xref: /illumos-gate/usr/src/lib/libc/port/threads/scalls.c (revision f48205be)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "lint.h"
30 #include "thr_uberdata.h"
31 #include <stdarg.h>
32 #include <poll.h>
33 #include <stropts.h>
34 #include <dlfcn.h>
35 #include <sys/uio.h>
36 
37 /*
38  * fork_lock is special -- We can't use lmutex_lock() (and thereby enter
39  * a critical region) because the second thread to reach this point would
40  * become unstoppable and the first thread would hang waiting for the
41  * second thread to stop itself.  Therefore we don't use lmutex_lock() in
42  * fork_lock_enter(), but we do defer signals (the other form of concurrency).
43  *
44  * fork_lock_enter() does triple-duty.  Not only does it serialize
45  * calls to fork() and forkall(), but it also serializes calls to
46  * thr_suspend() (fork() and forkall() also suspend other threads),
47  * and furthermore it serializes I18N calls to functions in other
48  * dlopen()ed L10N objects that might be calling malloc()/free().
49  */
50 
51 static void
52 fork_lock_error(const char *who)
53 {
54 	char msg[200];
55 
56 	(void) strlcpy(msg, "deadlock condition: ", sizeof (msg));
57 	(void) strlcat(msg, who, sizeof (msg));
58 	(void) strlcat(msg, "() called from a fork handler", sizeof (msg));
59 	thread_error(msg);
60 }
61 
62 int
63 fork_lock_enter(const char *who)
64 {
65 	ulwp_t *self = curthread;
66 	uberdata_t *udp = self->ul_uberdata;
67 	int error = 0;
68 
69 	ASSERT(self->ul_critical == 0);
70 	sigoff(self);
71 	(void) _private_mutex_lock(&udp->fork_lock);
72 	if (udp->fork_count) {
73 		ASSERT(udp->fork_owner == self);
74 		/*
75 		 * This is a simple recursive lock except that we
76 		 * inform the caller if we have been called from
77 		 * a fork handler and let it deal with that fact.
78 		 */
79 		if (self->ul_fork) {
80 			/*
81 			 * We have been called from a fork handler.
82 			 */
83 			if (who != NULL &&
84 			    udp->uberflags.uf_thread_error_detection)
85 				fork_lock_error(who);
86 			error = EDEADLK;
87 		}
88 	}
89 	udp->fork_owner = self;
90 	udp->fork_count++;
91 	return (error);
92 }
93 
94 void
95 fork_lock_exit(void)
96 {
97 	ulwp_t *self = curthread;
98 	uberdata_t *udp = self->ul_uberdata;
99 
100 	ASSERT(self->ul_critical == 0);
101 	ASSERT(udp->fork_count != 0 && udp->fork_owner == self);
102 	if (--udp->fork_count == 0)
103 		udp->fork_owner = NULL;
104 	(void) _private_mutex_unlock(&udp->fork_lock);
105 	sigon(self);
106 }
107 
108 /*
109  * Note: Instead of making this function static, we reduce it to local
110  * scope in the mapfile. That allows the linker to prevent it from
111  * appearing in the .SUNW_dynsymsort section.
112  */
113 #pragma weak forkx = _private_forkx
114 #pragma weak _forkx = _private_forkx
115 pid_t
116 _private_forkx(int flags)
117 {
118 	ulwp_t *self = curthread;
119 	uberdata_t *udp = self->ul_uberdata;
120 	pid_t pid;
121 	int error;
122 
123 	if (self->ul_vfork) {
124 		/*
125 		 * We are a child of vfork(); omit all of the fork
126 		 * logic and go straight to the system call trap.
127 		 * A vfork() child of a multithreaded parent
128 		 * must never call fork().
129 		 */
130 		if (udp->uberflags.uf_mt) {
131 			errno = ENOTSUP;
132 			return (-1);
133 		}
134 		pid = __forkx(flags);
135 		if (pid == 0) {		/* child */
136 			udp->pid = _private_getpid();
137 			self->ul_vfork = 0;
138 		}
139 		return (pid);
140 	}
141 
142 	if ((error = fork_lock_enter("fork")) != 0) {
143 		/*
144 		 * Cannot call fork() from a fork handler.
145 		 */
146 		fork_lock_exit();
147 		errno = error;
148 		return (-1);
149 	}
150 	self->ul_fork = 1;
151 
152 	/*
153 	 * The functions registered by pthread_atfork() are defined by
154 	 * the application and its libraries and we must not hold any
155 	 * internal libc locks while invoking them.  The fork_lock_enter()
156 	 * function serializes fork(), thr_suspend(), pthread_atfork() and
157 	 * dlclose() (which destroys whatever pthread_atfork() functions
158 	 * the library may have set up).  If one of these pthread_atfork()
159 	 * functions attempts to fork or suspend another thread or call
160 	 * pthread_atfork() or dlclose a library, it will detect a deadlock
161 	 * in fork_lock_enter().  Otherwise, the pthread_atfork() functions
162 	 * are free to do anything they please (except they will not
163 	 * receive any signals).
164 	 */
165 	_prefork_handler();
166 
167 	/*
168 	 * Block all signals.
169 	 * Just deferring them via sigon() is not enough.
170 	 * We have to avoid taking a deferred signal in the child
171 	 * that was actually sent to the parent before __forkx().
172 	 */
173 	block_all_signals(self);
174 
175 	/*
176 	 * This suspends all threads but this one, leaving them
177 	 * suspended outside of any critical regions in the library.
178 	 * Thus, we are assured that no library locks are held
179 	 * while we invoke fork() from the current thread.
180 	 */
181 	suspend_fork();
182 
183 	pid = __forkx(flags);
184 
185 	if (pid == 0) {		/* child */
186 		/*
187 		 * Clear our schedctl pointer.
188 		 * Discard any deferred signal that was sent to the parent.
189 		 * Because we blocked all signals before __forkx(), a
190 		 * deferred signal cannot have been taken by the child.
191 		 */
192 		self->ul_schedctl_called = NULL;
193 		self->ul_schedctl = NULL;
194 		self->ul_cursig = 0;
195 		self->ul_siginfo.si_signo = 0;
196 		udp->pid = _private_getpid();
197 		/* reset the library's data structures to reflect one thread */
198 		postfork1_child();
199 		restore_signals(self);
200 		_postfork_child_handler();
201 	} else {
202 		/* restart all threads that were suspended for fork() */
203 		continue_fork(0);
204 		restore_signals(self);
205 		_postfork_parent_handler();
206 	}
207 
208 	self->ul_fork = 0;
209 	fork_lock_exit();
210 
211 	return (pid);
212 }
213 
214 /*
215  * fork() is fork1() for both Posix threads and Solaris threads.
216  * The forkall() interface exists for applications that require
217  * the semantics of replicating all threads.
218  */
219 #pragma weak fork1 = _fork
220 #pragma weak _fork1 = _fork
221 #pragma weak fork = _fork
222 pid_t
223 _fork(void)
224 {
225 	return (_private_forkx(0));
226 }
227 
228 /*
229  * Much of the logic here is the same as in forkx().
230  * See the comments in forkx(), above.
231  */
232 #pragma weak forkallx = _private_forkallx
233 #pragma weak _forkallx = _private_forkallx
234 pid_t
235 _private_forkallx(int flags)
236 {
237 	ulwp_t *self = curthread;
238 	uberdata_t *udp = self->ul_uberdata;
239 	pid_t pid;
240 	int error;
241 
242 	if (self->ul_vfork) {
243 		if (udp->uberflags.uf_mt) {
244 			errno = ENOTSUP;
245 			return (-1);
246 		}
247 		pid = __forkallx(flags);
248 		if (pid == 0) {		/* child */
249 			udp->pid = _private_getpid();
250 			self->ul_vfork = 0;
251 		}
252 		return (pid);
253 	}
254 
255 	if ((error = fork_lock_enter("forkall")) != 0) {
256 		fork_lock_exit();
257 		errno = error;
258 		return (-1);
259 	}
260 	self->ul_fork = 1;
261 	block_all_signals(self);
262 	suspend_fork();
263 
264 	pid = __forkallx(flags);
265 
266 	if (pid == 0) {
267 		self->ul_schedctl_called = NULL;
268 		self->ul_schedctl = NULL;
269 		self->ul_cursig = 0;
270 		self->ul_siginfo.si_signo = 0;
271 		udp->pid = _private_getpid();
272 		continue_fork(1);
273 	} else {
274 		continue_fork(0);
275 	}
276 	restore_signals(self);
277 	self->ul_fork = 0;
278 	fork_lock_exit();
279 
280 	return (pid);
281 }
282 
283 #pragma weak forkall = _forkall
284 pid_t
285 _forkall(void)
286 {
287 	return (_private_forkallx(0));
288 }
289 
290 /*
291  * Hacks for system calls to provide cancellation
292  * and improve java garbage collection.
293  */
294 #define	PROLOGUE							\
295 {									\
296 	ulwp_t *self = curthread;					\
297 	int nocancel = (self->ul_vfork | self->ul_nocancel);		\
298 	if (nocancel == 0) {						\
299 		self->ul_save_async = self->ul_cancel_async;		\
300 		if (!self->ul_cancel_disabled) {			\
301 			self->ul_cancel_async = 1;			\
302 			if (self->ul_cancel_pending)			\
303 				_pthread_exit(PTHREAD_CANCELED);	\
304 		}							\
305 		self->ul_sp = stkptr();					\
306 	}
307 
308 #define	EPILOGUE							\
309 	if (nocancel == 0) {						\
310 		self->ul_sp = 0;					\
311 		self->ul_cancel_async = self->ul_save_async;		\
312 	}								\
313 }
314 
315 /*
316  * Perform the body of the action required by most of the cancelable
317  * function calls.  The return(function_call) part is to allow the
318  * compiler to make the call be executed with tail recursion, which
319  * saves a register window on sparc and slightly (not much) improves
320  * the code for x86/x64 compilations.
321  */
322 #define	PERFORM(function_call)						\
323 	PROLOGUE							\
324 	if (nocancel)							\
325 		return (function_call);					\
326 	rv = function_call;						\
327 	EPILOGUE							\
328 	return (rv);
329 
330 /*
331  * Specialized prologue for sigsuspend() and pollsys().
332  * These system calls pass a signal mask to the kernel.
333  * The kernel replaces the thread's signal mask with the
334  * temporary mask before the thread goes to sleep.  If
335  * a signal is received, the signal handler will execute
336  * with the temporary mask, as modified by the sigaction
337  * for the particular signal.
338  *
339  * We block all signals until we reach the kernel with the
340  * temporary mask.  This eliminates race conditions with
341  * setting the signal mask while signals are being posted.
342  */
343 #define	PROLOGUE_MASK(sigmask)						\
344 {									\
345 	ulwp_t *self = curthread;					\
346 	int nocancel = (self->ul_vfork | self->ul_nocancel);		\
347 	if (!self->ul_vfork) {						\
348 		if (sigmask) {						\
349 			block_all_signals(self);			\
350 			self->ul_tmpmask.__sigbits[0] = sigmask->__sigbits[0]; \
351 			self->ul_tmpmask.__sigbits[1] = sigmask->__sigbits[1]; \
352 			delete_reserved_signals(&self->ul_tmpmask);	\
353 			self->ul_sigsuspend = 1;			\
354 		}							\
355 		if (nocancel == 0) {					\
356 			self->ul_save_async = self->ul_cancel_async;	\
357 			if (!self->ul_cancel_disabled) {		\
358 				self->ul_cancel_async = 1;		\
359 				if (self->ul_cancel_pending) {		\
360 					if (self->ul_sigsuspend) {	\
361 						self->ul_sigsuspend = 0;\
362 						restore_signals(self);	\
363 					}				\
364 					_pthread_exit(PTHREAD_CANCELED);\
365 				}					\
366 			}						\
367 			self->ul_sp = stkptr();				\
368 		}							\
369 	}
370 
371 /*
372  * If a signal is taken, we return from the system call wrapper with
373  * our original signal mask restored (see code in call_user_handler()).
374  * If not (self->ul_sigsuspend is still non-zero), we must restore our
375  * original signal mask ourself.
376  */
377 #define	EPILOGUE_MASK							\
378 	if (nocancel == 0) {						\
379 		self->ul_sp = 0;					\
380 		self->ul_cancel_async = self->ul_save_async;		\
381 	}								\
382 	if (self->ul_sigsuspend) {					\
383 		self->ul_sigsuspend = 0;				\
384 		restore_signals(self);					\
385 	}								\
386 }
387 
388 /*
389  * Cancellation prologue and epilogue functions,
390  * for cancellation points too complex to include here.
391  */
392 void
393 _cancel_prologue(void)
394 {
395 	ulwp_t *self = curthread;
396 
397 	self->ul_cancel_prologue = (self->ul_vfork | self->ul_nocancel);
398 	if (self->ul_cancel_prologue == 0) {
399 		self->ul_save_async = self->ul_cancel_async;
400 		if (!self->ul_cancel_disabled) {
401 			self->ul_cancel_async = 1;
402 			if (self->ul_cancel_pending)
403 				_pthread_exit(PTHREAD_CANCELED);
404 		}
405 		self->ul_sp = stkptr();
406 	}
407 }
408 
409 void
410 _cancel_epilogue(void)
411 {
412 	ulwp_t *self = curthread;
413 
414 	if (self->ul_cancel_prologue == 0) {
415 		self->ul_sp = 0;
416 		self->ul_cancel_async = self->ul_save_async;
417 	}
418 }
419 
420 /*
421  * Called from _thrp_join() (thr_join() is a cancellation point)
422  */
423 int
424 lwp_wait(thread_t tid, thread_t *found)
425 {
426 	int error;
427 
428 	PROLOGUE
429 	while ((error = __lwp_wait(tid, found)) == EINTR)
430 		;
431 	EPILOGUE
432 	return (error);
433 }
434 
435 ssize_t
436 read(int fd, void *buf, size_t size)
437 {
438 	extern ssize_t _read(int, void *, size_t);
439 	ssize_t rv;
440 
441 	PERFORM(_read(fd, buf, size))
442 }
443 
444 ssize_t
445 write(int fd, const void *buf, size_t size)
446 {
447 	extern ssize_t _write(int, const void *, size_t);
448 	ssize_t rv;
449 
450 	PERFORM(_write(fd, buf, size))
451 }
452 
453 int
454 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
455 	int *flagsp)
456 {
457 	extern int _getmsg(int, struct strbuf *, struct strbuf *, int *);
458 	int rv;
459 
460 	PERFORM(_getmsg(fd, ctlptr, dataptr, flagsp))
461 }
462 
463 int
464 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
465 	int *bandp, int *flagsp)
466 {
467 	extern int _getpmsg(int, struct strbuf *, struct strbuf *,
468 		int *, int *);
469 	int rv;
470 
471 	PERFORM(_getpmsg(fd, ctlptr, dataptr, bandp, flagsp))
472 }
473 
474 int
475 putmsg(int fd, const struct strbuf *ctlptr,
476 	const struct strbuf *dataptr, int flags)
477 {
478 	extern int _putmsg(int, const struct strbuf *,
479 		const struct strbuf *, int);
480 	int rv;
481 
482 	PERFORM(_putmsg(fd, ctlptr, dataptr, flags))
483 }
484 
485 int
486 __xpg4_putmsg(int fd, const struct strbuf *ctlptr,
487 	const struct strbuf *dataptr, int flags)
488 {
489 	extern int _putmsg(int, const struct strbuf *,
490 		const struct strbuf *, int);
491 	int rv;
492 
493 	PERFORM(_putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4))
494 }
495 
496 int
497 putpmsg(int fd, const struct strbuf *ctlptr,
498 	const struct strbuf *dataptr, int band, int flags)
499 {
500 	extern int _putpmsg(int, const struct strbuf *,
501 		const struct strbuf *, int, int);
502 	int rv;
503 
504 	PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags))
505 }
506 
507 int
508 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr,
509 	const struct strbuf *dataptr, int band, int flags)
510 {
511 	extern int _putpmsg(int, const struct strbuf *,
512 		const struct strbuf *, int, int);
513 	int rv;
514 
515 	PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4))
516 }
517 
518 #pragma weak nanosleep = _nanosleep
519 int
520 _nanosleep(const timespec_t *rqtp, timespec_t *rmtp)
521 {
522 	int error;
523 
524 	PROLOGUE
525 	error = __nanosleep(rqtp, rmtp);
526 	EPILOGUE
527 	if (error) {
528 		errno = error;
529 		return (-1);
530 	}
531 	return (0);
532 }
533 
534 #pragma weak clock_nanosleep = _clock_nanosleep
535 int
536 _clock_nanosleep(clockid_t clock_id, int flags,
537 	const timespec_t *rqtp, timespec_t *rmtp)
538 {
539 	timespec_t reltime;
540 	hrtime_t start;
541 	hrtime_t rqlapse;
542 	hrtime_t lapse;
543 	int error;
544 
545 	switch (clock_id) {
546 	case CLOCK_VIRTUAL:
547 	case CLOCK_PROCESS_CPUTIME_ID:
548 	case CLOCK_THREAD_CPUTIME_ID:
549 		return (ENOTSUP);
550 	case CLOCK_REALTIME:
551 	case CLOCK_HIGHRES:
552 		break;
553 	default:
554 		return (EINVAL);
555 	}
556 	if (flags & TIMER_ABSTIME) {
557 		abstime_to_reltime(clock_id, rqtp, &reltime);
558 		rmtp = NULL;
559 	} else {
560 		reltime = *rqtp;
561 		if (clock_id == CLOCK_HIGHRES)
562 			start = gethrtime();
563 	}
564 restart:
565 	PROLOGUE
566 	error = __nanosleep(&reltime, rmtp);
567 	EPILOGUE
568 	if (error == 0 && clock_id == CLOCK_HIGHRES) {
569 		/*
570 		 * Don't return yet if we didn't really get a timeout.
571 		 * This can happen if we return because someone resets
572 		 * the system clock.
573 		 */
574 		if (flags & TIMER_ABSTIME) {
575 			if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
576 			    rqtp->tv_nsec > gethrtime()) {
577 				abstime_to_reltime(clock_id, rqtp, &reltime);
578 				goto restart;
579 			}
580 		} else {
581 			rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
582 				rqtp->tv_nsec;
583 			lapse = gethrtime() - start;
584 			if (rqlapse > lapse) {
585 				hrt2ts(rqlapse - lapse, &reltime);
586 				goto restart;
587 			}
588 		}
589 	}
590 	if (error == 0 && clock_id == CLOCK_REALTIME &&
591 	    (flags & TIMER_ABSTIME)) {
592 		/*
593 		 * Don't return yet just because someone reset the
594 		 * system clock.  Recompute the new relative time
595 		 * and reissue the nanosleep() call if necessary.
596 		 *
597 		 * Resetting the system clock causes all sorts of
598 		 * problems and the SUSV3 standards body should
599 		 * have made the behavior of clock_nanosleep() be
600 		 * implementation-defined in such a case rather than
601 		 * being specific about honoring the new system time.
602 		 * Standards bodies are filled with fools and idiots.
603 		 */
604 		abstime_to_reltime(clock_id, rqtp, &reltime);
605 		if (reltime.tv_sec != 0 || reltime.tv_nsec != 0)
606 			goto restart;
607 	}
608 	return (error);
609 }
610 
611 #pragma weak sleep = _sleep
612 unsigned int
613 _sleep(unsigned int sec)
614 {
615 	unsigned int rem = 0;
616 	int error;
617 	timespec_t ts;
618 	timespec_t tsr;
619 
620 	ts.tv_sec = (time_t)sec;
621 	ts.tv_nsec = 0;
622 	PROLOGUE
623 	error = __nanosleep(&ts, &tsr);
624 	EPILOGUE
625 	if (error == EINTR) {
626 		rem = (unsigned int)tsr.tv_sec;
627 		if (tsr.tv_nsec >= NANOSEC / 2)
628 			rem++;
629 	}
630 	return (rem);
631 }
632 
633 #pragma weak usleep = _usleep
634 int
635 _usleep(useconds_t usec)
636 {
637 	timespec_t ts;
638 
639 	ts.tv_sec = usec / MICROSEC;
640 	ts.tv_nsec = (long)(usec % MICROSEC) * 1000;
641 	PROLOGUE
642 	(void) __nanosleep(&ts, NULL);
643 	EPILOGUE
644 	return (0);
645 }
646 
647 int
648 close(int fildes)
649 {
650 	extern void _aio_close(int);
651 	extern int _close(int);
652 	int rv;
653 
654 	_aio_close(fildes);
655 	PERFORM(_close(fildes))
656 }
657 
658 int
659 creat(const char *path, mode_t mode)
660 {
661 	extern int _creat(const char *, mode_t);
662 	int rv;
663 
664 	PERFORM(_creat(path, mode))
665 }
666 
667 #if !defined(_LP64)
668 int
669 creat64(const char *path, mode_t mode)
670 {
671 	extern int _creat64(const char *, mode_t);
672 	int rv;
673 
674 	PERFORM(_creat64(path, mode))
675 }
676 #endif	/* !_LP64 */
677 
678 int
679 fcntl(int fildes, int cmd, ...)
680 {
681 	extern int _fcntl(int, int, ...);
682 	intptr_t arg;
683 	int rv;
684 	va_list ap;
685 
686 	va_start(ap, cmd);
687 	arg = va_arg(ap, intptr_t);
688 	va_end(ap);
689 	if (cmd != F_SETLKW)
690 		return (_fcntl(fildes, cmd, arg));
691 	PERFORM(_fcntl(fildes, cmd, arg))
692 }
693 
694 int
695 fsync(int fildes)
696 {
697 	extern int _fsync(int);
698 	int rv;
699 
700 	PERFORM(_fsync(fildes))
701 }
702 
703 int
704 lockf(int fildes, int function, off_t size)
705 {
706 	extern int _lockf(int, int, off_t);
707 	int rv;
708 
709 	PERFORM(_lockf(fildes, function, size))
710 }
711 
712 #if !defined(_LP64)
713 int
714 lockf64(int fildes, int function, off64_t size)
715 {
716 	extern int _lockf64(int, int, off64_t);
717 	int rv;
718 
719 	PERFORM(_lockf64(fildes, function, size))
720 }
721 #endif	/* !_LP64 */
722 
723 ssize_t
724 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg)
725 {
726 	extern ssize_t _msgrcv(int, void *, size_t, long, int);
727 	ssize_t rv;
728 
729 	PERFORM(_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg))
730 }
731 
732 int
733 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
734 {
735 	extern int _msgsnd(int, const void *, size_t, int);
736 	int rv;
737 
738 	PERFORM(_msgsnd(msqid, msgp, msgsz, msgflg))
739 }
740 
741 int
742 msync(caddr_t addr, size_t len, int flags)
743 {
744 	extern int _msync(caddr_t, size_t, int);
745 	int rv;
746 
747 	PERFORM(_msync(addr, len, flags))
748 }
749 
750 int
751 open(const char *path, int oflag, ...)
752 {
753 	extern int _open(const char *, int, ...);
754 	mode_t mode;
755 	int rv;
756 	va_list ap;
757 
758 	va_start(ap, oflag);
759 	mode = va_arg(ap, mode_t);
760 	va_end(ap);
761 	PERFORM(_open(path, oflag, mode))
762 }
763 
764 #if !defined(_LP64)
765 int
766 open64(const char *path, int oflag, ...)
767 {
768 	extern int _open64(const char *, int, ...);
769 	mode_t mode;
770 	int rv;
771 	va_list ap;
772 
773 	va_start(ap, oflag);
774 	mode = va_arg(ap, mode_t);
775 	va_end(ap);
776 	PERFORM(_open64(path, oflag, mode))
777 }
778 #endif	/* !_LP64 */
779 
780 int
781 pause(void)
782 {
783 	extern int _pause(void);
784 	int rv;
785 
786 	PERFORM(_pause())
787 }
788 
789 ssize_t
790 pread(int fildes, void *buf, size_t nbyte, off_t offset)
791 {
792 	extern ssize_t _pread(int, void *, size_t, off_t);
793 	ssize_t rv;
794 
795 	PERFORM(_pread(fildes, buf, nbyte, offset))
796 }
797 
798 #if !defined(_LP64)
799 ssize_t
800 pread64(int fildes, void *buf, size_t nbyte, off64_t offset)
801 {
802 	extern ssize_t _pread64(int, void *, size_t, off64_t);
803 	ssize_t rv;
804 
805 	PERFORM(_pread64(fildes, buf, nbyte, offset))
806 }
807 #endif	/* !_LP64 */
808 
809 ssize_t
810 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset)
811 {
812 	extern ssize_t _pwrite(int, const void *, size_t, off_t);
813 	ssize_t rv;
814 
815 	PERFORM(_pwrite(fildes, buf, nbyte, offset))
816 }
817 
818 #if !defined(_LP64)
819 ssize_t
820 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset)
821 {
822 	extern ssize_t _pwrite64(int, const void *, size_t, off64_t);
823 	ssize_t rv;
824 
825 	PERFORM(_pwrite64(fildes, buf, nbyte, offset))
826 }
827 #endif	/* !_LP64 */
828 
829 ssize_t
830 readv(int fildes, const struct iovec *iov, int iovcnt)
831 {
832 	extern ssize_t _readv(int, const struct iovec *, int);
833 	ssize_t rv;
834 
835 	PERFORM(_readv(fildes, iov, iovcnt))
836 }
837 
838 int
839 sigpause(int sig)
840 {
841 	extern int _sigpause(int);
842 	int rv;
843 
844 	PERFORM(_sigpause(sig))
845 }
846 
847 #pragma weak sigsuspend = _sigsuspend
848 int
849 _sigsuspend(const sigset_t *set)
850 {
851 	extern int __sigsuspend(const sigset_t *);
852 	int rv;
853 
854 	PROLOGUE_MASK(set)
855 	rv = __sigsuspend(set);
856 	EPILOGUE_MASK
857 	return (rv);
858 }
859 
860 int
861 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout,
862 	const sigset_t *sigmask)
863 {
864 	extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *,
865 		const sigset_t *);
866 	int rv;
867 
868 	PROLOGUE_MASK(sigmask)
869 	rv = __pollsys(fds, nfd, timeout, sigmask);
870 	EPILOGUE_MASK
871 	return (rv);
872 }
873 
874 #pragma weak sigtimedwait = _sigtimedwait
875 int
876 _sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout)
877 {
878 	extern int __sigtimedwait(const sigset_t *, siginfo_t *,
879 		const timespec_t *);
880 	siginfo_t info;
881 	int sig;
882 
883 	PROLOGUE
884 	sig = __sigtimedwait(set, &info, timeout);
885 	if (sig == SIGCANCEL &&
886 	    (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) {
887 		do_sigcancel();
888 		errno = EINTR;
889 		sig = -1;
890 	}
891 	EPILOGUE
892 	if (sig != -1 && infop)
893 		(void) _private_memcpy(infop, &info, sizeof (*infop));
894 	return (sig);
895 }
896 
897 #pragma weak sigwait = _sigwait
898 int
899 _sigwait(sigset_t *set)
900 {
901 	return (_sigtimedwait(set, NULL, NULL));
902 }
903 
904 #pragma weak sigwaitinfo = _sigwaitinfo
905 int
906 _sigwaitinfo(const sigset_t *set, siginfo_t *info)
907 {
908 	return (_sigtimedwait(set, info, NULL));
909 }
910 
911 #pragma weak sigqueue = _sigqueue
912 int
913 _sigqueue(pid_t pid, int signo, const union sigval value)
914 {
915 	extern int __sigqueue(pid_t pid, int signo,
916 		/* const union sigval */ void *value, int si_code, int block);
917 	return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0));
918 }
919 
920 int
921 tcdrain(int fildes)
922 {
923 	extern int _tcdrain(int);
924 	int rv;
925 
926 	PERFORM(_tcdrain(fildes))
927 }
928 
929 pid_t
930 wait(int *stat_loc)
931 {
932 	extern pid_t _wait(int *);
933 	pid_t rv;
934 
935 	PERFORM(_wait(stat_loc))
936 }
937 
938 pid_t
939 wait3(int *statusp, int options, struct rusage *rusage)
940 {
941 	extern pid_t _wait3(int *, int, struct rusage *);
942 	pid_t rv;
943 
944 	PERFORM(_wait3(statusp, options, rusage))
945 }
946 
947 int
948 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options)
949 {
950 	extern int _waitid(idtype_t, id_t, siginfo_t *, int);
951 	int rv;
952 
953 	PERFORM(_waitid(idtype, id, infop, options))
954 }
955 
956 /*
957  * waitpid_cancel() is a libc-private symbol for internal use
958  * where cancellation semantics is desired (see system()).
959  */
960 #pragma weak waitpid_cancel = waitpid
961 pid_t
962 waitpid(pid_t pid, int *stat_loc, int options)
963 {
964 	extern pid_t _waitpid(pid_t, int *, int);
965 	pid_t rv;
966 
967 	PERFORM(_waitpid(pid, stat_loc, options))
968 }
969 
970 ssize_t
971 writev(int fildes, const struct iovec *iov, int iovcnt)
972 {
973 	extern ssize_t _writev(int, const struct iovec *, int);
974 	ssize_t rv;
975 
976 	PERFORM(_writev(fildes, iov, iovcnt))
977 }
978