1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Mdb kernel support module.  This module is loaded automatically when the
31  * kvm target is initialized.  Any global functions declared here are exported
32  * for the resolution of symbols in subsequently loaded modules.
33  *
34  * WARNING: Do not assume that static variables in mdb_ks will be initialized
35  * to zero.
36  */
37 
38 
39 #include <mdb/mdb_target.h>
40 #include <mdb/mdb_param.h>
41 #include <mdb/mdb_modapi.h>
42 #include <mdb/mdb_ks.h>
43 
44 #include <sys/types.h>
45 #include <sys/procfs.h>
46 #include <sys/proc.h>
47 #include <sys/dnlc.h>
48 #include <sys/autoconf.h>
49 #include <sys/machelf.h>
50 #include <sys/modctl.h>
51 #include <sys/hwconf.h>
52 #include <sys/kobj.h>
53 #include <sys/fs/autofs.h>
54 #include <sys/ddi_impldefs.h>
55 #include <sys/refstr_impl.h>
56 #include <sys/cpuvar.h>
57 #include <errno.h>
58 
59 #include <vm/seg_vn.h>
60 #include <vm/page.h>
61 
62 #define	MDB_PATH_NELEM	256			/* Maximum path components */
63 
64 typedef struct mdb_path {
65 	size_t mdp_nelem;			/* Number of components */
66 	uint_t mdp_complete;			/* Path completely resolved? */
67 	uintptr_t mdp_vnode[MDB_PATH_NELEM];	/* Array of vnode_t addresses */
68 	char *mdp_name[MDB_PATH_NELEM];		/* Array of name components */
69 } mdb_path_t;
70 
71 static int mdb_autonode2path(uintptr_t, mdb_path_t *);
72 static int mdb_sprintpath(char *, size_t, mdb_path_t *);
73 
74 /*
75  * Kernel parameters from <sys/param.h> which we keep in-core:
76  */
77 unsigned long _mdb_ks_pagesize;
78 unsigned int _mdb_ks_pageshift;
79 unsigned long _mdb_ks_pageoffset;
80 unsigned long long _mdb_ks_pagemask;
81 unsigned long _mdb_ks_mmu_pagesize;
82 unsigned int _mdb_ks_mmu_pageshift;
83 unsigned long _mdb_ks_mmu_pageoffset;
84 unsigned long _mdb_ks_mmu_pagemask;
85 uintptr_t _mdb_ks_kernelbase;
86 uintptr_t _mdb_ks_userlimit;
87 uintptr_t _mdb_ks_userlimit32;
88 uintptr_t _mdb_ks_argsbase;
89 unsigned long _mdb_ks_msg_bsize;
90 unsigned long _mdb_ks_defaultstksz;
91 int _mdb_ks_ncpu;
92 
93 /*
94  * In-core copy of DNLC information:
95  */
96 #define	MDB_DNLC_HSIZE	1024
97 #define	MDB_DNLC_HASH(vp)	(((uintptr_t)(vp) >> 3) & (MDB_DNLC_HSIZE - 1))
98 #define	MDB_DNLC_NCACHE_SZ(ncp) (sizeof (ncache_t) + (ncp)->namlen)
99 #define	MDB_DNLC_MAX_RETRY 4
100 
101 
102 static ncache_t **dnlc_hash;	/* mdbs hash array of dnlc entries */
103 
104 /*
105  * This will be the location of the vnodeops pointer for "autofs_vnodeops"
106  * The pointer still needs to be read with mdb_vread() to get the location
107  * of the vnodeops structure for autofs.
108  */
109 static struct vnodeops *autofs_vnops_ptr;
110 
111 /*
112  * STREAMS queue registrations:
113  */
114 typedef struct mdb_qinfo {
115 	const mdb_qops_t *qi_ops;	/* Address of ops vector */
116 	uintptr_t qi_addr;		/* Address of qinit structure (key) */
117 	struct mdb_qinfo *qi_next;	/* Next qinfo in list */
118 } mdb_qinfo_t;
119 
120 static mdb_qinfo_t *qi_head;		/* Head of qinfo chain */
121 
122 /*
123  * Device naming callback structure:
124  */
125 typedef struct nm_query {
126 	const char *nm_name;		/* Device driver name [in/out] */
127 	major_t nm_major;		/* Device major number [in/out] */
128 	ushort_t nm_found;		/* Did we find a match? [out] */
129 } nm_query_t;
130 
131 /*
132  * Address-to-modctl callback structure:
133  */
134 typedef struct a2m_query {
135 	uintptr_t a2m_addr;		/* Virtual address [in] */
136 	uintptr_t a2m_where;		/* Modctl address [out] */
137 } a2m_query_t;
138 
139 /*
140  * Segment-to-mdb_map callback structure:
141  */
142 typedef struct {
143 	struct seg_ops *asm_segvn_ops;	/* Address of segvn ops [in] */
144 	void (*asm_callback)(const struct mdb_map *, void *); /* Callb [in] */
145 	void *asm_cbdata;		/* Callback data [in] */
146 } asmap_arg_t;
147 
148 static void
149 dnlc_free(void)
150 {
151 	ncache_t *ncp, *next;
152 	int i;
153 
154 	if (dnlc_hash == NULL) {
155 		return;
156 	}
157 
158 	/*
159 	 * Free up current dnlc entries
160 	 */
161 	for (i = 0; i < MDB_DNLC_HSIZE; i++) {
162 		for (ncp = dnlc_hash[i]; ncp; ncp = next) {
163 			next = ncp->hash_next;
164 			mdb_free(ncp, MDB_DNLC_NCACHE_SZ(ncp));
165 		}
166 	}
167 	mdb_free(dnlc_hash, MDB_DNLC_HSIZE * sizeof (ncache_t *));
168 	dnlc_hash = NULL;
169 }
170 
171 char bad_dnlc[] = "inconsistent dnlc chain: %d, ncache va: %p"
172 	" - continuing with the rest\n";
173 
174 static int
175 dnlc_load(void)
176 {
177 	int i; /* hash index */
178 	int retry_cnt = 0;
179 	int skip_bad_chains = 0;
180 	int nc_hashsz; /* kernel hash array size */
181 	uintptr_t nc_hash_addr; /* kernel va of ncache hash array */
182 	uintptr_t head; /* kernel va of head of hash chain */
183 
184 	/*
185 	 * If we've already cached the DNLC and we're looking at a dump,
186 	 * our cache is good forever, so don't bother re-loading.
187 	 */
188 	if (dnlc_hash && mdb_prop_postmortem) {
189 		return (0);
190 	}
191 
192 	/*
193 	 * For a core dump, retries wont help.
194 	 * Just print and skip any bad chains.
195 	 */
196 	if (mdb_prop_postmortem) {
197 		skip_bad_chains = 1;
198 	}
199 retry:
200 	if (retry_cnt++ >= MDB_DNLC_MAX_RETRY) {
201 		/*
202 		 * Give up retrying the rapidly changing dnlc.
203 		 * Just print and skip any bad chains
204 		 */
205 		skip_bad_chains = 1;
206 	}
207 
208 	dnlc_free(); /* Free up the mdb hashed dnlc - if any */
209 
210 	/*
211 	 * Although nc_hashsz and the location of nc_hash doesn't currently
212 	 * change, it may do in the future with a more dynamic dnlc.
213 	 * So always read these values afresh.
214 	 */
215 	if (mdb_readvar(&nc_hashsz, "nc_hashsz") == -1) {
216 		mdb_warn("failed to read nc_hashsz");
217 		return (-1);
218 	}
219 	if (mdb_readvar(&nc_hash_addr, "nc_hash") == -1) {
220 		mdb_warn("failed to read nc_hash");
221 		return (-1);
222 	}
223 
224 	/*
225 	 * Allocate the mdb dnlc hash array
226 	 */
227 	dnlc_hash = mdb_zalloc(MDB_DNLC_HSIZE * sizeof (ncache_t *), UM_SLEEP);
228 
229 	/* for each kernel hash chain */
230 	for (i = 0, head = nc_hash_addr; i < nc_hashsz;
231 	    i++, head += sizeof (nc_hash_t)) {
232 		nc_hash_t nch; /* kernel hash chain header */
233 		ncache_t *ncp; /* name cache pointer */
234 		int hash; /* mdb hash value */
235 		uintptr_t nc_va; /* kernel va of next ncache */
236 		uintptr_t ncprev_va; /* kernel va of previous ncache */
237 		int khash; /* kernel dnlc hash value */
238 		uchar_t namelen; /* name length */
239 		ncache_t nc; /* name cache entry */
240 		int nc_size; /* size of a name cache entry */
241 
242 		/*
243 		 * We read each element of the nc_hash array individually
244 		 * just before we process the entries in its chain. This is
245 		 * because the chain can change so rapidly on a running system.
246 		 */
247 		if (mdb_vread(&nch, sizeof (nc_hash_t), head) == -1) {
248 			mdb_warn("failed to read nc_hash chain header %d", i);
249 			dnlc_free();
250 			return (-1);
251 		}
252 
253 		ncprev_va = head;
254 		nc_va = (uintptr_t)(nch.hash_next);
255 		/* for each entry in the chain */
256 		while (nc_va != head) {
257 			/*
258 			 * The size of the ncache entries varies
259 			 * because the name is appended to the structure.
260 			 * So we read in the structure then re-read
261 			 * for the structure plus name.
262 			 */
263 			if (mdb_vread(&nc, sizeof (ncache_t), nc_va) == -1) {
264 				if (skip_bad_chains) {
265 					mdb_warn(bad_dnlc, i, nc_va);
266 					break;
267 				}
268 				goto retry;
269 			}
270 			nc_size = MDB_DNLC_NCACHE_SZ(&nc);
271 			ncp = mdb_alloc(nc_size, UM_SLEEP);
272 			if (mdb_vread(ncp, nc_size - 1, nc_va) == -1) {
273 				mdb_free(ncp, nc_size);
274 				if (skip_bad_chains) {
275 					mdb_warn(bad_dnlc, i, nc_va);
276 					break;
277 				}
278 				goto retry;
279 			}
280 
281 			/*
282 			 * Check for chain consistency
283 			 */
284 			if ((uintptr_t)ncp->hash_prev != ncprev_va) {
285 				mdb_free(ncp, nc_size);
286 				if (skip_bad_chains) {
287 					mdb_warn(bad_dnlc, i, nc_va);
288 					break;
289 				}
290 				goto retry;
291 			}
292 			/*
293 			 * Terminate the new name with a null.
294 			 * Note, we allowed space for this null when
295 			 * allocating space for the entry.
296 			 */
297 			ncp->name[ncp->namlen] = '\0';
298 
299 			/*
300 			 * Validate new entry by re-hashing using the
301 			 * kernel dnlc hash function and comparing the hash
302 			 */
303 			DNLCHASH(ncp->name, ncp->dp, khash, namelen);
304 			if ((namelen != ncp->namlen) ||
305 			    (khash != ncp->hash)) {
306 				mdb_free(ncp, nc_size);
307 				if (skip_bad_chains) {
308 					mdb_warn(bad_dnlc, i, nc_va);
309 					break;
310 				}
311 				goto retry;
312 			}
313 
314 			/*
315 			 * Finally put the validated entry into the mdb
316 			 * hash chains. Reuse the kernel next hash field
317 			 * for the mdb hash chain pointer.
318 			 */
319 			hash = MDB_DNLC_HASH(ncp->vp);
320 			ncprev_va = nc_va;
321 			nc_va = (uintptr_t)(ncp->hash_next);
322 			ncp->hash_next = dnlc_hash[hash];
323 			dnlc_hash[hash] = ncp;
324 		}
325 	}
326 	return (0);
327 }
328 
329 /*ARGSUSED*/
330 int
331 dnlcdump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
332 {
333 	ncache_t *ent;
334 	int i;
335 
336 	if ((flags & DCMD_ADDRSPEC) || argc != 0)
337 		return (DCMD_USAGE);
338 
339 	if (dnlc_load() == -1)
340 		return (DCMD_ERR);
341 
342 	mdb_printf("%<u>%-?s %-?s %-32s%</u>\n", "VP", "DVP", "NAME");
343 
344 	for (i = 0; i < MDB_DNLC_HSIZE; i++) {
345 		for (ent = dnlc_hash[i]; ent != NULL; ent = ent->hash_next) {
346 			mdb_printf("%0?p %0?p %s\n",
347 			    ent->vp, ent->dp, ent->name);
348 		}
349 	}
350 
351 	return (DCMD_OK);
352 }
353 
354 static int
355 mdb_sprintpath(char *buf, size_t len, mdb_path_t *path)
356 {
357 	char *s = buf;
358 	int i;
359 
360 	if (len < sizeof ("/..."))
361 		return (-1);
362 
363 	if (!path->mdp_complete) {
364 		(void) strcpy(s, "??");
365 		s += 2;
366 
367 		if (path->mdp_nelem == 0)
368 			return (-1);
369 	}
370 
371 	if (path->mdp_nelem == 0) {
372 		(void) strcpy(s, "/");
373 		return (0);
374 	}
375 
376 	for (i = path->mdp_nelem - 1; i >= 0; i--) {
377 		/*
378 		 * Number of bytes left is the distance from where we
379 		 * are to the end, minus 2 for '/' and '\0'
380 		 */
381 		ssize_t left = (ssize_t)(&buf[len] - s) - 2;
382 
383 		if (left <= 0)
384 			break;
385 
386 		*s++ = '/';
387 		(void) strncpy(s, path->mdp_name[i], left);
388 		s[left - 1] = '\0';
389 		s += strlen(s);
390 
391 		if (left < strlen(path->mdp_name[i]))
392 			break;
393 	}
394 
395 	if (i >= 0)
396 		(void) strcpy(&buf[len - 4], "...");
397 
398 	return (0);
399 }
400 
401 static int
402 mdb_autonode2path(uintptr_t addr, mdb_path_t *path)
403 {
404 	fninfo_t fni;
405 	fnnode_t fn;
406 
407 	vnode_t vn;
408 	vfs_t vfs;
409 	struct vnodeops *autofs_vnops = NULL;
410 
411 	/*
412 	 * "autofs_vnops_ptr" is the address of the pointer to the vnodeops
413 	 * structure for autofs.  We want to read it each time we access
414 	 * it since autofs could (in theory) be unloaded and reloaded.
415 	 */
416 	if (mdb_vread(&autofs_vnops, sizeof (autofs_vnops),
417 	    (uintptr_t)autofs_vnops_ptr) == -1)
418 		return (-1);
419 
420 	if (mdb_vread(&vn, sizeof (vn), addr) == -1)
421 		return (-1);
422 
423 	if (autofs_vnops == NULL || vn.v_op != autofs_vnops)
424 		return (-1);
425 
426 	addr = (uintptr_t)vn.v_data;
427 
428 	if (mdb_vread(&vfs, sizeof (vfs), (uintptr_t)vn.v_vfsp) == -1 ||
429 	    mdb_vread(&fni, sizeof (fni), (uintptr_t)vfs.vfs_data) == -1 ||
430 	    mdb_vread(&vn, sizeof (vn), (uintptr_t)fni.fi_rootvp) == -1)
431 		return (-1);
432 
433 	for (;;) {
434 		size_t elem = path->mdp_nelem++;
435 		char elemstr[MAXNAMELEN];
436 		char *c, *p;
437 
438 		if (elem == MDB_PATH_NELEM) {
439 			path->mdp_nelem--;
440 			return (-1);
441 		}
442 
443 		if (mdb_vread(&fn, sizeof (fn), addr) != sizeof (fn)) {
444 			path->mdp_nelem--;
445 			return (-1);
446 		}
447 
448 		if (mdb_readstr(elemstr, sizeof (elemstr),
449 		    (uintptr_t)fn.fn_name) <= 0) {
450 			(void) strcpy(elemstr, "?");
451 		}
452 
453 		c = mdb_alloc(strlen(elemstr) + 1, UM_SLEEP | UM_GC);
454 		(void) strcpy(c, elemstr);
455 
456 		path->mdp_vnode[elem] = (uintptr_t)fn.fn_vnode;
457 
458 		if (addr == (uintptr_t)fn.fn_parent) {
459 			path->mdp_name[elem] = &c[1];
460 			path->mdp_complete = TRUE;
461 			break;
462 		}
463 
464 		if ((p = strrchr(c, '/')) != NULL)
465 			path->mdp_name[elem] = p + 1;
466 		else
467 			path->mdp_name[elem] = c;
468 
469 		addr = (uintptr_t)fn.fn_parent;
470 	}
471 
472 	return (0);
473 }
474 
475 int
476 mdb_vnode2path(uintptr_t addr, char *buf, size_t buflen)
477 {
478 	uintptr_t rootdir;
479 	ncache_t *ent;
480 	vnode_t vp;
481 	mdb_path_t path;
482 
483 	/*
484 	 * Check to see if we have a cached value for this vnode
485 	 */
486 	if (mdb_vread(&vp, sizeof (vp), addr) != -1 &&
487 	    vp.v_path != NULL &&
488 	    mdb_readstr(buf, buflen, (uintptr_t)vp.v_path) != -1)
489 		return (0);
490 
491 	if (dnlc_load() == -1)
492 		return (-1);
493 
494 	if (mdb_readvar(&rootdir, "rootdir") == -1) {
495 		mdb_warn("failed to read 'rootdir'");
496 		return (-1);
497 	}
498 
499 	bzero(&path, sizeof (mdb_path_t));
500 again:
501 	if ((addr == NULL) && (path.mdp_nelem == 0)) {
502 		/*
503 		 * 0 elems && complete tells sprintpath to just print "/"
504 		 */
505 		path.mdp_complete = TRUE;
506 		goto out;
507 	}
508 
509 	if (addr == rootdir) {
510 		path.mdp_complete = TRUE;
511 		goto out;
512 	}
513 
514 	for (ent = dnlc_hash[MDB_DNLC_HASH(addr)]; ent; ent = ent->hash_next) {
515 		if ((uintptr_t)ent->vp == addr) {
516 			if (strcmp(ent->name, "..") == 0 ||
517 			    strcmp(ent->name, ".") == 0)
518 				continue;
519 
520 			path.mdp_vnode[path.mdp_nelem] = (uintptr_t)ent->vp;
521 			path.mdp_name[path.mdp_nelem] = ent->name;
522 			path.mdp_nelem++;
523 
524 			if (path.mdp_nelem == MDB_PATH_NELEM) {
525 				path.mdp_nelem--;
526 				mdb_warn("path exceeded maximum expected "
527 				    "elements\n");
528 				return (-1);
529 			}
530 
531 			addr = (uintptr_t)ent->dp;
532 			goto again;
533 		}
534 	}
535 
536 	(void) mdb_autonode2path(addr, &path);
537 
538 out:
539 	return (mdb_sprintpath(buf, buflen, &path));
540 }
541 
542 
543 uintptr_t
544 mdb_pid2proc(pid_t pid, proc_t *proc)
545 {
546 	int pid_hashsz, hash;
547 	uintptr_t paddr, pidhash, procdir;
548 	struct pid pidp;
549 
550 	if (mdb_readvar(&pidhash, "pidhash") == -1)
551 		return (NULL);
552 
553 	if (mdb_readvar(&pid_hashsz, "pid_hashsz") == -1)
554 		return (NULL);
555 
556 	if (mdb_readvar(&procdir, "procdir") == -1)
557 		return (NULL);
558 
559 	hash = pid & (pid_hashsz - 1);
560 
561 	if (mdb_vread(&paddr, sizeof (paddr),
562 	    pidhash + (hash * sizeof (paddr))) == -1)
563 		return (NULL);
564 
565 	while (paddr != 0) {
566 		if (mdb_vread(&pidp, sizeof (pidp), paddr) == -1)
567 			return (NULL);
568 
569 		if (pidp.pid_id == pid) {
570 			uintptr_t procp;
571 
572 			if (mdb_vread(&procp, sizeof (procp), procdir +
573 			    (pidp.pid_prslot * sizeof (procp))) == -1)
574 				return (NULL);
575 
576 			if (proc != NULL)
577 				(void) mdb_vread(proc, sizeof (proc_t), procp);
578 
579 			return (procp);
580 		}
581 		paddr = (uintptr_t)pidp.pid_link;
582 	}
583 	return (NULL);
584 }
585 
586 int
587 mdb_cpu2cpuid(uintptr_t cpup)
588 {
589 	cpu_t cpu;
590 
591 	if (mdb_vread(&cpu, sizeof (cpu_t), cpup) != sizeof (cpu_t))
592 		return (-1);
593 
594 	return (cpu.cpu_id);
595 }
596 
597 uintptr_t
598 mdb_vnode2page(uintptr_t vp, uintptr_t offset)
599 {
600 	long page_hashsz, ndx;
601 	uintptr_t page_hash, pp;
602 
603 	if (mdb_readvar(&page_hashsz, "page_hashsz") == -1 ||
604 	    mdb_readvar(&page_hash, "page_hash") == -1)
605 		return (NULL);
606 
607 	ndx = PAGE_HASH_FUNC(vp, offset);
608 	page_hash += ndx * sizeof (uintptr_t);
609 
610 	mdb_vread(&pp, sizeof (pp), page_hash);
611 
612 	while (pp != NULL) {
613 		page_t page;
614 
615 		mdb_vread(&page, sizeof (page), pp);
616 
617 		if ((uintptr_t)page.p_vnode == vp &&
618 		    (uintptr_t)page.p_offset == offset)
619 			return (pp);
620 
621 		pp = (uintptr_t)page.p_hash;
622 	}
623 
624 	return (NULL);
625 }
626 
627 char
628 mdb_vtype2chr(vtype_t type, mode_t mode)
629 {
630 	static const char vttab[] = {
631 		' ',	/* VNON */
632 		' ',	/* VREG */
633 		'/',	/* VDIR */
634 		' ',	/* VBLK */
635 		' ',	/* VCHR */
636 		'@',	/* VLNK */
637 		'|',	/* VFIFO */
638 		'>',	/* VDOOR */
639 		' ',	/* VPROC */
640 		'=',	/* VSOCK */
641 		' ',	/* VBAD */
642 	};
643 
644 	if (type < 0 || type >= sizeof (vttab) / sizeof (vttab[0]))
645 		return ('?');
646 
647 	if (type == VREG && (mode & 0111) != 0)
648 		return ('*');
649 
650 	return (vttab[type]);
651 }
652 
653 static int
654 a2m_walk_modctl(uintptr_t addr, const struct modctl *m, a2m_query_t *a2m)
655 {
656 	struct module mod;
657 
658 	if (m->mod_mp == NULL)
659 		return (0);
660 
661 	if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) {
662 		mdb_warn("couldn't read modctl %p's module", addr);
663 		return (0);
664 	}
665 
666 	if (a2m->a2m_addr >= (uintptr_t)mod.text &&
667 	    a2m->a2m_addr < (uintptr_t)mod.text + mod.text_size)
668 		goto found;
669 
670 	if (a2m->a2m_addr >= (uintptr_t)mod.data &&
671 	    a2m->a2m_addr < (uintptr_t)mod.data + mod.data_size)
672 		goto found;
673 
674 	return (0);
675 
676 found:
677 	a2m->a2m_where = addr;
678 	return (-1);
679 }
680 
681 uintptr_t
682 mdb_addr2modctl(uintptr_t addr)
683 {
684 	a2m_query_t a2m;
685 
686 	a2m.a2m_addr = addr;
687 	a2m.a2m_where = NULL;
688 
689 	(void) mdb_walk("modctl", (mdb_walk_cb_t)a2m_walk_modctl, &a2m);
690 	return (a2m.a2m_where);
691 }
692 
693 static mdb_qinfo_t *
694 qi_lookup(uintptr_t qinit_addr)
695 {
696 	mdb_qinfo_t *qip;
697 
698 	for (qip = qi_head; qip != NULL; qip = qip->qi_next) {
699 		if (qip->qi_addr == qinit_addr)
700 			return (qip);
701 	}
702 
703 	return (NULL);
704 }
705 
706 void
707 mdb_qops_install(const mdb_qops_t *qops, uintptr_t qinit_addr)
708 {
709 	mdb_qinfo_t *qip = qi_lookup(qinit_addr);
710 
711 	if (qip != NULL) {
712 		qip->qi_ops = qops;
713 		return;
714 	}
715 
716 	qip = mdb_alloc(sizeof (mdb_qinfo_t), UM_SLEEP);
717 
718 	qip->qi_ops = qops;
719 	qip->qi_addr = qinit_addr;
720 	qip->qi_next = qi_head;
721 
722 	qi_head = qip;
723 }
724 
725 void
726 mdb_qops_remove(const mdb_qops_t *qops, uintptr_t qinit_addr)
727 {
728 	mdb_qinfo_t *qip, *p = NULL;
729 
730 	for (qip = qi_head; qip != NULL; p = qip, qip = qip->qi_next) {
731 		if (qip->qi_addr == qinit_addr && qip->qi_ops == qops) {
732 			if (qi_head == qip)
733 				qi_head = qip->qi_next;
734 			else
735 				p->qi_next = qip->qi_next;
736 			mdb_free(qip, sizeof (mdb_qinfo_t));
737 			return;
738 		}
739 	}
740 }
741 
742 char *
743 mdb_qname(const queue_t *q, char *buf, size_t nbytes)
744 {
745 	struct module_info mi;
746 	struct qinit qi;
747 
748 	if (mdb_vread(&qi, sizeof (qi), (uintptr_t)q->q_qinfo) == -1) {
749 		mdb_warn("failed to read qinit at %p", q->q_qinfo);
750 		goto err;
751 	}
752 
753 	if (mdb_vread(&mi, sizeof (mi), (uintptr_t)qi.qi_minfo) == -1) {
754 		mdb_warn("failed to read module_info at %p", qi.qi_minfo);
755 		goto err;
756 	}
757 
758 	if (mdb_readstr(buf, nbytes, (uintptr_t)mi.mi_idname) <= 0) {
759 		mdb_warn("failed to read mi_idname at %p", mi.mi_idname);
760 		goto err;
761 	}
762 
763 	return (buf);
764 
765 err:
766 	(void) mdb_snprintf(buf, nbytes, "???");
767 	return (buf);
768 }
769 
770 void
771 mdb_qinfo(const queue_t *q, char *buf, size_t nbytes)
772 {
773 	mdb_qinfo_t *qip = qi_lookup((uintptr_t)q->q_qinfo);
774 	buf[0] = '\0';
775 
776 	if (qip != NULL)
777 		qip->qi_ops->q_info(q, buf, nbytes);
778 }
779 
780 uintptr_t
781 mdb_qrnext(const queue_t *q)
782 {
783 	mdb_qinfo_t *qip = qi_lookup((uintptr_t)q->q_qinfo);
784 
785 	if (qip != NULL)
786 		return (qip->qi_ops->q_rnext(q));
787 
788 	return (NULL);
789 }
790 
791 uintptr_t
792 mdb_qwnext(const queue_t *q)
793 {
794 	mdb_qinfo_t *qip = qi_lookup((uintptr_t)q->q_qinfo);
795 
796 	if (qip != NULL)
797 		return (qip->qi_ops->q_wnext(q));
798 
799 	return (NULL);
800 }
801 
802 uintptr_t
803 mdb_qrnext_default(const queue_t *q)
804 {
805 	return ((uintptr_t)q->q_next);
806 }
807 
808 uintptr_t
809 mdb_qwnext_default(const queue_t *q)
810 {
811 	return ((uintptr_t)q->q_next);
812 }
813 
814 /*
815  * The following three routines borrowed from modsubr.c
816  */
817 static int
818 nm_hash(const char *name)
819 {
820 	char c;
821 	int hash = 0;
822 
823 	for (c = *name++; c; c = *name++)
824 		hash ^= c;
825 
826 	return (hash & MOD_BIND_HASHMASK);
827 }
828 
829 static uintptr_t
830 find_mbind(const char *name, uintptr_t *hashtab)
831 {
832 	int hashndx;
833 	uintptr_t mb;
834 	struct bind mb_local;
835 	char node_name[MODMAXNAMELEN + 1];
836 
837 
838 	hashndx = nm_hash(name);
839 	mb = hashtab[hashndx];
840 	while (mb) {
841 		if (mdb_vread(&mb_local, sizeof (mb_local), mb) == -1) {
842 			mdb_warn("failed to read struct bind at %p", mb);
843 			return (NULL);
844 		}
845 		if (mdb_readstr(node_name, sizeof (node_name),
846 		    (uintptr_t)mb_local.b_name) == -1) {
847 			mdb_warn("failed to read node name string at %p",
848 				mb_local.b_name);
849 			return (NULL);
850 		}
851 
852 		if (strcmp(name, node_name) == 0)
853 			break;
854 
855 		mb = (uintptr_t)mb_local.b_next;
856 	}
857 	return (mb);
858 }
859 
860 int
861 mdb_name_to_major(const char *name, major_t *major)
862 {
863 	uintptr_t	mbind;
864 	uintptr_t	mb_hashtab[MOD_BIND_HASHSIZE];
865 	struct bind 	mbind_local;
866 
867 
868 	if (mdb_readsym(mb_hashtab, sizeof (mb_hashtab), "mb_hashtab") == -1) {
869 		mdb_warn("failed to read symbol 'mb_hashtab'");
870 		return (-1);
871 	}
872 
873 	if ((mbind = find_mbind(name, mb_hashtab)) != NULL) {
874 		if (mdb_vread(&mbind_local, sizeof (mbind_local), mbind) ==
875 		    -1) {
876 			mdb_warn("failed to read mbind struct at %p", mbind);
877 			return (-1);
878 		}
879 
880 		*major = (major_t)mbind_local.b_num;
881 		return (0);
882 	}
883 	return (-1);
884 }
885 
886 const char *
887 mdb_major_to_name(major_t major)
888 {
889 	static char name[MODMAXNAMELEN + 1];
890 
891 	uintptr_t devnamesp;
892 	struct devnames dn;
893 	uint_t devcnt;
894 
895 	if (mdb_readvar(&devcnt, "devcnt") == -1 || major >= devcnt ||
896 	    mdb_readvar(&devnamesp, "devnamesp") == -1)
897 		return (NULL);
898 
899 	if (mdb_vread(&dn, sizeof (struct devnames), devnamesp +
900 	    major * sizeof (struct devnames)) != sizeof (struct devnames))
901 		return (NULL);
902 
903 	if (mdb_readstr(name, MODMAXNAMELEN + 1, (uintptr_t)dn.dn_name) == -1)
904 		return (NULL);
905 
906 	return ((const char *)name);
907 }
908 
909 /*
910  * Return the name of the driver attached to the dip in drivername.
911  */
912 int
913 mdb_devinfo2driver(uintptr_t dip_addr, char *drivername, size_t namebufsize)
914 {
915 	struct dev_info	devinfo;
916 	char bind_name[MODMAXNAMELEN + 1];
917 	major_t	major;
918 	const char *namestr;
919 
920 
921 	if (mdb_vread(&devinfo, sizeof (devinfo), dip_addr) == -1) {
922 		mdb_warn("failed to read devinfo at %p", dip_addr);
923 		return (-1);
924 	}
925 
926 	if (mdb_readstr(bind_name, sizeof (bind_name),
927 	    (uintptr_t)devinfo.devi_binding_name) == -1) {
928 		mdb_warn("failed to read binding name at %p",
929 		    devinfo.devi_binding_name);
930 		return (-1);
931 	}
932 
933 	/*
934 	 * Many->one relation: various names to one major number
935 	 */
936 	if (mdb_name_to_major(bind_name, &major) == -1) {
937 		mdb_warn("failed to translate bind name to major number\n");
938 		return (-1);
939 	}
940 
941 	/*
942 	 * One->one relation: one major number corresponds to one driver
943 	 */
944 	if ((namestr = mdb_major_to_name(major)) == NULL) {
945 		(void) strncpy(drivername, "???", namebufsize);
946 		return (-1);
947 	}
948 
949 	(void) strncpy(drivername, namestr, namebufsize);
950 	return (0);
951 }
952 
953 /*
954  * Find the name of the driver attached to this dip (if any), given:
955  * - the address of a dip (in core)
956  * - the NAME of the global pointer to the driver's i_ddi_soft_state struct
957  * - pointer to a pointer to receive the address
958  */
959 int
960 mdb_devinfo2statep(uintptr_t dip_addr, char *soft_statep_name,
961     uintptr_t *statep)
962 {
963 	struct dev_info	dev_info;
964 
965 
966 	if (mdb_vread(&dev_info, sizeof (dev_info), dip_addr) == -1) {
967 		mdb_warn("failed to read devinfo at %p", dip_addr);
968 		return (-1);
969 	}
970 
971 	return (mdb_get_soft_state_byname(soft_statep_name,
972 	    dev_info.devi_instance, statep, NULL, 0));
973 }
974 
975 /*
976  * Returns a pointer to the top of the soft state struct for the instance
977  * specified (in state_addr), given the address of the global soft state
978  * pointer and size of the struct.  Also fills in the buffer pointed to by
979  * state_buf_p (if non-NULL) with the contents of the state struct.
980  */
981 int
982 mdb_get_soft_state_byaddr(uintptr_t ssaddr, uint_t instance,
983     uintptr_t *state_addr, void *state_buf_p, size_t sizeof_state)
984 {
985 	struct i_ddi_soft_state ss;
986 	void *statep;
987 
988 
989 	if (mdb_vread(&ss, sizeof (ss), ssaddr) == -1)
990 		return (-1);
991 
992 	if (instance >= ss.n_items)
993 		return (-1);
994 
995 	if (mdb_vread(&statep, sizeof (statep), (uintptr_t)ss.array +
996 	    (sizeof (statep) * instance)) == -1)
997 		return (-1);
998 
999 	if (state_addr != NULL)
1000 		*state_addr = (uintptr_t)statep;
1001 
1002 	if (statep == NULL) {
1003 		errno = ENOENT;
1004 		return (-1);
1005 	}
1006 
1007 	if (state_buf_p != NULL) {
1008 
1009 		/* Read the state struct into the buffer in local space. */
1010 		if (mdb_vread(state_buf_p, sizeof_state,
1011 		    (uintptr_t)statep) == -1)
1012 			return (-1);
1013 	}
1014 
1015 	return (0);
1016 }
1017 
1018 
1019 /*
1020  * Returns a pointer to the top of the soft state struct for the instance
1021  * specified (in state_addr), given the name of the global soft state pointer
1022  * and size of the struct.  Also fills in the buffer pointed to by
1023  * state_buf_p (if non-NULL) with the contents of the state struct.
1024  */
1025 int
1026 mdb_get_soft_state_byname(char *softstatep_name, uint_t instance,
1027     uintptr_t *state_addr, void *state_buf_p, size_t sizeof_state)
1028 {
1029 	uintptr_t ssaddr;
1030 
1031 	if (mdb_readvar((void *)&ssaddr, softstatep_name) == -1)
1032 		return (-1);
1033 
1034 	return (mdb_get_soft_state_byaddr(ssaddr, instance, state_addr,
1035 	    state_buf_p, sizeof_state));
1036 }
1037 
1038 static const mdb_dcmd_t dcmds[] = {
1039 	{ "dnlc", NULL, "print DNLC contents", dnlcdump },
1040 	{ NULL }
1041 };
1042 
1043 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds };
1044 
1045 /*ARGSUSED*/
1046 static void
1047 update_vars(void *arg)
1048 {
1049 	GElf_Sym sym;
1050 
1051 	if (mdb_lookup_by_name("auto_vnodeops", &sym) == 0)
1052 		autofs_vnops_ptr = (struct vnodeops *)(uintptr_t)sym.st_value;
1053 	else
1054 		autofs_vnops_ptr = NULL;
1055 
1056 	(void) mdb_readvar(&_mdb_ks_pagesize, "_pagesize");
1057 	(void) mdb_readvar(&_mdb_ks_pageshift, "_pageshift");
1058 	(void) mdb_readvar(&_mdb_ks_pageoffset, "_pageoffset");
1059 	(void) mdb_readvar(&_mdb_ks_pagemask, "_pagemask");
1060 	(void) mdb_readvar(&_mdb_ks_mmu_pagesize, "_mmu_pagesize");
1061 	(void) mdb_readvar(&_mdb_ks_mmu_pageshift, "_mmu_pageshift");
1062 	(void) mdb_readvar(&_mdb_ks_mmu_pageoffset, "_mmu_pageoffset");
1063 	(void) mdb_readvar(&_mdb_ks_mmu_pagemask, "_mmu_pagemask");
1064 	(void) mdb_readvar(&_mdb_ks_kernelbase, "_kernelbase");
1065 
1066 	(void) mdb_readvar(&_mdb_ks_userlimit, "_userlimit");
1067 	(void) mdb_readvar(&_mdb_ks_userlimit32, "_userlimit32");
1068 	(void) mdb_readvar(&_mdb_ks_argsbase, "_argsbase");
1069 	(void) mdb_readvar(&_mdb_ks_msg_bsize, "_msg_bsize");
1070 	(void) mdb_readvar(&_mdb_ks_defaultstksz, "_defaultstksz");
1071 	(void) mdb_readvar(&_mdb_ks_ncpu, "_ncpu");
1072 }
1073 
1074 const mdb_modinfo_t *
1075 _mdb_init(void)
1076 {
1077 	/*
1078 	 * When used with mdb, mdb_ks is a separate dmod.  With kmdb, however,
1079 	 * mdb_ks is compiled into the debugger module.  kmdb cannot
1080 	 * automatically modunload itself when it exits.  If it restarts after
1081 	 * debugger fault, static variables may not be initialized to zero.
1082 	 * They must be manually reinitialized here.
1083 	 */
1084 	dnlc_hash = NULL;
1085 	qi_head = NULL;
1086 
1087 	mdb_callback_add(MDB_CALLBACK_STCHG, update_vars, NULL);
1088 
1089 	update_vars(NULL);
1090 
1091 	return (&modinfo);
1092 }
1093 
1094 void
1095 _mdb_fini(void)
1096 {
1097 	dnlc_free();
1098 	while (qi_head != NULL) {
1099 		mdb_qinfo_t *qip = qi_head;
1100 		qi_head = qip->qi_next;
1101 		mdb_free(qip, sizeof (mdb_qinfo_t));
1102 	}
1103 }
1104 
1105 /*
1106  * Interface between MDB kproc target and mdb_ks.  The kproc target relies
1107  * on looking up and invoking these functions in mdb_ks so that dependencies
1108  * on the current kernel implementation are isolated in mdb_ks.
1109  */
1110 
1111 /*
1112  * Given the address of a proc_t, return the p.p_as pointer; return NULL
1113  * if we were unable to read a proc structure from the given address.
1114  */
1115 uintptr_t
1116 mdb_kproc_as(uintptr_t proc_addr)
1117 {
1118 	proc_t p;
1119 
1120 	if (mdb_vread(&p, sizeof (p), proc_addr) == sizeof (p))
1121 		return ((uintptr_t)p.p_as);
1122 
1123 	return (NULL);
1124 }
1125 
1126 /*
1127  * Given the address of a proc_t, return the p.p_model value; return
1128  * PR_MODEL_UNKNOWN if we were unable to read a proc structure or if
1129  * the model value does not match one of the two known values.
1130  */
1131 uint_t
1132 mdb_kproc_model(uintptr_t proc_addr)
1133 {
1134 	proc_t p;
1135 
1136 	if (mdb_vread(&p, sizeof (p), proc_addr) == sizeof (p)) {
1137 		switch (p.p_model) {
1138 		case DATAMODEL_ILP32:
1139 			return (PR_MODEL_ILP32);
1140 		case DATAMODEL_LP64:
1141 			return (PR_MODEL_LP64);
1142 		}
1143 	}
1144 
1145 	return (PR_MODEL_UNKNOWN);
1146 }
1147 
1148 /*
1149  * Callback function for walking process's segment list.  For each segment,
1150  * we fill in an mdb_map_t describing its properties, and then invoke
1151  * the callback function provided by the kproc target.
1152  */
1153 static int
1154 asmap_step(uintptr_t addr, const struct seg *seg, asmap_arg_t *asmp)
1155 {
1156 	struct segvn_data svd;
1157 	mdb_map_t map;
1158 
1159 	if (seg->s_ops == asmp->asm_segvn_ops && mdb_vread(&svd,
1160 	    sizeof (svd), (uintptr_t)seg->s_data) == sizeof (svd)) {
1161 
1162 		if (svd.vp != NULL) {
1163 			if (mdb_vnode2path((uintptr_t)svd.vp, map.map_name,
1164 				    MDB_TGT_MAPSZ) != 0) {
1165 				(void) mdb_snprintf(map.map_name,
1166 				    MDB_TGT_MAPSZ, "[ vnode %p ]", svd.vp);
1167 			}
1168 		} else
1169 			(void) strcpy(map.map_name, "[ anon ]");
1170 
1171 	} else {
1172 		(void) mdb_snprintf(map.map_name, MDB_TGT_MAPSZ,
1173 		    "[ seg %p ]", addr);
1174 	}
1175 
1176 	map.map_base = (uintptr_t)seg->s_base;
1177 	map.map_size = seg->s_size;
1178 	map.map_flags = 0;
1179 
1180 	asmp->asm_callback((const struct mdb_map *)&map, asmp->asm_cbdata);
1181 	return (WALK_NEXT);
1182 }
1183 
1184 /*
1185  * Given a process address space, walk its segment list using the seg walker,
1186  * convert the segment data to an mdb_map_t, and pass this information
1187  * back to the kproc target via the given callback function.
1188  */
1189 int
1190 mdb_kproc_asiter(uintptr_t as,
1191     void (*func)(const struct mdb_map *, void *), void *p)
1192 {
1193 	asmap_arg_t arg;
1194 	GElf_Sym sym;
1195 
1196 	arg.asm_segvn_ops = NULL;
1197 	arg.asm_callback = func;
1198 	arg.asm_cbdata = p;
1199 
1200 	if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
1201 		arg.asm_segvn_ops = (struct seg_ops *)(uintptr_t)sym.st_value;
1202 
1203 	return (mdb_pwalk("seg", (mdb_walk_cb_t)asmap_step, &arg, as));
1204 }
1205 
1206 /*
1207  * Copy the auxv array from the given process's u-area into the provided
1208  * buffer.  If the buffer is NULL, only return the size of the auxv array
1209  * so the caller knows how much space will be required.
1210  */
1211 int
1212 mdb_kproc_auxv(uintptr_t proc, auxv_t *auxv)
1213 {
1214 	if (auxv != NULL) {
1215 		proc_t p;
1216 
1217 		if (mdb_vread(&p, sizeof (p), proc) != sizeof (p))
1218 			return (-1);
1219 
1220 		bcopy(p.p_user.u_auxv, auxv,
1221 		    sizeof (auxv_t) * __KERN_NAUXV_IMPL);
1222 	}
1223 
1224 	return (__KERN_NAUXV_IMPL);
1225 }
1226 
1227 /*
1228  * Given a process address, return the PID.
1229  */
1230 pid_t
1231 mdb_kproc_pid(uintptr_t proc_addr)
1232 {
1233 	struct pid pid;
1234 	proc_t p;
1235 
1236 	if (mdb_vread(&p, sizeof (p), proc_addr) == sizeof (p) &&
1237 	    mdb_vread(&pid, sizeof (pid), (uintptr_t)p.p_pidp) == sizeof (pid))
1238 		return (pid.pid_id);
1239 
1240 	return (-1);
1241 }
1242 
1243 /*
1244  * Interface between the MDB kvm target and mdb_ks.  The kvm target relies
1245  * on looking up and invoking these functions in mdb_ks so that dependencies
1246  * on the current kernel implementation are isolated in mdb_ks.
1247  */
1248 
1249 /*
1250  * Determine whether or not the thread that panicked the given kernel was a
1251  * kernel thread (panic_thread->t_procp == &p0).
1252  */
1253 void
1254 mdb_dump_print_content(dumphdr_t *dh, pid_t content)
1255 {
1256 	GElf_Sym sym;
1257 	uintptr_t pt;
1258 	uintptr_t procp;
1259 	int expcont = 0;
1260 	int actcont;
1261 
1262 	(void) mdb_readvar(&expcont, "dump_conflags");
1263 	actcont = dh->dump_flags & DF_CONTENT;
1264 
1265 	if (actcont == DF_ALL) {
1266 		mdb_printf("dump content: all kernel and user pages\n");
1267 		return;
1268 	} else if (actcont == DF_CURPROC) {
1269 		mdb_printf("dump content: kernel pages and pages from "
1270 		    "PID %d", content);
1271 		return;
1272 	}
1273 
1274 	mdb_printf("dump content: kernel pages only\n");
1275 	if (!(expcont & DF_CURPROC))
1276 		return;
1277 
1278 	if (mdb_readvar(&pt, "panic_thread") != sizeof (pt) || pt == NULL)
1279 		goto kthreadpanic_err;
1280 
1281 	if (mdb_vread(&procp, sizeof (procp), pt + OFFSETOF(kthread_t,
1282 	    t_procp)) == -1 || procp == NULL)
1283 		goto kthreadpanic_err;
1284 
1285 	if (mdb_lookup_by_name("p0", &sym) != 0)
1286 		goto kthreadpanic_err;
1287 
1288 	if (procp == (uintptr_t)sym.st_value) {
1289 		mdb_printf("  (curproc requested, but a kernel thread "
1290 		    "panicked)\n");
1291 	} else {
1292 		mdb_printf("  (curproc requested, but the process that "
1293 		    "panicked could not be dumped)\n");
1294 	}
1295 
1296 	return;
1297 
1298 kthreadpanic_err:
1299 	mdb_printf("  (curproc requested, but the process that panicked could "
1300 	    "not be found)\n");
1301 }
1302 
1303 /*
1304  * Determine the process that was saved in a `curproc' dump.  This process will
1305  * be recorded as the first element in dump_pids[].
1306  */
1307 int
1308 mdb_dump_find_curproc(void)
1309 {
1310 	uintptr_t pidp;
1311 	pid_t pid = -1;
1312 
1313 	if (mdb_readvar(&pidp, "dump_pids") == sizeof (pidp) &&
1314 	    mdb_vread(&pid, sizeof (pid), pidp) == sizeof (pid) &&
1315 	    pid > 0)
1316 		return (pid);
1317 	else
1318 		return (-1);
1319 }
1320 
1321 
1322 /*
1323  * Following three funcs extracted from sunddi.c
1324  */
1325 
1326 /*
1327  * Return core address of root node of devinfo tree
1328  */
1329 static uintptr_t
1330 mdb_ddi_root_node(void)
1331 {
1332 	uintptr_t	top_devinfo_addr;
1333 
1334 	/* return (top_devinfo);   */
1335 	if (mdb_readvar(&top_devinfo_addr, "top_devinfo") == -1) {
1336 		mdb_warn("failed to read top_devinfo");
1337 		return (NULL);
1338 	}
1339 	return (top_devinfo_addr);
1340 }
1341 
1342 /*
1343  * Return the name of the devinfo node pointed at by 'dip_addr' in the buffer
1344  * pointed at by 'name.'
1345  *
1346  * - dip_addr is a pointer to a dev_info struct in core.
1347  */
1348 static char *
1349 mdb_ddi_deviname(uintptr_t dip_addr, char *name, size_t name_size)
1350 {
1351 	uintptr_t addrname;
1352 	ssize_t	length;
1353 	char *local_namep = name;
1354 	size_t local_name_size = name_size;
1355 	struct dev_info	local_dip;
1356 
1357 
1358 	if (dip_addr == mdb_ddi_root_node()) {
1359 		if (name_size < 1) {
1360 			mdb_warn("failed to get node name: buf too small\n");
1361 			return (NULL);
1362 		}
1363 
1364 		*name = '\0';
1365 		return (name);
1366 	}
1367 
1368 	if (name_size < 2) {
1369 		mdb_warn("failed to get node name: buf too small\n");
1370 		return (NULL);
1371 	}
1372 
1373 	local_namep = name;
1374 	*local_namep++ = '/';
1375 	*local_namep = '\0';
1376 	local_name_size--;
1377 
1378 	if (mdb_vread(&local_dip, sizeof (struct dev_info), dip_addr) == -1) {
1379 		mdb_warn("failed to read devinfo struct");
1380 	}
1381 
1382 	length = mdb_readstr(local_namep, local_name_size,
1383 	    (uintptr_t)local_dip.devi_node_name);
1384 	if (length == -1) {
1385 		mdb_warn("failed to read node name");
1386 		return (NULL);
1387 	}
1388 	local_namep += length;
1389 	local_name_size -= length;
1390 	addrname = (uintptr_t)local_dip.devi_addr;
1391 
1392 	if (addrname != NULL) {
1393 
1394 		if (local_name_size < 2) {
1395 			mdb_warn("not enough room for node address string");
1396 			return (name);
1397 		}
1398 		*local_namep++ = '@';
1399 		*local_namep = '\0';
1400 		local_name_size--;
1401 
1402 		length = mdb_readstr(local_namep, local_name_size, addrname);
1403 		if (length == -1) {
1404 			mdb_warn("failed to read name");
1405 			return (NULL);
1406 		}
1407 	}
1408 
1409 	return (name);
1410 }
1411 
1412 /*
1413  * Generate the full path under the /devices dir to the device entry.
1414  *
1415  * dip is a pointer to a devinfo struct in core (not in local memory).
1416  */
1417 char *
1418 mdb_ddi_pathname(uintptr_t dip_addr, char *path, size_t pathlen)
1419 {
1420 	struct dev_info local_dip;
1421 	uintptr_t	parent_dip;
1422 	char		*bp;
1423 	size_t		buf_left;
1424 
1425 
1426 	if (dip_addr == mdb_ddi_root_node()) {
1427 		*path = '\0';
1428 		return (path);
1429 	}
1430 
1431 
1432 	if (mdb_vread(&local_dip, sizeof (struct dev_info), dip_addr) == -1) {
1433 		mdb_warn("failed to read devinfo struct");
1434 	}
1435 
1436 	parent_dip = (uintptr_t)local_dip.devi_parent;
1437 	(void) mdb_ddi_pathname(parent_dip, path, pathlen);
1438 
1439 	bp = path + strlen(path);
1440 	buf_left = pathlen - strlen(path);
1441 	(void) mdb_ddi_deviname(dip_addr, bp, buf_left);
1442 	return (path);
1443 }
1444 
1445 
1446 /*
1447  * Read in the string value of a refstr, which is appended to the end of
1448  * the structure.
1449  */
1450 ssize_t
1451 mdb_read_refstr(uintptr_t refstr_addr, char *str, size_t nbytes)
1452 {
1453 	struct refstr *r = (struct refstr *)refstr_addr;
1454 
1455 	return (mdb_readstr(str, nbytes, (uintptr_t)r->rs_string));
1456 }
1457