1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <assert.h>
27 #include <stddef.h>
28 #include <strings.h>
29 #include <libuutil.h>
30 #include <libzfs.h>
31 #include <fm/fmd_api.h>
32 #include <fm/libtopo.h>
33 #include <sys/fs/zfs.h>
34 #include <sys/fm/protocol.h>
35 #include <sys/fm/fs/zfs.h>
36 
37 /*
38  * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'.  This
39  * #define reserves enough space for two 64-bit hex values plus the length of
40  * the longest string.
41  */
42 #define	MAX_SERDLEN	(16 * 2 + sizeof ("zfs___checksum"))
43 
44 /*
45  * On-disk case structure.  This must maintain backwards compatibility with
46  * previous versions of the DE.  By default, any members appended to the end
47  * will be filled with zeros if they don't exist in a previous version.
48  */
49 typedef struct zfs_case_data {
50 	uint64_t	zc_version;
51 	uint64_t	zc_ena;
52 	uint64_t	zc_pool_guid;
53 	uint64_t	zc_vdev_guid;
54 	int		zc_has_timer;		/* defunct */
55 	int		zc_pool_state;
56 	char		zc_serd_checksum[MAX_SERDLEN];
57 	char		zc_serd_io[MAX_SERDLEN];
58 	int		zc_has_remove_timer;
59 } zfs_case_data_t;
60 
61 /*
62  * In-core case structure.
63  */
64 typedef struct zfs_case {
65 	boolean_t	zc_present;
66 	uint32_t	zc_version;
67 	zfs_case_data_t	zc_data;
68 	fmd_case_t	*zc_case;
69 	uu_list_node_t	zc_node;
70 	id_t		zc_remove_timer;
71 	char		*zc_fru;
72 } zfs_case_t;
73 
74 #define	CASE_DATA			"data"
75 #define	CASE_FRU			"fru"
76 #define	CASE_DATA_VERSION_INITIAL	1
77 #define	CASE_DATA_VERSION_SERD		2
78 
79 static hrtime_t zfs_remove_timeout;
80 
81 uu_list_pool_t *zfs_case_pool;
82 uu_list_t *zfs_cases;
83 
84 #define	ZFS_MAKE_RSRC(type)	\
85     FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type
86 #define	ZFS_MAKE_EREPORT(type)	\
87     FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type
88 
89 /*
90  * Write out the persistent representation of an active case.
91  */
92 static void
93 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp)
94 {
95 	/*
96 	 * Always update cases to the latest version, even if they were the
97 	 * previous version when unserialized.
98 	 */
99 	zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD;
100 	fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data,
101 	    sizeof (zcp->zc_data));
102 
103 	if (zcp->zc_fru != NULL)
104 		fmd_buf_write(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru,
105 		    strlen(zcp->zc_fru));
106 }
107 
108 /*
109  * Read back the persistent representation of an active case.
110  */
111 static zfs_case_t *
112 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp)
113 {
114 	zfs_case_t *zcp;
115 	size_t frulen;
116 
117 	zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP);
118 	zcp->zc_case = cp;
119 
120 	fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data,
121 	    sizeof (zcp->zc_data));
122 
123 	if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) {
124 		fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
125 		return (NULL);
126 	}
127 
128 	if ((frulen = fmd_buf_size(hdl, zcp->zc_case, CASE_FRU)) > 0) {
129 		zcp->zc_fru = fmd_hdl_alloc(hdl, frulen + 1, FMD_SLEEP);
130 		fmd_buf_read(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru,
131 		    frulen);
132 		zcp->zc_fru[frulen] = '\0';
133 	}
134 
135 	/*
136 	 * fmd_buf_read() will have already zeroed out the remainder of the
137 	 * buffer, so we don't have to do anything special if the version
138 	 * doesn't include the SERD engine name.
139 	 */
140 
141 	if (zcp->zc_data.zc_has_remove_timer)
142 		zcp->zc_remove_timer = fmd_timer_install(hdl, zcp,
143 		    NULL, zfs_remove_timeout);
144 
145 	(void) uu_list_insert_before(zfs_cases, NULL, zcp);
146 
147 	fmd_case_setspecific(hdl, cp, zcp);
148 
149 	return (zcp);
150 }
151 
152 /*
153  * Iterate over any active cases.  If any cases are associated with a pool or
154  * vdev which is no longer present on the system, close the associated case.
155  */
156 static void
157 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd)
158 {
159 	uint64_t vdev_guid;
160 	uint_t c, children;
161 	nvlist_t **child;
162 	zfs_case_t *zcp;
163 	int ret;
164 
165 	ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid);
166 	assert(ret == 0);
167 
168 	/*
169 	 * Mark any cases associated with this (pool, vdev) pair.
170 	 */
171 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
172 	    zcp = uu_list_next(zfs_cases, zcp)) {
173 		if (zcp->zc_data.zc_pool_guid == pool_guid &&
174 		    zcp->zc_data.zc_vdev_guid == vdev_guid)
175 			zcp->zc_present = B_TRUE;
176 	}
177 
178 	/*
179 	 * Iterate over all children.
180 	 */
181 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child,
182 	    &children) == 0) {
183 		for (c = 0; c < children; c++)
184 			zfs_mark_vdev(pool_guid, child[c]);
185 	}
186 
187 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child,
188 	    &children) == 0) {
189 		for (c = 0; c < children; c++)
190 			zfs_mark_vdev(pool_guid, child[c]);
191 	}
192 
193 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child,
194 	    &children) == 0) {
195 		for (c = 0; c < children; c++)
196 			zfs_mark_vdev(pool_guid, child[c]);
197 	}
198 }
199 
200 /*ARGSUSED*/
201 static int
202 zfs_mark_pool(zpool_handle_t *zhp, void *unused)
203 {
204 	zfs_case_t *zcp;
205 	uint64_t pool_guid;
206 	nvlist_t *config, *vd;
207 	int ret;
208 
209 	pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
210 	/*
211 	 * Mark any cases associated with just this pool.
212 	 */
213 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
214 	    zcp = uu_list_next(zfs_cases, zcp)) {
215 		if (zcp->zc_data.zc_pool_guid == pool_guid &&
216 		    zcp->zc_data.zc_vdev_guid == 0)
217 			zcp->zc_present = B_TRUE;
218 	}
219 
220 	if ((config = zpool_get_config(zhp, NULL)) == NULL) {
221 		zpool_close(zhp);
222 		return (-1);
223 	}
224 
225 	ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd);
226 	assert(ret == 0);
227 
228 	zfs_mark_vdev(pool_guid, vd);
229 
230 	zpool_close(zhp);
231 
232 	return (0);
233 }
234 
235 static void
236 zfs_purge_cases(fmd_hdl_t *hdl)
237 {
238 	zfs_case_t *zcp;
239 	uu_list_walk_t *walk;
240 	libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
241 
242 	/*
243 	 * There is no way to open a pool by GUID, or lookup a vdev by GUID.  No
244 	 * matter what we do, we're going to have to stomach a O(vdevs * cases)
245 	 * algorithm.  In reality, both quantities are likely so small that
246 	 * neither will matter. Given that iterating over pools is more
247 	 * expensive than iterating over the in-memory case list, we opt for a
248 	 * 'present' flag in each case that starts off cleared.  We then iterate
249 	 * over all pools, marking those that are still present, and removing
250 	 * those that aren't found.
251 	 *
252 	 * Note that we could also construct an FMRI and rely on
253 	 * fmd_nvl_fmri_present(), but this would end up doing the same search.
254 	 */
255 
256 	/*
257 	 * Mark the cases an not present.
258 	 */
259 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
260 	    zcp = uu_list_next(zfs_cases, zcp))
261 		zcp->zc_present = B_FALSE;
262 
263 	/*
264 	 * Iterate over all pools and mark the pools and vdevs found.  If this
265 	 * fails (most probably because we're out of memory), then don't close
266 	 * any of the cases and we cannot be sure they are accurate.
267 	 */
268 	if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0)
269 		return;
270 
271 	/*
272 	 * Remove those cases which were not found.
273 	 */
274 	walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
275 	while ((zcp = uu_list_walk_next(walk)) != NULL) {
276 		if (!zcp->zc_present)
277 			fmd_case_close(hdl, zcp->zc_case);
278 	}
279 	uu_list_walk_end(walk);
280 }
281 
282 /*
283  * Construct the name of a serd engine given the pool/vdev GUID and type (io or
284  * checksum).
285  */
286 static void
287 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid,
288     const char *type)
289 {
290 	(void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid,
291 	    vdev_guid, type);
292 }
293 
294 /*
295  * Solve a given ZFS case.  This first checks to make sure the diagnosis is
296  * still valid, as well as cleaning up any pending timer associated with the
297  * case.
298  */
299 static void
300 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname,
301     boolean_t checkunusable)
302 {
303 	libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
304 	nvlist_t *detector, *fault;
305 	boolean_t serialize;
306 	nvlist_t *fmri, *fru;
307 	topo_hdl_t *thp;
308 	int err;
309 
310 	/*
311 	 * Construct the detector from the case data.  The detector is in the
312 	 * ZFS scheme, and is either the pool or the vdev, depending on whether
313 	 * this is a vdev or pool fault.
314 	 */
315 	detector = fmd_nvl_alloc(hdl, FMD_SLEEP);
316 
317 	(void) nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0);
318 	(void) nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS);
319 	(void) nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL,
320 	    zcp->zc_data.zc_pool_guid);
321 	if (zcp->zc_data.zc_vdev_guid != 0) {
322 		(void) nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV,
323 		    zcp->zc_data.zc_vdev_guid);
324 	}
325 
326 	/*
327 	 * We also want to make sure that the detector (pool or vdev) properly
328 	 * reflects the diagnosed state, when the fault corresponds to internal
329 	 * ZFS state (i.e. not checksum or I/O error-induced).  Otherwise, a
330 	 * device which was unavailable early in boot (because the driver/file
331 	 * wasn't available) and is now healthy will be mis-diagnosed.
332 	 */
333 	if (!fmd_nvl_fmri_present(hdl, detector) ||
334 	    (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) {
335 		fmd_case_close(hdl, zcp->zc_case);
336 		nvlist_free(detector);
337 		return;
338 	}
339 
340 
341 	fru = NULL;
342 	if (zcp->zc_fru != NULL &&
343 	    (thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION)) != NULL) {
344 		/*
345 		 * If the vdev had an associated FRU, then get the FRU nvlist
346 		 * from the topo handle and use that in the suspect list.  We
347 		 * explicitly lookup the FRU because the fmri reported from the
348 		 * kernel may not have up to date details about the disk itself
349 		 * (serial, part, etc).
350 		 */
351 		if (topo_fmri_str2nvl(thp, zcp->zc_fru, &fmri, &err) == 0) {
352 			/*
353 			 * If the disk is part of the system chassis, but the
354 			 * FRU indicates a different chassis ID than our
355 			 * current system, then ignore the error.  This
356 			 * indicates that the device was part of another
357 			 * cluster head, and for obvious reasons cannot be
358 			 * imported on this system.
359 			 */
360 			if (libzfs_fru_notself(zhdl, zcp->zc_fru)) {
361 				fmd_case_close(hdl, zcp->zc_case);
362 				nvlist_free(fmri);
363 				fmd_hdl_topo_rele(hdl, thp);
364 				nvlist_free(detector);
365 				return;
366 			}
367 
368 			/*
369 			 * If the device is no longer present on the system, or
370 			 * topo_fmri_fru() fails for other reasons, then fall
371 			 * back to the fmri specified in the vdev.
372 			 */
373 			if (topo_fmri_fru(thp, fmri, &fru, &err) != 0)
374 				fru = fmd_nvl_dup(hdl, fmri, FMD_SLEEP);
375 			nvlist_free(fmri);
376 		}
377 
378 		fmd_hdl_topo_rele(hdl, thp);
379 	}
380 
381 	fault = fmd_nvl_create_fault(hdl, faultname, 100, detector,
382 	    fru, detector);
383 	fmd_case_add_suspect(hdl, zcp->zc_case, fault);
384 
385 	nvlist_free(fru);
386 
387 	fmd_case_solve(hdl, zcp->zc_case);
388 
389 	serialize = B_FALSE;
390 	if (zcp->zc_data.zc_has_remove_timer) {
391 		fmd_timer_remove(hdl, zcp->zc_remove_timer);
392 		zcp->zc_data.zc_has_remove_timer = 0;
393 		serialize = B_TRUE;
394 	}
395 	if (serialize)
396 		zfs_case_serialize(hdl, zcp);
397 
398 	nvlist_free(detector);
399 }
400 
401 /*
402  * Main fmd entry point.
403  */
404 /*ARGSUSED*/
405 static void
406 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class)
407 {
408 	zfs_case_t *zcp, *dcp;
409 	int32_t pool_state;
410 	uint64_t ena, pool_guid, vdev_guid;
411 	nvlist_t *detector;
412 	boolean_t isresource;
413 	char *fru, *type;
414 
415 	/*
416 	 * We subscribe to notifications for vdev or pool removal.  In these
417 	 * cases, there may be cases that no longer apply.  Purge any cases
418 	 * that no longer apply.
419 	 */
420 	if (fmd_nvl_class_match(hdl, nvl, "resource.sysevent.EC_zfs.*")) {
421 		zfs_purge_cases(hdl);
422 		return;
423 	}
424 
425 	isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*");
426 
427 	if (isresource) {
428 		/*
429 		 * For resources, we don't have a normal payload.
430 		 */
431 		if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
432 		    &vdev_guid) != 0)
433 			pool_state = SPA_LOAD_OPEN;
434 		else
435 			pool_state = SPA_LOAD_NONE;
436 		detector = NULL;
437 	} else {
438 		(void) nvlist_lookup_nvlist(nvl,
439 		    FM_EREPORT_DETECTOR, &detector);
440 		(void) nvlist_lookup_int32(nvl,
441 		    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state);
442 	}
443 
444 	/*
445 	 * We also ignore all ereports generated during an import of a pool,
446 	 * since the only possible fault (.pool) would result in import failure,
447 	 * and hence no persistent fault.  Some day we may want to do something
448 	 * with these ereports, so we continue generating them internally.
449 	 */
450 	if (pool_state == SPA_LOAD_IMPORT)
451 		return;
452 
453 	/*
454 	 * Device I/O errors are ignored during pool open.
455 	 */
456 	if (pool_state == SPA_LOAD_OPEN &&
457 	    (fmd_nvl_class_match(hdl, nvl,
458 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
459 	    fmd_nvl_class_match(hdl, nvl,
460 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
461 	    fmd_nvl_class_match(hdl, nvl,
462 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))))
463 		return;
464 
465 	/*
466 	 * We ignore ereports for anything except disks and files.
467 	 */
468 	if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
469 	    &type) == 0) {
470 		if (strcmp(type, VDEV_TYPE_DISK) != 0 &&
471 		    strcmp(type, VDEV_TYPE_FILE) != 0)
472 			return;
473 	}
474 
475 	/*
476 	 * Determine if this ereport corresponds to an open case.  Previous
477 	 * incarnations of this DE used the ENA to chain events together as
478 	 * part of the same case.  The problem with this is that we rely on
479 	 * global uniqueness of cases based on (pool_guid, vdev_guid) pair when
480 	 * generating SERD engines.  Instead, we have a case for each vdev or
481 	 * pool, regardless of the ENA.
482 	 */
483 	(void) nvlist_lookup_uint64(nvl,
484 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid);
485 	if (nvlist_lookup_uint64(nvl,
486 	    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
487 		vdev_guid = 0;
488 	if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0)
489 		ena = 0;
490 
491 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
492 	    zcp = uu_list_next(zfs_cases, zcp)) {
493 		if (zcp->zc_data.zc_pool_guid == pool_guid &&
494 		    zcp->zc_data.zc_vdev_guid == vdev_guid)
495 			break;
496 	}
497 
498 	if (zcp == NULL) {
499 		fmd_case_t *cs;
500 		zfs_case_data_t data = { 0 };
501 
502 		/*
503 		 * If this is one of our 'fake' resource ereports, and there is
504 		 * no case open, simply discard it.
505 		 */
506 		if (isresource)
507 			return;
508 
509 		/*
510 		 * Open a new case.
511 		 */
512 		cs = fmd_case_open(hdl, NULL);
513 
514 		/*
515 		 * Initialize the case buffer.  To commonize code, we actually
516 		 * create the buffer with existing data, and then call
517 		 * zfs_case_unserialize() to instantiate the in-core structure.
518 		 */
519 		fmd_buf_create(hdl, cs, CASE_DATA,
520 		    sizeof (zfs_case_data_t));
521 
522 		data.zc_version = CASE_DATA_VERSION_SERD;
523 		data.zc_ena = ena;
524 		data.zc_pool_guid = pool_guid;
525 		data.zc_vdev_guid = vdev_guid;
526 		data.zc_pool_state = (int)pool_state;
527 
528 		fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data));
529 
530 		zcp = zfs_case_unserialize(hdl, cs);
531 		assert(zcp != NULL);
532 	}
533 
534 	/*
535 	 * If this is an ereport for a case with an associated vdev FRU, make
536 	 * sure it is accurate and up to date.
537 	 */
538 	if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
539 	    &fru) == 0) {
540 		topo_hdl_t *thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
541 		if (zcp->zc_fru == NULL ||
542 		    !topo_fmri_strcmp(thp, zcp->zc_fru, fru)) {
543 			if (zcp->zc_fru != NULL) {
544 				fmd_hdl_strfree(hdl, zcp->zc_fru);
545 				fmd_buf_destroy(hdl, zcp->zc_case, CASE_FRU);
546 			}
547 			zcp->zc_fru = fmd_hdl_strdup(hdl, fru, FMD_SLEEP);
548 			zfs_case_serialize(hdl, zcp);
549 		}
550 		fmd_hdl_topo_rele(hdl, thp);
551 	}
552 
553 	if (isresource) {
554 		if (fmd_nvl_class_match(hdl, nvl,
555 		    ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) {
556 			/*
557 			 * The 'resource.fs.zfs.autoreplace' event indicates
558 			 * that the pool was loaded with the 'autoreplace'
559 			 * property set.  In this case, any pending device
560 			 * failures should be ignored, as the asynchronous
561 			 * autoreplace handling will take care of them.
562 			 */
563 			fmd_case_close(hdl, zcp->zc_case);
564 		} else if (fmd_nvl_class_match(hdl, nvl,
565 		    ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) {
566 			/*
567 			 * The 'resource.fs.zfs.removed' event indicates that
568 			 * device removal was detected, and the device was
569 			 * closed asynchronously.  If this is the case, we
570 			 * assume that any recent I/O errors were due to the
571 			 * device removal, not any fault of the device itself.
572 			 * We reset the SERD engine, and cancel any pending
573 			 * timers.
574 			 */
575 			if (zcp->zc_data.zc_has_remove_timer) {
576 				fmd_timer_remove(hdl, zcp->zc_remove_timer);
577 				zcp->zc_data.zc_has_remove_timer = 0;
578 				zfs_case_serialize(hdl, zcp);
579 			}
580 			if (zcp->zc_data.zc_serd_io[0] != '\0')
581 				fmd_serd_reset(hdl,
582 				    zcp->zc_data.zc_serd_io);
583 			if (zcp->zc_data.zc_serd_checksum[0] != '\0')
584 				fmd_serd_reset(hdl,
585 				    zcp->zc_data.zc_serd_checksum);
586 		}
587 		return;
588 	}
589 
590 	/*
591 	 * Associate the ereport with this case.
592 	 */
593 	fmd_case_add_ereport(hdl, zcp->zc_case, ep);
594 
595 	/*
596 	 * Don't do anything else if this case is already solved.
597 	 */
598 	if (fmd_case_solved(hdl, zcp->zc_case))
599 		return;
600 
601 	/*
602 	 * Determine if we should solve the case and generate a fault.  We solve
603 	 * a case if:
604 	 *
605 	 * 	a. A pool failed to open (ereport.fs.zfs.pool)
606 	 * 	b. A device failed to open (ereport.fs.zfs.pool) while a pool
607 	 *	   was up and running.
608 	 *
609 	 * We may see a series of ereports associated with a pool open, all
610 	 * chained together by the same ENA.  If the pool open succeeds, then
611 	 * we'll see no further ereports.  To detect when a pool open has
612 	 * succeeded, we associate a timer with the event.  When it expires, we
613 	 * close the case.
614 	 */
615 	if (fmd_nvl_class_match(hdl, nvl,
616 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) {
617 		/*
618 		 * Pool level fault.  Before solving the case, go through and
619 		 * close any open device cases that may be pending.
620 		 */
621 		for (dcp = uu_list_first(zfs_cases); dcp != NULL;
622 		    dcp = uu_list_next(zfs_cases, dcp)) {
623 			if (dcp->zc_data.zc_pool_guid ==
624 			    zcp->zc_data.zc_pool_guid &&
625 			    dcp->zc_data.zc_vdev_guid != 0)
626 				fmd_case_close(hdl, dcp->zc_case);
627 		}
628 
629 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE);
630 	} else if (fmd_nvl_class_match(hdl, nvl,
631 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) {
632 		/*
633 		 * Pool level fault for reading the intent logs.
634 		 */
635 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay", B_TRUE);
636 	} else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) {
637 		/*
638 		 * Device fault.
639 		 */
640 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.device",  B_TRUE);
641 	} else if (fmd_nvl_class_match(hdl, nvl,
642 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
643 	    fmd_nvl_class_match(hdl, nvl,
644 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
645 	    fmd_nvl_class_match(hdl, nvl,
646 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) ||
647 	    fmd_nvl_class_match(hdl, nvl,
648 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
649 		char *failmode = NULL;
650 		boolean_t checkremove = B_FALSE;
651 
652 		/*
653 		 * If this is a checksum or I/O error, then toss it into the
654 		 * appropriate SERD engine and check to see if it has fired.
655 		 * Ideally, we want to do something more sophisticated,
656 		 * (persistent errors for a single data block, etc).  For now,
657 		 * a single SERD engine is sufficient.
658 		 */
659 		if (fmd_nvl_class_match(hdl, nvl,
660 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) {
661 			if (zcp->zc_data.zc_serd_io[0] == '\0') {
662 				zfs_serd_name(zcp->zc_data.zc_serd_io,
663 				    pool_guid, vdev_guid, "io");
664 				fmd_serd_create(hdl, zcp->zc_data.zc_serd_io,
665 				    fmd_prop_get_int32(hdl, "io_N"),
666 				    fmd_prop_get_int64(hdl, "io_T"));
667 				zfs_case_serialize(hdl, zcp);
668 			}
669 			if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep))
670 				checkremove = B_TRUE;
671 		} else if (fmd_nvl_class_match(hdl, nvl,
672 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) {
673 			if (zcp->zc_data.zc_serd_checksum[0] == '\0') {
674 				zfs_serd_name(zcp->zc_data.zc_serd_checksum,
675 				    pool_guid, vdev_guid, "checksum");
676 				fmd_serd_create(hdl,
677 				    zcp->zc_data.zc_serd_checksum,
678 				    fmd_prop_get_int32(hdl, "checksum_N"),
679 				    fmd_prop_get_int64(hdl, "checksum_T"));
680 				zfs_case_serialize(hdl, zcp);
681 			}
682 			if (fmd_serd_record(hdl,
683 			    zcp->zc_data.zc_serd_checksum, ep)) {
684 				zfs_case_solve(hdl, zcp,
685 				    "fault.fs.zfs.vdev.checksum", B_FALSE);
686 			}
687 		} else if (fmd_nvl_class_match(hdl, nvl,
688 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) &&
689 		    (nvlist_lookup_string(nvl,
690 		    FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) &&
691 		    failmode != NULL) {
692 			if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE,
693 			    strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) {
694 				zfs_case_solve(hdl, zcp,
695 				    "fault.fs.zfs.io_failure_continue",
696 				    B_FALSE);
697 			} else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT,
698 			    strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) {
699 				zfs_case_solve(hdl, zcp,
700 				    "fault.fs.zfs.io_failure_wait", B_FALSE);
701 			}
702 		} else if (fmd_nvl_class_match(hdl, nvl,
703 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
704 			checkremove = B_TRUE;
705 		}
706 
707 		/*
708 		 * Because I/O errors may be due to device removal, we postpone
709 		 * any diagnosis until we're sure that we aren't about to
710 		 * receive a 'resource.fs.zfs.removed' event.
711 		 */
712 		if (checkremove) {
713 			if (zcp->zc_data.zc_has_remove_timer)
714 				fmd_timer_remove(hdl, zcp->zc_remove_timer);
715 			zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL,
716 			    zfs_remove_timeout);
717 			if (!zcp->zc_data.zc_has_remove_timer) {
718 				zcp->zc_data.zc_has_remove_timer = 1;
719 				zfs_case_serialize(hdl, zcp);
720 			}
721 		}
722 	}
723 }
724 
725 /*
726  * The timeout is fired when we diagnosed an I/O error, and it was not due to
727  * device removal (which would cause the timeout to be cancelled).
728  */
729 /* ARGSUSED */
730 static void
731 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data)
732 {
733 	zfs_case_t *zcp = data;
734 
735 	if (id == zcp->zc_remove_timer)
736 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io", B_FALSE);
737 }
738 
739 static void
740 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs)
741 {
742 	zfs_case_t *zcp = fmd_case_getspecific(hdl, cs);
743 
744 	if (zcp->zc_data.zc_serd_checksum[0] != '\0')
745 		fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum);
746 	if (zcp->zc_data.zc_serd_io[0] != '\0')
747 		fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io);
748 	if (zcp->zc_data.zc_has_remove_timer)
749 		fmd_timer_remove(hdl, zcp->zc_remove_timer);
750 	uu_list_remove(zfs_cases, zcp);
751 	fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
752 }
753 
754 /*
755  * We use the fmd gc entry point to look for old cases that no longer apply.
756  * This allows us to keep our set of case data small in a long running system.
757  */
758 static void
759 zfs_fm_gc(fmd_hdl_t *hdl)
760 {
761 	zfs_purge_cases(hdl);
762 }
763 
764 static const fmd_hdl_ops_t fmd_ops = {
765 	zfs_fm_recv,	/* fmdo_recv */
766 	zfs_fm_timeout,	/* fmdo_timeout */
767 	zfs_fm_close,	/* fmdo_close */
768 	NULL,		/* fmdo_stats */
769 	zfs_fm_gc,	/* fmdo_gc */
770 };
771 
772 static const fmd_prop_t fmd_props[] = {
773 	{ "checksum_N", FMD_TYPE_UINT32, "10" },
774 	{ "checksum_T", FMD_TYPE_TIME, "10min" },
775 	{ "io_N", FMD_TYPE_UINT32, "10" },
776 	{ "io_T", FMD_TYPE_TIME, "10min" },
777 	{ "remove_timeout", FMD_TYPE_TIME, "15sec" },
778 	{ NULL, 0, NULL }
779 };
780 
781 static const fmd_hdl_info_t fmd_info = {
782 	"ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props
783 };
784 
785 void
786 _fmd_init(fmd_hdl_t *hdl)
787 {
788 	fmd_case_t *cp;
789 	libzfs_handle_t *zhdl;
790 
791 	if ((zhdl = libzfs_init()) == NULL)
792 		return;
793 
794 	if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool",
795 	    sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node),
796 	    NULL, 0)) == NULL) {
797 		libzfs_fini(zhdl);
798 		return;
799 	}
800 
801 	if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) {
802 		uu_list_pool_destroy(zfs_case_pool);
803 		libzfs_fini(zhdl);
804 		return;
805 	}
806 
807 	if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
808 		uu_list_destroy(zfs_cases);
809 		uu_list_pool_destroy(zfs_case_pool);
810 		libzfs_fini(zhdl);
811 		return;
812 	}
813 
814 	fmd_hdl_setspecific(hdl, zhdl);
815 
816 	/*
817 	 * Iterate over all active cases and unserialize the associated buffers,
818 	 * adding them to our list of open cases.
819 	 */
820 	for (cp = fmd_case_next(hdl, NULL);
821 	    cp != NULL; cp = fmd_case_next(hdl, cp))
822 		(void) zfs_case_unserialize(hdl, cp);
823 
824 	/*
825 	 * Clear out any old cases that are no longer valid.
826 	 */
827 	zfs_purge_cases(hdl);
828 
829 	zfs_remove_timeout = fmd_prop_get_int64(hdl, "remove_timeout");
830 }
831 
832 void
833 _fmd_fini(fmd_hdl_t *hdl)
834 {
835 	zfs_case_t *zcp;
836 	uu_list_walk_t *walk;
837 	libzfs_handle_t *zhdl;
838 
839 	/*
840 	 * Remove all active cases.
841 	 */
842 	walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
843 	while ((zcp = uu_list_walk_next(walk)) != NULL) {
844 		uu_list_remove(zfs_cases, zcp);
845 		fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
846 	}
847 	uu_list_walk_end(walk);
848 
849 	uu_list_destroy(zfs_cases);
850 	uu_list_pool_destroy(zfs_case_pool);
851 
852 	zhdl = fmd_hdl_getspecific(hdl);
853 	libzfs_fini(zhdl);
854 }
855