1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
27  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/reg.h>
32 #include <sys/privregs.h>
33 #include <sys/stack.h>
34 #include <sys/frame.h>
35 
36 #include <mdb/mdb_ia32util.h>
37 #include <mdb/mdb_target_impl.h>
38 #include <mdb/mdb_kreg_impl.h>
39 #include <mdb/mdb_debug.h>
40 #include <mdb/mdb_modapi.h>
41 #include <mdb/mdb_err.h>
42 #include <mdb/mdb.h>
43 
44 /*
45  * We also define an array of register names and their corresponding
46  * array indices.  This is used by the getareg and putareg entry points,
47  * and also by our register variable discipline.
48  */
49 const mdb_tgt_regdesc_t mdb_ia32_kregs[] = {
50 	{ "savfp", KREG_SAVFP, MDB_TGT_R_EXPORT },
51 	{ "savpc", KREG_SAVPC, MDB_TGT_R_EXPORT },
52 	{ "eax", KREG_EAX, MDB_TGT_R_EXPORT },
53 	{ "ax", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
54 	{ "ah", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
55 	{ "al", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
56 	{ "ebx", KREG_EBX, MDB_TGT_R_EXPORT },
57 	{ "bx", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
58 	{ "bh", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
59 	{ "bl", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
60 	{ "ecx", KREG_ECX, MDB_TGT_R_EXPORT },
61 	{ "cx", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
62 	{ "ch", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
63 	{ "cl", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
64 	{ "edx", KREG_EDX, MDB_TGT_R_EXPORT },
65 	{ "dx", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
66 	{ "dh", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
67 	{ "dl", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
68 	{ "esi", KREG_ESI, MDB_TGT_R_EXPORT },
69 	{ "si", KREG_ESI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
70 	{ "edi", KREG_EDI, MDB_TGT_R_EXPORT },
71 	{ "di",	EDI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
72 	{ "ebp", KREG_EBP, MDB_TGT_R_EXPORT },
73 	{ "bp", KREG_EBP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
74 	{ "esp", KREG_ESP, MDB_TGT_R_EXPORT },
75 	{ "sp", KREG_ESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
76 	{ "cs", KREG_CS, MDB_TGT_R_EXPORT },
77 	{ "ds", KREG_DS, MDB_TGT_R_EXPORT },
78 	{ "ss", KREG_SS, MDB_TGT_R_EXPORT },
79 	{ "es", KREG_ES, MDB_TGT_R_EXPORT },
80 	{ "fs", KREG_FS, MDB_TGT_R_EXPORT },
81 	{ "gs", KREG_GS, MDB_TGT_R_EXPORT },
82 	{ "eflags", KREG_EFLAGS, MDB_TGT_R_EXPORT },
83 	{ "eip", KREG_EIP, MDB_TGT_R_EXPORT },
84 	{ "uesp", KREG_UESP, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
85 	{ "usp", KREG_UESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
86 	{ "trapno", KREG_TRAPNO, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
87 	{ "err", KREG_ERR, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
88 	{ NULL, 0, 0 }
89 };
90 
91 void
92 mdb_ia32_printregs(const mdb_tgt_gregset_t *gregs)
93 {
94 	const kreg_t *kregs = &gregs->kregs[0];
95 	kreg_t eflags = kregs[KREG_EFLAGS];
96 
97 	mdb_printf("%%cs = 0x%04x\t\t%%eax = 0x%0?p %A\n",
98 	    kregs[KREG_CS], kregs[KREG_EAX], kregs[KREG_EAX]);
99 
100 	mdb_printf("%%ds = 0x%04x\t\t%%ebx = 0x%0?p %A\n",
101 	    kregs[KREG_DS], kregs[KREG_EBX], kregs[KREG_EBX]);
102 
103 	mdb_printf("%%ss = 0x%04x\t\t%%ecx = 0x%0?p %A\n",
104 	    kregs[KREG_SS], kregs[KREG_ECX], kregs[KREG_ECX]);
105 
106 	mdb_printf("%%es = 0x%04x\t\t%%edx = 0x%0?p %A\n",
107 	    kregs[KREG_ES], kregs[KREG_EDX], kregs[KREG_EDX]);
108 
109 	mdb_printf("%%fs = 0x%04x\t\t%%esi = 0x%0?p %A\n",
110 	    kregs[KREG_FS], kregs[KREG_ESI], kregs[KREG_ESI]);
111 
112 	mdb_printf("%%gs = 0x%04x\t\t%%edi = 0x%0?p %A\n\n",
113 	    kregs[KREG_GS], kregs[KREG_EDI], kregs[KREG_EDI]);
114 
115 	mdb_printf("%%eip = 0x%0?p %A\n", kregs[KREG_EIP], kregs[KREG_EIP]);
116 	mdb_printf("%%ebp = 0x%0?p\n", kregs[KREG_EBP]);
117 	mdb_printf("%%esp = 0x%0?p\n\n", kregs[KREG_ESP]);
118 	mdb_printf("%%eflags = 0x%08x\n", eflags);
119 
120 	mdb_printf("  id=%u vip=%u vif=%u ac=%u vm=%u rf=%u nt=%u iopl=0x%x\n",
121 	    (eflags & KREG_EFLAGS_ID_MASK) >> KREG_EFLAGS_ID_SHIFT,
122 	    (eflags & KREG_EFLAGS_VIP_MASK) >> KREG_EFLAGS_VIP_SHIFT,
123 	    (eflags & KREG_EFLAGS_VIF_MASK) >> KREG_EFLAGS_VIF_SHIFT,
124 	    (eflags & KREG_EFLAGS_AC_MASK) >> KREG_EFLAGS_AC_SHIFT,
125 	    (eflags & KREG_EFLAGS_VM_MASK) >> KREG_EFLAGS_VM_SHIFT,
126 	    (eflags & KREG_EFLAGS_RF_MASK) >> KREG_EFLAGS_RF_SHIFT,
127 	    (eflags & KREG_EFLAGS_NT_MASK) >> KREG_EFLAGS_NT_SHIFT,
128 	    (eflags & KREG_EFLAGS_IOPL_MASK) >> KREG_EFLAGS_IOPL_SHIFT);
129 
130 	mdb_printf("  status=<%s,%s,%s,%s,%s,%s,%s,%s,%s>\n\n",
131 	    (eflags & KREG_EFLAGS_OF_MASK) ? "OF" : "of",
132 	    (eflags & KREG_EFLAGS_DF_MASK) ? "DF" : "df",
133 	    (eflags & KREG_EFLAGS_IF_MASK) ? "IF" : "if",
134 	    (eflags & KREG_EFLAGS_TF_MASK) ? "TF" : "tf",
135 	    (eflags & KREG_EFLAGS_SF_MASK) ? "SF" : "sf",
136 	    (eflags & KREG_EFLAGS_ZF_MASK) ? "ZF" : "zf",
137 	    (eflags & KREG_EFLAGS_AF_MASK) ? "AF" : "af",
138 	    (eflags & KREG_EFLAGS_PF_MASK) ? "PF" : "pf",
139 	    (eflags & KREG_EFLAGS_CF_MASK) ? "CF" : "cf");
140 
141 #ifndef _KMDB
142 	mdb_printf("  %%uesp = 0x%0?x\n", kregs[KREG_UESP]);
143 #endif
144 	mdb_printf("%%trapno = 0x%x\n", kregs[KREG_TRAPNO]);
145 	mdb_printf("   %%err = 0x%x\n", kregs[KREG_ERR]);
146 }
147 
148 /*
149  * Given a return address (%eip), determine the likely number of arguments
150  * that were pushed on the stack prior to its execution.  We do this by
151  * expecting that a typical call sequence consists of pushing arguments on
152  * the stack, executing a call instruction, and then performing an add
153  * on %esp to restore it to the value prior to pushing the arguments for
154  * the call.  We attempt to detect such an add, and divide the addend
155  * by the size of a word to determine the number of pushed arguments.
156  */
157 static uint_t
158 kvm_argcount(mdb_tgt_t *t, uintptr_t eip, ssize_t size)
159 {
160 	uint8_t ins[6];
161 	ulong_t n;
162 
163 	enum {
164 		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
165 		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
166 		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
167 	};
168 
169 	if (mdb_tgt_vread(t, ins, sizeof (ins), eip) != sizeof (ins))
170 		return (0);
171 
172 	if (ins[1] != M_MODRM_ESP)
173 		return (0);
174 
175 	switch (ins[0]) {
176 	case M_ADD_IMM32:
177 		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
178 		break;
179 
180 	case M_ADD_IMM8:
181 		n = ins[2];
182 		break;
183 
184 	default:
185 		n = 0;
186 	}
187 
188 	return (MIN((ssize_t)n, size) / sizeof (long));
189 }
190 
191 int
192 mdb_ia32_kvm_stack_iter(mdb_tgt_t *t, const mdb_tgt_gregset_t *gsp,
193     mdb_tgt_stack_f *func, void *arg)
194 {
195 	mdb_tgt_gregset_t gregs;
196 	kreg_t *kregs = &gregs.kregs[0];
197 	int got_pc = (gsp->kregs[KREG_EIP] != 0);
198 	int err;
199 
200 	struct {
201 		uintptr_t fr_savfp;
202 		uintptr_t fr_savpc;
203 		long fr_argv[32];
204 	} fr;
205 
206 	uintptr_t fp = gsp->kregs[KREG_EBP];
207 	uintptr_t pc = gsp->kregs[KREG_EIP];
208 	uintptr_t lastfp = 0;
209 
210 	ssize_t size;
211 	uint_t argc;
212 	int detect_exception_frames = 0;
213 #ifndef	_KMDB
214 	int xp;
215 
216 	if ((mdb_readsym(&xp, sizeof (xp), "xpv_panicking") != -1) && (xp > 0))
217 		detect_exception_frames = 1;
218 #endif
219 
220 	bcopy(gsp, &gregs, sizeof (gregs));
221 
222 	while (fp != 0) {
223 
224 		/*
225 		 * Ensure progress (increasing fp), and prevent
226 		 * endless loop with the same FP.
227 		 */
228 		if (fp <= lastfp) {
229 			err = EMDB_STKFRAME;
230 			goto badfp;
231 		}
232 		if (fp & (STACK_ALIGN - 1)) {
233 			err = EMDB_STKALIGN;
234 			goto badfp;
235 		}
236 		if ((size = mdb_tgt_vread(t, &fr, sizeof (fr), fp)) >=
237 		    (ssize_t)(2 * sizeof (uintptr_t))) {
238 			size -= (ssize_t)(2 * sizeof (uintptr_t));
239 			argc = kvm_argcount(t, fr.fr_savpc, size);
240 		} else {
241 			err = EMDB_NOMAP;
242 			goto badfp;
243 		}
244 
245 		if (got_pc && func(arg, pc, argc, fr.fr_argv, &gregs) != 0)
246 			break;
247 
248 		kregs[KREG_ESP] = kregs[KREG_EBP];
249 
250 		lastfp = fp;
251 		fp = fr.fr_savfp;
252 		/*
253 		 * The Xen hypervisor marks a stack frame as belonging to
254 		 * an exception by inverting the bits of the pointer to
255 		 * that frame.  We attempt to identify these frames by
256 		 * inverting the pointer and seeing if it is within 0xfff
257 		 * bytes of the last frame.
258 		 */
259 		if (detect_exception_frames)
260 			if ((fp != 0) && (fp < lastfp) &&
261 			    ((lastfp ^ ~fp) < 0xfff))
262 				fp = ~fp;
263 
264 		kregs[KREG_EBP] = fp;
265 		kregs[KREG_EIP] = pc = fr.fr_savpc;
266 
267 		got_pc = (pc != 0);
268 	}
269 
270 	return (0);
271 
272 badfp:
273 	mdb_printf("%p [%s]", fp, mdb_strerror(err));
274 	return (set_errno(err));
275 }
276 
277 /*
278  * Determine the return address for the current frame.  Typically this is the
279  * fr_savpc value from the current frame, but we also perform some special
280  * handling to see if we are stopped on one of the first two instructions of a
281  * typical function prologue, in which case %ebp will not be set up yet.
282  */
283 int
284 mdb_ia32_step_out(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, kreg_t fp, kreg_t sp,
285     mdb_instr_t curinstr)
286 {
287 	struct frame fr;
288 	GElf_Sym s;
289 	char buf[1];
290 
291 	enum {
292 		M_PUSHL_EBP	= 0x55, /* pushl %ebp */
293 		M_MOVL_EBP	= 0x8b  /* movl %esp, %ebp */
294 	};
295 
296 	if (mdb_tgt_lookup_by_addr(t, pc, MDB_TGT_SYM_FUZZY,
297 	    buf, 0, &s, NULL) == 0) {
298 		if (pc == s.st_value && curinstr == M_PUSHL_EBP)
299 			fp = sp - 4;
300 		else if (pc == s.st_value + 1 && curinstr == M_MOVL_EBP)
301 			fp = sp;
302 	}
303 
304 	if (mdb_tgt_vread(t, &fr, sizeof (fr), fp) == sizeof (fr)) {
305 		*p = fr.fr_savpc;
306 		return (0);
307 	}
308 
309 	return (-1); /* errno is set for us */
310 }
311 
312 /*
313  * Return the address of the next instruction following a call, or return -1
314  * and set errno to EAGAIN if the target should just single-step.  We perform
315  * a bit of disassembly on the current instruction in order to determine if it
316  * is a call and how many bytes should be skipped, depending on the exact form
317  * of the call instruction that is being used.
318  */
319 int
320 mdb_ia32_next(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, mdb_instr_t curinstr)
321 {
322 	uint8_t m;
323 
324 	enum {
325 		M_CALL_REL = 0xe8, /* call near with relative displacement */
326 		M_CALL_REG = 0xff, /* call near indirect or call far register */
327 
328 		M_MODRM_MD = 0xc0, /* mask for Mod/RM byte Mod field */
329 		M_MODRM_OP = 0x38, /* mask for Mod/RM byte opcode field */
330 		M_MODRM_RM = 0x07, /* mask for Mod/RM byte R/M field */
331 
332 		M_MD_IND   = 0x00, /* Mod code for [REG] */
333 		M_MD_DSP8  = 0x40, /* Mod code for disp8[REG] */
334 		M_MD_DSP32 = 0x80, /* Mod code for disp32[REG] */
335 		M_MD_REG   = 0xc0, /* Mod code for REG */
336 
337 		M_OP_IND   = 0x10, /* Opcode for call near indirect */
338 		M_RM_DSP32 = 0x05  /* R/M code for disp32 */
339 	};
340 
341 	/*
342 	 * If the opcode is a near call with relative displacement, assume the
343 	 * displacement is a rel32 from the next instruction.
344 	 */
345 	if (curinstr == M_CALL_REL) {
346 		*p = pc + sizeof (mdb_instr_t) + sizeof (uint32_t);
347 		return (0);
348 	}
349 
350 	/*
351 	 * If the opcode is a call near indirect or call far register opcode,
352 	 * read the subsequent Mod/RM byte to perform additional decoding.
353 	 */
354 	if (curinstr == M_CALL_REG) {
355 		if (mdb_tgt_vread(t, &m, sizeof (m), pc + 1) != sizeof (m))
356 			return (-1); /* errno is set for us */
357 
358 		/*
359 		 * If the Mod/RM opcode extension indicates a near indirect
360 		 * call, then skip the appropriate number of additional
361 		 * bytes depending on the addressing form that is used.
362 		 */
363 		if ((m & M_MODRM_OP) == M_OP_IND) {
364 			switch (m & M_MODRM_MD) {
365 			case M_MD_DSP8:
366 				*p = pc + 3; /* skip pr_instr, m, disp8 */
367 				break;
368 			case M_MD_DSP32:
369 				*p = pc + 6; /* skip pr_instr, m, disp32 */
370 				break;
371 			case M_MD_IND:
372 				if ((m & M_MODRM_RM) == M_RM_DSP32) {
373 					*p = pc + 6;
374 					break; /* skip pr_instr, m, disp32 */
375 				}
376 				/* FALLTHRU */
377 			case M_MD_REG:
378 				*p = pc + 2; /* skip pr_instr, m */
379 				break;
380 			}
381 			return (0);
382 		}
383 	}
384 
385 	return (set_errno(EAGAIN));
386 }
387 
388 /*ARGSUSED*/
389 int
390 mdb_ia32_kvm_frame(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
391     const mdb_tgt_gregset_t *gregs)
392 {
393 	argc = MIN(argc, (uint_t)arglim);
394 	mdb_printf("%a(", pc);
395 
396 	if (argc != 0) {
397 		mdb_printf("%lr", *argv++);
398 		for (argc--; argc != 0; argc--)
399 			mdb_printf(", %lr", *argv++);
400 	}
401 
402 	mdb_printf(")\n");
403 	return (0);
404 }
405 
406 int
407 mdb_ia32_kvm_framev(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
408     const mdb_tgt_gregset_t *gregs)
409 {
410 	argc = MIN(argc, (uint_t)arglim);
411 	mdb_printf("%0?lr %a(", gregs->kregs[KREG_EBP], pc);
412 
413 	if (argc != 0) {
414 		mdb_printf("%lr", *argv++);
415 		for (argc--; argc != 0; argc--)
416 			mdb_printf(", %lr", *argv++);
417 	}
418 
419 	mdb_printf(")\n");
420 	return (0);
421 }
422