1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2017 Joyent, Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright 2017 RackTop Systems. 30 */ 31 32 /* 33 * The objective of this program is to provide a DMU/ZAP/SPA stress test 34 * that runs entirely in userland, is easy to use, and easy to extend. 35 * 36 * The overall design of the ztest program is as follows: 37 * 38 * (1) For each major functional area (e.g. adding vdevs to a pool, 39 * creating and destroying datasets, reading and writing objects, etc) 40 * we have a simple routine to test that functionality. These 41 * individual routines do not have to do anything "stressful". 42 * 43 * (2) We turn these simple functionality tests into a stress test by 44 * running them all in parallel, with as many threads as desired, 45 * and spread across as many datasets, objects, and vdevs as desired. 46 * 47 * (3) While all this is happening, we inject faults into the pool to 48 * verify that self-healing data really works. 49 * 50 * (4) Every time we open a dataset, we change its checksum and compression 51 * functions. Thus even individual objects vary from block to block 52 * in which checksum they use and whether they're compressed. 53 * 54 * (5) To verify that we never lose on-disk consistency after a crash, 55 * we run the entire test in a child of the main process. 56 * At random times, the child self-immolates with a SIGKILL. 57 * This is the software equivalent of pulling the power cord. 58 * The parent then runs the test again, using the existing 59 * storage pool, as many times as desired. If backwards compatibility 60 * testing is enabled ztest will sometimes run the "older" version 61 * of ztest after a SIGKILL. 62 * 63 * (6) To verify that we don't have future leaks or temporal incursions, 64 * many of the functional tests record the transaction group number 65 * as part of their data. When reading old data, they verify that 66 * the transaction group number is less than the current, open txg. 67 * If you add a new test, please do this if applicable. 68 * 69 * When run with no arguments, ztest runs for about five minutes and 70 * produces no output if successful. To get a little bit of information, 71 * specify -V. To get more information, specify -VV, and so on. 72 * 73 * To turn this into an overnight stress test, use -T to specify run time. 74 * 75 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 76 * to increase the pool capacity, fanout, and overall stress level. 77 * 78 * Use the -k option to set the desired frequency of kills. 79 * 80 * When ztest invokes itself it passes all relevant information through a 81 * temporary file which is mmap-ed in the child process. This allows shared 82 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 83 * stored at offset 0 of this file and contains information on the size and 84 * number of shared structures in the file. The information stored in this file 85 * must remain backwards compatible with older versions of ztest so that 86 * ztest can invoke them during backwards compatibility testing (-B). 87 */ 88 89 #include <sys/zfs_context.h> 90 #include <sys/spa.h> 91 #include <sys/dmu.h> 92 #include <sys/txg.h> 93 #include <sys/dbuf.h> 94 #include <sys/zap.h> 95 #include <sys/dmu_objset.h> 96 #include <sys/poll.h> 97 #include <sys/stat.h> 98 #include <sys/time.h> 99 #include <sys/wait.h> 100 #include <sys/mman.h> 101 #include <sys/resource.h> 102 #include <sys/zio.h> 103 #include <sys/zil.h> 104 #include <sys/zil_impl.h> 105 #include <sys/vdev_impl.h> 106 #include <sys/vdev_file.h> 107 #include <sys/vdev_initialize.h> 108 #include <sys/spa_impl.h> 109 #include <sys/metaslab_impl.h> 110 #include <sys/dsl_prop.h> 111 #include <sys/dsl_dataset.h> 112 #include <sys/dsl_destroy.h> 113 #include <sys/dsl_scan.h> 114 #include <sys/zio_checksum.h> 115 #include <sys/refcount.h> 116 #include <sys/zfeature.h> 117 #include <sys/dsl_userhold.h> 118 #include <sys/abd.h> 119 #include <stdio.h> 120 #include <stdio_ext.h> 121 #include <stdlib.h> 122 #include <unistd.h> 123 #include <signal.h> 124 #include <umem.h> 125 #include <dlfcn.h> 126 #include <ctype.h> 127 #include <math.h> 128 #include <sys/fs/zfs.h> 129 #include <libnvpair.h> 130 #include <libzfs.h> 131 #include <libcmdutils.h> 132 133 static int ztest_fd_data = -1; 134 static int ztest_fd_rand = -1; 135 136 typedef struct ztest_shared_hdr { 137 uint64_t zh_hdr_size; 138 uint64_t zh_opts_size; 139 uint64_t zh_size; 140 uint64_t zh_stats_size; 141 uint64_t zh_stats_count; 142 uint64_t zh_ds_size; 143 uint64_t zh_ds_count; 144 } ztest_shared_hdr_t; 145 146 static ztest_shared_hdr_t *ztest_shared_hdr; 147 148 enum ztest_class_state { 149 ZTEST_VDEV_CLASS_OFF, 150 ZTEST_VDEV_CLASS_ON, 151 ZTEST_VDEV_CLASS_RND 152 }; 153 154 typedef struct ztest_shared_opts { 155 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 156 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 157 char zo_alt_ztest[MAXNAMELEN]; 158 char zo_alt_libpath[MAXNAMELEN]; 159 uint64_t zo_vdevs; 160 uint64_t zo_vdevtime; 161 size_t zo_vdev_size; 162 int zo_ashift; 163 int zo_mirrors; 164 int zo_raidz; 165 int zo_raidz_parity; 166 int zo_datasets; 167 int zo_threads; 168 uint64_t zo_passtime; 169 uint64_t zo_killrate; 170 int zo_verbose; 171 int zo_init; 172 uint64_t zo_time; 173 uint64_t zo_maxloops; 174 uint64_t zo_metaslab_force_ganging; 175 int zo_mmp_test; 176 int zo_special_vdevs; 177 } ztest_shared_opts_t; 178 179 static const ztest_shared_opts_t ztest_opts_defaults = { 180 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 181 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 182 .zo_alt_ztest = { '\0' }, 183 .zo_alt_libpath = { '\0' }, 184 .zo_vdevs = 5, 185 .zo_ashift = SPA_MINBLOCKSHIFT, 186 .zo_mirrors = 2, 187 .zo_raidz = 4, 188 .zo_raidz_parity = 1, 189 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */ 190 .zo_datasets = 7, 191 .zo_threads = 23, 192 .zo_passtime = 60, /* 60 seconds */ 193 .zo_killrate = 70, /* 70% kill rate */ 194 .zo_verbose = 0, 195 .zo_mmp_test = 0, 196 .zo_init = 1, 197 .zo_time = 300, /* 5 minutes */ 198 .zo_maxloops = 50, /* max loops during spa_freeze() */ 199 .zo_metaslab_force_ganging = 32 << 10, 200 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND, 201 }; 202 203 extern uint64_t metaslab_force_ganging; 204 extern uint64_t metaslab_df_alloc_threshold; 205 extern uint64_t zfs_deadman_synctime_ms; 206 extern int metaslab_preload_limit; 207 extern boolean_t zfs_compressed_arc_enabled; 208 extern boolean_t zfs_abd_scatter_enabled; 209 extern int dmu_object_alloc_chunk_shift; 210 extern boolean_t zfs_force_some_double_word_sm_entries; 211 extern unsigned long zfs_reconstruct_indirect_damage_fraction; 212 213 static ztest_shared_opts_t *ztest_shared_opts; 214 static ztest_shared_opts_t ztest_opts; 215 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345"; 216 217 typedef struct ztest_shared_ds { 218 uint64_t zd_seq; 219 } ztest_shared_ds_t; 220 221 static ztest_shared_ds_t *ztest_shared_ds; 222 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 223 224 #define BT_MAGIC 0x123456789abcdefULL 225 #define MAXFAULTS() \ 226 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 227 228 enum ztest_io_type { 229 ZTEST_IO_WRITE_TAG, 230 ZTEST_IO_WRITE_PATTERN, 231 ZTEST_IO_WRITE_ZEROES, 232 ZTEST_IO_TRUNCATE, 233 ZTEST_IO_SETATTR, 234 ZTEST_IO_REWRITE, 235 ZTEST_IO_TYPES 236 }; 237 238 typedef struct ztest_block_tag { 239 uint64_t bt_magic; 240 uint64_t bt_objset; 241 uint64_t bt_object; 242 uint64_t bt_dnodesize; 243 uint64_t bt_offset; 244 uint64_t bt_gen; 245 uint64_t bt_txg; 246 uint64_t bt_crtxg; 247 } ztest_block_tag_t; 248 249 typedef struct bufwad { 250 uint64_t bw_index; 251 uint64_t bw_txg; 252 uint64_t bw_data; 253 } bufwad_t; 254 255 /* 256 * It would be better to use a rangelock_t per object. Unfortunately 257 * the rangelock_t is not a drop-in replacement for rl_t, because we 258 * still need to map from object ID to rangelock_t. 259 */ 260 typedef enum { 261 RL_READER, 262 RL_WRITER, 263 RL_APPEND 264 } rl_type_t; 265 266 typedef struct rll { 267 void *rll_writer; 268 int rll_readers; 269 kmutex_t rll_lock; 270 kcondvar_t rll_cv; 271 } rll_t; 272 273 typedef struct rl { 274 uint64_t rl_object; 275 uint64_t rl_offset; 276 uint64_t rl_size; 277 rll_t *rl_lock; 278 } rl_t; 279 280 #define ZTEST_RANGE_LOCKS 64 281 #define ZTEST_OBJECT_LOCKS 64 282 283 /* 284 * Object descriptor. Used as a template for object lookup/create/remove. 285 */ 286 typedef struct ztest_od { 287 uint64_t od_dir; 288 uint64_t od_object; 289 dmu_object_type_t od_type; 290 dmu_object_type_t od_crtype; 291 uint64_t od_blocksize; 292 uint64_t od_crblocksize; 293 uint64_t od_crdnodesize; 294 uint64_t od_gen; 295 uint64_t od_crgen; 296 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 297 } ztest_od_t; 298 299 /* 300 * Per-dataset state. 301 */ 302 typedef struct ztest_ds { 303 ztest_shared_ds_t *zd_shared; 304 objset_t *zd_os; 305 krwlock_t zd_zilog_lock; 306 zilog_t *zd_zilog; 307 ztest_od_t *zd_od; /* debugging aid */ 308 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 309 kmutex_t zd_dirobj_lock; 310 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 311 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 312 } ztest_ds_t; 313 314 /* 315 * Per-iteration state. 316 */ 317 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 318 319 typedef struct ztest_info { 320 ztest_func_t *zi_func; /* test function */ 321 uint64_t zi_iters; /* iterations per execution */ 322 uint64_t *zi_interval; /* execute every <interval> seconds */ 323 } ztest_info_t; 324 325 typedef struct ztest_shared_callstate { 326 uint64_t zc_count; /* per-pass count */ 327 uint64_t zc_time; /* per-pass time */ 328 uint64_t zc_next; /* next time to call this function */ 329 } ztest_shared_callstate_t; 330 331 static ztest_shared_callstate_t *ztest_shared_callstate; 332 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 333 334 /* 335 * Note: these aren't static because we want dladdr() to work. 336 */ 337 ztest_func_t ztest_dmu_read_write; 338 ztest_func_t ztest_dmu_write_parallel; 339 ztest_func_t ztest_dmu_object_alloc_free; 340 ztest_func_t ztest_dmu_object_next_chunk; 341 ztest_func_t ztest_dmu_commit_callbacks; 342 ztest_func_t ztest_zap; 343 ztest_func_t ztest_zap_parallel; 344 ztest_func_t ztest_zil_commit; 345 ztest_func_t ztest_zil_remount; 346 ztest_func_t ztest_dmu_read_write_zcopy; 347 ztest_func_t ztest_dmu_objset_create_destroy; 348 ztest_func_t ztest_dmu_prealloc; 349 ztest_func_t ztest_fzap; 350 ztest_func_t ztest_dmu_snapshot_create_destroy; 351 ztest_func_t ztest_dsl_prop_get_set; 352 ztest_func_t ztest_spa_prop_get_set; 353 ztest_func_t ztest_spa_create_destroy; 354 ztest_func_t ztest_fault_inject; 355 ztest_func_t ztest_ddt_repair; 356 ztest_func_t ztest_dmu_snapshot_hold; 357 ztest_func_t ztest_mmp_enable_disable; 358 ztest_func_t ztest_scrub; 359 ztest_func_t ztest_dsl_dataset_promote_busy; 360 ztest_func_t ztest_vdev_attach_detach; 361 ztest_func_t ztest_vdev_LUN_growth; 362 ztest_func_t ztest_vdev_add_remove; 363 ztest_func_t ztest_vdev_class_add; 364 ztest_func_t ztest_vdev_aux_add_remove; 365 ztest_func_t ztest_split_pool; 366 ztest_func_t ztest_reguid; 367 ztest_func_t ztest_spa_upgrade; 368 ztest_func_t ztest_device_removal; 369 ztest_func_t ztest_remap_blocks; 370 ztest_func_t ztest_spa_checkpoint_create_discard; 371 ztest_func_t ztest_initialize; 372 ztest_func_t ztest_verify_dnode_bt; 373 374 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 375 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 376 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 377 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 378 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 379 380 ztest_info_t ztest_info[] = { 381 { ztest_dmu_read_write, 1, &zopt_always }, 382 { ztest_dmu_write_parallel, 10, &zopt_always }, 383 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 384 { ztest_dmu_object_next_chunk, 1, &zopt_sometimes }, 385 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 386 { ztest_zap, 30, &zopt_always }, 387 { ztest_zap_parallel, 100, &zopt_always }, 388 { ztest_split_pool, 1, &zopt_always }, 389 { ztest_zil_commit, 1, &zopt_incessant }, 390 { ztest_zil_remount, 1, &zopt_sometimes }, 391 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 392 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 393 { ztest_dsl_prop_get_set, 1, &zopt_often }, 394 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 395 #if 0 396 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 397 #endif 398 { ztest_fzap, 1, &zopt_sometimes }, 399 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 400 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 401 { ztest_fault_inject, 1, &zopt_incessant }, 402 { ztest_ddt_repair, 1, &zopt_sometimes }, 403 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 404 { ztest_mmp_enable_disable, 1, &zopt_sometimes }, 405 { ztest_reguid, 1, &zopt_rarely }, 406 { ztest_scrub, 1, &zopt_often }, 407 { ztest_spa_upgrade, 1, &zopt_rarely }, 408 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 409 { ztest_vdev_attach_detach, 1, &zopt_incessant }, 410 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 411 { ztest_vdev_add_remove, 1, 412 &ztest_opts.zo_vdevtime }, 413 { ztest_vdev_class_add, 1, 414 &ztest_opts.zo_vdevtime }, 415 { ztest_vdev_aux_add_remove, 1, 416 &ztest_opts.zo_vdevtime }, 417 { ztest_device_removal, 1, &zopt_sometimes }, 418 { ztest_remap_blocks, 1, &zopt_sometimes }, 419 { ztest_spa_checkpoint_create_discard, 1, &zopt_rarely }, 420 { ztest_initialize, 1, &zopt_sometimes }, 421 { ztest_verify_dnode_bt, 1, &zopt_sometimes } 422 }; 423 424 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 425 426 /* 427 * The following struct is used to hold a list of uncalled commit callbacks. 428 * The callbacks are ordered by txg number. 429 */ 430 typedef struct ztest_cb_list { 431 kmutex_t zcl_callbacks_lock; 432 list_t zcl_callbacks; 433 } ztest_cb_list_t; 434 435 /* 436 * Stuff we need to share writably between parent and child. 437 */ 438 typedef struct ztest_shared { 439 boolean_t zs_do_init; 440 hrtime_t zs_proc_start; 441 hrtime_t zs_proc_stop; 442 hrtime_t zs_thread_start; 443 hrtime_t zs_thread_stop; 444 hrtime_t zs_thread_kill; 445 uint64_t zs_enospc_count; 446 uint64_t zs_vdev_next_leaf; 447 uint64_t zs_vdev_aux; 448 uint64_t zs_alloc; 449 uint64_t zs_space; 450 uint64_t zs_splits; 451 uint64_t zs_mirrors; 452 uint64_t zs_metaslab_sz; 453 uint64_t zs_metaslab_df_alloc_threshold; 454 uint64_t zs_guid; 455 } ztest_shared_t; 456 457 #define ID_PARALLEL -1ULL 458 459 static char ztest_dev_template[] = "%s/%s.%llua"; 460 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 461 ztest_shared_t *ztest_shared; 462 463 static spa_t *ztest_spa = NULL; 464 static ztest_ds_t *ztest_ds; 465 466 static kmutex_t ztest_vdev_lock; 467 static boolean_t ztest_device_removal_active = B_FALSE; 468 static kmutex_t ztest_checkpoint_lock; 469 470 /* 471 * The ztest_name_lock protects the pool and dataset namespace used by 472 * the individual tests. To modify the namespace, consumers must grab 473 * this lock as writer. Grabbing the lock as reader will ensure that the 474 * namespace does not change while the lock is held. 475 */ 476 static krwlock_t ztest_name_lock; 477 478 static boolean_t ztest_dump_core = B_TRUE; 479 static boolean_t ztest_exiting; 480 481 /* Global commit callback list */ 482 static ztest_cb_list_t zcl; 483 484 enum ztest_object { 485 ZTEST_META_DNODE = 0, 486 ZTEST_DIROBJ, 487 ZTEST_OBJECTS 488 }; 489 490 static void usage(boolean_t) __NORETURN; 491 492 /* 493 * These libumem hooks provide a reasonable set of defaults for the allocator's 494 * debugging facilities. 495 */ 496 const char * 497 _umem_debug_init() 498 { 499 return ("default,verbose"); /* $UMEM_DEBUG setting */ 500 } 501 502 const char * 503 _umem_logging_init(void) 504 { 505 return ("fail,contents"); /* $UMEM_LOGGING setting */ 506 } 507 508 #define FATAL_MSG_SZ 1024 509 510 char *fatal_msg; 511 512 static void 513 fatal(int do_perror, char *message, ...) 514 { 515 va_list args; 516 int save_errno = errno; 517 char buf[FATAL_MSG_SZ]; 518 519 (void) fflush(stdout); 520 521 va_start(args, message); 522 (void) sprintf(buf, "ztest: "); 523 /* LINTED */ 524 (void) vsprintf(buf + strlen(buf), message, args); 525 va_end(args); 526 if (do_perror) { 527 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 528 ": %s", strerror(save_errno)); 529 } 530 (void) fprintf(stderr, "%s\n", buf); 531 fatal_msg = buf; /* to ease debugging */ 532 if (ztest_dump_core) 533 abort(); 534 exit(3); 535 } 536 537 static int 538 str2shift(const char *buf) 539 { 540 const char *ends = "BKMGTPEZ"; 541 int i; 542 543 if (buf[0] == '\0') 544 return (0); 545 for (i = 0; i < strlen(ends); i++) { 546 if (toupper(buf[0]) == ends[i]) 547 break; 548 } 549 if (i == strlen(ends)) { 550 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 551 buf); 552 usage(B_FALSE); 553 } 554 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 555 return (10*i); 556 } 557 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 558 usage(B_FALSE); 559 /* NOTREACHED */ 560 } 561 562 static uint64_t 563 nicenumtoull(const char *buf) 564 { 565 char *end; 566 uint64_t val; 567 568 val = strtoull(buf, &end, 0); 569 if (end == buf) { 570 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 571 usage(B_FALSE); 572 } else if (end[0] == '.') { 573 double fval = strtod(buf, &end); 574 fval *= pow(2, str2shift(end)); 575 if (fval > UINT64_MAX) { 576 (void) fprintf(stderr, "ztest: value too large: %s\n", 577 buf); 578 usage(B_FALSE); 579 } 580 val = (uint64_t)fval; 581 } else { 582 int shift = str2shift(end); 583 if (shift >= 64 || (val << shift) >> shift != val) { 584 (void) fprintf(stderr, "ztest: value too large: %s\n", 585 buf); 586 usage(B_FALSE); 587 } 588 val <<= shift; 589 } 590 return (val); 591 } 592 593 static void 594 usage(boolean_t requested) 595 { 596 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 597 598 char nice_vdev_size[NN_NUMBUF_SZ]; 599 char nice_force_ganging[NN_NUMBUF_SZ]; 600 FILE *fp = requested ? stdout : stderr; 601 602 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size)); 603 nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging, 604 sizeof (nice_force_ganging)); 605 606 (void) fprintf(fp, "Usage: %s\n" 607 "\t[-v vdevs (default: %llu)]\n" 608 "\t[-s size_of_each_vdev (default: %s)]\n" 609 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 610 "\t[-m mirror_copies (default: %d)]\n" 611 "\t[-r raidz_disks (default: %d)]\n" 612 "\t[-R raidz_parity (default: %d)]\n" 613 "\t[-d datasets (default: %d)]\n" 614 "\t[-t threads (default: %d)]\n" 615 "\t[-g gang_block_threshold (default: %s)]\n" 616 "\t[-i init_count (default: %d)] initialize pool i times\n" 617 "\t[-k kill_percentage (default: %llu%%)]\n" 618 "\t[-p pool_name (default: %s)]\n" 619 "\t[-f dir (default: %s)] file directory for vdev files\n" 620 "\t[-M] Multi-host simulate pool imported on remote host\n" 621 "\t[-V] verbose (use multiple times for ever more blather)\n" 622 "\t[-E] use existing pool instead of creating new one\n" 623 "\t[-T time (default: %llu sec)] total run time\n" 624 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 625 "\t[-P passtime (default: %llu sec)] time per pass\n" 626 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 627 "\t[-C vdev class state (default: random)] special=on|off|random\n" 628 "\t[-o variable=value] ... set global variable to an unsigned\n" 629 "\t 32-bit integer value\n" 630 "\t[-h] (print help)\n" 631 "", 632 zo->zo_pool, 633 (u_longlong_t)zo->zo_vdevs, /* -v */ 634 nice_vdev_size, /* -s */ 635 zo->zo_ashift, /* -a */ 636 zo->zo_mirrors, /* -m */ 637 zo->zo_raidz, /* -r */ 638 zo->zo_raidz_parity, /* -R */ 639 zo->zo_datasets, /* -d */ 640 zo->zo_threads, /* -t */ 641 nice_force_ganging, /* -g */ 642 zo->zo_init, /* -i */ 643 (u_longlong_t)zo->zo_killrate, /* -k */ 644 zo->zo_pool, /* -p */ 645 zo->zo_dir, /* -f */ 646 (u_longlong_t)zo->zo_time, /* -T */ 647 (u_longlong_t)zo->zo_maxloops, /* -F */ 648 (u_longlong_t)zo->zo_passtime); 649 exit(requested ? 0 : 1); 650 } 651 652 653 static void 654 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo) 655 { 656 char name[32]; 657 char *value; 658 int state = ZTEST_VDEV_CLASS_RND; 659 660 (void) strlcpy(name, input, sizeof (name)); 661 662 value = strchr(name, '='); 663 if (value == NULL) { 664 (void) fprintf(stderr, "missing value in property=value " 665 "'-C' argument (%s)\n", input); 666 usage(B_FALSE); 667 } 668 *(value) = '\0'; 669 value++; 670 671 if (strcmp(value, "on") == 0) { 672 state = ZTEST_VDEV_CLASS_ON; 673 } else if (strcmp(value, "off") == 0) { 674 state = ZTEST_VDEV_CLASS_OFF; 675 } else if (strcmp(value, "random") == 0) { 676 state = ZTEST_VDEV_CLASS_RND; 677 } else { 678 (void) fprintf(stderr, "invalid property value '%s'\n", value); 679 usage(B_FALSE); 680 } 681 682 if (strcmp(name, "special") == 0) { 683 zo->zo_special_vdevs = state; 684 } else { 685 (void) fprintf(stderr, "invalid property name '%s'\n", name); 686 usage(B_FALSE); 687 } 688 if (zo->zo_verbose >= 3) 689 (void) printf("%s vdev state is '%s'\n", name, value); 690 } 691 692 static void 693 process_options(int argc, char **argv) 694 { 695 char *path; 696 ztest_shared_opts_t *zo = &ztest_opts; 697 698 int opt; 699 uint64_t value; 700 char altdir[MAXNAMELEN] = { 0 }; 701 702 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 703 704 while ((opt = getopt(argc, argv, 705 "v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:")) != EOF) { 706 value = 0; 707 switch (opt) { 708 case 'v': 709 case 's': 710 case 'a': 711 case 'm': 712 case 'r': 713 case 'R': 714 case 'd': 715 case 't': 716 case 'g': 717 case 'i': 718 case 'k': 719 case 'T': 720 case 'P': 721 case 'F': 722 value = nicenumtoull(optarg); 723 } 724 switch (opt) { 725 case 'v': 726 zo->zo_vdevs = value; 727 break; 728 case 's': 729 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 730 break; 731 case 'a': 732 zo->zo_ashift = value; 733 break; 734 case 'm': 735 zo->zo_mirrors = value; 736 break; 737 case 'r': 738 zo->zo_raidz = MAX(1, value); 739 break; 740 case 'R': 741 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 742 break; 743 case 'd': 744 zo->zo_datasets = MAX(1, value); 745 break; 746 case 't': 747 zo->zo_threads = MAX(1, value); 748 break; 749 case 'g': 750 zo->zo_metaslab_force_ganging = 751 MAX(SPA_MINBLOCKSIZE << 1, value); 752 break; 753 case 'i': 754 zo->zo_init = value; 755 break; 756 case 'k': 757 zo->zo_killrate = value; 758 break; 759 case 'p': 760 (void) strlcpy(zo->zo_pool, optarg, 761 sizeof (zo->zo_pool)); 762 break; 763 case 'f': 764 path = realpath(optarg, NULL); 765 if (path == NULL) { 766 (void) fprintf(stderr, "error: %s: %s\n", 767 optarg, strerror(errno)); 768 usage(B_FALSE); 769 } else { 770 (void) strlcpy(zo->zo_dir, path, 771 sizeof (zo->zo_dir)); 772 } 773 break; 774 case 'M': 775 zo->zo_mmp_test = 1; 776 break; 777 case 'V': 778 zo->zo_verbose++; 779 break; 780 case 'E': 781 zo->zo_init = 0; 782 break; 783 case 'T': 784 zo->zo_time = value; 785 break; 786 case 'P': 787 zo->zo_passtime = MAX(1, value); 788 break; 789 case 'F': 790 zo->zo_maxloops = MAX(1, value); 791 break; 792 case 'B': 793 (void) strlcpy(altdir, optarg, sizeof (altdir)); 794 break; 795 case 'C': 796 ztest_parse_name_value(optarg, zo); 797 break; 798 case 'o': 799 if (set_global_var(optarg) != 0) 800 usage(B_FALSE); 801 break; 802 case 'h': 803 usage(B_TRUE); 804 break; 805 case '?': 806 default: 807 usage(B_FALSE); 808 break; 809 } 810 } 811 812 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 813 814 zo->zo_vdevtime = 815 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 816 UINT64_MAX >> 2); 817 818 if (strlen(altdir) > 0) { 819 char *cmd; 820 char *realaltdir; 821 char *bin; 822 char *ztest; 823 char *isa; 824 int isalen; 825 826 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 827 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 828 829 VERIFY(NULL != realpath(getexecname(), cmd)); 830 if (0 != access(altdir, F_OK)) { 831 ztest_dump_core = B_FALSE; 832 fatal(B_TRUE, "invalid alternate ztest path: %s", 833 altdir); 834 } 835 VERIFY(NULL != realpath(altdir, realaltdir)); 836 837 /* 838 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 839 * We want to extract <isa> to determine if we should use 840 * 32 or 64 bit binaries. 841 */ 842 bin = strstr(cmd, "/usr/bin/"); 843 ztest = strstr(bin, "/ztest"); 844 isa = bin + 9; 845 isalen = ztest - isa; 846 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 847 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 848 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 849 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 850 851 if (0 != access(zo->zo_alt_ztest, X_OK)) { 852 ztest_dump_core = B_FALSE; 853 fatal(B_TRUE, "invalid alternate ztest: %s", 854 zo->zo_alt_ztest); 855 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 856 ztest_dump_core = B_FALSE; 857 fatal(B_TRUE, "invalid alternate lib directory %s", 858 zo->zo_alt_libpath); 859 } 860 861 umem_free(cmd, MAXPATHLEN); 862 umem_free(realaltdir, MAXPATHLEN); 863 } 864 } 865 866 static void 867 ztest_kill(ztest_shared_t *zs) 868 { 869 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 870 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 871 872 /* 873 * Before we kill off ztest, make sure that the config is updated. 874 * See comment above spa_write_cachefile(). 875 */ 876 mutex_enter(&spa_namespace_lock); 877 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE); 878 mutex_exit(&spa_namespace_lock); 879 880 zfs_dbgmsg_print(FTAG); 881 (void) kill(getpid(), SIGKILL); 882 } 883 884 static uint64_t 885 ztest_random(uint64_t range) 886 { 887 uint64_t r; 888 889 ASSERT3S(ztest_fd_rand, >=, 0); 890 891 if (range == 0) 892 return (0); 893 894 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 895 fatal(1, "short read from /dev/urandom"); 896 897 return (r % range); 898 } 899 900 /* ARGSUSED */ 901 static void 902 ztest_record_enospc(const char *s) 903 { 904 ztest_shared->zs_enospc_count++; 905 } 906 907 static uint64_t 908 ztest_get_ashift(void) 909 { 910 if (ztest_opts.zo_ashift == 0) 911 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 912 return (ztest_opts.zo_ashift); 913 } 914 915 static nvlist_t * 916 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 917 { 918 char pathbuf[MAXPATHLEN]; 919 uint64_t vdev; 920 nvlist_t *file; 921 922 if (ashift == 0) 923 ashift = ztest_get_ashift(); 924 925 if (path == NULL) { 926 path = pathbuf; 927 928 if (aux != NULL) { 929 vdev = ztest_shared->zs_vdev_aux; 930 (void) snprintf(path, sizeof (pathbuf), 931 ztest_aux_template, ztest_opts.zo_dir, 932 pool == NULL ? ztest_opts.zo_pool : pool, 933 aux, vdev); 934 } else { 935 vdev = ztest_shared->zs_vdev_next_leaf++; 936 (void) snprintf(path, sizeof (pathbuf), 937 ztest_dev_template, ztest_opts.zo_dir, 938 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 939 } 940 } 941 942 if (size != 0) { 943 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 944 if (fd == -1) 945 fatal(1, "can't open %s", path); 946 if (ftruncate(fd, size) != 0) 947 fatal(1, "can't ftruncate %s", path); 948 (void) close(fd); 949 } 950 951 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 952 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 953 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 954 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 955 956 return (file); 957 } 958 959 static nvlist_t * 960 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 961 uint64_t ashift, int r) 962 { 963 nvlist_t *raidz, **child; 964 int c; 965 966 if (r < 2) 967 return (make_vdev_file(path, aux, pool, size, ashift)); 968 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 969 970 for (c = 0; c < r; c++) 971 child[c] = make_vdev_file(path, aux, pool, size, ashift); 972 973 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 974 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 975 VDEV_TYPE_RAIDZ) == 0); 976 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 977 ztest_opts.zo_raidz_parity) == 0); 978 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 979 child, r) == 0); 980 981 for (c = 0; c < r; c++) 982 nvlist_free(child[c]); 983 984 umem_free(child, r * sizeof (nvlist_t *)); 985 986 return (raidz); 987 } 988 989 static nvlist_t * 990 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 991 uint64_t ashift, int r, int m) 992 { 993 nvlist_t *mirror, **child; 994 int c; 995 996 if (m < 1) 997 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 998 999 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 1000 1001 for (c = 0; c < m; c++) 1002 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 1003 1004 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 1005 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 1006 VDEV_TYPE_MIRROR) == 0); 1007 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 1008 child, m) == 0); 1009 1010 for (c = 0; c < m; c++) 1011 nvlist_free(child[c]); 1012 1013 umem_free(child, m * sizeof (nvlist_t *)); 1014 1015 return (mirror); 1016 } 1017 1018 static nvlist_t * 1019 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 1020 const char *class, int r, int m, int t) 1021 { 1022 nvlist_t *root, **child; 1023 int c; 1024 boolean_t log; 1025 1026 ASSERT(t > 0); 1027 1028 log = (class != NULL && strcmp(class, "log") == 0); 1029 1030 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 1031 1032 for (c = 0; c < t; c++) { 1033 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 1034 r, m); 1035 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 1036 log) == 0); 1037 1038 if (class != NULL && class[0] != '\0') { 1039 ASSERT(m > 1 || log); /* expecting a mirror */ 1040 VERIFY(nvlist_add_string(child[c], 1041 ZPOOL_CONFIG_ALLOCATION_BIAS, class) == 0); 1042 } 1043 } 1044 1045 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 1046 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 1047 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 1048 child, t) == 0); 1049 1050 for (c = 0; c < t; c++) 1051 nvlist_free(child[c]); 1052 1053 umem_free(child, t * sizeof (nvlist_t *)); 1054 1055 return (root); 1056 } 1057 1058 /* 1059 * Find a random spa version. Returns back a random spa version in the 1060 * range [initial_version, SPA_VERSION_FEATURES]. 1061 */ 1062 static uint64_t 1063 ztest_random_spa_version(uint64_t initial_version) 1064 { 1065 uint64_t version = initial_version; 1066 1067 if (version <= SPA_VERSION_BEFORE_FEATURES) { 1068 version = version + 1069 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 1070 } 1071 1072 if (version > SPA_VERSION_BEFORE_FEATURES) 1073 version = SPA_VERSION_FEATURES; 1074 1075 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 1076 return (version); 1077 } 1078 1079 static int 1080 ztest_random_blocksize(void) 1081 { 1082 uint64_t block_shift; 1083 1084 ASSERT(ztest_spa->spa_max_ashift != 0); 1085 1086 /* 1087 * Choose a block size >= the ashift. 1088 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 1089 */ 1090 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 1091 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 1092 maxbs = 20; 1093 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 1094 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 1095 } 1096 1097 static int 1098 ztest_random_dnodesize(void) 1099 { 1100 int slots; 1101 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT; 1102 1103 if (max_slots == DNODE_MIN_SLOTS) 1104 return (DNODE_MIN_SIZE); 1105 1106 /* 1107 * Weight the random distribution more heavily toward smaller 1108 * dnode sizes since that is more likely to reflect real-world 1109 * usage. 1110 */ 1111 ASSERT3U(max_slots, >, 4); 1112 switch (ztest_random(10)) { 1113 case 0: 1114 slots = 5 + ztest_random(max_slots - 4); 1115 break; 1116 case 1 ... 4: 1117 slots = 2 + ztest_random(3); 1118 break; 1119 default: 1120 slots = 1; 1121 break; 1122 } 1123 1124 return (slots << DNODE_SHIFT); 1125 } 1126 1127 static int 1128 ztest_random_ibshift(void) 1129 { 1130 return (DN_MIN_INDBLKSHIFT + 1131 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1132 } 1133 1134 static uint64_t 1135 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1136 { 1137 uint64_t top; 1138 vdev_t *rvd = spa->spa_root_vdev; 1139 vdev_t *tvd; 1140 1141 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1142 1143 do { 1144 top = ztest_random(rvd->vdev_children); 1145 tvd = rvd->vdev_child[top]; 1146 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || 1147 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1148 1149 return (top); 1150 } 1151 1152 static uint64_t 1153 ztest_random_dsl_prop(zfs_prop_t prop) 1154 { 1155 uint64_t value; 1156 1157 do { 1158 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1159 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1160 1161 return (value); 1162 } 1163 1164 static int 1165 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1166 boolean_t inherit) 1167 { 1168 const char *propname = zfs_prop_to_name(prop); 1169 const char *valname; 1170 char setpoint[MAXPATHLEN]; 1171 uint64_t curval; 1172 int error; 1173 1174 error = dsl_prop_set_int(osname, propname, 1175 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1176 1177 if (error == ENOSPC) { 1178 ztest_record_enospc(FTAG); 1179 return (error); 1180 } 1181 ASSERT0(error); 1182 1183 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1184 1185 if (ztest_opts.zo_verbose >= 6) { 1186 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1187 (void) printf("%s %s = %s at '%s'\n", 1188 osname, propname, valname, setpoint); 1189 } 1190 1191 return (error); 1192 } 1193 1194 static int 1195 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1196 { 1197 spa_t *spa = ztest_spa; 1198 nvlist_t *props = NULL; 1199 int error; 1200 1201 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1202 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1203 1204 error = spa_prop_set(spa, props); 1205 1206 nvlist_free(props); 1207 1208 if (error == ENOSPC) { 1209 ztest_record_enospc(FTAG); 1210 return (error); 1211 } 1212 ASSERT0(error); 1213 1214 return (error); 1215 } 1216 1217 static int 1218 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type, 1219 boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp) 1220 { 1221 int err; 1222 1223 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); 1224 if (decrypt && err == EACCES) { 1225 char ddname[ZFS_MAX_DATASET_NAME_LEN]; 1226 dsl_crypto_params_t *dcp; 1227 nvlist_t *crypto_args = fnvlist_alloc(); 1228 char *cp = NULL; 1229 1230 /* spa_keystore_load_wkey() expects a dsl dir name */ 1231 (void) strcpy(ddname, name); 1232 cp = strchr(ddname, '@'); 1233 if (cp != NULL) 1234 *cp = '\0'; 1235 1236 fnvlist_add_uint8_array(crypto_args, "wkeydata", 1237 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); 1238 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, 1239 crypto_args, &dcp)); 1240 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE); 1241 dsl_crypto_params_free(dcp, B_FALSE); 1242 fnvlist_free(crypto_args); 1243 1244 if (err != 0) 1245 return (err); 1246 1247 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); 1248 } 1249 1250 return (err); 1251 } 1252 1253 static void 1254 ztest_rll_init(rll_t *rll) 1255 { 1256 rll->rll_writer = NULL; 1257 rll->rll_readers = 0; 1258 mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL); 1259 cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL); 1260 } 1261 1262 static void 1263 ztest_rll_destroy(rll_t *rll) 1264 { 1265 ASSERT(rll->rll_writer == NULL); 1266 ASSERT(rll->rll_readers == 0); 1267 mutex_destroy(&rll->rll_lock); 1268 cv_destroy(&rll->rll_cv); 1269 } 1270 1271 static void 1272 ztest_rll_lock(rll_t *rll, rl_type_t type) 1273 { 1274 mutex_enter(&rll->rll_lock); 1275 1276 if (type == RL_READER) { 1277 while (rll->rll_writer != NULL) 1278 cv_wait(&rll->rll_cv, &rll->rll_lock); 1279 rll->rll_readers++; 1280 } else { 1281 while (rll->rll_writer != NULL || rll->rll_readers) 1282 cv_wait(&rll->rll_cv, &rll->rll_lock); 1283 rll->rll_writer = curthread; 1284 } 1285 1286 mutex_exit(&rll->rll_lock); 1287 } 1288 1289 static void 1290 ztest_rll_unlock(rll_t *rll) 1291 { 1292 mutex_enter(&rll->rll_lock); 1293 1294 if (rll->rll_writer) { 1295 ASSERT(rll->rll_readers == 0); 1296 rll->rll_writer = NULL; 1297 } else { 1298 ASSERT(rll->rll_readers != 0); 1299 ASSERT(rll->rll_writer == NULL); 1300 rll->rll_readers--; 1301 } 1302 1303 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1304 cv_broadcast(&rll->rll_cv); 1305 1306 mutex_exit(&rll->rll_lock); 1307 } 1308 1309 static void 1310 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1311 { 1312 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1313 1314 ztest_rll_lock(rll, type); 1315 } 1316 1317 static void 1318 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1319 { 1320 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1321 1322 ztest_rll_unlock(rll); 1323 } 1324 1325 static rl_t * 1326 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1327 uint64_t size, rl_type_t type) 1328 { 1329 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1330 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1331 rl_t *rl; 1332 1333 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1334 rl->rl_object = object; 1335 rl->rl_offset = offset; 1336 rl->rl_size = size; 1337 rl->rl_lock = rll; 1338 1339 ztest_rll_lock(rll, type); 1340 1341 return (rl); 1342 } 1343 1344 static void 1345 ztest_range_unlock(rl_t *rl) 1346 { 1347 rll_t *rll = rl->rl_lock; 1348 1349 ztest_rll_unlock(rll); 1350 1351 umem_free(rl, sizeof (*rl)); 1352 } 1353 1354 static void 1355 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1356 { 1357 zd->zd_os = os; 1358 zd->zd_zilog = dmu_objset_zil(os); 1359 zd->zd_shared = szd; 1360 dmu_objset_name(os, zd->zd_name); 1361 1362 if (zd->zd_shared != NULL) 1363 zd->zd_shared->zd_seq = 0; 1364 1365 rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL); 1366 mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL); 1367 1368 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1369 ztest_rll_init(&zd->zd_object_lock[l]); 1370 1371 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1372 ztest_rll_init(&zd->zd_range_lock[l]); 1373 } 1374 1375 static void 1376 ztest_zd_fini(ztest_ds_t *zd) 1377 { 1378 mutex_destroy(&zd->zd_dirobj_lock); 1379 1380 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1381 ztest_rll_destroy(&zd->zd_object_lock[l]); 1382 1383 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1384 ztest_rll_destroy(&zd->zd_range_lock[l]); 1385 } 1386 1387 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1388 1389 static uint64_t 1390 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1391 { 1392 uint64_t txg; 1393 int error; 1394 1395 /* 1396 * Attempt to assign tx to some transaction group. 1397 */ 1398 error = dmu_tx_assign(tx, txg_how); 1399 if (error) { 1400 if (error == ERESTART) { 1401 ASSERT(txg_how == TXG_NOWAIT); 1402 dmu_tx_wait(tx); 1403 } else { 1404 ASSERT3U(error, ==, ENOSPC); 1405 ztest_record_enospc(tag); 1406 } 1407 dmu_tx_abort(tx); 1408 return (0); 1409 } 1410 txg = dmu_tx_get_txg(tx); 1411 ASSERT(txg != 0); 1412 return (txg); 1413 } 1414 1415 static void 1416 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1417 { 1418 uint64_t *ip = buf; 1419 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1420 1421 while (ip < ip_end) 1422 *ip++ = value; 1423 } 1424 1425 static boolean_t 1426 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1427 { 1428 uint64_t *ip = buf; 1429 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1430 uint64_t diff = 0; 1431 1432 while (ip < ip_end) 1433 diff |= (value - *ip++); 1434 1435 return (diff == 0); 1436 } 1437 1438 static void 1439 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1440 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, 1441 uint64_t crtxg) 1442 { 1443 bt->bt_magic = BT_MAGIC; 1444 bt->bt_objset = dmu_objset_id(os); 1445 bt->bt_object = object; 1446 bt->bt_dnodesize = dnodesize; 1447 bt->bt_offset = offset; 1448 bt->bt_gen = gen; 1449 bt->bt_txg = txg; 1450 bt->bt_crtxg = crtxg; 1451 } 1452 1453 static void 1454 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1455 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, 1456 uint64_t crtxg) 1457 { 1458 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1459 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1460 ASSERT3U(bt->bt_object, ==, object); 1461 ASSERT3U(bt->bt_dnodesize, ==, dnodesize); 1462 ASSERT3U(bt->bt_offset, ==, offset); 1463 ASSERT3U(bt->bt_gen, <=, gen); 1464 ASSERT3U(bt->bt_txg, <=, txg); 1465 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1466 } 1467 1468 static ztest_block_tag_t * 1469 ztest_bt_bonus(dmu_buf_t *db) 1470 { 1471 dmu_object_info_t doi; 1472 ztest_block_tag_t *bt; 1473 1474 dmu_object_info_from_db(db, &doi); 1475 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1476 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1477 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1478 1479 return (bt); 1480 } 1481 1482 /* 1483 * Generate a token to fill up unused bonus buffer space. Try to make 1484 * it unique to the object, generation, and offset to verify that data 1485 * is not getting overwritten by data from other dnodes. 1486 */ 1487 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \ 1488 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset)) 1489 1490 /* 1491 * Fill up the unused bonus buffer region before the block tag with a 1492 * verifiable pattern. Filling the whole bonus area with non-zero data 1493 * helps ensure that all dnode traversal code properly skips the 1494 * interior regions of large dnodes. 1495 */ 1496 void 1497 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, 1498 objset_t *os, uint64_t gen) 1499 { 1500 uint64_t *bonusp; 1501 1502 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8)); 1503 1504 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { 1505 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), 1506 gen, bonusp - (uint64_t *)db->db_data); 1507 *bonusp = token; 1508 } 1509 } 1510 1511 /* 1512 * Verify that the unused area of a bonus buffer is filled with the 1513 * expected tokens. 1514 */ 1515 void 1516 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, 1517 objset_t *os, uint64_t gen) 1518 { 1519 uint64_t *bonusp; 1520 1521 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { 1522 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), 1523 gen, bonusp - (uint64_t *)db->db_data); 1524 VERIFY3U(*bonusp, ==, token); 1525 } 1526 } 1527 1528 /* 1529 * ZIL logging ops 1530 */ 1531 1532 #define lrz_type lr_mode 1533 #define lrz_blocksize lr_uid 1534 #define lrz_ibshift lr_gid 1535 #define lrz_bonustype lr_rdev 1536 #define lrz_dnodesize lr_crtime[1] 1537 1538 static void 1539 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1540 { 1541 char *name = (void *)(lr + 1); /* name follows lr */ 1542 size_t namesize = strlen(name) + 1; 1543 itx_t *itx; 1544 1545 if (zil_replaying(zd->zd_zilog, tx)) 1546 return; 1547 1548 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1549 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1550 sizeof (*lr) + namesize - sizeof (lr_t)); 1551 1552 zil_itx_assign(zd->zd_zilog, itx, tx); 1553 } 1554 1555 static void 1556 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1557 { 1558 char *name = (void *)(lr + 1); /* name follows lr */ 1559 size_t namesize = strlen(name) + 1; 1560 itx_t *itx; 1561 1562 if (zil_replaying(zd->zd_zilog, tx)) 1563 return; 1564 1565 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1566 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1567 sizeof (*lr) + namesize - sizeof (lr_t)); 1568 1569 itx->itx_oid = object; 1570 zil_itx_assign(zd->zd_zilog, itx, tx); 1571 } 1572 1573 static void 1574 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1575 { 1576 itx_t *itx; 1577 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1578 1579 if (zil_replaying(zd->zd_zilog, tx)) 1580 return; 1581 1582 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1583 write_state = WR_INDIRECT; 1584 1585 itx = zil_itx_create(TX_WRITE, 1586 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1587 1588 if (write_state == WR_COPIED && 1589 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1590 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1591 zil_itx_destroy(itx); 1592 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1593 write_state = WR_NEED_COPY; 1594 } 1595 itx->itx_private = zd; 1596 itx->itx_wr_state = write_state; 1597 itx->itx_sync = (ztest_random(8) == 0); 1598 1599 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1600 sizeof (*lr) - sizeof (lr_t)); 1601 1602 zil_itx_assign(zd->zd_zilog, itx, tx); 1603 } 1604 1605 static void 1606 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1607 { 1608 itx_t *itx; 1609 1610 if (zil_replaying(zd->zd_zilog, tx)) 1611 return; 1612 1613 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1614 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1615 sizeof (*lr) - sizeof (lr_t)); 1616 1617 itx->itx_sync = B_FALSE; 1618 zil_itx_assign(zd->zd_zilog, itx, tx); 1619 } 1620 1621 static void 1622 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1623 { 1624 itx_t *itx; 1625 1626 if (zil_replaying(zd->zd_zilog, tx)) 1627 return; 1628 1629 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1630 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1631 sizeof (*lr) - sizeof (lr_t)); 1632 1633 itx->itx_sync = B_FALSE; 1634 zil_itx_assign(zd->zd_zilog, itx, tx); 1635 } 1636 1637 /* 1638 * ZIL replay ops 1639 */ 1640 static int 1641 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) 1642 { 1643 ztest_ds_t *zd = arg1; 1644 lr_create_t *lr = arg2; 1645 char *name = (void *)(lr + 1); /* name follows lr */ 1646 objset_t *os = zd->zd_os; 1647 ztest_block_tag_t *bbt; 1648 dmu_buf_t *db; 1649 dmu_tx_t *tx; 1650 uint64_t txg; 1651 int error = 0; 1652 int bonuslen; 1653 1654 if (byteswap) 1655 byteswap_uint64_array(lr, sizeof (*lr)); 1656 1657 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1658 ASSERT(name[0] != '\0'); 1659 1660 tx = dmu_tx_create(os); 1661 1662 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1663 1664 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1665 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1666 } else { 1667 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1668 } 1669 1670 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1671 if (txg == 0) 1672 return (ENOSPC); 1673 1674 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1675 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize); 1676 1677 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1678 if (lr->lr_foid == 0) { 1679 lr->lr_foid = zap_create_dnsize(os, 1680 lr->lrz_type, lr->lrz_bonustype, 1681 bonuslen, lr->lrz_dnodesize, tx); 1682 } else { 1683 error = zap_create_claim_dnsize(os, lr->lr_foid, 1684 lr->lrz_type, lr->lrz_bonustype, 1685 bonuslen, lr->lrz_dnodesize, tx); 1686 } 1687 } else { 1688 if (lr->lr_foid == 0) { 1689 lr->lr_foid = dmu_object_alloc_dnsize(os, 1690 lr->lrz_type, 0, lr->lrz_bonustype, 1691 bonuslen, lr->lrz_dnodesize, tx); 1692 } else { 1693 error = dmu_object_claim_dnsize(os, lr->lr_foid, 1694 lr->lrz_type, 0, lr->lrz_bonustype, 1695 bonuslen, lr->lrz_dnodesize, tx); 1696 } 1697 } 1698 1699 if (error) { 1700 ASSERT3U(error, ==, EEXIST); 1701 ASSERT(zd->zd_zilog->zl_replay); 1702 dmu_tx_commit(tx); 1703 return (error); 1704 } 1705 1706 ASSERT(lr->lr_foid != 0); 1707 1708 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1709 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1710 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1711 1712 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1713 bbt = ztest_bt_bonus(db); 1714 dmu_buf_will_dirty(db, tx); 1715 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL, 1716 lr->lr_gen, txg, txg); 1717 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen); 1718 dmu_buf_rele(db, FTAG); 1719 1720 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1721 &lr->lr_foid, tx)); 1722 1723 (void) ztest_log_create(zd, tx, lr); 1724 1725 dmu_tx_commit(tx); 1726 1727 return (0); 1728 } 1729 1730 static int 1731 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) 1732 { 1733 ztest_ds_t *zd = arg1; 1734 lr_remove_t *lr = arg2; 1735 char *name = (void *)(lr + 1); /* name follows lr */ 1736 objset_t *os = zd->zd_os; 1737 dmu_object_info_t doi; 1738 dmu_tx_t *tx; 1739 uint64_t object, txg; 1740 1741 if (byteswap) 1742 byteswap_uint64_array(lr, sizeof (*lr)); 1743 1744 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1745 ASSERT(name[0] != '\0'); 1746 1747 VERIFY3U(0, ==, 1748 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1749 ASSERT(object != 0); 1750 1751 ztest_object_lock(zd, object, RL_WRITER); 1752 1753 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1754 1755 tx = dmu_tx_create(os); 1756 1757 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1758 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1759 1760 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1761 if (txg == 0) { 1762 ztest_object_unlock(zd, object); 1763 return (ENOSPC); 1764 } 1765 1766 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1767 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1768 } else { 1769 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1770 } 1771 1772 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1773 1774 (void) ztest_log_remove(zd, tx, lr, object); 1775 1776 dmu_tx_commit(tx); 1777 1778 ztest_object_unlock(zd, object); 1779 1780 return (0); 1781 } 1782 1783 static int 1784 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) 1785 { 1786 ztest_ds_t *zd = arg1; 1787 lr_write_t *lr = arg2; 1788 objset_t *os = zd->zd_os; 1789 void *data = lr + 1; /* data follows lr */ 1790 uint64_t offset, length; 1791 ztest_block_tag_t *bt = data; 1792 ztest_block_tag_t *bbt; 1793 uint64_t gen, txg, lrtxg, crtxg; 1794 dmu_object_info_t doi; 1795 dmu_tx_t *tx; 1796 dmu_buf_t *db; 1797 arc_buf_t *abuf = NULL; 1798 rl_t *rl; 1799 1800 if (byteswap) 1801 byteswap_uint64_array(lr, sizeof (*lr)); 1802 1803 offset = lr->lr_offset; 1804 length = lr->lr_length; 1805 1806 /* If it's a dmu_sync() block, write the whole block */ 1807 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1808 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1809 if (length < blocksize) { 1810 offset -= offset % blocksize; 1811 length = blocksize; 1812 } 1813 } 1814 1815 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1816 byteswap_uint64_array(bt, sizeof (*bt)); 1817 1818 if (bt->bt_magic != BT_MAGIC) 1819 bt = NULL; 1820 1821 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1822 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1823 1824 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1825 1826 dmu_object_info_from_db(db, &doi); 1827 1828 bbt = ztest_bt_bonus(db); 1829 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1830 gen = bbt->bt_gen; 1831 crtxg = bbt->bt_crtxg; 1832 lrtxg = lr->lr_common.lrc_txg; 1833 1834 tx = dmu_tx_create(os); 1835 1836 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1837 1838 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1839 P2PHASE(offset, length) == 0) 1840 abuf = dmu_request_arcbuf(db, length); 1841 1842 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1843 if (txg == 0) { 1844 if (abuf != NULL) 1845 dmu_return_arcbuf(abuf); 1846 dmu_buf_rele(db, FTAG); 1847 ztest_range_unlock(rl); 1848 ztest_object_unlock(zd, lr->lr_foid); 1849 return (ENOSPC); 1850 } 1851 1852 if (bt != NULL) { 1853 /* 1854 * Usually, verify the old data before writing new data -- 1855 * but not always, because we also want to verify correct 1856 * behavior when the data was not recently read into cache. 1857 */ 1858 ASSERT(offset % doi.doi_data_block_size == 0); 1859 if (ztest_random(4) != 0) { 1860 int prefetch = ztest_random(2) ? 1861 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1862 ztest_block_tag_t rbt; 1863 1864 VERIFY(dmu_read(os, lr->lr_foid, offset, 1865 sizeof (rbt), &rbt, prefetch) == 0); 1866 if (rbt.bt_magic == BT_MAGIC) { 1867 ztest_bt_verify(&rbt, os, lr->lr_foid, 0, 1868 offset, gen, txg, crtxg); 1869 } 1870 } 1871 1872 /* 1873 * Writes can appear to be newer than the bonus buffer because 1874 * the ztest_get_data() callback does a dmu_read() of the 1875 * open-context data, which may be different than the data 1876 * as it was when the write was generated. 1877 */ 1878 if (zd->zd_zilog->zl_replay) { 1879 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset, 1880 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1881 bt->bt_crtxg); 1882 } 1883 1884 /* 1885 * Set the bt's gen/txg to the bonus buffer's gen/txg 1886 * so that all of the usual ASSERTs will work. 1887 */ 1888 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg, 1889 crtxg); 1890 } 1891 1892 if (abuf == NULL) { 1893 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1894 } else { 1895 bcopy(data, abuf->b_data, length); 1896 dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx); 1897 } 1898 1899 (void) ztest_log_write(zd, tx, lr); 1900 1901 dmu_buf_rele(db, FTAG); 1902 1903 dmu_tx_commit(tx); 1904 1905 ztest_range_unlock(rl); 1906 ztest_object_unlock(zd, lr->lr_foid); 1907 1908 return (0); 1909 } 1910 1911 static int 1912 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 1913 { 1914 ztest_ds_t *zd = arg1; 1915 lr_truncate_t *lr = arg2; 1916 objset_t *os = zd->zd_os; 1917 dmu_tx_t *tx; 1918 uint64_t txg; 1919 rl_t *rl; 1920 1921 if (byteswap) 1922 byteswap_uint64_array(lr, sizeof (*lr)); 1923 1924 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1925 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1926 RL_WRITER); 1927 1928 tx = dmu_tx_create(os); 1929 1930 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1931 1932 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1933 if (txg == 0) { 1934 ztest_range_unlock(rl); 1935 ztest_object_unlock(zd, lr->lr_foid); 1936 return (ENOSPC); 1937 } 1938 1939 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1940 lr->lr_length, tx) == 0); 1941 1942 (void) ztest_log_truncate(zd, tx, lr); 1943 1944 dmu_tx_commit(tx); 1945 1946 ztest_range_unlock(rl); 1947 ztest_object_unlock(zd, lr->lr_foid); 1948 1949 return (0); 1950 } 1951 1952 static int 1953 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) 1954 { 1955 ztest_ds_t *zd = arg1; 1956 lr_setattr_t *lr = arg2; 1957 objset_t *os = zd->zd_os; 1958 dmu_tx_t *tx; 1959 dmu_buf_t *db; 1960 ztest_block_tag_t *bbt; 1961 uint64_t txg, lrtxg, crtxg, dnodesize; 1962 1963 if (byteswap) 1964 byteswap_uint64_array(lr, sizeof (*lr)); 1965 1966 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1967 1968 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1969 1970 tx = dmu_tx_create(os); 1971 dmu_tx_hold_bonus(tx, lr->lr_foid); 1972 1973 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1974 if (txg == 0) { 1975 dmu_buf_rele(db, FTAG); 1976 ztest_object_unlock(zd, lr->lr_foid); 1977 return (ENOSPC); 1978 } 1979 1980 bbt = ztest_bt_bonus(db); 1981 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1982 crtxg = bbt->bt_crtxg; 1983 lrtxg = lr->lr_common.lrc_txg; 1984 dnodesize = bbt->bt_dnodesize; 1985 1986 if (zd->zd_zilog->zl_replay) { 1987 ASSERT(lr->lr_size != 0); 1988 ASSERT(lr->lr_mode != 0); 1989 ASSERT(lrtxg != 0); 1990 } else { 1991 /* 1992 * Randomly change the size and increment the generation. 1993 */ 1994 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1995 sizeof (*bbt); 1996 lr->lr_mode = bbt->bt_gen + 1; 1997 ASSERT(lrtxg == 0); 1998 } 1999 2000 /* 2001 * Verify that the current bonus buffer is not newer than our txg. 2002 */ 2003 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, 2004 MAX(txg, lrtxg), crtxg); 2005 2006 dmu_buf_will_dirty(db, tx); 2007 2008 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 2009 ASSERT3U(lr->lr_size, <=, db->db_size); 2010 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 2011 bbt = ztest_bt_bonus(db); 2012 2013 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, 2014 txg, crtxg); 2015 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen); 2016 2017 dmu_buf_rele(db, FTAG); 2018 2019 (void) ztest_log_setattr(zd, tx, lr); 2020 2021 dmu_tx_commit(tx); 2022 2023 ztest_object_unlock(zd, lr->lr_foid); 2024 2025 return (0); 2026 } 2027 2028 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 2029 NULL, /* 0 no such transaction type */ 2030 ztest_replay_create, /* TX_CREATE */ 2031 NULL, /* TX_MKDIR */ 2032 NULL, /* TX_MKXATTR */ 2033 NULL, /* TX_SYMLINK */ 2034 ztest_replay_remove, /* TX_REMOVE */ 2035 NULL, /* TX_RMDIR */ 2036 NULL, /* TX_LINK */ 2037 NULL, /* TX_RENAME */ 2038 ztest_replay_write, /* TX_WRITE */ 2039 ztest_replay_truncate, /* TX_TRUNCATE */ 2040 ztest_replay_setattr, /* TX_SETATTR */ 2041 NULL, /* TX_ACL */ 2042 NULL, /* TX_CREATE_ACL */ 2043 NULL, /* TX_CREATE_ATTR */ 2044 NULL, /* TX_CREATE_ACL_ATTR */ 2045 NULL, /* TX_MKDIR_ACL */ 2046 NULL, /* TX_MKDIR_ATTR */ 2047 NULL, /* TX_MKDIR_ACL_ATTR */ 2048 NULL, /* TX_WRITE2 */ 2049 }; 2050 2051 /* 2052 * ZIL get_data callbacks 2053 */ 2054 2055 /* ARGSUSED */ 2056 static void 2057 ztest_get_done(zgd_t *zgd, int error) 2058 { 2059 ztest_ds_t *zd = zgd->zgd_private; 2060 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object; 2061 2062 if (zgd->zgd_db) 2063 dmu_buf_rele(zgd->zgd_db, zgd); 2064 2065 ztest_range_unlock((rl_t *)zgd->zgd_lr); 2066 ztest_object_unlock(zd, object); 2067 2068 umem_free(zgd, sizeof (*zgd)); 2069 } 2070 2071 static int 2072 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, 2073 zio_t *zio) 2074 { 2075 ztest_ds_t *zd = arg; 2076 objset_t *os = zd->zd_os; 2077 uint64_t object = lr->lr_foid; 2078 uint64_t offset = lr->lr_offset; 2079 uint64_t size = lr->lr_length; 2080 uint64_t txg = lr->lr_common.lrc_txg; 2081 uint64_t crtxg; 2082 dmu_object_info_t doi; 2083 dmu_buf_t *db; 2084 zgd_t *zgd; 2085 int error; 2086 2087 ASSERT3P(lwb, !=, NULL); 2088 ASSERT3P(zio, !=, NULL); 2089 ASSERT3U(size, !=, 0); 2090 2091 ztest_object_lock(zd, object, RL_READER); 2092 error = dmu_bonus_hold(os, object, FTAG, &db); 2093 if (error) { 2094 ztest_object_unlock(zd, object); 2095 return (error); 2096 } 2097 2098 crtxg = ztest_bt_bonus(db)->bt_crtxg; 2099 2100 if (crtxg == 0 || crtxg > txg) { 2101 dmu_buf_rele(db, FTAG); 2102 ztest_object_unlock(zd, object); 2103 return (ENOENT); 2104 } 2105 2106 dmu_object_info_from_db(db, &doi); 2107 dmu_buf_rele(db, FTAG); 2108 db = NULL; 2109 2110 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 2111 zgd->zgd_lwb = lwb; 2112 zgd->zgd_private = zd; 2113 2114 if (buf != NULL) { /* immediate write */ 2115 zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd, 2116 object, offset, size, RL_READER); 2117 2118 error = dmu_read(os, object, offset, size, buf, 2119 DMU_READ_NO_PREFETCH); 2120 ASSERT(error == 0); 2121 } else { 2122 size = doi.doi_data_block_size; 2123 if (ISP2(size)) { 2124 offset = P2ALIGN(offset, size); 2125 } else { 2126 ASSERT(offset < size); 2127 offset = 0; 2128 } 2129 2130 zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd, 2131 object, offset, size, RL_READER); 2132 2133 error = dmu_buf_hold(os, object, offset, zgd, &db, 2134 DMU_READ_NO_PREFETCH); 2135 2136 if (error == 0) { 2137 blkptr_t *bp = &lr->lr_blkptr; 2138 2139 zgd->zgd_db = db; 2140 zgd->zgd_bp = bp; 2141 2142 ASSERT(db->db_offset == offset); 2143 ASSERT(db->db_size == size); 2144 2145 error = dmu_sync(zio, lr->lr_common.lrc_txg, 2146 ztest_get_done, zgd); 2147 2148 if (error == 0) 2149 return (0); 2150 } 2151 } 2152 2153 ztest_get_done(zgd, error); 2154 2155 return (error); 2156 } 2157 2158 static void * 2159 ztest_lr_alloc(size_t lrsize, char *name) 2160 { 2161 char *lr; 2162 size_t namesize = name ? strlen(name) + 1 : 0; 2163 2164 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 2165 2166 if (name) 2167 bcopy(name, lr + lrsize, namesize); 2168 2169 return (lr); 2170 } 2171 2172 void 2173 ztest_lr_free(void *lr, size_t lrsize, char *name) 2174 { 2175 size_t namesize = name ? strlen(name) + 1 : 0; 2176 2177 umem_free(lr, lrsize + namesize); 2178 } 2179 2180 /* 2181 * Lookup a bunch of objects. Returns the number of objects not found. 2182 */ 2183 static int 2184 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 2185 { 2186 int missing = 0; 2187 int error; 2188 2189 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2190 2191 for (int i = 0; i < count; i++, od++) { 2192 od->od_object = 0; 2193 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 2194 sizeof (uint64_t), 1, &od->od_object); 2195 if (error) { 2196 ASSERT(error == ENOENT); 2197 ASSERT(od->od_object == 0); 2198 missing++; 2199 } else { 2200 dmu_buf_t *db; 2201 ztest_block_tag_t *bbt; 2202 dmu_object_info_t doi; 2203 2204 ASSERT(od->od_object != 0); 2205 ASSERT(missing == 0); /* there should be no gaps */ 2206 2207 ztest_object_lock(zd, od->od_object, RL_READER); 2208 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 2209 od->od_object, FTAG, &db)); 2210 dmu_object_info_from_db(db, &doi); 2211 bbt = ztest_bt_bonus(db); 2212 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 2213 od->od_type = doi.doi_type; 2214 od->od_blocksize = doi.doi_data_block_size; 2215 od->od_gen = bbt->bt_gen; 2216 dmu_buf_rele(db, FTAG); 2217 ztest_object_unlock(zd, od->od_object); 2218 } 2219 } 2220 2221 return (missing); 2222 } 2223 2224 static int 2225 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 2226 { 2227 int missing = 0; 2228 2229 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2230 2231 for (int i = 0; i < count; i++, od++) { 2232 if (missing) { 2233 od->od_object = 0; 2234 missing++; 2235 continue; 2236 } 2237 2238 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2239 2240 lr->lr_doid = od->od_dir; 2241 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2242 lr->lrz_type = od->od_crtype; 2243 lr->lrz_blocksize = od->od_crblocksize; 2244 lr->lrz_ibshift = ztest_random_ibshift(); 2245 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2246 lr->lrz_dnodesize = od->od_crdnodesize; 2247 lr->lr_gen = od->od_crgen; 2248 lr->lr_crtime[0] = time(NULL); 2249 2250 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2251 ASSERT(missing == 0); 2252 od->od_object = 0; 2253 missing++; 2254 } else { 2255 od->od_object = lr->lr_foid; 2256 od->od_type = od->od_crtype; 2257 od->od_blocksize = od->od_crblocksize; 2258 od->od_gen = od->od_crgen; 2259 ASSERT(od->od_object != 0); 2260 } 2261 2262 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2263 } 2264 2265 return (missing); 2266 } 2267 2268 static int 2269 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2270 { 2271 int missing = 0; 2272 int error; 2273 2274 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2275 2276 od += count - 1; 2277 2278 for (int i = count - 1; i >= 0; i--, od--) { 2279 if (missing) { 2280 missing++; 2281 continue; 2282 } 2283 2284 /* 2285 * No object was found. 2286 */ 2287 if (od->od_object == 0) 2288 continue; 2289 2290 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2291 2292 lr->lr_doid = od->od_dir; 2293 2294 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2295 ASSERT3U(error, ==, ENOSPC); 2296 missing++; 2297 } else { 2298 od->od_object = 0; 2299 } 2300 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2301 } 2302 2303 return (missing); 2304 } 2305 2306 static int 2307 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2308 void *data) 2309 { 2310 lr_write_t *lr; 2311 int error; 2312 2313 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2314 2315 lr->lr_foid = object; 2316 lr->lr_offset = offset; 2317 lr->lr_length = size; 2318 lr->lr_blkoff = 0; 2319 BP_ZERO(&lr->lr_blkptr); 2320 2321 bcopy(data, lr + 1, size); 2322 2323 error = ztest_replay_write(zd, lr, B_FALSE); 2324 2325 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2326 2327 return (error); 2328 } 2329 2330 static int 2331 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2332 { 2333 lr_truncate_t *lr; 2334 int error; 2335 2336 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2337 2338 lr->lr_foid = object; 2339 lr->lr_offset = offset; 2340 lr->lr_length = size; 2341 2342 error = ztest_replay_truncate(zd, lr, B_FALSE); 2343 2344 ztest_lr_free(lr, sizeof (*lr), NULL); 2345 2346 return (error); 2347 } 2348 2349 static int 2350 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2351 { 2352 lr_setattr_t *lr; 2353 int error; 2354 2355 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2356 2357 lr->lr_foid = object; 2358 lr->lr_size = 0; 2359 lr->lr_mode = 0; 2360 2361 error = ztest_replay_setattr(zd, lr, B_FALSE); 2362 2363 ztest_lr_free(lr, sizeof (*lr), NULL); 2364 2365 return (error); 2366 } 2367 2368 static void 2369 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2370 { 2371 objset_t *os = zd->zd_os; 2372 dmu_tx_t *tx; 2373 uint64_t txg; 2374 rl_t *rl; 2375 2376 txg_wait_synced(dmu_objset_pool(os), 0); 2377 2378 ztest_object_lock(zd, object, RL_READER); 2379 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2380 2381 tx = dmu_tx_create(os); 2382 2383 dmu_tx_hold_write(tx, object, offset, size); 2384 2385 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2386 2387 if (txg != 0) { 2388 dmu_prealloc(os, object, offset, size, tx); 2389 dmu_tx_commit(tx); 2390 txg_wait_synced(dmu_objset_pool(os), txg); 2391 } else { 2392 (void) dmu_free_long_range(os, object, offset, size); 2393 } 2394 2395 ztest_range_unlock(rl); 2396 ztest_object_unlock(zd, object); 2397 } 2398 2399 static void 2400 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2401 { 2402 int err; 2403 ztest_block_tag_t wbt; 2404 dmu_object_info_t doi; 2405 enum ztest_io_type io_type; 2406 uint64_t blocksize; 2407 void *data; 2408 2409 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2410 blocksize = doi.doi_data_block_size; 2411 data = umem_alloc(blocksize, UMEM_NOFAIL); 2412 2413 /* 2414 * Pick an i/o type at random, biased toward writing block tags. 2415 */ 2416 io_type = ztest_random(ZTEST_IO_TYPES); 2417 if (ztest_random(2) == 0) 2418 io_type = ZTEST_IO_WRITE_TAG; 2419 2420 rw_enter(&zd->zd_zilog_lock, RW_READER); 2421 2422 switch (io_type) { 2423 2424 case ZTEST_IO_WRITE_TAG: 2425 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize, 2426 offset, 0, 0, 0); 2427 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2428 break; 2429 2430 case ZTEST_IO_WRITE_PATTERN: 2431 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2432 if (ztest_random(2) == 0) { 2433 /* 2434 * Induce fletcher2 collisions to ensure that 2435 * zio_ddt_collision() detects and resolves them 2436 * when using fletcher2-verify for deduplication. 2437 */ 2438 ((uint64_t *)data)[0] ^= 1ULL << 63; 2439 ((uint64_t *)data)[4] ^= 1ULL << 63; 2440 } 2441 (void) ztest_write(zd, object, offset, blocksize, data); 2442 break; 2443 2444 case ZTEST_IO_WRITE_ZEROES: 2445 bzero(data, blocksize); 2446 (void) ztest_write(zd, object, offset, blocksize, data); 2447 break; 2448 2449 case ZTEST_IO_TRUNCATE: 2450 (void) ztest_truncate(zd, object, offset, blocksize); 2451 break; 2452 2453 case ZTEST_IO_SETATTR: 2454 (void) ztest_setattr(zd, object); 2455 break; 2456 2457 case ZTEST_IO_REWRITE: 2458 rw_enter(&ztest_name_lock, RW_READER); 2459 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2460 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2461 B_FALSE); 2462 VERIFY(err == 0 || err == ENOSPC); 2463 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2464 ZFS_PROP_COMPRESSION, 2465 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2466 B_FALSE); 2467 VERIFY(err == 0 || err == ENOSPC); 2468 rw_exit(&ztest_name_lock); 2469 2470 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2471 DMU_READ_NO_PREFETCH)); 2472 2473 (void) ztest_write(zd, object, offset, blocksize, data); 2474 break; 2475 } 2476 2477 rw_exit(&zd->zd_zilog_lock); 2478 2479 umem_free(data, blocksize); 2480 } 2481 2482 /* 2483 * Initialize an object description template. 2484 */ 2485 static void 2486 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2487 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize, 2488 uint64_t gen) 2489 { 2490 od->od_dir = ZTEST_DIROBJ; 2491 od->od_object = 0; 2492 2493 od->od_crtype = type; 2494 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2495 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize(); 2496 od->od_crgen = gen; 2497 2498 od->od_type = DMU_OT_NONE; 2499 od->od_blocksize = 0; 2500 od->od_gen = 0; 2501 2502 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2503 tag, (int64_t)id, index); 2504 } 2505 2506 /* 2507 * Lookup or create the objects for a test using the od template. 2508 * If the objects do not all exist, or if 'remove' is specified, 2509 * remove any existing objects and create new ones. Otherwise, 2510 * use the existing objects. 2511 */ 2512 static int 2513 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2514 { 2515 int count = size / sizeof (*od); 2516 int rv = 0; 2517 2518 mutex_enter(&zd->zd_dirobj_lock); 2519 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2520 (ztest_remove(zd, od, count) != 0 || 2521 ztest_create(zd, od, count) != 0)) 2522 rv = -1; 2523 zd->zd_od = od; 2524 mutex_exit(&zd->zd_dirobj_lock); 2525 2526 return (rv); 2527 } 2528 2529 /* ARGSUSED */ 2530 void 2531 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2532 { 2533 zilog_t *zilog = zd->zd_zilog; 2534 2535 rw_enter(&zd->zd_zilog_lock, RW_READER); 2536 2537 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2538 2539 /* 2540 * Remember the committed values in zd, which is in parent/child 2541 * shared memory. If we die, the next iteration of ztest_run() 2542 * will verify that the log really does contain this record. 2543 */ 2544 mutex_enter(&zilog->zl_lock); 2545 ASSERT(zd->zd_shared != NULL); 2546 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2547 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2548 mutex_exit(&zilog->zl_lock); 2549 2550 rw_exit(&zd->zd_zilog_lock); 2551 } 2552 2553 /* 2554 * This function is designed to simulate the operations that occur during a 2555 * mount/unmount operation. We hold the dataset across these operations in an 2556 * attempt to expose any implicit assumptions about ZIL management. 2557 */ 2558 /* ARGSUSED */ 2559 void 2560 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2561 { 2562 objset_t *os = zd->zd_os; 2563 2564 /* 2565 * We grab the zd_dirobj_lock to ensure that no other thread is 2566 * updating the zil (i.e. adding in-memory log records) and the 2567 * zd_zilog_lock to block any I/O. 2568 */ 2569 mutex_enter(&zd->zd_dirobj_lock); 2570 rw_enter(&zd->zd_zilog_lock, RW_WRITER); 2571 2572 /* zfsvfs_teardown() */ 2573 zil_close(zd->zd_zilog); 2574 2575 /* zfsvfs_setup() */ 2576 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2577 zil_replay(os, zd, ztest_replay_vector); 2578 2579 rw_exit(&zd->zd_zilog_lock); 2580 mutex_exit(&zd->zd_dirobj_lock); 2581 } 2582 2583 /* 2584 * Verify that we can't destroy an active pool, create an existing pool, 2585 * or create a pool with a bad vdev spec. 2586 */ 2587 /* ARGSUSED */ 2588 void 2589 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2590 { 2591 ztest_shared_opts_t *zo = &ztest_opts; 2592 spa_t *spa; 2593 nvlist_t *nvroot; 2594 2595 if (zo->zo_mmp_test) 2596 return; 2597 2598 /* 2599 * Attempt to create using a bad file. 2600 */ 2601 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); 2602 VERIFY3U(ENOENT, ==, 2603 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2604 nvlist_free(nvroot); 2605 2606 /* 2607 * Attempt to create using a bad mirror. 2608 */ 2609 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1); 2610 VERIFY3U(ENOENT, ==, 2611 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2612 nvlist_free(nvroot); 2613 2614 /* 2615 * Attempt to create an existing pool. It shouldn't matter 2616 * what's in the nvroot; we should fail with EEXIST. 2617 */ 2618 rw_enter(&ztest_name_lock, RW_READER); 2619 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); 2620 VERIFY3U(EEXIST, ==, 2621 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL)); 2622 nvlist_free(nvroot); 2623 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2624 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2625 spa_close(spa, FTAG); 2626 2627 rw_exit(&ztest_name_lock); 2628 } 2629 2630 /* 2631 * Start and then stop the MMP threads to ensure the startup and shutdown code 2632 * works properly. Actual protection and property-related code tested via ZTS. 2633 */ 2634 /* ARGSUSED */ 2635 void 2636 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id) 2637 { 2638 ztest_shared_opts_t *zo = &ztest_opts; 2639 spa_t *spa = ztest_spa; 2640 2641 if (zo->zo_mmp_test) 2642 return; 2643 2644 /* 2645 * Since enabling MMP involves setting a property, it could not be done 2646 * while the pool is suspended. 2647 */ 2648 if (spa_suspended(spa)) 2649 return; 2650 2651 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2652 mutex_enter(&spa->spa_props_lock); 2653 2654 zfs_multihost_fail_intervals = 0; 2655 2656 if (!spa_multihost(spa)) { 2657 spa->spa_multihost = B_TRUE; 2658 mmp_thread_start(spa); 2659 } 2660 2661 mutex_exit(&spa->spa_props_lock); 2662 spa_config_exit(spa, SCL_CONFIG, FTAG); 2663 2664 txg_wait_synced(spa_get_dsl(spa), 0); 2665 mmp_signal_all_threads(); 2666 txg_wait_synced(spa_get_dsl(spa), 0); 2667 2668 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2669 mutex_enter(&spa->spa_props_lock); 2670 2671 if (spa_multihost(spa)) { 2672 mmp_thread_stop(spa); 2673 spa->spa_multihost = B_FALSE; 2674 } 2675 2676 mutex_exit(&spa->spa_props_lock); 2677 spa_config_exit(spa, SCL_CONFIG, FTAG); 2678 } 2679 2680 /* ARGSUSED */ 2681 void 2682 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2683 { 2684 spa_t *spa; 2685 uint64_t initial_version = SPA_VERSION_INITIAL; 2686 uint64_t version, newversion; 2687 nvlist_t *nvroot, *props; 2688 char *name; 2689 2690 if (ztest_opts.zo_mmp_test) 2691 return; 2692 2693 mutex_enter(&ztest_vdev_lock); 2694 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2695 2696 /* 2697 * Clean up from previous runs. 2698 */ 2699 (void) spa_destroy(name); 2700 2701 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2702 NULL, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2703 2704 /* 2705 * If we're configuring a RAIDZ device then make sure that the 2706 * the initial version is capable of supporting that feature. 2707 */ 2708 switch (ztest_opts.zo_raidz_parity) { 2709 case 0: 2710 case 1: 2711 initial_version = SPA_VERSION_INITIAL; 2712 break; 2713 case 2: 2714 initial_version = SPA_VERSION_RAIDZ2; 2715 break; 2716 case 3: 2717 initial_version = SPA_VERSION_RAIDZ3; 2718 break; 2719 } 2720 2721 /* 2722 * Create a pool with a spa version that can be upgraded. Pick 2723 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2724 */ 2725 do { 2726 version = ztest_random_spa_version(initial_version); 2727 } while (version > SPA_VERSION_BEFORE_FEATURES); 2728 2729 props = fnvlist_alloc(); 2730 fnvlist_add_uint64(props, 2731 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2732 VERIFY0(spa_create(name, nvroot, props, NULL, NULL)); 2733 fnvlist_free(nvroot); 2734 fnvlist_free(props); 2735 2736 VERIFY0(spa_open(name, &spa, FTAG)); 2737 VERIFY3U(spa_version(spa), ==, version); 2738 newversion = ztest_random_spa_version(version + 1); 2739 2740 if (ztest_opts.zo_verbose >= 4) { 2741 (void) printf("upgrading spa version from %llu to %llu\n", 2742 (u_longlong_t)version, (u_longlong_t)newversion); 2743 } 2744 2745 spa_upgrade(spa, newversion); 2746 VERIFY3U(spa_version(spa), >, version); 2747 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2748 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2749 spa_close(spa, FTAG); 2750 2751 strfree(name); 2752 mutex_exit(&ztest_vdev_lock); 2753 } 2754 2755 static void 2756 ztest_spa_checkpoint(spa_t *spa) 2757 { 2758 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 2759 2760 int error = spa_checkpoint(spa->spa_name); 2761 2762 switch (error) { 2763 case 0: 2764 case ZFS_ERR_DEVRM_IN_PROGRESS: 2765 case ZFS_ERR_DISCARDING_CHECKPOINT: 2766 case ZFS_ERR_CHECKPOINT_EXISTS: 2767 break; 2768 case ENOSPC: 2769 ztest_record_enospc(FTAG); 2770 break; 2771 default: 2772 fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error); 2773 } 2774 } 2775 2776 static void 2777 ztest_spa_discard_checkpoint(spa_t *spa) 2778 { 2779 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 2780 2781 int error = spa_checkpoint_discard(spa->spa_name); 2782 2783 switch (error) { 2784 case 0: 2785 case ZFS_ERR_DISCARDING_CHECKPOINT: 2786 case ZFS_ERR_NO_CHECKPOINT: 2787 break; 2788 default: 2789 fatal(0, "spa_discard_checkpoint(%s) = %d", 2790 spa->spa_name, error); 2791 } 2792 2793 } 2794 2795 /* ARGSUSED */ 2796 void 2797 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id) 2798 { 2799 spa_t *spa = ztest_spa; 2800 2801 mutex_enter(&ztest_checkpoint_lock); 2802 if (ztest_random(2) == 0) { 2803 ztest_spa_checkpoint(spa); 2804 } else { 2805 ztest_spa_discard_checkpoint(spa); 2806 } 2807 mutex_exit(&ztest_checkpoint_lock); 2808 } 2809 2810 2811 static vdev_t * 2812 vdev_lookup_by_path(vdev_t *vd, const char *path) 2813 { 2814 vdev_t *mvd; 2815 2816 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2817 return (vd); 2818 2819 for (int c = 0; c < vd->vdev_children; c++) 2820 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2821 NULL) 2822 return (mvd); 2823 2824 return (NULL); 2825 } 2826 2827 /* 2828 * Find the first available hole which can be used as a top-level. 2829 */ 2830 int 2831 find_vdev_hole(spa_t *spa) 2832 { 2833 vdev_t *rvd = spa->spa_root_vdev; 2834 int c; 2835 2836 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2837 2838 for (c = 0; c < rvd->vdev_children; c++) { 2839 vdev_t *cvd = rvd->vdev_child[c]; 2840 2841 if (cvd->vdev_ishole) 2842 break; 2843 } 2844 return (c); 2845 } 2846 2847 /* 2848 * Verify that vdev_add() works as expected. 2849 */ 2850 /* ARGSUSED */ 2851 void 2852 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2853 { 2854 ztest_shared_t *zs = ztest_shared; 2855 spa_t *spa = ztest_spa; 2856 uint64_t leaves; 2857 uint64_t guid; 2858 nvlist_t *nvroot; 2859 int error; 2860 2861 if (ztest_opts.zo_mmp_test) 2862 return; 2863 2864 mutex_enter(&ztest_vdev_lock); 2865 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2866 2867 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2868 2869 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2870 2871 /* 2872 * If we have slogs then remove them 1/4 of the time. 2873 */ 2874 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2875 metaslab_group_t *mg; 2876 2877 /* 2878 * find the first real slog in log allocation class 2879 */ 2880 mg = spa_log_class(spa)->mc_rotor; 2881 while (!mg->mg_vd->vdev_islog) 2882 mg = mg->mg_next; 2883 2884 guid = mg->mg_vd->vdev_guid; 2885 2886 spa_config_exit(spa, SCL_VDEV, FTAG); 2887 2888 /* 2889 * We have to grab the zs_name_lock as writer to 2890 * prevent a race between removing a slog (dmu_objset_find) 2891 * and destroying a dataset. Removing the slog will 2892 * grab a reference on the dataset which may cause 2893 * dmu_objset_destroy() to fail with EBUSY thus 2894 * leaving the dataset in an inconsistent state. 2895 */ 2896 rw_enter(&ztest_name_lock, RW_WRITER); 2897 error = spa_vdev_remove(spa, guid, B_FALSE); 2898 rw_exit(&ztest_name_lock); 2899 2900 switch (error) { 2901 case 0: 2902 case EEXIST: 2903 case ZFS_ERR_CHECKPOINT_EXISTS: 2904 case ZFS_ERR_DISCARDING_CHECKPOINT: 2905 break; 2906 default: 2907 fatal(0, "spa_vdev_remove() = %d", error); 2908 } 2909 } else { 2910 spa_config_exit(spa, SCL_VDEV, FTAG); 2911 2912 /* 2913 * Make 1/4 of the devices be log devices 2914 */ 2915 nvroot = make_vdev_root(NULL, NULL, NULL, 2916 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ? 2917 "log" : NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 2918 2919 error = spa_vdev_add(spa, nvroot); 2920 nvlist_free(nvroot); 2921 2922 switch (error) { 2923 case 0: 2924 break; 2925 case ENOSPC: 2926 ztest_record_enospc("spa_vdev_add"); 2927 break; 2928 default: 2929 fatal(0, "spa_vdev_add() = %d", error); 2930 } 2931 } 2932 2933 mutex_exit(&ztest_vdev_lock); 2934 } 2935 2936 /* ARGSUSED */ 2937 void 2938 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id) 2939 { 2940 ztest_shared_t *zs = ztest_shared; 2941 spa_t *spa = ztest_spa; 2942 uint64_t leaves; 2943 nvlist_t *nvroot; 2944 const char *class = (ztest_random(2) == 0) ? 2945 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP; 2946 int error; 2947 2948 /* 2949 * By default add a special vdev 50% of the time 2950 */ 2951 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) || 2952 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND && 2953 ztest_random(2) == 0)) { 2954 return; 2955 } 2956 2957 mutex_enter(&ztest_vdev_lock); 2958 2959 /* Only test with mirrors */ 2960 if (zs->zs_mirrors < 2) { 2961 mutex_exit(&ztest_vdev_lock); 2962 return; 2963 } 2964 2965 /* requires feature@allocation_classes */ 2966 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) { 2967 mutex_exit(&ztest_vdev_lock); 2968 return; 2969 } 2970 2971 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2972 2973 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2974 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2975 spa_config_exit(spa, SCL_VDEV, FTAG); 2976 2977 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 2978 class, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 2979 2980 error = spa_vdev_add(spa, nvroot); 2981 nvlist_free(nvroot); 2982 2983 if (error == ENOSPC) 2984 ztest_record_enospc("spa_vdev_add"); 2985 else if (error != 0) 2986 fatal(0, "spa_vdev_add() = %d", error); 2987 2988 /* 2989 * 50% of the time allow small blocks in the special class 2990 */ 2991 if (error == 0 && 2992 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) { 2993 if (ztest_opts.zo_verbose >= 3) 2994 (void) printf("Enabling special VDEV small blocks\n"); 2995 (void) ztest_dsl_prop_set_uint64(zd->zd_name, 2996 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE); 2997 } 2998 2999 mutex_exit(&ztest_vdev_lock); 3000 3001 if (ztest_opts.zo_verbose >= 3) { 3002 metaslab_class_t *mc; 3003 3004 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0) 3005 mc = spa_special_class(spa); 3006 else 3007 mc = spa_dedup_class(spa); 3008 (void) printf("Added a %s mirrored vdev (of %d)\n", 3009 class, (int)mc->mc_groups); 3010 } 3011 } 3012 3013 /* 3014 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 3015 */ 3016 /* ARGSUSED */ 3017 void 3018 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 3019 { 3020 ztest_shared_t *zs = ztest_shared; 3021 spa_t *spa = ztest_spa; 3022 vdev_t *rvd = spa->spa_root_vdev; 3023 spa_aux_vdev_t *sav; 3024 char *aux; 3025 uint64_t guid = 0; 3026 int error; 3027 3028 if (ztest_opts.zo_mmp_test) 3029 return; 3030 3031 if (ztest_random(2) == 0) { 3032 sav = &spa->spa_spares; 3033 aux = ZPOOL_CONFIG_SPARES; 3034 } else { 3035 sav = &spa->spa_l2cache; 3036 aux = ZPOOL_CONFIG_L2CACHE; 3037 } 3038 3039 mutex_enter(&ztest_vdev_lock); 3040 3041 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3042 3043 if (sav->sav_count != 0 && ztest_random(4) == 0) { 3044 /* 3045 * Pick a random device to remove. 3046 */ 3047 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 3048 } else { 3049 /* 3050 * Find an unused device we can add. 3051 */ 3052 zs->zs_vdev_aux = 0; 3053 for (;;) { 3054 char path[MAXPATHLEN]; 3055 int c; 3056 (void) snprintf(path, sizeof (path), ztest_aux_template, 3057 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 3058 zs->zs_vdev_aux); 3059 for (c = 0; c < sav->sav_count; c++) 3060 if (strcmp(sav->sav_vdevs[c]->vdev_path, 3061 path) == 0) 3062 break; 3063 if (c == sav->sav_count && 3064 vdev_lookup_by_path(rvd, path) == NULL) 3065 break; 3066 zs->zs_vdev_aux++; 3067 } 3068 } 3069 3070 spa_config_exit(spa, SCL_VDEV, FTAG); 3071 3072 if (guid == 0) { 3073 /* 3074 * Add a new device. 3075 */ 3076 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 3077 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1); 3078 error = spa_vdev_add(spa, nvroot); 3079 3080 switch (error) { 3081 case 0: 3082 break; 3083 default: 3084 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 3085 } 3086 nvlist_free(nvroot); 3087 } else { 3088 /* 3089 * Remove an existing device. Sometimes, dirty its 3090 * vdev state first to make sure we handle removal 3091 * of devices that have pending state changes. 3092 */ 3093 if (ztest_random(2) == 0) 3094 (void) vdev_online(spa, guid, 0, NULL); 3095 3096 error = spa_vdev_remove(spa, guid, B_FALSE); 3097 3098 switch (error) { 3099 case 0: 3100 case EBUSY: 3101 case ZFS_ERR_CHECKPOINT_EXISTS: 3102 case ZFS_ERR_DISCARDING_CHECKPOINT: 3103 break; 3104 default: 3105 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 3106 } 3107 } 3108 3109 mutex_exit(&ztest_vdev_lock); 3110 } 3111 3112 /* 3113 * split a pool if it has mirror tlvdevs 3114 */ 3115 /* ARGSUSED */ 3116 void 3117 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 3118 { 3119 ztest_shared_t *zs = ztest_shared; 3120 spa_t *spa = ztest_spa; 3121 vdev_t *rvd = spa->spa_root_vdev; 3122 nvlist_t *tree, **child, *config, *split, **schild; 3123 uint_t c, children, schildren = 0, lastlogid = 0; 3124 int error = 0; 3125 3126 if (ztest_opts.zo_mmp_test) 3127 return; 3128 3129 mutex_enter(&ztest_vdev_lock); 3130 3131 /* ensure we have a useable config; mirrors of raidz aren't supported */ 3132 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 3133 mutex_exit(&ztest_vdev_lock); 3134 return; 3135 } 3136 3137 /* clean up the old pool, if any */ 3138 (void) spa_destroy("splitp"); 3139 3140 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3141 3142 /* generate a config from the existing config */ 3143 mutex_enter(&spa->spa_props_lock); 3144 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 3145 &tree) == 0); 3146 mutex_exit(&spa->spa_props_lock); 3147 3148 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 3149 &children) == 0); 3150 3151 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 3152 for (c = 0; c < children; c++) { 3153 vdev_t *tvd = rvd->vdev_child[c]; 3154 nvlist_t **mchild; 3155 uint_t mchildren; 3156 3157 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 3158 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 3159 0) == 0); 3160 VERIFY(nvlist_add_string(schild[schildren], 3161 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 3162 VERIFY(nvlist_add_uint64(schild[schildren], 3163 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 3164 if (lastlogid == 0) 3165 lastlogid = schildren; 3166 ++schildren; 3167 continue; 3168 } 3169 lastlogid = 0; 3170 VERIFY(nvlist_lookup_nvlist_array(child[c], 3171 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 3172 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 3173 } 3174 3175 /* OK, create a config that can be used to split */ 3176 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 3177 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 3178 VDEV_TYPE_ROOT) == 0); 3179 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 3180 lastlogid != 0 ? lastlogid : schildren) == 0); 3181 3182 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 3183 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 3184 3185 for (c = 0; c < schildren; c++) 3186 nvlist_free(schild[c]); 3187 free(schild); 3188 nvlist_free(split); 3189 3190 spa_config_exit(spa, SCL_VDEV, FTAG); 3191 3192 rw_enter(&ztest_name_lock, RW_WRITER); 3193 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 3194 rw_exit(&ztest_name_lock); 3195 3196 nvlist_free(config); 3197 3198 if (error == 0) { 3199 (void) printf("successful split - results:\n"); 3200 mutex_enter(&spa_namespace_lock); 3201 show_pool_stats(spa); 3202 show_pool_stats(spa_lookup("splitp")); 3203 mutex_exit(&spa_namespace_lock); 3204 ++zs->zs_splits; 3205 --zs->zs_mirrors; 3206 } 3207 mutex_exit(&ztest_vdev_lock); 3208 } 3209 3210 /* 3211 * Verify that we can attach and detach devices. 3212 */ 3213 /* ARGSUSED */ 3214 void 3215 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 3216 { 3217 ztest_shared_t *zs = ztest_shared; 3218 spa_t *spa = ztest_spa; 3219 spa_aux_vdev_t *sav = &spa->spa_spares; 3220 vdev_t *rvd = spa->spa_root_vdev; 3221 vdev_t *oldvd, *newvd, *pvd; 3222 nvlist_t *root; 3223 uint64_t leaves; 3224 uint64_t leaf, top; 3225 uint64_t ashift = ztest_get_ashift(); 3226 uint64_t oldguid, pguid; 3227 uint64_t oldsize, newsize; 3228 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 3229 int replacing; 3230 int oldvd_has_siblings = B_FALSE; 3231 int newvd_is_spare = B_FALSE; 3232 int oldvd_is_log; 3233 int error, expected_error; 3234 3235 if (ztest_opts.zo_mmp_test) 3236 return; 3237 3238 mutex_enter(&ztest_vdev_lock); 3239 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 3240 3241 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3242 3243 /* 3244 * If a vdev is in the process of being removed, its removal may 3245 * finish while we are in progress, leading to an unexpected error 3246 * value. Don't bother trying to attach while we are in the middle 3247 * of removal. 3248 */ 3249 if (ztest_device_removal_active) { 3250 spa_config_exit(spa, SCL_ALL, FTAG); 3251 mutex_exit(&ztest_vdev_lock); 3252 return; 3253 } 3254 3255 /* 3256 * Decide whether to do an attach or a replace. 3257 */ 3258 replacing = ztest_random(2); 3259 3260 /* 3261 * Pick a random top-level vdev. 3262 */ 3263 top = ztest_random_vdev_top(spa, B_TRUE); 3264 3265 /* 3266 * Pick a random leaf within it. 3267 */ 3268 leaf = ztest_random(leaves); 3269 3270 /* 3271 * Locate this vdev. 3272 */ 3273 oldvd = rvd->vdev_child[top]; 3274 3275 /* pick a child from the mirror */ 3276 if (zs->zs_mirrors >= 1) { 3277 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 3278 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 3279 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 3280 } 3281 3282 /* pick a child out of the raidz group */ 3283 if (ztest_opts.zo_raidz > 1) { 3284 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 3285 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 3286 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 3287 } 3288 3289 /* 3290 * If we're already doing an attach or replace, oldvd may be a 3291 * mirror vdev -- in which case, pick a random child. 3292 */ 3293 while (oldvd->vdev_children != 0) { 3294 oldvd_has_siblings = B_TRUE; 3295 ASSERT(oldvd->vdev_children >= 2); 3296 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 3297 } 3298 3299 oldguid = oldvd->vdev_guid; 3300 oldsize = vdev_get_min_asize(oldvd); 3301 oldvd_is_log = oldvd->vdev_top->vdev_islog; 3302 (void) strcpy(oldpath, oldvd->vdev_path); 3303 pvd = oldvd->vdev_parent; 3304 pguid = pvd->vdev_guid; 3305 3306 /* 3307 * If oldvd has siblings, then half of the time, detach it. 3308 */ 3309 if (oldvd_has_siblings && ztest_random(2) == 0) { 3310 spa_config_exit(spa, SCL_ALL, FTAG); 3311 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 3312 if (error != 0 && error != ENODEV && error != EBUSY && 3313 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS && 3314 error != ZFS_ERR_DISCARDING_CHECKPOINT) 3315 fatal(0, "detach (%s) returned %d", oldpath, error); 3316 mutex_exit(&ztest_vdev_lock); 3317 return; 3318 } 3319 3320 /* 3321 * For the new vdev, choose with equal probability between the two 3322 * standard paths (ending in either 'a' or 'b') or a random hot spare. 3323 */ 3324 if (sav->sav_count != 0 && ztest_random(3) == 0) { 3325 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3326 newvd_is_spare = B_TRUE; 3327 (void) strcpy(newpath, newvd->vdev_path); 3328 } else { 3329 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 3330 ztest_opts.zo_dir, ztest_opts.zo_pool, 3331 top * leaves + leaf); 3332 if (ztest_random(2) == 0) 3333 newpath[strlen(newpath) - 1] = 'b'; 3334 newvd = vdev_lookup_by_path(rvd, newpath); 3335 } 3336 3337 if (newvd) { 3338 /* 3339 * Reopen to ensure the vdev's asize field isn't stale. 3340 */ 3341 vdev_reopen(newvd); 3342 newsize = vdev_get_min_asize(newvd); 3343 } else { 3344 /* 3345 * Make newsize a little bigger or smaller than oldsize. 3346 * If it's smaller, the attach should fail. 3347 * If it's larger, and we're doing a replace, 3348 * we should get dynamic LUN growth when we're done. 3349 */ 3350 newsize = 10 * oldsize / (9 + ztest_random(3)); 3351 } 3352 3353 /* 3354 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 3355 * unless it's a replace; in that case any non-replacing parent is OK. 3356 * 3357 * If newvd is already part of the pool, it should fail with EBUSY. 3358 * 3359 * If newvd is too small, it should fail with EOVERFLOW. 3360 */ 3361 if (pvd->vdev_ops != &vdev_mirror_ops && 3362 pvd->vdev_ops != &vdev_root_ops && (!replacing || 3363 pvd->vdev_ops == &vdev_replacing_ops || 3364 pvd->vdev_ops == &vdev_spare_ops)) 3365 expected_error = ENOTSUP; 3366 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 3367 expected_error = ENOTSUP; 3368 else if (newvd == oldvd) 3369 expected_error = replacing ? 0 : EBUSY; 3370 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 3371 expected_error = EBUSY; 3372 else if (newsize < oldsize) 3373 expected_error = EOVERFLOW; 3374 else if (ashift > oldvd->vdev_top->vdev_ashift) 3375 expected_error = EDOM; 3376 else 3377 expected_error = 0; 3378 3379 spa_config_exit(spa, SCL_ALL, FTAG); 3380 3381 /* 3382 * Build the nvlist describing newpath. 3383 */ 3384 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 3385 ashift, NULL, 0, 0, 1); 3386 3387 error = spa_vdev_attach(spa, oldguid, root, replacing); 3388 3389 nvlist_free(root); 3390 3391 /* 3392 * If our parent was the replacing vdev, but the replace completed, 3393 * then instead of failing with ENOTSUP we may either succeed, 3394 * fail with ENODEV, or fail with EOVERFLOW. 3395 */ 3396 if (expected_error == ENOTSUP && 3397 (error == 0 || error == ENODEV || error == EOVERFLOW)) 3398 expected_error = error; 3399 3400 /* 3401 * If someone grew the LUN, the replacement may be too small. 3402 */ 3403 if (error == EOVERFLOW || error == EBUSY) 3404 expected_error = error; 3405 3406 if (error == ZFS_ERR_CHECKPOINT_EXISTS || 3407 error == ZFS_ERR_DISCARDING_CHECKPOINT) 3408 expected_error = error; 3409 3410 /* XXX workaround 6690467 */ 3411 if (error != expected_error && expected_error != EBUSY) { 3412 fatal(0, "attach (%s %llu, %s %llu, %d) " 3413 "returned %d, expected %d", 3414 oldpath, oldsize, newpath, 3415 newsize, replacing, error, expected_error); 3416 } 3417 3418 mutex_exit(&ztest_vdev_lock); 3419 } 3420 3421 /* ARGSUSED */ 3422 void 3423 ztest_device_removal(ztest_ds_t *zd, uint64_t id) 3424 { 3425 spa_t *spa = ztest_spa; 3426 vdev_t *vd; 3427 uint64_t guid; 3428 int error; 3429 3430 mutex_enter(&ztest_vdev_lock); 3431 3432 if (ztest_device_removal_active) { 3433 mutex_exit(&ztest_vdev_lock); 3434 return; 3435 } 3436 3437 /* 3438 * Remove a random top-level vdev and wait for removal to finish. 3439 */ 3440 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3441 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); 3442 guid = vd->vdev_guid; 3443 spa_config_exit(spa, SCL_VDEV, FTAG); 3444 3445 error = spa_vdev_remove(spa, guid, B_FALSE); 3446 if (error == 0) { 3447 ztest_device_removal_active = B_TRUE; 3448 mutex_exit(&ztest_vdev_lock); 3449 3450 while (spa->spa_vdev_removal != NULL) 3451 txg_wait_synced(spa_get_dsl(spa), 0); 3452 } else { 3453 mutex_exit(&ztest_vdev_lock); 3454 return; 3455 } 3456 3457 /* 3458 * The pool needs to be scrubbed after completing device removal. 3459 * Failure to do so may result in checksum errors due to the 3460 * strategy employed by ztest_fault_inject() when selecting which 3461 * offset are redundant and can be damaged. 3462 */ 3463 error = spa_scan(spa, POOL_SCAN_SCRUB); 3464 if (error == 0) { 3465 while (dsl_scan_scrubbing(spa_get_dsl(spa))) 3466 txg_wait_synced(spa_get_dsl(spa), 0); 3467 } 3468 3469 mutex_enter(&ztest_vdev_lock); 3470 ztest_device_removal_active = B_FALSE; 3471 mutex_exit(&ztest_vdev_lock); 3472 } 3473 3474 /* 3475 * Callback function which expands the physical size of the vdev. 3476 */ 3477 vdev_t * 3478 grow_vdev(vdev_t *vd, void *arg) 3479 { 3480 spa_t *spa = vd->vdev_spa; 3481 size_t *newsize = arg; 3482 size_t fsize; 3483 int fd; 3484 3485 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 3486 ASSERT(vd->vdev_ops->vdev_op_leaf); 3487 3488 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 3489 return (vd); 3490 3491 fsize = lseek(fd, 0, SEEK_END); 3492 (void) ftruncate(fd, *newsize); 3493 3494 if (ztest_opts.zo_verbose >= 6) { 3495 (void) printf("%s grew from %lu to %lu bytes\n", 3496 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 3497 } 3498 (void) close(fd); 3499 return (NULL); 3500 } 3501 3502 /* 3503 * Callback function which expands a given vdev by calling vdev_online(). 3504 */ 3505 /* ARGSUSED */ 3506 vdev_t * 3507 online_vdev(vdev_t *vd, void *arg) 3508 { 3509 spa_t *spa = vd->vdev_spa; 3510 vdev_t *tvd = vd->vdev_top; 3511 uint64_t guid = vd->vdev_guid; 3512 uint64_t generation = spa->spa_config_generation + 1; 3513 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 3514 int error; 3515 3516 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 3517 ASSERT(vd->vdev_ops->vdev_op_leaf); 3518 3519 /* Calling vdev_online will initialize the new metaslabs */ 3520 spa_config_exit(spa, SCL_STATE, spa); 3521 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 3522 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3523 3524 /* 3525 * If vdev_online returned an error or the underlying vdev_open 3526 * failed then we abort the expand. The only way to know that 3527 * vdev_open fails is by checking the returned newstate. 3528 */ 3529 if (error || newstate != VDEV_STATE_HEALTHY) { 3530 if (ztest_opts.zo_verbose >= 5) { 3531 (void) printf("Unable to expand vdev, state %llu, " 3532 "error %d\n", (u_longlong_t)newstate, error); 3533 } 3534 return (vd); 3535 } 3536 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 3537 3538 /* 3539 * Since we dropped the lock we need to ensure that we're 3540 * still talking to the original vdev. It's possible this 3541 * vdev may have been detached/replaced while we were 3542 * trying to online it. 3543 */ 3544 if (generation != spa->spa_config_generation) { 3545 if (ztest_opts.zo_verbose >= 5) { 3546 (void) printf("vdev configuration has changed, " 3547 "guid %llu, state %llu, expected gen %llu, " 3548 "got gen %llu\n", 3549 (u_longlong_t)guid, 3550 (u_longlong_t)tvd->vdev_state, 3551 (u_longlong_t)generation, 3552 (u_longlong_t)spa->spa_config_generation); 3553 } 3554 return (vd); 3555 } 3556 return (NULL); 3557 } 3558 3559 /* 3560 * Traverse the vdev tree calling the supplied function. 3561 * We continue to walk the tree until we either have walked all 3562 * children or we receive a non-NULL return from the callback. 3563 * If a NULL callback is passed, then we just return back the first 3564 * leaf vdev we encounter. 3565 */ 3566 vdev_t * 3567 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3568 { 3569 if (vd->vdev_ops->vdev_op_leaf) { 3570 if (func == NULL) 3571 return (vd); 3572 else 3573 return (func(vd, arg)); 3574 } 3575 3576 for (uint_t c = 0; c < vd->vdev_children; c++) { 3577 vdev_t *cvd = vd->vdev_child[c]; 3578 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3579 return (cvd); 3580 } 3581 return (NULL); 3582 } 3583 3584 /* 3585 * Verify that dynamic LUN growth works as expected. 3586 */ 3587 /* ARGSUSED */ 3588 void 3589 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3590 { 3591 spa_t *spa = ztest_spa; 3592 vdev_t *vd, *tvd; 3593 metaslab_class_t *mc; 3594 metaslab_group_t *mg; 3595 size_t psize, newsize; 3596 uint64_t top; 3597 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3598 3599 mutex_enter(&ztest_checkpoint_lock); 3600 mutex_enter(&ztest_vdev_lock); 3601 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3602 3603 /* 3604 * If there is a vdev removal in progress, it could complete while 3605 * we are running, in which case we would not be able to verify 3606 * that the metaslab_class space increased (because it decreases 3607 * when the device removal completes). 3608 */ 3609 if (ztest_device_removal_active) { 3610 spa_config_exit(spa, SCL_STATE, spa); 3611 mutex_exit(&ztest_vdev_lock); 3612 mutex_exit(&ztest_checkpoint_lock); 3613 return; 3614 } 3615 3616 top = ztest_random_vdev_top(spa, B_TRUE); 3617 3618 tvd = spa->spa_root_vdev->vdev_child[top]; 3619 mg = tvd->vdev_mg; 3620 mc = mg->mg_class; 3621 old_ms_count = tvd->vdev_ms_count; 3622 old_class_space = metaslab_class_get_space(mc); 3623 3624 /* 3625 * Determine the size of the first leaf vdev associated with 3626 * our top-level device. 3627 */ 3628 vd = vdev_walk_tree(tvd, NULL, NULL); 3629 ASSERT3P(vd, !=, NULL); 3630 ASSERT(vd->vdev_ops->vdev_op_leaf); 3631 3632 psize = vd->vdev_psize; 3633 3634 /* 3635 * We only try to expand the vdev if it's healthy, less than 4x its 3636 * original size, and it has a valid psize. 3637 */ 3638 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3639 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3640 spa_config_exit(spa, SCL_STATE, spa); 3641 mutex_exit(&ztest_vdev_lock); 3642 mutex_exit(&ztest_checkpoint_lock); 3643 return; 3644 } 3645 ASSERT(psize > 0); 3646 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE); 3647 ASSERT3U(newsize, >, psize); 3648 3649 if (ztest_opts.zo_verbose >= 6) { 3650 (void) printf("Expanding LUN %s from %lu to %lu\n", 3651 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3652 } 3653 3654 /* 3655 * Growing the vdev is a two step process: 3656 * 1). expand the physical size (i.e. relabel) 3657 * 2). online the vdev to create the new metaslabs 3658 */ 3659 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3660 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3661 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3662 if (ztest_opts.zo_verbose >= 5) { 3663 (void) printf("Could not expand LUN because " 3664 "the vdev configuration changed.\n"); 3665 } 3666 spa_config_exit(spa, SCL_STATE, spa); 3667 mutex_exit(&ztest_vdev_lock); 3668 mutex_exit(&ztest_checkpoint_lock); 3669 return; 3670 } 3671 3672 spa_config_exit(spa, SCL_STATE, spa); 3673 3674 /* 3675 * Expanding the LUN will update the config asynchronously, 3676 * thus we must wait for the async thread to complete any 3677 * pending tasks before proceeding. 3678 */ 3679 for (;;) { 3680 boolean_t done; 3681 mutex_enter(&spa->spa_async_lock); 3682 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3683 mutex_exit(&spa->spa_async_lock); 3684 if (done) 3685 break; 3686 txg_wait_synced(spa_get_dsl(spa), 0); 3687 (void) poll(NULL, 0, 100); 3688 } 3689 3690 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3691 3692 tvd = spa->spa_root_vdev->vdev_child[top]; 3693 new_ms_count = tvd->vdev_ms_count; 3694 new_class_space = metaslab_class_get_space(mc); 3695 3696 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3697 if (ztest_opts.zo_verbose >= 5) { 3698 (void) printf("Could not verify LUN expansion due to " 3699 "intervening vdev offline or remove.\n"); 3700 } 3701 spa_config_exit(spa, SCL_STATE, spa); 3702 mutex_exit(&ztest_vdev_lock); 3703 mutex_exit(&ztest_checkpoint_lock); 3704 return; 3705 } 3706 3707 /* 3708 * Make sure we were able to grow the vdev. 3709 */ 3710 if (new_ms_count <= old_ms_count) { 3711 fatal(0, "LUN expansion failed: ms_count %llu < %llu\n", 3712 old_ms_count, new_ms_count); 3713 } 3714 3715 /* 3716 * Make sure we were able to grow the pool. 3717 */ 3718 if (new_class_space <= old_class_space) { 3719 fatal(0, "LUN expansion failed: class_space %llu < %llu\n", 3720 old_class_space, new_class_space); 3721 } 3722 3723 if (ztest_opts.zo_verbose >= 5) { 3724 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; 3725 3726 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); 3727 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); 3728 (void) printf("%s grew from %s to %s\n", 3729 spa->spa_name, oldnumbuf, newnumbuf); 3730 } 3731 3732 spa_config_exit(spa, SCL_STATE, spa); 3733 mutex_exit(&ztest_vdev_lock); 3734 mutex_exit(&ztest_checkpoint_lock); 3735 } 3736 3737 /* 3738 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3739 */ 3740 /* ARGSUSED */ 3741 static void 3742 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3743 { 3744 /* 3745 * Create the objects common to all ztest datasets. 3746 */ 3747 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3748 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3749 } 3750 3751 static int 3752 ztest_dataset_create(char *dsname) 3753 { 3754 int err; 3755 uint64_t rand; 3756 dsl_crypto_params_t *dcp = NULL; 3757 3758 /* 3759 * 50% of the time, we create encrypted datasets 3760 * using a random cipher suite and a hard-coded 3761 * wrapping key. 3762 */ 3763 #ifdef WITHCRYPTO 3764 /* 3765 * Until the crypto framework is compiled in userland, the ztest using 3766 * crypto will not work. 3767 */ 3768 rand = ztest_random(2); 3769 #else 3770 rand = 0; 3771 #endif 3772 if (rand != 0) { 3773 nvlist_t *crypto_args = fnvlist_alloc(); 3774 nvlist_t *props = fnvlist_alloc(); 3775 3776 /* slight bias towards the default cipher suite */ 3777 rand = ztest_random(ZIO_CRYPT_FUNCTIONS); 3778 if (rand < ZIO_CRYPT_AES_128_CCM) 3779 rand = ZIO_CRYPT_ON; 3780 3781 fnvlist_add_uint64(props, 3782 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand); 3783 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3784 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); 3785 3786 /* 3787 * These parameters aren't really used by the kernel. They 3788 * are simply stored so that userspace knows how to load 3789 * the wrapping key. 3790 */ 3791 fnvlist_add_uint64(props, 3792 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW); 3793 fnvlist_add_string(props, 3794 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt"); 3795 fnvlist_add_uint64(props, 3796 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL); 3797 fnvlist_add_uint64(props, 3798 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL); 3799 3800 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props, 3801 crypto_args, &dcp)); 3802 3803 fnvlist_free(crypto_args); 3804 fnvlist_free(props); 3805 } 3806 3807 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp, 3808 ztest_objset_create_cb, NULL); 3809 dsl_crypto_params_free(dcp, !!err); 3810 3811 rand = ztest_random(100); 3812 if (err || rand < 80) 3813 return (err); 3814 3815 if (ztest_opts.zo_verbose >= 6) 3816 (void) printf("Setting dataset %s to sync always\n", dsname); 3817 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3818 ZFS_SYNC_ALWAYS, B_FALSE)); 3819 } 3820 3821 /* ARGSUSED */ 3822 static int 3823 ztest_objset_destroy_cb(const char *name, void *arg) 3824 { 3825 objset_t *os; 3826 dmu_object_info_t doi; 3827 int error; 3828 3829 /* 3830 * Verify that the dataset contains a directory object. 3831 */ 3832 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3833 B_TRUE, FTAG, &os)); 3834 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3835 if (error != ENOENT) { 3836 /* We could have crashed in the middle of destroying it */ 3837 ASSERT0(error); 3838 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3839 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3840 } 3841 dmu_objset_disown(os, B_TRUE, FTAG); 3842 3843 /* 3844 * Destroy the dataset. 3845 */ 3846 if (strchr(name, '@') != NULL) { 3847 VERIFY0(dsl_destroy_snapshot(name, B_TRUE)); 3848 } else { 3849 error = dsl_destroy_head(name); 3850 /* There could be a hold on this dataset */ 3851 if (error != EBUSY) 3852 ASSERT0(error); 3853 } 3854 return (0); 3855 } 3856 3857 static boolean_t 3858 ztest_snapshot_create(char *osname, uint64_t id) 3859 { 3860 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3861 int error; 3862 3863 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3864 3865 error = dmu_objset_snapshot_one(osname, snapname); 3866 if (error == ENOSPC) { 3867 ztest_record_enospc(FTAG); 3868 return (B_FALSE); 3869 } 3870 if (error != 0 && error != EEXIST) { 3871 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3872 snapname, error); 3873 } 3874 return (B_TRUE); 3875 } 3876 3877 static boolean_t 3878 ztest_snapshot_destroy(char *osname, uint64_t id) 3879 { 3880 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3881 int error; 3882 3883 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, 3884 (u_longlong_t)id); 3885 3886 error = dsl_destroy_snapshot(snapname, B_FALSE); 3887 if (error != 0 && error != ENOENT) 3888 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3889 return (B_TRUE); 3890 } 3891 3892 /* ARGSUSED */ 3893 void 3894 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3895 { 3896 ztest_ds_t zdtmp; 3897 int iters; 3898 int error; 3899 objset_t *os, *os2; 3900 char name[ZFS_MAX_DATASET_NAME_LEN]; 3901 zilog_t *zilog; 3902 3903 rw_enter(&ztest_name_lock, RW_READER); 3904 3905 (void) snprintf(name, sizeof (name), "%s/temp_%llu", 3906 ztest_opts.zo_pool, (u_longlong_t)id); 3907 3908 /* 3909 * If this dataset exists from a previous run, process its replay log 3910 * half of the time. If we don't replay it, then dmu_objset_destroy() 3911 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3912 */ 3913 if (ztest_random(2) == 0 && 3914 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, 3915 B_TRUE, FTAG, &os) == 0) { 3916 ztest_zd_init(&zdtmp, NULL, os); 3917 zil_replay(os, &zdtmp, ztest_replay_vector); 3918 ztest_zd_fini(&zdtmp); 3919 dmu_objset_disown(os, B_TRUE, FTAG); 3920 } 3921 3922 /* 3923 * There may be an old instance of the dataset we're about to 3924 * create lying around from a previous run. If so, destroy it 3925 * and all of its snapshots. 3926 */ 3927 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3928 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3929 3930 /* 3931 * Verify that the destroyed dataset is no longer in the namespace. 3932 */ 3933 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3934 B_TRUE, FTAG, &os)); 3935 3936 /* 3937 * Verify that we can create a new dataset. 3938 */ 3939 error = ztest_dataset_create(name); 3940 if (error) { 3941 if (error == ENOSPC) { 3942 ztest_record_enospc(FTAG); 3943 rw_exit(&ztest_name_lock); 3944 return; 3945 } 3946 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3947 } 3948 3949 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, 3950 FTAG, &os)); 3951 3952 ztest_zd_init(&zdtmp, NULL, os); 3953 3954 /* 3955 * Open the intent log for it. 3956 */ 3957 zilog = zil_open(os, ztest_get_data); 3958 3959 /* 3960 * Put some objects in there, do a little I/O to them, 3961 * and randomly take a couple of snapshots along the way. 3962 */ 3963 iters = ztest_random(5); 3964 for (int i = 0; i < iters; i++) { 3965 ztest_dmu_object_alloc_free(&zdtmp, id); 3966 if (ztest_random(iters) == 0) 3967 (void) ztest_snapshot_create(name, i); 3968 } 3969 3970 /* 3971 * Verify that we cannot create an existing dataset. 3972 */ 3973 VERIFY3U(EEXIST, ==, 3974 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL)); 3975 3976 /* 3977 * Verify that we can hold an objset that is also owned. 3978 */ 3979 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3980 dmu_objset_rele(os2, FTAG); 3981 3982 /* 3983 * Verify that we cannot own an objset that is already owned. 3984 */ 3985 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, 3986 B_FALSE, B_TRUE, FTAG, &os2)); 3987 3988 zil_close(zilog); 3989 dmu_objset_disown(os, B_TRUE, FTAG); 3990 ztest_zd_fini(&zdtmp); 3991 3992 rw_exit(&ztest_name_lock); 3993 } 3994 3995 /* 3996 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3997 */ 3998 void 3999 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 4000 { 4001 rw_enter(&ztest_name_lock, RW_READER); 4002 (void) ztest_snapshot_destroy(zd->zd_name, id); 4003 (void) ztest_snapshot_create(zd->zd_name, id); 4004 rw_exit(&ztest_name_lock); 4005 } 4006 4007 /* 4008 * Cleanup non-standard snapshots and clones. 4009 */ 4010 void 4011 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 4012 { 4013 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 4014 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 4015 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 4016 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 4017 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 4018 int error; 4019 4020 (void) snprintf(snap1name, sizeof (snap1name), 4021 "%s@s1_%llu", osname, id); 4022 (void) snprintf(clone1name, sizeof (clone1name), 4023 "%s/c1_%llu", osname, id); 4024 (void) snprintf(snap2name, sizeof (snap2name), 4025 "%s@s2_%llu", clone1name, id); 4026 (void) snprintf(clone2name, sizeof (clone2name), 4027 "%s/c2_%llu", osname, id); 4028 (void) snprintf(snap3name, sizeof (snap3name), 4029 "%s@s3_%llu", clone1name, id); 4030 4031 error = dsl_destroy_head(clone2name); 4032 if (error && error != ENOENT) 4033 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 4034 error = dsl_destroy_snapshot(snap3name, B_FALSE); 4035 if (error && error != ENOENT) 4036 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 4037 error = dsl_destroy_snapshot(snap2name, B_FALSE); 4038 if (error && error != ENOENT) 4039 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 4040 error = dsl_destroy_head(clone1name); 4041 if (error && error != ENOENT) 4042 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 4043 error = dsl_destroy_snapshot(snap1name, B_FALSE); 4044 if (error && error != ENOENT) 4045 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 4046 } 4047 4048 /* 4049 * Verify dsl_dataset_promote handles EBUSY 4050 */ 4051 void 4052 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 4053 { 4054 objset_t *os; 4055 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 4056 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 4057 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 4058 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 4059 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 4060 char *osname = zd->zd_name; 4061 int error; 4062 4063 rw_enter(&ztest_name_lock, RW_READER); 4064 4065 ztest_dsl_dataset_cleanup(osname, id); 4066 4067 (void) snprintf(snap1name, sizeof (snap1name), 4068 "%s@s1_%llu", osname, id); 4069 (void) snprintf(clone1name, sizeof (clone1name), 4070 "%s/c1_%llu", osname, id); 4071 (void) snprintf(snap2name, sizeof (snap2name), 4072 "%s@s2_%llu", clone1name, id); 4073 (void) snprintf(clone2name, sizeof (clone2name), 4074 "%s/c2_%llu", osname, id); 4075 (void) snprintf(snap3name, sizeof (snap3name), 4076 "%s@s3_%llu", clone1name, id); 4077 4078 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 4079 if (error && error != EEXIST) { 4080 if (error == ENOSPC) { 4081 ztest_record_enospc(FTAG); 4082 goto out; 4083 } 4084 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 4085 } 4086 4087 error = dmu_objset_clone(clone1name, snap1name); 4088 if (error) { 4089 if (error == ENOSPC) { 4090 ztest_record_enospc(FTAG); 4091 goto out; 4092 } 4093 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 4094 } 4095 4096 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 4097 if (error && error != EEXIST) { 4098 if (error == ENOSPC) { 4099 ztest_record_enospc(FTAG); 4100 goto out; 4101 } 4102 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 4103 } 4104 4105 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 4106 if (error && error != EEXIST) { 4107 if (error == ENOSPC) { 4108 ztest_record_enospc(FTAG); 4109 goto out; 4110 } 4111 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 4112 } 4113 4114 error = dmu_objset_clone(clone2name, snap3name); 4115 if (error) { 4116 if (error == ENOSPC) { 4117 ztest_record_enospc(FTAG); 4118 goto out; 4119 } 4120 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 4121 } 4122 4123 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE, 4124 FTAG, &os); 4125 if (error) 4126 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 4127 error = dsl_dataset_promote(clone2name, NULL); 4128 if (error == ENOSPC) { 4129 dmu_objset_disown(os, B_TRUE, FTAG); 4130 ztest_record_enospc(FTAG); 4131 goto out; 4132 } 4133 if (error != EBUSY) 4134 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 4135 error); 4136 dmu_objset_disown(os, B_TRUE, FTAG); 4137 4138 out: 4139 ztest_dsl_dataset_cleanup(osname, id); 4140 4141 rw_exit(&ztest_name_lock); 4142 } 4143 4144 /* 4145 * Verify that dmu_object_{alloc,free} work as expected. 4146 */ 4147 void 4148 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 4149 { 4150 ztest_od_t od[4]; 4151 int batchsize = sizeof (od) / sizeof (od[0]); 4152 4153 for (int b = 0; b < batchsize; b++) { 4154 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 4155 0, 0, 0); 4156 } 4157 4158 /* 4159 * Destroy the previous batch of objects, create a new batch, 4160 * and do some I/O on the new objects. 4161 */ 4162 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 4163 return; 4164 4165 while (ztest_random(4 * batchsize) != 0) 4166 ztest_io(zd, od[ztest_random(batchsize)].od_object, 4167 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4168 } 4169 4170 /* 4171 * Rewind the global allocator to verify object allocation backfilling. 4172 */ 4173 void 4174 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id) 4175 { 4176 objset_t *os = zd->zd_os; 4177 int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift; 4178 uint64_t object; 4179 4180 /* 4181 * Rewind the global allocator randomly back to a lower object number 4182 * to force backfilling and reclamation of recently freed dnodes. 4183 */ 4184 mutex_enter(&os->os_obj_lock); 4185 object = ztest_random(os->os_obj_next_chunk); 4186 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk); 4187 mutex_exit(&os->os_obj_lock); 4188 } 4189 4190 /* 4191 * Verify that dmu_{read,write} work as expected. 4192 */ 4193 void 4194 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 4195 { 4196 objset_t *os = zd->zd_os; 4197 ztest_od_t od[2]; 4198 dmu_tx_t *tx; 4199 int i, freeit, error; 4200 uint64_t n, s, txg; 4201 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 4202 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 4203 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 4204 uint64_t regions = 997; 4205 uint64_t stride = 123456789ULL; 4206 uint64_t width = 40; 4207 int free_percent = 5; 4208 4209 /* 4210 * This test uses two objects, packobj and bigobj, that are always 4211 * updated together (i.e. in the same tx) so that their contents are 4212 * in sync and can be compared. Their contents relate to each other 4213 * in a simple way: packobj is a dense array of 'bufwad' structures, 4214 * while bigobj is a sparse array of the same bufwads. Specifically, 4215 * for any index n, there are three bufwads that should be identical: 4216 * 4217 * packobj, at offset n * sizeof (bufwad_t) 4218 * bigobj, at the head of the nth chunk 4219 * bigobj, at the tail of the nth chunk 4220 * 4221 * The chunk size is arbitrary. It doesn't have to be a power of two, 4222 * and it doesn't have any relation to the object blocksize. 4223 * The only requirement is that it can hold at least two bufwads. 4224 * 4225 * Normally, we write the bufwad to each of these locations. 4226 * However, free_percent of the time we instead write zeroes to 4227 * packobj and perform a dmu_free_range() on bigobj. By comparing 4228 * bigobj to packobj, we can verify that the DMU is correctly 4229 * tracking which parts of an object are allocated and free, 4230 * and that the contents of the allocated blocks are correct. 4231 */ 4232 4233 /* 4234 * Read the directory info. If it's the first time, set things up. 4235 */ 4236 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 4237 chunksize); 4238 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, 4239 chunksize); 4240 4241 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4242 return; 4243 4244 bigobj = od[0].od_object; 4245 packobj = od[1].od_object; 4246 chunksize = od[0].od_gen; 4247 ASSERT(chunksize == od[1].od_gen); 4248 4249 /* 4250 * Prefetch a random chunk of the big object. 4251 * Our aim here is to get some async reads in flight 4252 * for blocks that we may free below; the DMU should 4253 * handle this race correctly. 4254 */ 4255 n = ztest_random(regions) * stride + ztest_random(width); 4256 s = 1 + ztest_random(2 * width - 1); 4257 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 4258 ZIO_PRIORITY_SYNC_READ); 4259 4260 /* 4261 * Pick a random index and compute the offsets into packobj and bigobj. 4262 */ 4263 n = ztest_random(regions) * stride + ztest_random(width); 4264 s = 1 + ztest_random(width - 1); 4265 4266 packoff = n * sizeof (bufwad_t); 4267 packsize = s * sizeof (bufwad_t); 4268 4269 bigoff = n * chunksize; 4270 bigsize = s * chunksize; 4271 4272 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 4273 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 4274 4275 /* 4276 * free_percent of the time, free a range of bigobj rather than 4277 * overwriting it. 4278 */ 4279 freeit = (ztest_random(100) < free_percent); 4280 4281 /* 4282 * Read the current contents of our objects. 4283 */ 4284 error = dmu_read(os, packobj, packoff, packsize, packbuf, 4285 DMU_READ_PREFETCH); 4286 ASSERT0(error); 4287 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 4288 DMU_READ_PREFETCH); 4289 ASSERT0(error); 4290 4291 /* 4292 * Get a tx for the mods to both packobj and bigobj. 4293 */ 4294 tx = dmu_tx_create(os); 4295 4296 dmu_tx_hold_write(tx, packobj, packoff, packsize); 4297 4298 if (freeit) 4299 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 4300 else 4301 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 4302 4303 /* This accounts for setting the checksum/compression. */ 4304 dmu_tx_hold_bonus(tx, bigobj); 4305 4306 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4307 if (txg == 0) { 4308 umem_free(packbuf, packsize); 4309 umem_free(bigbuf, bigsize); 4310 return; 4311 } 4312 4313 enum zio_checksum cksum; 4314 do { 4315 cksum = (enum zio_checksum) 4316 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 4317 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 4318 dmu_object_set_checksum(os, bigobj, cksum, tx); 4319 4320 enum zio_compress comp; 4321 do { 4322 comp = (enum zio_compress) 4323 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 4324 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 4325 dmu_object_set_compress(os, bigobj, comp, tx); 4326 4327 /* 4328 * For each index from n to n + s, verify that the existing bufwad 4329 * in packobj matches the bufwads at the head and tail of the 4330 * corresponding chunk in bigobj. Then update all three bufwads 4331 * with the new values we want to write out. 4332 */ 4333 for (i = 0; i < s; i++) { 4334 /* LINTED */ 4335 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 4336 /* LINTED */ 4337 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 4338 /* LINTED */ 4339 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 4340 4341 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 4342 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 4343 4344 if (pack->bw_txg > txg) 4345 fatal(0, "future leak: got %llx, open txg is %llx", 4346 pack->bw_txg, txg); 4347 4348 if (pack->bw_data != 0 && pack->bw_index != n + i) 4349 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 4350 pack->bw_index, n, i); 4351 4352 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 4353 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 4354 4355 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 4356 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 4357 4358 if (freeit) { 4359 bzero(pack, sizeof (bufwad_t)); 4360 } else { 4361 pack->bw_index = n + i; 4362 pack->bw_txg = txg; 4363 pack->bw_data = 1 + ztest_random(-2ULL); 4364 } 4365 *bigH = *pack; 4366 *bigT = *pack; 4367 } 4368 4369 /* 4370 * We've verified all the old bufwads, and made new ones. 4371 * Now write them out. 4372 */ 4373 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 4374 4375 if (freeit) { 4376 if (ztest_opts.zo_verbose >= 7) { 4377 (void) printf("freeing offset %llx size %llx" 4378 " txg %llx\n", 4379 (u_longlong_t)bigoff, 4380 (u_longlong_t)bigsize, 4381 (u_longlong_t)txg); 4382 } 4383 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 4384 } else { 4385 if (ztest_opts.zo_verbose >= 7) { 4386 (void) printf("writing offset %llx size %llx" 4387 " txg %llx\n", 4388 (u_longlong_t)bigoff, 4389 (u_longlong_t)bigsize, 4390 (u_longlong_t)txg); 4391 } 4392 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 4393 } 4394 4395 dmu_tx_commit(tx); 4396 4397 /* 4398 * Sanity check the stuff we just wrote. 4399 */ 4400 { 4401 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4402 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4403 4404 VERIFY(0 == dmu_read(os, packobj, packoff, 4405 packsize, packcheck, DMU_READ_PREFETCH)); 4406 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4407 bigsize, bigcheck, DMU_READ_PREFETCH)); 4408 4409 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4410 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4411 4412 umem_free(packcheck, packsize); 4413 umem_free(bigcheck, bigsize); 4414 } 4415 4416 umem_free(packbuf, packsize); 4417 umem_free(bigbuf, bigsize); 4418 } 4419 4420 void 4421 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 4422 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 4423 { 4424 uint64_t i; 4425 bufwad_t *pack; 4426 bufwad_t *bigH; 4427 bufwad_t *bigT; 4428 4429 /* 4430 * For each index from n to n + s, verify that the existing bufwad 4431 * in packobj matches the bufwads at the head and tail of the 4432 * corresponding chunk in bigobj. Then update all three bufwads 4433 * with the new values we want to write out. 4434 */ 4435 for (i = 0; i < s; i++) { 4436 /* LINTED */ 4437 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 4438 /* LINTED */ 4439 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 4440 /* LINTED */ 4441 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 4442 4443 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 4444 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 4445 4446 if (pack->bw_txg > txg) 4447 fatal(0, "future leak: got %llx, open txg is %llx", 4448 pack->bw_txg, txg); 4449 4450 if (pack->bw_data != 0 && pack->bw_index != n + i) 4451 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 4452 pack->bw_index, n, i); 4453 4454 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 4455 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 4456 4457 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 4458 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 4459 4460 pack->bw_index = n + i; 4461 pack->bw_txg = txg; 4462 pack->bw_data = 1 + ztest_random(-2ULL); 4463 4464 *bigH = *pack; 4465 *bigT = *pack; 4466 } 4467 } 4468 4469 void 4470 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 4471 { 4472 objset_t *os = zd->zd_os; 4473 ztest_od_t od[2]; 4474 dmu_tx_t *tx; 4475 uint64_t i; 4476 int error; 4477 uint64_t n, s, txg; 4478 bufwad_t *packbuf, *bigbuf; 4479 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 4480 uint64_t blocksize = ztest_random_blocksize(); 4481 uint64_t chunksize = blocksize; 4482 uint64_t regions = 997; 4483 uint64_t stride = 123456789ULL; 4484 uint64_t width = 9; 4485 dmu_buf_t *bonus_db; 4486 arc_buf_t **bigbuf_arcbufs; 4487 dmu_object_info_t doi; 4488 4489 /* 4490 * This test uses two objects, packobj and bigobj, that are always 4491 * updated together (i.e. in the same tx) so that their contents are 4492 * in sync and can be compared. Their contents relate to each other 4493 * in a simple way: packobj is a dense array of 'bufwad' structures, 4494 * while bigobj is a sparse array of the same bufwads. Specifically, 4495 * for any index n, there are three bufwads that should be identical: 4496 * 4497 * packobj, at offset n * sizeof (bufwad_t) 4498 * bigobj, at the head of the nth chunk 4499 * bigobj, at the tail of the nth chunk 4500 * 4501 * The chunk size is set equal to bigobj block size so that 4502 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates. 4503 */ 4504 4505 /* 4506 * Read the directory info. If it's the first time, set things up. 4507 */ 4508 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 4509 0, 0); 4510 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, 4511 chunksize); 4512 4513 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4514 return; 4515 4516 bigobj = od[0].od_object; 4517 packobj = od[1].od_object; 4518 blocksize = od[0].od_blocksize; 4519 chunksize = blocksize; 4520 ASSERT(chunksize == od[1].od_gen); 4521 4522 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 4523 VERIFY(ISP2(doi.doi_data_block_size)); 4524 VERIFY(chunksize == doi.doi_data_block_size); 4525 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 4526 4527 /* 4528 * Pick a random index and compute the offsets into packobj and bigobj. 4529 */ 4530 n = ztest_random(regions) * stride + ztest_random(width); 4531 s = 1 + ztest_random(width - 1); 4532 4533 packoff = n * sizeof (bufwad_t); 4534 packsize = s * sizeof (bufwad_t); 4535 4536 bigoff = n * chunksize; 4537 bigsize = s * chunksize; 4538 4539 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 4540 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 4541 4542 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 4543 4544 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 4545 4546 /* 4547 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 4548 * Iteration 1 test zcopy to already referenced dbufs. 4549 * Iteration 2 test zcopy to dirty dbuf in the same txg. 4550 * Iteration 3 test zcopy to dbuf dirty in previous txg. 4551 * Iteration 4 test zcopy when dbuf is no longer dirty. 4552 * Iteration 5 test zcopy when it can't be done. 4553 * Iteration 6 one more zcopy write. 4554 */ 4555 for (i = 0; i < 7; i++) { 4556 uint64_t j; 4557 uint64_t off; 4558 4559 /* 4560 * In iteration 5 (i == 5) use arcbufs 4561 * that don't match bigobj blksz to test 4562 * dmu_assign_arcbuf_by_dbuf() when it can't directly 4563 * assign an arcbuf to a dbuf. 4564 */ 4565 for (j = 0; j < s; j++) { 4566 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4567 bigbuf_arcbufs[j] = 4568 dmu_request_arcbuf(bonus_db, chunksize); 4569 } else { 4570 bigbuf_arcbufs[2 * j] = 4571 dmu_request_arcbuf(bonus_db, chunksize / 2); 4572 bigbuf_arcbufs[2 * j + 1] = 4573 dmu_request_arcbuf(bonus_db, chunksize / 2); 4574 } 4575 } 4576 4577 /* 4578 * Get a tx for the mods to both packobj and bigobj. 4579 */ 4580 tx = dmu_tx_create(os); 4581 4582 dmu_tx_hold_write(tx, packobj, packoff, packsize); 4583 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 4584 4585 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4586 if (txg == 0) { 4587 umem_free(packbuf, packsize); 4588 umem_free(bigbuf, bigsize); 4589 for (j = 0; j < s; j++) { 4590 if (i != 5 || 4591 chunksize < (SPA_MINBLOCKSIZE * 2)) { 4592 dmu_return_arcbuf(bigbuf_arcbufs[j]); 4593 } else { 4594 dmu_return_arcbuf( 4595 bigbuf_arcbufs[2 * j]); 4596 dmu_return_arcbuf( 4597 bigbuf_arcbufs[2 * j + 1]); 4598 } 4599 } 4600 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4601 dmu_buf_rele(bonus_db, FTAG); 4602 return; 4603 } 4604 4605 /* 4606 * 50% of the time don't read objects in the 1st iteration to 4607 * test dmu_assign_arcbuf_by_dbuf() for the case when there are 4608 * no existing dbufs for the specified offsets. 4609 */ 4610 if (i != 0 || ztest_random(2) != 0) { 4611 error = dmu_read(os, packobj, packoff, 4612 packsize, packbuf, DMU_READ_PREFETCH); 4613 ASSERT0(error); 4614 error = dmu_read(os, bigobj, bigoff, bigsize, 4615 bigbuf, DMU_READ_PREFETCH); 4616 ASSERT0(error); 4617 } 4618 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 4619 n, chunksize, txg); 4620 4621 /* 4622 * We've verified all the old bufwads, and made new ones. 4623 * Now write them out. 4624 */ 4625 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 4626 if (ztest_opts.zo_verbose >= 7) { 4627 (void) printf("writing offset %llx size %llx" 4628 " txg %llx\n", 4629 (u_longlong_t)bigoff, 4630 (u_longlong_t)bigsize, 4631 (u_longlong_t)txg); 4632 } 4633 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 4634 dmu_buf_t *dbt; 4635 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4636 bcopy((caddr_t)bigbuf + (off - bigoff), 4637 bigbuf_arcbufs[j]->b_data, chunksize); 4638 } else { 4639 bcopy((caddr_t)bigbuf + (off - bigoff), 4640 bigbuf_arcbufs[2 * j]->b_data, 4641 chunksize / 2); 4642 bcopy((caddr_t)bigbuf + (off - bigoff) + 4643 chunksize / 2, 4644 bigbuf_arcbufs[2 * j + 1]->b_data, 4645 chunksize / 2); 4646 } 4647 4648 if (i == 1) { 4649 VERIFY(dmu_buf_hold(os, bigobj, off, 4650 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 4651 } 4652 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4653 dmu_assign_arcbuf_by_dbuf(bonus_db, off, 4654 bigbuf_arcbufs[j], tx); 4655 } else { 4656 dmu_assign_arcbuf_by_dbuf(bonus_db, off, 4657 bigbuf_arcbufs[2 * j], tx); 4658 dmu_assign_arcbuf_by_dbuf(bonus_db, 4659 off + chunksize / 2, 4660 bigbuf_arcbufs[2 * j + 1], tx); 4661 } 4662 if (i == 1) { 4663 dmu_buf_rele(dbt, FTAG); 4664 } 4665 } 4666 dmu_tx_commit(tx); 4667 4668 /* 4669 * Sanity check the stuff we just wrote. 4670 */ 4671 { 4672 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4673 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4674 4675 VERIFY(0 == dmu_read(os, packobj, packoff, 4676 packsize, packcheck, DMU_READ_PREFETCH)); 4677 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4678 bigsize, bigcheck, DMU_READ_PREFETCH)); 4679 4680 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4681 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4682 4683 umem_free(packcheck, packsize); 4684 umem_free(bigcheck, bigsize); 4685 } 4686 if (i == 2) { 4687 txg_wait_open(dmu_objset_pool(os), 0); 4688 } else if (i == 3) { 4689 txg_wait_synced(dmu_objset_pool(os), 0); 4690 } 4691 } 4692 4693 dmu_buf_rele(bonus_db, FTAG); 4694 umem_free(packbuf, packsize); 4695 umem_free(bigbuf, bigsize); 4696 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4697 } 4698 4699 /* ARGSUSED */ 4700 void 4701 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4702 { 4703 ztest_od_t od[1]; 4704 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4705 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4706 4707 /* 4708 * Have multiple threads write to large offsets in an object 4709 * to verify that parallel writes to an object -- even to the 4710 * same blocks within the object -- doesn't cause any trouble. 4711 */ 4712 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 4713 0, 0, 0); 4714 4715 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4716 return; 4717 4718 while (ztest_random(10) != 0) 4719 ztest_io(zd, od[0].od_object, offset); 4720 } 4721 4722 void 4723 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4724 { 4725 ztest_od_t od[1]; 4726 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4727 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4728 uint64_t count = ztest_random(20) + 1; 4729 uint64_t blocksize = ztest_random_blocksize(); 4730 void *data; 4731 4732 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 4733 0, 0); 4734 4735 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4736 return; 4737 4738 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4739 return; 4740 4741 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4742 4743 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4744 4745 while (ztest_random(count) != 0) { 4746 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4747 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4748 data) != 0) 4749 break; 4750 while (ztest_random(4) != 0) 4751 ztest_io(zd, od[0].od_object, randoff); 4752 } 4753 4754 umem_free(data, blocksize); 4755 } 4756 4757 /* 4758 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4759 */ 4760 #define ZTEST_ZAP_MIN_INTS 1 4761 #define ZTEST_ZAP_MAX_INTS 4 4762 #define ZTEST_ZAP_MAX_PROPS 1000 4763 4764 void 4765 ztest_zap(ztest_ds_t *zd, uint64_t id) 4766 { 4767 objset_t *os = zd->zd_os; 4768 ztest_od_t od[1]; 4769 uint64_t object; 4770 uint64_t txg, last_txg; 4771 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4772 uint64_t zl_ints, zl_intsize, prop; 4773 int i, ints; 4774 dmu_tx_t *tx; 4775 char propname[100], txgname[100]; 4776 int error; 4777 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4778 4779 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); 4780 4781 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4782 return; 4783 4784 object = od[0].od_object; 4785 4786 /* 4787 * Generate a known hash collision, and verify that 4788 * we can lookup and remove both entries. 4789 */ 4790 tx = dmu_tx_create(os); 4791 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4792 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4793 if (txg == 0) 4794 return; 4795 for (i = 0; i < 2; i++) { 4796 value[i] = i; 4797 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4798 1, &value[i], tx)); 4799 } 4800 for (i = 0; i < 2; i++) { 4801 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4802 sizeof (uint64_t), 1, &value[i], tx)); 4803 VERIFY3U(0, ==, 4804 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4805 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4806 ASSERT3U(zl_ints, ==, 1); 4807 } 4808 for (i = 0; i < 2; i++) { 4809 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4810 } 4811 dmu_tx_commit(tx); 4812 4813 /* 4814 * Generate a buch of random entries. 4815 */ 4816 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4817 4818 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4819 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4820 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4821 bzero(value, sizeof (value)); 4822 last_txg = 0; 4823 4824 /* 4825 * If these zap entries already exist, validate their contents. 4826 */ 4827 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4828 if (error == 0) { 4829 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4830 ASSERT3U(zl_ints, ==, 1); 4831 4832 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4833 zl_ints, &last_txg) == 0); 4834 4835 VERIFY(zap_length(os, object, propname, &zl_intsize, 4836 &zl_ints) == 0); 4837 4838 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4839 ASSERT3U(zl_ints, ==, ints); 4840 4841 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4842 zl_ints, value) == 0); 4843 4844 for (i = 0; i < ints; i++) { 4845 ASSERT3U(value[i], ==, last_txg + object + i); 4846 } 4847 } else { 4848 ASSERT3U(error, ==, ENOENT); 4849 } 4850 4851 /* 4852 * Atomically update two entries in our zap object. 4853 * The first is named txg_%llu, and contains the txg 4854 * in which the property was last updated. The second 4855 * is named prop_%llu, and the nth element of its value 4856 * should be txg + object + n. 4857 */ 4858 tx = dmu_tx_create(os); 4859 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4860 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4861 if (txg == 0) 4862 return; 4863 4864 if (last_txg > txg) 4865 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4866 4867 for (i = 0; i < ints; i++) 4868 value[i] = txg + object + i; 4869 4870 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4871 1, &txg, tx)); 4872 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4873 ints, value, tx)); 4874 4875 dmu_tx_commit(tx); 4876 4877 /* 4878 * Remove a random pair of entries. 4879 */ 4880 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4881 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4882 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4883 4884 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4885 4886 if (error == ENOENT) 4887 return; 4888 4889 ASSERT0(error); 4890 4891 tx = dmu_tx_create(os); 4892 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4893 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4894 if (txg == 0) 4895 return; 4896 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4897 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4898 dmu_tx_commit(tx); 4899 } 4900 4901 /* 4902 * Testcase to test the upgrading of a microzap to fatzap. 4903 */ 4904 void 4905 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4906 { 4907 objset_t *os = zd->zd_os; 4908 ztest_od_t od[1]; 4909 uint64_t object, txg; 4910 4911 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); 4912 4913 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4914 return; 4915 4916 object = od[0].od_object; 4917 4918 /* 4919 * Add entries to this ZAP and make sure it spills over 4920 * and gets upgraded to a fatzap. Also, since we are adding 4921 * 2050 entries we should see ptrtbl growth and leaf-block split. 4922 */ 4923 for (int i = 0; i < 2050; i++) { 4924 char name[ZFS_MAX_DATASET_NAME_LEN]; 4925 uint64_t value = i; 4926 dmu_tx_t *tx; 4927 int error; 4928 4929 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4930 id, value); 4931 4932 tx = dmu_tx_create(os); 4933 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4934 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4935 if (txg == 0) 4936 return; 4937 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4938 &value, tx); 4939 ASSERT(error == 0 || error == EEXIST); 4940 dmu_tx_commit(tx); 4941 } 4942 } 4943 4944 /* ARGSUSED */ 4945 void 4946 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4947 { 4948 objset_t *os = zd->zd_os; 4949 ztest_od_t od[1]; 4950 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4951 dmu_tx_t *tx; 4952 int i, namelen, error; 4953 int micro = ztest_random(2); 4954 char name[20], string_value[20]; 4955 void *data; 4956 4957 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 4958 0, 0, 0); 4959 4960 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4961 return; 4962 4963 object = od[0].od_object; 4964 4965 /* 4966 * Generate a random name of the form 'xxx.....' where each 4967 * x is a random printable character and the dots are dots. 4968 * There are 94 such characters, and the name length goes from 4969 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4970 */ 4971 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4972 4973 for (i = 0; i < 3; i++) 4974 name[i] = '!' + ztest_random('~' - '!' + 1); 4975 for (; i < namelen - 1; i++) 4976 name[i] = '.'; 4977 name[i] = '\0'; 4978 4979 if ((namelen & 1) || micro) { 4980 wsize = sizeof (txg); 4981 wc = 1; 4982 data = &txg; 4983 } else { 4984 wsize = 1; 4985 wc = namelen; 4986 data = string_value; 4987 } 4988 4989 count = -1ULL; 4990 VERIFY0(zap_count(os, object, &count)); 4991 ASSERT(count != -1ULL); 4992 4993 /* 4994 * Select an operation: length, lookup, add, update, remove. 4995 */ 4996 i = ztest_random(5); 4997 4998 if (i >= 2) { 4999 tx = dmu_tx_create(os); 5000 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 5001 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5002 if (txg == 0) 5003 return; 5004 bcopy(name, string_value, namelen); 5005 } else { 5006 tx = NULL; 5007 txg = 0; 5008 bzero(string_value, namelen); 5009 } 5010 5011 switch (i) { 5012 5013 case 0: 5014 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 5015 if (error == 0) { 5016 ASSERT3U(wsize, ==, zl_wsize); 5017 ASSERT3U(wc, ==, zl_wc); 5018 } else { 5019 ASSERT3U(error, ==, ENOENT); 5020 } 5021 break; 5022 5023 case 1: 5024 error = zap_lookup(os, object, name, wsize, wc, data); 5025 if (error == 0) { 5026 if (data == string_value && 5027 bcmp(name, data, namelen) != 0) 5028 fatal(0, "name '%s' != val '%s' len %d", 5029 name, data, namelen); 5030 } else { 5031 ASSERT3U(error, ==, ENOENT); 5032 } 5033 break; 5034 5035 case 2: 5036 error = zap_add(os, object, name, wsize, wc, data, tx); 5037 ASSERT(error == 0 || error == EEXIST); 5038 break; 5039 5040 case 3: 5041 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 5042 break; 5043 5044 case 4: 5045 error = zap_remove(os, object, name, tx); 5046 ASSERT(error == 0 || error == ENOENT); 5047 break; 5048 } 5049 5050 if (tx != NULL) 5051 dmu_tx_commit(tx); 5052 } 5053 5054 /* 5055 * Commit callback data. 5056 */ 5057 typedef struct ztest_cb_data { 5058 list_node_t zcd_node; 5059 uint64_t zcd_txg; 5060 int zcd_expected_err; 5061 boolean_t zcd_added; 5062 boolean_t zcd_called; 5063 spa_t *zcd_spa; 5064 } ztest_cb_data_t; 5065 5066 /* This is the actual commit callback function */ 5067 static void 5068 ztest_commit_callback(void *arg, int error) 5069 { 5070 ztest_cb_data_t *data = arg; 5071 uint64_t synced_txg; 5072 5073 VERIFY(data != NULL); 5074 VERIFY3S(data->zcd_expected_err, ==, error); 5075 VERIFY(!data->zcd_called); 5076 5077 synced_txg = spa_last_synced_txg(data->zcd_spa); 5078 if (data->zcd_txg > synced_txg) 5079 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 5080 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 5081 synced_txg); 5082 5083 data->zcd_called = B_TRUE; 5084 5085 if (error == ECANCELED) { 5086 ASSERT0(data->zcd_txg); 5087 ASSERT(!data->zcd_added); 5088 5089 /* 5090 * The private callback data should be destroyed here, but 5091 * since we are going to check the zcd_called field after 5092 * dmu_tx_abort(), we will destroy it there. 5093 */ 5094 return; 5095 } 5096 5097 /* Was this callback added to the global callback list? */ 5098 if (!data->zcd_added) 5099 goto out; 5100 5101 ASSERT3U(data->zcd_txg, !=, 0); 5102 5103 /* Remove our callback from the list */ 5104 mutex_enter(&zcl.zcl_callbacks_lock); 5105 list_remove(&zcl.zcl_callbacks, data); 5106 mutex_exit(&zcl.zcl_callbacks_lock); 5107 5108 out: 5109 umem_free(data, sizeof (ztest_cb_data_t)); 5110 } 5111 5112 /* Allocate and initialize callback data structure */ 5113 static ztest_cb_data_t * 5114 ztest_create_cb_data(objset_t *os, uint64_t txg) 5115 { 5116 ztest_cb_data_t *cb_data; 5117 5118 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 5119 5120 cb_data->zcd_txg = txg; 5121 cb_data->zcd_spa = dmu_objset_spa(os); 5122 5123 return (cb_data); 5124 } 5125 5126 /* 5127 * If a number of txgs equal to this threshold have been created after a commit 5128 * callback has been registered but not called, then we assume there is an 5129 * implementation bug. 5130 */ 5131 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 5132 5133 /* 5134 * Commit callback test. 5135 */ 5136 void 5137 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 5138 { 5139 objset_t *os = zd->zd_os; 5140 ztest_od_t od[1]; 5141 dmu_tx_t *tx; 5142 ztest_cb_data_t *cb_data[3], *tmp_cb; 5143 uint64_t old_txg, txg; 5144 int i, error; 5145 5146 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); 5147 5148 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5149 return; 5150 5151 tx = dmu_tx_create(os); 5152 5153 cb_data[0] = ztest_create_cb_data(os, 0); 5154 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 5155 5156 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 5157 5158 /* Every once in a while, abort the transaction on purpose */ 5159 if (ztest_random(100) == 0) 5160 error = -1; 5161 5162 if (!error) 5163 error = dmu_tx_assign(tx, TXG_NOWAIT); 5164 5165 txg = error ? 0 : dmu_tx_get_txg(tx); 5166 5167 cb_data[0]->zcd_txg = txg; 5168 cb_data[1] = ztest_create_cb_data(os, txg); 5169 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 5170 5171 if (error) { 5172 /* 5173 * It's not a strict requirement to call the registered 5174 * callbacks from inside dmu_tx_abort(), but that's what 5175 * it's supposed to happen in the current implementation 5176 * so we will check for that. 5177 */ 5178 for (i = 0; i < 2; i++) { 5179 cb_data[i]->zcd_expected_err = ECANCELED; 5180 VERIFY(!cb_data[i]->zcd_called); 5181 } 5182 5183 dmu_tx_abort(tx); 5184 5185 for (i = 0; i < 2; i++) { 5186 VERIFY(cb_data[i]->zcd_called); 5187 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 5188 } 5189 5190 return; 5191 } 5192 5193 cb_data[2] = ztest_create_cb_data(os, txg); 5194 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 5195 5196 /* 5197 * Read existing data to make sure there isn't a future leak. 5198 */ 5199 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 5200 &old_txg, DMU_READ_PREFETCH)); 5201 5202 if (old_txg > txg) 5203 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 5204 old_txg, txg); 5205 5206 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 5207 5208 mutex_enter(&zcl.zcl_callbacks_lock); 5209 5210 /* 5211 * Since commit callbacks don't have any ordering requirement and since 5212 * it is theoretically possible for a commit callback to be called 5213 * after an arbitrary amount of time has elapsed since its txg has been 5214 * synced, it is difficult to reliably determine whether a commit 5215 * callback hasn't been called due to high load or due to a flawed 5216 * implementation. 5217 * 5218 * In practice, we will assume that if after a certain number of txgs a 5219 * commit callback hasn't been called, then most likely there's an 5220 * implementation bug.. 5221 */ 5222 tmp_cb = list_head(&zcl.zcl_callbacks); 5223 if (tmp_cb != NULL && 5224 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 5225 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 5226 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 5227 } 5228 5229 /* 5230 * Let's find the place to insert our callbacks. 5231 * 5232 * Even though the list is ordered by txg, it is possible for the 5233 * insertion point to not be the end because our txg may already be 5234 * quiescing at this point and other callbacks in the open txg 5235 * (from other objsets) may have sneaked in. 5236 */ 5237 tmp_cb = list_tail(&zcl.zcl_callbacks); 5238 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 5239 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 5240 5241 /* Add the 3 callbacks to the list */ 5242 for (i = 0; i < 3; i++) { 5243 if (tmp_cb == NULL) 5244 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 5245 else 5246 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 5247 cb_data[i]); 5248 5249 cb_data[i]->zcd_added = B_TRUE; 5250 VERIFY(!cb_data[i]->zcd_called); 5251 5252 tmp_cb = cb_data[i]; 5253 } 5254 5255 mutex_exit(&zcl.zcl_callbacks_lock); 5256 5257 dmu_tx_commit(tx); 5258 } 5259 5260 /* 5261 * Visit each object in the dataset. Verify that its properties 5262 * are consistent what was stored in the block tag when it was created, 5263 * and that its unused bonus buffer space has not been overwritten. 5264 */ 5265 void 5266 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id) 5267 { 5268 objset_t *os = zd->zd_os; 5269 uint64_t obj; 5270 int err = 0; 5271 5272 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) { 5273 ztest_block_tag_t *bt = NULL; 5274 dmu_object_info_t doi; 5275 dmu_buf_t *db; 5276 5277 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) 5278 continue; 5279 5280 dmu_object_info_from_db(db, &doi); 5281 if (doi.doi_bonus_size >= sizeof (*bt)) 5282 bt = ztest_bt_bonus(db); 5283 5284 if (bt && bt->bt_magic == BT_MAGIC) { 5285 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize, 5286 bt->bt_offset, bt->bt_gen, bt->bt_txg, 5287 bt->bt_crtxg); 5288 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen); 5289 } 5290 5291 dmu_buf_rele(db, FTAG); 5292 } 5293 } 5294 5295 /* ARGSUSED */ 5296 void 5297 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 5298 { 5299 zfs_prop_t proplist[] = { 5300 ZFS_PROP_CHECKSUM, 5301 ZFS_PROP_COMPRESSION, 5302 ZFS_PROP_COPIES, 5303 ZFS_PROP_DEDUP 5304 }; 5305 5306 rw_enter(&ztest_name_lock, RW_READER); 5307 5308 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 5309 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 5310 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 5311 5312 rw_exit(&ztest_name_lock); 5313 } 5314 5315 /* ARGSUSED */ 5316 void 5317 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id) 5318 { 5319 rw_enter(&ztest_name_lock, RW_READER); 5320 5321 int error = dmu_objset_remap_indirects(zd->zd_name); 5322 if (error == ENOSPC) 5323 error = 0; 5324 ASSERT0(error); 5325 5326 rw_exit(&ztest_name_lock); 5327 } 5328 5329 /* ARGSUSED */ 5330 void 5331 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 5332 { 5333 nvlist_t *props = NULL; 5334 5335 rw_enter(&ztest_name_lock, RW_READER); 5336 5337 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 5338 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 5339 5340 VERIFY0(spa_prop_get(ztest_spa, &props)); 5341 5342 if (ztest_opts.zo_verbose >= 6) 5343 dump_nvlist(props, 4); 5344 5345 nvlist_free(props); 5346 5347 rw_exit(&ztest_name_lock); 5348 } 5349 5350 static int 5351 user_release_one(const char *snapname, const char *holdname) 5352 { 5353 nvlist_t *snaps, *holds; 5354 int error; 5355 5356 snaps = fnvlist_alloc(); 5357 holds = fnvlist_alloc(); 5358 fnvlist_add_boolean(holds, holdname); 5359 fnvlist_add_nvlist(snaps, snapname, holds); 5360 fnvlist_free(holds); 5361 error = dsl_dataset_user_release(snaps, NULL); 5362 fnvlist_free(snaps); 5363 return (error); 5364 } 5365 5366 /* 5367 * Test snapshot hold/release and deferred destroy. 5368 */ 5369 void 5370 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 5371 { 5372 int error; 5373 objset_t *os = zd->zd_os; 5374 objset_t *origin; 5375 char snapname[100]; 5376 char fullname[100]; 5377 char clonename[100]; 5378 char tag[100]; 5379 char osname[ZFS_MAX_DATASET_NAME_LEN]; 5380 nvlist_t *holds; 5381 5382 rw_enter(&ztest_name_lock, RW_READER); 5383 5384 dmu_objset_name(os, osname); 5385 5386 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 5387 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 5388 (void) snprintf(clonename, sizeof (clonename), 5389 "%s/ch1_%llu", osname, id); 5390 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 5391 5392 /* 5393 * Clean up from any previous run. 5394 */ 5395 error = dsl_destroy_head(clonename); 5396 if (error != ENOENT) 5397 ASSERT0(error); 5398 error = user_release_one(fullname, tag); 5399 if (error != ESRCH && error != ENOENT) 5400 ASSERT0(error); 5401 error = dsl_destroy_snapshot(fullname, B_FALSE); 5402 if (error != ENOENT) 5403 ASSERT0(error); 5404 5405 /* 5406 * Create snapshot, clone it, mark snap for deferred destroy, 5407 * destroy clone, verify snap was also destroyed. 5408 */ 5409 error = dmu_objset_snapshot_one(osname, snapname); 5410 if (error) { 5411 if (error == ENOSPC) { 5412 ztest_record_enospc("dmu_objset_snapshot"); 5413 goto out; 5414 } 5415 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 5416 } 5417 5418 error = dmu_objset_clone(clonename, fullname); 5419 if (error) { 5420 if (error == ENOSPC) { 5421 ztest_record_enospc("dmu_objset_clone"); 5422 goto out; 5423 } 5424 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 5425 } 5426 5427 error = dsl_destroy_snapshot(fullname, B_TRUE); 5428 if (error) { 5429 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 5430 fullname, error); 5431 } 5432 5433 error = dsl_destroy_head(clonename); 5434 if (error) 5435 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 5436 5437 error = dmu_objset_hold(fullname, FTAG, &origin); 5438 if (error != ENOENT) 5439 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 5440 5441 /* 5442 * Create snapshot, add temporary hold, verify that we can't 5443 * destroy a held snapshot, mark for deferred destroy, 5444 * release hold, verify snapshot was destroyed. 5445 */ 5446 error = dmu_objset_snapshot_one(osname, snapname); 5447 if (error) { 5448 if (error == ENOSPC) { 5449 ztest_record_enospc("dmu_objset_snapshot"); 5450 goto out; 5451 } 5452 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 5453 } 5454 5455 holds = fnvlist_alloc(); 5456 fnvlist_add_string(holds, fullname, tag); 5457 error = dsl_dataset_user_hold(holds, 0, NULL); 5458 fnvlist_free(holds); 5459 5460 if (error == ENOSPC) { 5461 ztest_record_enospc("dsl_dataset_user_hold"); 5462 goto out; 5463 } else if (error) { 5464 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 5465 fullname, tag, error); 5466 } 5467 5468 error = dsl_destroy_snapshot(fullname, B_FALSE); 5469 if (error != EBUSY) { 5470 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 5471 fullname, error); 5472 } 5473 5474 error = dsl_destroy_snapshot(fullname, B_TRUE); 5475 if (error) { 5476 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 5477 fullname, error); 5478 } 5479 5480 error = user_release_one(fullname, tag); 5481 if (error) 5482 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 5483 5484 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 5485 5486 out: 5487 rw_exit(&ztest_name_lock); 5488 } 5489 5490 /* 5491 * Inject random faults into the on-disk data. 5492 */ 5493 /* ARGSUSED */ 5494 void 5495 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 5496 { 5497 ztest_shared_t *zs = ztest_shared; 5498 spa_t *spa = ztest_spa; 5499 int fd; 5500 uint64_t offset; 5501 uint64_t leaves; 5502 uint64_t bad = 0x1990c0ffeedecade; 5503 uint64_t top, leaf; 5504 char path0[MAXPATHLEN]; 5505 char pathrand[MAXPATHLEN]; 5506 size_t fsize; 5507 int bshift = SPA_MAXBLOCKSHIFT + 2; 5508 int iters = 1000; 5509 int maxfaults; 5510 int mirror_save; 5511 vdev_t *vd0 = NULL; 5512 uint64_t guid0 = 0; 5513 boolean_t islog = B_FALSE; 5514 5515 mutex_enter(&ztest_vdev_lock); 5516 5517 /* 5518 * Device removal is in progress, fault injection must be disabled 5519 * until it completes and the pool is scrubbed. The fault injection 5520 * strategy for damaging blocks does not take in to account evacuated 5521 * blocks which may have already been damaged. 5522 */ 5523 if (ztest_device_removal_active) { 5524 mutex_exit(&ztest_vdev_lock); 5525 return; 5526 } 5527 5528 maxfaults = MAXFAULTS(); 5529 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 5530 mirror_save = zs->zs_mirrors; 5531 mutex_exit(&ztest_vdev_lock); 5532 5533 ASSERT(leaves >= 1); 5534 5535 /* 5536 * Grab the name lock as reader. There are some operations 5537 * which don't like to have their vdevs changed while 5538 * they are in progress (i.e. spa_change_guid). Those 5539 * operations will have grabbed the name lock as writer. 5540 */ 5541 rw_enter(&ztest_name_lock, RW_READER); 5542 5543 /* 5544 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 5545 */ 5546 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5547 5548 if (ztest_random(2) == 0) { 5549 /* 5550 * Inject errors on a normal data device or slog device. 5551 */ 5552 top = ztest_random_vdev_top(spa, B_TRUE); 5553 leaf = ztest_random(leaves) + zs->zs_splits; 5554 5555 /* 5556 * Generate paths to the first leaf in this top-level vdev, 5557 * and to the random leaf we selected. We'll induce transient 5558 * write failures and random online/offline activity on leaf 0, 5559 * and we'll write random garbage to the randomly chosen leaf. 5560 */ 5561 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 5562 ztest_opts.zo_dir, ztest_opts.zo_pool, 5563 top * leaves + zs->zs_splits); 5564 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 5565 ztest_opts.zo_dir, ztest_opts.zo_pool, 5566 top * leaves + leaf); 5567 5568 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 5569 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 5570 islog = B_TRUE; 5571 5572 /* 5573 * If the top-level vdev needs to be resilvered 5574 * then we only allow faults on the device that is 5575 * resilvering. 5576 */ 5577 if (vd0 != NULL && maxfaults != 1 && 5578 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 5579 vd0->vdev_resilver_txg != 0)) { 5580 /* 5581 * Make vd0 explicitly claim to be unreadable, 5582 * or unwriteable, or reach behind its back 5583 * and close the underlying fd. We can do this if 5584 * maxfaults == 0 because we'll fail and reexecute, 5585 * and we can do it if maxfaults >= 2 because we'll 5586 * have enough redundancy. If maxfaults == 1, the 5587 * combination of this with injection of random data 5588 * corruption below exceeds the pool's fault tolerance. 5589 */ 5590 vdev_file_t *vf = vd0->vdev_tsd; 5591 5592 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", 5593 (long long)vd0->vdev_id, (int)maxfaults); 5594 5595 if (vf != NULL && ztest_random(3) == 0) { 5596 (void) close(vf->vf_vnode->v_fd); 5597 vf->vf_vnode->v_fd = -1; 5598 } else if (ztest_random(2) == 0) { 5599 vd0->vdev_cant_read = B_TRUE; 5600 } else { 5601 vd0->vdev_cant_write = B_TRUE; 5602 } 5603 guid0 = vd0->vdev_guid; 5604 } 5605 } else { 5606 /* 5607 * Inject errors on an l2cache device. 5608 */ 5609 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5610 5611 if (sav->sav_count == 0) { 5612 spa_config_exit(spa, SCL_STATE, FTAG); 5613 rw_exit(&ztest_name_lock); 5614 return; 5615 } 5616 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 5617 guid0 = vd0->vdev_guid; 5618 (void) strcpy(path0, vd0->vdev_path); 5619 (void) strcpy(pathrand, vd0->vdev_path); 5620 5621 leaf = 0; 5622 leaves = 1; 5623 maxfaults = INT_MAX; /* no limit on cache devices */ 5624 } 5625 5626 spa_config_exit(spa, SCL_STATE, FTAG); 5627 rw_exit(&ztest_name_lock); 5628 5629 /* 5630 * If we can tolerate two or more faults, or we're dealing 5631 * with a slog, randomly online/offline vd0. 5632 */ 5633 if ((maxfaults >= 2 || islog) && guid0 != 0) { 5634 if (ztest_random(10) < 6) { 5635 int flags = (ztest_random(2) == 0 ? 5636 ZFS_OFFLINE_TEMPORARY : 0); 5637 5638 /* 5639 * We have to grab the zs_name_lock as writer to 5640 * prevent a race between offlining a slog and 5641 * destroying a dataset. Offlining the slog will 5642 * grab a reference on the dataset which may cause 5643 * dmu_objset_destroy() to fail with EBUSY thus 5644 * leaving the dataset in an inconsistent state. 5645 */ 5646 if (islog) 5647 rw_enter(&ztest_name_lock, RW_WRITER); 5648 5649 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 5650 5651 if (islog) 5652 rw_exit(&ztest_name_lock); 5653 } else { 5654 /* 5655 * Ideally we would like to be able to randomly 5656 * call vdev_[on|off]line without holding locks 5657 * to force unpredictable failures but the side 5658 * effects of vdev_[on|off]line prevent us from 5659 * doing so. We grab the ztest_vdev_lock here to 5660 * prevent a race between injection testing and 5661 * aux_vdev removal. 5662 */ 5663 mutex_enter(&ztest_vdev_lock); 5664 (void) vdev_online(spa, guid0, 0, NULL); 5665 mutex_exit(&ztest_vdev_lock); 5666 } 5667 } 5668 5669 if (maxfaults == 0) 5670 return; 5671 5672 /* 5673 * We have at least single-fault tolerance, so inject data corruption. 5674 */ 5675 fd = open(pathrand, O_RDWR); 5676 5677 if (fd == -1) /* we hit a gap in the device namespace */ 5678 return; 5679 5680 fsize = lseek(fd, 0, SEEK_END); 5681 5682 while (--iters != 0) { 5683 /* 5684 * The offset must be chosen carefully to ensure that 5685 * we do not inject a given logical block with errors 5686 * on two different leaf devices, because ZFS can not 5687 * tolerate that (if maxfaults==1). 5688 * 5689 * We divide each leaf into chunks of size 5690 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 5691 * there is a series of ranges to which we can inject errors. 5692 * Each range can accept errors on only a single leaf vdev. 5693 * The error injection ranges are separated by ranges 5694 * which we will not inject errors on any device (DMZs). 5695 * Each DMZ must be large enough such that a single block 5696 * can not straddle it, so that a single block can not be 5697 * a target in two different injection ranges (on different 5698 * leaf vdevs). 5699 * 5700 * For example, with 3 leaves, each chunk looks like: 5701 * 0 to 32M: injection range for leaf 0 5702 * 32M to 64M: DMZ - no injection allowed 5703 * 64M to 96M: injection range for leaf 1 5704 * 96M to 128M: DMZ - no injection allowed 5705 * 128M to 160M: injection range for leaf 2 5706 * 160M to 192M: DMZ - no injection allowed 5707 */ 5708 offset = ztest_random(fsize / (leaves << bshift)) * 5709 (leaves << bshift) + (leaf << bshift) + 5710 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 5711 5712 /* 5713 * Only allow damage to the labels at one end of the vdev. 5714 * 5715 * If all labels are damaged, the device will be totally 5716 * inaccessible, which will result in loss of data, 5717 * because we also damage (parts of) the other side of 5718 * the mirror/raidz. 5719 * 5720 * Additionally, we will always have both an even and an 5721 * odd label, so that we can handle crashes in the 5722 * middle of vdev_config_sync(). 5723 */ 5724 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 5725 continue; 5726 5727 /* 5728 * The two end labels are stored at the "end" of the disk, but 5729 * the end of the disk (vdev_psize) is aligned to 5730 * sizeof (vdev_label_t). 5731 */ 5732 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 5733 if ((leaf & 1) == 1 && 5734 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 5735 continue; 5736 5737 mutex_enter(&ztest_vdev_lock); 5738 if (mirror_save != zs->zs_mirrors) { 5739 mutex_exit(&ztest_vdev_lock); 5740 (void) close(fd); 5741 return; 5742 } 5743 5744 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 5745 fatal(1, "can't inject bad word at 0x%llx in %s", 5746 offset, pathrand); 5747 5748 mutex_exit(&ztest_vdev_lock); 5749 5750 if (ztest_opts.zo_verbose >= 7) 5751 (void) printf("injected bad word into %s," 5752 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 5753 } 5754 5755 (void) close(fd); 5756 } 5757 5758 /* 5759 * Verify that DDT repair works as expected. 5760 */ 5761 void 5762 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5763 { 5764 ztest_shared_t *zs = ztest_shared; 5765 spa_t *spa = ztest_spa; 5766 objset_t *os = zd->zd_os; 5767 ztest_od_t od[1]; 5768 uint64_t object, blocksize, txg, pattern, psize; 5769 enum zio_checksum checksum = spa_dedup_checksum(spa); 5770 dmu_buf_t *db; 5771 dmu_tx_t *tx; 5772 abd_t *abd; 5773 blkptr_t blk; 5774 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5775 5776 blocksize = ztest_random_blocksize(); 5777 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5778 5779 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 5780 0, 0); 5781 5782 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5783 return; 5784 5785 /* 5786 * Take the name lock as writer to prevent anyone else from changing 5787 * the pool and dataset properies we need to maintain during this test. 5788 */ 5789 rw_enter(&ztest_name_lock, RW_WRITER); 5790 5791 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5792 B_FALSE) != 0 || 5793 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5794 B_FALSE) != 0) { 5795 rw_exit(&ztest_name_lock); 5796 return; 5797 } 5798 5799 dmu_objset_stats_t dds; 5800 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5801 dmu_objset_fast_stat(os, &dds); 5802 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5803 5804 object = od[0].od_object; 5805 blocksize = od[0].od_blocksize; 5806 pattern = zs->zs_guid ^ dds.dds_guid; 5807 5808 ASSERT(object != 0); 5809 5810 tx = dmu_tx_create(os); 5811 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5812 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5813 if (txg == 0) { 5814 rw_exit(&ztest_name_lock); 5815 return; 5816 } 5817 5818 /* 5819 * Write all the copies of our block. 5820 */ 5821 for (int i = 0; i < copies; i++) { 5822 uint64_t offset = i * blocksize; 5823 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5824 DMU_READ_NO_PREFETCH); 5825 if (error != 0) { 5826 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5827 os, (long long)object, (long long) offset, error); 5828 } 5829 ASSERT(db->db_offset == offset); 5830 ASSERT(db->db_size == blocksize); 5831 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5832 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5833 dmu_buf_will_fill(db, tx); 5834 ztest_pattern_set(db->db_data, db->db_size, pattern); 5835 dmu_buf_rele(db, FTAG); 5836 } 5837 5838 dmu_tx_commit(tx); 5839 txg_wait_synced(spa_get_dsl(spa), txg); 5840 5841 /* 5842 * Find out what block we got. 5843 */ 5844 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5845 DMU_READ_NO_PREFETCH)); 5846 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5847 dmu_buf_rele(db, FTAG); 5848 5849 /* 5850 * Damage the block. Dedup-ditto will save us when we read it later. 5851 */ 5852 psize = BP_GET_PSIZE(&blk); 5853 abd = abd_alloc_linear(psize, B_TRUE); 5854 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern); 5855 5856 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5857 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5858 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5859 5860 abd_free(abd); 5861 5862 rw_exit(&ztest_name_lock); 5863 } 5864 5865 /* 5866 * Scrub the pool. 5867 */ 5868 /* ARGSUSED */ 5869 void 5870 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5871 { 5872 spa_t *spa = ztest_spa; 5873 5874 /* 5875 * Scrub in progress by device removal. 5876 */ 5877 if (ztest_device_removal_active) 5878 return; 5879 5880 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5881 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5882 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5883 } 5884 5885 /* 5886 * Change the guid for the pool. 5887 */ 5888 /* ARGSUSED */ 5889 void 5890 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5891 { 5892 spa_t *spa = ztest_spa; 5893 uint64_t orig, load; 5894 int error; 5895 5896 if (ztest_opts.zo_mmp_test) 5897 return; 5898 5899 orig = spa_guid(spa); 5900 load = spa_load_guid(spa); 5901 5902 rw_enter(&ztest_name_lock, RW_WRITER); 5903 error = spa_change_guid(spa); 5904 rw_exit(&ztest_name_lock); 5905 5906 if (error != 0) 5907 return; 5908 5909 if (ztest_opts.zo_verbose >= 4) { 5910 (void) printf("Changed guid old %llu -> %llu\n", 5911 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5912 } 5913 5914 VERIFY3U(orig, !=, spa_guid(spa)); 5915 VERIFY3U(load, ==, spa_load_guid(spa)); 5916 } 5917 5918 static vdev_t * 5919 ztest_random_concrete_vdev_leaf(vdev_t *vd) 5920 { 5921 if (vd == NULL) 5922 return (NULL); 5923 5924 if (vd->vdev_children == 0) 5925 return (vd); 5926 5927 vdev_t *eligible[vd->vdev_children]; 5928 int eligible_idx = 0, i; 5929 for (i = 0; i < vd->vdev_children; i++) { 5930 vdev_t *cvd = vd->vdev_child[i]; 5931 if (cvd->vdev_top->vdev_removing) 5932 continue; 5933 if (cvd->vdev_children > 0 || 5934 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) { 5935 eligible[eligible_idx++] = cvd; 5936 } 5937 } 5938 VERIFY(eligible_idx > 0); 5939 5940 uint64_t child_no = ztest_random(eligible_idx); 5941 return (ztest_random_concrete_vdev_leaf(eligible[child_no])); 5942 } 5943 5944 /* ARGSUSED */ 5945 void 5946 ztest_initialize(ztest_ds_t *zd, uint64_t id) 5947 { 5948 spa_t *spa = ztest_spa; 5949 int error = 0; 5950 5951 mutex_enter(&ztest_vdev_lock); 5952 5953 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5954 5955 /* Random leaf vdev */ 5956 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); 5957 if (rand_vd == NULL) { 5958 spa_config_exit(spa, SCL_VDEV, FTAG); 5959 mutex_exit(&ztest_vdev_lock); 5960 return; 5961 } 5962 5963 /* 5964 * The random vdev we've selected may change as soon as we 5965 * drop the spa_config_lock. We create local copies of things 5966 * we're interested in. 5967 */ 5968 uint64_t guid = rand_vd->vdev_guid; 5969 char *path = strdup(rand_vd->vdev_path); 5970 boolean_t active = rand_vd->vdev_initialize_thread != NULL; 5971 5972 zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid); 5973 spa_config_exit(spa, SCL_VDEV, FTAG); 5974 5975 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS); 5976 error = spa_vdev_initialize(spa, guid, cmd); 5977 switch (cmd) { 5978 case POOL_INITIALIZE_CANCEL: 5979 if (ztest_opts.zo_verbose >= 4) { 5980 (void) printf("Cancel initialize %s", path); 5981 if (!active) 5982 (void) printf(" failed (no initialize active)"); 5983 (void) printf("\n"); 5984 } 5985 break; 5986 case POOL_INITIALIZE_DO: 5987 if (ztest_opts.zo_verbose >= 4) { 5988 (void) printf("Start initialize %s", path); 5989 if (active && error == 0) 5990 (void) printf(" failed (already active)"); 5991 else if (error != 0) 5992 (void) printf(" failed (error %d)", error); 5993 (void) printf("\n"); 5994 } 5995 break; 5996 case POOL_INITIALIZE_SUSPEND: 5997 if (ztest_opts.zo_verbose >= 4) { 5998 (void) printf("Suspend initialize %s", path); 5999 if (!active) 6000 (void) printf(" failed (no initialize active)"); 6001 (void) printf("\n"); 6002 } 6003 break; 6004 } 6005 free(path); 6006 mutex_exit(&ztest_vdev_lock); 6007 } 6008 6009 /* 6010 * Verify pool integrity by running zdb. 6011 */ 6012 static void 6013 ztest_run_zdb(char *pool) 6014 { 6015 int status; 6016 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 6017 char zbuf[1024]; 6018 char *bin; 6019 char *ztest; 6020 char *isa; 6021 int isalen; 6022 FILE *fp; 6023 6024 (void) realpath(getexecname(), zdb); 6025 6026 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 6027 bin = strstr(zdb, "/usr/bin/"); 6028 ztest = strstr(bin, "/ztest"); 6029 isa = bin + 8; 6030 isalen = ztest - isa; 6031 isa = strdup(isa); 6032 /* LINTED */ 6033 (void) sprintf(bin, 6034 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s " 6035 "-o zfs_reconstruct_indirect_combinations_max=65536 %s", 6036 isalen, 6037 isa, 6038 ztest_opts.zo_verbose >= 3 ? "s" : "", 6039 ztest_opts.zo_verbose >= 4 ? "v" : "", 6040 spa_config_path, 6041 pool); 6042 free(isa); 6043 6044 if (ztest_opts.zo_verbose >= 5) 6045 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 6046 6047 fp = popen(zdb, "r"); 6048 6049 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 6050 if (ztest_opts.zo_verbose >= 3) 6051 (void) printf("%s", zbuf); 6052 6053 status = pclose(fp); 6054 6055 if (status == 0) 6056 return; 6057 6058 ztest_dump_core = 0; 6059 if (WIFEXITED(status)) 6060 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 6061 else 6062 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 6063 } 6064 6065 static void 6066 ztest_walk_pool_directory(char *header) 6067 { 6068 spa_t *spa = NULL; 6069 6070 if (ztest_opts.zo_verbose >= 6) 6071 (void) printf("%s\n", header); 6072 6073 mutex_enter(&spa_namespace_lock); 6074 while ((spa = spa_next(spa)) != NULL) 6075 if (ztest_opts.zo_verbose >= 6) 6076 (void) printf("\t%s\n", spa_name(spa)); 6077 mutex_exit(&spa_namespace_lock); 6078 } 6079 6080 static void 6081 ztest_spa_import_export(char *oldname, char *newname) 6082 { 6083 nvlist_t *config, *newconfig; 6084 uint64_t pool_guid; 6085 spa_t *spa; 6086 int error; 6087 6088 if (ztest_opts.zo_verbose >= 4) { 6089 (void) printf("import/export: old = %s, new = %s\n", 6090 oldname, newname); 6091 } 6092 6093 /* 6094 * Clean up from previous runs. 6095 */ 6096 (void) spa_destroy(newname); 6097 6098 /* 6099 * Get the pool's configuration and guid. 6100 */ 6101 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 6102 6103 /* 6104 * Kick off a scrub to tickle scrub/export races. 6105 */ 6106 if (ztest_random(2) == 0) 6107 (void) spa_scan(spa, POOL_SCAN_SCRUB); 6108 6109 pool_guid = spa_guid(spa); 6110 spa_close(spa, FTAG); 6111 6112 ztest_walk_pool_directory("pools before export"); 6113 6114 /* 6115 * Export it. 6116 */ 6117 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 6118 6119 ztest_walk_pool_directory("pools after export"); 6120 6121 /* 6122 * Try to import it. 6123 */ 6124 newconfig = spa_tryimport(config); 6125 ASSERT(newconfig != NULL); 6126 nvlist_free(newconfig); 6127 6128 /* 6129 * Import it under the new name. 6130 */ 6131 error = spa_import(newname, config, NULL, 0); 6132 if (error != 0) { 6133 dump_nvlist(config, 0); 6134 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 6135 oldname, newname, error); 6136 } 6137 6138 ztest_walk_pool_directory("pools after import"); 6139 6140 /* 6141 * Try to import it again -- should fail with EEXIST. 6142 */ 6143 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 6144 6145 /* 6146 * Try to import it under a different name -- should fail with EEXIST. 6147 */ 6148 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 6149 6150 /* 6151 * Verify that the pool is no longer visible under the old name. 6152 */ 6153 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 6154 6155 /* 6156 * Verify that we can open and close the pool using the new name. 6157 */ 6158 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 6159 ASSERT(pool_guid == spa_guid(spa)); 6160 spa_close(spa, FTAG); 6161 6162 nvlist_free(config); 6163 } 6164 6165 static void 6166 ztest_resume(spa_t *spa) 6167 { 6168 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 6169 (void) printf("resuming from suspended state\n"); 6170 spa_vdev_state_enter(spa, SCL_NONE); 6171 vdev_clear(spa, NULL); 6172 (void) spa_vdev_state_exit(spa, NULL, 0); 6173 (void) zio_resume(spa); 6174 } 6175 6176 static void * 6177 ztest_resume_thread(void *arg) 6178 { 6179 spa_t *spa = arg; 6180 6181 while (!ztest_exiting) { 6182 if (spa_suspended(spa)) 6183 ztest_resume(spa); 6184 (void) poll(NULL, 0, 100); 6185 6186 /* 6187 * Periodically change the zfs_compressed_arc_enabled setting. 6188 */ 6189 if (ztest_random(10) == 0) 6190 zfs_compressed_arc_enabled = ztest_random(2); 6191 6192 /* 6193 * Periodically change the zfs_abd_scatter_enabled setting. 6194 */ 6195 if (ztest_random(10) == 0) 6196 zfs_abd_scatter_enabled = ztest_random(2); 6197 } 6198 return (NULL); 6199 } 6200 6201 static void * 6202 ztest_deadman_thread(void *arg) 6203 { 6204 ztest_shared_t *zs = arg; 6205 spa_t *spa = ztest_spa; 6206 hrtime_t delta, total = 0; 6207 6208 for (;;) { 6209 delta = zs->zs_thread_stop - zs->zs_thread_start + 6210 MSEC2NSEC(zfs_deadman_synctime_ms); 6211 6212 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 6213 6214 /* 6215 * If the pool is suspended then fail immediately. Otherwise, 6216 * check to see if the pool is making any progress. If 6217 * vdev_deadman() discovers that there hasn't been any recent 6218 * I/Os then it will end up aborting the tests. 6219 */ 6220 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 6221 fatal(0, "aborting test after %llu seconds because " 6222 "pool has transitioned to a suspended state.", 6223 zfs_deadman_synctime_ms / 1000); 6224 return (NULL); 6225 } 6226 vdev_deadman(spa->spa_root_vdev); 6227 6228 total += zfs_deadman_synctime_ms/1000; 6229 (void) printf("ztest has been running for %lld seconds\n", 6230 total); 6231 } 6232 } 6233 6234 static void 6235 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 6236 { 6237 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 6238 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 6239 hrtime_t functime = gethrtime(); 6240 6241 for (int i = 0; i < zi->zi_iters; i++) 6242 zi->zi_func(zd, id); 6243 6244 functime = gethrtime() - functime; 6245 6246 atomic_add_64(&zc->zc_count, 1); 6247 atomic_add_64(&zc->zc_time, functime); 6248 6249 if (ztest_opts.zo_verbose >= 4) { 6250 Dl_info dli; 6251 (void) dladdr((void *)zi->zi_func, &dli); 6252 (void) printf("%6.2f sec in %s\n", 6253 (double)functime / NANOSEC, dli.dli_sname); 6254 } 6255 } 6256 6257 static void * 6258 ztest_thread(void *arg) 6259 { 6260 int rand; 6261 uint64_t id = (uintptr_t)arg; 6262 ztest_shared_t *zs = ztest_shared; 6263 uint64_t call_next; 6264 hrtime_t now; 6265 ztest_info_t *zi; 6266 ztest_shared_callstate_t *zc; 6267 6268 while ((now = gethrtime()) < zs->zs_thread_stop) { 6269 /* 6270 * See if it's time to force a crash. 6271 */ 6272 if (now > zs->zs_thread_kill) 6273 ztest_kill(zs); 6274 6275 /* 6276 * If we're getting ENOSPC with some regularity, stop. 6277 */ 6278 if (zs->zs_enospc_count > 10) 6279 break; 6280 6281 /* 6282 * Pick a random function to execute. 6283 */ 6284 rand = ztest_random(ZTEST_FUNCS); 6285 zi = &ztest_info[rand]; 6286 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 6287 call_next = zc->zc_next; 6288 6289 if (now >= call_next && 6290 atomic_cas_64(&zc->zc_next, call_next, call_next + 6291 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 6292 ztest_execute(rand, zi, id); 6293 } 6294 } 6295 6296 return (NULL); 6297 } 6298 6299 static void 6300 ztest_dataset_name(char *dsname, char *pool, int d) 6301 { 6302 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 6303 } 6304 6305 static void 6306 ztest_dataset_destroy(int d) 6307 { 6308 char name[ZFS_MAX_DATASET_NAME_LEN]; 6309 6310 ztest_dataset_name(name, ztest_opts.zo_pool, d); 6311 6312 if (ztest_opts.zo_verbose >= 3) 6313 (void) printf("Destroying %s to free up space\n", name); 6314 6315 /* 6316 * Cleanup any non-standard clones and snapshots. In general, 6317 * ztest thread t operates on dataset (t % zopt_datasets), 6318 * so there may be more than one thing to clean up. 6319 */ 6320 for (int t = d; t < ztest_opts.zo_threads; 6321 t += ztest_opts.zo_datasets) { 6322 ztest_dsl_dataset_cleanup(name, t); 6323 } 6324 6325 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 6326 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 6327 } 6328 6329 static void 6330 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 6331 { 6332 uint64_t usedobjs, dirobjs, scratch; 6333 6334 /* 6335 * ZTEST_DIROBJ is the object directory for the entire dataset. 6336 * Therefore, the number of objects in use should equal the 6337 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 6338 * If not, we have an object leak. 6339 * 6340 * Note that we can only check this in ztest_dataset_open(), 6341 * when the open-context and syncing-context values agree. 6342 * That's because zap_count() returns the open-context value, 6343 * while dmu_objset_space() returns the rootbp fill count. 6344 */ 6345 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 6346 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 6347 ASSERT3U(dirobjs + 1, ==, usedobjs); 6348 } 6349 6350 static int 6351 ztest_dataset_open(int d) 6352 { 6353 ztest_ds_t *zd = &ztest_ds[d]; 6354 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 6355 objset_t *os; 6356 zilog_t *zilog; 6357 char name[ZFS_MAX_DATASET_NAME_LEN]; 6358 int error; 6359 6360 ztest_dataset_name(name, ztest_opts.zo_pool, d); 6361 6362 rw_enter(&ztest_name_lock, RW_READER); 6363 6364 error = ztest_dataset_create(name); 6365 if (error == ENOSPC) { 6366 rw_exit(&ztest_name_lock); 6367 ztest_record_enospc(FTAG); 6368 return (error); 6369 } 6370 ASSERT(error == 0 || error == EEXIST); 6371 6372 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, 6373 B_TRUE, zd, &os)); 6374 rw_exit(&ztest_name_lock); 6375 6376 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 6377 6378 zilog = zd->zd_zilog; 6379 6380 if (zilog->zl_header->zh_claim_lr_seq != 0 && 6381 zilog->zl_header->zh_claim_lr_seq < committed_seq) 6382 fatal(0, "missing log records: claimed %llu < committed %llu", 6383 zilog->zl_header->zh_claim_lr_seq, committed_seq); 6384 6385 ztest_dataset_dirobj_verify(zd); 6386 6387 zil_replay(os, zd, ztest_replay_vector); 6388 6389 ztest_dataset_dirobj_verify(zd); 6390 6391 if (ztest_opts.zo_verbose >= 6) 6392 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 6393 zd->zd_name, 6394 (u_longlong_t)zilog->zl_parse_blk_count, 6395 (u_longlong_t)zilog->zl_parse_lr_count, 6396 (u_longlong_t)zilog->zl_replaying_seq); 6397 6398 zilog = zil_open(os, ztest_get_data); 6399 6400 if (zilog->zl_replaying_seq != 0 && 6401 zilog->zl_replaying_seq < committed_seq) 6402 fatal(0, "missing log records: replayed %llu < committed %llu", 6403 zilog->zl_replaying_seq, committed_seq); 6404 6405 return (0); 6406 } 6407 6408 static void 6409 ztest_dataset_close(int d) 6410 { 6411 ztest_ds_t *zd = &ztest_ds[d]; 6412 6413 zil_close(zd->zd_zilog); 6414 dmu_objset_disown(zd->zd_os, B_TRUE, zd); 6415 6416 ztest_zd_fini(zd); 6417 } 6418 6419 /* 6420 * Kick off threads to run tests on all datasets in parallel. 6421 */ 6422 static void 6423 ztest_run(ztest_shared_t *zs) 6424 { 6425 thread_t *tid; 6426 spa_t *spa; 6427 objset_t *os; 6428 thread_t resume_tid; 6429 int error; 6430 6431 ztest_exiting = B_FALSE; 6432 6433 /* 6434 * Initialize parent/child shared state. 6435 */ 6436 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); 6437 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 6438 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 6439 6440 zs->zs_thread_start = gethrtime(); 6441 zs->zs_thread_stop = 6442 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 6443 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 6444 zs->zs_thread_kill = zs->zs_thread_stop; 6445 if (ztest_random(100) < ztest_opts.zo_killrate) { 6446 zs->zs_thread_kill -= 6447 ztest_random(ztest_opts.zo_passtime * NANOSEC); 6448 } 6449 6450 mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL); 6451 6452 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 6453 offsetof(ztest_cb_data_t, zcd_node)); 6454 6455 /* 6456 * Open our pool. 6457 */ 6458 kernel_init(FREAD | FWRITE); 6459 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6460 metaslab_preload_limit = ztest_random(20) + 1; 6461 ztest_spa = spa; 6462 6463 dmu_objset_stats_t dds; 6464 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool, 6465 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os)); 6466 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 6467 dmu_objset_fast_stat(os, &dds); 6468 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 6469 zs->zs_guid = dds.dds_guid; 6470 dmu_objset_disown(os, B_TRUE, FTAG); 6471 6472 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 6473 6474 /* 6475 * We don't expect the pool to suspend unless maxfaults == 0, 6476 * in which case ztest_fault_inject() temporarily takes away 6477 * the only valid replica. 6478 */ 6479 if (MAXFAULTS() == 0) 6480 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 6481 else 6482 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 6483 6484 /* 6485 * Create a thread to periodically resume suspended I/O. 6486 */ 6487 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 6488 &resume_tid) == 0); 6489 6490 /* 6491 * Create a deadman thread to abort() if we hang. 6492 */ 6493 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 6494 NULL) == 0); 6495 6496 /* 6497 * Verify that we can safely inquire about any object, 6498 * whether it's allocated or not. To make it interesting, 6499 * we probe a 5-wide window around each power of two. 6500 * This hits all edge cases, including zero and the max. 6501 */ 6502 for (int t = 0; t < 64; t++) { 6503 for (int d = -5; d <= 5; d++) { 6504 error = dmu_object_info(spa->spa_meta_objset, 6505 (1ULL << t) + d, NULL); 6506 ASSERT(error == 0 || error == ENOENT || 6507 error == EINVAL); 6508 } 6509 } 6510 6511 /* 6512 * If we got any ENOSPC errors on the previous run, destroy something. 6513 */ 6514 if (zs->zs_enospc_count != 0) { 6515 int d = ztest_random(ztest_opts.zo_datasets); 6516 ztest_dataset_destroy(d); 6517 } 6518 zs->zs_enospc_count = 0; 6519 6520 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 6521 UMEM_NOFAIL); 6522 6523 if (ztest_opts.zo_verbose >= 4) 6524 (void) printf("starting main threads...\n"); 6525 6526 /* 6527 * Kick off all the tests that run in parallel. 6528 */ 6529 for (int t = 0; t < ztest_opts.zo_threads; t++) { 6530 if (t < ztest_opts.zo_datasets && 6531 ztest_dataset_open(t) != 0) 6532 return; 6533 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 6534 THR_BOUND, &tid[t]) == 0); 6535 } 6536 6537 /* 6538 * Wait for all of the tests to complete. We go in reverse order 6539 * so we don't close datasets while threads are still using them. 6540 */ 6541 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 6542 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 6543 if (t < ztest_opts.zo_datasets) 6544 ztest_dataset_close(t); 6545 } 6546 6547 txg_wait_synced(spa_get_dsl(spa), 0); 6548 6549 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6550 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 6551 zfs_dbgmsg_print(FTAG); 6552 6553 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 6554 6555 /* Kill the resume thread */ 6556 ztest_exiting = B_TRUE; 6557 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 6558 ztest_resume(spa); 6559 6560 /* 6561 * Right before closing the pool, kick off a bunch of async I/O; 6562 * spa_close() should wait for it to complete. 6563 */ 6564 for (uint64_t object = 1; object < 50; object++) { 6565 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 6566 ZIO_PRIORITY_SYNC_READ); 6567 } 6568 6569 spa_close(spa, FTAG); 6570 6571 /* 6572 * Verify that we can loop over all pools. 6573 */ 6574 mutex_enter(&spa_namespace_lock); 6575 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 6576 if (ztest_opts.zo_verbose > 3) 6577 (void) printf("spa_next: found %s\n", spa_name(spa)); 6578 mutex_exit(&spa_namespace_lock); 6579 6580 /* 6581 * Verify that we can export the pool and reimport it under a 6582 * different name. 6583 */ 6584 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) { 6585 char name[ZFS_MAX_DATASET_NAME_LEN]; 6586 (void) snprintf(name, sizeof (name), "%s_import", 6587 ztest_opts.zo_pool); 6588 ztest_spa_import_export(ztest_opts.zo_pool, name); 6589 ztest_spa_import_export(name, ztest_opts.zo_pool); 6590 } 6591 6592 kernel_fini(); 6593 6594 list_destroy(&zcl.zcl_callbacks); 6595 6596 mutex_destroy(&zcl.zcl_callbacks_lock); 6597 6598 rw_destroy(&ztest_name_lock); 6599 mutex_destroy(&ztest_vdev_lock); 6600 mutex_destroy(&ztest_checkpoint_lock); 6601 } 6602 6603 static void 6604 ztest_freeze(void) 6605 { 6606 ztest_ds_t *zd = &ztest_ds[0]; 6607 spa_t *spa; 6608 int numloops = 0; 6609 6610 if (ztest_opts.zo_verbose >= 3) 6611 (void) printf("testing spa_freeze()...\n"); 6612 6613 kernel_init(FREAD | FWRITE); 6614 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6615 VERIFY3U(0, ==, ztest_dataset_open(0)); 6616 ztest_spa = spa; 6617 6618 /* 6619 * Force the first log block to be transactionally allocated. 6620 * We have to do this before we freeze the pool -- otherwise 6621 * the log chain won't be anchored. 6622 */ 6623 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 6624 ztest_dmu_object_alloc_free(zd, 0); 6625 zil_commit(zd->zd_zilog, 0); 6626 } 6627 6628 txg_wait_synced(spa_get_dsl(spa), 0); 6629 6630 /* 6631 * Freeze the pool. This stops spa_sync() from doing anything, 6632 * so that the only way to record changes from now on is the ZIL. 6633 */ 6634 spa_freeze(spa); 6635 6636 /* 6637 * Because it is hard to predict how much space a write will actually 6638 * require beforehand, we leave ourselves some fudge space to write over 6639 * capacity. 6640 */ 6641 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 6642 6643 /* 6644 * Run tests that generate log records but don't alter the pool config 6645 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 6646 * We do a txg_wait_synced() after each iteration to force the txg 6647 * to increase well beyond the last synced value in the uberblock. 6648 * The ZIL should be OK with that. 6649 * 6650 * Run a random number of times less than zo_maxloops and ensure we do 6651 * not run out of space on the pool. 6652 */ 6653 while (ztest_random(10) != 0 && 6654 numloops++ < ztest_opts.zo_maxloops && 6655 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 6656 ztest_od_t od; 6657 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); 6658 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 6659 ztest_io(zd, od.od_object, 6660 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 6661 txg_wait_synced(spa_get_dsl(spa), 0); 6662 } 6663 6664 /* 6665 * Commit all of the changes we just generated. 6666 */ 6667 zil_commit(zd->zd_zilog, 0); 6668 txg_wait_synced(spa_get_dsl(spa), 0); 6669 6670 /* 6671 * Close our dataset and close the pool. 6672 */ 6673 ztest_dataset_close(0); 6674 spa_close(spa, FTAG); 6675 kernel_fini(); 6676 6677 /* 6678 * Open and close the pool and dataset to induce log replay. 6679 */ 6680 kernel_init(FREAD | FWRITE); 6681 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6682 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 6683 VERIFY3U(0, ==, ztest_dataset_open(0)); 6684 ztest_spa = spa; 6685 txg_wait_synced(spa_get_dsl(spa), 0); 6686 ztest_dataset_close(0); 6687 ztest_reguid(NULL, 0); 6688 6689 spa_close(spa, FTAG); 6690 kernel_fini(); 6691 } 6692 6693 void 6694 print_time(hrtime_t t, char *timebuf) 6695 { 6696 hrtime_t s = t / NANOSEC; 6697 hrtime_t m = s / 60; 6698 hrtime_t h = m / 60; 6699 hrtime_t d = h / 24; 6700 6701 s -= m * 60; 6702 m -= h * 60; 6703 h -= d * 24; 6704 6705 timebuf[0] = '\0'; 6706 6707 if (d) 6708 (void) sprintf(timebuf, 6709 "%llud%02lluh%02llum%02llus", d, h, m, s); 6710 else if (h) 6711 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 6712 else if (m) 6713 (void) sprintf(timebuf, "%llum%02llus", m, s); 6714 else 6715 (void) sprintf(timebuf, "%llus", s); 6716 } 6717 6718 static nvlist_t * 6719 make_random_props() 6720 { 6721 nvlist_t *props; 6722 6723 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 6724 6725 if (ztest_random(2) == 0) 6726 return (props); 6727 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 6728 6729 return (props); 6730 } 6731 6732 /* 6733 * Import a storage pool with the given name. 6734 */ 6735 static void 6736 ztest_import(ztest_shared_t *zs) 6737 { 6738 libzfs_handle_t *hdl; 6739 importargs_t args = { 0 }; 6740 spa_t *spa; 6741 nvlist_t *cfg = NULL; 6742 int nsearch = 1; 6743 char *searchdirs[nsearch]; 6744 char *name = ztest_opts.zo_pool; 6745 int flags = ZFS_IMPORT_MISSING_LOG; 6746 int error; 6747 6748 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 6749 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 6750 6751 kernel_init(FREAD | FWRITE); 6752 hdl = libzfs_init(); 6753 6754 searchdirs[0] = ztest_opts.zo_dir; 6755 args.paths = nsearch; 6756 args.path = searchdirs; 6757 args.can_be_active = B_FALSE; 6758 6759 error = zpool_tryimport(hdl, name, &cfg, &args); 6760 if (error) 6761 (void) fatal(0, "No pools found\n"); 6762 6763 VERIFY0(spa_import(name, cfg, NULL, flags)); 6764 VERIFY0(spa_open(name, &spa, FTAG)); 6765 zs->zs_metaslab_sz = 6766 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 6767 spa_close(spa, FTAG); 6768 6769 libzfs_fini(hdl); 6770 kernel_fini(); 6771 6772 if (!ztest_opts.zo_mmp_test) { 6773 ztest_run_zdb(ztest_opts.zo_pool); 6774 ztest_freeze(); 6775 ztest_run_zdb(ztest_opts.zo_pool); 6776 } 6777 6778 rw_destroy(&ztest_name_lock); 6779 mutex_destroy(&ztest_vdev_lock); 6780 } 6781 6782 /* 6783 * Create a storage pool with the given name and initial vdev size. 6784 * Then test spa_freeze() functionality. 6785 */ 6786 static void 6787 ztest_init(ztest_shared_t *zs) 6788 { 6789 spa_t *spa; 6790 nvlist_t *nvroot, *props; 6791 6792 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 6793 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); 6794 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 6795 6796 kernel_init(FREAD | FWRITE); 6797 6798 /* 6799 * Create the storage pool. 6800 */ 6801 (void) spa_destroy(ztest_opts.zo_pool); 6802 ztest_shared->zs_vdev_next_leaf = 0; 6803 zs->zs_splits = 0; 6804 zs->zs_mirrors = ztest_opts.zo_mirrors; 6805 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 6806 NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 6807 props = make_random_props(); 6808 for (int i = 0; i < SPA_FEATURES; i++) { 6809 char buf[1024]; 6810 (void) snprintf(buf, sizeof (buf), "feature@%s", 6811 spa_feature_table[i].fi_uname); 6812 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 6813 } 6814 VERIFY3U(0, ==, 6815 spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL)); 6816 nvlist_free(nvroot); 6817 nvlist_free(props); 6818 6819 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6820 zs->zs_metaslab_sz = 6821 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 6822 6823 spa_close(spa, FTAG); 6824 6825 kernel_fini(); 6826 6827 if (!ztest_opts.zo_mmp_test) { 6828 ztest_run_zdb(ztest_opts.zo_pool); 6829 ztest_freeze(); 6830 ztest_run_zdb(ztest_opts.zo_pool); 6831 } 6832 6833 rw_destroy(&ztest_name_lock); 6834 mutex_destroy(&ztest_vdev_lock); 6835 mutex_destroy(&ztest_checkpoint_lock); 6836 } 6837 6838 static void 6839 setup_data_fd(void) 6840 { 6841 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 6842 6843 ztest_fd_data = mkstemp(ztest_name_data); 6844 ASSERT3S(ztest_fd_data, >=, 0); 6845 (void) unlink(ztest_name_data); 6846 } 6847 6848 static int 6849 shared_data_size(ztest_shared_hdr_t *hdr) 6850 { 6851 int size; 6852 6853 size = hdr->zh_hdr_size; 6854 size += hdr->zh_opts_size; 6855 size += hdr->zh_size; 6856 size += hdr->zh_stats_size * hdr->zh_stats_count; 6857 size += hdr->zh_ds_size * hdr->zh_ds_count; 6858 6859 return (size); 6860 } 6861 6862 static void 6863 setup_hdr(void) 6864 { 6865 int size; 6866 ztest_shared_hdr_t *hdr; 6867 6868 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6869 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6870 ASSERT(hdr != MAP_FAILED); 6871 6872 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 6873 6874 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 6875 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 6876 hdr->zh_size = sizeof (ztest_shared_t); 6877 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 6878 hdr->zh_stats_count = ZTEST_FUNCS; 6879 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 6880 hdr->zh_ds_count = ztest_opts.zo_datasets; 6881 6882 size = shared_data_size(hdr); 6883 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6884 6885 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6886 } 6887 6888 static void 6889 setup_data(void) 6890 { 6891 int size, offset; 6892 ztest_shared_hdr_t *hdr; 6893 uint8_t *buf; 6894 6895 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6896 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6897 ASSERT(hdr != MAP_FAILED); 6898 6899 size = shared_data_size(hdr); 6900 6901 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6902 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6903 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6904 ASSERT(hdr != MAP_FAILED); 6905 buf = (uint8_t *)hdr; 6906 6907 offset = hdr->zh_hdr_size; 6908 ztest_shared_opts = (void *)&buf[offset]; 6909 offset += hdr->zh_opts_size; 6910 ztest_shared = (void *)&buf[offset]; 6911 offset += hdr->zh_size; 6912 ztest_shared_callstate = (void *)&buf[offset]; 6913 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6914 ztest_shared_ds = (void *)&buf[offset]; 6915 } 6916 6917 static boolean_t 6918 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6919 { 6920 pid_t pid; 6921 int status; 6922 char *cmdbuf = NULL; 6923 6924 pid = fork(); 6925 6926 if (cmd == NULL) { 6927 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6928 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6929 cmd = cmdbuf; 6930 } 6931 6932 if (pid == -1) 6933 fatal(1, "fork failed"); 6934 6935 if (pid == 0) { /* child */ 6936 char *emptyargv[2] = { cmd, NULL }; 6937 char fd_data_str[12]; 6938 6939 struct rlimit rl = { 1024, 1024 }; 6940 (void) setrlimit(RLIMIT_NOFILE, &rl); 6941 6942 (void) close(ztest_fd_rand); 6943 VERIFY3U(11, >=, 6944 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6945 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6946 6947 (void) enable_extended_FILE_stdio(-1, -1); 6948 if (libpath != NULL) 6949 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6950 (void) execv(cmd, emptyargv); 6951 ztest_dump_core = B_FALSE; 6952 fatal(B_TRUE, "exec failed: %s", cmd); 6953 } 6954 6955 if (cmdbuf != NULL) { 6956 umem_free(cmdbuf, MAXPATHLEN); 6957 cmd = NULL; 6958 } 6959 6960 while (waitpid(pid, &status, 0) != pid) 6961 continue; 6962 if (statusp != NULL) 6963 *statusp = status; 6964 6965 if (WIFEXITED(status)) { 6966 if (WEXITSTATUS(status) != 0) { 6967 (void) fprintf(stderr, "child exited with code %d\n", 6968 WEXITSTATUS(status)); 6969 exit(2); 6970 } 6971 return (B_FALSE); 6972 } else if (WIFSIGNALED(status)) { 6973 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6974 (void) fprintf(stderr, "child died with signal %d\n", 6975 WTERMSIG(status)); 6976 exit(3); 6977 } 6978 return (B_TRUE); 6979 } else { 6980 (void) fprintf(stderr, "something strange happened to child\n"); 6981 exit(4); 6982 /* NOTREACHED */ 6983 } 6984 } 6985 6986 static void 6987 ztest_run_init(void) 6988 { 6989 ztest_shared_t *zs = ztest_shared; 6990 6991 /* 6992 * Blow away any existing copy of zpool.cache 6993 */ 6994 (void) remove(spa_config_path); 6995 6996 if (ztest_opts.zo_init == 0) { 6997 if (ztest_opts.zo_verbose >= 1) 6998 (void) printf("Importing pool %s\n", 6999 ztest_opts.zo_pool); 7000 ztest_import(zs); 7001 return; 7002 } 7003 7004 /* 7005 * Create and initialize our storage pool. 7006 */ 7007 for (int i = 1; i <= ztest_opts.zo_init; i++) { 7008 bzero(zs, sizeof (ztest_shared_t)); 7009 if (ztest_opts.zo_verbose >= 3 && 7010 ztest_opts.zo_init != 1) { 7011 (void) printf("ztest_init(), pass %d\n", i); 7012 } 7013 ztest_init(zs); 7014 } 7015 } 7016 7017 int 7018 main(int argc, char **argv) 7019 { 7020 int kills = 0; 7021 int iters = 0; 7022 int older = 0; 7023 int newer = 0; 7024 ztest_shared_t *zs; 7025 ztest_info_t *zi; 7026 ztest_shared_callstate_t *zc; 7027 char timebuf[100]; 7028 char numbuf[NN_NUMBUF_SZ]; 7029 char *cmd; 7030 boolean_t hasalt; 7031 char *fd_data_str = getenv("ZTEST_FD_DATA"); 7032 7033 (void) setvbuf(stdout, NULL, _IOLBF, 0); 7034 7035 dprintf_setup(&argc, argv); 7036 zfs_deadman_synctime_ms = 300000; 7037 /* 7038 * As two-word space map entries may not come up often (especially 7039 * if pool and vdev sizes are small) we want to force at least some 7040 * of them so the feature get tested. 7041 */ 7042 zfs_force_some_double_word_sm_entries = B_TRUE; 7043 7044 /* 7045 * Verify that even extensively damaged split blocks with many 7046 * segments can be reconstructed in a reasonable amount of time 7047 * when reconstruction is known to be possible. 7048 */ 7049 zfs_reconstruct_indirect_damage_fraction = 4; 7050 7051 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 7052 ASSERT3S(ztest_fd_rand, >=, 0); 7053 7054 if (!fd_data_str) { 7055 process_options(argc, argv); 7056 7057 setup_data_fd(); 7058 setup_hdr(); 7059 setup_data(); 7060 bcopy(&ztest_opts, ztest_shared_opts, 7061 sizeof (*ztest_shared_opts)); 7062 } else { 7063 ztest_fd_data = atoi(fd_data_str); 7064 setup_data(); 7065 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 7066 } 7067 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 7068 7069 /* Override location of zpool.cache */ 7070 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 7071 ztest_opts.zo_dir), !=, -1); 7072 7073 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 7074 UMEM_NOFAIL); 7075 zs = ztest_shared; 7076 7077 if (fd_data_str) { 7078 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging; 7079 metaslab_df_alloc_threshold = 7080 zs->zs_metaslab_df_alloc_threshold; 7081 7082 if (zs->zs_do_init) 7083 ztest_run_init(); 7084 else 7085 ztest_run(zs); 7086 exit(0); 7087 } 7088 7089 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 7090 7091 if (ztest_opts.zo_verbose >= 1) { 7092 (void) printf("%llu vdevs, %d datasets, %d threads," 7093 " %llu seconds...\n", 7094 (u_longlong_t)ztest_opts.zo_vdevs, 7095 ztest_opts.zo_datasets, 7096 ztest_opts.zo_threads, 7097 (u_longlong_t)ztest_opts.zo_time); 7098 } 7099 7100 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 7101 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 7102 7103 zs->zs_do_init = B_TRUE; 7104 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 7105 if (ztest_opts.zo_verbose >= 1) { 7106 (void) printf("Executing older ztest for " 7107 "initialization: %s\n", ztest_opts.zo_alt_ztest); 7108 } 7109 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 7110 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 7111 } else { 7112 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 7113 } 7114 zs->zs_do_init = B_FALSE; 7115 7116 zs->zs_proc_start = gethrtime(); 7117 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 7118 7119 for (int f = 0; f < ZTEST_FUNCS; f++) { 7120 zi = &ztest_info[f]; 7121 zc = ZTEST_GET_SHARED_CALLSTATE(f); 7122 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 7123 zc->zc_next = UINT64_MAX; 7124 else 7125 zc->zc_next = zs->zs_proc_start + 7126 ztest_random(2 * zi->zi_interval[0] + 1); 7127 } 7128 7129 /* 7130 * Run the tests in a loop. These tests include fault injection 7131 * to verify that self-healing data works, and forced crashes 7132 * to verify that we never lose on-disk consistency. 7133 */ 7134 while (gethrtime() < zs->zs_proc_stop) { 7135 int status; 7136 boolean_t killed; 7137 7138 /* 7139 * Initialize the workload counters for each function. 7140 */ 7141 for (int f = 0; f < ZTEST_FUNCS; f++) { 7142 zc = ZTEST_GET_SHARED_CALLSTATE(f); 7143 zc->zc_count = 0; 7144 zc->zc_time = 0; 7145 } 7146 7147 /* Set the allocation switch size */ 7148 zs->zs_metaslab_df_alloc_threshold = 7149 ztest_random(zs->zs_metaslab_sz / 4) + 1; 7150 7151 if (!hasalt || ztest_random(2) == 0) { 7152 if (hasalt && ztest_opts.zo_verbose >= 1) { 7153 (void) printf("Executing newer ztest: %s\n", 7154 cmd); 7155 } 7156 newer++; 7157 killed = exec_child(cmd, NULL, B_TRUE, &status); 7158 } else { 7159 if (hasalt && ztest_opts.zo_verbose >= 1) { 7160 (void) printf("Executing older ztest: %s\n", 7161 ztest_opts.zo_alt_ztest); 7162 } 7163 older++; 7164 killed = exec_child(ztest_opts.zo_alt_ztest, 7165 ztest_opts.zo_alt_libpath, B_TRUE, &status); 7166 } 7167 7168 if (killed) 7169 kills++; 7170 iters++; 7171 7172 if (ztest_opts.zo_verbose >= 1) { 7173 hrtime_t now = gethrtime(); 7174 7175 now = MIN(now, zs->zs_proc_stop); 7176 print_time(zs->zs_proc_stop - now, timebuf); 7177 nicenum(zs->zs_space, numbuf, sizeof (numbuf)); 7178 7179 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 7180 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 7181 iters, 7182 WIFEXITED(status) ? "Complete" : "SIGKILL", 7183 (u_longlong_t)zs->zs_enospc_count, 7184 100.0 * zs->zs_alloc / zs->zs_space, 7185 numbuf, 7186 100.0 * (now - zs->zs_proc_start) / 7187 (ztest_opts.zo_time * NANOSEC), timebuf); 7188 } 7189 7190 if (ztest_opts.zo_verbose >= 2) { 7191 (void) printf("\nWorkload summary:\n\n"); 7192 (void) printf("%7s %9s %s\n", 7193 "Calls", "Time", "Function"); 7194 (void) printf("%7s %9s %s\n", 7195 "-----", "----", "--------"); 7196 for (int f = 0; f < ZTEST_FUNCS; f++) { 7197 Dl_info dli; 7198 7199 zi = &ztest_info[f]; 7200 zc = ZTEST_GET_SHARED_CALLSTATE(f); 7201 print_time(zc->zc_time, timebuf); 7202 (void) dladdr((void *)zi->zi_func, &dli); 7203 (void) printf("%7llu %9s %s\n", 7204 (u_longlong_t)zc->zc_count, timebuf, 7205 dli.dli_sname); 7206 } 7207 (void) printf("\n"); 7208 } 7209 7210 if (!ztest_opts.zo_mmp_test) 7211 ztest_run_zdb(ztest_opts.zo_pool); 7212 } 7213 7214 if (ztest_opts.zo_verbose >= 1) { 7215 if (hasalt) { 7216 (void) printf("%d runs of older ztest: %s\n", older, 7217 ztest_opts.zo_alt_ztest); 7218 (void) printf("%d runs of newer ztest: %s\n", newer, 7219 cmd); 7220 } 7221 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 7222 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 7223 } 7224 7225 umem_free(cmd, MAXNAMELEN); 7226 7227 return (0); 7228 } 7229