xref: /freebsd/usr.sbin/pmcstat/pmcpl_calltree.c (revision 3157ba21)
1 /*-
2  * Copyright (c) 2009, Fabien Thomas
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Process hwpmc(4) samples as calltree.
29  *
30  * Output file format compatible with Kcachegrind (kdesdk).
31  * Handle top mode with a sorted tree display.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/endian.h>
39 #include <sys/queue.h>
40 
41 #include <assert.h>
42 #include <curses.h>
43 #include <ctype.h>
44 #include <err.h>
45 #include <errno.h>
46 #include <fcntl.h>
47 #include <pmc.h>
48 #include <pmclog.h>
49 #include <sysexits.h>
50 #include <stdint.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 #include <sysexits.h>
56 
57 #include "pmcstat.h"
58 #include "pmcstat_log.h"
59 #include "pmcstat_top.h"
60 #include "pmcpl_calltree.h"
61 
62 #define PMCPL_CT_GROWSIZE	4
63 
64 static pmcstat_interned_string pmcpl_ct_prevfn;
65 
66 static int pmcstat_skiplink = 0;
67 
68 struct pmcpl_ct_node;
69 
70 /* Get the sample value for PMC a. */
71 #define PMCPL_CT_SAMPLE(a, b) \
72 	((a) < (b)->npmcs ? (b)->sb[a] : 0)
73 
74 /* Get the sample value in percent related to rsamples. */
75 #define PMCPL_CT_SAMPLEP(a, b) \
76 	(PMCPL_CT_SAMPLE(a, b) * 100.0 / rsamples->sb[a])
77 
78 struct pmcpl_ct_sample {
79 	int		npmcs;		/* Max pmc index available. */
80 	unsigned	*sb;		/* Sample buffer for 0..npmcs. */
81 };
82 
83 struct pmcpl_ct_arc {
84 	struct pmcpl_ct_sample	pcta_samples;
85 	struct pmcpl_ct_sample	pcta_callid;
86 	unsigned		pcta_call;
87 	struct pmcpl_ct_node	*pcta_child;
88 };
89 
90 struct pmcpl_ct_instr {
91 	uintfptr_t		pctf_func;
92 	struct pmcpl_ct_sample	pctf_samples;
93 };
94 
95 /*
96  * Each calltree node is tracked by a pmcpl_ct_node struct.
97  */
98 struct pmcpl_ct_node {
99 #define PMCPL_PCT_TAG	0x00000001	/* Loop detection. */
100 	uint32_t		pct_flags;
101 	struct pmcstat_image	*pct_image;
102 	uintfptr_t		pct_func;
103 	struct pmcpl_ct_sample	pct_samples;
104 
105 	int			pct_narc;
106 	int			pct_arc_c;
107 	struct pmcpl_ct_arc 	*pct_arc;
108 
109 	/* TODO: optimize for large number of items. */
110 	int			pct_ninstr;
111 	int			pct_instr_c;
112 	struct pmcpl_ct_instr	*pct_instr;
113 };
114 
115 struct pmcpl_ct_node_hash {
116 	struct pmcpl_ct_node  *pch_ctnode;
117 	LIST_ENTRY(pmcpl_ct_node_hash) pch_next;
118 };
119 
120 struct pmcpl_ct_sample pmcpl_ct_callid;
121 
122 #define PMCPL_CT_MAXCOL		PMC_CALLCHAIN_DEPTH_MAX
123 #define PMCPL_CT_MAXLINE	1024	/* TODO: dynamic. */
124 
125 struct pmcpl_ct_line {
126 	unsigned	ln_sum;
127 	unsigned	ln_index;
128 };
129 
130 struct pmcpl_ct_line	pmcpl_ct_topmax[PMCPL_CT_MAXLINE+1];
131 struct pmcpl_ct_node	*pmcpl_ct_topscreen[PMCPL_CT_MAXCOL+1][PMCPL_CT_MAXLINE+1];
132 
133 /*
134  * All nodes indexed by function/image name are placed in a hash table.
135  */
136 static LIST_HEAD(,pmcpl_ct_node_hash) pmcpl_ct_node_hash[PMCSTAT_NHASH];
137 
138 /*
139  * Root node for the graph.
140  */
141 static struct pmcpl_ct_node *pmcpl_ct_root;
142 
143 /*
144  * Prototypes
145  */
146 
147 /*
148  * Initialize a samples.
149  */
150 
151 static void
152 pmcpl_ct_samples_init(struct pmcpl_ct_sample *samples)
153 {
154 
155 	samples->npmcs = 0;
156 	samples->sb = NULL;
157 }
158 
159 /*
160  * Free a samples.
161  */
162 
163 static void
164 pmcpl_ct_samples_free(struct pmcpl_ct_sample *samples)
165 {
166 
167 	samples->npmcs = 0;
168 	free(samples->sb);
169 	samples->sb = NULL;
170 }
171 
172 /*
173  * Grow a sample block to store pmcstat_npmcs PMCs.
174  */
175 
176 static void
177 pmcpl_ct_samples_grow(struct pmcpl_ct_sample *samples)
178 {
179 	int npmcs;
180 
181 	/* Enough storage. */
182 	if (pmcstat_npmcs <= samples->npmcs)
183                 return;
184 
185 	npmcs = samples->npmcs +
186 	    max(pmcstat_npmcs - samples->npmcs, PMCPL_CT_GROWSIZE);
187 	samples->sb = realloc(samples->sb, npmcs * sizeof(unsigned));
188 	if (samples->sb == NULL)
189 		errx(EX_SOFTWARE, "ERROR: out of memory");
190 	bzero((char *)samples->sb + samples->npmcs * sizeof(unsigned),
191 	    (npmcs - samples->npmcs) * sizeof(unsigned));
192 	samples->npmcs = npmcs;
193 }
194 
195 /*
196  * Compute the sum of all root arcs.
197  */
198 
199 static void
200 pmcpl_ct_samples_root(struct pmcpl_ct_sample *samples)
201 {
202 	int i, pmcin;
203 
204 	pmcpl_ct_samples_init(samples);
205 	pmcpl_ct_samples_grow(samples);
206 
207 	for (i = 0; i < pmcpl_ct_root->pct_narc; i++)
208 		for (pmcin = 0; pmcin < pmcstat_npmcs; pmcin++)
209 			samples->sb[pmcin] += PMCPL_CT_SAMPLE(pmcin,
210 			    &pmcpl_ct_root->pct_arc[i].pcta_samples);
211 }
212 
213 /*
214  * Grow the arc table.
215  */
216 
217 static void
218 pmcpl_ct_arc_grow(int cursize, int *maxsize, struct pmcpl_ct_arc **items)
219 {
220 	int nmaxsize;
221 
222 	if (cursize < *maxsize)
223 		return;
224 
225 	nmaxsize = *maxsize + max(cursize + 1 - *maxsize, PMCPL_CT_GROWSIZE);
226 	*items = realloc(*items, nmaxsize * sizeof(struct pmcpl_ct_arc));
227 	if (*items == NULL)
228 		errx(EX_SOFTWARE, "ERROR: out of memory");
229 	bzero((char *)*items + *maxsize * sizeof(struct pmcpl_ct_arc),
230 	    (nmaxsize - *maxsize) * sizeof(struct pmcpl_ct_arc));
231 	*maxsize = nmaxsize;
232 }
233 
234 /*
235  * Grow the instr table.
236  */
237 
238 static void
239 pmcpl_ct_instr_grow(int cursize, int *maxsize, struct pmcpl_ct_instr **items)
240 {
241 	int nmaxsize;
242 
243 	if (cursize < *maxsize)
244 		return;
245 
246 	nmaxsize = *maxsize + max(cursize + 1 - *maxsize, PMCPL_CT_GROWSIZE);
247 	*items = realloc(*items, nmaxsize * sizeof(struct pmcpl_ct_instr));
248 	if (*items == NULL)
249 		errx(EX_SOFTWARE, "ERROR: out of memory");
250 	bzero((char *)*items + *maxsize * sizeof(struct pmcpl_ct_instr),
251 	    (nmaxsize - *maxsize) * sizeof(struct pmcpl_ct_instr));
252 	*maxsize = nmaxsize;
253 }
254 
255 /*
256  * Add a new instruction sample to given node.
257  */
258 
259 static void
260 pmcpl_ct_instr_add(struct pmcpl_ct_node *ct, int pmcin, uintfptr_t pc)
261 {
262 	int i;
263 	struct pmcpl_ct_instr *in;
264 
265 	for (i = 0; i<ct->pct_ninstr; i++) {
266 		if (ct->pct_instr[i].pctf_func == pc) {
267 			in = &ct->pct_instr[i];
268 			pmcpl_ct_samples_grow(&in->pctf_samples);
269 			in->pctf_samples.sb[pmcin]++;
270 			return;
271 		}
272 	}
273 
274 	pmcpl_ct_instr_grow(ct->pct_ninstr, &ct->pct_instr_c, &ct->pct_instr);
275 	in = &ct->pct_instr[ct->pct_ninstr];
276 	in->pctf_func = pc;
277 	pmcpl_ct_samples_init(&in->pctf_samples);
278 	pmcpl_ct_samples_grow(&in->pctf_samples);
279 	in->pctf_samples.sb[pmcin] = 1;
280 	ct->pct_ninstr++;
281 }
282 
283 /*
284  * Allocate a new node.
285  */
286 
287 static struct pmcpl_ct_node *
288 pmcpl_ct_node_allocate(struct pmcstat_image *image, uintfptr_t pc)
289 {
290 	struct pmcpl_ct_node *ct;
291 
292 	if ((ct = malloc(sizeof(*ct))) == NULL)
293 		err(EX_OSERR, "ERROR: Cannot allocate callgraph node");
294 
295 	ct->pct_flags	= 0;
296 	ct->pct_image 	= image;
297 	ct->pct_func	= pc;
298 
299 	pmcpl_ct_samples_init(&ct->pct_samples);
300 
301 	ct->pct_narc	= 0;
302 	ct->pct_arc_c	= 0;
303 	ct->pct_arc	= NULL;
304 
305 	ct->pct_ninstr	= 0;
306 	ct->pct_instr_c	= 0;
307 	ct->pct_instr	= NULL;
308 
309 	return (ct);
310 }
311 
312 /*
313  * Free a node.
314  */
315 
316 static void
317 pmcpl_ct_node_free(struct pmcpl_ct_node *ct)
318 {
319 	int i;
320 
321 	for (i = 0; i < ct->pct_narc; i++) {
322 		pmcpl_ct_samples_free(&ct->pct_arc[i].pcta_samples);
323 		pmcpl_ct_samples_free(&ct->pct_arc[i].pcta_callid);
324 	}
325 
326 	pmcpl_ct_samples_free(&ct->pct_samples);
327 	free(ct->pct_arc);
328 	free(ct->pct_instr);
329 	free(ct);
330 }
331 
332 /*
333  * Clear the graph tag on each node.
334  */
335 static void
336 pmcpl_ct_node_cleartag(void)
337 {
338 	int i;
339 	struct pmcpl_ct_node_hash *pch;
340 
341 	for (i = 0; i < PMCSTAT_NHASH; i++)
342 		LIST_FOREACH(pch, &pmcpl_ct_node_hash[i], pch_next)
343 			pch->pch_ctnode->pct_flags &= ~PMCPL_PCT_TAG;
344 
345 	pmcpl_ct_root->pct_flags &= ~PMCPL_PCT_TAG;
346 }
347 
348 /*
349  * Print the callchain line by line with maximum cost at top.
350  */
351 
352 static int
353 pmcpl_ct_node_dumptop(int pmcin, struct pmcpl_ct_node *ct,
354     struct pmcpl_ct_sample *rsamples, int x, int *y)
355 {
356 	int i, terminal;
357 
358 	if (ct->pct_flags & PMCPL_PCT_TAG)
359 		return 0;
360 
361 	ct->pct_flags |= PMCPL_PCT_TAG;
362 
363 	if (x >= PMCPL_CT_MAXCOL) {
364 		pmcpl_ct_topscreen[x][*y] = NULL;
365 		return 1;
366 	}
367 	pmcpl_ct_topscreen[x][*y] = ct;
368 
369 	/*
370 	 * Check if this is a terminal node.
371 	 * We need to check that some samples exist
372 	 * for at least one arc for that PMC.
373 	 */
374 	terminal = 1;
375 	for (i = 0; i < ct->pct_narc; i++)
376 		if (PMCPL_CT_SAMPLE(pmcin,
377 		    &ct->pct_arc[i].pcta_samples) != 0) {
378 			terminal = 0;
379 			break;
380 		}
381 
382 	if (ct->pct_narc == 0 || terminal) {
383 		pmcpl_ct_topscreen[x+1][*y] = NULL;
384 		if (*y >= PMCPL_CT_MAXLINE)
385 			return 1;
386 		*y = *y + 1;
387 		for (i=0; i < x; i++)
388 			pmcpl_ct_topscreen[i][*y] =
389 			    pmcpl_ct_topscreen[i][*y - 1];
390 		return 0;
391 	}
392 
393 	for (i = 0; i < ct->pct_narc; i++) {
394 		if (PMCPL_CT_SAMPLE(pmcin,
395 		    &ct->pct_arc[i].pcta_samples) == 0)
396 			continue;
397 		if (PMCPL_CT_SAMPLEP(pmcin,
398 		    &ct->pct_arc[i].pcta_samples) > pmcstat_threshold) {
399 			if (pmcpl_ct_node_dumptop(pmcin,
400 			        ct->pct_arc[i].pcta_child,
401 			        rsamples, x+1, y))
402 				return 1;
403 		}
404 	}
405 
406 	return 0;
407 }
408 
409 /*
410  * Compare two top line by sum.
411  */
412 static int
413 pmcpl_ct_line_compare(const void *a, const void *b)
414 {
415 	const struct pmcpl_ct_line *ct1, *ct2;
416 
417 	ct1 = (const struct pmcpl_ct_line *) a;
418 	ct2 = (const struct pmcpl_ct_line *) b;
419 
420 	/* Sort in reverse order */
421 	if (ct1->ln_sum < ct2->ln_sum)
422 		return (1);
423 	if (ct1->ln_sum > ct2->ln_sum)
424 		return (-1);
425 	return (0);
426 }
427 
428 /*
429  * Format and display given PMC index.
430  */
431 
432 static void
433 pmcpl_ct_node_printtop(struct pmcpl_ct_sample *rsamples, int pmcin, int maxy)
434 {
435 #undef	TS
436 #undef	TSI
437 #define	TS(x, y)	(pmcpl_ct_topscreen[x][y])
438 #define	TSI(x, y)	(pmcpl_ct_topscreen[x][pmcpl_ct_topmax[y].ln_index])
439 
440 	int v_attrs, ns_len, vs_len, is_len, width, indentwidth, x, y;
441 	float v;
442 	char ns[30], vs[10], is[20];
443 	struct pmcpl_ct_node *ct;
444 	struct pmcstat_symbol *sym;
445 	const char *space = " ";
446 
447 	/*
448 	 * Sort by line cost.
449 	 */
450 	for (y = 0; ; y++) {
451 		ct = TS(1, y);
452 		if (ct == NULL)
453 			break;
454 
455 		pmcpl_ct_topmax[y].ln_sum = 0;
456 		pmcpl_ct_topmax[y].ln_index = y;
457 		for (x = 1; TS(x, y) != NULL; x++) {
458 			pmcpl_ct_topmax[y].ln_sum +=
459 			    PMCPL_CT_SAMPLE(pmcin, &TS(x, y)->pct_samples);
460 		}
461 	}
462 	qsort(pmcpl_ct_topmax, y, sizeof(pmcpl_ct_topmax[0]),
463 	    pmcpl_ct_line_compare);
464 	pmcpl_ct_topmax[y].ln_index = y;
465 
466 	for (y = 0; y < maxy; y++) {
467 		ct = TSI(1, y);
468 		if (ct == NULL)
469 			break;
470 
471 		if (y > 0)
472 			PMCSTAT_PRINTW("\n");
473 
474 		/* Output sum. */
475 		v = pmcpl_ct_topmax[y].ln_sum * 100.0 /
476 		    rsamples->sb[pmcin];
477 		snprintf(vs, sizeof(vs), "%.1f", v);
478 		v_attrs = PMCSTAT_ATTRPERCENT(v);
479 		PMCSTAT_ATTRON(v_attrs);
480 		PMCSTAT_PRINTW("%5.5s ", vs);
481 		PMCSTAT_ATTROFF(v_attrs);
482 
483 		width = indentwidth = 5 + 1;
484 
485 		for (x = 1; (ct = TSI(x, y)) != NULL; x++) {
486 
487 			vs[0] = '\0'; vs_len = 0;
488 			is[0] = '\0'; is_len = 0;
489 
490 			/* Format value. */
491 			v = PMCPL_CT_SAMPLEP(pmcin, &ct->pct_samples);
492 			if (v > pmcstat_threshold)
493 				vs_len  = snprintf(vs, sizeof(vs),
494 				    "(%.1f%%)", v);
495 			v_attrs = PMCSTAT_ATTRPERCENT(v);
496 
497 			if (pmcstat_skiplink && v <= pmcstat_threshold) {
498 				strlcpy(ns, ".", sizeof(ns));
499 				ns_len = 1;
500 			} else {
501 			sym = pmcstat_symbol_search(ct->pct_image, ct->pct_func);
502 			if (sym != NULL) {
503 				ns_len = snprintf(ns, sizeof(ns), "%s",
504 				    pmcstat_string_unintern(sym->ps_name));
505 			} else
506 				ns_len = snprintf(ns, sizeof(ns), "%p",
507 				    (void *)ct->pct_func);
508 
509 			/* Format image. */
510 			if (x == 1 ||
511 			    TSI(x-1, y)->pct_image != ct->pct_image)
512 				is_len = snprintf(is, sizeof(is), "@%s",
513 				    pmcstat_string_unintern(ct->pct_image->pi_name));
514 
515 			/* Check for line wrap. */
516 			width += ns_len + is_len + vs_len + 1;
517 			}
518 			if (width >= pmcstat_displaywidth) {
519 				maxy--;
520 				if (y >= maxy)
521 					break;
522 				PMCSTAT_PRINTW("\n%*s", indentwidth, space);
523 				width = indentwidth + ns_len + is_len + vs_len;
524 			}
525 
526 			PMCSTAT_ATTRON(v_attrs);
527 			PMCSTAT_PRINTW("%s%s%s ", ns, is, vs);
528 			PMCSTAT_ATTROFF(v_attrs);
529 		}
530 	}
531 }
532 
533 /*
534  * Output top mode snapshot.
535  */
536 
537 void
538 pmcpl_ct_topdisplay(void)
539 {
540 	int y;
541 	struct pmcpl_ct_sample r, *rsamples;
542 
543 	rsamples = &r;
544 	pmcpl_ct_samples_root(rsamples);
545 
546 	pmcpl_ct_node_cleartag();
547 
548 	PMCSTAT_PRINTW("%5.5s %s\n", "%SAMP", "CALLTREE");
549 
550 	y = 0;
551 	if (pmcpl_ct_node_dumptop(pmcstat_pmcinfilter,
552 	    pmcpl_ct_root, rsamples, 0, &y))
553 		PMCSTAT_PRINTW("...\n");
554 	pmcpl_ct_topscreen[1][y] = NULL;
555 
556 	pmcpl_ct_node_printtop(rsamples,
557 	    pmcstat_pmcinfilter, pmcstat_displayheight - 2);
558 
559 	pmcpl_ct_samples_free(rsamples);
560 }
561 
562 /*
563  * Handle top mode keypress.
564  */
565 
566 int
567 pmcpl_ct_topkeypress(int c, WINDOW *w)
568 {
569 
570 	switch (c) {
571 	case 'f':
572 		pmcstat_skiplink = !pmcstat_skiplink;
573 		wprintw(w, "skip empty link %s", pmcstat_skiplink ? "on" : "off");
574 		break;
575 	}
576 
577 	return 0;
578 }
579 
580 /*
581  * Look for a callgraph node associated with pmc `pmcid' in the global
582  * hash table that corresponds to the given `pc' value in the process map
583  * `ppm'.
584  */
585 
586 static struct pmcpl_ct_node *
587 pmcpl_ct_node_hash_lookup_pc(struct pmcpl_ct_node *parent,
588     struct pmcstat_pcmap *ppm, uintfptr_t pc, int pmcin)
589 {
590 	struct pmcstat_symbol *sym;
591 	struct pmcstat_image *image;
592 	struct pmcpl_ct_node *ct;
593 	struct pmcpl_ct_node_hash *h;
594 	struct pmcpl_ct_arc *arc;
595 	uintfptr_t loadaddress;
596 	int i;
597 	unsigned int hash;
598 
599 	assert(parent != NULL);
600 
601 	image = ppm->ppm_image;
602 
603 	loadaddress = ppm->ppm_lowpc + image->pi_vaddr - image->pi_start;
604 	pc -= loadaddress;	/* Convert to an offset in the image. */
605 
606 	/*
607 	 * Try determine the function at this offset.  If we can't
608 	 * find a function round leave the `pc' value alone.
609 	 */
610 	if ((sym = pmcstat_symbol_search(image, pc)) != NULL)
611 		pc = sym->ps_start;
612 
613 	for (hash = i = 0; i < (int)sizeof(uintfptr_t); i++)
614 		hash += (pc >> i) & 0xFF;
615 
616 	hash &= PMCSTAT_HASH_MASK;
617 
618 	ct = NULL;
619 	LIST_FOREACH(h, &pmcpl_ct_node_hash[hash], pch_next) {
620 		ct = h->pch_ctnode;
621 
622 		assert(ct != NULL);
623 
624 		if (ct->pct_image == image && ct->pct_func == pc) {
625 			/*
626 			 * Find related arc in parent node and
627 			 * increment the sample count.
628 			 */
629 			for (i = 0; i < parent->pct_narc; i++) {
630 				if (parent->pct_arc[i].pcta_child == ct) {
631 					arc = &parent->pct_arc[i];
632 					pmcpl_ct_samples_grow(&arc->pcta_samples);
633 					arc->pcta_samples.sb[pmcin]++;
634 					/* Estimate call count. */
635 					pmcpl_ct_samples_grow(&arc->pcta_callid);
636 					if (pmcpl_ct_callid.sb[pmcin] -
637 					    arc->pcta_callid.sb[pmcin] > 1)
638 						arc->pcta_call++;
639 					arc->pcta_callid.sb[pmcin] =
640 					    pmcpl_ct_callid.sb[pmcin];
641 					return (ct);
642 				}
643 			}
644 
645 			/*
646 			 * No arc found for us, add ourself to the parent.
647 			 */
648 			pmcpl_ct_arc_grow(parent->pct_narc,
649 			    &parent->pct_arc_c, &parent->pct_arc);
650 			arc = &parent->pct_arc[parent->pct_narc];
651 			pmcpl_ct_samples_grow(&arc->pcta_samples);
652 			arc->pcta_samples.sb[pmcin] = 1;
653 			arc->pcta_call = 1;
654 			pmcpl_ct_samples_grow(&arc->pcta_callid);
655 			arc->pcta_callid.sb[pmcin] = pmcpl_ct_callid.sb[pmcin];
656 			arc->pcta_child = ct;
657 			parent->pct_narc++;
658 			return (ct);
659 		}
660 	}
661 
662 	/*
663 	 * We haven't seen this (pmcid, pc) tuple yet, so allocate a
664 	 * new callgraph node and a new hash table entry for it.
665 	 */
666 	ct = pmcpl_ct_node_allocate(image, pc);
667 	if ((h = malloc(sizeof(*h))) == NULL)
668 		err(EX_OSERR, "ERROR: Could not allocate callgraph node");
669 
670 	h->pch_ctnode = ct;
671 	LIST_INSERT_HEAD(&pmcpl_ct_node_hash[hash], h, pch_next);
672 
673 	pmcpl_ct_arc_grow(parent->pct_narc,
674 	    &parent->pct_arc_c, &parent->pct_arc);
675 	arc = &parent->pct_arc[parent->pct_narc];
676 	pmcpl_ct_samples_grow(&arc->pcta_samples);
677 	arc->pcta_samples.sb[pmcin] = 1;
678 	arc->pcta_call = 1;
679 	pmcpl_ct_samples_grow(&arc->pcta_callid);
680 	arc->pcta_callid.sb[pmcin] = pmcpl_ct_callid.sb[pmcin];
681 	arc->pcta_child = ct;
682 	parent->pct_narc++;
683 	return (ct);
684 }
685 
686 /*
687  * Record a callchain.
688  */
689 
690 void
691 pmcpl_ct_process(struct pmcstat_process *pp, struct pmcstat_pmcrecord *pmcr,
692     uint32_t nsamples, uintfptr_t *cc, int usermode, uint32_t cpu)
693 {
694 	int n, pmcin;
695 	struct pmcstat_pcmap *ppm[PMC_CALLCHAIN_DEPTH_MAX];
696 	struct pmcstat_process *km;
697 	struct pmcpl_ct_node *parent, *child;
698 
699 	(void) cpu;
700 
701 	assert(nsamples>0 && nsamples<=PMC_CALLCHAIN_DEPTH_MAX);
702 
703 	/* Get the PMC index. */
704 	pmcin = pmcr->pr_pmcin;
705 
706 	/*
707 	 * Validate mapping for the callchain.
708 	 * Go from bottom to first invalid entry.
709 	 */
710 	km = pmcstat_kernproc;
711 	for (n = 0; n < (int)nsamples; n++) {
712 		ppm[n] = pmcstat_process_find_map(usermode ?
713 		    pp : km, cc[n]);
714 		if (ppm[n] == NULL) {
715 			/* Detect full frame capture (kernel + user). */
716 			if (!usermode) {
717 				ppm[n] = pmcstat_process_find_map(pp, cc[n]);
718 				if (ppm[n] != NULL)
719 					km = pp;
720 			}
721 		}
722 		if (ppm[n] == NULL)
723 			break;
724 	}
725 	if (n-- == 0) {
726 		pmcstat_stats.ps_callchain_dubious_frames++;
727 		pmcr->pr_dubious_frames++;
728 		return;
729 	}
730 
731 	/* Increase the call generation counter. */
732 	pmcpl_ct_samples_grow(&pmcpl_ct_callid);
733 	pmcpl_ct_callid.sb[pmcin]++;
734 
735 	/*
736 	 * Iterate remaining addresses.
737 	 */
738 	for (parent = pmcpl_ct_root, child = NULL; n >= 0; n--) {
739 		child = pmcpl_ct_node_hash_lookup_pc(parent, ppm[n], cc[n],
740 		    pmcin);
741 		if (child == NULL) {
742 			pmcstat_stats.ps_callchain_dubious_frames++;
743 			continue;
744 		}
745 		parent = child;
746 	}
747 
748 	/*
749 	 * Increment the sample count for this PMC.
750 	 */
751 	if (child != NULL) {
752 		pmcpl_ct_samples_grow(&child->pct_samples);
753 		child->pct_samples.sb[pmcin]++;
754 
755 		/* Update per instruction sample if required. */
756 		if (args.pa_ctdumpinstr)
757 			pmcpl_ct_instr_add(child, pmcin, cc[0] -
758 			    (ppm[0]->ppm_lowpc + ppm[0]->ppm_image->pi_vaddr -
759 			     ppm[0]->ppm_image->pi_start));
760 	}
761 }
762 
763 /*
764  * Print node self cost.
765  */
766 
767 static void
768 pmcpl_ct_node_printself(struct pmcpl_ct_node *ct)
769 {
770 	int i, j, line;
771 	uintptr_t addr;
772 	struct pmcstat_symbol *sym;
773 	char sourcefile[PATH_MAX];
774 	char funcname[PATH_MAX];
775 
776 	/*
777 	 * Object binary.
778 	 */
779 #ifdef PMCPL_CT_OPTIMIZEFN
780 	if (pmcpl_ct_prevfn != ct->pct_image->pi_fullpath) {
781 #endif
782 		pmcpl_ct_prevfn = ct->pct_image->pi_fullpath;
783 		fprintf(args.pa_graphfile, "ob=%s\n",
784 		    pmcstat_string_unintern(pmcpl_ct_prevfn));
785 #ifdef PMCPL_CT_OPTIMIZEFN
786 	}
787 #endif
788 
789 	/*
790 	 * Function name.
791 	 */
792 	if (pmcstat_image_addr2line(ct->pct_image, ct->pct_func,
793 	    sourcefile, sizeof(sourcefile), &line,
794 	    funcname, sizeof(funcname))) {
795 		fprintf(args.pa_graphfile, "fn=%s\n",
796 		    funcname);
797 	} else {
798 		sym = pmcstat_symbol_search(ct->pct_image, ct->pct_func);
799 		if (sym != NULL)
800 			fprintf(args.pa_graphfile, "fn=%s\n",
801 			    pmcstat_string_unintern(sym->ps_name));
802 		else
803 			fprintf(args.pa_graphfile, "fn=%p\n",
804 			    (void *)(ct->pct_image->pi_vaddr + ct->pct_func));
805 	}
806 
807 	/*
808 	 * Self cost.
809 	 */
810 	if (ct->pct_ninstr > 0) {
811 		for (i = 0; i < ct->pct_ninstr; i++) {
812 			addr = ct->pct_image->pi_vaddr +
813 			    ct->pct_instr[i].pctf_func;
814 			line = 0;
815 			if (pmcstat_image_addr2line(ct->pct_image, addr,
816 			    sourcefile, sizeof(sourcefile), &line,
817 			    funcname, sizeof(funcname)))
818 				fprintf(args.pa_graphfile, "fl=%s\n", sourcefile);
819 			fprintf(args.pa_graphfile, "%p %u", (void *)addr, line);
820 			for (j = 0; j<pmcstat_npmcs; j++)
821 				fprintf(args.pa_graphfile, " %u",
822 				    PMCPL_CT_SAMPLE(j,
823 				    &ct->pct_instr[i].pctf_samples));
824 			fprintf(args.pa_graphfile, "\n");
825 		}
826 	} else {
827 		addr = ct->pct_image->pi_vaddr + ct->pct_func;
828 		line = 0;
829 		if (pmcstat_image_addr2line(ct->pct_image, addr,
830 		    sourcefile, sizeof(sourcefile), &line,
831 		    funcname, sizeof(funcname)))
832 			fprintf(args.pa_graphfile, "fl=%s\n", sourcefile);
833 		fprintf(args.pa_graphfile, "* *");
834 		for (i = 0; i<pmcstat_npmcs ; i++)
835 			fprintf(args.pa_graphfile, " %u",
836 			    PMCPL_CT_SAMPLE(i, &ct->pct_samples));
837 		fprintf(args.pa_graphfile, "\n");
838 	}
839 }
840 
841 /*
842  * Print node child cost.
843  */
844 
845 static void
846 pmcpl_ct_node_printchild(struct pmcpl_ct_node *ct)
847 {
848 	int i, j, line;
849 	uintptr_t addr;
850 	struct pmcstat_symbol *sym;
851 	struct pmcpl_ct_node *child;
852 	char sourcefile[PATH_MAX];
853 	char funcname[PATH_MAX];
854 
855 	/*
856 	 * Child cost.
857 	 * TODO: attach child cost to the real position in the funtion.
858 	 * TODO: cfn=<fn> / call <ncall> addr(<fn>) / addr(call <fn>) <arccost>
859 	 */
860 	for (i=0 ; i<ct->pct_narc; i++) {
861 		child = ct->pct_arc[i].pcta_child;
862 
863 		/* Object binary. */
864 #ifdef PMCPL_CT_OPTIMIZEFN
865 		if (pmcpl_ct_prevfn != child->pct_image->pi_fullpath) {
866 #endif
867 			pmcpl_ct_prevfn = child->pct_image->pi_fullpath;
868 			fprintf(args.pa_graphfile, "cob=%s\n",
869 			    pmcstat_string_unintern(pmcpl_ct_prevfn));
870 #if PMCPL_CT_OPTIMIZEFN
871 		}
872 #endif
873 		/* Child function name. */
874 		addr = child->pct_image->pi_vaddr + child->pct_func;
875 		/* Child function source file. */
876 		if (pmcstat_image_addr2line(child->pct_image, addr,
877 		    sourcefile, sizeof(sourcefile), &line,
878 		    funcname, sizeof(funcname))) {
879 			fprintf(args.pa_graphfile, "cfn=%s\n", funcname);
880 			fprintf(args.pa_graphfile, "cfl=%s\n", sourcefile);
881 		} else {
882 			sym = pmcstat_symbol_search(child->pct_image,
883 			    child->pct_func);
884 			if (sym != NULL)
885 				fprintf(args.pa_graphfile, "cfn=%s\n",
886 				    pmcstat_string_unintern(sym->ps_name));
887 			else
888 				fprintf(args.pa_graphfile, "cfn=%p\n", (void *)addr);
889 		}
890 
891 		/* Child function address, line and call count. */
892 		fprintf(args.pa_graphfile, "calls=%u %p %u\n",
893 		    ct->pct_arc[i].pcta_call, (void *)addr, line);
894 
895 		if (ct->pct_image != NULL) {
896 			/* Call address, line, sample. */
897 			addr = ct->pct_image->pi_vaddr + ct->pct_func;
898 			line = 0;
899 			if (pmcstat_image_addr2line(ct->pct_image, addr, sourcefile,
900 			    sizeof(sourcefile), &line,
901 			    funcname, sizeof(funcname)))
902 				fprintf(args.pa_graphfile, "%p %u", (void *)addr, line);
903 			else
904 				fprintf(args.pa_graphfile, "* *");
905 		}
906 		else
907 			fprintf(args.pa_graphfile, "* *");
908 		for (j = 0; j<pmcstat_npmcs; j++)
909 			fprintf(args.pa_graphfile, " %u",
910 			    PMCPL_CT_SAMPLE(j, &ct->pct_arc[i].pcta_samples));
911 		fprintf(args.pa_graphfile, "\n");
912 	}
913 }
914 
915 /*
916  * Clean the PMC name for Kcachegrind formula
917  */
918 
919 static void
920 pmcpl_ct_fixup_pmcname(char *s)
921 {
922 	char *p;
923 
924 	for (p = s; *p; p++)
925 		if (!isalnum(*p))
926 			*p = '_';
927 }
928 
929 /*
930  * Print a calltree (KCachegrind) for all PMCs.
931  */
932 
933 static void
934 pmcpl_ct_print(void)
935 {
936 	int n, i;
937 	struct pmcpl_ct_node_hash *pch;
938 	struct pmcpl_ct_sample rsamples;
939 	char name[40];
940 
941 	pmcpl_ct_samples_root(&rsamples);
942 	pmcpl_ct_prevfn = NULL;
943 
944 	fprintf(args.pa_graphfile,
945 		"version: 1\n"
946 		"creator: pmcstat\n"
947 		"positions: instr line\n"
948 		"events:");
949 	for (i=0; i<pmcstat_npmcs; i++) {
950 		snprintf(name, sizeof(name), "%s_%d",
951 		    pmcstat_pmcindex_to_name(i), i);
952 		pmcpl_ct_fixup_pmcname(name);
953 		fprintf(args.pa_graphfile, " %s", name);
954 	}
955 	fprintf(args.pa_graphfile, "\nsummary:");
956 	for (i=0; i<pmcstat_npmcs ; i++)
957 		fprintf(args.pa_graphfile, " %u",
958 		    PMCPL_CT_SAMPLE(i, &rsamples));
959 	fprintf(args.pa_graphfile, "\n\n");
960 
961 	/*
962 	 * Fake root node
963 	 */
964 	fprintf(args.pa_graphfile, "ob=FreeBSD\n");
965 	fprintf(args.pa_graphfile, "fn=ROOT\n");
966 	fprintf(args.pa_graphfile, "* *");
967 	for (i = 0; i<pmcstat_npmcs ; i++)
968 		fprintf(args.pa_graphfile, " 0");
969 	fprintf(args.pa_graphfile, "\n");
970 	pmcpl_ct_node_printchild(pmcpl_ct_root);
971 
972 	for (n = 0; n < PMCSTAT_NHASH; n++)
973 		LIST_FOREACH(pch, &pmcpl_ct_node_hash[n], pch_next) {
974 			pmcpl_ct_node_printself(pch->pch_ctnode);
975 			pmcpl_ct_node_printchild(pch->pch_ctnode);
976 	}
977 
978 	pmcpl_ct_samples_free(&rsamples);
979 }
980 
981 int
982 pmcpl_ct_configure(char *opt)
983 {
984 
985 	if (strncmp(opt, "skiplink=", 9) == 0) {
986 		pmcstat_skiplink = atoi(opt+9);
987 	} else
988 		return (0);
989 
990 	return (1);
991 }
992 
993 int
994 pmcpl_ct_init(void)
995 {
996 	int i;
997 
998 	pmcpl_ct_prevfn = NULL;
999 	pmcpl_ct_root = pmcpl_ct_node_allocate(NULL, 0);
1000 
1001 	for (i = 0; i < PMCSTAT_NHASH; i++)
1002 		LIST_INIT(&pmcpl_ct_node_hash[i]);
1003 
1004 	pmcpl_ct_samples_init(&pmcpl_ct_callid);
1005 
1006 	return (0);
1007 }
1008 
1009 void
1010 pmcpl_ct_shutdown(FILE *mf)
1011 {
1012 	int i;
1013 	struct pmcpl_ct_node_hash *pch, *pchtmp;
1014 
1015 	(void) mf;
1016 
1017 	if (args.pa_flags & FLAG_DO_CALLGRAPHS)
1018 		pmcpl_ct_print();
1019 
1020 	/*
1021 	 * Free memory.
1022 	 */
1023 
1024 	for (i = 0; i < PMCSTAT_NHASH; i++) {
1025 		LIST_FOREACH_SAFE(pch, &pmcpl_ct_node_hash[i], pch_next,
1026 		    pchtmp) {
1027 			pmcpl_ct_node_free(pch->pch_ctnode);
1028 			free(pch);
1029 		}
1030 	}
1031 
1032 	pmcpl_ct_node_free(pmcpl_ct_root);
1033 	pmcpl_ct_root = NULL;
1034 
1035 	pmcpl_ct_samples_free(&pmcpl_ct_callid);
1036 }
1037 
1038