1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <assert.h> 26 #include <stddef.h> 27 #include <strings.h> 28 #include <libuutil.h> 29 #include <libzfs.h> 30 #include <fm/fmd_api.h> 31 #include <fm/libtopo.h> 32 #include <sys/types.h> 33 #include <sys/time.h> 34 #include <sys/fs/zfs.h> 35 #include <sys/fm/protocol.h> 36 #include <sys/fm/fs/zfs.h> 37 38 /* 39 * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'. This 40 * #define reserves enough space for two 64-bit hex values plus the length of 41 * the longest string. 42 */ 43 #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum")) 44 45 /* 46 * On-disk case structure. This must maintain backwards compatibility with 47 * previous versions of the DE. By default, any members appended to the end 48 * will be filled with zeros if they don't exist in a previous version. 49 */ 50 typedef struct zfs_case_data { 51 uint64_t zc_version; 52 uint64_t zc_ena; 53 uint64_t zc_pool_guid; 54 uint64_t zc_vdev_guid; 55 int zc_has_timer; /* defunct */ 56 int zc_pool_state; 57 char zc_serd_checksum[MAX_SERDLEN]; 58 char zc_serd_io[MAX_SERDLEN]; 59 int zc_has_remove_timer; 60 } zfs_case_data_t; 61 62 /* 63 * Time-of-day 64 */ 65 typedef struct er_timeval { 66 uint64_t ertv_sec; 67 uint64_t ertv_nsec; 68 } er_timeval_t; 69 70 /* 71 * In-core case structure. 72 */ 73 typedef struct zfs_case { 74 boolean_t zc_present; 75 uint32_t zc_version; 76 zfs_case_data_t zc_data; 77 fmd_case_t *zc_case; 78 uu_list_node_t zc_node; 79 id_t zc_remove_timer; 80 char *zc_fru; 81 er_timeval_t zc_when; 82 } zfs_case_t; 83 84 #define CASE_DATA "data" 85 #define CASE_FRU "fru" 86 #define CASE_DATA_VERSION_INITIAL 1 87 #define CASE_DATA_VERSION_SERD 2 88 89 typedef struct zfs_de_stats { 90 fmd_stat_t old_drops; 91 fmd_stat_t dev_drops; 92 fmd_stat_t vdev_drops; 93 fmd_stat_t import_drops; 94 fmd_stat_t resource_drops; 95 } zfs_de_stats_t; 96 97 zfs_de_stats_t zfs_stats = { 98 { "old_drops", FMD_TYPE_UINT64, "ereports dropped (from before load)" }, 99 { "dev_drops", FMD_TYPE_UINT64, "ereports dropped (dev during open)"}, 100 { "vdev_drops", FMD_TYPE_UINT64, "ereports dropped (weird vdev types)"}, 101 { "import_drops", FMD_TYPE_UINT64, "ereports dropped (during import)" }, 102 { "resource_drops", FMD_TYPE_UINT64, "resource related ereports" } 103 }; 104 105 static hrtime_t zfs_remove_timeout; 106 107 uu_list_pool_t *zfs_case_pool; 108 uu_list_t *zfs_cases; 109 110 #define ZFS_MAKE_RSRC(type) \ 111 FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type 112 #define ZFS_MAKE_EREPORT(type) \ 113 FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type 114 115 /* 116 * Write out the persistent representation of an active case. 117 */ 118 static void 119 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp) 120 { 121 /* 122 * Always update cases to the latest version, even if they were the 123 * previous version when unserialized. 124 */ 125 zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD; 126 fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data, 127 sizeof (zcp->zc_data)); 128 129 if (zcp->zc_fru != NULL) 130 fmd_buf_write(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru, 131 strlen(zcp->zc_fru)); 132 } 133 134 /* 135 * Read back the persistent representation of an active case. 136 */ 137 static zfs_case_t * 138 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp) 139 { 140 zfs_case_t *zcp; 141 size_t frulen; 142 143 zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP); 144 zcp->zc_case = cp; 145 146 fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data, 147 sizeof (zcp->zc_data)); 148 149 if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) { 150 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 151 return (NULL); 152 } 153 154 if ((frulen = fmd_buf_size(hdl, zcp->zc_case, CASE_FRU)) > 0) { 155 zcp->zc_fru = fmd_hdl_alloc(hdl, frulen + 1, FMD_SLEEP); 156 fmd_buf_read(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru, 157 frulen); 158 zcp->zc_fru[frulen] = '\0'; 159 } 160 161 /* 162 * fmd_buf_read() will have already zeroed out the remainder of the 163 * buffer, so we don't have to do anything special if the version 164 * doesn't include the SERD engine name. 165 */ 166 167 if (zcp->zc_data.zc_has_remove_timer) 168 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, 169 NULL, zfs_remove_timeout); 170 171 (void) uu_list_insert_before(zfs_cases, NULL, zcp); 172 173 fmd_case_setspecific(hdl, cp, zcp); 174 175 return (zcp); 176 } 177 178 /* 179 * Iterate over any active cases. If any cases are associated with a pool or 180 * vdev which is no longer present on the system, close the associated case. 181 */ 182 static void 183 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd, er_timeval_t *loaded) 184 { 185 uint64_t vdev_guid; 186 uint_t c, children; 187 nvlist_t **child; 188 zfs_case_t *zcp; 189 int ret; 190 191 ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid); 192 assert(ret == 0); 193 194 /* 195 * Mark any cases associated with this (pool, vdev) pair. 196 */ 197 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 198 zcp = uu_list_next(zfs_cases, zcp)) { 199 if (zcp->zc_data.zc_pool_guid == pool_guid && 200 zcp->zc_data.zc_vdev_guid == vdev_guid) { 201 zcp->zc_present = B_TRUE; 202 zcp->zc_when = *loaded; 203 } 204 } 205 206 /* 207 * Iterate over all children. 208 */ 209 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child, 210 &children) == 0) { 211 for (c = 0; c < children; c++) 212 zfs_mark_vdev(pool_guid, child[c], loaded); 213 } 214 215 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child, 216 &children) == 0) { 217 for (c = 0; c < children; c++) 218 zfs_mark_vdev(pool_guid, child[c], loaded); 219 } 220 221 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child, 222 &children) == 0) { 223 for (c = 0; c < children; c++) 224 zfs_mark_vdev(pool_guid, child[c], loaded); 225 } 226 } 227 228 /*ARGSUSED*/ 229 static int 230 zfs_mark_pool(zpool_handle_t *zhp, void *unused) 231 { 232 zfs_case_t *zcp; 233 uint64_t pool_guid; 234 uint64_t *tod; 235 er_timeval_t loaded = { 0 }; 236 nvlist_t *config, *vd; 237 uint_t nelem = 0; 238 int ret; 239 240 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); 241 /* 242 * Mark any cases associated with just this pool. 243 */ 244 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 245 zcp = uu_list_next(zfs_cases, zcp)) { 246 if (zcp->zc_data.zc_pool_guid == pool_guid && 247 zcp->zc_data.zc_vdev_guid == 0) 248 zcp->zc_present = B_TRUE; 249 } 250 251 if ((config = zpool_get_config(zhp, NULL)) == NULL) { 252 zpool_close(zhp); 253 return (-1); 254 } 255 256 (void) nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME, 257 &tod, &nelem); 258 if (nelem == 2) { 259 loaded.ertv_sec = tod[0]; 260 loaded.ertv_nsec = tod[1]; 261 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 262 zcp = uu_list_next(zfs_cases, zcp)) { 263 if (zcp->zc_data.zc_pool_guid == pool_guid && 264 zcp->zc_data.zc_vdev_guid == 0) { 265 zcp->zc_when = loaded; 266 } 267 } 268 } 269 270 ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd); 271 assert(ret == 0); 272 273 zfs_mark_vdev(pool_guid, vd, &loaded); 274 275 zpool_close(zhp); 276 277 return (0); 278 } 279 280 struct load_time_arg { 281 uint64_t lt_guid; 282 er_timeval_t *lt_time; 283 boolean_t lt_found; 284 }; 285 286 static int 287 zpool_find_load_time(zpool_handle_t *zhp, void *arg) 288 { 289 struct load_time_arg *lta = arg; 290 uint64_t pool_guid; 291 uint64_t *tod; 292 nvlist_t *config; 293 uint_t nelem; 294 295 if (lta->lt_found) 296 return (0); 297 298 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); 299 if (pool_guid != lta->lt_guid) 300 return (0); 301 302 if ((config = zpool_get_config(zhp, NULL)) == NULL) { 303 zpool_close(zhp); 304 return (-1); 305 } 306 307 if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME, 308 &tod, &nelem) == 0 && nelem == 2) { 309 lta->lt_found = B_TRUE; 310 lta->lt_time->ertv_sec = tod[0]; 311 lta->lt_time->ertv_nsec = tod[1]; 312 } 313 314 return (0); 315 } 316 317 static void 318 zfs_purge_cases(fmd_hdl_t *hdl) 319 { 320 zfs_case_t *zcp; 321 uu_list_walk_t *walk; 322 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 323 324 /* 325 * There is no way to open a pool by GUID, or lookup a vdev by GUID. No 326 * matter what we do, we're going to have to stomach a O(vdevs * cases) 327 * algorithm. In reality, both quantities are likely so small that 328 * neither will matter. Given that iterating over pools is more 329 * expensive than iterating over the in-memory case list, we opt for a 330 * 'present' flag in each case that starts off cleared. We then iterate 331 * over all pools, marking those that are still present, and removing 332 * those that aren't found. 333 * 334 * Note that we could also construct an FMRI and rely on 335 * fmd_nvl_fmri_present(), but this would end up doing the same search. 336 */ 337 338 /* 339 * Mark the cases an not present. 340 */ 341 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 342 zcp = uu_list_next(zfs_cases, zcp)) 343 zcp->zc_present = B_FALSE; 344 345 /* 346 * Iterate over all pools and mark the pools and vdevs found. If this 347 * fails (most probably because we're out of memory), then don't close 348 * any of the cases and we cannot be sure they are accurate. 349 */ 350 if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0) 351 return; 352 353 /* 354 * Remove those cases which were not found. 355 */ 356 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 357 while ((zcp = uu_list_walk_next(walk)) != NULL) { 358 if (!zcp->zc_present) 359 fmd_case_close(hdl, zcp->zc_case); 360 } 361 uu_list_walk_end(walk); 362 } 363 364 /* 365 * Construct the name of a serd engine given the pool/vdev GUID and type (io or 366 * checksum). 367 */ 368 static void 369 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid, 370 const char *type) 371 { 372 (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid, 373 vdev_guid, type); 374 } 375 376 /* 377 * Solve a given ZFS case. This first checks to make sure the diagnosis is 378 * still valid, as well as cleaning up any pending timer associated with the 379 * case. 380 */ 381 static void 382 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname, 383 boolean_t checkunusable) 384 { 385 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 386 nvlist_t *detector, *fault; 387 boolean_t serialize; 388 nvlist_t *fmri, *fru; 389 topo_hdl_t *thp; 390 int err; 391 392 /* 393 * Construct the detector from the case data. The detector is in the 394 * ZFS scheme, and is either the pool or the vdev, depending on whether 395 * this is a vdev or pool fault. 396 */ 397 detector = fmd_nvl_alloc(hdl, FMD_SLEEP); 398 399 (void) nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0); 400 (void) nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS); 401 (void) nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL, 402 zcp->zc_data.zc_pool_guid); 403 if (zcp->zc_data.zc_vdev_guid != 0) { 404 (void) nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV, 405 zcp->zc_data.zc_vdev_guid); 406 } 407 408 /* 409 * We also want to make sure that the detector (pool or vdev) properly 410 * reflects the diagnosed state, when the fault corresponds to internal 411 * ZFS state (i.e. not checksum or I/O error-induced). Otherwise, a 412 * device which was unavailable early in boot (because the driver/file 413 * wasn't available) and is now healthy will be mis-diagnosed. 414 */ 415 if (!fmd_nvl_fmri_present(hdl, detector) || 416 (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) { 417 fmd_case_close(hdl, zcp->zc_case); 418 nvlist_free(detector); 419 return; 420 } 421 422 423 fru = NULL; 424 if (zcp->zc_fru != NULL && 425 (thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION)) != NULL) { 426 /* 427 * If the vdev had an associated FRU, then get the FRU nvlist 428 * from the topo handle and use that in the suspect list. We 429 * explicitly lookup the FRU because the fmri reported from the 430 * kernel may not have up to date details about the disk itself 431 * (serial, part, etc). 432 */ 433 if (topo_fmri_str2nvl(thp, zcp->zc_fru, &fmri, &err) == 0) { 434 /* 435 * If the disk is part of the system chassis, but the 436 * FRU indicates a different chassis ID than our 437 * current system, then ignore the error. This 438 * indicates that the device was part of another 439 * cluster head, and for obvious reasons cannot be 440 * imported on this system. 441 */ 442 if (libzfs_fru_notself(zhdl, zcp->zc_fru)) { 443 fmd_case_close(hdl, zcp->zc_case); 444 nvlist_free(fmri); 445 fmd_hdl_topo_rele(hdl, thp); 446 nvlist_free(detector); 447 return; 448 } 449 450 /* 451 * If the device is no longer present on the system, or 452 * topo_fmri_fru() fails for other reasons, then fall 453 * back to the fmri specified in the vdev. 454 */ 455 if (topo_fmri_fru(thp, fmri, &fru, &err) != 0) 456 fru = fmd_nvl_dup(hdl, fmri, FMD_SLEEP); 457 nvlist_free(fmri); 458 } 459 460 fmd_hdl_topo_rele(hdl, thp); 461 } 462 463 fault = fmd_nvl_create_fault(hdl, faultname, 100, detector, 464 fru, detector); 465 fmd_case_add_suspect(hdl, zcp->zc_case, fault); 466 467 nvlist_free(fru); 468 469 fmd_case_solve(hdl, zcp->zc_case); 470 471 serialize = B_FALSE; 472 if (zcp->zc_data.zc_has_remove_timer) { 473 fmd_timer_remove(hdl, zcp->zc_remove_timer); 474 zcp->zc_data.zc_has_remove_timer = 0; 475 serialize = B_TRUE; 476 } 477 if (serialize) 478 zfs_case_serialize(hdl, zcp); 479 480 nvlist_free(detector); 481 } 482 483 /* 484 * This #define and function access a private interface of the FMA 485 * framework. Ereports include a time-of-day upper bound. 486 * We want to look at that so we can compare it to when pools get 487 * loaded. 488 */ 489 #define FMD_EVN_TOD "__tod" 490 491 static boolean_t 492 timeval_earlier(er_timeval_t *a, er_timeval_t *b) 493 { 494 return (a->ertv_sec < b->ertv_sec || 495 (a->ertv_sec == b->ertv_sec && a->ertv_nsec < b->ertv_nsec)); 496 } 497 498 /*ARGSUSED*/ 499 static void 500 zfs_ereport_when(fmd_hdl_t *hdl, nvlist_t *nvl, er_timeval_t *when) 501 { 502 uint64_t *tod; 503 uint_t nelem; 504 505 if (nvlist_lookup_uint64_array(nvl, FMD_EVN_TOD, &tod, &nelem) == 0 && 506 nelem == 2) { 507 when->ertv_sec = tod[0]; 508 when->ertv_nsec = tod[1]; 509 } else { 510 when->ertv_sec = when->ertv_nsec = UINT64_MAX; 511 } 512 } 513 514 /* 515 * Main fmd entry point. 516 */ 517 /*ARGSUSED*/ 518 static void 519 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class) 520 { 521 zfs_case_t *zcp, *dcp; 522 int32_t pool_state; 523 uint64_t ena, pool_guid, vdev_guid; 524 er_timeval_t pool_load; 525 er_timeval_t er_when; 526 nvlist_t *detector; 527 boolean_t pool_found = B_FALSE; 528 boolean_t isresource; 529 char *fru, *type; 530 531 /* 532 * We subscribe to notifications for vdev or pool removal. In these 533 * cases, there may be cases that no longer apply. Purge any cases 534 * that no longer apply. 535 */ 536 if (fmd_nvl_class_match(hdl, nvl, "resource.sysevent.EC_zfs.*")) { 537 zfs_purge_cases(hdl); 538 zfs_stats.resource_drops.fmds_value.ui64++; 539 return; 540 } 541 542 isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*"); 543 544 if (isresource) { 545 /* 546 * For resources, we don't have a normal payload. 547 */ 548 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 549 &vdev_guid) != 0) 550 pool_state = SPA_LOAD_OPEN; 551 else 552 pool_state = SPA_LOAD_NONE; 553 detector = NULL; 554 } else { 555 (void) nvlist_lookup_nvlist(nvl, 556 FM_EREPORT_DETECTOR, &detector); 557 (void) nvlist_lookup_int32(nvl, 558 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state); 559 } 560 561 /* 562 * We also ignore all ereports generated during an import of a pool, 563 * since the only possible fault (.pool) would result in import failure, 564 * and hence no persistent fault. Some day we may want to do something 565 * with these ereports, so we continue generating them internally. 566 */ 567 if (pool_state == SPA_LOAD_IMPORT) { 568 zfs_stats.import_drops.fmds_value.ui64++; 569 return; 570 } 571 572 /* 573 * Device I/O errors are ignored during pool open. 574 */ 575 if (pool_state == SPA_LOAD_OPEN && 576 (fmd_nvl_class_match(hdl, nvl, 577 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) || 578 fmd_nvl_class_match(hdl, nvl, 579 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) || 580 fmd_nvl_class_match(hdl, nvl, 581 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE)))) { 582 zfs_stats.dev_drops.fmds_value.ui64++; 583 return; 584 } 585 586 /* 587 * We ignore ereports for anything except disks and files. 588 */ 589 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 590 &type) == 0) { 591 if (strcmp(type, VDEV_TYPE_DISK) != 0 && 592 strcmp(type, VDEV_TYPE_FILE) != 0) { 593 zfs_stats.vdev_drops.fmds_value.ui64++; 594 return; 595 } 596 } 597 598 /* 599 * Determine if this ereport corresponds to an open case. Previous 600 * incarnations of this DE used the ENA to chain events together as 601 * part of the same case. The problem with this is that we rely on 602 * global uniqueness of cases based on (pool_guid, vdev_guid) pair when 603 * generating SERD engines. Instead, we have a case for each vdev or 604 * pool, regardless of the ENA. 605 */ 606 (void) nvlist_lookup_uint64(nvl, 607 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid); 608 if (nvlist_lookup_uint64(nvl, 609 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) 610 vdev_guid = 0; 611 if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0) 612 ena = 0; 613 614 zfs_ereport_when(hdl, nvl, &er_when); 615 616 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 617 zcp = uu_list_next(zfs_cases, zcp)) { 618 if (zcp->zc_data.zc_pool_guid == pool_guid) { 619 pool_found = B_TRUE; 620 pool_load = zcp->zc_when; 621 } 622 if (zcp->zc_data.zc_vdev_guid == vdev_guid) 623 break; 624 } 625 626 if (pool_found) { 627 fmd_hdl_debug(hdl, "pool %llx, " 628 "ereport time %lld.%lld, pool load time = %lld.%lld\n", 629 pool_guid, er_when.ertv_sec, er_when.ertv_nsec, 630 pool_load.ertv_sec, pool_load.ertv_nsec); 631 } 632 633 /* 634 * Avoid falsely accusing a pool of being faulty. Do so by 635 * not replaying ereports that were generated prior to the 636 * current import. If the failure that generated them was 637 * transient because the device was actually removed but we 638 * didn't receive the normal asynchronous notification, we 639 * don't want to mark it as faulted and potentially panic. If 640 * there is still a problem we'd expect not to be able to 641 * import the pool, or that new ereports will be generated 642 * once the pool is used. 643 */ 644 if (pool_found && timeval_earlier(&er_when, &pool_load)) { 645 zfs_stats.old_drops.fmds_value.ui64++; 646 return; 647 } 648 649 if (!pool_found) { 650 /* 651 * Haven't yet seen this pool, but same situation 652 * may apply. 653 */ 654 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 655 struct load_time_arg la; 656 657 la.lt_guid = pool_guid; 658 la.lt_time = &pool_load; 659 la.lt_found = B_FALSE; 660 661 if (zhdl != NULL && 662 zpool_iter(zhdl, zpool_find_load_time, &la) == 0 && 663 la.lt_found == B_TRUE) { 664 pool_found = B_TRUE; 665 fmd_hdl_debug(hdl, "pool %llx, " 666 "ereport time %lld.%lld, " 667 "pool load time = %lld.%lld\n", 668 pool_guid, er_when.ertv_sec, er_when.ertv_nsec, 669 pool_load.ertv_sec, pool_load.ertv_nsec); 670 if (timeval_earlier(&er_when, &pool_load)) { 671 zfs_stats.old_drops.fmds_value.ui64++; 672 return; 673 } 674 } 675 } 676 677 if (zcp == NULL) { 678 fmd_case_t *cs; 679 zfs_case_data_t data = { 0 }; 680 681 /* 682 * If this is one of our 'fake' resource ereports, and there is 683 * no case open, simply discard it. 684 */ 685 if (isresource) { 686 zfs_stats.resource_drops.fmds_value.ui64++; 687 return; 688 } 689 690 /* 691 * Open a new case. 692 */ 693 cs = fmd_case_open(hdl, NULL); 694 695 /* 696 * Initialize the case buffer. To commonize code, we actually 697 * create the buffer with existing data, and then call 698 * zfs_case_unserialize() to instantiate the in-core structure. 699 */ 700 fmd_buf_create(hdl, cs, CASE_DATA, 701 sizeof (zfs_case_data_t)); 702 703 data.zc_version = CASE_DATA_VERSION_SERD; 704 data.zc_ena = ena; 705 data.zc_pool_guid = pool_guid; 706 data.zc_vdev_guid = vdev_guid; 707 data.zc_pool_state = (int)pool_state; 708 709 fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data)); 710 711 zcp = zfs_case_unserialize(hdl, cs); 712 assert(zcp != NULL); 713 if (pool_found) 714 zcp->zc_when = pool_load; 715 } 716 717 718 /* 719 * If this is an ereport for a case with an associated vdev FRU, make 720 * sure it is accurate and up to date. 721 */ 722 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, 723 &fru) == 0) { 724 topo_hdl_t *thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION); 725 if (zcp->zc_fru == NULL || 726 !topo_fmri_strcmp(thp, zcp->zc_fru, fru)) { 727 if (zcp->zc_fru != NULL) { 728 fmd_hdl_strfree(hdl, zcp->zc_fru); 729 fmd_buf_destroy(hdl, zcp->zc_case, CASE_FRU); 730 } 731 zcp->zc_fru = fmd_hdl_strdup(hdl, fru, FMD_SLEEP); 732 zfs_case_serialize(hdl, zcp); 733 } 734 fmd_hdl_topo_rele(hdl, thp); 735 } 736 737 if (isresource) { 738 if (fmd_nvl_class_match(hdl, nvl, 739 ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) { 740 /* 741 * The 'resource.fs.zfs.autoreplace' event indicates 742 * that the pool was loaded with the 'autoreplace' 743 * property set. In this case, any pending device 744 * failures should be ignored, as the asynchronous 745 * autoreplace handling will take care of them. 746 */ 747 fmd_case_close(hdl, zcp->zc_case); 748 } else if (fmd_nvl_class_match(hdl, nvl, 749 ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) { 750 /* 751 * The 'resource.fs.zfs.removed' event indicates that 752 * device removal was detected, and the device was 753 * closed asynchronously. If this is the case, we 754 * assume that any recent I/O errors were due to the 755 * device removal, not any fault of the device itself. 756 * We reset the SERD engine, and cancel any pending 757 * timers. 758 */ 759 if (zcp->zc_data.zc_has_remove_timer) { 760 fmd_timer_remove(hdl, zcp->zc_remove_timer); 761 zcp->zc_data.zc_has_remove_timer = 0; 762 zfs_case_serialize(hdl, zcp); 763 } 764 if (zcp->zc_data.zc_serd_io[0] != '\0') 765 fmd_serd_reset(hdl, 766 zcp->zc_data.zc_serd_io); 767 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 768 fmd_serd_reset(hdl, 769 zcp->zc_data.zc_serd_checksum); 770 } 771 zfs_stats.resource_drops.fmds_value.ui64++; 772 return; 773 } 774 775 /* 776 * Associate the ereport with this case. 777 */ 778 fmd_case_add_ereport(hdl, zcp->zc_case, ep); 779 780 /* 781 * Don't do anything else if this case is already solved. 782 */ 783 if (fmd_case_solved(hdl, zcp->zc_case)) 784 return; 785 786 /* 787 * Determine if we should solve the case and generate a fault. We solve 788 * a case if: 789 * 790 * a. A pool failed to open (ereport.fs.zfs.pool) 791 * b. A device failed to open (ereport.fs.zfs.pool) while a pool 792 * was up and running. 793 * 794 * We may see a series of ereports associated with a pool open, all 795 * chained together by the same ENA. If the pool open succeeds, then 796 * we'll see no further ereports. To detect when a pool open has 797 * succeeded, we associate a timer with the event. When it expires, we 798 * close the case. 799 */ 800 if (fmd_nvl_class_match(hdl, nvl, 801 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) { 802 /* 803 * Pool level fault. Before solving the case, go through and 804 * close any open device cases that may be pending. 805 */ 806 for (dcp = uu_list_first(zfs_cases); dcp != NULL; 807 dcp = uu_list_next(zfs_cases, dcp)) { 808 if (dcp->zc_data.zc_pool_guid == 809 zcp->zc_data.zc_pool_guid && 810 dcp->zc_data.zc_vdev_guid != 0) 811 fmd_case_close(hdl, dcp->zc_case); 812 } 813 814 zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE); 815 } else if (fmd_nvl_class_match(hdl, nvl, 816 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) { 817 /* 818 * Pool level fault for reading the intent logs. 819 */ 820 zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay", B_TRUE); 821 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) { 822 /* 823 * Device fault. 824 */ 825 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE); 826 } else if (fmd_nvl_class_match(hdl, nvl, 827 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) || 828 fmd_nvl_class_match(hdl, nvl, 829 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) || 830 fmd_nvl_class_match(hdl, nvl, 831 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) || 832 fmd_nvl_class_match(hdl, nvl, 833 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) { 834 char *failmode = NULL; 835 boolean_t checkremove = B_FALSE; 836 837 /* 838 * If this is a checksum or I/O error, then toss it into the 839 * appropriate SERD engine and check to see if it has fired. 840 * Ideally, we want to do something more sophisticated, 841 * (persistent errors for a single data block, etc). For now, 842 * a single SERD engine is sufficient. 843 */ 844 if (fmd_nvl_class_match(hdl, nvl, 845 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) { 846 if (zcp->zc_data.zc_serd_io[0] == '\0') { 847 zfs_serd_name(zcp->zc_data.zc_serd_io, 848 pool_guid, vdev_guid, "io"); 849 fmd_serd_create(hdl, zcp->zc_data.zc_serd_io, 850 fmd_prop_get_int32(hdl, "io_N"), 851 fmd_prop_get_int64(hdl, "io_T")); 852 zfs_case_serialize(hdl, zcp); 853 } 854 if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep)) 855 checkremove = B_TRUE; 856 } else if (fmd_nvl_class_match(hdl, nvl, 857 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) { 858 if (zcp->zc_data.zc_serd_checksum[0] == '\0') { 859 zfs_serd_name(zcp->zc_data.zc_serd_checksum, 860 pool_guid, vdev_guid, "checksum"); 861 fmd_serd_create(hdl, 862 zcp->zc_data.zc_serd_checksum, 863 fmd_prop_get_int32(hdl, "checksum_N"), 864 fmd_prop_get_int64(hdl, "checksum_T")); 865 zfs_case_serialize(hdl, zcp); 866 } 867 if (fmd_serd_record(hdl, 868 zcp->zc_data.zc_serd_checksum, ep)) { 869 zfs_case_solve(hdl, zcp, 870 "fault.fs.zfs.vdev.checksum", B_FALSE); 871 } 872 } else if (fmd_nvl_class_match(hdl, nvl, 873 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) && 874 (nvlist_lookup_string(nvl, 875 FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) && 876 failmode != NULL) { 877 if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE, 878 strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) { 879 zfs_case_solve(hdl, zcp, 880 "fault.fs.zfs.io_failure_continue", 881 B_FALSE); 882 } else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT, 883 strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) { 884 zfs_case_solve(hdl, zcp, 885 "fault.fs.zfs.io_failure_wait", B_FALSE); 886 } 887 } else if (fmd_nvl_class_match(hdl, nvl, 888 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) { 889 checkremove = B_TRUE; 890 } 891 892 /* 893 * Because I/O errors may be due to device removal, we postpone 894 * any diagnosis until we're sure that we aren't about to 895 * receive a 'resource.fs.zfs.removed' event. 896 */ 897 if (checkremove) { 898 if (zcp->zc_data.zc_has_remove_timer) 899 fmd_timer_remove(hdl, zcp->zc_remove_timer); 900 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL, 901 zfs_remove_timeout); 902 if (!zcp->zc_data.zc_has_remove_timer) { 903 zcp->zc_data.zc_has_remove_timer = 1; 904 zfs_case_serialize(hdl, zcp); 905 } 906 } 907 } 908 } 909 910 /* 911 * The timeout is fired when we diagnosed an I/O error, and it was not due to 912 * device removal (which would cause the timeout to be cancelled). 913 */ 914 /* ARGSUSED */ 915 static void 916 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data) 917 { 918 zfs_case_t *zcp = data; 919 920 if (id == zcp->zc_remove_timer) 921 zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io", B_FALSE); 922 } 923 924 static void 925 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs) 926 { 927 zfs_case_t *zcp = fmd_case_getspecific(hdl, cs); 928 929 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 930 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum); 931 if (zcp->zc_data.zc_serd_io[0] != '\0') 932 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io); 933 if (zcp->zc_data.zc_has_remove_timer) 934 fmd_timer_remove(hdl, zcp->zc_remove_timer); 935 uu_list_remove(zfs_cases, zcp); 936 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 937 } 938 939 /* 940 * We use the fmd gc entry point to look for old cases that no longer apply. 941 * This allows us to keep our set of case data small in a long running system. 942 */ 943 static void 944 zfs_fm_gc(fmd_hdl_t *hdl) 945 { 946 zfs_purge_cases(hdl); 947 } 948 949 static const fmd_hdl_ops_t fmd_ops = { 950 zfs_fm_recv, /* fmdo_recv */ 951 zfs_fm_timeout, /* fmdo_timeout */ 952 zfs_fm_close, /* fmdo_close */ 953 NULL, /* fmdo_stats */ 954 zfs_fm_gc, /* fmdo_gc */ 955 }; 956 957 static const fmd_prop_t fmd_props[] = { 958 { "checksum_N", FMD_TYPE_UINT32, "10" }, 959 { "checksum_T", FMD_TYPE_TIME, "10min" }, 960 { "io_N", FMD_TYPE_UINT32, "10" }, 961 { "io_T", FMD_TYPE_TIME, "10min" }, 962 { "remove_timeout", FMD_TYPE_TIME, "15sec" }, 963 { NULL, 0, NULL } 964 }; 965 966 static const fmd_hdl_info_t fmd_info = { 967 "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props 968 }; 969 970 void 971 _fmd_init(fmd_hdl_t *hdl) 972 { 973 fmd_case_t *cp; 974 libzfs_handle_t *zhdl; 975 976 if ((zhdl = libzfs_init()) == NULL) 977 return; 978 979 if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool", 980 sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node), 981 NULL, 0)) == NULL) { 982 libzfs_fini(zhdl); 983 return; 984 } 985 986 if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) { 987 uu_list_pool_destroy(zfs_case_pool); 988 libzfs_fini(zhdl); 989 return; 990 } 991 992 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { 993 uu_list_destroy(zfs_cases); 994 uu_list_pool_destroy(zfs_case_pool); 995 libzfs_fini(zhdl); 996 return; 997 } 998 999 fmd_hdl_setspecific(hdl, zhdl); 1000 1001 (void) fmd_stat_create(hdl, FMD_STAT_NOALLOC, sizeof (zfs_stats) / 1002 sizeof (fmd_stat_t), (fmd_stat_t *)&zfs_stats); 1003 1004 /* 1005 * Iterate over all active cases and unserialize the associated buffers, 1006 * adding them to our list of open cases. 1007 */ 1008 for (cp = fmd_case_next(hdl, NULL); 1009 cp != NULL; cp = fmd_case_next(hdl, cp)) 1010 (void) zfs_case_unserialize(hdl, cp); 1011 1012 /* 1013 * Clear out any old cases that are no longer valid. 1014 */ 1015 zfs_purge_cases(hdl); 1016 1017 zfs_remove_timeout = fmd_prop_get_int64(hdl, "remove_timeout"); 1018 } 1019 1020 void 1021 _fmd_fini(fmd_hdl_t *hdl) 1022 { 1023 zfs_case_t *zcp; 1024 uu_list_walk_t *walk; 1025 libzfs_handle_t *zhdl; 1026 1027 /* 1028 * Remove all active cases. 1029 */ 1030 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 1031 while ((zcp = uu_list_walk_next(walk)) != NULL) { 1032 uu_list_remove(zfs_cases, zcp); 1033 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 1034 } 1035 uu_list_walk_end(walk); 1036 1037 uu_list_destroy(zfs_cases); 1038 uu_list_pool_destroy(zfs_case_pool); 1039 1040 zhdl = fmd_hdl_getspecific(hdl); 1041 libzfs_fini(zhdl); 1042 } 1043