xref: /freebsd/usr.sbin/bhyve/pci_nvme.c (revision 05a21658)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2017 Shunsuke Mie
5  * Copyright (c) 2018 Leon Dang
6  * Copyright (c) 2020 Chuck Tuffli
7  *
8  * Function crc16 Copyright (c) 2017, Fedor Uporov
9  *     Obtained from function ext2_crc16() in sys/fs/ext2fs/ext2_csum.c
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * bhyve PCIe-NVMe device emulation.
35  *
36  * options:
37  *  -s <n>,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z,eui64=#,dsm=<opt>
38  *
39  *  accepted devpath:
40  *    /dev/blockdev
41  *    /path/to/image
42  *    ram=size_in_MiB
43  *
44  *  maxq    = max number of queues
45  *  qsz     = max elements in each queue
46  *  ioslots = max number of concurrent io requests
47  *  sectsz  = sector size (defaults to blockif sector size)
48  *  ser     = serial number (20-chars max)
49  *  eui64   = IEEE Extended Unique Identifier (8 byte value)
50  *  dsm     = DataSet Management support. Option is one of auto, enable,disable
51  *
52  */
53 
54 /* TODO:
55     - create async event for smart and log
56     - intr coalesce
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include <sys/errno.h>
63 #include <sys/types.h>
64 #include <net/ieee_oui.h>
65 
66 #include <assert.h>
67 #include <pthread.h>
68 #include <pthread_np.h>
69 #include <semaphore.h>
70 #include <stdbool.h>
71 #include <stddef.h>
72 #include <stdint.h>
73 #include <stdio.h>
74 #include <stdlib.h>
75 #include <string.h>
76 
77 #include <machine/atomic.h>
78 #include <machine/vmm.h>
79 #include <vmmapi.h>
80 
81 #include <dev/nvme/nvme.h>
82 
83 #include "bhyverun.h"
84 #include "block_if.h"
85 #include "config.h"
86 #include "debug.h"
87 #include "pci_emul.h"
88 
89 
90 static int nvme_debug = 0;
91 #define	DPRINTF(fmt, args...) if (nvme_debug) PRINTLN(fmt, ##args)
92 #define	WPRINTF(fmt, args...) PRINTLN(fmt, ##args)
93 
94 /* defaults; can be overridden */
95 #define	NVME_MSIX_BAR		4
96 
97 #define	NVME_IOSLOTS		8
98 
99 /* The NVMe spec defines bits 13:4 in BAR0 as reserved */
100 #define NVME_MMIO_SPACE_MIN	(1 << 14)
101 
102 #define	NVME_QUEUES		16
103 #define	NVME_MAX_QENTRIES	2048
104 /* Memory Page size Minimum reported in CAP register */
105 #define	NVME_MPSMIN		0
106 /* MPSMIN converted to bytes */
107 #define	NVME_MPSMIN_BYTES	(1 << (12 + NVME_MPSMIN))
108 
109 #define	NVME_PRP2_ITEMS		(PAGE_SIZE/sizeof(uint64_t))
110 #define	NVME_MDTS		9
111 /* Note the + 1 allows for the initial descriptor to not be page aligned */
112 #define	NVME_MAX_IOVEC		((1 << NVME_MDTS) + 1)
113 #define	NVME_MAX_DATA_SIZE	((1 << NVME_MDTS) * NVME_MPSMIN_BYTES)
114 
115 /* This is a synthetic status code to indicate there is no status */
116 #define NVME_NO_STATUS		0xffff
117 #define NVME_COMPLETION_VALID(c)	((c).status != NVME_NO_STATUS)
118 
119 /* Reported temperature in Kelvin (i.e. room temperature) */
120 #define NVME_TEMPERATURE 296
121 
122 /* helpers */
123 
124 /* Convert a zero-based value into a one-based value */
125 #define ONE_BASED(zero)		((zero) + 1)
126 /* Convert a one-based value into a zero-based value */
127 #define ZERO_BASED(one)		((one)  - 1)
128 
129 /* Encode number of SQ's and CQ's for Set/Get Features */
130 #define NVME_FEATURE_NUM_QUEUES(sc) \
131 	(ZERO_BASED((sc)->num_squeues) & 0xffff) | \
132 	(ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16;
133 
134 #define	NVME_DOORBELL_OFFSET	offsetof(struct nvme_registers, doorbell)
135 
136 enum nvme_controller_register_offsets {
137 	NVME_CR_CAP_LOW = 0x00,
138 	NVME_CR_CAP_HI  = 0x04,
139 	NVME_CR_VS      = 0x08,
140 	NVME_CR_INTMS   = 0x0c,
141 	NVME_CR_INTMC   = 0x10,
142 	NVME_CR_CC      = 0x14,
143 	NVME_CR_CSTS    = 0x1c,
144 	NVME_CR_NSSR    = 0x20,
145 	NVME_CR_AQA     = 0x24,
146 	NVME_CR_ASQ_LOW = 0x28,
147 	NVME_CR_ASQ_HI  = 0x2c,
148 	NVME_CR_ACQ_LOW = 0x30,
149 	NVME_CR_ACQ_HI  = 0x34,
150 };
151 
152 enum nvme_cmd_cdw11 {
153 	NVME_CMD_CDW11_PC  = 0x0001,
154 	NVME_CMD_CDW11_IEN = 0x0002,
155 	NVME_CMD_CDW11_IV  = 0xFFFF0000,
156 };
157 
158 enum nvme_copy_dir {
159 	NVME_COPY_TO_PRP,
160 	NVME_COPY_FROM_PRP,
161 };
162 
163 #define	NVME_CQ_INTEN	0x01
164 #define	NVME_CQ_INTCOAL	0x02
165 
166 struct nvme_completion_queue {
167 	struct nvme_completion *qbase;
168 	pthread_mutex_t	mtx;
169 	uint32_t	size;
170 	uint16_t	tail; /* nvme progress */
171 	uint16_t	head; /* guest progress */
172 	uint16_t	intr_vec;
173 	uint32_t	intr_en;
174 };
175 
176 struct nvme_submission_queue {
177 	struct nvme_command *qbase;
178 	pthread_mutex_t	mtx;
179 	uint32_t	size;
180 	uint16_t	head; /* nvme progress */
181 	uint16_t	tail; /* guest progress */
182 	uint16_t	cqid; /* completion queue id */
183 	int		qpriority;
184 };
185 
186 enum nvme_storage_type {
187 	NVME_STOR_BLOCKIF = 0,
188 	NVME_STOR_RAM = 1,
189 };
190 
191 struct pci_nvme_blockstore {
192 	enum nvme_storage_type type;
193 	void		*ctx;
194 	uint64_t	size;
195 	uint32_t	sectsz;
196 	uint32_t	sectsz_bits;
197 	uint64_t	eui64;
198 	uint32_t	deallocate:1;
199 };
200 
201 /*
202  * Calculate the number of additional page descriptors for guest IO requests
203  * based on the advertised Max Data Transfer (MDTS) and given the number of
204  * default iovec's in a struct blockif_req.
205  */
206 #define MDTS_PAD_SIZE \
207 	( NVME_MAX_IOVEC > BLOCKIF_IOV_MAX ? \
208 	  NVME_MAX_IOVEC - BLOCKIF_IOV_MAX : \
209 	  0 )
210 
211 struct pci_nvme_ioreq {
212 	struct pci_nvme_softc *sc;
213 	STAILQ_ENTRY(pci_nvme_ioreq) link;
214 	struct nvme_submission_queue *nvme_sq;
215 	uint16_t	sqid;
216 
217 	/* command information */
218 	uint16_t	opc;
219 	uint16_t	cid;
220 	uint32_t	nsid;
221 
222 	uint64_t	prev_gpaddr;
223 	size_t		prev_size;
224 	size_t		bytes;
225 
226 	struct blockif_req io_req;
227 
228 	struct iovec	iovpadding[MDTS_PAD_SIZE];
229 };
230 
231 enum nvme_dsm_type {
232 	/* Dataset Management bit in ONCS reflects backing storage capability */
233 	NVME_DATASET_MANAGEMENT_AUTO,
234 	/* Unconditionally set Dataset Management bit in ONCS */
235 	NVME_DATASET_MANAGEMENT_ENABLE,
236 	/* Unconditionally clear Dataset Management bit in ONCS */
237 	NVME_DATASET_MANAGEMENT_DISABLE,
238 };
239 
240 struct pci_nvme_softc;
241 struct nvme_feature_obj;
242 
243 typedef void (*nvme_feature_cb)(struct pci_nvme_softc *,
244     struct nvme_feature_obj *,
245     struct nvme_command *,
246     struct nvme_completion *);
247 
248 struct nvme_feature_obj {
249 	uint32_t	cdw11;
250 	nvme_feature_cb	set;
251 	nvme_feature_cb	get;
252 	bool namespace_specific;
253 };
254 
255 #define NVME_FID_MAX		(NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION + 1)
256 
257 typedef enum {
258 	PCI_NVME_AE_TYPE_ERROR = 0,
259 	PCI_NVME_AE_TYPE_SMART,
260 	PCI_NVME_AE_TYPE_NOTICE,
261 	PCI_NVME_AE_TYPE_IO_CMD = 6,
262 	PCI_NVME_AE_TYPE_VENDOR = 7,
263 	PCI_NVME_AE_TYPE_MAX		/* Must be last */
264 } pci_nvme_async_type;
265 
266 /* Asynchronous Event Requests */
267 struct pci_nvme_aer {
268 	STAILQ_ENTRY(pci_nvme_aer) link;
269 	uint16_t	cid;	/* Command ID of the submitted AER */
270 };
271 
272 /** Asynchronous Event Information - Notice */
273 typedef enum {
274 	PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED = 0,
275 	PCI_NVME_AEI_NOTICE_FW_ACTIVATION,
276 	PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE,
277 	PCI_NVME_AEI_NOTICE_ANA_CHANGE,
278 	PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE,
279 	PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT,
280 	PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE,
281 	PCI_NVME_AEI_NOTICE_MAX,
282 } pci_nvme_async_event_info_notice;
283 
284 #define PCI_NVME_AEI_NOTICE_SHIFT		8
285 #define PCI_NVME_AEI_NOTICE_MASK(event)	(1 << (event + PCI_NVME_AEI_NOTICE_SHIFT))
286 
287 /* Asynchronous Event Notifications */
288 struct pci_nvme_aen {
289 	pci_nvme_async_type atype;
290 	uint32_t	event_data;
291 	bool		posted;
292 };
293 
294 /*
295  * By default, enable all Asynchrnous Event Notifications:
296  *     SMART / Health Critical Warnings
297  *     Namespace Attribute Notices
298  */
299 #define PCI_NVME_AEN_DEFAULT_MASK	0x11f
300 
301 typedef enum {
302 	NVME_CNTRLTYPE_IO = 1,
303 	NVME_CNTRLTYPE_DISCOVERY = 2,
304 	NVME_CNTRLTYPE_ADMIN = 3,
305 } pci_nvme_cntrl_type;
306 
307 struct pci_nvme_softc {
308 	struct pci_devinst *nsc_pi;
309 
310 	pthread_mutex_t	mtx;
311 
312 	struct nvme_registers regs;
313 
314 	struct nvme_namespace_data  nsdata;
315 	struct nvme_controller_data ctrldata;
316 	struct nvme_error_information_entry err_log;
317 	struct nvme_health_information_page health_log;
318 	struct nvme_firmware_page fw_log;
319 	struct nvme_ns_list ns_log;
320 
321 	struct pci_nvme_blockstore nvstore;
322 
323 	uint16_t	max_qentries;	/* max entries per queue */
324 	uint32_t	max_queues;	/* max number of IO SQ's or CQ's */
325 	uint32_t	num_cqueues;
326 	uint32_t	num_squeues;
327 	bool		num_q_is_set; /* Has host set Number of Queues */
328 
329 	struct pci_nvme_ioreq *ioreqs;
330 	STAILQ_HEAD(, pci_nvme_ioreq) ioreqs_free; /* free list of ioreqs */
331 	uint32_t	pending_ios;
332 	uint32_t	ioslots;
333 	sem_t		iosemlock;
334 
335 	/*
336 	 * Memory mapped Submission and Completion queues
337 	 * Each array includes both Admin and IO queues
338 	 */
339 	struct nvme_completion_queue *compl_queues;
340 	struct nvme_submission_queue *submit_queues;
341 
342 	struct nvme_feature_obj feat[NVME_FID_MAX];
343 
344 	enum nvme_dsm_type dataset_management;
345 
346 	/* Accounting for SMART data */
347 	__uint128_t	read_data_units;
348 	__uint128_t	write_data_units;
349 	__uint128_t	read_commands;
350 	__uint128_t	write_commands;
351 	uint32_t	read_dunits_remainder;
352 	uint32_t	write_dunits_remainder;
353 
354 	STAILQ_HEAD(, pci_nvme_aer) aer_list;
355 	pthread_mutex_t	aer_mtx;
356 	uint32_t	aer_count;
357 	struct pci_nvme_aen aen[PCI_NVME_AE_TYPE_MAX];
358 	pthread_t	aen_tid;
359 	pthread_mutex_t	aen_mtx;
360 	pthread_cond_t	aen_cond;
361 };
362 
363 
364 static void pci_nvme_cq_update(struct pci_nvme_softc *sc,
365     struct nvme_completion_queue *cq,
366     uint32_t cdw0,
367     uint16_t cid,
368     uint16_t sqid,
369     uint16_t status);
370 static struct pci_nvme_ioreq *pci_nvme_get_ioreq(struct pci_nvme_softc *);
371 static void pci_nvme_release_ioreq(struct pci_nvme_softc *, struct pci_nvme_ioreq *);
372 static void pci_nvme_io_done(struct blockif_req *, int);
373 
374 /* Controller Configuration utils */
375 #define	NVME_CC_GET_EN(cc) \
376 	((cc) >> NVME_CC_REG_EN_SHIFT & NVME_CC_REG_EN_MASK)
377 #define	NVME_CC_GET_CSS(cc) \
378 	((cc) >> NVME_CC_REG_CSS_SHIFT & NVME_CC_REG_CSS_MASK)
379 #define	NVME_CC_GET_SHN(cc) \
380 	((cc) >> NVME_CC_REG_SHN_SHIFT & NVME_CC_REG_SHN_MASK)
381 #define	NVME_CC_GET_IOSQES(cc) \
382 	((cc) >> NVME_CC_REG_IOSQES_SHIFT & NVME_CC_REG_IOSQES_MASK)
383 #define	NVME_CC_GET_IOCQES(cc) \
384 	((cc) >> NVME_CC_REG_IOCQES_SHIFT & NVME_CC_REG_IOCQES_MASK)
385 
386 #define	NVME_CC_WRITE_MASK \
387 	((NVME_CC_REG_EN_MASK << NVME_CC_REG_EN_SHIFT) | \
388 	 (NVME_CC_REG_IOSQES_MASK << NVME_CC_REG_IOSQES_SHIFT) | \
389 	 (NVME_CC_REG_IOCQES_MASK << NVME_CC_REG_IOCQES_SHIFT))
390 
391 #define	NVME_CC_NEN_WRITE_MASK \
392 	((NVME_CC_REG_CSS_MASK << NVME_CC_REG_CSS_SHIFT) | \
393 	 (NVME_CC_REG_MPS_MASK << NVME_CC_REG_MPS_SHIFT) | \
394 	 (NVME_CC_REG_AMS_MASK << NVME_CC_REG_AMS_SHIFT))
395 
396 /* Controller Status utils */
397 #define	NVME_CSTS_GET_RDY(sts) \
398 	((sts) >> NVME_CSTS_REG_RDY_SHIFT & NVME_CSTS_REG_RDY_MASK)
399 
400 #define	NVME_CSTS_RDY	(1 << NVME_CSTS_REG_RDY_SHIFT)
401 #define	NVME_CSTS_CFS	(1 << NVME_CSTS_REG_CFS_SHIFT)
402 
403 /* Completion Queue status word utils */
404 #define	NVME_STATUS_P	(1 << NVME_STATUS_P_SHIFT)
405 #define	NVME_STATUS_MASK \
406 	((NVME_STATUS_SCT_MASK << NVME_STATUS_SCT_SHIFT) |\
407 	 (NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT))
408 
409 #define NVME_ONCS_DSM	(NVME_CTRLR_DATA_ONCS_DSM_MASK << \
410 	NVME_CTRLR_DATA_ONCS_DSM_SHIFT)
411 
412 static void nvme_feature_invalid_cb(struct pci_nvme_softc *,
413     struct nvme_feature_obj *,
414     struct nvme_command *,
415     struct nvme_completion *);
416 static void nvme_feature_temperature(struct pci_nvme_softc *,
417     struct nvme_feature_obj *,
418     struct nvme_command *,
419     struct nvme_completion *);
420 static void nvme_feature_num_queues(struct pci_nvme_softc *,
421     struct nvme_feature_obj *,
422     struct nvme_command *,
423     struct nvme_completion *);
424 static void nvme_feature_iv_config(struct pci_nvme_softc *,
425     struct nvme_feature_obj *,
426     struct nvme_command *,
427     struct nvme_completion *);
428 static void nvme_feature_async_event(struct pci_nvme_softc *,
429     struct nvme_feature_obj *,
430     struct nvme_command *,
431     struct nvme_completion *);
432 
433 static void *aen_thr(void *arg);
434 
435 static __inline void
436 cpywithpad(char *dst, size_t dst_size, const char *src, char pad)
437 {
438 	size_t len;
439 
440 	len = strnlen(src, dst_size);
441 	memset(dst, pad, dst_size);
442 	memcpy(dst, src, len);
443 }
444 
445 static __inline void
446 pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code)
447 {
448 
449 	*status &= ~NVME_STATUS_MASK;
450 	*status |= (type & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT |
451 		(code & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
452 }
453 
454 static __inline void
455 pci_nvme_status_genc(uint16_t *status, uint16_t code)
456 {
457 
458 	pci_nvme_status_tc(status, NVME_SCT_GENERIC, code);
459 }
460 
461 /*
462  * Initialize the requested number or IO Submission and Completion Queues.
463  * Admin queues are allocated implicitly.
464  */
465 static void
466 pci_nvme_init_queues(struct pci_nvme_softc *sc, uint32_t nsq, uint32_t ncq)
467 {
468 	uint32_t i;
469 
470 	/*
471 	 * Allocate and initialize the Submission Queues
472 	 */
473 	if (nsq > NVME_QUEUES) {
474 		WPRINTF("%s: clamping number of SQ from %u to %u",
475 					__func__, nsq, NVME_QUEUES);
476 		nsq = NVME_QUEUES;
477 	}
478 
479 	sc->num_squeues = nsq;
480 
481 	sc->submit_queues = calloc(sc->num_squeues + 1,
482 				sizeof(struct nvme_submission_queue));
483 	if (sc->submit_queues == NULL) {
484 		WPRINTF("%s: SQ allocation failed", __func__);
485 		sc->num_squeues = 0;
486 	} else {
487 		struct nvme_submission_queue *sq = sc->submit_queues;
488 
489 		for (i = 0; i < sc->num_squeues + 1; i++)
490 			pthread_mutex_init(&sq[i].mtx, NULL);
491 	}
492 
493 	/*
494 	 * Allocate and initialize the Completion Queues
495 	 */
496 	if (ncq > NVME_QUEUES) {
497 		WPRINTF("%s: clamping number of CQ from %u to %u",
498 					__func__, ncq, NVME_QUEUES);
499 		ncq = NVME_QUEUES;
500 	}
501 
502 	sc->num_cqueues = ncq;
503 
504 	sc->compl_queues = calloc(sc->num_cqueues + 1,
505 				sizeof(struct nvme_completion_queue));
506 	if (sc->compl_queues == NULL) {
507 		WPRINTF("%s: CQ allocation failed", __func__);
508 		sc->num_cqueues = 0;
509 	} else {
510 		struct nvme_completion_queue *cq = sc->compl_queues;
511 
512 		for (i = 0; i < sc->num_cqueues + 1; i++)
513 			pthread_mutex_init(&cq[i].mtx, NULL);
514 	}
515 }
516 
517 static void
518 pci_nvme_init_ctrldata(struct pci_nvme_softc *sc)
519 {
520 	struct nvme_controller_data *cd = &sc->ctrldata;
521 
522 	cd->vid = 0xFB5D;
523 	cd->ssvid = 0x0000;
524 
525 	cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' ');
526 	cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' ');
527 
528 	/* Num of submission commands that we can handle at a time (2^rab) */
529 	cd->rab   = 4;
530 
531 	/* FreeBSD OUI */
532 	cd->ieee[0] = 0x58;
533 	cd->ieee[1] = 0x9c;
534 	cd->ieee[2] = 0xfc;
535 
536 	cd->mic = 0;
537 
538 	cd->mdts = NVME_MDTS;	/* max data transfer size (2^mdts * CAP.MPSMIN) */
539 
540 	cd->ver = NVME_REV(1,4);
541 
542 	cd->cntrltype = NVME_CNTRLTYPE_IO;
543 	cd->oacs = 1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT;
544 	cd->oaes = NVMEB(NVME_CTRLR_DATA_OAES_NS_ATTR);
545 	cd->acl = 2;
546 	cd->aerl = 4;
547 
548 	/* Advertise 1, Read-only firmware slot */
549 	cd->frmw = NVMEB(NVME_CTRLR_DATA_FRMW_SLOT1_RO) |
550 	    (1 << NVME_CTRLR_DATA_FRMW_NUM_SLOTS_SHIFT);
551 	cd->lpa = 0;	/* TODO: support some simple things like SMART */
552 	cd->elpe = 0;	/* max error log page entries */
553 	/*
554 	 * Report a single power state (zero-based value)
555 	 * power_state[] values are left as zero to indicate "Not reported"
556 	 */
557 	cd->npss = 0;
558 
559 	/* Warning Composite Temperature Threshold */
560 	cd->wctemp = 0x0157;
561 	cd->cctemp = 0x0157;
562 
563 	/* SANICAP must not be 0 for Revision 1.4 and later NVMe Controllers */
564 	cd->sanicap = (NVME_CTRLR_DATA_SANICAP_NODMMAS_NO <<
565 			NVME_CTRLR_DATA_SANICAP_NODMMAS_SHIFT);
566 
567 	cd->sqes = (6 << NVME_CTRLR_DATA_SQES_MAX_SHIFT) |
568 	    (6 << NVME_CTRLR_DATA_SQES_MIN_SHIFT);
569 	cd->cqes = (4 << NVME_CTRLR_DATA_CQES_MAX_SHIFT) |
570 	    (4 << NVME_CTRLR_DATA_CQES_MIN_SHIFT);
571 	cd->nn = 1;	/* number of namespaces */
572 
573 	cd->oncs = 0;
574 	switch (sc->dataset_management) {
575 	case NVME_DATASET_MANAGEMENT_AUTO:
576 		if (sc->nvstore.deallocate)
577 			cd->oncs |= NVME_ONCS_DSM;
578 		break;
579 	case NVME_DATASET_MANAGEMENT_ENABLE:
580 		cd->oncs |= NVME_ONCS_DSM;
581 		break;
582 	default:
583 		break;
584 	}
585 
586 	cd->fna = NVME_CTRLR_DATA_FNA_FORMAT_ALL_MASK <<
587 	    NVME_CTRLR_DATA_FNA_FORMAT_ALL_SHIFT;
588 
589 	cd->vwc = NVME_CTRLR_DATA_VWC_ALL_NO << NVME_CTRLR_DATA_VWC_ALL_SHIFT;
590 }
591 
592 /*
593  * Calculate the CRC-16 of the given buffer
594  * See copyright attribution at top of file
595  */
596 static uint16_t
597 crc16(uint16_t crc, const void *buffer, unsigned int len)
598 {
599 	const unsigned char *cp = buffer;
600 	/* CRC table for the CRC-16. The poly is 0x8005 (x16 + x15 + x2 + 1). */
601 	static uint16_t const crc16_table[256] = {
602 		0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
603 		0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
604 		0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
605 		0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
606 		0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
607 		0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
608 		0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
609 		0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
610 		0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
611 		0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
612 		0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
613 		0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
614 		0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
615 		0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
616 		0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
617 		0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
618 		0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
619 		0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
620 		0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
621 		0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
622 		0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
623 		0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
624 		0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
625 		0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
626 		0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
627 		0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
628 		0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
629 		0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
630 		0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
631 		0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
632 		0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
633 		0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
634 	};
635 
636 	while (len--)
637 		crc = (((crc >> 8) & 0xffU) ^
638 		    crc16_table[(crc ^ *cp++) & 0xffU]) & 0x0000ffffU;
639 	return crc;
640 }
641 
642 static void
643 pci_nvme_init_nsdata_size(struct pci_nvme_blockstore *nvstore,
644     struct nvme_namespace_data *nd)
645 {
646 
647 	/* Get capacity and block size information from backing store */
648 	nd->nsze = nvstore->size / nvstore->sectsz;
649 	nd->ncap = nd->nsze;
650 	nd->nuse = nd->nsze;
651 }
652 
653 static void
654 pci_nvme_init_nsdata(struct pci_nvme_softc *sc,
655     struct nvme_namespace_data *nd, uint32_t nsid,
656     struct pci_nvme_blockstore *nvstore)
657 {
658 
659 	pci_nvme_init_nsdata_size(nvstore, nd);
660 
661 	if (nvstore->type == NVME_STOR_BLOCKIF)
662 		nvstore->deallocate = blockif_candelete(nvstore->ctx);
663 
664 	nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */
665 	nd->flbas = 0;
666 
667 	/* Create an EUI-64 if user did not provide one */
668 	if (nvstore->eui64 == 0) {
669 		char *data = NULL;
670 		uint64_t eui64 = nvstore->eui64;
671 
672 		asprintf(&data, "%s%u%u%u", get_config_value("name"),
673 		    sc->nsc_pi->pi_bus, sc->nsc_pi->pi_slot,
674 		    sc->nsc_pi->pi_func);
675 
676 		if (data != NULL) {
677 			eui64 = OUI_FREEBSD_NVME_LOW | crc16(0, data, strlen(data));
678 			free(data);
679 		}
680 		nvstore->eui64 = (eui64 << 16) | (nsid & 0xffff);
681 	}
682 	be64enc(nd->eui64, nvstore->eui64);
683 
684 	/* LBA data-sz = 2^lbads */
685 	nd->lbaf[0] = nvstore->sectsz_bits << NVME_NS_DATA_LBAF_LBADS_SHIFT;
686 }
687 
688 static void
689 pci_nvme_init_logpages(struct pci_nvme_softc *sc)
690 {
691 	__uint128_t power_cycles = 1;
692 
693 	memset(&sc->err_log, 0, sizeof(sc->err_log));
694 	memset(&sc->health_log, 0, sizeof(sc->health_log));
695 	memset(&sc->fw_log, 0, sizeof(sc->fw_log));
696 	memset(&sc->ns_log, 0, sizeof(sc->ns_log));
697 
698 	/* Set read/write remainder to round up according to spec */
699 	sc->read_dunits_remainder = 999;
700 	sc->write_dunits_remainder = 999;
701 
702 	/* Set nominal Health values checked by implementations */
703 	sc->health_log.temperature = NVME_TEMPERATURE;
704 	sc->health_log.available_spare = 100;
705 	sc->health_log.available_spare_threshold = 10;
706 
707 	/* Set Active Firmware Info to slot 1 */
708 	sc->fw_log.afi = (1 << NVME_FIRMWARE_PAGE_AFI_SLOT_SHIFT);
709 	memcpy(&sc->fw_log.revision[0], sc->ctrldata.fr,
710 	    sizeof(sc->fw_log.revision[0]));
711 
712 	memcpy(&sc->health_log.power_cycles, &power_cycles,
713 	    sizeof(sc->health_log.power_cycles));
714 }
715 
716 static void
717 pci_nvme_init_features(struct pci_nvme_softc *sc)
718 {
719 	enum nvme_feature	fid;
720 
721 	for (fid = 0; fid < NVME_FID_MAX; fid++) {
722 		switch (fid) {
723 		case NVME_FEAT_ARBITRATION:
724 		case NVME_FEAT_POWER_MANAGEMENT:
725 		case NVME_FEAT_INTERRUPT_COALESCING: //XXX
726 		case NVME_FEAT_WRITE_ATOMICITY:
727 			/* Mandatory but no special handling required */
728 		//XXX hang - case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
729 		//XXX hang - case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
730 		//		  this returns a data buffer
731 			break;
732 		case NVME_FEAT_TEMPERATURE_THRESHOLD:
733 			sc->feat[fid].set = nvme_feature_temperature;
734 			break;
735 		case NVME_FEAT_ERROR_RECOVERY:
736 			sc->feat[fid].namespace_specific = true;
737 			break;
738 		case NVME_FEAT_NUMBER_OF_QUEUES:
739 			sc->feat[fid].set = nvme_feature_num_queues;
740 			break;
741 		case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
742 			sc->feat[fid].set = nvme_feature_iv_config;
743 			break;
744 		case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
745 			sc->feat[fid].set = nvme_feature_async_event;
746 			/* Enable all AENs by default */
747 			sc->feat[fid].cdw11 = PCI_NVME_AEN_DEFAULT_MASK;
748 			break;
749 		default:
750 			sc->feat[fid].set = nvme_feature_invalid_cb;
751 			sc->feat[fid].get = nvme_feature_invalid_cb;
752 		}
753 	}
754 }
755 
756 static void
757 pci_nvme_aer_reset(struct pci_nvme_softc *sc)
758 {
759 
760 	STAILQ_INIT(&sc->aer_list);
761 	sc->aer_count = 0;
762 }
763 
764 static void
765 pci_nvme_aer_init(struct pci_nvme_softc *sc)
766 {
767 
768 	pthread_mutex_init(&sc->aer_mtx, NULL);
769 	pci_nvme_aer_reset(sc);
770 }
771 
772 static void
773 pci_nvme_aer_destroy(struct pci_nvme_softc *sc)
774 {
775 	struct pci_nvme_aer *aer = NULL;
776 
777 	pthread_mutex_lock(&sc->aer_mtx);
778 	while (!STAILQ_EMPTY(&sc->aer_list)) {
779 		aer = STAILQ_FIRST(&sc->aer_list);
780 		STAILQ_REMOVE_HEAD(&sc->aer_list, link);
781 		free(aer);
782 	}
783 	pthread_mutex_unlock(&sc->aer_mtx);
784 
785 	pci_nvme_aer_reset(sc);
786 }
787 
788 static bool
789 pci_nvme_aer_available(struct pci_nvme_softc *sc)
790 {
791 
792 	return (sc->aer_count != 0);
793 }
794 
795 static bool
796 pci_nvme_aer_limit_reached(struct pci_nvme_softc *sc)
797 {
798 	struct nvme_controller_data *cd = &sc->ctrldata;
799 
800 	/* AERL is a zero based value while aer_count is one's based */
801 	return (sc->aer_count == (cd->aerl + 1));
802 }
803 
804 /*
805  * Add an Async Event Request
806  *
807  * Stores an AER to be returned later if the Controller needs to notify the
808  * host of an event.
809  * Note that while the NVMe spec doesn't require Controllers to return AER's
810  * in order, this implementation does preserve the order.
811  */
812 static int
813 pci_nvme_aer_add(struct pci_nvme_softc *sc, uint16_t cid)
814 {
815 	struct pci_nvme_aer *aer = NULL;
816 
817 	aer = calloc(1, sizeof(struct pci_nvme_aer));
818 	if (aer == NULL)
819 		return (-1);
820 
821 	/* Save the Command ID for use in the completion message */
822 	aer->cid = cid;
823 
824 	pthread_mutex_lock(&sc->aer_mtx);
825 	sc->aer_count++;
826 	STAILQ_INSERT_TAIL(&sc->aer_list, aer, link);
827 	pthread_mutex_unlock(&sc->aer_mtx);
828 
829 	return (0);
830 }
831 
832 /*
833  * Get an Async Event Request structure
834  *
835  * Returns a pointer to an AER previously submitted by the host or NULL if
836  * no AER's exist. Caller is responsible for freeing the returned struct.
837  */
838 static struct pci_nvme_aer *
839 pci_nvme_aer_get(struct pci_nvme_softc *sc)
840 {
841 	struct pci_nvme_aer *aer = NULL;
842 
843 	pthread_mutex_lock(&sc->aer_mtx);
844 	aer = STAILQ_FIRST(&sc->aer_list);
845 	if (aer != NULL) {
846 		STAILQ_REMOVE_HEAD(&sc->aer_list, link);
847 		sc->aer_count--;
848 	}
849 	pthread_mutex_unlock(&sc->aer_mtx);
850 
851 	return (aer);
852 }
853 
854 static void
855 pci_nvme_aen_reset(struct pci_nvme_softc *sc)
856 {
857 	uint32_t	atype;
858 
859 	memset(sc->aen, 0, PCI_NVME_AE_TYPE_MAX * sizeof(struct pci_nvme_aen));
860 
861 	for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
862 		sc->aen[atype].atype = atype;
863 	}
864 }
865 
866 static void
867 pci_nvme_aen_init(struct pci_nvme_softc *sc)
868 {
869 	char nstr[80];
870 
871 	pci_nvme_aen_reset(sc);
872 
873 	pthread_mutex_init(&sc->aen_mtx, NULL);
874 	pthread_create(&sc->aen_tid, NULL, aen_thr, sc);
875 	snprintf(nstr, sizeof(nstr), "nvme-aen-%d:%d", sc->nsc_pi->pi_slot,
876 	    sc->nsc_pi->pi_func);
877 	pthread_set_name_np(sc->aen_tid, nstr);
878 }
879 
880 static void
881 pci_nvme_aen_destroy(struct pci_nvme_softc *sc)
882 {
883 
884 	pci_nvme_aen_reset(sc);
885 }
886 
887 /* Notify the AEN thread of pending work */
888 static void
889 pci_nvme_aen_notify(struct pci_nvme_softc *sc)
890 {
891 
892 	pthread_cond_signal(&sc->aen_cond);
893 }
894 
895 /*
896  * Post an Asynchronous Event Notification
897  */
898 static int32_t
899 pci_nvme_aen_post(struct pci_nvme_softc *sc, pci_nvme_async_type atype,
900 		uint32_t event_data)
901 {
902 	struct pci_nvme_aen *aen;
903 
904 	if (atype >= PCI_NVME_AE_TYPE_MAX) {
905 		return(EINVAL);
906 	}
907 
908 	pthread_mutex_lock(&sc->aen_mtx);
909 	aen = &sc->aen[atype];
910 
911 	/* Has the controller already posted an event of this type? */
912 	if (aen->posted) {
913 		pthread_mutex_unlock(&sc->aen_mtx);
914 		return(EALREADY);
915 	}
916 
917 	aen->event_data = event_data;
918 	aen->posted = true;
919 	pthread_mutex_unlock(&sc->aen_mtx);
920 
921 	pci_nvme_aen_notify(sc);
922 
923 	return(0);
924 }
925 
926 static void
927 pci_nvme_aen_process(struct pci_nvme_softc *sc)
928 {
929 	struct pci_nvme_aer *aer;
930 	struct pci_nvme_aen *aen;
931 	pci_nvme_async_type atype;
932 	uint32_t mask;
933 	uint16_t status;
934 	uint8_t lid;
935 
936 	assert(pthread_mutex_isowned_np(&sc->aen_mtx));
937 	for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
938 		aen = &sc->aen[atype];
939 		/* Previous iterations may have depleted the available AER's */
940 		if (!pci_nvme_aer_available(sc)) {
941 			DPRINTF("%s: no AER", __func__);
942 			break;
943 		}
944 
945 		if (!aen->posted) {
946 			DPRINTF("%s: no AEN posted for atype=%#x", __func__, atype);
947 			continue;
948 		}
949 
950 		status = NVME_SC_SUCCESS;
951 
952 		/* Is the event masked? */
953 		mask =
954 		    sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11;
955 
956 		DPRINTF("%s: atype=%#x mask=%#x event_data=%#x", __func__, atype, mask, aen->event_data);
957 		switch (atype) {
958 		case PCI_NVME_AE_TYPE_ERROR:
959 			lid = NVME_LOG_ERROR;
960 			break;
961 		case PCI_NVME_AE_TYPE_SMART:
962 			mask &= 0xff;
963 			if ((mask & aen->event_data) == 0)
964 				continue;
965 			lid = NVME_LOG_HEALTH_INFORMATION;
966 			break;
967 		case PCI_NVME_AE_TYPE_NOTICE:
968 			if (aen->event_data >= PCI_NVME_AEI_NOTICE_MAX) {
969 				EPRINTLN("%s unknown AEN notice type %u",
970 				    __func__, aen->event_data);
971 				status = NVME_SC_INTERNAL_DEVICE_ERROR;
972 				break;
973 			}
974 			if ((PCI_NVME_AEI_NOTICE_MASK(aen->event_data) & mask) == 0)
975 				continue;
976 			switch (aen->event_data) {
977 			case PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED:
978 				lid = NVME_LOG_CHANGED_NAMESPACE;
979 				break;
980 			case PCI_NVME_AEI_NOTICE_FW_ACTIVATION:
981 				lid = NVME_LOG_FIRMWARE_SLOT;
982 				break;
983 			case PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE:
984 				lid = NVME_LOG_TELEMETRY_CONTROLLER_INITIATED;
985 				break;
986 			case PCI_NVME_AEI_NOTICE_ANA_CHANGE:
987 				lid = NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS;
988 				break;
989 			case PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE:
990 				lid = NVME_LOG_PREDICTABLE_LATENCY_EVENT_AGGREGATE;
991 				break;
992 			case PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT:
993 				lid = NVME_LOG_LBA_STATUS_INFORMATION;
994 				break;
995 			case PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE:
996 				lid = NVME_LOG_ENDURANCE_GROUP_EVENT_AGGREGATE;
997 				break;
998 			default:
999 				lid = 0;
1000 			}
1001 			break;
1002 		default:
1003 			/* bad type?!? */
1004 			EPRINTLN("%s unknown AEN type %u", __func__, atype);
1005 			status = NVME_SC_INTERNAL_DEVICE_ERROR;
1006 			break;
1007 		}
1008 
1009 		aer = pci_nvme_aer_get(sc);
1010 		assert(aer != NULL);
1011 
1012 		DPRINTF("%s: CID=%#x CDW0=%#x", __func__, aer->cid, (lid << 16) | (aen->event_data << 8) | atype);
1013 		pci_nvme_cq_update(sc, &sc->compl_queues[0],
1014 		    (lid << 16) | (aen->event_data << 8) | atype, /* cdw0 */
1015 		    aer->cid,
1016 		    0,		/* SQID */
1017 		    status);
1018 
1019 		aen->event_data = 0;
1020 		aen->posted = false;
1021 
1022 		pci_generate_msix(sc->nsc_pi, 0);
1023 	}
1024 }
1025 
1026 static void *
1027 aen_thr(void *arg)
1028 {
1029 	struct pci_nvme_softc *sc;
1030 
1031 	sc = arg;
1032 
1033 	pthread_mutex_lock(&sc->aen_mtx);
1034 	for (;;) {
1035 		pci_nvme_aen_process(sc);
1036 		pthread_cond_wait(&sc->aen_cond, &sc->aen_mtx);
1037 	}
1038 	pthread_mutex_unlock(&sc->aen_mtx);
1039 
1040 	pthread_exit(NULL);
1041 	return (NULL);
1042 }
1043 
1044 static void
1045 pci_nvme_reset_locked(struct pci_nvme_softc *sc)
1046 {
1047 	uint32_t i;
1048 
1049 	DPRINTF("%s", __func__);
1050 
1051 	sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) |
1052 	    (1 << NVME_CAP_LO_REG_CQR_SHIFT) |
1053 	    (60 << NVME_CAP_LO_REG_TO_SHIFT);
1054 
1055 	sc->regs.cap_hi = 1 << NVME_CAP_HI_REG_CSS_NVM_SHIFT;
1056 
1057 	sc->regs.vs = NVME_REV(1,4);	/* NVMe v1.4 */
1058 
1059 	sc->regs.cc = 0;
1060 
1061 	assert(sc->submit_queues != NULL);
1062 
1063 	for (i = 0; i < sc->num_squeues + 1; i++) {
1064 		sc->submit_queues[i].qbase = NULL;
1065 		sc->submit_queues[i].size = 0;
1066 		sc->submit_queues[i].cqid = 0;
1067 		sc->submit_queues[i].tail = 0;
1068 		sc->submit_queues[i].head = 0;
1069 	}
1070 
1071 	assert(sc->compl_queues != NULL);
1072 
1073 	for (i = 0; i < sc->num_cqueues + 1; i++) {
1074 		sc->compl_queues[i].qbase = NULL;
1075 		sc->compl_queues[i].size = 0;
1076 		sc->compl_queues[i].tail = 0;
1077 		sc->compl_queues[i].head = 0;
1078 	}
1079 
1080 	sc->num_q_is_set = false;
1081 
1082 	pci_nvme_aer_destroy(sc);
1083 	pci_nvme_aen_destroy(sc);
1084 
1085 	/*
1086 	 * Clear CSTS.RDY last to prevent the host from enabling Controller
1087 	 * before cleanup completes
1088 	 */
1089 	sc->regs.csts = 0;
1090 }
1091 
1092 static void
1093 pci_nvme_reset(struct pci_nvme_softc *sc)
1094 {
1095 	pthread_mutex_lock(&sc->mtx);
1096 	pci_nvme_reset_locked(sc);
1097 	pthread_mutex_unlock(&sc->mtx);
1098 }
1099 
1100 static int
1101 pci_nvme_init_controller(struct vmctx *ctx, struct pci_nvme_softc *sc)
1102 {
1103 	uint16_t acqs, asqs;
1104 
1105 	DPRINTF("%s", __func__);
1106 
1107 	/*
1108 	 * NVMe 2.0 states that "enabling a controller while this field is
1109 	 * cleared to 0h produces undefined results" for both ACQS and
1110 	 * ASQS. If zero, set CFS and do not become ready.
1111 	 */
1112 	asqs = ONE_BASED(sc->regs.aqa & NVME_AQA_REG_ASQS_MASK);
1113 	if (asqs < 2) {
1114 		EPRINTLN("%s: illegal ASQS value %#x (aqa=%#x)", __func__,
1115 		    asqs - 1, sc->regs.aqa);
1116 		sc->regs.csts |= NVME_CSTS_CFS;
1117 		return (-1);
1118 	}
1119 	sc->submit_queues[0].size = asqs;
1120 	sc->submit_queues[0].qbase = vm_map_gpa(ctx, sc->regs.asq,
1121 	            sizeof(struct nvme_command) * asqs);
1122 	if (sc->submit_queues[0].qbase == NULL) {
1123 		EPRINTLN("%s: ASQ vm_map_gpa(%lx) failed", __func__,
1124 		    sc->regs.asq);
1125 		sc->regs.csts |= NVME_CSTS_CFS;
1126 		return (-1);
1127 	}
1128 
1129 	DPRINTF("%s mapping Admin-SQ guest 0x%lx, host: %p",
1130 	        __func__, sc->regs.asq, sc->submit_queues[0].qbase);
1131 
1132 	acqs = ONE_BASED((sc->regs.aqa >> NVME_AQA_REG_ACQS_SHIFT) &
1133 	    NVME_AQA_REG_ACQS_MASK);
1134 	if (acqs < 2) {
1135 		EPRINTLN("%s: illegal ACQS value %#x (aqa=%#x)", __func__,
1136 		    acqs - 1, sc->regs.aqa);
1137 		sc->regs.csts |= NVME_CSTS_CFS;
1138 		return (-1);
1139 	}
1140 	sc->compl_queues[0].size = acqs;
1141 	sc->compl_queues[0].qbase = vm_map_gpa(ctx, sc->regs.acq,
1142 	         sizeof(struct nvme_completion) * acqs);
1143 	if (sc->compl_queues[0].qbase == NULL) {
1144 		EPRINTLN("%s: ACQ vm_map_gpa(%lx) failed", __func__,
1145 		    sc->regs.acq);
1146 		sc->regs.csts |= NVME_CSTS_CFS;
1147 		return (-1);
1148 	}
1149 	sc->compl_queues[0].intr_en = NVME_CQ_INTEN;
1150 
1151 	DPRINTF("%s mapping Admin-CQ guest 0x%lx, host: %p",
1152 	        __func__, sc->regs.acq, sc->compl_queues[0].qbase);
1153 
1154 	return (0);
1155 }
1156 
1157 static int
1158 nvme_prp_memcpy(struct vmctx *ctx, uint64_t prp1, uint64_t prp2, uint8_t *b,
1159 	size_t len, enum nvme_copy_dir dir)
1160 {
1161 	uint8_t *p;
1162 	size_t bytes;
1163 
1164 	if (len > (8 * 1024)) {
1165 		return (-1);
1166 	}
1167 
1168 	/* Copy from the start of prp1 to the end of the physical page */
1169 	bytes = PAGE_SIZE - (prp1 & PAGE_MASK);
1170 	bytes = MIN(bytes, len);
1171 
1172 	p = vm_map_gpa(ctx, prp1, bytes);
1173 	if (p == NULL) {
1174 		return (-1);
1175 	}
1176 
1177 	if (dir == NVME_COPY_TO_PRP)
1178 		memcpy(p, b, bytes);
1179 	else
1180 		memcpy(b, p, bytes);
1181 
1182 	b += bytes;
1183 
1184 	len -= bytes;
1185 	if (len == 0) {
1186 		return (0);
1187 	}
1188 
1189 	len = MIN(len, PAGE_SIZE);
1190 
1191 	p = vm_map_gpa(ctx, prp2, len);
1192 	if (p == NULL) {
1193 		return (-1);
1194 	}
1195 
1196 	if (dir == NVME_COPY_TO_PRP)
1197 		memcpy(p, b, len);
1198 	else
1199 		memcpy(b, p, len);
1200 
1201 	return (0);
1202 }
1203 
1204 /*
1205  * Write a Completion Queue Entry update
1206  *
1207  * Write the completion and update the doorbell value
1208  */
1209 static void
1210 pci_nvme_cq_update(struct pci_nvme_softc *sc,
1211 		struct nvme_completion_queue *cq,
1212 		uint32_t cdw0,
1213 		uint16_t cid,
1214 		uint16_t sqid,
1215 		uint16_t status)
1216 {
1217 	struct nvme_submission_queue *sq = &sc->submit_queues[sqid];
1218 	struct nvme_completion *cqe;
1219 
1220 	assert(cq->qbase != NULL);
1221 
1222 	pthread_mutex_lock(&cq->mtx);
1223 
1224 	cqe = &cq->qbase[cq->tail];
1225 
1226 	/* Flip the phase bit */
1227 	status |= (cqe->status ^ NVME_STATUS_P) & NVME_STATUS_P_MASK;
1228 
1229 	cqe->cdw0 = cdw0;
1230 	cqe->sqhd = sq->head;
1231 	cqe->sqid = sqid;
1232 	cqe->cid = cid;
1233 	cqe->status = status;
1234 
1235 	cq->tail++;
1236 	if (cq->tail >= cq->size) {
1237 		cq->tail = 0;
1238 	}
1239 
1240 	pthread_mutex_unlock(&cq->mtx);
1241 }
1242 
1243 static int
1244 nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
1245 	struct nvme_completion* compl)
1246 {
1247 	uint16_t qid = command->cdw10 & 0xffff;
1248 
1249 	DPRINTF("%s DELETE_IO_SQ %u", __func__, qid);
1250 	if (qid == 0 || qid > sc->num_squeues ||
1251 	    (sc->submit_queues[qid].qbase == NULL)) {
1252 		WPRINTF("%s NOT PERMITTED queue id %u / num_squeues %u",
1253 		        __func__, qid, sc->num_squeues);
1254 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1255 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1256 		return (1);
1257 	}
1258 
1259 	sc->submit_queues[qid].qbase = NULL;
1260 	sc->submit_queues[qid].cqid = 0;
1261 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1262 	return (1);
1263 }
1264 
1265 static int
1266 nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
1267 	struct nvme_completion* compl)
1268 {
1269 	if (command->cdw11 & NVME_CMD_CDW11_PC) {
1270 		uint16_t qid = command->cdw10 & 0xffff;
1271 		struct nvme_submission_queue *nsq;
1272 
1273 		if ((qid == 0) || (qid > sc->num_squeues) ||
1274 		    (sc->submit_queues[qid].qbase != NULL)) {
1275 			WPRINTF("%s queue index %u > num_squeues %u",
1276 			        __func__, qid, sc->num_squeues);
1277 			pci_nvme_status_tc(&compl->status,
1278 			    NVME_SCT_COMMAND_SPECIFIC,
1279 			    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1280 			return (1);
1281 		}
1282 
1283 		nsq = &sc->submit_queues[qid];
1284 		nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
1285 		DPRINTF("%s size=%u (max=%u)", __func__, nsq->size, sc->max_qentries);
1286 		if ((nsq->size < 2) || (nsq->size > sc->max_qentries)) {
1287 			/*
1288 			 * Queues must specify at least two entries
1289 			 * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
1290 			 * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
1291 			 */
1292 			pci_nvme_status_tc(&compl->status,
1293 			    NVME_SCT_COMMAND_SPECIFIC,
1294 			    NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
1295 			return (1);
1296 		}
1297 		nsq->head = nsq->tail = 0;
1298 
1299 		nsq->cqid = (command->cdw11 >> 16) & 0xffff;
1300 		if ((nsq->cqid == 0) || (nsq->cqid > sc->num_cqueues)) {
1301 			pci_nvme_status_tc(&compl->status,
1302 			    NVME_SCT_COMMAND_SPECIFIC,
1303 			    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1304 			return (1);
1305 		}
1306 
1307 		if (sc->compl_queues[nsq->cqid].qbase == NULL) {
1308 			pci_nvme_status_tc(&compl->status,
1309 			    NVME_SCT_COMMAND_SPECIFIC,
1310 			    NVME_SC_COMPLETION_QUEUE_INVALID);
1311 			return (1);
1312 		}
1313 
1314 		nsq->qpriority = (command->cdw11 >> 1) & 0x03;
1315 
1316 		nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1317 		              sizeof(struct nvme_command) * (size_t)nsq->size);
1318 
1319 		DPRINTF("%s sq %u size %u gaddr %p cqid %u", __func__,
1320 		        qid, nsq->size, nsq->qbase, nsq->cqid);
1321 
1322 		pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1323 
1324 		DPRINTF("%s completed creating IOSQ qid %u",
1325 		         __func__, qid);
1326 	} else {
1327 		/*
1328 		 * Guest sent non-cont submission queue request.
1329 		 * This setting is unsupported by this emulation.
1330 		 */
1331 		WPRINTF("%s unsupported non-contig (list-based) "
1332 		         "create i/o submission queue", __func__);
1333 
1334 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1335 	}
1336 	return (1);
1337 }
1338 
1339 static int
1340 nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
1341 	struct nvme_completion* compl)
1342 {
1343 	uint16_t qid = command->cdw10 & 0xffff;
1344 	uint16_t sqid;
1345 
1346 	DPRINTF("%s DELETE_IO_CQ %u", __func__, qid);
1347 	if (qid == 0 || qid > sc->num_cqueues ||
1348 	    (sc->compl_queues[qid].qbase == NULL)) {
1349 		WPRINTF("%s queue index %u / num_cqueues %u",
1350 		        __func__, qid, sc->num_cqueues);
1351 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1352 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1353 		return (1);
1354 	}
1355 
1356 	/* Deleting an Active CQ is an error */
1357 	for (sqid = 1; sqid < sc->num_squeues + 1; sqid++)
1358 		if (sc->submit_queues[sqid].cqid == qid) {
1359 			pci_nvme_status_tc(&compl->status,
1360 			    NVME_SCT_COMMAND_SPECIFIC,
1361 			    NVME_SC_INVALID_QUEUE_DELETION);
1362 			return (1);
1363 		}
1364 
1365 	sc->compl_queues[qid].qbase = NULL;
1366 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1367 	return (1);
1368 }
1369 
1370 static int
1371 nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
1372 	struct nvme_completion* compl)
1373 {
1374 	struct nvme_completion_queue *ncq;
1375 	uint16_t qid = command->cdw10 & 0xffff;
1376 
1377 	/* Only support Physically Contiguous queues */
1378 	if ((command->cdw11 & NVME_CMD_CDW11_PC) == 0) {
1379 		WPRINTF("%s unsupported non-contig (list-based) "
1380 		         "create i/o completion queue",
1381 		         __func__);
1382 
1383 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1384 		return (1);
1385 	}
1386 
1387 	if ((qid == 0) || (qid > sc->num_cqueues) ||
1388 	    (sc->compl_queues[qid].qbase != NULL)) {
1389 		WPRINTF("%s queue index %u > num_cqueues %u",
1390 			__func__, qid, sc->num_cqueues);
1391 		pci_nvme_status_tc(&compl->status,
1392 		    NVME_SCT_COMMAND_SPECIFIC,
1393 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1394 		return (1);
1395  	}
1396 
1397 	ncq = &sc->compl_queues[qid];
1398 	ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1;
1399 	ncq->intr_vec = (command->cdw11 >> 16) & 0xffff;
1400 	if (ncq->intr_vec > (sc->max_queues + 1)) {
1401 		pci_nvme_status_tc(&compl->status,
1402 		    NVME_SCT_COMMAND_SPECIFIC,
1403 		    NVME_SC_INVALID_INTERRUPT_VECTOR);
1404 		return (1);
1405 	}
1406 
1407 	ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
1408 	if ((ncq->size < 2) || (ncq->size > sc->max_qentries))  {
1409 		/*
1410 		 * Queues must specify at least two entries
1411 		 * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
1412 		 * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
1413 		 */
1414 		pci_nvme_status_tc(&compl->status,
1415 		    NVME_SCT_COMMAND_SPECIFIC,
1416 		    NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
1417 		return (1);
1418 	}
1419 	ncq->head = ncq->tail = 0;
1420 	ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1421 		     command->prp1,
1422 		     sizeof(struct nvme_command) * (size_t)ncq->size);
1423 
1424 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1425 
1426 
1427 	return (1);
1428 }
1429 
1430 static int
1431 nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command,
1432 	struct nvme_completion* compl)
1433 {
1434 	uint64_t logoff;
1435 	uint32_t logsize;
1436 	uint8_t logpage;
1437 
1438 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1439 
1440 	/*
1441 	 * Command specifies the number of dwords to return in fields NUMDU
1442 	 * and NUMDL. This is a zero-based value.
1443 	 */
1444 	logpage = command->cdw10 & 0xFF;
1445 	logsize = ((command->cdw11 << 16) | (command->cdw10 >> 16)) + 1;
1446 	logsize *= sizeof(uint32_t);
1447 	logoff  = ((uint64_t)(command->cdw13) << 32) | command->cdw12;
1448 
1449 	DPRINTF("%s log page %u len %u", __func__, logpage, logsize);
1450 
1451 	switch (logpage) {
1452 	case NVME_LOG_ERROR:
1453 		if (logoff >= sizeof(sc->err_log)) {
1454 			pci_nvme_status_genc(&compl->status,
1455 			    NVME_SC_INVALID_FIELD);
1456 			break;
1457 		}
1458 
1459 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1460 		    command->prp2, (uint8_t *)&sc->err_log + logoff,
1461 		    MIN(logsize - logoff, sizeof(sc->err_log)),
1462 		    NVME_COPY_TO_PRP);
1463 		break;
1464 	case NVME_LOG_HEALTH_INFORMATION:
1465 		if (logoff >= sizeof(sc->health_log)) {
1466 			pci_nvme_status_genc(&compl->status,
1467 			    NVME_SC_INVALID_FIELD);
1468 			break;
1469 		}
1470 
1471 		pthread_mutex_lock(&sc->mtx);
1472 		memcpy(&sc->health_log.data_units_read, &sc->read_data_units,
1473 		    sizeof(sc->health_log.data_units_read));
1474 		memcpy(&sc->health_log.data_units_written, &sc->write_data_units,
1475 		    sizeof(sc->health_log.data_units_written));
1476 		memcpy(&sc->health_log.host_read_commands, &sc->read_commands,
1477 		    sizeof(sc->health_log.host_read_commands));
1478 		memcpy(&sc->health_log.host_write_commands, &sc->write_commands,
1479 		    sizeof(sc->health_log.host_write_commands));
1480 		pthread_mutex_unlock(&sc->mtx);
1481 
1482 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1483 		    command->prp2, (uint8_t *)&sc->health_log + logoff,
1484 		    MIN(logsize - logoff, sizeof(sc->health_log)),
1485 		    NVME_COPY_TO_PRP);
1486 		break;
1487 	case NVME_LOG_FIRMWARE_SLOT:
1488 		if (logoff >= sizeof(sc->fw_log)) {
1489 			pci_nvme_status_genc(&compl->status,
1490 			    NVME_SC_INVALID_FIELD);
1491 			break;
1492 		}
1493 
1494 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1495 		    command->prp2, (uint8_t *)&sc->fw_log + logoff,
1496 		    MIN(logsize - logoff, sizeof(sc->fw_log)),
1497 		    NVME_COPY_TO_PRP);
1498 		break;
1499 	case NVME_LOG_CHANGED_NAMESPACE:
1500 		if (logoff >= sizeof(sc->ns_log)) {
1501 			pci_nvme_status_genc(&compl->status,
1502 			    NVME_SC_INVALID_FIELD);
1503 			break;
1504 		}
1505 
1506 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1507 		    command->prp2, (uint8_t *)&sc->ns_log + logoff,
1508 		    MIN(logsize - logoff, sizeof(sc->ns_log)),
1509 		    NVME_COPY_TO_PRP);
1510 		memset(&sc->ns_log, 0, sizeof(sc->ns_log));
1511 		break;
1512 	default:
1513 		DPRINTF("%s get log page %x command not supported",
1514 		        __func__, logpage);
1515 
1516 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1517 		    NVME_SC_INVALID_LOG_PAGE);
1518 	}
1519 
1520 	return (1);
1521 }
1522 
1523 static int
1524 nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command,
1525 	struct nvme_completion* compl)
1526 {
1527 	void *dest;
1528 	uint16_t status;
1529 
1530 	DPRINTF("%s identify 0x%x nsid 0x%x", __func__,
1531 	        command->cdw10 & 0xFF, command->nsid);
1532 
1533 	pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
1534 
1535 	switch (command->cdw10 & 0xFF) {
1536 	case 0x00: /* return Identify Namespace data structure */
1537 		/* Global NS only valid with NS Management */
1538 		if (command->nsid == NVME_GLOBAL_NAMESPACE_TAG) {
1539 			pci_nvme_status_genc(&status,
1540 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
1541 			break;
1542 		}
1543 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1544 		    command->prp2, (uint8_t *)&sc->nsdata, sizeof(sc->nsdata),
1545 		    NVME_COPY_TO_PRP);
1546 		break;
1547 	case 0x01: /* return Identify Controller data structure */
1548 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1549 		    command->prp2, (uint8_t *)&sc->ctrldata,
1550 		    sizeof(sc->ctrldata),
1551 		    NVME_COPY_TO_PRP);
1552 		break;
1553 	case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */
1554 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1555 		                  sizeof(uint32_t) * 1024);
1556 		/* All unused entries shall be zero */
1557 		memset(dest, 0, sizeof(uint32_t) * 1024);
1558 		((uint32_t *)dest)[0] = 1;
1559 		break;
1560 	case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */
1561 		if (command->nsid != 1) {
1562 			pci_nvme_status_genc(&status,
1563 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
1564 			break;
1565 		}
1566 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1567 		                  sizeof(uint32_t) * 1024);
1568 		/* All bytes after the descriptor shall be zero */
1569 		memset(dest, 0, sizeof(uint32_t) * 1024);
1570 
1571 		/* Return NIDT=1 (i.e. EUI64) descriptor */
1572 		((uint8_t *)dest)[0] = 1;
1573 		((uint8_t *)dest)[1] = sizeof(uint64_t);
1574 		memcpy(((uint8_t *)dest) + 4, sc->nsdata.eui64, sizeof(uint64_t));
1575 		break;
1576 	case 0x13:
1577 		/*
1578 		 * Controller list is optional but used by UNH tests. Return
1579 		 * a valid but empty list.
1580 		 */
1581 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1582 		                  sizeof(uint16_t) * 2048);
1583 		memset(dest, 0, sizeof(uint16_t) * 2048);
1584 		break;
1585 	default:
1586 		DPRINTF("%s unsupported identify command requested 0x%x",
1587 		         __func__, command->cdw10 & 0xFF);
1588 		pci_nvme_status_genc(&status, NVME_SC_INVALID_FIELD);
1589 		break;
1590 	}
1591 
1592 	compl->status = status;
1593 	return (1);
1594 }
1595 
1596 static const char *
1597 nvme_fid_to_name(uint8_t fid)
1598 {
1599 	const char *name;
1600 
1601 	switch (fid) {
1602 	case NVME_FEAT_ARBITRATION:
1603 		name = "Arbitration";
1604 		break;
1605 	case NVME_FEAT_POWER_MANAGEMENT:
1606 		name = "Power Management";
1607 		break;
1608 	case NVME_FEAT_LBA_RANGE_TYPE:
1609 		name = "LBA Range Type";
1610 		break;
1611 	case NVME_FEAT_TEMPERATURE_THRESHOLD:
1612 		name = "Temperature Threshold";
1613 		break;
1614 	case NVME_FEAT_ERROR_RECOVERY:
1615 		name = "Error Recovery";
1616 		break;
1617 	case NVME_FEAT_VOLATILE_WRITE_CACHE:
1618 		name = "Volatile Write Cache";
1619 		break;
1620 	case NVME_FEAT_NUMBER_OF_QUEUES:
1621 		name = "Number of Queues";
1622 		break;
1623 	case NVME_FEAT_INTERRUPT_COALESCING:
1624 		name = "Interrupt Coalescing";
1625 		break;
1626 	case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
1627 		name = "Interrupt Vector Configuration";
1628 		break;
1629 	case NVME_FEAT_WRITE_ATOMICITY:
1630 		name = "Write Atomicity Normal";
1631 		break;
1632 	case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
1633 		name = "Asynchronous Event Configuration";
1634 		break;
1635 	case NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
1636 		name = "Autonomous Power State Transition";
1637 		break;
1638 	case NVME_FEAT_HOST_MEMORY_BUFFER:
1639 		name = "Host Memory Buffer";
1640 		break;
1641 	case NVME_FEAT_TIMESTAMP:
1642 		name = "Timestamp";
1643 		break;
1644 	case NVME_FEAT_KEEP_ALIVE_TIMER:
1645 		name = "Keep Alive Timer";
1646 		break;
1647 	case NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT:
1648 		name = "Host Controlled Thermal Management";
1649 		break;
1650 	case NVME_FEAT_NON_OP_POWER_STATE_CONFIG:
1651 		name = "Non-Operation Power State Config";
1652 		break;
1653 	case NVME_FEAT_READ_RECOVERY_LEVEL_CONFIG:
1654 		name = "Read Recovery Level Config";
1655 		break;
1656 	case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
1657 		name = "Predictable Latency Mode Config";
1658 		break;
1659 	case NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW:
1660 		name = "Predictable Latency Mode Window";
1661 		break;
1662 	case NVME_FEAT_LBA_STATUS_INFORMATION_ATTRIBUTES:
1663 		name = "LBA Status Information Report Interval";
1664 		break;
1665 	case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
1666 		name = "Host Behavior Support";
1667 		break;
1668 	case NVME_FEAT_SANITIZE_CONFIG:
1669 		name = "Sanitize Config";
1670 		break;
1671 	case NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION:
1672 		name = "Endurance Group Event Configuration";
1673 		break;
1674 	case NVME_FEAT_SOFTWARE_PROGRESS_MARKER:
1675 		name = "Software Progress Marker";
1676 		break;
1677 	case NVME_FEAT_HOST_IDENTIFIER:
1678 		name = "Host Identifier";
1679 		break;
1680 	case NVME_FEAT_RESERVATION_NOTIFICATION_MASK:
1681 		name = "Reservation Notification Mask";
1682 		break;
1683 	case NVME_FEAT_RESERVATION_PERSISTENCE:
1684 		name = "Reservation Persistence";
1685 		break;
1686 	case NVME_FEAT_NAMESPACE_WRITE_PROTECTION_CONFIG:
1687 		name = "Namespace Write Protection Config";
1688 		break;
1689 	default:
1690 		name = "Unknown";
1691 		break;
1692 	}
1693 
1694 	return (name);
1695 }
1696 
1697 static void
1698 nvme_feature_invalid_cb(struct pci_nvme_softc *sc __unused,
1699     struct nvme_feature_obj *feat __unused,
1700     struct nvme_command *command __unused,
1701     struct nvme_completion *compl)
1702 {
1703 	pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1704 }
1705 
1706 static void
1707 nvme_feature_iv_config(struct pci_nvme_softc *sc,
1708     struct nvme_feature_obj *feat __unused,
1709     struct nvme_command *command,
1710     struct nvme_completion *compl)
1711 {
1712 	uint32_t i;
1713 	uint32_t cdw11 = command->cdw11;
1714 	uint16_t iv;
1715 	bool cd;
1716 
1717 	pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1718 
1719 	iv = cdw11 & 0xffff;
1720 	cd = cdw11 & (1 << 16);
1721 
1722 	if (iv > (sc->max_queues + 1)) {
1723 		return;
1724 	}
1725 
1726 	/* No Interrupt Coalescing (i.e. not Coalescing Disable) for Admin Q */
1727 	if ((iv == 0) && !cd)
1728 		return;
1729 
1730 	/* Requested Interrupt Vector must be used by a CQ */
1731 	for (i = 0; i < sc->num_cqueues + 1; i++) {
1732 		if (sc->compl_queues[i].intr_vec == iv) {
1733 			pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1734 		}
1735 	}
1736 }
1737 
1738 #define NVME_ASYNC_EVENT_ENDURANCE_GROUP		(0x4000)
1739 static void
1740 nvme_feature_async_event(struct pci_nvme_softc *sc __unused,
1741     struct nvme_feature_obj *feat __unused,
1742     struct nvme_command *command,
1743     struct nvme_completion *compl)
1744 {
1745 	if (command->cdw11 & NVME_ASYNC_EVENT_ENDURANCE_GROUP)
1746 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1747 }
1748 
1749 #define NVME_TEMP_THRESH_OVER	0
1750 #define NVME_TEMP_THRESH_UNDER	1
1751 static void
1752 nvme_feature_temperature(struct pci_nvme_softc *sc,
1753     struct nvme_feature_obj *feat __unused,
1754     struct nvme_command *command,
1755     struct nvme_completion *compl)
1756 {
1757 	uint16_t	tmpth;	/* Temperature Threshold */
1758 	uint8_t		tmpsel; /* Threshold Temperature Select */
1759 	uint8_t		thsel;  /* Threshold Type Select */
1760 	bool		set_crit = false;
1761 
1762 	tmpth  = command->cdw11 & 0xffff;
1763 	tmpsel = (command->cdw11 >> 16) & 0xf;
1764 	thsel  = (command->cdw11 >> 20) & 0x3;
1765 
1766 	DPRINTF("%s: tmpth=%#x tmpsel=%#x thsel=%#x", __func__, tmpth, tmpsel, thsel);
1767 
1768 	/* Check for unsupported values */
1769 	if (((tmpsel != 0) && (tmpsel != 0xf)) ||
1770 	    (thsel > NVME_TEMP_THRESH_UNDER)) {
1771 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1772 		return;
1773 	}
1774 
1775 	if (((thsel == NVME_TEMP_THRESH_OVER)  && (NVME_TEMPERATURE >= tmpth)) ||
1776 	    ((thsel == NVME_TEMP_THRESH_UNDER) && (NVME_TEMPERATURE <= tmpth)))
1777 		set_crit = true;
1778 
1779 	pthread_mutex_lock(&sc->mtx);
1780 	if (set_crit)
1781 		sc->health_log.critical_warning |=
1782 		    NVME_CRIT_WARN_ST_TEMPERATURE;
1783 	else
1784 		sc->health_log.critical_warning &=
1785 		    ~NVME_CRIT_WARN_ST_TEMPERATURE;
1786 	pthread_mutex_unlock(&sc->mtx);
1787 
1788 	if (set_crit)
1789 		pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_SMART,
1790 		    sc->health_log.critical_warning);
1791 
1792 
1793 	DPRINTF("%s: set_crit=%c critical_warning=%#x status=%#x", __func__, set_crit ? 'T':'F', sc->health_log.critical_warning, compl->status);
1794 }
1795 
1796 static void
1797 nvme_feature_num_queues(struct pci_nvme_softc *sc,
1798     struct nvme_feature_obj *feat __unused,
1799     struct nvme_command *command,
1800     struct nvme_completion *compl)
1801 {
1802 	uint16_t nqr;	/* Number of Queues Requested */
1803 
1804 	if (sc->num_q_is_set) {
1805 		WPRINTF("%s: Number of Queues already set", __func__);
1806 		pci_nvme_status_genc(&compl->status,
1807 		    NVME_SC_COMMAND_SEQUENCE_ERROR);
1808 		return;
1809 	}
1810 
1811 	nqr = command->cdw11 & 0xFFFF;
1812 	if (nqr == 0xffff) {
1813 		WPRINTF("%s: Illegal NSQR value %#x", __func__, nqr);
1814 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1815 		return;
1816 	}
1817 
1818 	sc->num_squeues = ONE_BASED(nqr);
1819 	if (sc->num_squeues > sc->max_queues) {
1820 		DPRINTF("NSQR=%u is greater than max %u", sc->num_squeues,
1821 					sc->max_queues);
1822 		sc->num_squeues = sc->max_queues;
1823 	}
1824 
1825 	nqr = (command->cdw11 >> 16) & 0xFFFF;
1826 	if (nqr == 0xffff) {
1827 		WPRINTF("%s: Illegal NCQR value %#x", __func__, nqr);
1828 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1829 		return;
1830 	}
1831 
1832 	sc->num_cqueues = ONE_BASED(nqr);
1833 	if (sc->num_cqueues > sc->max_queues) {
1834 		DPRINTF("NCQR=%u is greater than max %u", sc->num_cqueues,
1835 					sc->max_queues);
1836 		sc->num_cqueues = sc->max_queues;
1837 	}
1838 
1839 	/* Patch the command value which will be saved on callback's return */
1840 	command->cdw11 = NVME_FEATURE_NUM_QUEUES(sc);
1841 	compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc);
1842 
1843 	sc->num_q_is_set = true;
1844 }
1845 
1846 static int
1847 nvme_opc_set_features(struct pci_nvme_softc *sc, struct nvme_command *command,
1848 	struct nvme_completion *compl)
1849 {
1850 	struct nvme_feature_obj *feat;
1851 	uint32_t nsid = command->nsid;
1852 	uint8_t fid = NVMEV(NVME_FEAT_SET_FID, command->cdw10);
1853 	bool sv = NVMEV(NVME_FEAT_SET_SV, command->cdw10);
1854 
1855 	DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
1856 
1857 	if (fid >= NVME_FID_MAX) {
1858 		DPRINTF("%s invalid feature 0x%x", __func__, fid);
1859 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1860 		return (1);
1861 	}
1862 
1863 	if (sv) {
1864 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1865 		    NVME_SC_FEATURE_NOT_SAVEABLE);
1866 		return (1);
1867 	}
1868 
1869 	feat = &sc->feat[fid];
1870 
1871 	if (feat->namespace_specific && (nsid == NVME_GLOBAL_NAMESPACE_TAG)) {
1872 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1873 		return (1);
1874 	}
1875 
1876 	if (!feat->namespace_specific &&
1877 	    !((nsid == 0) || (nsid == NVME_GLOBAL_NAMESPACE_TAG))) {
1878 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1879 		    NVME_SC_FEATURE_NOT_NS_SPECIFIC);
1880 		return (1);
1881 	}
1882 
1883 	compl->cdw0 = 0;
1884 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1885 
1886 	if (feat->set)
1887 		feat->set(sc, feat, command, compl);
1888 	else {
1889 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1890 		    NVME_SC_FEATURE_NOT_CHANGEABLE);
1891 		return (1);
1892 	}
1893 
1894 	DPRINTF("%s: status=%#x cdw11=%#x", __func__, compl->status, command->cdw11);
1895 	if (compl->status == NVME_SC_SUCCESS) {
1896 		feat->cdw11 = command->cdw11;
1897 		if ((fid == NVME_FEAT_ASYNC_EVENT_CONFIGURATION) &&
1898 		    (command->cdw11 != 0))
1899 			pci_nvme_aen_notify(sc);
1900 	}
1901 
1902 	return (0);
1903 }
1904 
1905 #define NVME_FEATURES_SEL_SUPPORTED	0x3
1906 #define NVME_FEATURES_NS_SPECIFIC	(1 << 1)
1907 
1908 static int
1909 nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command,
1910 	struct nvme_completion* compl)
1911 {
1912 	struct nvme_feature_obj *feat;
1913 	uint8_t fid = command->cdw10 & 0xFF;
1914 	uint8_t sel = (command->cdw10 >> 8) & 0x7;
1915 
1916 	DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
1917 
1918 	if (fid >= NVME_FID_MAX) {
1919 		DPRINTF("%s invalid feature 0x%x", __func__, fid);
1920 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1921 		return (1);
1922 	}
1923 
1924 	compl->cdw0 = 0;
1925 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1926 
1927 	feat = &sc->feat[fid];
1928 	if (feat->get) {
1929 		feat->get(sc, feat, command, compl);
1930 	}
1931 
1932 	if (compl->status == NVME_SC_SUCCESS) {
1933 		if ((sel == NVME_FEATURES_SEL_SUPPORTED) && feat->namespace_specific)
1934 			compl->cdw0 = NVME_FEATURES_NS_SPECIFIC;
1935 		else
1936 			compl->cdw0 = feat->cdw11;
1937 	}
1938 
1939 	return (0);
1940 }
1941 
1942 static int
1943 nvme_opc_format_nvm(struct pci_nvme_softc* sc, struct nvme_command* command,
1944 	struct nvme_completion* compl)
1945 {
1946 	uint8_t	ses, lbaf, pi;
1947 
1948 	/* Only supports Secure Erase Setting - User Data Erase */
1949 	ses = (command->cdw10 >> 9) & 0x7;
1950 	if (ses > 0x1) {
1951 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1952 		return (1);
1953 	}
1954 
1955 	/* Only supports a single LBA Format */
1956 	lbaf = command->cdw10 & 0xf;
1957 	if (lbaf != 0) {
1958 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1959 		    NVME_SC_INVALID_FORMAT);
1960 		return (1);
1961 	}
1962 
1963 	/* Doesn't support Protection Infomation */
1964 	pi = (command->cdw10 >> 5) & 0x7;
1965 	if (pi != 0) {
1966 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1967 		return (1);
1968 	}
1969 
1970 	if (sc->nvstore.type == NVME_STOR_RAM) {
1971 		if (sc->nvstore.ctx)
1972 			free(sc->nvstore.ctx);
1973 		sc->nvstore.ctx = calloc(1, sc->nvstore.size);
1974 		pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1975 	} else {
1976 		struct pci_nvme_ioreq *req;
1977 		int err;
1978 
1979 		req = pci_nvme_get_ioreq(sc);
1980 		if (req == NULL) {
1981 			pci_nvme_status_genc(&compl->status,
1982 			    NVME_SC_INTERNAL_DEVICE_ERROR);
1983 			WPRINTF("%s: unable to allocate IO req", __func__);
1984 			return (1);
1985 		}
1986 		req->nvme_sq = &sc->submit_queues[0];
1987 		req->sqid = 0;
1988 		req->opc = command->opc;
1989 		req->cid = command->cid;
1990 		req->nsid = command->nsid;
1991 
1992 		req->io_req.br_offset = 0;
1993 		req->io_req.br_resid = sc->nvstore.size;
1994 		req->io_req.br_callback = pci_nvme_io_done;
1995 
1996 		err = blockif_delete(sc->nvstore.ctx, &req->io_req);
1997 		if (err) {
1998 			pci_nvme_status_genc(&compl->status,
1999 			    NVME_SC_INTERNAL_DEVICE_ERROR);
2000 			pci_nvme_release_ioreq(sc, req);
2001 		} else
2002 			compl->status = NVME_NO_STATUS;
2003 	}
2004 
2005 	return (1);
2006 }
2007 
2008 static int
2009 nvme_opc_abort(struct pci_nvme_softc *sc __unused, struct nvme_command *command,
2010     struct nvme_completion *compl)
2011 {
2012 	DPRINTF("%s submission queue %u, command ID 0x%x", __func__,
2013 	        command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF);
2014 
2015 	/* TODO: search for the command ID and abort it */
2016 
2017 	compl->cdw0 = 1;
2018 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
2019 	return (1);
2020 }
2021 
2022 static int
2023 nvme_opc_async_event_req(struct pci_nvme_softc* sc,
2024 	struct nvme_command* command, struct nvme_completion* compl)
2025 {
2026 	DPRINTF("%s async event request count=%u aerl=%u cid=%#x", __func__,
2027 	    sc->aer_count, sc->ctrldata.aerl, command->cid);
2028 
2029 	/* Don't exceed the Async Event Request Limit (AERL). */
2030 	if (pci_nvme_aer_limit_reached(sc)) {
2031 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
2032 				NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED);
2033 		return (1);
2034 	}
2035 
2036 	if (pci_nvme_aer_add(sc, command->cid)) {
2037 		pci_nvme_status_tc(&compl->status, NVME_SCT_GENERIC,
2038 				NVME_SC_INTERNAL_DEVICE_ERROR);
2039 		return (1);
2040 	}
2041 
2042 	/*
2043 	 * Raise events when they happen based on the Set Features cmd.
2044 	 * These events happen async, so only set completion successful if
2045 	 * there is an event reflective of the request to get event.
2046 	 */
2047 	compl->status = NVME_NO_STATUS;
2048 	pci_nvme_aen_notify(sc);
2049 
2050 	return (0);
2051 }
2052 
2053 static void
2054 pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value)
2055 {
2056 	struct nvme_completion compl;
2057 	struct nvme_command *cmd;
2058 	struct nvme_submission_queue *sq;
2059 	struct nvme_completion_queue *cq;
2060 	uint16_t sqhead;
2061 
2062 	DPRINTF("%s index %u", __func__, (uint32_t)value);
2063 
2064 	sq = &sc->submit_queues[0];
2065 	cq = &sc->compl_queues[0];
2066 
2067 	pthread_mutex_lock(&sq->mtx);
2068 
2069 	sqhead = sq->head;
2070 	DPRINTF("sqhead %u, tail %u", sqhead, sq->tail);
2071 
2072 	while (sqhead != atomic_load_acq_short(&sq->tail)) {
2073 		cmd = &(sq->qbase)[sqhead];
2074 		compl.cdw0 = 0;
2075 		compl.status = 0;
2076 
2077 		switch (cmd->opc) {
2078 		case NVME_OPC_DELETE_IO_SQ:
2079 			DPRINTF("%s command DELETE_IO_SQ", __func__);
2080 			nvme_opc_delete_io_sq(sc, cmd, &compl);
2081 			break;
2082 		case NVME_OPC_CREATE_IO_SQ:
2083 			DPRINTF("%s command CREATE_IO_SQ", __func__);
2084 			nvme_opc_create_io_sq(sc, cmd, &compl);
2085 			break;
2086 		case NVME_OPC_DELETE_IO_CQ:
2087 			DPRINTF("%s command DELETE_IO_CQ", __func__);
2088 			nvme_opc_delete_io_cq(sc, cmd, &compl);
2089 			break;
2090 		case NVME_OPC_CREATE_IO_CQ:
2091 			DPRINTF("%s command CREATE_IO_CQ", __func__);
2092 			nvme_opc_create_io_cq(sc, cmd, &compl);
2093 			break;
2094 		case NVME_OPC_GET_LOG_PAGE:
2095 			DPRINTF("%s command GET_LOG_PAGE", __func__);
2096 			nvme_opc_get_log_page(sc, cmd, &compl);
2097 			break;
2098 		case NVME_OPC_IDENTIFY:
2099 			DPRINTF("%s command IDENTIFY", __func__);
2100 			nvme_opc_identify(sc, cmd, &compl);
2101 			break;
2102 		case NVME_OPC_ABORT:
2103 			DPRINTF("%s command ABORT", __func__);
2104 			nvme_opc_abort(sc, cmd, &compl);
2105 			break;
2106 		case NVME_OPC_SET_FEATURES:
2107 			DPRINTF("%s command SET_FEATURES", __func__);
2108 			nvme_opc_set_features(sc, cmd, &compl);
2109 			break;
2110 		case NVME_OPC_GET_FEATURES:
2111 			DPRINTF("%s command GET_FEATURES", __func__);
2112 			nvme_opc_get_features(sc, cmd, &compl);
2113 			break;
2114 		case NVME_OPC_FIRMWARE_ACTIVATE:
2115 			DPRINTF("%s command FIRMWARE_ACTIVATE", __func__);
2116 			pci_nvme_status_tc(&compl.status,
2117 			    NVME_SCT_COMMAND_SPECIFIC,
2118 			    NVME_SC_INVALID_FIRMWARE_SLOT);
2119 			break;
2120 		case NVME_OPC_ASYNC_EVENT_REQUEST:
2121 			DPRINTF("%s command ASYNC_EVENT_REQ", __func__);
2122 			nvme_opc_async_event_req(sc, cmd, &compl);
2123 			break;
2124 		case NVME_OPC_FORMAT_NVM:
2125 			DPRINTF("%s command FORMAT_NVM", __func__);
2126 			if ((sc->ctrldata.oacs &
2127 			    (1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT)) == 0) {
2128 				pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
2129 				break;
2130 			}
2131 			nvme_opc_format_nvm(sc, cmd, &compl);
2132 			break;
2133 		case NVME_OPC_SECURITY_SEND:
2134 		case NVME_OPC_SECURITY_RECEIVE:
2135 		case NVME_OPC_SANITIZE:
2136 		case NVME_OPC_GET_LBA_STATUS:
2137 			DPRINTF("%s command OPC=%#x (unsupported)", __func__,
2138 			    cmd->opc);
2139 			/* Valid but unsupported opcodes */
2140 			pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_FIELD);
2141 			break;
2142 		default:
2143 			DPRINTF("%s command OPC=%#X (not implemented)",
2144 			    __func__,
2145 			    cmd->opc);
2146 			pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
2147 		}
2148 		sqhead = (sqhead + 1) % sq->size;
2149 
2150 		if (NVME_COMPLETION_VALID(compl)) {
2151 			pci_nvme_cq_update(sc, &sc->compl_queues[0],
2152 			    compl.cdw0,
2153 			    cmd->cid,
2154 			    0,		/* SQID */
2155 			    compl.status);
2156 		}
2157 	}
2158 
2159 	DPRINTF("setting sqhead %u", sqhead);
2160 	sq->head = sqhead;
2161 
2162 	if (cq->head != cq->tail)
2163 		pci_generate_msix(sc->nsc_pi, 0);
2164 
2165 	pthread_mutex_unlock(&sq->mtx);
2166 }
2167 
2168 /*
2169  * Update the Write and Read statistics reported in SMART data
2170  *
2171  * NVMe defines "data unit" as thousand's of 512 byte blocks and is rounded up.
2172  * E.g. 1 data unit is 1 - 1,000 512 byte blocks. 3 data units are 2,001 - 3,000
2173  * 512 byte blocks. Rounding up is acheived by initializing the remainder to 999.
2174  */
2175 static void
2176 pci_nvme_stats_write_read_update(struct pci_nvme_softc *sc, uint8_t opc,
2177     size_t bytes, uint16_t status)
2178 {
2179 
2180 	pthread_mutex_lock(&sc->mtx);
2181 	switch (opc) {
2182 	case NVME_OPC_WRITE:
2183 		sc->write_commands++;
2184 		if (status != NVME_SC_SUCCESS)
2185 			break;
2186 		sc->write_dunits_remainder += (bytes / 512);
2187 		while (sc->write_dunits_remainder >= 1000) {
2188 			sc->write_data_units++;
2189 			sc->write_dunits_remainder -= 1000;
2190 		}
2191 		break;
2192 	case NVME_OPC_READ:
2193 		sc->read_commands++;
2194 		if (status != NVME_SC_SUCCESS)
2195 			break;
2196 		sc->read_dunits_remainder += (bytes / 512);
2197 		while (sc->read_dunits_remainder >= 1000) {
2198 			sc->read_data_units++;
2199 			sc->read_dunits_remainder -= 1000;
2200 		}
2201 		break;
2202 	default:
2203 		DPRINTF("%s: Invalid OPC 0x%02x for stats", __func__, opc);
2204 		break;
2205 	}
2206 	pthread_mutex_unlock(&sc->mtx);
2207 }
2208 
2209 /*
2210  * Check if the combination of Starting LBA (slba) and number of blocks
2211  * exceeds the range of the underlying storage.
2212  *
2213  * Because NVMe specifies the SLBA in blocks as a uint64_t and blockif stores
2214  * the capacity in bytes as a uint64_t, care must be taken to avoid integer
2215  * overflow.
2216  */
2217 static bool
2218 pci_nvme_out_of_range(struct pci_nvme_blockstore *nvstore, uint64_t slba,
2219     uint32_t nblocks)
2220 {
2221 	size_t	offset, bytes;
2222 
2223 	/* Overflow check of multiplying Starting LBA by the sector size */
2224 	if (slba >> (64 - nvstore->sectsz_bits))
2225 		return (true);
2226 
2227 	offset = slba << nvstore->sectsz_bits;
2228 	bytes = nblocks << nvstore->sectsz_bits;
2229 
2230 	/* Overflow check of Number of Logical Blocks */
2231 	if ((nvstore->size <= offset) || ((nvstore->size - offset) < bytes))
2232 		return (true);
2233 
2234 	return (false);
2235 }
2236 
2237 static int
2238 pci_nvme_append_iov_req(struct pci_nvme_softc *sc __unused,
2239     struct pci_nvme_ioreq *req, uint64_t gpaddr, size_t size, uint64_t offset)
2240 {
2241 	int iovidx;
2242 	bool range_is_contiguous;
2243 
2244 	if (req == NULL)
2245 		return (-1);
2246 
2247 	if (req->io_req.br_iovcnt == NVME_MAX_IOVEC) {
2248 		return (-1);
2249 	}
2250 
2251 	/*
2252 	 * Minimize the number of IOVs by concatenating contiguous address
2253 	 * ranges. If the IOV count is zero, there is no previous range to
2254 	 * concatenate.
2255 	 */
2256 	if (req->io_req.br_iovcnt == 0)
2257 		range_is_contiguous = false;
2258 	else
2259 		range_is_contiguous = (req->prev_gpaddr + req->prev_size) == gpaddr;
2260 
2261 	if (range_is_contiguous) {
2262 		iovidx = req->io_req.br_iovcnt - 1;
2263 
2264 		req->io_req.br_iov[iovidx].iov_base =
2265 		    paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
2266 				     req->prev_gpaddr, size);
2267 		if (req->io_req.br_iov[iovidx].iov_base == NULL)
2268 			return (-1);
2269 
2270 		req->prev_size += size;
2271 		req->io_req.br_resid += size;
2272 
2273 		req->io_req.br_iov[iovidx].iov_len = req->prev_size;
2274 	} else {
2275 		iovidx = req->io_req.br_iovcnt;
2276 		if (iovidx == 0) {
2277 			req->io_req.br_offset = offset;
2278 			req->io_req.br_resid = 0;
2279 			req->io_req.br_param = req;
2280 		}
2281 
2282 		req->io_req.br_iov[iovidx].iov_base =
2283 		    paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
2284 				     gpaddr, size);
2285 		if (req->io_req.br_iov[iovidx].iov_base == NULL)
2286 			return (-1);
2287 
2288 		req->io_req.br_iov[iovidx].iov_len = size;
2289 
2290 		req->prev_gpaddr = gpaddr;
2291 		req->prev_size = size;
2292 		req->io_req.br_resid += size;
2293 
2294 		req->io_req.br_iovcnt++;
2295 	}
2296 
2297 	return (0);
2298 }
2299 
2300 static void
2301 pci_nvme_set_completion(struct pci_nvme_softc *sc,
2302     struct nvme_submission_queue *sq, int sqid, uint16_t cid, uint16_t status)
2303 {
2304 	struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid];
2305 
2306 	DPRINTF("%s sqid %d cqid %u cid %u status: 0x%x 0x%x",
2307 		 __func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status),
2308 		 NVME_STATUS_GET_SC(status));
2309 
2310 	pci_nvme_cq_update(sc, cq, 0, cid, sqid, status);
2311 
2312 	if (cq->head != cq->tail) {
2313 		if (cq->intr_en & NVME_CQ_INTEN) {
2314 			pci_generate_msix(sc->nsc_pi, cq->intr_vec);
2315 		} else {
2316 			DPRINTF("%s: CQ%u interrupt disabled",
2317 						__func__, sq->cqid);
2318 		}
2319 	}
2320 }
2321 
2322 static void
2323 pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req)
2324 {
2325 	req->sc = NULL;
2326 	req->nvme_sq = NULL;
2327 	req->sqid = 0;
2328 
2329 	pthread_mutex_lock(&sc->mtx);
2330 
2331 	STAILQ_INSERT_TAIL(&sc->ioreqs_free, req, link);
2332 	sc->pending_ios--;
2333 
2334 	/* when no more IO pending, can set to ready if device reset/enabled */
2335 	if (sc->pending_ios == 0 &&
2336 	    NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts)))
2337 		sc->regs.csts |= NVME_CSTS_RDY;
2338 
2339 	pthread_mutex_unlock(&sc->mtx);
2340 
2341 	sem_post(&sc->iosemlock);
2342 }
2343 
2344 static struct pci_nvme_ioreq *
2345 pci_nvme_get_ioreq(struct pci_nvme_softc *sc)
2346 {
2347 	struct pci_nvme_ioreq *req = NULL;
2348 
2349 	sem_wait(&sc->iosemlock);
2350 	pthread_mutex_lock(&sc->mtx);
2351 
2352 	req = STAILQ_FIRST(&sc->ioreqs_free);
2353 	assert(req != NULL);
2354 	STAILQ_REMOVE_HEAD(&sc->ioreqs_free, link);
2355 
2356 	req->sc = sc;
2357 
2358 	sc->pending_ios++;
2359 
2360 	pthread_mutex_unlock(&sc->mtx);
2361 
2362 	req->io_req.br_iovcnt = 0;
2363 	req->io_req.br_offset = 0;
2364 	req->io_req.br_resid = 0;
2365 	req->io_req.br_param = req;
2366 	req->prev_gpaddr = 0;
2367 	req->prev_size = 0;
2368 
2369 	return req;
2370 }
2371 
2372 static void
2373 pci_nvme_io_done(struct blockif_req *br, int err)
2374 {
2375 	struct pci_nvme_ioreq *req = br->br_param;
2376 	struct nvme_submission_queue *sq = req->nvme_sq;
2377 	uint16_t code, status;
2378 
2379 	DPRINTF("%s error %d %s", __func__, err, strerror(err));
2380 
2381 	/* TODO return correct error */
2382 	code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS;
2383 	pci_nvme_status_genc(&status, code);
2384 
2385 	pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, status);
2386 	pci_nvme_stats_write_read_update(req->sc, req->opc,
2387 	    req->bytes, status);
2388 	pci_nvme_release_ioreq(req->sc, req);
2389 }
2390 
2391 /*
2392  * Implements the Flush command. The specification states:
2393  *    If a volatile write cache is not present, Flush commands complete
2394  *    successfully and have no effect
2395  * in the description of the Volatile Write Cache (VWC) field of the Identify
2396  * Controller data. Therefore, set status to Success if the command is
2397  * not supported (i.e. RAM or as indicated by the blockif).
2398  */
2399 static bool
2400 nvme_opc_flush(struct pci_nvme_softc *sc __unused,
2401     struct nvme_command *cmd __unused,
2402     struct pci_nvme_blockstore *nvstore,
2403     struct pci_nvme_ioreq *req,
2404     uint16_t *status)
2405 {
2406 	bool pending = false;
2407 
2408 	if (nvstore->type == NVME_STOR_RAM) {
2409 		pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2410 	} else {
2411 		int err;
2412 
2413 		req->io_req.br_callback = pci_nvme_io_done;
2414 
2415 		err = blockif_flush(nvstore->ctx, &req->io_req);
2416 		switch (err) {
2417 		case 0:
2418 			pending = true;
2419 			break;
2420 		case EOPNOTSUPP:
2421 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2422 			break;
2423 		default:
2424 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2425 		}
2426 	}
2427 
2428 	return (pending);
2429 }
2430 
2431 static uint16_t
2432 nvme_write_read_ram(struct pci_nvme_softc *sc,
2433     struct pci_nvme_blockstore *nvstore,
2434     uint64_t prp1, uint64_t prp2,
2435     size_t offset, uint64_t bytes,
2436     bool is_write)
2437 {
2438 	uint8_t *buf = nvstore->ctx;
2439 	enum nvme_copy_dir dir;
2440 	uint16_t status;
2441 
2442 	if (is_write)
2443 		dir = NVME_COPY_TO_PRP;
2444 	else
2445 		dir = NVME_COPY_FROM_PRP;
2446 
2447 	if (nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, prp1, prp2,
2448 	    buf + offset, bytes, dir))
2449 		pci_nvme_status_genc(&status,
2450 		    NVME_SC_DATA_TRANSFER_ERROR);
2451 	else
2452 		pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2453 
2454 	return (status);
2455 }
2456 
2457 static uint16_t
2458 nvme_write_read_blockif(struct pci_nvme_softc *sc,
2459     struct pci_nvme_blockstore *nvstore,
2460     struct pci_nvme_ioreq *req,
2461     uint64_t prp1, uint64_t prp2,
2462     size_t offset, uint64_t bytes,
2463     bool is_write)
2464 {
2465 	uint64_t size;
2466 	int err;
2467 	uint16_t status = NVME_NO_STATUS;
2468 
2469 	size = MIN(PAGE_SIZE - (prp1 % PAGE_SIZE), bytes);
2470 	if (pci_nvme_append_iov_req(sc, req, prp1, size, offset)) {
2471 		err = -1;
2472 		goto out;
2473 	}
2474 
2475 	offset += size;
2476 	bytes  -= size;
2477 
2478 	if (bytes == 0) {
2479 		;
2480 	} else if (bytes <= PAGE_SIZE) {
2481 		size = bytes;
2482 		if (pci_nvme_append_iov_req(sc, req, prp2, size, offset)) {
2483 			err = -1;
2484 			goto out;
2485 		}
2486 	} else {
2487 		void *vmctx = sc->nsc_pi->pi_vmctx;
2488 		uint64_t *prp_list = &prp2;
2489 		uint64_t *last = prp_list;
2490 
2491 		/* PRP2 is pointer to a physical region page list */
2492 		while (bytes) {
2493 			/* Last entry in list points to the next list */
2494 			if ((prp_list == last) && (bytes > PAGE_SIZE)) {
2495 				uint64_t prp = *prp_list;
2496 
2497 				prp_list = paddr_guest2host(vmctx, prp,
2498 				    PAGE_SIZE - (prp % PAGE_SIZE));
2499 				if (prp_list == NULL) {
2500 					err = -1;
2501 					goto out;
2502 				}
2503 				last = prp_list + (NVME_PRP2_ITEMS - 1);
2504 			}
2505 
2506 			size = MIN(bytes, PAGE_SIZE);
2507 
2508 			if (pci_nvme_append_iov_req(sc, req, *prp_list, size,
2509 			    offset)) {
2510 				err = -1;
2511 				goto out;
2512 			}
2513 
2514 			offset += size;
2515 			bytes  -= size;
2516 
2517 			prp_list++;
2518 		}
2519 	}
2520 	req->io_req.br_callback = pci_nvme_io_done;
2521 	if (is_write)
2522 		err = blockif_write(nvstore->ctx, &req->io_req);
2523 	else
2524 		err = blockif_read(nvstore->ctx, &req->io_req);
2525 out:
2526 	if (err)
2527 		pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR);
2528 
2529 	return (status);
2530 }
2531 
2532 static bool
2533 nvme_opc_write_read(struct pci_nvme_softc *sc,
2534     struct nvme_command *cmd,
2535     struct pci_nvme_blockstore *nvstore,
2536     struct pci_nvme_ioreq *req,
2537     uint16_t *status)
2538 {
2539 	uint64_t lba, nblocks, bytes;
2540 	size_t offset;
2541 	bool is_write = cmd->opc == NVME_OPC_WRITE;
2542 	bool pending = false;
2543 
2544 	lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10;
2545 	nblocks = (cmd->cdw12 & 0xFFFF) + 1;
2546 	bytes = nblocks << nvstore->sectsz_bits;
2547 	if (bytes > NVME_MAX_DATA_SIZE) {
2548 		WPRINTF("%s command would exceed MDTS", __func__);
2549 		pci_nvme_status_genc(status, NVME_SC_INVALID_FIELD);
2550 		goto out;
2551 	}
2552 
2553 	if (pci_nvme_out_of_range(nvstore, lba, nblocks)) {
2554 		WPRINTF("%s command would exceed LBA range(slba=%#lx nblocks=%#lx)",
2555 		    __func__, lba, nblocks);
2556 		pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
2557 		goto out;
2558 	}
2559 
2560 	offset = lba << nvstore->sectsz_bits;
2561 
2562 	req->bytes = bytes;
2563 	req->io_req.br_offset = lba;
2564 
2565 	/* PRP bits 1:0 must be zero */
2566 	cmd->prp1 &= ~0x3UL;
2567 	cmd->prp2 &= ~0x3UL;
2568 
2569 	if (nvstore->type == NVME_STOR_RAM) {
2570 		*status = nvme_write_read_ram(sc, nvstore, cmd->prp1,
2571 		    cmd->prp2, offset, bytes, is_write);
2572 	} else {
2573 		*status = nvme_write_read_blockif(sc, nvstore, req,
2574 		    cmd->prp1, cmd->prp2, offset, bytes, is_write);
2575 
2576 		if (*status == NVME_NO_STATUS)
2577 			pending = true;
2578 	}
2579 out:
2580 	if (!pending)
2581 		pci_nvme_stats_write_read_update(sc, cmd->opc, bytes, *status);
2582 
2583 	return (pending);
2584 }
2585 
2586 static void
2587 pci_nvme_dealloc_sm(struct blockif_req *br, int err)
2588 {
2589 	struct pci_nvme_ioreq *req = br->br_param;
2590 	struct pci_nvme_softc *sc = req->sc;
2591 	bool done = true;
2592 	uint16_t status;
2593 
2594 	if (err) {
2595 		pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR);
2596 	} else if ((req->prev_gpaddr + 1) == (req->prev_size)) {
2597 		pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2598 	} else {
2599 		struct iovec *iov = req->io_req.br_iov;
2600 
2601 		req->prev_gpaddr++;
2602 		iov += req->prev_gpaddr;
2603 
2604 		/* The iov_* values already include the sector size */
2605 		req->io_req.br_offset = (off_t)iov->iov_base;
2606 		req->io_req.br_resid = iov->iov_len;
2607 		if (blockif_delete(sc->nvstore.ctx, &req->io_req)) {
2608 			pci_nvme_status_genc(&status,
2609 			    NVME_SC_INTERNAL_DEVICE_ERROR);
2610 		} else
2611 			done = false;
2612 	}
2613 
2614 	if (done) {
2615 		pci_nvme_set_completion(sc, req->nvme_sq, req->sqid, req->cid,
2616 		    status);
2617 		pci_nvme_release_ioreq(sc, req);
2618 	}
2619 }
2620 
2621 static bool
2622 nvme_opc_dataset_mgmt(struct pci_nvme_softc *sc,
2623     struct nvme_command *cmd,
2624     struct pci_nvme_blockstore *nvstore,
2625     struct pci_nvme_ioreq *req,
2626     uint16_t *status)
2627 {
2628 	struct nvme_dsm_range *range = NULL;
2629 	uint32_t nr, r, non_zero, dr;
2630 	int err;
2631 	bool pending = false;
2632 
2633 	if ((sc->ctrldata.oncs & NVME_ONCS_DSM) == 0) {
2634 		pci_nvme_status_genc(status, NVME_SC_INVALID_OPCODE);
2635 		goto out;
2636 	}
2637 
2638 	nr = cmd->cdw10 & 0xff;
2639 
2640 	/* copy locally because a range entry could straddle PRPs */
2641 	range = calloc(1, NVME_MAX_DSM_TRIM);
2642 	if (range == NULL) {
2643 		pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2644 		goto out;
2645 	}
2646 	nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, cmd->prp1, cmd->prp2,
2647 	    (uint8_t *)range, NVME_MAX_DSM_TRIM, NVME_COPY_FROM_PRP);
2648 
2649 	/* Check for invalid ranges and the number of non-zero lengths */
2650 	non_zero = 0;
2651 	for (r = 0; r <= nr; r++) {
2652 		if (pci_nvme_out_of_range(nvstore,
2653 		    range[r].starting_lba, range[r].length)) {
2654 			pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
2655 			goto out;
2656 		}
2657 		if (range[r].length != 0)
2658 			non_zero++;
2659 	}
2660 
2661 	if (cmd->cdw11 & NVME_DSM_ATTR_DEALLOCATE) {
2662 		size_t offset, bytes;
2663 		int sectsz_bits = sc->nvstore.sectsz_bits;
2664 
2665 		/*
2666 		 * DSM calls are advisory only, and compliant controllers
2667 		 * may choose to take no actions (i.e. return Success).
2668 		 */
2669 		if (!nvstore->deallocate) {
2670 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2671 			goto out;
2672 		}
2673 
2674 		/* If all ranges have a zero length, return Success */
2675 		if (non_zero == 0) {
2676 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2677 			goto out;
2678 		}
2679 
2680 		if (req == NULL) {
2681 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2682 			goto out;
2683 		}
2684 
2685 		offset = range[0].starting_lba << sectsz_bits;
2686 		bytes = range[0].length << sectsz_bits;
2687 
2688 		/*
2689 		 * If the request is for more than a single range, store
2690 		 * the ranges in the br_iov. Optimize for the common case
2691 		 * of a single range.
2692 		 *
2693 		 * Note that NVMe Number of Ranges is a zero based value
2694 		 */
2695 		req->io_req.br_iovcnt = 0;
2696 		req->io_req.br_offset = offset;
2697 		req->io_req.br_resid = bytes;
2698 
2699 		if (nr == 0) {
2700 			req->io_req.br_callback = pci_nvme_io_done;
2701 		} else {
2702 			struct iovec *iov = req->io_req.br_iov;
2703 
2704 			for (r = 0, dr = 0; r <= nr; r++) {
2705 				offset = range[r].starting_lba << sectsz_bits;
2706 				bytes = range[r].length << sectsz_bits;
2707 				if (bytes == 0)
2708 					continue;
2709 
2710 				if ((nvstore->size - offset) < bytes) {
2711 					pci_nvme_status_genc(status,
2712 					    NVME_SC_LBA_OUT_OF_RANGE);
2713 					goto out;
2714 				}
2715 				iov[dr].iov_base = (void *)offset;
2716 				iov[dr].iov_len = bytes;
2717 				dr++;
2718 			}
2719 			req->io_req.br_callback = pci_nvme_dealloc_sm;
2720 
2721 			/*
2722 			 * Use prev_gpaddr to track the current entry and
2723 			 * prev_size to track the number of entries
2724 			 */
2725 			req->prev_gpaddr = 0;
2726 			req->prev_size = dr;
2727 		}
2728 
2729 		err = blockif_delete(nvstore->ctx, &req->io_req);
2730 		if (err)
2731 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2732 		else
2733 			pending = true;
2734 	}
2735 out:
2736 	free(range);
2737 	return (pending);
2738 }
2739 
2740 static void
2741 pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx)
2742 {
2743 	struct nvme_submission_queue *sq;
2744 	uint16_t status;
2745 	uint16_t sqhead;
2746 
2747 	/* handle all submissions up to sq->tail index */
2748 	sq = &sc->submit_queues[idx];
2749 
2750 	pthread_mutex_lock(&sq->mtx);
2751 
2752 	sqhead = sq->head;
2753 	DPRINTF("nvme_handle_io qid %u head %u tail %u cmdlist %p",
2754 	         idx, sqhead, sq->tail, sq->qbase);
2755 
2756 	while (sqhead != atomic_load_acq_short(&sq->tail)) {
2757 		struct nvme_command *cmd;
2758 		struct pci_nvme_ioreq *req;
2759 		uint32_t nsid;
2760 		bool pending;
2761 
2762 		pending = false;
2763 		req = NULL;
2764 		status = 0;
2765 
2766 		cmd = &sq->qbase[sqhead];
2767 		sqhead = (sqhead + 1) % sq->size;
2768 
2769 		nsid = le32toh(cmd->nsid);
2770 		if ((nsid == 0) || (nsid > sc->ctrldata.nn)) {
2771 			pci_nvme_status_genc(&status,
2772 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
2773 			status |=
2774 			    NVME_STATUS_DNR_MASK << NVME_STATUS_DNR_SHIFT;
2775 			goto complete;
2776  		}
2777 
2778 		req = pci_nvme_get_ioreq(sc);
2779 		if (req == NULL) {
2780 			pci_nvme_status_genc(&status,
2781 			    NVME_SC_INTERNAL_DEVICE_ERROR);
2782 			WPRINTF("%s: unable to allocate IO req", __func__);
2783 			goto complete;
2784 		}
2785 		req->nvme_sq = sq;
2786 		req->sqid = idx;
2787 		req->opc = cmd->opc;
2788 		req->cid = cmd->cid;
2789 		req->nsid = cmd->nsid;
2790 
2791 		switch (cmd->opc) {
2792 		case NVME_OPC_FLUSH:
2793 			pending = nvme_opc_flush(sc, cmd, &sc->nvstore,
2794 			    req, &status);
2795  			break;
2796 		case NVME_OPC_WRITE:
2797 		case NVME_OPC_READ:
2798 			pending = nvme_opc_write_read(sc, cmd, &sc->nvstore,
2799 			    req, &status);
2800 			break;
2801 		case NVME_OPC_WRITE_ZEROES:
2802 			/* TODO: write zeroes
2803 			WPRINTF("%s write zeroes lba 0x%lx blocks %u",
2804 			        __func__, lba, cmd->cdw12 & 0xFFFF); */
2805 			pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2806 			break;
2807 		case NVME_OPC_DATASET_MANAGEMENT:
2808  			pending = nvme_opc_dataset_mgmt(sc, cmd, &sc->nvstore,
2809 			    req, &status);
2810 			break;
2811  		default:
2812  			WPRINTF("%s unhandled io command 0x%x",
2813 			    __func__, cmd->opc);
2814 			pci_nvme_status_genc(&status, NVME_SC_INVALID_OPCODE);
2815 		}
2816 complete:
2817 		if (!pending) {
2818 			pci_nvme_set_completion(sc, sq, idx, cmd->cid, status);
2819 			if (req != NULL)
2820 				pci_nvme_release_ioreq(sc, req);
2821 		}
2822 	}
2823 
2824 	sq->head = sqhead;
2825 
2826 	pthread_mutex_unlock(&sq->mtx);
2827 }
2828 
2829 static void
2830 pci_nvme_handle_doorbell(struct vmctx *ctx __unused, struct pci_nvme_softc* sc,
2831 	uint64_t idx, int is_sq, uint64_t value)
2832 {
2833 	DPRINTF("nvme doorbell %lu, %s, val 0x%lx",
2834 	        idx, is_sq ? "SQ" : "CQ", value & 0xFFFF);
2835 
2836 	if (is_sq) {
2837 		if (idx > sc->num_squeues) {
2838 			WPRINTF("%s queue index %lu overflow from "
2839 			         "guest (max %u)",
2840 			         __func__, idx, sc->num_squeues);
2841 			return;
2842 		}
2843 
2844 		atomic_store_short(&sc->submit_queues[idx].tail,
2845 		                   (uint16_t)value);
2846 
2847 		if (idx == 0) {
2848 			pci_nvme_handle_admin_cmd(sc, value);
2849 		} else {
2850 			/* submission queue; handle new entries in SQ */
2851 			if (idx > sc->num_squeues) {
2852 				WPRINTF("%s SQ index %lu overflow from "
2853 				         "guest (max %u)",
2854 				         __func__, idx, sc->num_squeues);
2855 				return;
2856 			}
2857 			pci_nvme_handle_io_cmd(sc, (uint16_t)idx);
2858 		}
2859 	} else {
2860 		if (idx > sc->num_cqueues) {
2861 			WPRINTF("%s queue index %lu overflow from "
2862 			         "guest (max %u)",
2863 			         __func__, idx, sc->num_cqueues);
2864 			return;
2865 		}
2866 
2867 		atomic_store_short(&sc->compl_queues[idx].head,
2868 				(uint16_t)value);
2869 	}
2870 }
2871 
2872 static void
2873 pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite)
2874 {
2875 	const char *s = iswrite ? "WRITE" : "READ";
2876 
2877 	switch (offset) {
2878 	case NVME_CR_CAP_LOW:
2879 		DPRINTF("%s %s NVME_CR_CAP_LOW", func, s);
2880 		break;
2881 	case NVME_CR_CAP_HI:
2882 		DPRINTF("%s %s NVME_CR_CAP_HI", func, s);
2883 		break;
2884 	case NVME_CR_VS:
2885 		DPRINTF("%s %s NVME_CR_VS", func, s);
2886 		break;
2887 	case NVME_CR_INTMS:
2888 		DPRINTF("%s %s NVME_CR_INTMS", func, s);
2889 		break;
2890 	case NVME_CR_INTMC:
2891 		DPRINTF("%s %s NVME_CR_INTMC", func, s);
2892 		break;
2893 	case NVME_CR_CC:
2894 		DPRINTF("%s %s NVME_CR_CC", func, s);
2895 		break;
2896 	case NVME_CR_CSTS:
2897 		DPRINTF("%s %s NVME_CR_CSTS", func, s);
2898 		break;
2899 	case NVME_CR_NSSR:
2900 		DPRINTF("%s %s NVME_CR_NSSR", func, s);
2901 		break;
2902 	case NVME_CR_AQA:
2903 		DPRINTF("%s %s NVME_CR_AQA", func, s);
2904 		break;
2905 	case NVME_CR_ASQ_LOW:
2906 		DPRINTF("%s %s NVME_CR_ASQ_LOW", func, s);
2907 		break;
2908 	case NVME_CR_ASQ_HI:
2909 		DPRINTF("%s %s NVME_CR_ASQ_HI", func, s);
2910 		break;
2911 	case NVME_CR_ACQ_LOW:
2912 		DPRINTF("%s %s NVME_CR_ACQ_LOW", func, s);
2913 		break;
2914 	case NVME_CR_ACQ_HI:
2915 		DPRINTF("%s %s NVME_CR_ACQ_HI", func, s);
2916 		break;
2917 	default:
2918 		DPRINTF("unknown nvme bar-0 offset 0x%lx", offset);
2919 	}
2920 
2921 }
2922 
2923 static void
2924 pci_nvme_write_bar_0(struct vmctx *ctx, struct pci_nvme_softc* sc,
2925 	uint64_t offset, int size, uint64_t value)
2926 {
2927 	uint32_t ccreg;
2928 
2929 	if (offset >= NVME_DOORBELL_OFFSET) {
2930 		uint64_t belloffset = offset - NVME_DOORBELL_OFFSET;
2931 		uint64_t idx = belloffset / 8; /* door bell size = 2*int */
2932 		int is_sq = (belloffset % 8) < 4;
2933 
2934 		if ((sc->regs.csts & NVME_CSTS_RDY) == 0) {
2935 			WPRINTF("doorbell write prior to RDY (offset=%#lx)\n",
2936 			    offset);
2937 			return;
2938 		}
2939 
2940 		if (belloffset > ((sc->max_queues+1) * 8 - 4)) {
2941 			WPRINTF("guest attempted an overflow write offset "
2942 			         "0x%lx, val 0x%lx in %s",
2943 			         offset, value, __func__);
2944 			return;
2945 		}
2946 
2947 		if (is_sq) {
2948 			if (sc->submit_queues[idx].qbase == NULL)
2949 				return;
2950 		} else if (sc->compl_queues[idx].qbase == NULL)
2951 			return;
2952 
2953 		pci_nvme_handle_doorbell(ctx, sc, idx, is_sq, value);
2954 		return;
2955 	}
2956 
2957 	DPRINTF("nvme-write offset 0x%lx, size %d, value 0x%lx",
2958 	        offset, size, value);
2959 
2960 	if (size != 4) {
2961 		WPRINTF("guest wrote invalid size %d (offset 0x%lx, "
2962 		         "val 0x%lx) to bar0 in %s",
2963 		         size, offset, value, __func__);
2964 		/* TODO: shutdown device */
2965 		return;
2966 	}
2967 
2968 	pci_nvme_bar0_reg_dumps(__func__, offset, 1);
2969 
2970 	pthread_mutex_lock(&sc->mtx);
2971 
2972 	switch (offset) {
2973 	case NVME_CR_CAP_LOW:
2974 	case NVME_CR_CAP_HI:
2975 		/* readonly */
2976 		break;
2977 	case NVME_CR_VS:
2978 		/* readonly */
2979 		break;
2980 	case NVME_CR_INTMS:
2981 		/* MSI-X, so ignore */
2982 		break;
2983 	case NVME_CR_INTMC:
2984 		/* MSI-X, so ignore */
2985 		break;
2986 	case NVME_CR_CC:
2987 		ccreg = (uint32_t)value;
2988 
2989 		DPRINTF("%s NVME_CR_CC en %x css %x shn %x iosqes %u "
2990 		         "iocqes %u",
2991 		        __func__,
2992 			 NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg),
2993 			 NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg),
2994 			 NVME_CC_GET_IOCQES(ccreg));
2995 
2996 		if (NVME_CC_GET_SHN(ccreg)) {
2997 			/* perform shutdown - flush out data to backend */
2998 			sc->regs.csts &= ~(NVME_CSTS_REG_SHST_MASK <<
2999 			    NVME_CSTS_REG_SHST_SHIFT);
3000 			sc->regs.csts |= NVME_SHST_COMPLETE <<
3001 			    NVME_CSTS_REG_SHST_SHIFT;
3002 		}
3003 		if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) {
3004 			if (NVME_CC_GET_EN(ccreg) == 0)
3005 				/* transition 1-> causes controller reset */
3006 				pci_nvme_reset_locked(sc);
3007 			else
3008 				pci_nvme_init_controller(ctx, sc);
3009 		}
3010 
3011 		/* Insert the iocqes, iosqes and en bits from the write */
3012 		sc->regs.cc &= ~NVME_CC_WRITE_MASK;
3013 		sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK;
3014 		if (NVME_CC_GET_EN(ccreg) == 0) {
3015 			/* Insert the ams, mps and css bit fields */
3016 			sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK;
3017 			sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK;
3018 			sc->regs.csts &= ~NVME_CSTS_RDY;
3019 		} else if ((sc->pending_ios == 0) &&
3020 		    !(sc->regs.csts & NVME_CSTS_CFS)) {
3021 			sc->regs.csts |= NVME_CSTS_RDY;
3022 		}
3023 		break;
3024 	case NVME_CR_CSTS:
3025 		break;
3026 	case NVME_CR_NSSR:
3027 		/* ignore writes; don't support subsystem reset */
3028 		break;
3029 	case NVME_CR_AQA:
3030 		sc->regs.aqa = (uint32_t)value;
3031 		break;
3032 	case NVME_CR_ASQ_LOW:
3033 		sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) |
3034 		               (0xFFFFF000 & value);
3035 		break;
3036 	case NVME_CR_ASQ_HI:
3037 		sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) |
3038 		               (value << 32);
3039 		break;
3040 	case NVME_CR_ACQ_LOW:
3041 		sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) |
3042 		               (0xFFFFF000 & value);
3043 		break;
3044 	case NVME_CR_ACQ_HI:
3045 		sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) |
3046 		               (value << 32);
3047 		break;
3048 	default:
3049 		DPRINTF("%s unknown offset 0x%lx, value 0x%lx size %d",
3050 		         __func__, offset, value, size);
3051 	}
3052 	pthread_mutex_unlock(&sc->mtx);
3053 }
3054 
3055 static void
3056 pci_nvme_write(struct vmctx *ctx, int vcpu __unused, struct pci_devinst *pi,
3057     int baridx, uint64_t offset, int size, uint64_t value)
3058 {
3059 	struct pci_nvme_softc* sc = pi->pi_arg;
3060 
3061 	if (baridx == pci_msix_table_bar(pi) ||
3062 	    baridx == pci_msix_pba_bar(pi)) {
3063 		DPRINTF("nvme-write baridx %d, msix: off 0x%lx, size %d, "
3064 		         " value 0x%lx", baridx, offset, size, value);
3065 
3066 		pci_emul_msix_twrite(pi, offset, size, value);
3067 		return;
3068 	}
3069 
3070 	switch (baridx) {
3071 	case 0:
3072 		pci_nvme_write_bar_0(ctx, sc, offset, size, value);
3073 		break;
3074 
3075 	default:
3076 		DPRINTF("%s unknown baridx %d, val 0x%lx",
3077 		         __func__, baridx, value);
3078 	}
3079 }
3080 
3081 static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc,
3082 	uint64_t offset, int size)
3083 {
3084 	uint64_t value;
3085 
3086 	pci_nvme_bar0_reg_dumps(__func__, offset, 0);
3087 
3088 	if (offset < NVME_DOORBELL_OFFSET) {
3089 		void *p = &(sc->regs);
3090 		pthread_mutex_lock(&sc->mtx);
3091 		memcpy(&value, (void *)((uintptr_t)p + offset), size);
3092 		pthread_mutex_unlock(&sc->mtx);
3093 	} else {
3094 		value = 0;
3095                 WPRINTF("pci_nvme: read invalid offset %ld", offset);
3096 	}
3097 
3098 	switch (size) {
3099 	case 1:
3100 		value &= 0xFF;
3101 		break;
3102 	case 2:
3103 		value &= 0xFFFF;
3104 		break;
3105 	case 4:
3106 		value &= 0xFFFFFFFF;
3107 		break;
3108 	}
3109 
3110 	DPRINTF("   nvme-read offset 0x%lx, size %d -> value 0x%x",
3111 	         offset, size, (uint32_t)value);
3112 
3113 	return (value);
3114 }
3115 
3116 
3117 
3118 static uint64_t
3119 pci_nvme_read(struct vmctx *ctx __unused, int vcpu __unused,
3120     struct pci_devinst *pi, int baridx, uint64_t offset, int size)
3121 {
3122 	struct pci_nvme_softc* sc = pi->pi_arg;
3123 
3124 	if (baridx == pci_msix_table_bar(pi) ||
3125 	    baridx == pci_msix_pba_bar(pi)) {
3126 		DPRINTF("nvme-read bar: %d, msix: regoff 0x%lx, size %d",
3127 		        baridx, offset, size);
3128 
3129 		return pci_emul_msix_tread(pi, offset, size);
3130 	}
3131 
3132 	switch (baridx) {
3133 	case 0:
3134        		return pci_nvme_read_bar_0(sc, offset, size);
3135 
3136 	default:
3137 		DPRINTF("unknown bar %d, 0x%lx", baridx, offset);
3138 	}
3139 
3140 	return (0);
3141 }
3142 
3143 static int
3144 pci_nvme_parse_config(struct pci_nvme_softc *sc, nvlist_t *nvl)
3145 {
3146 	char bident[sizeof("XX:X:X")];
3147 	const char *value;
3148 	uint32_t sectsz;
3149 
3150 	sc->max_queues = NVME_QUEUES;
3151 	sc->max_qentries = NVME_MAX_QENTRIES;
3152 	sc->ioslots = NVME_IOSLOTS;
3153 	sc->num_squeues = sc->max_queues;
3154 	sc->num_cqueues = sc->max_queues;
3155 	sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
3156 	sectsz = 0;
3157 	snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn),
3158 	         "NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3159 
3160 	value = get_config_value_node(nvl, "maxq");
3161 	if (value != NULL)
3162 		sc->max_queues = atoi(value);
3163 	value = get_config_value_node(nvl, "qsz");
3164 	if (value != NULL) {
3165 		sc->max_qentries = atoi(value);
3166 		if (sc->max_qentries <= 0) {
3167 			EPRINTLN("nvme: Invalid qsz option %d",
3168 			    sc->max_qentries);
3169 			return (-1);
3170 		}
3171 	}
3172 	value = get_config_value_node(nvl, "ioslots");
3173 	if (value != NULL) {
3174 		sc->ioslots = atoi(value);
3175 		if (sc->ioslots <= 0) {
3176 			EPRINTLN("Invalid ioslots option %d", sc->ioslots);
3177 			return (-1);
3178 		}
3179 	}
3180 	value = get_config_value_node(nvl, "sectsz");
3181 	if (value != NULL)
3182 		sectsz = atoi(value);
3183 	value = get_config_value_node(nvl, "ser");
3184 	if (value != NULL) {
3185 		/*
3186 		 * This field indicates the Product Serial Number in
3187 		 * 7-bit ASCII, unused bytes should be space characters.
3188 		 * Ref: NVMe v1.3c.
3189 		 */
3190 		cpywithpad((char *)sc->ctrldata.sn,
3191 		    sizeof(sc->ctrldata.sn), value, ' ');
3192 	}
3193 	value = get_config_value_node(nvl, "eui64");
3194 	if (value != NULL)
3195 		sc->nvstore.eui64 = htobe64(strtoull(value, NULL, 0));
3196 	value = get_config_value_node(nvl, "dsm");
3197 	if (value != NULL) {
3198 		if (strcmp(value, "auto") == 0)
3199 			sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
3200 		else if (strcmp(value, "enable") == 0)
3201 			sc->dataset_management = NVME_DATASET_MANAGEMENT_ENABLE;
3202 		else if (strcmp(value, "disable") == 0)
3203 			sc->dataset_management = NVME_DATASET_MANAGEMENT_DISABLE;
3204 	}
3205 
3206 	value = get_config_value_node(nvl, "ram");
3207 	if (value != NULL) {
3208 		uint64_t sz = strtoull(value, NULL, 10);
3209 
3210 		sc->nvstore.type = NVME_STOR_RAM;
3211 		sc->nvstore.size = sz * 1024 * 1024;
3212 		sc->nvstore.ctx = calloc(1, sc->nvstore.size);
3213 		sc->nvstore.sectsz = 4096;
3214 		sc->nvstore.sectsz_bits = 12;
3215 		if (sc->nvstore.ctx == NULL) {
3216 			EPRINTLN("nvme: Unable to allocate RAM");
3217 			return (-1);
3218 		}
3219 	} else {
3220 		snprintf(bident, sizeof(bident), "%d:%d",
3221 		    sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3222 		sc->nvstore.ctx = blockif_open(nvl, bident);
3223 		if (sc->nvstore.ctx == NULL) {
3224 			EPRINTLN("nvme: Could not open backing file: %s",
3225 			    strerror(errno));
3226 			return (-1);
3227 		}
3228 		sc->nvstore.type = NVME_STOR_BLOCKIF;
3229 		sc->nvstore.size = blockif_size(sc->nvstore.ctx);
3230 	}
3231 
3232 	if (sectsz == 512 || sectsz == 4096 || sectsz == 8192)
3233 		sc->nvstore.sectsz = sectsz;
3234 	else if (sc->nvstore.type != NVME_STOR_RAM)
3235 		sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx);
3236 	for (sc->nvstore.sectsz_bits = 9;
3237 	     (1 << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz;
3238 	     sc->nvstore.sectsz_bits++);
3239 
3240 	if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES)
3241 		sc->max_queues = NVME_QUEUES;
3242 
3243 	return (0);
3244 }
3245 
3246 static void
3247 pci_nvme_resized(struct blockif_ctxt *bctxt __unused, void *arg,
3248     size_t new_size)
3249 {
3250 	struct pci_nvme_softc *sc;
3251 	struct pci_nvme_blockstore *nvstore;
3252 	struct nvme_namespace_data *nd;
3253 
3254 	sc = arg;
3255 	nvstore = &sc->nvstore;
3256 	nd = &sc->nsdata;
3257 
3258 	nvstore->size = new_size;
3259 	pci_nvme_init_nsdata_size(nvstore, nd);
3260 
3261 	/* Add changed NSID to list */
3262 	sc->ns_log.ns[0] = 1;
3263 	sc->ns_log.ns[1] = 0;
3264 
3265 	pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_NOTICE,
3266 	    PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED);
3267 }
3268 
3269 static int
3270 pci_nvme_init(struct vmctx *ctx __unused, struct pci_devinst *pi, nvlist_t *nvl)
3271 {
3272 	struct pci_nvme_softc *sc;
3273 	uint32_t pci_membar_sz;
3274 	int	error;
3275 
3276 	error = 0;
3277 
3278 	sc = calloc(1, sizeof(struct pci_nvme_softc));
3279 	pi->pi_arg = sc;
3280 	sc->nsc_pi = pi;
3281 
3282 	error = pci_nvme_parse_config(sc, nvl);
3283 	if (error < 0)
3284 		goto done;
3285 	else
3286 		error = 0;
3287 
3288 	STAILQ_INIT(&sc->ioreqs_free);
3289 	sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq));
3290 	for (uint32_t i = 0; i < sc->ioslots; i++) {
3291 		STAILQ_INSERT_TAIL(&sc->ioreqs_free, &sc->ioreqs[i], link);
3292 	}
3293 
3294 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A);
3295 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D);
3296 	pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE);
3297 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM);
3298 	pci_set_cfgdata8(pi, PCIR_PROGIF,
3299 	                 PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0);
3300 
3301 	/*
3302 	 * Allocate size of NVMe registers + doorbell space for all queues.
3303 	 *
3304 	 * The specification requires a minimum memory I/O window size of 16K.
3305 	 * The Windows driver will refuse to start a device with a smaller
3306 	 * window.
3307 	 */
3308 	pci_membar_sz = sizeof(struct nvme_registers) +
3309 	    2 * sizeof(uint32_t) * (sc->max_queues + 1);
3310 	pci_membar_sz = MAX(pci_membar_sz, NVME_MMIO_SPACE_MIN);
3311 
3312 	DPRINTF("nvme membar size: %u", pci_membar_sz);
3313 
3314 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz);
3315 	if (error) {
3316 		WPRINTF("%s pci alloc mem bar failed", __func__);
3317 		goto done;
3318 	}
3319 
3320 	error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR);
3321 	if (error) {
3322 		WPRINTF("%s pci add msixcap failed", __func__);
3323 		goto done;
3324 	}
3325 
3326 	error = pci_emul_add_pciecap(pi, PCIEM_TYPE_ROOT_INT_EP);
3327 	if (error) {
3328 		WPRINTF("%s pci add Express capability failed", __func__);
3329 		goto done;
3330 	}
3331 
3332 	pthread_mutex_init(&sc->mtx, NULL);
3333 	sem_init(&sc->iosemlock, 0, sc->ioslots);
3334 	blockif_register_resize_callback(sc->nvstore.ctx, pci_nvme_resized, sc);
3335 
3336 	pci_nvme_init_queues(sc, sc->max_queues, sc->max_queues);
3337 	/*
3338 	 * Controller data depends on Namespace data so initialize Namespace
3339 	 * data first.
3340 	 */
3341 	pci_nvme_init_nsdata(sc, &sc->nsdata, 1, &sc->nvstore);
3342 	pci_nvme_init_ctrldata(sc);
3343 	pci_nvme_init_logpages(sc);
3344 	pci_nvme_init_features(sc);
3345 
3346 	pci_nvme_aer_init(sc);
3347 	pci_nvme_aen_init(sc);
3348 
3349 	pci_nvme_reset(sc);
3350 
3351 	pci_lintr_request(pi);
3352 
3353 done:
3354 	return (error);
3355 }
3356 
3357 static int
3358 pci_nvme_legacy_config(nvlist_t *nvl, const char *opts)
3359 {
3360 	char *cp, *ram;
3361 
3362 	if (opts == NULL)
3363 		return (0);
3364 
3365 	if (strncmp(opts, "ram=", 4) == 0) {
3366 		cp = strchr(opts, ',');
3367 		if (cp == NULL) {
3368 			set_config_value_node(nvl, "ram", opts + 4);
3369 			return (0);
3370 		}
3371 		ram = strndup(opts + 4, cp - opts - 4);
3372 		set_config_value_node(nvl, "ram", ram);
3373 		free(ram);
3374 		return (pci_parse_legacy_config(nvl, cp + 1));
3375 	} else
3376 		return (blockif_legacy_config(nvl, opts));
3377 }
3378 
3379 static const struct pci_devemu pci_de_nvme = {
3380 	.pe_emu =	"nvme",
3381 	.pe_init =	pci_nvme_init,
3382 	.pe_legacy_config = pci_nvme_legacy_config,
3383 	.pe_barwrite =	pci_nvme_write,
3384 	.pe_barread =	pci_nvme_read
3385 };
3386 PCI_EMUL_SET(pci_de_nvme);
3387