1 /*
2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 /* LzmaEnc.c -- LZMA Encoder
7 2008-10-04 : Igor Pavlov : Public domain */
8
9 #include <string.h>
10
11 /* #define SHOW_STAT */
12 /* #define SHOW_STAT2 */
13
14 #if defined(SHOW_STAT) || defined(SHOW_STAT2)
15 #include <stdio.h>
16 #endif
17
18 #include "LzmaEnc.h"
19
20 #include "LzFind.h"
21 #ifdef COMPRESS_MF_MT
22 #include "LzFindMt.h"
23 #endif
24
25 #ifdef SHOW_STAT
26 static int ttt = 0;
27 #endif
28
29 #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
30
31 #define kBlockSize (9 << 10)
32 #define kUnpackBlockSize (1 << 18)
33 #define kMatchArraySize (1 << 21)
34 #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
35
36 #define kNumMaxDirectBits (31)
37
38 #define kNumTopBits 24
39 #define kTopValue ((UInt32)1 << kNumTopBits)
40
41 #define kNumBitModelTotalBits 11
42 #define kBitModelTotal (1 << kNumBitModelTotalBits)
43 #define kNumMoveBits 5
44 #define kProbInitValue (kBitModelTotal >> 1)
45
46 #define kNumMoveReducingBits 4
47 #define kNumBitPriceShiftBits 4
48 #define kBitPrice (1 << kNumBitPriceShiftBits)
49
LzmaEncProps_Init(CLzmaEncProps * p)50 void LzmaEncProps_Init(CLzmaEncProps *p)
51 {
52 p->level = 5;
53 p->dictSize = p->mc = 0;
54 p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
55 p->writeEndMark = 0;
56 }
57
LzmaEncProps_Normalize(CLzmaEncProps * p)58 void LzmaEncProps_Normalize(CLzmaEncProps *p)
59 {
60 int level = p->level;
61 if (level < 0) level = 5;
62 p->level = level;
63 if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
64 if (p->lc < 0) p->lc = 3;
65 if (p->lp < 0) p->lp = 0;
66 if (p->pb < 0) p->pb = 2;
67 if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
68 if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
69 if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
70 if (p->numHashBytes < 0) p->numHashBytes = 4;
71 if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
72 if (p->numThreads < 0) p->numThreads = ((p->btMode && p->algo) ? 2 : 1);
73 }
74
LzmaEncProps_GetDictSize(const CLzmaEncProps * props2)75 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
76 {
77 CLzmaEncProps props = *props2;
78 LzmaEncProps_Normalize(&props);
79 return props.dictSize;
80 }
81
82 /* #define LZMA_LOG_BSR */
83 /* Define it for Intel's CPU */
84
85
86 #ifdef LZMA_LOG_BSR
87
88 #define kDicLogSizeMaxCompress 30
89
90 #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
91
GetPosSlot1(UInt32 pos)92 UInt32 GetPosSlot1(UInt32 pos)
93 {
94 UInt32 res;
95 BSR2_RET(pos, res);
96 return res;
97 }
98 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
99 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
100
101 #else
102
103 #define kNumLogBits (9 + (int)sizeof(size_t) / 2)
104 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
105
LzmaEnc_FastPosInit(Byte * g_FastPos)106 void LzmaEnc_FastPosInit(Byte *g_FastPos)
107 {
108 int c = 2, slotFast;
109 g_FastPos[0] = 0;
110 g_FastPos[1] = 1;
111
112 for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
113 {
114 UInt32 k = (1 << ((slotFast >> 1) - 1));
115 UInt32 j;
116 for (j = 0; j < k; j++, c++)
117 g_FastPos[c] = (Byte)slotFast;
118 }
119 }
120
121 #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
122 (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
123 res = p->g_FastPos[pos >> i] + (i * 2); }
124 /*
125 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
126 p->g_FastPos[pos >> 6] + 12 : \
127 p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
128 */
129
130 #define GetPosSlot1(pos) p->g_FastPos[pos]
131 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
132 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
133
134 #endif
135
136
137 #define LZMA_NUM_REPS 4
138
139 typedef unsigned CState;
140
141 typedef struct _COptimal
142 {
143 UInt32 price;
144
145 CState state;
146 int prev1IsChar;
147 int prev2;
148
149 UInt32 posPrev2;
150 UInt32 backPrev2;
151
152 UInt32 posPrev;
153 UInt32 backPrev;
154 UInt32 backs[LZMA_NUM_REPS];
155 } COptimal;
156
157 #define kNumOpts (1 << 12)
158
159 #define kNumLenToPosStates 4
160 #define kNumPosSlotBits 6
161 #define kDicLogSizeMin 0
162 #define kDicLogSizeMax 32
163 #define kDistTableSizeMax (kDicLogSizeMax * 2)
164
165
166 #define kNumAlignBits 4
167 #define kAlignTableSize (1 << kNumAlignBits)
168 #define kAlignMask (kAlignTableSize - 1)
169
170 #define kStartPosModelIndex 4
171 #define kEndPosModelIndex 14
172 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
173
174 #define kNumFullDistances (1 << (kEndPosModelIndex / 2))
175
176 #ifdef _LZMA_PROB32
177 #define CLzmaProb UInt32
178 #else
179 #define CLzmaProb UInt16
180 #endif
181
182 #define LZMA_PB_MAX 4
183 #define LZMA_LC_MAX 8
184 #define LZMA_LP_MAX 4
185
186 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
187
188
189 #define kLenNumLowBits 3
190 #define kLenNumLowSymbols (1 << kLenNumLowBits)
191 #define kLenNumMidBits 3
192 #define kLenNumMidSymbols (1 << kLenNumMidBits)
193 #define kLenNumHighBits 8
194 #define kLenNumHighSymbols (1 << kLenNumHighBits)
195
196 #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
197
198 #define LZMA_MATCH_LEN_MIN 2
199 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
200
201 #define kNumStates 12
202
203 typedef struct
204 {
205 CLzmaProb choice;
206 CLzmaProb choice2;
207 CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
208 CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
209 CLzmaProb high[kLenNumHighSymbols];
210 } CLenEnc;
211
212 typedef struct
213 {
214 CLenEnc p;
215 UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
216 UInt32 tableSize;
217 UInt32 counters[LZMA_NUM_PB_STATES_MAX];
218 } CLenPriceEnc;
219
220 typedef struct _CRangeEnc
221 {
222 UInt32 range;
223 Byte cache;
224 UInt64 low;
225 UInt64 cacheSize;
226 Byte *buf;
227 Byte *bufLim;
228 Byte *bufBase;
229 ISeqOutStream *outStream;
230 UInt64 processed;
231 SRes res;
232 } CRangeEnc;
233
234 typedef struct _CSeqInStreamBuf
235 {
236 ISeqInStream funcTable;
237 const Byte *data;
238 SizeT rem;
239 } CSeqInStreamBuf;
240
MyRead(void * pp,void * data,size_t * size)241 static SRes MyRead(void *pp, void *data, size_t *size)
242 {
243 size_t curSize = *size;
244 CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp;
245 if (p->rem < curSize)
246 curSize = p->rem;
247 memcpy(data, p->data, curSize);
248 p->rem -= curSize;
249 p->data += curSize;
250 *size = curSize;
251 return SZ_OK;
252 }
253
254 typedef struct
255 {
256 CLzmaProb *litProbs;
257
258 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
259 CLzmaProb isRep[kNumStates];
260 CLzmaProb isRepG0[kNumStates];
261 CLzmaProb isRepG1[kNumStates];
262 CLzmaProb isRepG2[kNumStates];
263 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
264
265 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
266 CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
267 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
268
269 CLenPriceEnc lenEnc;
270 CLenPriceEnc repLenEnc;
271
272 UInt32 reps[LZMA_NUM_REPS];
273 UInt32 state;
274 } CSaveState;
275
276 typedef struct _CLzmaEnc
277 {
278 IMatchFinder matchFinder;
279 void *matchFinderObj;
280
281 #ifdef COMPRESS_MF_MT
282 Bool mtMode;
283 CMatchFinderMt matchFinderMt;
284 #endif
285
286 CMatchFinder matchFinderBase;
287
288 #ifdef COMPRESS_MF_MT
289 Byte pad[128];
290 #endif
291
292 UInt32 optimumEndIndex;
293 UInt32 optimumCurrentIndex;
294
295 UInt32 longestMatchLength;
296 UInt32 numPairs;
297 UInt32 numAvail;
298 COptimal opt[kNumOpts];
299
300 #ifndef LZMA_LOG_BSR
301 Byte g_FastPos[1 << kNumLogBits];
302 #endif
303
304 UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
305 UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
306 UInt32 numFastBytes;
307 UInt32 additionalOffset;
308 UInt32 reps[LZMA_NUM_REPS];
309 UInt32 state;
310
311 UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
312 UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
313 UInt32 alignPrices[kAlignTableSize];
314 UInt32 alignPriceCount;
315
316 UInt32 distTableSize;
317
318 unsigned lc, lp, pb;
319 unsigned lpMask, pbMask;
320
321 CLzmaProb *litProbs;
322
323 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
324 CLzmaProb isRep[kNumStates];
325 CLzmaProb isRepG0[kNumStates];
326 CLzmaProb isRepG1[kNumStates];
327 CLzmaProb isRepG2[kNumStates];
328 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
329
330 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
331 CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
332 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
333
334 CLenPriceEnc lenEnc;
335 CLenPriceEnc repLenEnc;
336
337 unsigned lclp;
338
339 Bool fastMode;
340
341 CRangeEnc rc;
342
343 Bool writeEndMark;
344 UInt64 nowPos64;
345 UInt32 matchPriceCount;
346 Bool finished;
347 Bool multiThread;
348
349 SRes result;
350 UInt32 dictSize;
351 UInt32 matchFinderCycles;
352
353 ISeqInStream *inStream;
354 CSeqInStreamBuf seqBufInStream;
355
356 CSaveState saveState;
357 } CLzmaEnc;
358
LzmaEnc_SaveState(CLzmaEncHandle pp)359 void LzmaEnc_SaveState(CLzmaEncHandle pp)
360 {
361 CLzmaEnc *p = (CLzmaEnc *)pp;
362 CSaveState *dest = &p->saveState;
363 int i;
364 dest->lenEnc = p->lenEnc;
365 dest->repLenEnc = p->repLenEnc;
366 dest->state = p->state;
367
368 for (i = 0; i < kNumStates; i++)
369 {
370 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
371 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
372 }
373 for (i = 0; i < kNumLenToPosStates; i++)
374 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
375 memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
376 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
377 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
378 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
379 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
380 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
381 memcpy(dest->reps, p->reps, sizeof(p->reps));
382 memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
383 }
384
LzmaEnc_RestoreState(CLzmaEncHandle pp)385 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
386 {
387 CLzmaEnc *dest = (CLzmaEnc *)pp;
388 const CSaveState *p = &dest->saveState;
389 int i;
390 dest->lenEnc = p->lenEnc;
391 dest->repLenEnc = p->repLenEnc;
392 dest->state = p->state;
393
394 for (i = 0; i < kNumStates; i++)
395 {
396 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
397 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
398 }
399 for (i = 0; i < kNumLenToPosStates; i++)
400 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
401 memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
402 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
403 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
404 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
405 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
406 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
407 memcpy(dest->reps, p->reps, sizeof(p->reps));
408 memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
409 }
410
LzmaEnc_SetProps(CLzmaEncHandle pp,const CLzmaEncProps * props2)411 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
412 {
413 CLzmaEnc *p = (CLzmaEnc *)pp;
414 CLzmaEncProps props = *props2;
415 LzmaEncProps_Normalize(&props);
416
417 if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
418 props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
419 return SZ_ERROR_PARAM;
420 p->dictSize = props.dictSize;
421 p->matchFinderCycles = props.mc;
422 {
423 unsigned fb = props.fb;
424 if (fb < 5)
425 fb = 5;
426 if (fb > LZMA_MATCH_LEN_MAX)
427 fb = LZMA_MATCH_LEN_MAX;
428 p->numFastBytes = fb;
429 }
430 p->lc = props.lc;
431 p->lp = props.lp;
432 p->pb = props.pb;
433 p->fastMode = (props.algo == 0);
434 p->matchFinderBase.btMode = props.btMode;
435 {
436 UInt32 numHashBytes = 4;
437 if (props.btMode)
438 {
439 if (props.numHashBytes < 2)
440 numHashBytes = 2;
441 else if (props.numHashBytes < 4)
442 numHashBytes = props.numHashBytes;
443 }
444 p->matchFinderBase.numHashBytes = numHashBytes;
445 }
446
447 p->matchFinderBase.cutValue = props.mc;
448
449 p->writeEndMark = props.writeEndMark;
450
451 #ifdef COMPRESS_MF_MT
452 /*
453 if (newMultiThread != _multiThread)
454 {
455 ReleaseMatchFinder();
456 _multiThread = newMultiThread;
457 }
458 */
459 p->multiThread = (props.numThreads > 1);
460 #endif
461
462 return SZ_OK;
463 }
464
465 static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
466 static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
467 static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
468 static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
469
470 #define IsCharState(s) ((s) < 7)
471
472 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
473
474 #define kInfinityPrice (1 << 30)
475
RangeEnc_Construct(CRangeEnc * p)476 static void RangeEnc_Construct(CRangeEnc *p)
477 {
478 p->outStream = 0;
479 p->bufBase = 0;
480 }
481
482 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
483
484 #define RC_BUF_SIZE (1 << 16)
RangeEnc_Alloc(CRangeEnc * p,ISzAlloc * alloc)485 static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
486 {
487 if (p->bufBase == 0)
488 {
489 p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
490 if (p->bufBase == 0)
491 return 0;
492 p->bufLim = p->bufBase + RC_BUF_SIZE;
493 }
494 return 1;
495 }
496
RangeEnc_Free(CRangeEnc * p,ISzAlloc * alloc)497 static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
498 {
499 alloc->Free(alloc, p->bufBase, 0);
500 p->bufBase = 0;
501 }
502
RangeEnc_Init(CRangeEnc * p)503 static void RangeEnc_Init(CRangeEnc *p)
504 {
505 /* Stream.Init(); */
506 p->low = 0;
507 p->range = 0xFFFFFFFF;
508 p->cacheSize = 1;
509 p->cache = 0;
510
511 p->buf = p->bufBase;
512
513 p->processed = 0;
514 p->res = SZ_OK;
515 }
516
RangeEnc_FlushStream(CRangeEnc * p)517 static void RangeEnc_FlushStream(CRangeEnc *p)
518 {
519 size_t num;
520 if (p->res != SZ_OK)
521 return;
522 num = p->buf - p->bufBase;
523 if (num != p->outStream->Write(p->outStream, p->bufBase, num))
524 p->res = SZ_ERROR_WRITE;
525 p->processed += num;
526 p->buf = p->bufBase;
527 }
528
RangeEnc_ShiftLow(CRangeEnc * p)529 static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
530 {
531 if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
532 {
533 Byte temp = p->cache;
534 do
535 {
536 Byte *buf = p->buf;
537 *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
538 p->buf = buf;
539 if (buf == p->bufLim)
540 RangeEnc_FlushStream(p);
541 temp = 0xFF;
542 }
543 while (--p->cacheSize != 0);
544 p->cache = (Byte)((UInt32)p->low >> 24);
545 }
546 p->cacheSize++;
547 p->low = (UInt32)p->low << 8;
548 }
549
RangeEnc_FlushData(CRangeEnc * p)550 static void RangeEnc_FlushData(CRangeEnc *p)
551 {
552 int i;
553 for (i = 0; i < 5; i++)
554 RangeEnc_ShiftLow(p);
555 }
556
RangeEnc_EncodeDirectBits(CRangeEnc * p,UInt32 value,int numBits)557 static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
558 {
559 do
560 {
561 p->range >>= 1;
562 p->low += p->range & (0 - ((value >> --numBits) & 1));
563 if (p->range < kTopValue)
564 {
565 p->range <<= 8;
566 RangeEnc_ShiftLow(p);
567 }
568 }
569 while (numBits != 0);
570 }
571
RangeEnc_EncodeBit(CRangeEnc * p,CLzmaProb * prob,UInt32 symbol)572 static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
573 {
574 UInt32 ttt = *prob;
575 UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
576 if (symbol == 0)
577 {
578 p->range = newBound;
579 ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
580 }
581 else
582 {
583 p->low += newBound;
584 p->range -= newBound;
585 ttt -= ttt >> kNumMoveBits;
586 }
587 *prob = (CLzmaProb)ttt;
588 if (p->range < kTopValue)
589 {
590 p->range <<= 8;
591 RangeEnc_ShiftLow(p);
592 }
593 }
594
LitEnc_Encode(CRangeEnc * p,CLzmaProb * probs,UInt32 symbol)595 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
596 {
597 symbol |= 0x100;
598 do
599 {
600 RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
601 symbol <<= 1;
602 }
603 while (symbol < 0x10000);
604 }
605
LitEnc_EncodeMatched(CRangeEnc * p,CLzmaProb * probs,UInt32 symbol,UInt32 matchByte)606 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
607 {
608 UInt32 offs = 0x100;
609 symbol |= 0x100;
610 do
611 {
612 matchByte <<= 1;
613 RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
614 symbol <<= 1;
615 offs &= ~(matchByte ^ symbol);
616 }
617 while (symbol < 0x10000);
618 }
619
LzmaEnc_InitPriceTables(UInt32 * ProbPrices)620 void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
621 {
622 UInt32 i;
623 for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
624 {
625 const int kCyclesBits = kNumBitPriceShiftBits;
626 UInt32 w = i;
627 UInt32 bitCount = 0;
628 int j;
629 for (j = 0; j < kCyclesBits; j++)
630 {
631 w = w * w;
632 bitCount <<= 1;
633 while (w >= ((UInt32)1 << 16))
634 {
635 w >>= 1;
636 bitCount++;
637 }
638 }
639 ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
640 }
641 }
642
643
644 #define GET_PRICE(prob, symbol) \
645 p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
646
647 #define GET_PRICEa(prob, symbol) \
648 ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
649
650 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
651 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
652
653 #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
654 #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
655
LitEnc_GetPrice(const CLzmaProb * probs,UInt32 symbol,UInt32 * ProbPrices)656 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
657 {
658 UInt32 price = 0;
659 symbol |= 0x100;
660 do
661 {
662 price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
663 symbol <<= 1;
664 }
665 while (symbol < 0x10000);
666 return price;
667 }
668
LitEnc_GetPriceMatched(const CLzmaProb * probs,UInt32 symbol,UInt32 matchByte,UInt32 * ProbPrices)669 static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
670 {
671 UInt32 price = 0;
672 UInt32 offs = 0x100;
673 symbol |= 0x100;
674 do
675 {
676 matchByte <<= 1;
677 price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
678 symbol <<= 1;
679 offs &= ~(matchByte ^ symbol);
680 }
681 while (symbol < 0x10000);
682 return price;
683 }
684
685
RcTree_Encode(CRangeEnc * rc,CLzmaProb * probs,int numBitLevels,UInt32 symbol)686 static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
687 {
688 UInt32 m = 1;
689 int i;
690 for (i = numBitLevels; i != 0;)
691 {
692 UInt32 bit;
693 i--;
694 bit = (symbol >> i) & 1;
695 RangeEnc_EncodeBit(rc, probs + m, bit);
696 m = (m << 1) | bit;
697 }
698 }
699
RcTree_ReverseEncode(CRangeEnc * rc,CLzmaProb * probs,int numBitLevels,UInt32 symbol)700 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
701 {
702 UInt32 m = 1;
703 int i;
704 for (i = 0; i < numBitLevels; i++)
705 {
706 UInt32 bit = symbol & 1;
707 RangeEnc_EncodeBit(rc, probs + m, bit);
708 m = (m << 1) | bit;
709 symbol >>= 1;
710 }
711 }
712
RcTree_GetPrice(const CLzmaProb * probs,int numBitLevels,UInt32 symbol,UInt32 * ProbPrices)713 static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
714 {
715 UInt32 price = 0;
716 symbol |= (1 << numBitLevels);
717 while (symbol != 1)
718 {
719 price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
720 symbol >>= 1;
721 }
722 return price;
723 }
724
RcTree_ReverseGetPrice(const CLzmaProb * probs,int numBitLevels,UInt32 symbol,UInt32 * ProbPrices)725 static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
726 {
727 UInt32 price = 0;
728 UInt32 m = 1;
729 int i;
730 for (i = numBitLevels; i != 0; i--)
731 {
732 UInt32 bit = symbol & 1;
733 symbol >>= 1;
734 price += GET_PRICEa(probs[m], bit);
735 m = (m << 1) | bit;
736 }
737 return price;
738 }
739
740
LenEnc_Init(CLenEnc * p)741 static void LenEnc_Init(CLenEnc *p)
742 {
743 unsigned i;
744 p->choice = p->choice2 = kProbInitValue;
745 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
746 p->low[i] = kProbInitValue;
747 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
748 p->mid[i] = kProbInitValue;
749 for (i = 0; i < kLenNumHighSymbols; i++)
750 p->high[i] = kProbInitValue;
751 }
752
LenEnc_Encode(CLenEnc * p,CRangeEnc * rc,UInt32 symbol,UInt32 posState)753 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
754 {
755 if (symbol < kLenNumLowSymbols)
756 {
757 RangeEnc_EncodeBit(rc, &p->choice, 0);
758 RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
759 }
760 else
761 {
762 RangeEnc_EncodeBit(rc, &p->choice, 1);
763 if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
764 {
765 RangeEnc_EncodeBit(rc, &p->choice2, 0);
766 RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
767 }
768 else
769 {
770 RangeEnc_EncodeBit(rc, &p->choice2, 1);
771 RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
772 }
773 }
774 }
775
LenEnc_SetPrices(CLenEnc * p,UInt32 posState,UInt32 numSymbols,UInt32 * prices,UInt32 * ProbPrices)776 static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
777 {
778 UInt32 a0 = GET_PRICE_0a(p->choice);
779 UInt32 a1 = GET_PRICE_1a(p->choice);
780 UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
781 UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
782 UInt32 i = 0;
783 for (i = 0; i < kLenNumLowSymbols; i++)
784 {
785 if (i >= numSymbols)
786 return;
787 prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
788 }
789 for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
790 {
791 if (i >= numSymbols)
792 return;
793 prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
794 }
795 for (; i < numSymbols; i++)
796 prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
797 }
798
LenPriceEnc_UpdateTable(CLenPriceEnc * p,UInt32 posState,UInt32 * ProbPrices)799 static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
800 {
801 LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
802 p->counters[posState] = p->tableSize;
803 }
804
LenPriceEnc_UpdateTables(CLenPriceEnc * p,UInt32 numPosStates,UInt32 * ProbPrices)805 static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
806 {
807 UInt32 posState;
808 for (posState = 0; posState < numPosStates; posState++)
809 LenPriceEnc_UpdateTable(p, posState, ProbPrices);
810 }
811
LenEnc_Encode2(CLenPriceEnc * p,CRangeEnc * rc,UInt32 symbol,UInt32 posState,Bool updatePrice,UInt32 * ProbPrices)812 static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
813 {
814 LenEnc_Encode(&p->p, rc, symbol, posState);
815 if (updatePrice)
816 if (--p->counters[posState] == 0)
817 LenPriceEnc_UpdateTable(p, posState, ProbPrices);
818 }
819
820
821
822
MovePos(CLzmaEnc * p,UInt32 num)823 static void MovePos(CLzmaEnc *p, UInt32 num)
824 {
825 #ifdef SHOW_STAT
826 ttt += num;
827 printf("\n MovePos %d", num);
828 #endif
829 if (num != 0)
830 {
831 p->additionalOffset += num;
832 p->matchFinder.Skip(p->matchFinderObj, num);
833 }
834 }
835
ReadMatchDistances(CLzmaEnc * p,UInt32 * numDistancePairsRes)836 static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
837 {
838 UInt32 lenRes = 0, numPairs;
839 p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
840 numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
841 #ifdef SHOW_STAT
842 printf("\n i = %d numPairs = %d ", ttt, numPairs / 2);
843 ttt++;
844 {
845 UInt32 i;
846 for (i = 0; i < numPairs; i += 2)
847 printf("%2d %6d | ", p->matches[i], p->matches[i + 1]);
848 }
849 #endif
850 if (numPairs > 0)
851 {
852 lenRes = p->matches[numPairs - 2];
853 if (lenRes == p->numFastBytes)
854 {
855 const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
856 UInt32 distance = p->matches[numPairs - 1] + 1;
857 UInt32 numAvail = p->numAvail;
858 if (numAvail > LZMA_MATCH_LEN_MAX)
859 numAvail = LZMA_MATCH_LEN_MAX;
860 {
861 const Byte *pby2 = pby - distance;
862 for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
863 }
864 }
865 }
866 p->additionalOffset++;
867 *numDistancePairsRes = numPairs;
868 return lenRes;
869 }
870
871
872 #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
873 #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
874 #define IsShortRep(p) ((p)->backPrev == 0)
875
GetRepLen1Price(CLzmaEnc * p,UInt32 state,UInt32 posState)876 static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
877 {
878 return
879 GET_PRICE_0(p->isRepG0[state]) +
880 GET_PRICE_0(p->isRep0Long[state][posState]);
881 }
882
GetPureRepPrice(CLzmaEnc * p,UInt32 repIndex,UInt32 state,UInt32 posState)883 static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
884 {
885 UInt32 price;
886 if (repIndex == 0)
887 {
888 price = GET_PRICE_0(p->isRepG0[state]);
889 price += GET_PRICE_1(p->isRep0Long[state][posState]);
890 }
891 else
892 {
893 price = GET_PRICE_1(p->isRepG0[state]);
894 if (repIndex == 1)
895 price += GET_PRICE_0(p->isRepG1[state]);
896 else
897 {
898 price += GET_PRICE_1(p->isRepG1[state]);
899 price += GET_PRICE(p->isRepG2[state], repIndex - 2);
900 }
901 }
902 return price;
903 }
904
GetRepPrice(CLzmaEnc * p,UInt32 repIndex,UInt32 len,UInt32 state,UInt32 posState)905 static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
906 {
907 return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
908 GetPureRepPrice(p, repIndex, state, posState);
909 }
910
Backward(CLzmaEnc * p,UInt32 * backRes,UInt32 cur)911 static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
912 {
913 UInt32 posMem = p->opt[cur].posPrev;
914 UInt32 backMem = p->opt[cur].backPrev;
915 p->optimumEndIndex = cur;
916 do
917 {
918 if (p->opt[cur].prev1IsChar)
919 {
920 MakeAsChar(&p->opt[posMem])
921 p->opt[posMem].posPrev = posMem - 1;
922 if (p->opt[cur].prev2)
923 {
924 p->opt[posMem - 1].prev1IsChar = False;
925 p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
926 p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
927 }
928 }
929 {
930 UInt32 posPrev = posMem;
931 UInt32 backCur = backMem;
932
933 backMem = p->opt[posPrev].backPrev;
934 posMem = p->opt[posPrev].posPrev;
935
936 p->opt[posPrev].backPrev = backCur;
937 p->opt[posPrev].posPrev = cur;
938 cur = posPrev;
939 }
940 }
941 while (cur != 0);
942 *backRes = p->opt[0].backPrev;
943 p->optimumCurrentIndex = p->opt[0].posPrev;
944 return p->optimumCurrentIndex;
945 }
946
947 #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
948
GetOptimum(CLzmaEnc * p,UInt32 position,UInt32 * backRes)949 static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
950 {
951 UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
952 UInt32 matchPrice, repMatchPrice, normalMatchPrice;
953 UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
954 UInt32 *matches;
955 const Byte *data;
956 Byte curByte, matchByte;
957 if (p->optimumEndIndex != p->optimumCurrentIndex)
958 {
959 const COptimal *opt = &p->opt[p->optimumCurrentIndex];
960 UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
961 *backRes = opt->backPrev;
962 p->optimumCurrentIndex = opt->posPrev;
963 return lenRes;
964 }
965 p->optimumCurrentIndex = p->optimumEndIndex = 0;
966
967 if (p->additionalOffset == 0)
968 mainLen = ReadMatchDistances(p, &numPairs);
969 else
970 {
971 mainLen = p->longestMatchLength;
972 numPairs = p->numPairs;
973 }
974
975 numAvail = p->numAvail;
976 if (numAvail < 2)
977 {
978 *backRes = (UInt32)(-1);
979 return 1;
980 }
981 if (numAvail > LZMA_MATCH_LEN_MAX)
982 numAvail = LZMA_MATCH_LEN_MAX;
983
984 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
985 repMaxIndex = 0;
986 for (i = 0; i < LZMA_NUM_REPS; i++)
987 {
988 UInt32 lenTest;
989 const Byte *data2;
990 reps[i] = p->reps[i];
991 data2 = data - (reps[i] + 1);
992 if (data[0] != data2[0] || data[1] != data2[1])
993 {
994 repLens[i] = 0;
995 continue;
996 }
997 for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
998 repLens[i] = lenTest;
999 if (lenTest > repLens[repMaxIndex])
1000 repMaxIndex = i;
1001 }
1002 if (repLens[repMaxIndex] >= p->numFastBytes)
1003 {
1004 UInt32 lenRes;
1005 *backRes = repMaxIndex;
1006 lenRes = repLens[repMaxIndex];
1007 MovePos(p, lenRes - 1);
1008 return lenRes;
1009 }
1010
1011 matches = p->matches;
1012 if (mainLen >= p->numFastBytes)
1013 {
1014 *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1015 MovePos(p, mainLen - 1);
1016 return mainLen;
1017 }
1018 curByte = *data;
1019 matchByte = *(data - (reps[0] + 1));
1020
1021 if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
1022 {
1023 *backRes = (UInt32)-1;
1024 return 1;
1025 }
1026
1027 p->opt[0].state = (CState)p->state;
1028
1029 posState = (position & p->pbMask);
1030
1031 {
1032 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1033 p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1034 (!IsCharState(p->state) ?
1035 LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1036 LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1037 }
1038
1039 MakeAsChar(&p->opt[1]);
1040
1041 matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1042 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1043
1044 if (matchByte == curByte)
1045 {
1046 UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
1047 if (shortRepPrice < p->opt[1].price)
1048 {
1049 p->opt[1].price = shortRepPrice;
1050 MakeAsShortRep(&p->opt[1]);
1051 }
1052 }
1053 lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
1054
1055 if (lenEnd < 2)
1056 {
1057 *backRes = p->opt[1].backPrev;
1058 return 1;
1059 }
1060
1061 p->opt[1].posPrev = 0;
1062 for (i = 0; i < LZMA_NUM_REPS; i++)
1063 p->opt[0].backs[i] = reps[i];
1064
1065 len = lenEnd;
1066 do
1067 p->opt[len--].price = kInfinityPrice;
1068 while (len >= 2);
1069
1070 for (i = 0; i < LZMA_NUM_REPS; i++)
1071 {
1072 UInt32 repLen = repLens[i];
1073 UInt32 price;
1074 if (repLen < 2)
1075 continue;
1076 price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
1077 do
1078 {
1079 UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
1080 COptimal *opt = &p->opt[repLen];
1081 if (curAndLenPrice < opt->price)
1082 {
1083 opt->price = curAndLenPrice;
1084 opt->posPrev = 0;
1085 opt->backPrev = i;
1086 opt->prev1IsChar = False;
1087 }
1088 }
1089 while (--repLen >= 2);
1090 }
1091
1092 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1093
1094 len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
1095 if (len <= mainLen)
1096 {
1097 UInt32 offs = 0;
1098 while (len > matches[offs])
1099 offs += 2;
1100 for (; ; len++)
1101 {
1102 COptimal *opt;
1103 UInt32 distance = matches[offs + 1];
1104
1105 UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
1106 UInt32 lenToPosState = GetLenToPosState(len);
1107 if (distance < kNumFullDistances)
1108 curAndLenPrice += p->distancesPrices[lenToPosState][distance];
1109 else
1110 {
1111 UInt32 slot;
1112 GetPosSlot2(distance, slot);
1113 curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
1114 }
1115 opt = &p->opt[len];
1116 if (curAndLenPrice < opt->price)
1117 {
1118 opt->price = curAndLenPrice;
1119 opt->posPrev = 0;
1120 opt->backPrev = distance + LZMA_NUM_REPS;
1121 opt->prev1IsChar = False;
1122 }
1123 if (len == matches[offs])
1124 {
1125 offs += 2;
1126 if (offs == numPairs)
1127 break;
1128 }
1129 }
1130 }
1131
1132 cur = 0;
1133
1134 #ifdef SHOW_STAT2
1135 if (position >= 0)
1136 {
1137 unsigned i;
1138 printf("\n pos = %4X", position);
1139 for (i = cur; i <= lenEnd; i++)
1140 printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
1141 }
1142 #endif
1143
1144 for (;;)
1145 {
1146 UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
1147 UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
1148 Bool nextIsChar;
1149 Byte curByte, matchByte;
1150 const Byte *data;
1151 COptimal *curOpt;
1152 COptimal *nextOpt;
1153
1154 cur++;
1155 if (cur == lenEnd)
1156 return Backward(p, backRes, cur);
1157
1158 newLen = ReadMatchDistances(p, &numPairs);
1159 if (newLen >= p->numFastBytes)
1160 {
1161 p->numPairs = numPairs;
1162 p->longestMatchLength = newLen;
1163 return Backward(p, backRes, cur);
1164 }
1165 position++;
1166 curOpt = &p->opt[cur];
1167 posPrev = curOpt->posPrev;
1168 if (curOpt->prev1IsChar)
1169 {
1170 posPrev--;
1171 if (curOpt->prev2)
1172 {
1173 state = p->opt[curOpt->posPrev2].state;
1174 if (curOpt->backPrev2 < LZMA_NUM_REPS)
1175 state = kRepNextStates[state];
1176 else
1177 state = kMatchNextStates[state];
1178 }
1179 else
1180 state = p->opt[posPrev].state;
1181 state = kLiteralNextStates[state];
1182 }
1183 else
1184 state = p->opt[posPrev].state;
1185 if (posPrev == cur - 1)
1186 {
1187 if (IsShortRep(curOpt))
1188 state = kShortRepNextStates[state];
1189 else
1190 state = kLiteralNextStates[state];
1191 }
1192 else
1193 {
1194 UInt32 pos;
1195 const COptimal *prevOpt;
1196 if (curOpt->prev1IsChar && curOpt->prev2)
1197 {
1198 posPrev = curOpt->posPrev2;
1199 pos = curOpt->backPrev2;
1200 state = kRepNextStates[state];
1201 }
1202 else
1203 {
1204 pos = curOpt->backPrev;
1205 if (pos < LZMA_NUM_REPS)
1206 state = kRepNextStates[state];
1207 else
1208 state = kMatchNextStates[state];
1209 }
1210 prevOpt = &p->opt[posPrev];
1211 if (pos < LZMA_NUM_REPS)
1212 {
1213 UInt32 i;
1214 reps[0] = prevOpt->backs[pos];
1215 for (i = 1; i <= pos; i++)
1216 reps[i] = prevOpt->backs[i - 1];
1217 for (; i < LZMA_NUM_REPS; i++)
1218 reps[i] = prevOpt->backs[i];
1219 }
1220 else
1221 {
1222 UInt32 i;
1223 reps[0] = (pos - LZMA_NUM_REPS);
1224 for (i = 1; i < LZMA_NUM_REPS; i++)
1225 reps[i] = prevOpt->backs[i - 1];
1226 }
1227 }
1228 curOpt->state = (CState)state;
1229
1230 curOpt->backs[0] = reps[0];
1231 curOpt->backs[1] = reps[1];
1232 curOpt->backs[2] = reps[2];
1233 curOpt->backs[3] = reps[3];
1234
1235 curPrice = curOpt->price;
1236 nextIsChar = False;
1237 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1238 curByte = *data;
1239 matchByte = *(data - (reps[0] + 1));
1240
1241 posState = (position & p->pbMask);
1242
1243 curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
1244 {
1245 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1246 curAnd1Price +=
1247 (!IsCharState(state) ?
1248 LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1249 LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1250 }
1251
1252 nextOpt = &p->opt[cur + 1];
1253
1254 if (curAnd1Price < nextOpt->price)
1255 {
1256 nextOpt->price = curAnd1Price;
1257 nextOpt->posPrev = cur;
1258 MakeAsChar(nextOpt);
1259 nextIsChar = True;
1260 }
1261
1262 matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
1263 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1264
1265 if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
1266 {
1267 UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
1268 if (shortRepPrice <= nextOpt->price)
1269 {
1270 nextOpt->price = shortRepPrice;
1271 nextOpt->posPrev = cur;
1272 MakeAsShortRep(nextOpt);
1273 nextIsChar = True;
1274 }
1275 }
1276 numAvailFull = p->numAvail;
1277 {
1278 UInt32 temp = kNumOpts - 1 - cur;
1279 if (temp < numAvailFull)
1280 numAvailFull = temp;
1281 }
1282
1283 if (numAvailFull < 2)
1284 continue;
1285 numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
1286
1287 if (!nextIsChar && matchByte != curByte) /* speed optimization */
1288 {
1289 /* try Literal + rep0 */
1290 UInt32 temp;
1291 UInt32 lenTest2;
1292 const Byte *data2 = data - (reps[0] + 1);
1293 UInt32 limit = p->numFastBytes + 1;
1294 if (limit > numAvailFull)
1295 limit = numAvailFull;
1296
1297 for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
1298 lenTest2 = temp - 1;
1299 if (lenTest2 >= 2)
1300 {
1301 UInt32 state2 = kLiteralNextStates[state];
1302 UInt32 posStateNext = (position + 1) & p->pbMask;
1303 UInt32 nextRepMatchPrice = curAnd1Price +
1304 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1305 GET_PRICE_1(p->isRep[state2]);
1306 /* for (; lenTest2 >= 2; lenTest2--) */
1307 {
1308 UInt32 curAndLenPrice;
1309 COptimal *opt;
1310 UInt32 offset = cur + 1 + lenTest2;
1311 while (lenEnd < offset)
1312 p->opt[++lenEnd].price = kInfinityPrice;
1313 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1314 opt = &p->opt[offset];
1315 if (curAndLenPrice < opt->price)
1316 {
1317 opt->price = curAndLenPrice;
1318 opt->posPrev = cur + 1;
1319 opt->backPrev = 0;
1320 opt->prev1IsChar = True;
1321 opt->prev2 = False;
1322 }
1323 }
1324 }
1325 }
1326
1327 startLen = 2; /* speed optimization */
1328 {
1329 UInt32 repIndex;
1330 for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
1331 {
1332 UInt32 lenTest;
1333 UInt32 lenTestTemp;
1334 UInt32 price;
1335 const Byte *data2 = data - (reps[repIndex] + 1);
1336 if (data[0] != data2[0] || data[1] != data2[1])
1337 continue;
1338 for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
1339 while (lenEnd < cur + lenTest)
1340 p->opt[++lenEnd].price = kInfinityPrice;
1341 lenTestTemp = lenTest;
1342 price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
1343 do
1344 {
1345 UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
1346 COptimal *opt = &p->opt[cur + lenTest];
1347 if (curAndLenPrice < opt->price)
1348 {
1349 opt->price = curAndLenPrice;
1350 opt->posPrev = cur;
1351 opt->backPrev = repIndex;
1352 opt->prev1IsChar = False;
1353 }
1354 }
1355 while (--lenTest >= 2);
1356 lenTest = lenTestTemp;
1357
1358 if (repIndex == 0)
1359 startLen = lenTest + 1;
1360
1361 /* if (_maxMode) */
1362 {
1363 UInt32 lenTest2 = lenTest + 1;
1364 UInt32 limit = lenTest2 + p->numFastBytes;
1365 UInt32 nextRepMatchPrice;
1366 if (limit > numAvailFull)
1367 limit = numAvailFull;
1368 for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1369 lenTest2 -= lenTest + 1;
1370 if (lenTest2 >= 2)
1371 {
1372 UInt32 state2 = kRepNextStates[state];
1373 UInt32 posStateNext = (position + lenTest) & p->pbMask;
1374 UInt32 curAndLenCharPrice =
1375 price + p->repLenEnc.prices[posState][lenTest - 2] +
1376 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1377 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1378 data[lenTest], data2[lenTest], p->ProbPrices);
1379 state2 = kLiteralNextStates[state2];
1380 posStateNext = (position + lenTest + 1) & p->pbMask;
1381 nextRepMatchPrice = curAndLenCharPrice +
1382 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1383 GET_PRICE_1(p->isRep[state2]);
1384
1385 /* for (; lenTest2 >= 2; lenTest2--) */
1386 {
1387 UInt32 curAndLenPrice;
1388 COptimal *opt;
1389 UInt32 offset = cur + lenTest + 1 + lenTest2;
1390 while (lenEnd < offset)
1391 p->opt[++lenEnd].price = kInfinityPrice;
1392 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1393 opt = &p->opt[offset];
1394 if (curAndLenPrice < opt->price)
1395 {
1396 opt->price = curAndLenPrice;
1397 opt->posPrev = cur + lenTest + 1;
1398 opt->backPrev = 0;
1399 opt->prev1IsChar = True;
1400 opt->prev2 = True;
1401 opt->posPrev2 = cur;
1402 opt->backPrev2 = repIndex;
1403 }
1404 }
1405 }
1406 }
1407 }
1408 }
1409 /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
1410 if (newLen > numAvail)
1411 {
1412 newLen = numAvail;
1413 for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1414 matches[numPairs] = newLen;
1415 numPairs += 2;
1416 }
1417 if (newLen >= startLen)
1418 {
1419 UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1420 UInt32 offs, curBack, posSlot;
1421 UInt32 lenTest;
1422 while (lenEnd < cur + newLen)
1423 p->opt[++lenEnd].price = kInfinityPrice;
1424
1425 offs = 0;
1426 while (startLen > matches[offs])
1427 offs += 2;
1428 curBack = matches[offs + 1];
1429 GetPosSlot2(curBack, posSlot);
1430 for (lenTest = /*2*/ startLen; ; lenTest++)
1431 {
1432 UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
1433 UInt32 lenToPosState = GetLenToPosState(lenTest);
1434 COptimal *opt;
1435 if (curBack < kNumFullDistances)
1436 curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
1437 else
1438 curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
1439
1440 opt = &p->opt[cur + lenTest];
1441 if (curAndLenPrice < opt->price)
1442 {
1443 opt->price = curAndLenPrice;
1444 opt->posPrev = cur;
1445 opt->backPrev = curBack + LZMA_NUM_REPS;
1446 opt->prev1IsChar = False;
1447 }
1448
1449 if (/*_maxMode && */lenTest == matches[offs])
1450 {
1451 /* Try Match + Literal + Rep0 */
1452 const Byte *data2 = data - (curBack + 1);
1453 UInt32 lenTest2 = lenTest + 1;
1454 UInt32 limit = lenTest2 + p->numFastBytes;
1455 UInt32 nextRepMatchPrice;
1456 if (limit > numAvailFull)
1457 limit = numAvailFull;
1458 for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1459 lenTest2 -= lenTest + 1;
1460 if (lenTest2 >= 2)
1461 {
1462 UInt32 state2 = kMatchNextStates[state];
1463 UInt32 posStateNext = (position + lenTest) & p->pbMask;
1464 UInt32 curAndLenCharPrice = curAndLenPrice +
1465 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1466 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1467 data[lenTest], data2[lenTest], p->ProbPrices);
1468 state2 = kLiteralNextStates[state2];
1469 posStateNext = (posStateNext + 1) & p->pbMask;
1470 nextRepMatchPrice = curAndLenCharPrice +
1471 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1472 GET_PRICE_1(p->isRep[state2]);
1473
1474 /* for (; lenTest2 >= 2; lenTest2--) */
1475 {
1476 UInt32 offset = cur + lenTest + 1 + lenTest2;
1477 UInt32 curAndLenPrice;
1478 COptimal *opt;
1479 while (lenEnd < offset)
1480 p->opt[++lenEnd].price = kInfinityPrice;
1481 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1482 opt = &p->opt[offset];
1483 if (curAndLenPrice < opt->price)
1484 {
1485 opt->price = curAndLenPrice;
1486 opt->posPrev = cur + lenTest + 1;
1487 opt->backPrev = 0;
1488 opt->prev1IsChar = True;
1489 opt->prev2 = True;
1490 opt->posPrev2 = cur;
1491 opt->backPrev2 = curBack + LZMA_NUM_REPS;
1492 }
1493 }
1494 }
1495 offs += 2;
1496 if (offs == numPairs)
1497 break;
1498 curBack = matches[offs + 1];
1499 if (curBack >= kNumFullDistances)
1500 GetPosSlot2(curBack, posSlot);
1501 }
1502 }
1503 }
1504 }
1505 }
1506
1507 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1508
GetOptimumFast(CLzmaEnc * p,UInt32 * backRes)1509 static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
1510 {
1511 UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
1512 const Byte *data;
1513 const UInt32 *matches;
1514
1515 if (p->additionalOffset == 0)
1516 mainLen = ReadMatchDistances(p, &numPairs);
1517 else
1518 {
1519 mainLen = p->longestMatchLength;
1520 numPairs = p->numPairs;
1521 }
1522
1523 numAvail = p->numAvail;
1524 *backRes = (UInt32)-1;
1525 if (numAvail < 2)
1526 return 1;
1527 if (numAvail > LZMA_MATCH_LEN_MAX)
1528 numAvail = LZMA_MATCH_LEN_MAX;
1529 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1530
1531 repLen = repIndex = 0;
1532 for (i = 0; i < LZMA_NUM_REPS; i++)
1533 {
1534 UInt32 len;
1535 const Byte *data2 = data - (p->reps[i] + 1);
1536 if (data[0] != data2[0] || data[1] != data2[1])
1537 continue;
1538 for (len = 2; len < numAvail && data[len] == data2[len]; len++);
1539 if (len >= p->numFastBytes)
1540 {
1541 *backRes = i;
1542 MovePos(p, len - 1);
1543 return len;
1544 }
1545 if (len > repLen)
1546 {
1547 repIndex = i;
1548 repLen = len;
1549 }
1550 }
1551
1552 matches = p->matches;
1553 if (mainLen >= p->numFastBytes)
1554 {
1555 *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1556 MovePos(p, mainLen - 1);
1557 return mainLen;
1558 }
1559
1560 mainDist = 0; /* for GCC */
1561 if (mainLen >= 2)
1562 {
1563 mainDist = matches[numPairs - 1];
1564 while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
1565 {
1566 if (!ChangePair(matches[numPairs - 3], mainDist))
1567 break;
1568 numPairs -= 2;
1569 mainLen = matches[numPairs - 2];
1570 mainDist = matches[numPairs - 1];
1571 }
1572 if (mainLen == 2 && mainDist >= 0x80)
1573 mainLen = 1;
1574 }
1575
1576 if (repLen >= 2 && (
1577 (repLen + 1 >= mainLen) ||
1578 (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
1579 (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
1580 {
1581 *backRes = repIndex;
1582 MovePos(p, repLen - 1);
1583 return repLen;
1584 }
1585
1586 if (mainLen < 2 || numAvail <= 2)
1587 return 1;
1588
1589 p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
1590 if (p->longestMatchLength >= 2)
1591 {
1592 UInt32 newDistance = matches[p->numPairs - 1];
1593 if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
1594 (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
1595 (p->longestMatchLength > mainLen + 1) ||
1596 (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
1597 return 1;
1598 }
1599
1600 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1601 for (i = 0; i < LZMA_NUM_REPS; i++)
1602 {
1603 UInt32 len, limit;
1604 const Byte *data2 = data - (p->reps[i] + 1);
1605 if (data[0] != data2[0] || data[1] != data2[1])
1606 continue;
1607 limit = mainLen - 1;
1608 for (len = 2; len < limit && data[len] == data2[len]; len++);
1609 if (len >= limit)
1610 return 1;
1611 }
1612 *backRes = mainDist + LZMA_NUM_REPS;
1613 MovePos(p, mainLen - 2);
1614 return mainLen;
1615 }
1616
WriteEndMarker(CLzmaEnc * p,UInt32 posState)1617 static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
1618 {
1619 UInt32 len;
1620 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1621 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1622 p->state = kMatchNextStates[p->state];
1623 len = LZMA_MATCH_LEN_MIN;
1624 LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1625 RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
1626 RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
1627 RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
1628 }
1629
CheckErrors(CLzmaEnc * p)1630 static SRes CheckErrors(CLzmaEnc *p)
1631 {
1632 if (p->result != SZ_OK)
1633 return p->result;
1634 if (p->rc.res != SZ_OK)
1635 p->result = SZ_ERROR_WRITE;
1636 if (p->matchFinderBase.result != SZ_OK)
1637 p->result = SZ_ERROR_READ;
1638 if (p->result != SZ_OK)
1639 p->finished = True;
1640 return p->result;
1641 }
1642
Flush(CLzmaEnc * p,UInt32 nowPos)1643 static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
1644 {
1645 /* ReleaseMFStream(); */
1646 p->finished = True;
1647 if (p->writeEndMark)
1648 WriteEndMarker(p, nowPos & p->pbMask);
1649 RangeEnc_FlushData(&p->rc);
1650 RangeEnc_FlushStream(&p->rc);
1651 return CheckErrors(p);
1652 }
1653
FillAlignPrices(CLzmaEnc * p)1654 static void FillAlignPrices(CLzmaEnc *p)
1655 {
1656 UInt32 i;
1657 for (i = 0; i < kAlignTableSize; i++)
1658 p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
1659 p->alignPriceCount = 0;
1660 }
1661
FillDistancesPrices(CLzmaEnc * p)1662 static void FillDistancesPrices(CLzmaEnc *p)
1663 {
1664 UInt32 tempPrices[kNumFullDistances];
1665 UInt32 i, lenToPosState;
1666 for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
1667 {
1668 UInt32 posSlot = GetPosSlot1(i);
1669 UInt32 footerBits = ((posSlot >> 1) - 1);
1670 UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1671 tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
1672 }
1673
1674 for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
1675 {
1676 UInt32 posSlot;
1677 const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
1678 UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
1679 for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
1680 posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
1681 for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
1682 posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
1683
1684 {
1685 UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
1686 UInt32 i;
1687 for (i = 0; i < kStartPosModelIndex; i++)
1688 distancesPrices[i] = posSlotPrices[i];
1689 for (; i < kNumFullDistances; i++)
1690 distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
1691 }
1692 }
1693 p->matchPriceCount = 0;
1694 }
1695
LzmaEnc_Construct(CLzmaEnc * p)1696 void LzmaEnc_Construct(CLzmaEnc *p)
1697 {
1698 RangeEnc_Construct(&p->rc);
1699 MatchFinder_Construct(&p->matchFinderBase);
1700 #ifdef COMPRESS_MF_MT
1701 MatchFinderMt_Construct(&p->matchFinderMt);
1702 p->matchFinderMt.MatchFinder = &p->matchFinderBase;
1703 #endif
1704
1705 {
1706 CLzmaEncProps props;
1707 LzmaEncProps_Init(&props);
1708 LzmaEnc_SetProps(p, &props);
1709 }
1710
1711 #ifndef LZMA_LOG_BSR
1712 LzmaEnc_FastPosInit(p->g_FastPos);
1713 #endif
1714
1715 LzmaEnc_InitPriceTables(p->ProbPrices);
1716 p->litProbs = 0;
1717 p->saveState.litProbs = 0;
1718 }
1719
LzmaEnc_Create(ISzAlloc * alloc)1720 CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
1721 {
1722 void *p;
1723 p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
1724 if (p != 0)
1725 LzmaEnc_Construct((CLzmaEnc *)p);
1726 return p;
1727 }
1728
LzmaEnc_FreeLits(CLzmaEnc * p,ISzAlloc * alloc)1729 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
1730 {
1731 alloc->Free(alloc, p->litProbs, 0);
1732 alloc->Free(alloc, p->saveState.litProbs, 0);
1733 p->litProbs = 0;
1734 p->saveState.litProbs = 0;
1735 }
1736
LzmaEnc_Destruct(CLzmaEnc * p,ISzAlloc * alloc,ISzAlloc * allocBig)1737 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
1738 {
1739 #ifdef COMPRESS_MF_MT
1740 MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
1741 #endif
1742 MatchFinder_Free(&p->matchFinderBase, allocBig);
1743 LzmaEnc_FreeLits(p, alloc);
1744 RangeEnc_Free(&p->rc, alloc);
1745 }
1746
LzmaEnc_Destroy(CLzmaEncHandle p,ISzAlloc * alloc,ISzAlloc * allocBig)1747 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
1748 {
1749 LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
1750 alloc->Free(alloc, p, 0);
1751 }
1752
LzmaEnc_CodeOneBlock(CLzmaEnc * p,Bool useLimits,UInt32 maxPackSize,UInt32 maxUnpackSize)1753 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
1754 {
1755 UInt32 nowPos32, startPos32;
1756 if (p->inStream != 0)
1757 {
1758 p->matchFinderBase.stream = p->inStream;
1759 p->matchFinder.Init(p->matchFinderObj);
1760 p->inStream = 0;
1761 }
1762
1763 if (p->finished)
1764 return p->result;
1765 RINOK(CheckErrors(p));
1766
1767 nowPos32 = (UInt32)p->nowPos64;
1768 startPos32 = nowPos32;
1769
1770 if (p->nowPos64 == 0)
1771 {
1772 UInt32 numPairs;
1773 Byte curByte;
1774 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1775 return Flush(p, nowPos32);
1776 ReadMatchDistances(p, &numPairs);
1777 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
1778 p->state = kLiteralNextStates[p->state];
1779 curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
1780 LitEnc_Encode(&p->rc, p->litProbs, curByte);
1781 p->additionalOffset--;
1782 nowPos32++;
1783 }
1784
1785 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
1786 for (;;)
1787 {
1788 UInt32 pos, len, posState;
1789
1790 if (p->fastMode)
1791 len = GetOptimumFast(p, &pos);
1792 else
1793 len = GetOptimum(p, nowPos32, &pos);
1794
1795 #ifdef SHOW_STAT2
1796 printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
1797 #endif
1798
1799 posState = nowPos32 & p->pbMask;
1800 if (len == 1 && pos == (UInt32)-1)
1801 {
1802 Byte curByte;
1803 CLzmaProb *probs;
1804 const Byte *data;
1805
1806 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
1807 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
1808 curByte = *data;
1809 probs = LIT_PROBS(nowPos32, *(data - 1));
1810 if (IsCharState(p->state))
1811 LitEnc_Encode(&p->rc, probs, curByte);
1812 else
1813 LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
1814 p->state = kLiteralNextStates[p->state];
1815 }
1816 else
1817 {
1818 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1819 if (pos < LZMA_NUM_REPS)
1820 {
1821 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
1822 if (pos == 0)
1823 {
1824 RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
1825 RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
1826 }
1827 else
1828 {
1829 UInt32 distance = p->reps[pos];
1830 RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
1831 if (pos == 1)
1832 RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
1833 else
1834 {
1835 RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
1836 RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
1837 if (pos == 3)
1838 p->reps[3] = p->reps[2];
1839 p->reps[2] = p->reps[1];
1840 }
1841 p->reps[1] = p->reps[0];
1842 p->reps[0] = distance;
1843 }
1844 if (len == 1)
1845 p->state = kShortRepNextStates[p->state];
1846 else
1847 {
1848 LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1849 p->state = kRepNextStates[p->state];
1850 }
1851 }
1852 else
1853 {
1854 UInt32 posSlot;
1855 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1856 p->state = kMatchNextStates[p->state];
1857 LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1858 pos -= LZMA_NUM_REPS;
1859 GetPosSlot(pos, posSlot);
1860 RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
1861
1862 if (posSlot >= kStartPosModelIndex)
1863 {
1864 UInt32 footerBits = ((posSlot >> 1) - 1);
1865 UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1866 UInt32 posReduced = pos - base;
1867
1868 if (posSlot < kEndPosModelIndex)
1869 RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
1870 else
1871 {
1872 RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
1873 RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
1874 p->alignPriceCount++;
1875 }
1876 }
1877 p->reps[3] = p->reps[2];
1878 p->reps[2] = p->reps[1];
1879 p->reps[1] = p->reps[0];
1880 p->reps[0] = pos;
1881 p->matchPriceCount++;
1882 }
1883 }
1884 p->additionalOffset -= len;
1885 nowPos32 += len;
1886 if (p->additionalOffset == 0)
1887 {
1888 UInt32 processed;
1889 if (!p->fastMode)
1890 {
1891 if (p->matchPriceCount >= (1 << 7))
1892 FillDistancesPrices(p);
1893 if (p->alignPriceCount >= kAlignTableSize)
1894 FillAlignPrices(p);
1895 }
1896 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1897 break;
1898 processed = nowPos32 - startPos32;
1899 if (useLimits)
1900 {
1901 if (processed + kNumOpts + 300 >= maxUnpackSize ||
1902 RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
1903 break;
1904 }
1905 else if (processed >= (1 << 15))
1906 {
1907 p->nowPos64 += nowPos32 - startPos32;
1908 return CheckErrors(p);
1909 }
1910 }
1911 }
1912 p->nowPos64 += nowPos32 - startPos32;
1913 return Flush(p, nowPos32);
1914 }
1915
1916 #define kBigHashDicLimit ((UInt32)1 << 24)
1917
LzmaEnc_Alloc(CLzmaEnc * p,UInt32 keepWindowSize,ISzAlloc * alloc,ISzAlloc * allocBig)1918 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
1919 {
1920 UInt32 beforeSize = kNumOpts;
1921
1922 if (!RangeEnc_Alloc(&p->rc, alloc))
1923 return SZ_ERROR_MEM;
1924 #ifdef COMPRESS_MF_MT
1925 p->mtMode = (p->multiThread && !p->fastMode &&
1926 (p->matchFinderBase.btMode != 0));
1927 #endif
1928
1929 {
1930 unsigned lclp = p->lc + p->lp;
1931 if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
1932 {
1933 LzmaEnc_FreeLits(p, alloc);
1934 p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1935 p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1936 if (p->litProbs == 0 || p->saveState.litProbs == 0)
1937 {
1938 LzmaEnc_FreeLits(p, alloc);
1939 return SZ_ERROR_MEM;
1940 }
1941 p->lclp = lclp;
1942 }
1943 }
1944
1945 p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
1946
1947 if (beforeSize + p->dictSize < keepWindowSize)
1948 beforeSize = keepWindowSize - p->dictSize;
1949
1950 #ifdef COMPRESS_MF_MT
1951 if (p->mtMode)
1952 {
1953 RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
1954 p->matchFinderObj = &p->matchFinderMt;
1955 MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
1956 }
1957 else
1958 #endif
1959 {
1960 if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
1961 return SZ_ERROR_MEM;
1962 p->matchFinderObj = &p->matchFinderBase;
1963 MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
1964 }
1965 return SZ_OK;
1966 }
1967
LzmaEnc_Init(CLzmaEnc * p)1968 void LzmaEnc_Init(CLzmaEnc *p)
1969 {
1970 UInt32 i;
1971 p->state = 0;
1972 for (i = 0 ; i < LZMA_NUM_REPS; i++)
1973 p->reps[i] = 0;
1974
1975 RangeEnc_Init(&p->rc);
1976
1977
1978 for (i = 0; i < kNumStates; i++)
1979 {
1980 UInt32 j;
1981 for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
1982 {
1983 p->isMatch[i][j] = kProbInitValue;
1984 p->isRep0Long[i][j] = kProbInitValue;
1985 }
1986 p->isRep[i] = kProbInitValue;
1987 p->isRepG0[i] = kProbInitValue;
1988 p->isRepG1[i] = kProbInitValue;
1989 p->isRepG2[i] = kProbInitValue;
1990 }
1991
1992 {
1993 UInt32 num = 0x300 << (p->lp + p->lc);
1994 for (i = 0; i < num; i++)
1995 p->litProbs[i] = kProbInitValue;
1996 }
1997
1998 {
1999 for (i = 0; i < kNumLenToPosStates; i++)
2000 {
2001 CLzmaProb *probs = p->posSlotEncoder[i];
2002 UInt32 j;
2003 for (j = 0; j < (1 << kNumPosSlotBits); j++)
2004 probs[j] = kProbInitValue;
2005 }
2006 }
2007 {
2008 for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
2009 p->posEncoders[i] = kProbInitValue;
2010 }
2011
2012 LenEnc_Init(&p->lenEnc.p);
2013 LenEnc_Init(&p->repLenEnc.p);
2014
2015 for (i = 0; i < (1 << kNumAlignBits); i++)
2016 p->posAlignEncoder[i] = kProbInitValue;
2017
2018 p->optimumEndIndex = 0;
2019 p->optimumCurrentIndex = 0;
2020 p->additionalOffset = 0;
2021
2022 p->pbMask = (1 << p->pb) - 1;
2023 p->lpMask = (1 << p->lp) - 1;
2024 }
2025
LzmaEnc_InitPrices(CLzmaEnc * p)2026 void LzmaEnc_InitPrices(CLzmaEnc *p)
2027 {
2028 if (!p->fastMode)
2029 {
2030 FillDistancesPrices(p);
2031 FillAlignPrices(p);
2032 }
2033
2034 p->lenEnc.tableSize =
2035 p->repLenEnc.tableSize =
2036 p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2037 LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
2038 LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
2039 }
2040
LzmaEnc_AllocAndInit(CLzmaEnc * p,UInt32 keepWindowSize,ISzAlloc * alloc,ISzAlloc * allocBig)2041 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2042 {
2043 UInt32 i;
2044 for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
2045 if (p->dictSize <= ((UInt32)1 << i))
2046 break;
2047 p->distTableSize = i * 2;
2048
2049 p->finished = False;
2050 p->result = SZ_OK;
2051 RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2052 LzmaEnc_Init(p);
2053 LzmaEnc_InitPrices(p);
2054 p->nowPos64 = 0;
2055 return SZ_OK;
2056 }
2057
LzmaEnc_Prepare(CLzmaEncHandle pp,ISeqInStream * inStream,ISeqOutStream * outStream,ISzAlloc * alloc,ISzAlloc * allocBig)2058 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream,
2059 ISzAlloc *alloc, ISzAlloc *allocBig)
2060 {
2061 CLzmaEnc *p = (CLzmaEnc *)pp;
2062 p->inStream = inStream;
2063 p->rc.outStream = outStream;
2064 return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2065 }
2066
LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,ISeqInStream * inStream,UInt32 keepWindowSize,ISzAlloc * alloc,ISzAlloc * allocBig)2067 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2068 ISeqInStream *inStream, UInt32 keepWindowSize,
2069 ISzAlloc *alloc, ISzAlloc *allocBig)
2070 {
2071 CLzmaEnc *p = (CLzmaEnc *)pp;
2072 p->inStream = inStream;
2073 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2074 }
2075
LzmaEnc_SetInputBuf(CLzmaEnc * p,const Byte * src,SizeT srcLen)2076 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2077 {
2078 p->seqBufInStream.funcTable.Read = MyRead;
2079 p->seqBufInStream.data = src;
2080 p->seqBufInStream.rem = srcLen;
2081 }
2082
LzmaEnc_MemPrepare(CLzmaEncHandle pp,const Byte * src,SizeT srcLen,UInt32 keepWindowSize,ISzAlloc * alloc,ISzAlloc * allocBig)2083 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2084 UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2085 {
2086 CLzmaEnc *p = (CLzmaEnc *)pp;
2087 LzmaEnc_SetInputBuf(p, src, srcLen);
2088 p->inStream = &p->seqBufInStream.funcTable;
2089 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2090 }
2091
LzmaEnc_Finish(CLzmaEncHandle pp)2092 void LzmaEnc_Finish(CLzmaEncHandle pp)
2093 {
2094 #ifdef COMPRESS_MF_MT
2095 CLzmaEnc *p = (CLzmaEnc *)pp;
2096 if (p->mtMode)
2097 MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2098 #else
2099 pp = pp;
2100 #endif
2101 }
2102
2103 typedef struct _CSeqOutStreamBuf
2104 {
2105 ISeqOutStream funcTable;
2106 Byte *data;
2107 SizeT rem;
2108 Bool overflow;
2109 } CSeqOutStreamBuf;
2110
MyWrite(void * pp,const void * data,size_t size)2111 static size_t MyWrite(void *pp, const void *data, size_t size)
2112 {
2113 CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
2114 if (p->rem < size)
2115 {
2116 size = p->rem;
2117 p->overflow = True;
2118 }
2119 memcpy(p->data, data, size);
2120 p->rem -= size;
2121 p->data += size;
2122 return size;
2123 }
2124
2125
LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)2126 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2127 {
2128 const CLzmaEnc *p = (CLzmaEnc *)pp;
2129 return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2130 }
2131
LzmaEnc_GetCurBuf(CLzmaEncHandle pp)2132 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2133 {
2134 const CLzmaEnc *p = (CLzmaEnc *)pp;
2135 return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2136 }
2137
LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp,Bool reInit,Byte * dest,size_t * destLen,UInt32 desiredPackSize,UInt32 * unpackSize)2138 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
2139 Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2140 {
2141 CLzmaEnc *p = (CLzmaEnc *)pp;
2142 UInt64 nowPos64;
2143 SRes res;
2144 CSeqOutStreamBuf outStream;
2145
2146 outStream.funcTable.Write = MyWrite;
2147 outStream.data = dest;
2148 outStream.rem = *destLen;
2149 outStream.overflow = False;
2150
2151 p->writeEndMark = False;
2152 p->finished = False;
2153 p->result = SZ_OK;
2154
2155 if (reInit)
2156 LzmaEnc_Init(p);
2157 LzmaEnc_InitPrices(p);
2158 nowPos64 = p->nowPos64;
2159 RangeEnc_Init(&p->rc);
2160 p->rc.outStream = &outStream.funcTable;
2161
2162 res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
2163
2164 *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2165 *destLen -= outStream.rem;
2166 if (outStream.overflow)
2167 return SZ_ERROR_OUTPUT_EOF;
2168
2169 return res;
2170 }
2171
LzmaEnc_Encode(CLzmaEncHandle pp,ISeqOutStream * outStream,ISeqInStream * inStream,ICompressProgress * progress,ISzAlloc * alloc,ISzAlloc * allocBig)2172 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2173 ISzAlloc *alloc, ISzAlloc *allocBig)
2174 {
2175 CLzmaEnc *p = (CLzmaEnc *)pp;
2176 SRes res = SZ_OK;
2177
2178 #ifdef COMPRESS_MF_MT
2179 Byte allocaDummy[0x300];
2180 int i = 0;
2181 for (i = 0; i < 16; i++)
2182 allocaDummy[i] = (Byte)i;
2183 #endif
2184
2185 RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig));
2186
2187 for (;;)
2188 {
2189 res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
2190 if (res != SZ_OK || p->finished != 0)
2191 break;
2192 if (progress != 0)
2193 {
2194 res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2195 if (res != SZ_OK)
2196 {
2197 res = SZ_ERROR_PROGRESS;
2198 break;
2199 }
2200 }
2201 }
2202 LzmaEnc_Finish(pp);
2203 return res;
2204 }
2205
LzmaEnc_WriteProperties(CLzmaEncHandle pp,Byte * props,SizeT * size)2206 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2207 {
2208 CLzmaEnc *p = (CLzmaEnc *)pp;
2209 int i;
2210 UInt32 dictSize = p->dictSize;
2211 if (*size < LZMA_PROPS_SIZE)
2212 return SZ_ERROR_PARAM;
2213 *size = LZMA_PROPS_SIZE;
2214 props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2215
2216 for (i = 11; i <= 30; i++)
2217 {
2218 if (dictSize <= ((UInt32)2 << i))
2219 {
2220 dictSize = (2 << i);
2221 break;
2222 }
2223 if (dictSize <= ((UInt32)3 << i))
2224 {
2225 dictSize = (3 << i);
2226 break;
2227 }
2228 }
2229
2230 for (i = 0; i < 4; i++)
2231 props[1 + i] = (Byte)(dictSize >> (8 * i));
2232 return SZ_OK;
2233 }
2234
LzmaEnc_MemEncode(CLzmaEncHandle pp,Byte * dest,SizeT * destLen,const Byte * src,SizeT srcLen,int writeEndMark,ICompressProgress * progress,ISzAlloc * alloc,ISzAlloc * allocBig)2235 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2236 int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2237 {
2238 SRes res;
2239 CLzmaEnc *p = (CLzmaEnc *)pp;
2240
2241 CSeqOutStreamBuf outStream;
2242
2243 LzmaEnc_SetInputBuf(p, src, srcLen);
2244
2245 outStream.funcTable.Write = MyWrite;
2246 outStream.data = dest;
2247 outStream.rem = *destLen;
2248 outStream.overflow = False;
2249
2250 p->writeEndMark = writeEndMark;
2251 res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable,
2252 progress, alloc, allocBig);
2253
2254 *destLen -= outStream.rem;
2255 if (outStream.overflow)
2256 return SZ_ERROR_OUTPUT_EOF;
2257 return res;
2258 }
2259
LzmaEncode(Byte * dest,SizeT * destLen,const Byte * src,SizeT srcLen,const CLzmaEncProps * props,Byte * propsEncoded,SizeT * propsSize,int writeEndMark,ICompressProgress * progress,ISzAlloc * alloc,ISzAlloc * allocBig)2260 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2261 const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2262 ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2263 {
2264 CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2265 SRes res;
2266 if (p == 0)
2267 return SZ_ERROR_MEM;
2268
2269 res = LzmaEnc_SetProps(p, props);
2270 if (res == SZ_OK)
2271 {
2272 res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2273 if (res == SZ_OK)
2274 res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2275 writeEndMark, progress, alloc, allocBig);
2276 }
2277
2278 LzmaEnc_Destroy(p, alloc, allocBig);
2279 return res;
2280 }
2281