xref: /illumos-gate/usr/src/cmd/lockstat/lockstat.c (revision 5d9d9091)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <stdio.h>
27 #include <stddef.h>
28 #include <stdlib.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <strings.h>
32 #include <ctype.h>
33 #include <fcntl.h>
34 #include <unistd.h>
35 #include <errno.h>
36 #include <limits.h>
37 #include <sys/types.h>
38 #include <sys/modctl.h>
39 #include <sys/stat.h>
40 #include <sys/wait.h>
41 #include <dtrace.h>
42 #include <sys/lockstat.h>
43 #include <alloca.h>
44 #include <signal.h>
45 #include <assert.h>
46 
47 #define	LOCKSTAT_OPTSTR	"x:bths:n:d:i:l:f:e:ckwWgCHEATID:RpPo:V"
48 
49 #define	LS_MAX_STACK_DEPTH	50
50 #define	LS_MAX_EVENTS		64
51 
52 typedef struct lsrec {
53 	struct lsrec	*ls_next;	/* next in hash chain */
54 	uintptr_t	ls_lock;	/* lock address */
55 	uintptr_t	ls_caller;	/* caller address */
56 	uint32_t	ls_count;	/* cumulative event count */
57 	uint32_t	ls_event;	/* type of event */
58 	uintptr_t	ls_refcnt;	/* cumulative reference count */
59 	uint64_t	ls_time;	/* cumulative event duration */
60 	uint32_t	ls_hist[64];	/* log2(duration) histogram */
61 	uintptr_t	ls_stack[LS_MAX_STACK_DEPTH];
62 } lsrec_t;
63 
64 typedef struct lsdata {
65 	struct lsrec	*lsd_next;	/* next available */
66 	int		lsd_count;	/* number of records */
67 } lsdata_t;
68 
69 /*
70  * Definitions for the types of experiments which can be run.  They are
71  * listed in increasing order of memory cost and processing time cost.
72  * The numerical value of each type is the number of bytes needed per record.
73  */
74 #define	LS_BASIC	offsetof(lsrec_t, ls_time)
75 #define	LS_TIME		offsetof(lsrec_t, ls_hist[0])
76 #define	LS_HIST		offsetof(lsrec_t, ls_stack[0])
77 #define	LS_STACK(depth)	offsetof(lsrec_t, ls_stack[depth])
78 
79 static void report_stats(FILE *, lsrec_t **, size_t, uint64_t, uint64_t);
80 static void report_trace(FILE *, lsrec_t **);
81 
82 extern int symtab_init(void);
83 extern char *addr_to_sym(uintptr_t, uintptr_t *, size_t *);
84 extern uintptr_t sym_to_addr(char *name);
85 extern size_t sym_size(char *name);
86 extern char *strtok_r(char *, const char *, char **);
87 
88 #define	DEFAULT_NRECS	10000
89 #define	DEFAULT_HZ	97
90 #define	MAX_HZ		1000
91 #define	MIN_AGGSIZE	(16 * 1024)
92 #define	MAX_AGGSIZE	(32 * 1024 * 1024)
93 
94 static int g_stkdepth;
95 static int g_topn = INT_MAX;
96 static hrtime_t g_elapsed;
97 static int g_rates = 0;
98 static int g_pflag = 0;
99 static int g_Pflag = 0;
100 static int g_wflag = 0;
101 static int g_Wflag = 0;
102 static int g_cflag = 0;
103 static int g_kflag = 0;
104 static int g_gflag = 0;
105 static int g_Vflag = 0;
106 static int g_tracing = 0;
107 static size_t g_recsize;
108 static size_t g_nrecs;
109 static int g_nrecs_used;
110 static uchar_t g_enabled[LS_MAX_EVENTS];
111 static hrtime_t g_min_duration[LS_MAX_EVENTS];
112 static dtrace_hdl_t *g_dtp;
113 static char *g_predicate;
114 static char *g_ipredicate;
115 static char *g_prog;
116 static int g_proglen;
117 static int g_dropped;
118 
119 typedef struct ls_event_info {
120 	char	ev_type;
121 	char	ev_lhdr[20];
122 	char	ev_desc[80];
123 	char	ev_units[10];
124 	char	ev_name[DTRACE_NAMELEN];
125 	char	*ev_predicate;
126 	char	*ev_acquire;
127 } ls_event_info_t;
128 
129 static ls_event_info_t g_event_info[LS_MAX_EVENTS] = {
130 	{ 'C',	"Lock",	"Adaptive mutex spin",			"nsec",
131 	    "lockstat:::adaptive-spin" },
132 	{ 'C',	"Lock",	"Adaptive mutex block",			"nsec",
133 	    "lockstat:::adaptive-block" },
134 	{ 'C',	"Lock",	"Spin lock spin",			"nsec",
135 	    "lockstat:::spin-spin" },
136 	{ 'C',	"Lock",	"Thread lock spin",			"nsec",
137 	    "lockstat:::thread-spin" },
138 	{ 'C',	"Lock",	"R/W writer blocked by writer",		"nsec",
139 	    "lockstat:::rw-block", "arg2 == 0 && arg3 == 1" },
140 	{ 'C',	"Lock",	"R/W writer blocked by readers",	"nsec",
141 	    "lockstat:::rw-block", "arg2 == 0 && arg3 == 0 && arg4" },
142 	{ 'C',	"Lock",	"R/W reader blocked by writer",		"nsec",
143 	    "lockstat:::rw-block", "arg2 != 0 && arg3 == 1" },
144 	{ 'C',	"Lock",	"R/W reader blocked by write wanted",	"nsec",
145 	    "lockstat:::rw-block", "arg2 != 0 && arg3 == 0 && arg4" },
146 	{ 'C',	"Lock",	"Unknown event (type 8)",		"units"	},
147 	{ 'C',	"Lock",	"Unknown event (type 9)",		"units"	},
148 	{ 'C',	"Lock",	"Unknown event (type 10)",		"units"	},
149 	{ 'C',	"Lock",	"Unknown event (type 11)",		"units"	},
150 	{ 'C',	"Lock",	"Unknown event (type 12)",		"units"	},
151 	{ 'C',	"Lock",	"Unknown event (type 13)",		"units"	},
152 	{ 'C',	"Lock",	"Unknown event (type 14)",		"units"	},
153 	{ 'C',	"Lock",	"Unknown event (type 15)",		"units"	},
154 	{ 'C',	"Lock",	"Unknown event (type 16)",		"units"	},
155 	{ 'C',	"Lock",	"Unknown event (type 17)",		"units"	},
156 	{ 'C',	"Lock",	"Unknown event (type 18)",		"units"	},
157 	{ 'C',	"Lock",	"Unknown event (type 19)",		"units"	},
158 	{ 'C',	"Lock",	"Unknown event (type 20)",		"units"	},
159 	{ 'C',	"Lock",	"Unknown event (type 21)",		"units"	},
160 	{ 'C',	"Lock",	"Unknown event (type 22)",		"units"	},
161 	{ 'C',	"Lock",	"Unknown event (type 23)",		"units"	},
162 	{ 'C',	"Lock",	"Unknown event (type 24)",		"units"	},
163 	{ 'C',	"Lock",	"Unknown event (type 25)",		"units"	},
164 	{ 'C',	"Lock",	"Unknown event (type 26)",		"units"	},
165 	{ 'C',	"Lock",	"Unknown event (type 27)",		"units"	},
166 	{ 'C',	"Lock",	"Unknown event (type 28)",		"units"	},
167 	{ 'C',	"Lock",	"Unknown event (type 29)",		"units"	},
168 	{ 'C',	"Lock",	"Unknown event (type 30)",		"units"	},
169 	{ 'C',	"Lock",	"Unknown event (type 31)",		"units"	},
170 	{ 'H',	"Lock",	"Adaptive mutex hold",			"nsec",
171 	    "lockstat:::adaptive-release", NULL,
172 	    "lockstat:::adaptive-acquire" },
173 	{ 'H',	"Lock",	"Spin lock hold",			"nsec",
174 	    "lockstat:::spin-release", NULL,
175 	    "lockstat:::spin-acquire" },
176 	{ 'H',	"Lock",	"R/W writer hold",			"nsec",
177 	    "lockstat:::rw-release", "arg1 == 0",
178 	    "lockstat:::rw-acquire" },
179 	{ 'H',	"Lock",	"R/W reader hold",			"nsec",
180 	    "lockstat:::rw-release", "arg1 != 0",
181 	    "lockstat:::rw-acquire" },
182 	{ 'H',	"Lock",	"Unknown event (type 36)",		"units"	},
183 	{ 'H',	"Lock",	"Unknown event (type 37)",		"units"	},
184 	{ 'H',	"Lock",	"Unknown event (type 38)",		"units"	},
185 	{ 'H',	"Lock",	"Unknown event (type 39)",		"units"	},
186 	{ 'H',	"Lock",	"Unknown event (type 40)",		"units"	},
187 	{ 'H',	"Lock",	"Unknown event (type 41)",		"units"	},
188 	{ 'H',	"Lock",	"Unknown event (type 42)",		"units"	},
189 	{ 'H',	"Lock",	"Unknown event (type 43)",		"units"	},
190 	{ 'H',	"Lock",	"Unknown event (type 44)",		"units"	},
191 	{ 'H',	"Lock",	"Unknown event (type 45)",		"units"	},
192 	{ 'H',	"Lock",	"Unknown event (type 46)",		"units"	},
193 	{ 'H',	"Lock",	"Unknown event (type 47)",		"units"	},
194 	{ 'H',	"Lock",	"Unknown event (type 48)",		"units"	},
195 	{ 'H',	"Lock",	"Unknown event (type 49)",		"units"	},
196 	{ 'H',	"Lock",	"Unknown event (type 50)",		"units"	},
197 	{ 'H',	"Lock",	"Unknown event (type 51)",		"units"	},
198 	{ 'H',	"Lock",	"Unknown event (type 52)",		"units"	},
199 	{ 'H',	"Lock",	"Unknown event (type 53)",		"units"	},
200 	{ 'H',	"Lock",	"Unknown event (type 54)",		"units"	},
201 	{ 'H',	"Lock",	"Unknown event (type 55)",		"units"	},
202 	{ 'I',	"CPU+PIL", "Profiling interrupt",		"nsec",
203 	    "profile:::profile-97", NULL },
204 	{ 'I',	"Lock",	"Unknown event (type 57)",		"units"	},
205 	{ 'I',	"Lock",	"Unknown event (type 58)",		"units"	},
206 	{ 'I',	"Lock",	"Unknown event (type 59)",		"units"	},
207 	{ 'E',	"Lock",	"Recursive lock entry detected",	"(N/A)",
208 	    "lockstat:::rw-release", NULL, "lockstat:::rw-acquire" },
209 	{ 'E',	"Lock",	"Lockstat enter failure",		"(N/A)"	},
210 	{ 'E',	"Lock",	"Lockstat exit failure",		"nsec"	},
211 	{ 'E',	"Lock",	"Lockstat record failure",		"(N/A)"	},
212 };
213 
214 static void
215 fail(int do_perror, const char *message, ...)
216 {
217 	va_list args;
218 	int save_errno = errno;
219 
220 	va_start(args, message);
221 	(void) fprintf(stderr, "lockstat: ");
222 	(void) vfprintf(stderr, message, args);
223 	va_end(args);
224 	if (do_perror)
225 		(void) fprintf(stderr, ": %s", strerror(save_errno));
226 	(void) fprintf(stderr, "\n");
227 	exit(2);
228 }
229 
230 static void
231 dfail(const char *message, ...)
232 {
233 	va_list args;
234 
235 	va_start(args, message);
236 	(void) fprintf(stderr, "lockstat: ");
237 	(void) vfprintf(stderr, message, args);
238 	va_end(args);
239 	(void) fprintf(stderr, ": %s\n",
240 	    dtrace_errmsg(g_dtp, dtrace_errno(g_dtp)));
241 
242 	exit(2);
243 }
244 
245 static void
246 show_events(char event_type, char *desc)
247 {
248 	int i, first = -1, last;
249 
250 	for (i = 0; i < LS_MAX_EVENTS; i++) {
251 		ls_event_info_t *evp = &g_event_info[i];
252 		if (evp->ev_type != event_type ||
253 		    strncmp(evp->ev_desc, "Unknown event", 13) == 0)
254 			continue;
255 		if (first == -1)
256 			first = i;
257 		last = i;
258 	}
259 
260 	(void) fprintf(stderr,
261 	    "\n%s events (lockstat -%c or lockstat -e %d-%d):\n\n",
262 	    desc, event_type, first, last);
263 
264 	for (i = first; i <= last; i++)
265 		(void) fprintf(stderr,
266 		    "%4d = %s\n", i, g_event_info[i].ev_desc);
267 }
268 
269 static void
270 usage(void)
271 {
272 	(void) fprintf(stderr,
273 	    "Usage: lockstat [options] command [args]\n"
274 	    "\nEvent selection options:\n\n"
275 	    "  -C              watch contention events [on by default]\n"
276 	    "  -E              watch error events [off by default]\n"
277 	    "  -H              watch hold events [off by default]\n"
278 	    "  -I              watch interrupt events [off by default]\n"
279 	    "  -A              watch all lock events [equivalent to -CH]\n"
280 	    "  -e event_list   only watch the specified events (shown below);\n"
281 	    "                  <event_list> is a comma-separated list of\n"
282 	    "                  events or ranges of events, e.g. 1,4-7,35\n"
283 	    "  -i rate         interrupt rate for -I [default: %d Hz]\n"
284 	    "\nData gathering options:\n\n"
285 	    "  -b              basic statistics (lock, caller, event count)\n"
286 	    "  -t              timing for all events [default]\n"
287 	    "  -h              histograms for event times\n"
288 	    "  -s depth        stack traces <depth> deep\n"
289 	    "  -x opt[=val]    enable or modify DTrace options\n"
290 	    "\nData filtering options:\n\n"
291 	    "  -n nrecords     maximum number of data records [default: %d]\n"
292 	    "  -l lock[,size]  only watch <lock>, which can be specified as a\n"
293 	    "                  symbolic name or hex address; <size> defaults\n"
294 	    "                  to the ELF symbol size if available, 1 if not\n"
295 	    "  -f func[,size]  only watch events generated by <func>\n"
296 	    "  -d duration     only watch events longer than <duration>\n"
297 	    "  -T              trace (rather than sample) events\n"
298 	    "\nData reporting options:\n\n"
299 	    "  -c              coalesce lock data for arrays like pse_mutex[]\n"
300 	    "  -k              coalesce PCs within functions\n"
301 	    "  -g              show total events generated by function\n"
302 	    "  -w              wherever: don't distinguish events by caller\n"
303 	    "  -W              whichever: don't distinguish events by lock\n"
304 	    "  -R              display rates rather than counts\n"
305 	    "  -p              parsable output format (awk(1)-friendly)\n"
306 	    "  -P              sort lock data by (count * avg_time) product\n"
307 	    "  -D n            only display top <n> events of each type\n"
308 	    "  -o filename     send output to <filename>\n",
309 	    DEFAULT_HZ, DEFAULT_NRECS);
310 
311 	show_events('C', "Contention");
312 	show_events('H', "Hold-time");
313 	show_events('I', "Interrupt");
314 	show_events('E', "Error");
315 	(void) fprintf(stderr, "\n");
316 
317 	exit(1);
318 }
319 
320 static int
321 lockcmp(lsrec_t *a, lsrec_t *b)
322 {
323 	int i;
324 
325 	if (a->ls_event < b->ls_event)
326 		return (-1);
327 	if (a->ls_event > b->ls_event)
328 		return (1);
329 
330 	for (i = g_stkdepth - 1; i >= 0; i--) {
331 		if (a->ls_stack[i] < b->ls_stack[i])
332 			return (-1);
333 		if (a->ls_stack[i] > b->ls_stack[i])
334 			return (1);
335 	}
336 
337 	if (a->ls_caller < b->ls_caller)
338 		return (-1);
339 	if (a->ls_caller > b->ls_caller)
340 		return (1);
341 
342 	if (a->ls_lock < b->ls_lock)
343 		return (-1);
344 	if (a->ls_lock > b->ls_lock)
345 		return (1);
346 
347 	return (0);
348 }
349 
350 static int
351 countcmp(lsrec_t *a, lsrec_t *b)
352 {
353 	if (a->ls_event < b->ls_event)
354 		return (-1);
355 	if (a->ls_event > b->ls_event)
356 		return (1);
357 
358 	return (b->ls_count - a->ls_count);
359 }
360 
361 static int
362 timecmp(lsrec_t *a, lsrec_t *b)
363 {
364 	if (a->ls_event < b->ls_event)
365 		return (-1);
366 	if (a->ls_event > b->ls_event)
367 		return (1);
368 
369 	if (a->ls_time < b->ls_time)
370 		return (1);
371 	if (a->ls_time > b->ls_time)
372 		return (-1);
373 
374 	return (0);
375 }
376 
377 static int
378 lockcmp_anywhere(lsrec_t *a, lsrec_t *b)
379 {
380 	if (a->ls_event < b->ls_event)
381 		return (-1);
382 	if (a->ls_event > b->ls_event)
383 		return (1);
384 
385 	if (a->ls_lock < b->ls_lock)
386 		return (-1);
387 	if (a->ls_lock > b->ls_lock)
388 		return (1);
389 
390 	return (0);
391 }
392 
393 static int
394 lock_and_count_cmp_anywhere(lsrec_t *a, lsrec_t *b)
395 {
396 	if (a->ls_event < b->ls_event)
397 		return (-1);
398 	if (a->ls_event > b->ls_event)
399 		return (1);
400 
401 	if (a->ls_lock < b->ls_lock)
402 		return (-1);
403 	if (a->ls_lock > b->ls_lock)
404 		return (1);
405 
406 	return (b->ls_count - a->ls_count);
407 }
408 
409 static int
410 sitecmp_anylock(lsrec_t *a, lsrec_t *b)
411 {
412 	int i;
413 
414 	if (a->ls_event < b->ls_event)
415 		return (-1);
416 	if (a->ls_event > b->ls_event)
417 		return (1);
418 
419 	for (i = g_stkdepth - 1; i >= 0; i--) {
420 		if (a->ls_stack[i] < b->ls_stack[i])
421 			return (-1);
422 		if (a->ls_stack[i] > b->ls_stack[i])
423 			return (1);
424 	}
425 
426 	if (a->ls_caller < b->ls_caller)
427 		return (-1);
428 	if (a->ls_caller > b->ls_caller)
429 		return (1);
430 
431 	return (0);
432 }
433 
434 static int
435 site_and_count_cmp_anylock(lsrec_t *a, lsrec_t *b)
436 {
437 	int i;
438 
439 	if (a->ls_event < b->ls_event)
440 		return (-1);
441 	if (a->ls_event > b->ls_event)
442 		return (1);
443 
444 	for (i = g_stkdepth - 1; i >= 0; i--) {
445 		if (a->ls_stack[i] < b->ls_stack[i])
446 			return (-1);
447 		if (a->ls_stack[i] > b->ls_stack[i])
448 			return (1);
449 	}
450 
451 	if (a->ls_caller < b->ls_caller)
452 		return (-1);
453 	if (a->ls_caller > b->ls_caller)
454 		return (1);
455 
456 	return (b->ls_count - a->ls_count);
457 }
458 
459 static void
460 mergesort(int (*cmp)(lsrec_t *, lsrec_t *), lsrec_t **a, lsrec_t **b, int n)
461 {
462 	int m = n / 2;
463 	int i, j;
464 
465 	if (m > 1)
466 		mergesort(cmp, a, b, m);
467 	if (n - m > 1)
468 		mergesort(cmp, a + m, b + m, n - m);
469 	for (i = m; i > 0; i--)
470 		b[i - 1] = a[i - 1];
471 	for (j = m - 1; j < n - 1; j++)
472 		b[n + m - j - 2] = a[j + 1];
473 	while (i < j)
474 		*a++ = cmp(b[i], b[j]) < 0 ? b[i++] : b[j--];
475 	*a = b[i];
476 }
477 
478 static void
479 coalesce(int (*cmp)(lsrec_t *, lsrec_t *), lsrec_t **lock, int n)
480 {
481 	int i, j;
482 	lsrec_t *target, *current;
483 
484 	target = lock[0];
485 
486 	for (i = 1; i < n; i++) {
487 		current = lock[i];
488 		if (cmp(current, target) != 0) {
489 			target = current;
490 			continue;
491 		}
492 		current->ls_event = LS_MAX_EVENTS;
493 		target->ls_count += current->ls_count;
494 		target->ls_refcnt += current->ls_refcnt;
495 		if (g_recsize < LS_TIME)
496 			continue;
497 		target->ls_time += current->ls_time;
498 		if (g_recsize < LS_HIST)
499 			continue;
500 		for (j = 0; j < 64; j++)
501 			target->ls_hist[j] += current->ls_hist[j];
502 	}
503 }
504 
505 static void
506 coalesce_symbol(uintptr_t *addrp)
507 {
508 	uintptr_t symoff;
509 	size_t symsize;
510 
511 	if (addr_to_sym(*addrp, &symoff, &symsize) != NULL && symoff < symsize)
512 		*addrp -= symoff;
513 }
514 
515 static void
516 predicate_add(char **pred, char *what, char *cmp, uintptr_t value)
517 {
518 	char *new;
519 	int len, newlen;
520 
521 	if (what == NULL)
522 		return;
523 
524 	if (*pred == NULL) {
525 		*pred = malloc(1);
526 		*pred[0] = '\0';
527 	}
528 
529 	len = strlen(*pred);
530 	newlen = len + strlen(what) + 32 + strlen("( && )");
531 	new = malloc(newlen);
532 
533 	if (*pred[0] != '\0') {
534 		if (cmp != NULL) {
535 			(void) sprintf(new, "(%s) && (%s %s 0x%p)",
536 			    *pred, what, cmp, (void *)value);
537 		} else {
538 			(void) sprintf(new, "(%s) && (%s)", *pred, what);
539 		}
540 	} else {
541 		if (cmp != NULL) {
542 			(void) sprintf(new, "%s %s 0x%p",
543 			    what, cmp, (void *)value);
544 		} else {
545 			(void) sprintf(new, "%s", what);
546 		}
547 	}
548 
549 	free(*pred);
550 	*pred = new;
551 }
552 
553 static void
554 predicate_destroy(char **pred)
555 {
556 	free(*pred);
557 	*pred = NULL;
558 }
559 
560 static void
561 filter_add(char **filt, char *what, uintptr_t base, uintptr_t size)
562 {
563 	char buf[256], *c = buf, *new;
564 	int len, newlen;
565 
566 	if (*filt == NULL) {
567 		*filt = malloc(1);
568 		*filt[0] = '\0';
569 	}
570 
571 	(void) sprintf(c, "%s(%s >= 0x%p && %s < 0x%p)", *filt[0] != '\0' ?
572 	    " || " : "", what, (void *)base, what, (void *)(base + size));
573 
574 	newlen = (len = strlen(*filt) + 1) + strlen(c);
575 	new = malloc(newlen);
576 	bcopy(*filt, new, len);
577 	(void) strcat(new, c);
578 	free(*filt);
579 	*filt = new;
580 }
581 
582 static void
583 filter_destroy(char **filt)
584 {
585 	free(*filt);
586 	*filt = NULL;
587 }
588 
589 static void
590 dprog_add(const char *fmt, ...)
591 {
592 	va_list args;
593 	int size, offs;
594 	char c;
595 
596 	va_start(args, fmt);
597 	size = vsnprintf(&c, 1, fmt, args) + 1;
598 
599 	if (g_proglen == 0) {
600 		offs = 0;
601 	} else {
602 		offs = g_proglen - 1;
603 	}
604 
605 	g_proglen = offs + size;
606 
607 	if ((g_prog = realloc(g_prog, g_proglen)) == NULL)
608 		fail(1, "failed to reallocate program text");
609 
610 	(void) vsnprintf(&g_prog[offs], size, fmt, args);
611 }
612 
613 /*
614  * This function may read like an open sewer, but keep in mind that programs
615  * that generate other programs are rarely pretty.  If one has the unenviable
616  * task of maintaining or -- worse -- extending this code, use the -V option
617  * to examine the D program as generated by this function.
618  */
619 static void
620 dprog_addevent(int event)
621 {
622 	ls_event_info_t *info = &g_event_info[event];
623 	char *pred = NULL;
624 	char stack[20];
625 	const char *arg0, *caller;
626 	char *arg1 = "arg1";
627 	char buf[80];
628 	hrtime_t dur;
629 	int depth;
630 
631 	if (info->ev_name[0] == '\0')
632 		return;
633 
634 	if (info->ev_type == 'I') {
635 		/*
636 		 * For interrupt events, arg0 (normally the lock pointer) is
637 		 * the CPU address plus the current pil, and arg1 (normally
638 		 * the number of nanoseconds) is the number of nanoseconds
639 		 * late -- and it's stored in arg2.
640 		 */
641 		arg0 = "(uintptr_t)curthread->t_cpu + \n"
642 		    "\t    curthread->t_cpu->cpu_profile_pil";
643 		caller = "(uintptr_t)arg0";
644 		arg1 = "arg2";
645 	} else {
646 		arg0 = "(uintptr_t)arg0";
647 		caller = "caller";
648 	}
649 
650 	if (g_recsize > LS_HIST) {
651 		for (depth = 0; g_recsize > LS_STACK(depth); depth++)
652 			continue;
653 
654 		if (g_tracing) {
655 			(void) sprintf(stack, "\tstack(%d);\n", depth);
656 		} else {
657 			(void) sprintf(stack, ", stack(%d)", depth);
658 		}
659 	} else {
660 		(void) sprintf(stack, "");
661 	}
662 
663 	if (info->ev_acquire != NULL) {
664 		/*
665 		 * If this is a hold event, we need to generate an additional
666 		 * clause for the acquire; the clause for the release will be
667 		 * generated with the aggregating statement, below.
668 		 */
669 		dprog_add("%s\n", info->ev_acquire);
670 		predicate_add(&pred, info->ev_predicate, NULL, 0);
671 		predicate_add(&pred, g_predicate, NULL, 0);
672 		if (pred != NULL)
673 			dprog_add("/%s/\n", pred);
674 
675 		dprog_add("{\n");
676 		(void) sprintf(buf, "self->ev%d[(uintptr_t)arg0]", event);
677 
678 		if (info->ev_type == 'H') {
679 			dprog_add("\t%s = timestamp;\n", buf);
680 		} else {
681 			/*
682 			 * If this isn't a hold event, it's the recursive
683 			 * error event.  For this, we simply bump the
684 			 * thread-local, per-lock count.
685 			 */
686 			dprog_add("\t%s++;\n", buf);
687 		}
688 
689 		dprog_add("}\n\n");
690 		predicate_destroy(&pred);
691 		pred = NULL;
692 
693 		if (info->ev_type == 'E') {
694 			/*
695 			 * If this is the recursive lock error event, we need
696 			 * to generate an additional clause to decrement the
697 			 * thread-local, per-lock count.  This assures that we
698 			 * only execute the aggregating clause if we have
699 			 * recursive entry.
700 			 */
701 			dprog_add("%s\n", info->ev_name);
702 			dprog_add("/%s/\n{\n\t%s--;\n}\n\n", buf, buf);
703 		}
704 
705 		predicate_add(&pred, buf, NULL, 0);
706 
707 		if (info->ev_type == 'H') {
708 			(void) sprintf(buf, "timestamp -\n\t    "
709 			    "self->ev%d[(uintptr_t)arg0]", event);
710 		}
711 
712 		arg1 = buf;
713 	} else {
714 		predicate_add(&pred, info->ev_predicate, NULL, 0);
715 		if (info->ev_type != 'I')
716 			predicate_add(&pred, g_predicate, NULL, 0);
717 		else
718 			predicate_add(&pred, g_ipredicate, NULL, 0);
719 	}
720 
721 	if ((dur = g_min_duration[event]) != 0)
722 		predicate_add(&pred, arg1, ">=", dur);
723 
724 	dprog_add("%s\n", info->ev_name);
725 
726 	if (pred != NULL)
727 		dprog_add("/%s/\n", pred);
728 	predicate_destroy(&pred);
729 
730 	dprog_add("{\n");
731 
732 	if (g_tracing) {
733 		dprog_add("\ttrace(%dULL);\n", event);
734 		dprog_add("\ttrace(%s);\n", arg0);
735 		dprog_add("\ttrace(%s);\n", caller);
736 		dprog_add(stack);
737 	} else {
738 		/*
739 		 * The ordering here is important:  when we process the
740 		 * aggregate, we count on the fact that @avg appears before
741 		 * @hist in program order to assure that @avg is assigned the
742 		 * first aggregation variable ID and @hist assigned the
743 		 * second; see the comment in process_aggregate() for details.
744 		 */
745 		dprog_add("\t@avg[%dULL, %s, %s%s] = avg(%s);\n",
746 		    event, arg0, caller, stack, arg1);
747 
748 		if (g_recsize >= LS_HIST) {
749 			dprog_add("\t@hist[%dULL, %s, %s%s] = quantize"
750 			    "(%s);\n", event, arg0, caller, stack, arg1);
751 		}
752 	}
753 
754 	if (info->ev_acquire != NULL)
755 		dprog_add("\tself->ev%d[arg0] = 0;\n", event);
756 
757 	dprog_add("}\n\n");
758 }
759 
760 static void
761 dprog_compile()
762 {
763 	dtrace_prog_t *prog;
764 	dtrace_proginfo_t info;
765 
766 	if (g_Vflag) {
767 		(void) fprintf(stderr, "lockstat: vvvv D program vvvv\n");
768 		(void) fputs(g_prog, stderr);
769 		(void) fprintf(stderr, "lockstat: ^^^^ D program ^^^^\n");
770 	}
771 
772 	if ((prog = dtrace_program_strcompile(g_dtp, g_prog,
773 	    DTRACE_PROBESPEC_NAME, 0, 0, NULL)) == NULL)
774 		dfail("failed to compile program");
775 
776 	if (dtrace_program_exec(g_dtp, prog, &info) == -1)
777 		dfail("failed to enable probes");
778 
779 	if (dtrace_go(g_dtp) != 0)
780 		dfail("couldn't start tracing");
781 }
782 
783 static void
784 status_fire(void)
785 {}
786 
787 static void
788 status_init(void)
789 {
790 	dtrace_optval_t val, status, agg;
791 	struct sigaction act;
792 	struct itimerspec ts;
793 	struct sigevent ev;
794 	timer_t tid;
795 
796 	if (dtrace_getopt(g_dtp, "statusrate", &status) == -1)
797 		dfail("failed to get 'statusrate'");
798 
799 	if (dtrace_getopt(g_dtp, "aggrate", &agg) == -1)
800 		dfail("failed to get 'statusrate'");
801 
802 	/*
803 	 * We would want to awaken at a rate that is the GCD of the statusrate
804 	 * and the aggrate -- but that seems a bit absurd.  Instead, we'll
805 	 * simply awaken at a rate that is the more frequent of the two, which
806 	 * assures that we're never later than the interval implied by the
807 	 * more frequent rate.
808 	 */
809 	val = status < agg ? status : agg;
810 
811 	(void) sigemptyset(&act.sa_mask);
812 	act.sa_flags = 0;
813 	act.sa_handler = status_fire;
814 	(void) sigaction(SIGUSR1, &act, NULL);
815 
816 	ev.sigev_notify = SIGEV_SIGNAL;
817 	ev.sigev_signo = SIGUSR1;
818 
819 	if (timer_create(CLOCK_REALTIME, &ev, &tid) == -1)
820 		dfail("cannot create CLOCK_REALTIME timer");
821 
822 	ts.it_value.tv_sec = val / NANOSEC;
823 	ts.it_value.tv_nsec = val % NANOSEC;
824 	ts.it_interval = ts.it_value;
825 
826 	if (timer_settime(tid, TIMER_RELTIME, &ts, NULL) == -1)
827 		dfail("cannot set time on CLOCK_REALTIME timer");
828 }
829 
830 static void
831 status_check(void)
832 {
833 	if (!g_tracing && dtrace_aggregate_snap(g_dtp) != 0)
834 		dfail("failed to snap aggregate");
835 
836 	if (dtrace_status(g_dtp) == -1)
837 		dfail("dtrace_status()");
838 }
839 
840 static void
841 lsrec_fill(lsrec_t *lsrec, const dtrace_recdesc_t *rec, int nrecs, caddr_t data)
842 {
843 	bzero(lsrec, g_recsize);
844 	lsrec->ls_count = 1;
845 
846 	if ((g_recsize > LS_HIST && nrecs < 4) || (nrecs < 3))
847 		fail(0, "truncated DTrace record");
848 
849 	if (rec->dtrd_size != sizeof (uint64_t))
850 		fail(0, "bad event size in first record");
851 
852 	/* LINTED - alignment */
853 	lsrec->ls_event = (uint32_t)*((uint64_t *)(data + rec->dtrd_offset));
854 	rec++;
855 
856 	if (rec->dtrd_size != sizeof (uintptr_t))
857 		fail(0, "bad lock address size in second record");
858 
859 	/* LINTED - alignment */
860 	lsrec->ls_lock = *((uintptr_t *)(data + rec->dtrd_offset));
861 	rec++;
862 
863 	if (rec->dtrd_size != sizeof (uintptr_t))
864 		fail(0, "bad caller size in third record");
865 
866 	/* LINTED - alignment */
867 	lsrec->ls_caller = *((uintptr_t *)(data + rec->dtrd_offset));
868 	rec++;
869 
870 	if (g_recsize > LS_HIST) {
871 		int frames, i;
872 		pc_t *stack;
873 
874 		frames = rec->dtrd_size / sizeof (pc_t);
875 		/* LINTED - alignment */
876 		stack = (pc_t *)(data + rec->dtrd_offset);
877 
878 		for (i = 1; i < frames; i++)
879 			lsrec->ls_stack[i - 1] = stack[i];
880 	}
881 }
882 
883 /*ARGSUSED*/
884 static int
885 count_aggregate(const dtrace_aggdata_t *agg, void *arg)
886 {
887 	*((size_t *)arg) += 1;
888 
889 	return (DTRACE_AGGWALK_NEXT);
890 }
891 
892 static int
893 process_aggregate(const dtrace_aggdata_t *agg, void *arg)
894 {
895 	const dtrace_aggdesc_t *aggdesc = agg->dtada_desc;
896 	caddr_t data = agg->dtada_data;
897 	lsdata_t *lsdata = arg;
898 	lsrec_t *lsrec = lsdata->lsd_next;
899 	const dtrace_recdesc_t *rec;
900 	uint64_t *avg, *quantized;
901 	int i, j;
902 
903 	assert(lsdata->lsd_count < g_nrecs);
904 
905 	/*
906 	 * Aggregation variable IDs are guaranteed to be generated in program
907 	 * order, and they are guaranteed to start from DTRACE_AGGVARIDNONE
908 	 * plus one.  As "avg" appears before "hist" in program order, we know
909 	 * that "avg" will be allocated the first aggregation variable ID, and
910 	 * "hist" will be allocated the second aggregation variable ID -- and
911 	 * we therefore use the aggregation variable ID to differentiate the
912 	 * cases.
913 	 */
914 	if (aggdesc->dtagd_varid > DTRACE_AGGVARIDNONE + 1) {
915 		/*
916 		 * If this is the histogram entry.  We'll copy the quantized
917 		 * data into lc_hist, and jump over the rest.
918 		 */
919 		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
920 
921 		if (aggdesc->dtagd_varid != DTRACE_AGGVARIDNONE + 2)
922 			fail(0, "bad variable ID in aggregation record");
923 
924 		if (rec->dtrd_size !=
925 		    DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
926 			fail(0, "bad quantize size in aggregation record");
927 
928 		/* LINTED - alignment */
929 		quantized = (uint64_t *)(data + rec->dtrd_offset);
930 
931 		for (i = DTRACE_QUANTIZE_ZEROBUCKET, j = 0;
932 		    i < DTRACE_QUANTIZE_NBUCKETS; i++, j++)
933 			lsrec->ls_hist[j] = quantized[i];
934 
935 		goto out;
936 	}
937 
938 	lsrec_fill(lsrec, &aggdesc->dtagd_rec[1],
939 	    aggdesc->dtagd_nrecs - 1, data);
940 
941 	rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
942 
943 	if (rec->dtrd_size != 2 * sizeof (uint64_t))
944 		fail(0, "bad avg size in aggregation record");
945 
946 	/* LINTED - alignment */
947 	avg = (uint64_t *)(data + rec->dtrd_offset);
948 	lsrec->ls_count = (uint32_t)avg[0];
949 	lsrec->ls_time = (uintptr_t)avg[1];
950 
951 	if (g_recsize >= LS_HIST)
952 		return (DTRACE_AGGWALK_NEXT);
953 
954 out:
955 	lsdata->lsd_next = (lsrec_t *)((uintptr_t)lsrec + g_recsize);
956 	lsdata->lsd_count++;
957 
958 	return (DTRACE_AGGWALK_NEXT);
959 }
960 
961 static int
962 process_trace(const dtrace_probedata_t *pdata, void *arg)
963 {
964 	lsdata_t *lsdata = arg;
965 	lsrec_t *lsrec = lsdata->lsd_next;
966 	dtrace_eprobedesc_t *edesc = pdata->dtpda_edesc;
967 	caddr_t data = pdata->dtpda_data;
968 
969 	if (lsdata->lsd_count >= g_nrecs)
970 		return (DTRACE_CONSUME_NEXT);
971 
972 	lsrec_fill(lsrec, edesc->dtepd_rec, edesc->dtepd_nrecs, data);
973 
974 	lsdata->lsd_next = (lsrec_t *)((uintptr_t)lsrec + g_recsize);
975 	lsdata->lsd_count++;
976 
977 	return (DTRACE_CONSUME_NEXT);
978 }
979 
980 static int
981 process_data(FILE *out, char *data)
982 {
983 	lsdata_t lsdata;
984 
985 	/* LINTED - alignment */
986 	lsdata.lsd_next = (lsrec_t *)data;
987 	lsdata.lsd_count = 0;
988 
989 	if (g_tracing) {
990 		if (dtrace_consume(g_dtp, out,
991 		    process_trace, NULL, &lsdata) != 0)
992 			dfail("failed to consume buffer");
993 
994 		return (lsdata.lsd_count);
995 	}
996 
997 	if (dtrace_aggregate_walk_keyvarsorted(g_dtp,
998 	    process_aggregate, &lsdata) != 0)
999 		dfail("failed to walk aggregate");
1000 
1001 	return (lsdata.lsd_count);
1002 }
1003 
1004 /*ARGSUSED*/
1005 static int
1006 drophandler(const dtrace_dropdata_t *data, void *arg)
1007 {
1008 	g_dropped++;
1009 	(void) fprintf(stderr, "lockstat: warning: %s", data->dtdda_msg);
1010 	return (DTRACE_HANDLE_OK);
1011 }
1012 
1013 int
1014 main(int argc, char **argv)
1015 {
1016 	char *data_buf;
1017 	lsrec_t *lsp, **current, **first, **sort_buf, **merge_buf;
1018 	FILE *out = stdout;
1019 	char c;
1020 	pid_t child;
1021 	int status;
1022 	int i, j;
1023 	hrtime_t duration;
1024 	char *addrp, *offp, *sizep, *evp, *lastp, *p;
1025 	uintptr_t addr;
1026 	size_t size, off;
1027 	int events_specified = 0;
1028 	int exec_errno = 0;
1029 	uint32_t event;
1030 	char *filt = NULL, *ifilt = NULL;
1031 	static uint64_t ev_count[LS_MAX_EVENTS + 1];
1032 	static uint64_t ev_time[LS_MAX_EVENTS + 1];
1033 	dtrace_optval_t aggsize;
1034 	char aggstr[10];
1035 	long ncpus;
1036 	int dynvar = 0;
1037 	int err;
1038 
1039 	if ((g_dtp = dtrace_open(DTRACE_VERSION, 0, &err)) == NULL) {
1040 		fail(0, "cannot open dtrace library: %s",
1041 		    dtrace_errmsg(NULL, err));
1042 	}
1043 
1044 	if (dtrace_handle_drop(g_dtp, &drophandler, NULL) == -1)
1045 		dfail("couldn't establish drop handler");
1046 
1047 	if (symtab_init() == -1)
1048 		fail(1, "can't load kernel symbols");
1049 
1050 	g_nrecs = DEFAULT_NRECS;
1051 
1052 	while ((c = getopt(argc, argv, LOCKSTAT_OPTSTR)) != EOF) {
1053 		switch (c) {
1054 		case 'b':
1055 			g_recsize = LS_BASIC;
1056 			break;
1057 
1058 		case 't':
1059 			g_recsize = LS_TIME;
1060 			break;
1061 
1062 		case 'h':
1063 			g_recsize = LS_HIST;
1064 			break;
1065 
1066 		case 's':
1067 			if (!isdigit(optarg[0]))
1068 				usage();
1069 			g_stkdepth = atoi(optarg);
1070 			if (g_stkdepth > LS_MAX_STACK_DEPTH)
1071 				fail(0, "max stack depth is %d",
1072 				    LS_MAX_STACK_DEPTH);
1073 			g_recsize = LS_STACK(g_stkdepth);
1074 			break;
1075 
1076 		case 'n':
1077 			if (!isdigit(optarg[0]))
1078 				usage();
1079 			g_nrecs = atoi(optarg);
1080 			break;
1081 
1082 		case 'd':
1083 			if (!isdigit(optarg[0]))
1084 				usage();
1085 			duration = atoll(optarg);
1086 
1087 			/*
1088 			 * XXX -- durations really should be per event
1089 			 * since the units are different, but it's hard
1090 			 * to express this nicely in the interface.
1091 			 * Not clear yet what the cleanest solution is.
1092 			 */
1093 			for (i = 0; i < LS_MAX_EVENTS; i++)
1094 				if (g_event_info[i].ev_type != 'E')
1095 					g_min_duration[i] = duration;
1096 
1097 			break;
1098 
1099 		case 'i':
1100 			if (!isdigit(optarg[0]))
1101 				usage();
1102 			i = atoi(optarg);
1103 			if (i <= 0)
1104 				usage();
1105 			if (i > MAX_HZ)
1106 				fail(0, "max interrupt rate is %d Hz", MAX_HZ);
1107 
1108 			for (j = 0; j < LS_MAX_EVENTS; j++)
1109 				if (strcmp(g_event_info[j].ev_desc,
1110 				    "Profiling interrupt") == 0)
1111 					break;
1112 
1113 			(void) sprintf(g_event_info[j].ev_name,
1114 			    "profile:::profile-%d", i);
1115 			break;
1116 
1117 		case 'l':
1118 		case 'f':
1119 			addrp = strtok(optarg, ",");
1120 			sizep = strtok(NULL, ",");
1121 			addrp = strtok(optarg, ",+");
1122 			offp = strtok(NULL, ",");
1123 
1124 			size = sizep ? strtoul(sizep, NULL, 0) : 1;
1125 			off = offp ? strtoul(offp, NULL, 0) : 0;
1126 
1127 			if (addrp[0] == '0') {
1128 				addr = strtoul(addrp, NULL, 16) + off;
1129 			} else {
1130 				addr = sym_to_addr(addrp) + off;
1131 				if (sizep == NULL)
1132 					size = sym_size(addrp) - off;
1133 				if (addr - off == 0)
1134 					fail(0, "symbol '%s' not found", addrp);
1135 				if (size == 0)
1136 					size = 1;
1137 			}
1138 
1139 
1140 			if (c == 'l') {
1141 				filter_add(&filt, "arg0", addr, size);
1142 			} else {
1143 				filter_add(&filt, "caller", addr, size);
1144 				filter_add(&ifilt, "arg0", addr, size);
1145 			}
1146 			break;
1147 
1148 		case 'e':
1149 			evp = strtok_r(optarg, ",", &lastp);
1150 			while (evp) {
1151 				int ev1, ev2;
1152 				char *evp2;
1153 
1154 				(void) strtok(evp, "-");
1155 				evp2 = strtok(NULL, "-");
1156 				ev1 = atoi(evp);
1157 				ev2 = evp2 ? atoi(evp2) : ev1;
1158 				if ((uint_t)ev1 >= LS_MAX_EVENTS ||
1159 				    (uint_t)ev2 >= LS_MAX_EVENTS || ev1 > ev2)
1160 					fail(0, "-e events out of range");
1161 				for (i = ev1; i <= ev2; i++)
1162 					g_enabled[i] = 1;
1163 				evp = strtok_r(NULL, ",", &lastp);
1164 			}
1165 			events_specified = 1;
1166 			break;
1167 
1168 		case 'c':
1169 			g_cflag = 1;
1170 			break;
1171 
1172 		case 'k':
1173 			g_kflag = 1;
1174 			break;
1175 
1176 		case 'w':
1177 			g_wflag = 1;
1178 			break;
1179 
1180 		case 'W':
1181 			g_Wflag = 1;
1182 			break;
1183 
1184 		case 'g':
1185 			g_gflag = 1;
1186 			break;
1187 
1188 		case 'C':
1189 		case 'E':
1190 		case 'H':
1191 		case 'I':
1192 			for (i = 0; i < LS_MAX_EVENTS; i++)
1193 				if (g_event_info[i].ev_type == c)
1194 					g_enabled[i] = 1;
1195 			events_specified = 1;
1196 			break;
1197 
1198 		case 'A':
1199 			for (i = 0; i < LS_MAX_EVENTS; i++)
1200 				if (strchr("CH", g_event_info[i].ev_type))
1201 					g_enabled[i] = 1;
1202 			events_specified = 1;
1203 			break;
1204 
1205 		case 'T':
1206 			g_tracing = 1;
1207 			break;
1208 
1209 		case 'D':
1210 			if (!isdigit(optarg[0]))
1211 				usage();
1212 			g_topn = atoi(optarg);
1213 			break;
1214 
1215 		case 'R':
1216 			g_rates = 1;
1217 			break;
1218 
1219 		case 'p':
1220 			g_pflag = 1;
1221 			break;
1222 
1223 		case 'P':
1224 			g_Pflag = 1;
1225 			break;
1226 
1227 		case 'o':
1228 			if ((out = fopen(optarg, "w")) == NULL)
1229 				fail(1, "error opening file");
1230 			break;
1231 
1232 		case 'V':
1233 			g_Vflag = 1;
1234 			break;
1235 
1236 		default:
1237 			if (strchr(LOCKSTAT_OPTSTR, c) == NULL)
1238 				usage();
1239 		}
1240 	}
1241 
1242 	if (filt != NULL) {
1243 		predicate_add(&g_predicate, filt, NULL, 0);
1244 		filter_destroy(&filt);
1245 	}
1246 
1247 	if (ifilt != NULL) {
1248 		predicate_add(&g_ipredicate, ifilt, NULL, 0);
1249 		filter_destroy(&ifilt);
1250 	}
1251 
1252 	if (g_recsize == 0) {
1253 		if (g_gflag) {
1254 			g_stkdepth = LS_MAX_STACK_DEPTH;
1255 			g_recsize = LS_STACK(g_stkdepth);
1256 		} else {
1257 			g_recsize = LS_TIME;
1258 		}
1259 	}
1260 
1261 	if (g_gflag && g_recsize <= LS_STACK(0))
1262 		fail(0, "'-g' requires at least '-s 1' data gathering");
1263 
1264 	/*
1265 	 * Make sure the alignment is reasonable
1266 	 */
1267 	g_recsize = -(-g_recsize & -sizeof (uint64_t));
1268 
1269 	for (i = 0; i < LS_MAX_EVENTS; i++) {
1270 		/*
1271 		 * If no events were specified, enable -C.
1272 		 */
1273 		if (!events_specified && g_event_info[i].ev_type == 'C')
1274 			g_enabled[i] = 1;
1275 	}
1276 
1277 	for (i = 0; i < LS_MAX_EVENTS; i++) {
1278 		if (!g_enabled[i])
1279 			continue;
1280 
1281 		if (g_event_info[i].ev_acquire != NULL) {
1282 			/*
1283 			 * If we've enabled a hold event, we must explicitly
1284 			 * allocate dynamic variable space.
1285 			 */
1286 			dynvar = 1;
1287 		}
1288 
1289 		dprog_addevent(i);
1290 	}
1291 
1292 	/*
1293 	 * Make sure there are remaining arguments to specify a child command
1294 	 * to execute.
1295 	 */
1296 	if (argc <= optind)
1297 		usage();
1298 
1299 	if ((ncpus = sysconf(_SC_NPROCESSORS_ONLN)) == -1)
1300 		dfail("couldn't determine number of online CPUs");
1301 
1302 	/*
1303 	 * By default, we set our data buffer size to be the number of records
1304 	 * multiplied by the size of the record, doubled to account for some
1305 	 * DTrace slop and divided by the number of CPUs.  We silently clamp
1306 	 * the aggregation size at both a minimum and a maximum to prevent
1307 	 * absurdly low or high values.
1308 	 */
1309 	if ((aggsize = (g_nrecs * g_recsize * 2) / ncpus) < MIN_AGGSIZE)
1310 		aggsize = MIN_AGGSIZE;
1311 
1312 	if (aggsize > MAX_AGGSIZE)
1313 		aggsize = MAX_AGGSIZE;
1314 
1315 	(void) sprintf(aggstr, "%lld", (long long)aggsize);
1316 
1317 	if (!g_tracing) {
1318 		if (dtrace_setopt(g_dtp, "bufsize", "4k") == -1)
1319 			dfail("failed to set 'bufsize'");
1320 
1321 		if (dtrace_setopt(g_dtp, "aggsize", aggstr) == -1)
1322 			dfail("failed to set 'aggsize'");
1323 
1324 		if (dynvar) {
1325 			/*
1326 			 * If we're using dynamic variables, we set our
1327 			 * dynamic variable size to be one megabyte per CPU,
1328 			 * with a hard-limit of 32 megabytes.  This may still
1329 			 * be too small in some cases, but it can be tuned
1330 			 * manually via -x if need be.
1331 			 */
1332 			(void) sprintf(aggstr, "%ldm", ncpus < 32 ? ncpus : 32);
1333 
1334 			if (dtrace_setopt(g_dtp, "dynvarsize", aggstr) == -1)
1335 				dfail("failed to set 'dynvarsize'");
1336 		}
1337 	} else {
1338 		if (dtrace_setopt(g_dtp, "bufsize", aggstr) == -1)
1339 			dfail("failed to set 'bufsize'");
1340 	}
1341 
1342 	if (dtrace_setopt(g_dtp, "statusrate", "10sec") == -1)
1343 		dfail("failed to set 'statusrate'");
1344 
1345 	optind = 1;
1346 	while ((c = getopt(argc, argv, LOCKSTAT_OPTSTR)) != EOF) {
1347 		switch (c) {
1348 		case 'x':
1349 			if ((p = strchr(optarg, '=')) != NULL)
1350 				*p++ = '\0';
1351 
1352 			if (dtrace_setopt(g_dtp, optarg, p) != 0)
1353 				dfail("failed to set -x %s", optarg);
1354 			break;
1355 		}
1356 	}
1357 
1358 	argc -= optind;
1359 	argv += optind;
1360 
1361 	dprog_compile();
1362 	status_init();
1363 
1364 	g_elapsed = -gethrtime();
1365 
1366 	/*
1367 	 * Spawn the specified command and wait for it to complete.
1368 	 */
1369 	child = fork();
1370 	if (child == -1)
1371 		fail(1, "cannot fork");
1372 	if (child == 0) {
1373 		(void) dtrace_close(g_dtp);
1374 		(void) execvp(argv[0], &argv[0]);
1375 		exec_errno = errno;
1376 		exit(127);
1377 	}
1378 
1379 	while (waitpid(child, &status, WEXITED) != child)
1380 		status_check();
1381 
1382 	g_elapsed += gethrtime();
1383 
1384 	if (WIFEXITED(status)) {
1385 		if (WEXITSTATUS(status) != 0) {
1386 			if (exec_errno != 0) {
1387 				errno = exec_errno;
1388 				fail(1, "could not execute %s", argv[0]);
1389 			}
1390 			(void) fprintf(stderr,
1391 			    "lockstat: warning: %s exited with code %d\n",
1392 			    argv[0], WEXITSTATUS(status));
1393 		}
1394 	} else {
1395 		(void) fprintf(stderr,
1396 		    "lockstat: warning: %s died on signal %d\n",
1397 		    argv[0], WTERMSIG(status));
1398 	}
1399 
1400 	if (dtrace_stop(g_dtp) == -1)
1401 		dfail("failed to stop dtrace");
1402 
1403 	/*
1404 	 * Before we read out the results, we need to allocate our buffer.
1405 	 * If we're tracing, then we'll just use the precalculated size.  If
1406 	 * we're not, then we'll take a snapshot of the aggregate, and walk
1407 	 * it to count the number of records.
1408 	 */
1409 	if (!g_tracing) {
1410 		if (dtrace_aggregate_snap(g_dtp) != 0)
1411 			dfail("failed to snap aggregate");
1412 
1413 		g_nrecs = 0;
1414 
1415 		if (dtrace_aggregate_walk(g_dtp,
1416 		    count_aggregate, &g_nrecs) != 0)
1417 			dfail("failed to walk aggregate");
1418 	}
1419 
1420 	if ((data_buf = memalign(sizeof (uint64_t),
1421 	    (g_nrecs + 1) * g_recsize)) == NULL)
1422 		fail(1, "Memory allocation failed");
1423 
1424 	/*
1425 	 * Read out the DTrace data.
1426 	 */
1427 	g_nrecs_used = process_data(out, data_buf);
1428 
1429 	if (g_nrecs_used > g_nrecs || g_dropped)
1430 		(void) fprintf(stderr, "lockstat: warning: "
1431 		    "ran out of data records (use -n for more)\n");
1432 
1433 	/* LINTED - alignment */
1434 	for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++,
1435 	    /* LINTED - alignment */
1436 	    lsp = (lsrec_t *)((char *)lsp + g_recsize)) {
1437 		ev_count[lsp->ls_event] += lsp->ls_count;
1438 		ev_time[lsp->ls_event] += lsp->ls_time;
1439 	}
1440 
1441 	/*
1442 	 * If -g was specified, convert stacks into individual records.
1443 	 */
1444 	if (g_gflag) {
1445 		lsrec_t *newlsp, *oldlsp;
1446 
1447 		newlsp = memalign(sizeof (uint64_t),
1448 		    g_nrecs_used * LS_TIME * (g_stkdepth + 1));
1449 		if (newlsp == NULL)
1450 			fail(1, "Cannot allocate space for -g processing");
1451 		lsp = newlsp;
1452 		/* LINTED - alignment */
1453 		for (i = 0, oldlsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++,
1454 		    /* LINTED - alignment */
1455 		    oldlsp = (lsrec_t *)((char *)oldlsp + g_recsize)) {
1456 			int fr;
1457 			int caller_in_stack = 0;
1458 
1459 			if (oldlsp->ls_count == 0)
1460 				continue;
1461 
1462 			for (fr = 0; fr < g_stkdepth; fr++) {
1463 				if (oldlsp->ls_stack[fr] == 0)
1464 					break;
1465 				if (oldlsp->ls_stack[fr] == oldlsp->ls_caller)
1466 					caller_in_stack = 1;
1467 				bcopy(oldlsp, lsp, LS_TIME);
1468 				lsp->ls_caller = oldlsp->ls_stack[fr];
1469 				/* LINTED - alignment */
1470 				lsp = (lsrec_t *)((char *)lsp + LS_TIME);
1471 			}
1472 			if (!caller_in_stack) {
1473 				bcopy(oldlsp, lsp, LS_TIME);
1474 				/* LINTED - alignment */
1475 				lsp = (lsrec_t *)((char *)lsp + LS_TIME);
1476 			}
1477 		}
1478 		g_nrecs = g_nrecs_used =
1479 		    ((uintptr_t)lsp - (uintptr_t)newlsp) / LS_TIME;
1480 		g_recsize = LS_TIME;
1481 		g_stkdepth = 0;
1482 		free(data_buf);
1483 		data_buf = (char *)newlsp;
1484 	}
1485 
1486 	if ((sort_buf = calloc(2 * (g_nrecs + 1),
1487 	    sizeof (void *))) == NULL)
1488 		fail(1, "Sort buffer allocation failed");
1489 	merge_buf = sort_buf + (g_nrecs + 1);
1490 
1491 	/*
1492 	 * Build the sort buffer, discarding zero-count records along the way.
1493 	 */
1494 	/* LINTED - alignment */
1495 	for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++,
1496 	    /* LINTED - alignment */
1497 	    lsp = (lsrec_t *)((char *)lsp + g_recsize)) {
1498 		if (lsp->ls_count == 0)
1499 			lsp->ls_event = LS_MAX_EVENTS;
1500 		sort_buf[i] = lsp;
1501 	}
1502 
1503 	if (g_nrecs_used == 0)
1504 		exit(0);
1505 
1506 	/*
1507 	 * Add a sentinel after the last record
1508 	 */
1509 	sort_buf[i] = lsp;
1510 	lsp->ls_event = LS_MAX_EVENTS;
1511 
1512 	if (g_tracing) {
1513 		report_trace(out, sort_buf);
1514 		return (0);
1515 	}
1516 
1517 	/*
1518 	 * Application of -g may have resulted in multiple records
1519 	 * with the same signature; coalesce them.
1520 	 */
1521 	if (g_gflag) {
1522 		mergesort(lockcmp, sort_buf, merge_buf, g_nrecs_used);
1523 		coalesce(lockcmp, sort_buf, g_nrecs_used);
1524 	}
1525 
1526 	/*
1527 	 * Coalesce locks within the same symbol if -c option specified.
1528 	 * Coalesce PCs within the same function if -k option specified.
1529 	 */
1530 	if (g_cflag || g_kflag) {
1531 		for (i = 0; i < g_nrecs_used; i++) {
1532 			int fr;
1533 			lsp = sort_buf[i];
1534 			if (g_cflag)
1535 				coalesce_symbol(&lsp->ls_lock);
1536 			if (g_kflag) {
1537 				for (fr = 0; fr < g_stkdepth; fr++)
1538 					coalesce_symbol(&lsp->ls_stack[fr]);
1539 				coalesce_symbol(&lsp->ls_caller);
1540 			}
1541 		}
1542 		mergesort(lockcmp, sort_buf, merge_buf, g_nrecs_used);
1543 		coalesce(lockcmp, sort_buf, g_nrecs_used);
1544 	}
1545 
1546 	/*
1547 	 * Coalesce callers if -w option specified
1548 	 */
1549 	if (g_wflag) {
1550 		mergesort(lock_and_count_cmp_anywhere,
1551 		    sort_buf, merge_buf, g_nrecs_used);
1552 		coalesce(lockcmp_anywhere, sort_buf, g_nrecs_used);
1553 	}
1554 
1555 	/*
1556 	 * Coalesce locks if -W option specified
1557 	 */
1558 	if (g_Wflag) {
1559 		mergesort(site_and_count_cmp_anylock,
1560 		    sort_buf, merge_buf, g_nrecs_used);
1561 		coalesce(sitecmp_anylock, sort_buf, g_nrecs_used);
1562 	}
1563 
1564 	/*
1565 	 * Sort data by contention count (ls_count) or total time (ls_time),
1566 	 * depending on g_Pflag.  Override g_Pflag if time wasn't measured.
1567 	 */
1568 	if (g_recsize < LS_TIME)
1569 		g_Pflag = 0;
1570 
1571 	if (g_Pflag)
1572 		mergesort(timecmp, sort_buf, merge_buf, g_nrecs_used);
1573 	else
1574 		mergesort(countcmp, sort_buf, merge_buf, g_nrecs_used);
1575 
1576 	/*
1577 	 * Display data by event type
1578 	 */
1579 	first = &sort_buf[0];
1580 	while ((event = (*first)->ls_event) < LS_MAX_EVENTS) {
1581 		current = first;
1582 		while ((lsp = *current)->ls_event == event)
1583 			current++;
1584 		report_stats(out, first, current - first, ev_count[event],
1585 		    ev_time[event]);
1586 		first = current;
1587 	}
1588 
1589 	return (0);
1590 }
1591 
1592 static char *
1593 format_symbol(char *buf, uintptr_t addr, int show_size)
1594 {
1595 	uintptr_t symoff;
1596 	char *symname;
1597 	size_t symsize;
1598 
1599 	symname = addr_to_sym(addr, &symoff, &symsize);
1600 
1601 	if (show_size && symoff == 0)
1602 		(void) sprintf(buf, "%s[%ld]", symname, (long)symsize);
1603 	else if (symoff == 0)
1604 		(void) sprintf(buf, "%s", symname);
1605 	else if (symoff < 16 && bcmp(symname, "cpu[", 4) == 0)	/* CPU+PIL */
1606 		(void) sprintf(buf, "%s+%ld", symname, (long)symoff);
1607 	else if (symoff <= symsize || (symoff < 256 && addr != symoff))
1608 		(void) sprintf(buf, "%s+0x%llx", symname,
1609 		    (unsigned long long)symoff);
1610 	else
1611 		(void) sprintf(buf, "0x%llx", (unsigned long long)addr);
1612 	return (buf);
1613 }
1614 
1615 static void
1616 report_stats(FILE *out, lsrec_t **sort_buf, size_t nrecs, uint64_t total_count,
1617 	uint64_t total_time)
1618 {
1619 	uint32_t event = sort_buf[0]->ls_event;
1620 	lsrec_t *lsp;
1621 	double ptotal = 0.0;
1622 	double percent;
1623 	int i, j, fr;
1624 	int displayed;
1625 	int first_bin, last_bin, max_bin_count, total_bin_count;
1626 	int rectype;
1627 	char buf[256];
1628 	char lhdr[80], chdr[80];
1629 
1630 	rectype = g_recsize;
1631 
1632 	if (g_topn == 0) {
1633 		(void) fprintf(out, "%20llu %s\n",
1634 		    g_rates == 0 ? total_count :
1635 		    ((unsigned long long)total_count * NANOSEC) / g_elapsed,
1636 		    g_event_info[event].ev_desc);
1637 		return;
1638 	}
1639 
1640 	(void) sprintf(lhdr, "%s%s",
1641 	    g_Wflag ? "Hottest " : "", g_event_info[event].ev_lhdr);
1642 	(void) sprintf(chdr, "%s%s",
1643 	    g_wflag ? "Hottest " : "", "Caller");
1644 
1645 	if (!g_pflag)
1646 		(void) fprintf(out,
1647 		    "\n%s: %.0f events in %.3f seconds (%.0f events/sec)\n\n",
1648 		    g_event_info[event].ev_desc, (double)total_count,
1649 		    (double)g_elapsed / NANOSEC,
1650 		    (double)total_count * NANOSEC / g_elapsed);
1651 
1652 	if (!g_pflag && rectype < LS_HIST) {
1653 		(void) sprintf(buf, "%s", g_event_info[event].ev_units);
1654 		(void) fprintf(out, "%5s %4s %4s %4s %8s %-22s %-24s\n",
1655 		    g_rates ? "ops/s" : "Count",
1656 		    g_gflag ? "genr" : "indv",
1657 		    "cuml", "rcnt", rectype >= LS_TIME ? buf : "", lhdr, chdr);
1658 		(void) fprintf(out, "---------------------------------"
1659 		    "----------------------------------------------\n");
1660 	}
1661 
1662 	displayed = 0;
1663 	for (i = 0; i < nrecs; i++) {
1664 		lsp = sort_buf[i];
1665 
1666 		if (displayed++ >= g_topn)
1667 			break;
1668 
1669 		if (g_pflag) {
1670 			int j;
1671 
1672 			(void) fprintf(out, "%u %u",
1673 			    lsp->ls_event, lsp->ls_count);
1674 			(void) fprintf(out, " %s",
1675 			    format_symbol(buf, lsp->ls_lock, g_cflag));
1676 			(void) fprintf(out, " %s",
1677 			    format_symbol(buf, lsp->ls_caller, 0));
1678 			(void) fprintf(out, " %f",
1679 			    (double)lsp->ls_refcnt / lsp->ls_count);
1680 			if (rectype >= LS_TIME)
1681 				(void) fprintf(out, " %llu",
1682 				    (unsigned long long)lsp->ls_time);
1683 			if (rectype >= LS_HIST) {
1684 				for (j = 0; j < 64; j++)
1685 					(void) fprintf(out, " %u",
1686 					    lsp->ls_hist[j]);
1687 			}
1688 			for (j = 0; j < LS_MAX_STACK_DEPTH; j++) {
1689 				if (rectype <= LS_STACK(j) ||
1690 				    lsp->ls_stack[j] == 0)
1691 					break;
1692 				(void) fprintf(out, " %s",
1693 				    format_symbol(buf, lsp->ls_stack[j], 0));
1694 			}
1695 			(void) fprintf(out, "\n");
1696 			continue;
1697 		}
1698 
1699 		if (rectype >= LS_HIST) {
1700 			(void) fprintf(out, "---------------------------------"
1701 			    "----------------------------------------------\n");
1702 			(void) sprintf(buf, "%s",
1703 			    g_event_info[event].ev_units);
1704 			(void) fprintf(out, "%5s %4s %4s %4s %8s %-22s %-24s\n",
1705 			    g_rates ? "ops/s" : "Count",
1706 			    g_gflag ? "genr" : "indv",
1707 			    "cuml", "rcnt", buf, lhdr, chdr);
1708 		}
1709 
1710 		if (g_Pflag && total_time != 0)
1711 			percent = (lsp->ls_time * 100.00) / total_time;
1712 		else
1713 			percent = (lsp->ls_count * 100.00) / total_count;
1714 
1715 		ptotal += percent;
1716 
1717 		if (rectype >= LS_TIME)
1718 			(void) sprintf(buf, "%llu",
1719 			    (unsigned long long)(lsp->ls_time / lsp->ls_count));
1720 		else
1721 			buf[0] = '\0';
1722 
1723 		(void) fprintf(out, "%5llu ",
1724 		    g_rates == 0 ? lsp->ls_count :
1725 		    ((uint64_t)lsp->ls_count * NANOSEC) / g_elapsed);
1726 
1727 		(void) fprintf(out, "%3.0f%% ", percent);
1728 
1729 		if (g_gflag)
1730 			(void) fprintf(out, "---- ");
1731 		else
1732 			(void) fprintf(out, "%3.0f%% ", ptotal);
1733 
1734 		(void) fprintf(out, "%4.2f %8s ",
1735 		    (double)lsp->ls_refcnt / lsp->ls_count, buf);
1736 
1737 		(void) fprintf(out, "%-22s ",
1738 		    format_symbol(buf, lsp->ls_lock, g_cflag));
1739 
1740 		(void) fprintf(out, "%-24s\n",
1741 		    format_symbol(buf, lsp->ls_caller, 0));
1742 
1743 		if (rectype < LS_HIST)
1744 			continue;
1745 
1746 		(void) fprintf(out, "\n");
1747 		(void) fprintf(out, "%10s %31s %-9s %-24s\n",
1748 		    g_event_info[event].ev_units,
1749 		    "------ Time Distribution ------",
1750 		    g_rates ? "ops/s" : "count",
1751 		    rectype > LS_STACK(0) ? "Stack" : "");
1752 
1753 		first_bin = 0;
1754 		while (lsp->ls_hist[first_bin] == 0)
1755 			first_bin++;
1756 
1757 		last_bin = 63;
1758 		while (lsp->ls_hist[last_bin] == 0)
1759 			last_bin--;
1760 
1761 		max_bin_count = 0;
1762 		total_bin_count = 0;
1763 		for (j = first_bin; j <= last_bin; j++) {
1764 			total_bin_count += lsp->ls_hist[j];
1765 			if (lsp->ls_hist[j] > max_bin_count)
1766 				max_bin_count = lsp->ls_hist[j];
1767 		}
1768 
1769 		/*
1770 		 * If we went a few frames below the caller, ignore them
1771 		 */
1772 		for (fr = 3; fr > 0; fr--)
1773 			if (lsp->ls_stack[fr] == lsp->ls_caller)
1774 				break;
1775 
1776 		for (j = first_bin; j <= last_bin; j++) {
1777 			uint_t depth = (lsp->ls_hist[j] * 30) / total_bin_count;
1778 			(void) fprintf(out, "%10llu |%s%s %-9u ",
1779 			    1ULL << j,
1780 			    "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@" + 30 - depth,
1781 			    "                              " + depth,
1782 			    g_rates == 0 ? lsp->ls_hist[j] :
1783 			    (uint_t)(((uint64_t)lsp->ls_hist[j] * NANOSEC) /
1784 			    g_elapsed));
1785 			if (rectype <= LS_STACK(fr) || lsp->ls_stack[fr] == 0) {
1786 				(void) fprintf(out, "\n");
1787 				continue;
1788 			}
1789 			(void) fprintf(out, "%-24s\n",
1790 			    format_symbol(buf, lsp->ls_stack[fr], 0));
1791 			fr++;
1792 		}
1793 		while (rectype > LS_STACK(fr) && lsp->ls_stack[fr] != 0) {
1794 			(void) fprintf(out, "%15s %-36s %-24s\n", "", "",
1795 			    format_symbol(buf, lsp->ls_stack[fr], 0));
1796 			fr++;
1797 		}
1798 	}
1799 
1800 	if (!g_pflag)
1801 		(void) fprintf(out, "---------------------------------"
1802 		    "----------------------------------------------\n");
1803 
1804 	(void) fflush(out);
1805 }
1806 
1807 static void
1808 report_trace(FILE *out, lsrec_t **sort_buf)
1809 {
1810 	lsrec_t *lsp;
1811 	int i, fr;
1812 	int rectype;
1813 	char buf[256], buf2[256];
1814 
1815 	rectype = g_recsize;
1816 
1817 	if (!g_pflag) {
1818 		(void) fprintf(out, "%5s  %7s  %11s  %-24s  %-24s\n",
1819 		    "Event", "Time", "Owner", "Lock", "Caller");
1820 		(void) fprintf(out, "---------------------------------"
1821 		    "----------------------------------------------\n");
1822 	}
1823 
1824 	for (i = 0; i < g_nrecs_used; i++) {
1825 
1826 		lsp = sort_buf[i];
1827 
1828 		if (lsp->ls_event >= LS_MAX_EVENTS || lsp->ls_count == 0)
1829 			continue;
1830 
1831 		(void) fprintf(out, "%2d  %10llu  %11p  %-24s  %-24s\n",
1832 		    lsp->ls_event, (unsigned long long)lsp->ls_time,
1833 		    (void *)lsp->ls_next,
1834 		    format_symbol(buf, lsp->ls_lock, 0),
1835 		    format_symbol(buf2, lsp->ls_caller, 0));
1836 
1837 		if (rectype <= LS_STACK(0))
1838 			continue;
1839 
1840 		/*
1841 		 * If we went a few frames below the caller, ignore them
1842 		 */
1843 		for (fr = 3; fr > 0; fr--)
1844 			if (lsp->ls_stack[fr] == lsp->ls_caller)
1845 				break;
1846 
1847 		while (rectype > LS_STACK(fr) && lsp->ls_stack[fr] != 0) {
1848 			(void) fprintf(out, "%53s  %-24s\n", "",
1849 			    format_symbol(buf, lsp->ls_stack[fr], 0));
1850 			fr++;
1851 		}
1852 		(void) fprintf(out, "\n");
1853 	}
1854 
1855 	(void) fflush(out);
1856 }
1857