line("Method (_PIC, 1, NotSerialized)");
1865 	dsdt_line("{");
1866 	dsdt_line("  Store (Arg0, PICM)");
1867 	dsdt_line("}");
1868 	dsdt_line("");
1869 	dsdt_line("Scope (_SB)");
1870 	dsdt_line("{");
1871 	for (bus = 0; bus < MAXBUSES; bus++)
1872 		pci_bus_write_dsdt(bus);
1873 	dsdt_line("}");
1874 	dsdt_unindent(1);
1875 }
1876 
1877 int
1878 pci_bus_configured(int bus)
1879 {
1880 	assert(bus >= 0 && bus < MAXBUSES);
1881 	return (pci_businfo[bus] != NULL);
1882 }
1883 
1884 int
1885 pci_msi_enabled(struct pci_devinst *pi)
1886 {
1887 	return (pi->pi_msi.enabled);
1888 }
1889 
1890 int
1891 pci_msi_maxmsgnum(struct pci_devinst *pi)
1892 {
1893 	if (pi->pi_msi.enabled)
1894 		return (pi->pi_msi.maxmsgnum);
1895 	else
1896 		return (0);
1897 }
1898 
1899 int
1900 pci_msix_enabled(struct pci_devinst *pi)
1901 {
1902 
1903 	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1904 }
1905 
1906 void
1907 pci_generate_msix(struct pci_devinst *pi, int index)
1908 {
1909 	struct msix_table_entry *mte;
1910 
1911 	if (!pci_msix_enabled(pi))
1912 		return;
1913 
1914 	if (pi->pi_msix.function_mask)
1915 		return;
1916 
1917 	if (index >= pi->pi_msix.table_count)
1918 		return;
1919 
1920 	mte = &pi->pi_msix.table[index];
1921 	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1922 		/* XXX Set PBA bit if interrupt is disabled */
1923 		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1924 	}
1925 }
1926 
1927 void
1928 pci_generate_msi(struct pci_devinst *pi, int index)
1929 {
1930 
1931 	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1932 		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1933 			     pi->pi_msi.msg_data + index);
1934 	}
1935 }
1936 
1937 #ifdef __amd64__
1938 static bool
1939 pci_lintr_permitted(struct pci_devinst *pi)
1940 {
1941 	uint16_t cmd;
1942 
1943 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1944 	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1945 		(cmd & PCIM_CMD_INTxDIS)));
1946 }
1947 
1948 void
1949 pci_lintr_request(struct pci_devinst *pi)
1950 {
1951 	struct businfo *bi;
1952 	struct slotinfo *si;
1953 	int bestpin, bestcount, pin;
1954 
1955 	bi = pci_businfo[pi->pi_bus];
1956 	assert(bi != NULL);
1957 
1958 	/*
1959 	 * Just allocate a pin from our slot.  The pin will be
1960 	 * assigned IRQs later when interrupts are routed.
1961 	 */
1962 	si = &bi->slotinfo[pi->pi_slot];
1963 	bestpin = 0;
1964 	bestcount = si->si_intpins[0].ii_count;
1965 	for (pin = 1; pin < 4; pin++) {
1966 		if (si->si_intpins[pin].ii_count < bestcount) {
1967 			bestpin = pin;
1968 			bestcount = si->si_intpins[pin].ii_count;
1969 		}
1970 	}
1971 
1972 	si->si_intpins[bestpin].ii_count++;
1973 	pi->pi_lintr.pin = bestpin + 1;
1974 	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1975 }
1976 
1977 static void
1978 pci_lintr_route(struct pci_devinst *pi)
1979 {
1980 	struct businfo *bi;
1981 	struct intxinfo *ii;
1982 
1983 	if (pi->pi_lintr.pin == 0)
1984 		return;
1985 
1986 	bi = pci_businfo[pi->pi_bus];
1987 	assert(bi != NULL);
1988 	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
1989 
1990 	/*
1991 	 * Attempt to allocate an I/O APIC pin for this intpin if one
1992 	 * is not yet assigned.
1993 	 */
1994 	if (ii->ii_ioapic_irq == 0)
1995 		ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi);
1996 	assert(ii->ii_ioapic_irq > 0);
1997 
1998 	/*
1999 	 * Attempt to allocate a PIRQ pin for this intpin if one is
2000 	 * not yet assigned.
2001 	 */
2002 	if (ii->ii_pirq_pin == 0)
2003 		ii->ii_pirq_pin = pirq_alloc_pin(pi);
2004 	assert(ii->ii_pirq_pin > 0);
2005 
2006 	pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
2007 	pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
2008 	pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
2009 }
2010 
2011 void
2012 pci_lintr_assert(struct pci_devinst *pi)
2013 {
2014 
2015 	assert(pi->pi_lintr.pin > 0);
2016 
2017 	pthread_mutex_lock(&pi->pi_lintr.lock);
2018 	if (pi->pi_lintr.state == IDLE) {
2019 		if (pci_lintr_permitted(pi)) {
2020 			pi->pi_lintr.state = ASSERTED;
2021 			pci_irq_assert(pi);
2022 		} else
2023 			pi->pi_lintr.state = PENDING;
2024 	}
2025 	pthread_mutex_unlock(&pi->pi_lintr.lock);
2026 }
2027 
2028 void
2029 pci_lintr_deassert(struct pci_devinst *pi)
2030 {
2031 
2032 	assert(pi->pi_lintr.pin > 0);
2033 
2034 	pthread_mutex_lock(&pi->pi_lintr.lock);
2035 	if (pi->pi_lintr.state == ASSERTED) {
2036 		pi->pi_lintr.state = IDLE;
2037 		pci_irq_deassert(pi);
2038 	} else if (pi->pi_lintr.state == PENDING)
2039 		pi->pi_lintr.state = IDLE;
2040 	pthread_mutex_unlock(&pi->pi_lintr.lock);
2041 }
2042 
2043 static void
2044 pci_lintr_update(struct pci_devinst *pi)
2045 {
2046 
2047 	pthread_mutex_lock(&pi->pi_lintr.lock);
2048 	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
2049 		pci_irq_deassert(pi);
2050 		pi->pi_lintr.state = PENDING;
2051 	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
2052 		pi->pi_lintr.state = ASSERTED;
2053 		pci_irq_assert(pi);
2054 	}
2055 	pthread_mutex_unlock(&pi->pi_lintr.lock);
2056 }
2057 
2058 int
2059 pci_count_lintr(int bus)
2060 {
2061 	int count, slot, pin;
2062 	struct slotinfo *slotinfo;
2063 
2064 	count = 0;
2065 	if (pci_businfo[bus] != NULL) {
2066 		for (slot = 0; slot < MAXSLOTS; slot++) {
2067 			slotinfo = &pci_businfo[bus]->slotinfo[slot];
2068 			for (pin = 0; pin < 4; pin++) {
2069 				if (slotinfo->si_intpins[pin].ii_count != 0)
2070 					count++;
2071 			}
2072 		}
2073 	}
2074 	return (count);
2075 }
2076 
2077 void
2078 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
2079 {
2080 	struct businfo *bi;
2081 	struct slotinfo *si;
2082 	struct intxinfo *ii;
2083 	int slot, pin;
2084 
2085 	if ((bi = pci_businfo[bus]) == NULL)
2086 		return;
2087 
2088 	for (slot = 0; slot < MAXSLOTS; slot++) {
2089 		si = &bi->slotinfo[slot];
2090 		for (pin = 0; pin < 4; pin++) {
2091 			ii = &si->si_intpins[pin];
2092 			if (ii->ii_count != 0)
2093 				cb(bus, slot, pin + 1, ii->ii_pirq_pin,
2094 				    ii->ii_ioapic_irq, arg);
2095 		}
2096 	}
2097 }
2098 #endif /* __amd64__ */
2099 
2100 /*
2101  * Return 1 if the emulated device in 'slot' is a multi-function device.
2102  * Return 0 otherwise.
2103  */
2104 static int
2105 pci_emul_is_mfdev(int bus, int slot)
2106 {
2107 	struct businfo *bi;
2108 	struct slotinfo *si;
2109 	int f, numfuncs;
2110 
2111 	numfuncs = 0;
2112 	if ((bi = pci_businfo[bus]) != NULL) {
2113 		si = &bi->slotinfo[slot];
2114 		for (f = 0; f < MAXFUNCS; f++) {
2115 			if (si->si_funcs[f].fi_devi != NULL) {
2116 				numfuncs++;
2117 			}
2118 		}
2119 	}
2120 	return (numfuncs > 1);
2121 }
2122 
2123 /*
2124  * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
2125  * whether or not is a multi-function being emulated in the pci 'slot'.
2126  */
2127 static void
2128 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
2129 {
2130 	int mfdev;
2131 
2132 	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
2133 		mfdev = pci_emul_is_mfdev(bus, slot);
2134 		switch (bytes) {
2135 		case 1:
2136 		case 2:
2137 			*rv &= ~PCIM_MFDEV;
2138 			if (mfdev) {
2139 				*rv |= PCIM_MFDEV;
2140 			}
2141 			break;
2142 		case 4:
2143 			*rv &= ~(PCIM_MFDEV << 16);
2144 			if (mfdev) {
2145 				*rv |= (PCIM_MFDEV << 16);
2146 			}
2147 			break;
2148 		}
2149 	}
2150 }
2151 
2152 /*
2153  * Update device state in response to changes to the PCI command
2154  * register.
2155  */
2156 void
2157 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
2158 {
2159 	int i;
2160 	uint16_t changed, new;
2161 
2162 	new = pci_get_cfgdata16(pi, PCIR_COMMAND);
2163 	changed = old ^ new;
2164 
2165 	/*
2166 	 * If the MMIO or I/O address space decoding has changed then
2167 	 * register/unregister all BARs that decode that address space.
2168 	 */
2169 	for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) {
2170 		switch (pi->pi_bar[i].type) {
2171 			case PCIBAR_NONE:
2172 			case PCIBAR_MEMHI64:
2173 				break;
2174 			case PCIBAR_IO:
2175 				/* I/O address space decoding changed? */
2176 				if (changed & PCIM_CMD_PORTEN) {
2177 					if (new & PCIM_CMD_PORTEN)
2178 						register_bar(pi, i);
2179 					else
2180 						unregister_bar(pi, i);
2181 				}
2182 				break;
2183 			case PCIBAR_ROM:
2184 				/* skip (un-)register of ROM if it disabled */
2185 				if (!romen(pi))
2186 					break;
2187 				/* fallthrough */
2188 			case PCIBAR_MEM32:
2189 			case PCIBAR_MEM64:
2190 				/* MMIO address space decoding changed? */
2191 				if (changed & PCIM_CMD_MEMEN) {
2192 					if (new & PCIM_CMD_MEMEN)
2193 						register_bar(pi, i);
2194 					else
2195 						unregister_bar(pi, i);
2196 				}
2197 				break;
2198 			default:
2199 				assert(0);
2200 		}
2201 	}
2202 
2203 #ifdef __amd64__
2204 	/*
2205 	 * If INTx has been unmasked and is pending, assert the
2206 	 * interrupt.
2207 	 */
2208 	pci_lintr_update(pi);
2209 #endif
2210 }
2211 
2212 static void
2213 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
2214 {
2215 	int rshift;
2216 	uint32_t cmd, old, readonly;
2217 
2218 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
2219 
2220 	/*
2221 	 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
2222 	 *
2223 	 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
2224 	 * 'write 1 to clear'. However these bits are not set to '1' by
2225 	 * any device emulation so it is simpler to treat them as readonly.
2226 	 */
2227 	rshift = (coff & 0x3) * 8;
2228 	readonly = 0xFFFFF880 >> rshift;
2229 
2230 	old = CFGREAD(pi, coff, bytes);
2231 	new &= ~readonly;
2232 	new |= (old & readonly);
2233 	CFGWRITE(pi, coff, new, bytes);			/* update config */
2234 
2235 	pci_emul_cmd_changed(pi, cmd);
2236 }
2237 
2238 static void
2239 pci_cfgrw(int in, int bus, int slot, int func, int coff, int bytes,
2240     uint32_t *valp)
2241 {
2242 	struct businfo *bi;
2243 	struct slotinfo *si;
2244 	struct pci_devinst *pi;
2245 	struct pci_devemu *pe;
2246 	int idx, needcfg;
2247 	uint64_t addr, bar, mask;
2248 
2249 	if ((bi = pci_businfo[bus]) != NULL) {
2250 		si = &bi->slotinfo[slot];
2251 		pi = si->si_funcs[func].fi_devi;
2252 	} else
2253 		pi = NULL;
2254 
2255 	/*
2256 	 * Just return if there is no device at this slot:func or if the
2257 	 * the guest is doing an un-aligned access.
2258 	 */
2259 	if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
2260 	    (coff & (bytes - 1)) != 0) {
2261 		if (in)
2262 			*valp = 0xffffffff;
2263 		return;
2264 	}
2265 
2266 	/*
2267 	 * Ignore all writes beyond the standard config space and return all
2268 	 * ones on reads.
2269 	 */
2270 	if (coff >= PCI_REGMAX + 1) {
2271 		if (in) {
2272 			*valp = 0xffffffff;
2273 			/*
2274 			 * Extended capabilities begin at offset 256 in config
2275 			 * space. Absence of extended capabilities is signaled
2276 			 * with all 0s in the extended capability header at
2277 			 * offset 256.
2278 			 */
2279 			if (coff <= PCI_REGMAX + 4)
2280 				*valp = 0x00000000;
2281 		}
2282 		return;
2283 	}
2284 
2285 	pe = pi->pi_d;
2286 
2287 	/*
2288 	 * Config read
2289 	 */
2290 	if (in) {
2291 		/* Let the device emulation override the default handler */
2292 		if (pe->pe_cfgread != NULL) {
2293 			needcfg = pe->pe_cfgread(pi, coff, bytes, valp);
2294 		} else {
2295 			needcfg = 1;
2296 		}
2297 
2298 		if (needcfg)
2299 			*valp = CFGREAD(pi, coff, bytes);
2300 
2301 		pci_emul_hdrtype_fixup(bus, slot, coff, bytes, valp);
2302 	} else {
2303 		/* Let the device emulation override the default handler */
2304 		if (pe->pe_cfgwrite != NULL &&
2305 		    (*pe->pe_cfgwrite)(pi, coff, bytes, *valp) == 0)
2306 			return;
2307 
2308 		/*
2309 		 * Special handling for write to BAR and ROM registers
2310 		 */
2311 		if (is_pcir_bar(coff) || is_pcir_bios(coff)) {
2312 			/*
2313 			 * Ignore writes to BAR registers that are not
2314 			 * 4-byte aligned.
2315 			 */
2316 			if (bytes != 4 || (coff & 0x3) != 0)
2317 				return;
2318 
2319 			if (is_pcir_bar(coff)) {
2320 				idx = (coff - PCIR_BAR(0)) / 4;
2321 			} else if (is_pcir_bios(coff)) {
2322 				idx = PCI_ROM_IDX;
2323 			} else {
2324 				errx(4, "%s: invalid BAR offset %d", __func__,
2325 				    coff);
2326 			}
2327 
2328 			mask = ~(pi->pi_bar[idx].size - 1);
2329 			switch (pi->pi_bar[idx].type) {
2330 			case PCIBAR_NONE:
2331 				pi->pi_bar[idx].addr = bar = 0;
2332 				break;
2333 			case PCIBAR_IO:
2334 				addr = *valp & mask;
2335 				addr &= 0xffff;
2336 				bar = addr | pi->pi_bar[idx].lobits;
2337 				/*
2338 				 * Register the new BAR value for interception
2339 				 */
2340 				if (addr != pi->pi_bar[idx].addr) {
2341 					update_bar_address(pi, addr, idx,
2342 							   PCIBAR_IO);
2343 				}
2344 				break;
2345 			case PCIBAR_MEM32:
2346 				addr = bar = *valp & mask;
2347 				bar |= pi->pi_bar[idx].lobits;
2348 				if (addr != pi->pi_bar[idx].addr) {
2349 					update_bar_address(pi, addr, idx,
2350 							   PCIBAR_MEM32);
2351 				}
2352 				break;
2353 			case PCIBAR_MEM64:
2354 				addr = bar = *valp & mask;
2355 				bar |= pi->pi_bar[idx].lobits;
2356 				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
2357 					update_bar_address(pi, addr, idx,
2358 							   PCIBAR_MEM64);
2359 				}
2360 				break;
2361 			case PCIBAR_MEMHI64:
2362 				mask = ~(pi->pi_bar[idx - 1].size - 1);
2363 				addr = ((uint64_t)*valp << 32) & mask;
2364 				bar = addr >> 32;
2365 				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
2366 					update_bar_address(pi, addr, idx - 1,
2367 							   PCIBAR_MEMHI64);
2368 				}
2369 				break;
2370 			case PCIBAR_ROM:
2371 				addr = bar = *valp & mask;
2372 				if (memen(pi) && romen(pi)) {
2373 					unregister_bar(pi, idx);
2374 				}
2375 				pi->pi_bar[idx].addr = addr;
2376 				pi->pi_bar[idx].lobits = *valp &
2377 				    PCIM_BIOS_ENABLE;
2378 				/* romen could have changed it value */
2379 				if (memen(pi) && romen(pi)) {
2380 					register_bar(pi, idx);
2381 				}
2382 				bar |= pi->pi_bar[idx].lobits;
2383 				break;
2384 			default:
2385 				assert(0);
2386 			}
2387 			pci_set_cfgdata32(pi, coff, bar);
2388 
2389 		} else if (pci_emul_iscap(pi, coff)) {
2390 			pci_emul_capwrite(pi, coff, bytes, *valp, 0, 0);
2391 		} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
2392 			pci_emul_cmdsts_write(pi, coff, *valp, bytes);
2393 		} else {
2394 			CFGWRITE(pi, coff, *valp, bytes);
2395 		}
2396 	}
2397 }
2398 
2399 #ifdef __amd64__
2400 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
2401 
2402 static int
2403 pci_emul_cfgaddr(struct vmctx *ctx __unused, int in,
2404     int port __unused, int bytes, uint32_t *eax, void *arg __unused)
2405 {
2406 	uint32_t x;
2407 
2408 	if (bytes != 4) {
2409 		if (in)
2410 			*eax = (bytes == 2) ? 0xffff : 0xff;
2411 		return (0);
2412 	}
2413 
2414 	if (in) {
2415 		x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
2416 		if (cfgenable)
2417 			x |= CONF1_ENABLE;
2418 		*eax = x;
2419 	} else {
2420 		x = *eax;
2421 		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
2422 		cfgoff = (x & PCI_REGMAX) & ~0x03;
2423 		cfgfunc = (x >> 8) & PCI_FUNCMAX;
2424 		cfgslot = (x >> 11) & PCI_SLOTMAX;
2425 		cfgbus = (x >> 16) & PCI_BUSMAX;
2426 	}
2427 
2428 	return (0);
2429 }
2430 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
2431 
2432 static int
2433 pci_emul_cfgdata(struct vmctx *ctx __unused, int in, int port,
2434     int bytes, uint32_t *eax, void *arg __unused)
2435 {
2436 	int coff;
2437 
2438 	assert(bytes == 1 || bytes == 2 || bytes == 4);
2439 
2440 	coff = cfgoff + (port - CONF1_DATA_PORT);
2441 	if (cfgenable) {
2442 		pci_cfgrw(in, cfgbus, cfgslot, cfgfunc, coff, bytes, eax);
2443 	} else {
2444 		/* Ignore accesses to cfgdata if not enabled by cfgaddr */
2445 		if (in)
2446 			*eax = 0xffffffff;
2447 	}
2448 	return (0);
2449 }
2450 
2451 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
2452 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
2453 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
2454 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
2455 #endif
2456 
2457 #ifdef BHYVE_SNAPSHOT
2458 /*
2459  * Saves/restores PCI device emulated state. Returns 0 on success.
2460  */
2461 static int
2462 pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
2463 {
2464 	struct pci_devinst *pi;
2465 	int i;
2466 	int ret;
2467 
2468 	pi = meta->dev_data;
2469 
2470 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
2471 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
2472 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
2473 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
2474 
2475 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
2476 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
2477 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
2478 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
2479 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
2480 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
2481 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
2482 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
2483 
2484 	SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
2485 			      meta, ret, done);
2486 
2487 	for (i = 0; i < (int)nitems(pi->pi_bar); i++) {
2488 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
2489 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
2490 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
2491 	}
2492 
2493 	/* Restore MSI-X table. */
2494 	for (i = 0; i < pi->pi_msix.table_count; i++) {
2495 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
2496 				      meta, ret, done);
2497 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
2498 				      meta, ret, done);
2499 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
2500 				      meta, ret, done);
2501 	}
2502 
2503 done:
2504 	return (ret);
2505 }
2506 
2507 int
2508 pci_snapshot(struct vm_snapshot_meta *meta)
2509 {
2510 	struct pci_devemu *pde;
2511 	struct pci_devinst *pdi;
2512 	int ret;
2513 
2514 	assert(meta->dev_name != NULL);
2515 
2516 	pdi = meta->dev_data;
2517 	pde = pdi->pi_d;
2518 
2519 	if (pde->pe_snapshot == NULL)
2520 		return (ENOTSUP);
2521 
2522 	ret = pci_snapshot_pci_dev(meta);
2523 	if (ret == 0)
2524 		ret = (*pde->pe_snapshot)(meta);
2525 
2526 	return (ret);
2527 }
2528 
2529 int
2530 pci_pause(struct pci_devinst *pdi)
2531 {
2532 	struct pci_devemu *pde = pdi->pi_d;
2533 
2534 	if (pde->pe_pause == NULL) {
2535 		/* The pause/resume functionality is optional. */
2536 		return (0);
2537 	}
2538 
2539 	return (*pde->pe_pause)(pdi);
2540 }
2541 
2542 int
2543 pci_resume(struct pci_devinst *pdi)
2544 {
2545 	struct pci_devemu *pde = pdi->pi_d;
2546 
2547 	if (pde->pe_resume == NULL) {
2548 		/* The pause/resume functionality is optional. */
2549 		return (0);
2550 	}
2551 
2552 	return (*pde->pe_resume)(pdi);
2553 }
2554 #endif
2555 
2556 #define PCI_EMUL_TEST
2557 #ifdef PCI_EMUL_TEST
2558 /*
2559  * Define a dummy test device
2560  */
2561 #define DIOSZ	8
2562 #define DMEMSZ	4096
2563 struct pci_emul_dsoftc {
2564 	uint8_t   ioregs[DIOSZ];
2565 	uint8_t	  memregs[2][DMEMSZ];
2566 };
2567 
2568 #define	PCI_EMUL_MSI_MSGS	 4
2569 #define	PCI_EMUL_MSIX_MSGS	16
2570 
2571 static int
2572 pci_emul_dinit(struct pci_devinst *pi, nvlist_t *nvl __unused)
2573 {
2574 	int error;
2575 	struct pci_emul_dsoftc *sc;
2576 
2577 	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
2578 
2579 	pi->pi_arg = sc;
2580 
2581 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
2582 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
2583 	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
2584 
2585 	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
2586 	assert(error == 0);
2587 
2588 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
2589 	assert(error == 0);
2590 
2591 	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
2592 	assert(error == 0);
2593 
2594 	error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
2595 	assert(error == 0);
2596 
2597 	return (0);
2598 }
2599 
2600 static void
2601 pci_emul_diow(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2602     uint64_t value)
2603 {
2604 	int i;
2605 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2606 
2607 	if (baridx == 0) {
2608 		if (offset + size > DIOSZ) {
2609 			printf("diow: iow too large, offset %ld size %d\n",
2610 			       offset, size);
2611 			return;
2612 		}
2613 
2614 		if (size == 1) {
2615 			sc->ioregs[offset] = value & 0xff;
2616 		} else if (size == 2) {
2617 			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
2618 		} else if (size == 4) {
2619 			*(uint32_t *)&sc->ioregs[offset] = value;
2620 		} else {
2621 			printf("diow: iow unknown size %d\n", size);
2622 		}
2623 
2624 		/*
2625 		 * Special magic value to generate an interrupt
2626 		 */
2627 		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
2628 			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
2629 
2630 		if (value == 0xabcdef) {
2631 			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
2632 				pci_generate_msi(pi, i);
2633 		}
2634 	}
2635 
2636 	if (baridx == 1 || baridx == 2) {
2637 		if (offset + size > DMEMSZ) {
2638 			printf("diow: memw too large, offset %ld size %d\n",
2639 			       offset, size);
2640 			return;
2641 		}
2642 
2643 		i = baridx - 1;		/* 'memregs' index */
2644 
2645 		if (size == 1) {
2646 			sc->memregs[i][offset] = value;
2647 		} else if (size == 2) {
2648 			*(uint16_t *)&sc->memregs[i][offset] = value;
2649 		} else if (size == 4) {
2650 			*(uint32_t *)&sc->memregs[i][offset] = value;
2651 		} else if (size == 8) {
2652 			*(uint64_t *)&sc->memregs[i][offset] = value;
2653 		} else {
2654 			printf("diow: memw unknown size %d\n", size);
2655 		}
2656 
2657 		/*
2658 		 * magic interrupt ??
2659 		 */
2660 	}
2661 
2662 	if (baridx > 2 || baridx < 0) {
2663 		printf("diow: unknown bar idx %d\n", baridx);
2664 	}
2665 }
2666 
2667 static uint64_t
2668 pci_emul_dior(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2669 {
2670 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2671 	uint32_t value;
2672 	int i;
2673 
2674 	if (baridx == 0) {
2675 		if (offset + size > DIOSZ) {
2676 			printf("dior: ior too large, offset %ld size %d\n",
2677 			       offset, size);
2678 			return (0);
2679 		}
2680 
2681 		value = 0;
2682 		if (size == 1) {
2683 			value = sc->ioregs[offset];
2684 		} else if (size == 2) {
2685 			value = *(uint16_t *) &sc->ioregs[offset];
2686 		} else if (size == 4) {
2687 			value = *(uint32_t *) &sc->ioregs[offset];
2688 		} else {
2689 			printf("dior: ior unknown size %d\n", size);
2690 		}
2691 	}
2692 
2693 	if (baridx == 1 || baridx == 2) {
2694 		if (offset + size > DMEMSZ) {
2695 			printf("dior: memr too large, offset %ld size %d\n",
2696 			       offset, size);
2697 			return (0);
2698 		}
2699 
2700 		i = baridx - 1;		/* 'memregs' index */
2701 
2702 		if (size == 1) {
2703 			value = sc->memregs[i][offset];
2704 		} else if (size == 2) {
2705 			value = *(uint16_t *) &sc->memregs[i][offset];
2706 		} else if (size == 4) {
2707 			value = *(uint32_t *) &sc->memregs[i][offset];
2708 		} else if (size == 8) {
2709 			value = *(uint64_t *) &sc->memregs[i][offset];
2710 		} else {
2711 			printf("dior: ior unknown size %d\n", size);
2712 		}
2713 	}
2714 
2715 
2716 	if (baridx > 2 || baridx < 0) {
2717 		printf("dior: unknown bar idx %d\n", baridx);
2718 		return (0);
2719 	}
2720 
2721 	return (value);
2722 }
2723 
2724 #ifdef BHYVE_SNAPSHOT
2725 struct pci_devinst *
2726 pci_next(const struct pci_devinst *cursor)
2727 {
2728 	unsigned bus = 0, slot = 0, func = 0;
2729 	struct businfo *bi;
2730 	struct slotinfo *si;
2731 	struct funcinfo *fi;
2732 
2733 	bus = cursor ? cursor->pi_bus : 0;
2734 	slot = cursor ? cursor->pi_slot : 0;
2735 	func = cursor ? (cursor->pi_func + 1) : 0;
2736 
2737 	for (; bus < MAXBUSES; bus++) {
2738 		if ((bi = pci_businfo[bus]) == NULL)
2739 			continue;
2740 
2741 		if (slot >= MAXSLOTS)
2742 			slot = 0;
2743 
2744 		for (; slot < MAXSLOTS; slot++) {
2745 			si = &bi->slotinfo[slot];
2746 			if (func >= MAXFUNCS)
2747 				func = 0;
2748 			for (; func < MAXFUNCS; func++) {
2749 				fi = &si->si_funcs[func];
2750 				if (fi->fi_devi == NULL)
2751 					continue;
2752 
2753 				return (fi->fi_devi);
2754 			}
2755 		}
2756 	}
2757 
2758 	return (NULL);
2759 }
2760 
2761 static int
2762 pci_emul_snapshot(struct vm_snapshot_meta *meta __unused)
2763 {
2764 	return (0);
2765 }
2766 #endif
2767 
2768 static const struct pci_devemu pci_dummy = {
2769 	.pe_emu = "dummy",
2770 	.pe_init = pci_emul_dinit,
2771 	.pe_barwrite = pci_emul_diow,
2772 	.pe_barread = pci_emul_dior,
2773 #ifdef BHYVE_SNAPSHOT
2774 	.pe_snapshot = pci_emul_snapshot,
2775 #endif
2776 };
2777 PCI_EMUL_SET(pci_dummy);
2778 
2779 #endif /* PCI_EMUL_TEST */
2780