1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <stdlib.h>
30 #include <strings.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <limits.h>
34 #include <assert.h>
35 #include <ctype.h>
36 #include <alloca.h>
37 #include <dt_impl.h>
38 
39 /*
40  * We declare this here because (1) we need it and (2) we want to avoid a
41  * dependency on libm in libdtrace.
42  */
43 static long double
44 dt_fabsl(long double x)
45 {
46 	if (x < 0)
47 		return (-x);
48 
49 	return (x);
50 }
51 
52 static int
53 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
54     dtrace_bufdesc_t *buf, size_t offs)
55 {
56 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
57 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
58 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
59 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
60 	const char *str = NULL;
61 	static const char *e_str[2] = { " -> ", " => " };
62 	static const char *r_str[2] = { " <- ", " <= " };
63 	static const char *ent = "entry", *ret = "return";
64 	static int entlen = 0, retlen = 0;
65 	dtrace_epid_t next, id = epd->dtepd_epid;
66 	int rval;
67 
68 	if (entlen == 0) {
69 		assert(retlen == 0);
70 		entlen = strlen(ent);
71 		retlen = strlen(ret);
72 	}
73 
74 	/*
75 	 * If the name of the probe is "entry" or ends with "-entry", we
76 	 * treat it as an entry; if it is "return" or ends with "-return",
77 	 * we treat it as a return.  (This allows application-provided probes
78 	 * like "method-entry" or "function-entry" to participate in flow
79 	 * indentation -- without accidentally misinterpreting popular probe
80 	 * names like "carpentry", "gentry" or "Coventry".)
81 	 */
82 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
83 	    (sub == n || sub[-1] == '-')) {
84 		flow = DTRACEFLOW_ENTRY;
85 		str = e_str[strcmp(p, "syscall") == 0];
86 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
87 	    (sub == n || sub[-1] == '-')) {
88 		flow = DTRACEFLOW_RETURN;
89 		str = r_str[strcmp(p, "syscall") == 0];
90 	}
91 
92 	/*
93 	 * If we're going to indent this, we need to check the ID of our last
94 	 * call.  If we're looking at the same probe ID but a different EPID,
95 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
96 	 * this scheme -- it's a heuristic.)
97 	 */
98 	if (flow == DTRACEFLOW_ENTRY) {
99 		if ((last != DTRACE_EPIDNONE && id != last &&
100 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
101 			flow = DTRACEFLOW_NONE;
102 	}
103 
104 	/*
105 	 * If we're going to unindent this, it's more difficult to see if
106 	 * we don't actually want to unindent it -- we need to look at the
107 	 * _next_ EPID.
108 	 */
109 	if (flow == DTRACEFLOW_RETURN) {
110 		offs += epd->dtepd_size;
111 
112 		do {
113 			if (offs >= buf->dtbd_size) {
114 				/*
115 				 * We're at the end -- maybe.  If the oldest
116 				 * record is non-zero, we need to wrap.
117 				 */
118 				if (buf->dtbd_oldest != 0) {
119 					offs = 0;
120 				} else {
121 					goto out;
122 				}
123 			}
124 
125 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
126 
127 			if (next == DTRACE_EPIDNONE)
128 				offs += sizeof (id);
129 		} while (next == DTRACE_EPIDNONE);
130 
131 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
132 			return (rval);
133 
134 		if (next != id && npd->dtpd_id == pd->dtpd_id)
135 			flow = DTRACEFLOW_NONE;
136 	}
137 
138 out:
139 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
140 		data->dtpda_prefix = str;
141 	} else {
142 		data->dtpda_prefix = "| ";
143 	}
144 
145 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
146 		data->dtpda_indent -= 2;
147 
148 	data->dtpda_flow = flow;
149 
150 	return (0);
151 }
152 
153 static int
154 dt_nullprobe()
155 {
156 	return (DTRACE_CONSUME_THIS);
157 }
158 
159 static int
160 dt_nullrec()
161 {
162 	return (DTRACE_CONSUME_NEXT);
163 }
164 
165 int
166 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
167     uint64_t normal, long double total, char positives, char negatives)
168 {
169 	long double f;
170 	uint_t depth, len = 40;
171 
172 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
173 	const char *spaces = "                                        ";
174 
175 	assert(strlen(ats) == len && strlen(spaces) == len);
176 	assert(!(total == 0 && (positives || negatives)));
177 	assert(!(val < 0 && !negatives));
178 	assert(!(val > 0 && !positives));
179 	assert(!(val != 0 && total == 0));
180 
181 	if (!negatives) {
182 		if (positives) {
183 			f = (dt_fabsl((long double)val) * len) / total;
184 			depth = (uint_t)(f + 0.5);
185 		} else {
186 			depth = 0;
187 		}
188 
189 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
190 		    spaces + depth, (long long)val / normal));
191 	}
192 
193 	if (!positives) {
194 		f = (dt_fabsl((long double)val) * len) / total;
195 		depth = (uint_t)(f + 0.5);
196 
197 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
198 		    ats + len - depth, (long long)val / normal));
199 	}
200 
201 	/*
202 	 * If we're here, we have both positive and negative bucket values.
203 	 * To express this graphically, we're going to generate both positive
204 	 * and negative bars separated by a centerline.  These bars are half
205 	 * the size of normal quantize()/lquantize() bars, so we divide the
206 	 * length in half before calculating the bar length.
207 	 */
208 	len /= 2;
209 	ats = &ats[len];
210 	spaces = &spaces[len];
211 
212 	f = (dt_fabsl((long double)val) * len) / total;
213 	depth = (uint_t)(f + 0.5);
214 
215 	if (val <= 0) {
216 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
217 		    ats + len - depth, len, "", (long long)val / normal));
218 	} else {
219 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
220 		    ats + len - depth, spaces + depth,
221 		    (long long)val / normal));
222 	}
223 }
224 
225 int
226 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
227     size_t size, uint64_t normal)
228 {
229 	const int64_t *data = addr;
230 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
231 	long double total = 0;
232 	char positives = 0, negatives = 0;
233 
234 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
235 		return (dt_set_errno(dtp, EDT_DMISMATCH));
236 
237 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
238 		first_bin++;
239 
240 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
241 		/*
242 		 * There isn't any data.  This is possible if (and only if)
243 		 * negative increment values have been used.  In this case,
244 		 * we'll print the buckets around 0.
245 		 */
246 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
247 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
248 	} else {
249 		if (first_bin > 0)
250 			first_bin--;
251 
252 		while (last_bin > 0 && data[last_bin] == 0)
253 			last_bin--;
254 
255 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
256 			last_bin++;
257 	}
258 
259 	for (i = first_bin; i <= last_bin; i++) {
260 		positives |= (data[i] > 0);
261 		negatives |= (data[i] < 0);
262 		total += dt_fabsl((long double)data[i]);
263 	}
264 
265 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
266 	    "------------- Distribution -------------", "count") < 0)
267 		return (-1);
268 
269 	for (i = first_bin; i <= last_bin; i++) {
270 		if (dt_printf(dtp, fp, "%16lld ",
271 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
272 			return (-1);
273 
274 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
275 		    positives, negatives) < 0)
276 			return (-1);
277 	}
278 
279 	return (0);
280 }
281 
282 int
283 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
284     size_t size, uint64_t normal)
285 {
286 	const int64_t *data = addr;
287 	int i, first_bin, last_bin, base;
288 	uint64_t arg;
289 	long double total = 0;
290 	uint16_t step, levels;
291 	char positives = 0, negatives = 0;
292 
293 	if (size < sizeof (uint64_t))
294 		return (dt_set_errno(dtp, EDT_DMISMATCH));
295 
296 	arg = *data++;
297 	size -= sizeof (uint64_t);
298 
299 	base = DTRACE_LQUANTIZE_BASE(arg);
300 	step = DTRACE_LQUANTIZE_STEP(arg);
301 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
302 
303 	first_bin = 0;
304 	last_bin = levels + 1;
305 
306 	if (size != sizeof (uint64_t) * (levels + 2))
307 		return (dt_set_errno(dtp, EDT_DMISMATCH));
308 
309 	while (first_bin <= levels + 1 && data[first_bin] == 0)
310 		first_bin++;
311 
312 	if (first_bin > levels + 1) {
313 		first_bin = 0;
314 		last_bin = 2;
315 	} else {
316 		if (first_bin > 0)
317 			first_bin--;
318 
319 		while (last_bin > 0 && data[last_bin] == 0)
320 			last_bin--;
321 
322 		if (last_bin < levels + 1)
323 			last_bin++;
324 	}
325 
326 	for (i = first_bin; i <= last_bin; i++) {
327 		positives |= (data[i] > 0);
328 		negatives |= (data[i] < 0);
329 		total += dt_fabsl((long double)data[i]);
330 	}
331 
332 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
333 	    "------------- Distribution -------------", "count") < 0)
334 		return (-1);
335 
336 	for (i = first_bin; i <= last_bin; i++) {
337 		char c[32];
338 		int err;
339 
340 		if (i == 0) {
341 			(void) snprintf(c, sizeof (c), "< %d",
342 			    base / (uint32_t)normal);
343 			err = dt_printf(dtp, fp, "%16s ", c);
344 		} else if (i == levels + 1) {
345 			(void) snprintf(c, sizeof (c), ">= %d",
346 			    base + (levels * step));
347 			err = dt_printf(dtp, fp, "%16s ", c);
348 		} else {
349 			err = dt_printf(dtp, fp, "%16d ",
350 			    base + (i - 1) * step);
351 		}
352 
353 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
354 		    total, positives, negatives) < 0)
355 			return (-1);
356 	}
357 
358 	return (0);
359 }
360 
361 /*ARGSUSED*/
362 static int
363 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
364     size_t size, uint64_t normal)
365 {
366 	/* LINTED - alignment */
367 	uint64_t *data = (uint64_t *)addr;
368 
369 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
370 	    (long long)(data[1] / normal / data[0]) : 0));
371 }
372 
373 /*ARGSUSED*/
374 int
375 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
376     size_t nbytes, int width, int quiet)
377 {
378 	/*
379 	 * If the byte stream is a series of printable characters, followed by
380 	 * a terminating byte, we print it out as a string.  Otherwise, we
381 	 * assume that it's something else and just print the bytes.
382 	 */
383 	int i, j, margin = 5;
384 	char *c = (char *)addr;
385 
386 	if (nbytes == 0)
387 		return (0);
388 
389 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
390 		goto raw;
391 
392 	for (i = 0; i < nbytes; i++) {
393 		/*
394 		 * We define a "printable character" to be one for which
395 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
396 		 * or a character which is either backspace or the bell.
397 		 * Backspace and the bell are regrettably special because
398 		 * they fail the first two tests -- and yet they are entirely
399 		 * printable.  These are the only two control characters that
400 		 * have meaning for the terminal and for which isprint(3C) and
401 		 * isspace(3C) return 0.
402 		 */
403 		if (isprint(c[i]) || isspace(c[i]) ||
404 		    c[i] == '\b' || c[i] == '\a')
405 			continue;
406 
407 		if (c[i] == '\0' && i > 0) {
408 			/*
409 			 * This looks like it might be a string.  Before we
410 			 * assume that it is indeed a string, check the
411 			 * remainder of the byte range; if it contains
412 			 * additional non-nul characters, we'll assume that
413 			 * it's a binary stream that just happens to look like
414 			 * a string, and we'll print out the individual bytes.
415 			 */
416 			for (j = i + 1; j < nbytes; j++) {
417 				if (c[j] != '\0')
418 					break;
419 			}
420 
421 			if (j != nbytes)
422 				break;
423 
424 			if (quiet)
425 				return (dt_printf(dtp, fp, "%s", c));
426 			else
427 				return (dt_printf(dtp, fp, "  %-*s", width, c));
428 		}
429 
430 		break;
431 	}
432 
433 	if (i == nbytes) {
434 		/*
435 		 * The byte range is all printable characters, but there is
436 		 * no trailing nul byte.  We'll assume that it's a string and
437 		 * print it as such.
438 		 */
439 		char *s = alloca(nbytes + 1);
440 		bcopy(c, s, nbytes);
441 		s[nbytes] = '\0';
442 		return (dt_printf(dtp, fp, "  %-*s", width, s));
443 	}
444 
445 raw:
446 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
447 		return (-1);
448 
449 	for (i = 0; i < 16; i++)
450 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
451 			return (-1);
452 
453 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
454 		return (-1);
455 
456 
457 	for (i = 0; i < nbytes; i += 16) {
458 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
459 			return (-1);
460 
461 		for (j = i; j < i + 16 && j < nbytes; j++) {
462 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
463 				return (-1);
464 		}
465 
466 		while (j++ % 16) {
467 			if (dt_printf(dtp, fp, "   ") < 0)
468 				return (-1);
469 		}
470 
471 		if (dt_printf(dtp, fp, "  ") < 0)
472 			return (-1);
473 
474 		for (j = i; j < i + 16 && j < nbytes; j++) {
475 			if (dt_printf(dtp, fp, "%c",
476 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
477 				return (-1);
478 		}
479 
480 		if (dt_printf(dtp, fp, "\n") < 0)
481 			return (-1);
482 	}
483 
484 	return (0);
485 }
486 
487 int
488 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
489     caddr_t addr, int depth, int size)
490 {
491 	dtrace_syminfo_t dts;
492 	GElf_Sym sym;
493 	int i, indent;
494 	char c[PATH_MAX * 2];
495 	uint64_t pc;
496 
497 	if (dt_printf(dtp, fp, "\n") < 0)
498 		return (-1);
499 
500 	if (format == NULL)
501 		format = "%s";
502 
503 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
504 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
505 	else
506 		indent = _dtrace_stkindent;
507 
508 	for (i = 0; i < depth; i++) {
509 		switch (size) {
510 		case sizeof (uint32_t):
511 			/* LINTED - alignment */
512 			pc = *((uint32_t *)addr);
513 			break;
514 
515 		case sizeof (uint64_t):
516 			/* LINTED - alignment */
517 			pc = *((uint64_t *)addr);
518 			break;
519 
520 		default:
521 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
522 		}
523 
524 		if (pc == NULL)
525 			break;
526 
527 		addr += size;
528 
529 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
530 			return (-1);
531 
532 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
533 			if (pc > sym.st_value) {
534 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
535 				    dts.dts_object, dts.dts_name,
536 				    pc - sym.st_value);
537 			} else {
538 				(void) snprintf(c, sizeof (c), "%s`%s",
539 				    dts.dts_object, dts.dts_name);
540 			}
541 		} else {
542 			/*
543 			 * We'll repeat the lookup, but this time we'll specify
544 			 * a NULL GElf_Sym -- indicating that we're only
545 			 * interested in the containing module.
546 			 */
547 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
548 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
549 				    dts.dts_object, pc);
550 			} else {
551 				(void) snprintf(c, sizeof (c), "0x%llx", pc);
552 			}
553 		}
554 
555 		if (dt_printf(dtp, fp, format, c) < 0)
556 			return (-1);
557 
558 		if (dt_printf(dtp, fp, "\n") < 0)
559 			return (-1);
560 	}
561 
562 	return (0);
563 }
564 
565 int
566 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
567     caddr_t addr, uint64_t arg)
568 {
569 	/* LINTED - alignment */
570 	uint64_t *pc = (uint64_t *)addr;
571 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
572 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
573 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
574 	const char *str = strsize ? strbase : NULL;
575 	int err = 0;
576 
577 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
578 	struct ps_prochandle *P;
579 	GElf_Sym sym;
580 	int i, indent;
581 	pid_t pid;
582 
583 	if (depth == 0)
584 		return (0);
585 
586 	pid = (pid_t)*pc++;
587 
588 	if (dt_printf(dtp, fp, "\n") < 0)
589 		return (-1);
590 
591 	if (format == NULL)
592 		format = "%s";
593 
594 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
595 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
596 	else
597 		indent = _dtrace_stkindent;
598 
599 	/*
600 	 * Ultimately, we need to add an entry point in the library vector for
601 	 * determining <symbol, offset> from <pid, address>.  For now, if
602 	 * this is a vector open, we just print the raw address or string.
603 	 */
604 	if (dtp->dt_vector == NULL)
605 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
606 	else
607 		P = NULL;
608 
609 	if (P != NULL)
610 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
611 
612 	for (i = 0; i < depth && pc[i] != NULL; i++) {
613 		const prmap_t *map;
614 
615 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
616 			break;
617 
618 		if (P != NULL && Plookup_by_addr(P, pc[i],
619 		    name, sizeof (name), &sym) == 0) {
620 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
621 
622 			if (pc[i] > sym.st_value) {
623 				(void) snprintf(c, sizeof (c),
624 				    "%s`%s+0x%llx", dt_basename(objname), name,
625 				    (u_longlong_t)(pc[i] - sym.st_value));
626 			} else {
627 				(void) snprintf(c, sizeof (c),
628 				    "%s`%s", dt_basename(objname), name);
629 			}
630 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
631 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
632 		    (map->pr_mflags & MA_WRITE)))) {
633 			/*
634 			 * If the current string pointer in the string table
635 			 * does not point to an empty string _and_ the program
636 			 * counter falls in a writable region, we'll use the
637 			 * string from the string table instead of the raw
638 			 * address.  This last condition is necessary because
639 			 * some (broken) ustack helpers will return a string
640 			 * even for a program counter that they can't
641 			 * identify.  If we have a string for a program
642 			 * counter that falls in a segment that isn't
643 			 * writable, we assume that we have fallen into this
644 			 * case and we refuse to use the string.
645 			 */
646 			(void) snprintf(c, sizeof (c), "%s", str);
647 		} else {
648 			if (P != NULL && Pobjname(P, pc[i], objname,
649 			    sizeof (objname)) != NULL) {
650 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
651 				    dt_basename(objname), (u_longlong_t)pc[i]);
652 			} else {
653 				(void) snprintf(c, sizeof (c), "0x%llx",
654 				    (u_longlong_t)pc[i]);
655 			}
656 		}
657 
658 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
659 			break;
660 
661 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
662 			break;
663 
664 		if (str != NULL && str[0] == '@') {
665 			/*
666 			 * If the first character of the string is an "at" sign,
667 			 * then the string is inferred to be an annotation --
668 			 * and it is printed out beneath the frame and offset
669 			 * with brackets.
670 			 */
671 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
672 				break;
673 
674 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
675 
676 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
677 				break;
678 
679 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
680 				break;
681 		}
682 
683 		if (str != NULL) {
684 			str += strlen(str) + 1;
685 			if (str - strbase >= strsize)
686 				str = NULL;
687 		}
688 	}
689 
690 	if (P != NULL) {
691 		dt_proc_unlock(dtp, P);
692 		dt_proc_release(dtp, P);
693 	}
694 
695 	return (err);
696 }
697 
698 static int
699 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
700 {
701 	/* LINTED - alignment */
702 	uint64_t pid = ((uint64_t *)addr)[0];
703 	/* LINTED - alignment */
704 	uint64_t pc = ((uint64_t *)addr)[1];
705 	const char *format = "  %-50s";
706 	char *s;
707 	int n, len = 256;
708 
709 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
710 		struct ps_prochandle *P;
711 
712 		if ((P = dt_proc_grab(dtp, pid,
713 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
714 			GElf_Sym sym;
715 
716 			dt_proc_lock(dtp, P);
717 
718 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
719 				pc = sym.st_value;
720 
721 			dt_proc_unlock(dtp, P);
722 			dt_proc_release(dtp, P);
723 		}
724 	}
725 
726 	do {
727 		n = len;
728 		s = alloca(n);
729 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) >= n);
730 
731 	return (dt_printf(dtp, fp, format, s));
732 }
733 
734 int
735 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
736 {
737 	/* LINTED - alignment */
738 	uint64_t pid = ((uint64_t *)addr)[0];
739 	/* LINTED - alignment */
740 	uint64_t pc = ((uint64_t *)addr)[1];
741 	int err = 0;
742 
743 	char objname[PATH_MAX], c[PATH_MAX * 2];
744 	struct ps_prochandle *P;
745 
746 	if (format == NULL)
747 		format = "  %-50s";
748 
749 	/*
750 	 * See the comment in dt_print_ustack() for the rationale for
751 	 * printing raw addresses in the vectored case.
752 	 */
753 	if (dtp->dt_vector == NULL)
754 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
755 	else
756 		P = NULL;
757 
758 	if (P != NULL)
759 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
760 
761 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) {
762 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
763 	} else {
764 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
765 	}
766 
767 	err = dt_printf(dtp, fp, format, c);
768 
769 	if (P != NULL) {
770 		dt_proc_unlock(dtp, P);
771 		dt_proc_release(dtp, P);
772 	}
773 
774 	return (err);
775 }
776 
777 static int
778 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
779 {
780 	/* LINTED - alignment */
781 	uint64_t pc = *((uint64_t *)addr);
782 	dtrace_syminfo_t dts;
783 	GElf_Sym sym;
784 	char c[PATH_MAX * 2];
785 
786 	if (format == NULL)
787 		format = "  %-50s";
788 
789 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
790 		(void) snprintf(c, sizeof (c), "%s`%s",
791 		    dts.dts_object, dts.dts_name);
792 	} else {
793 		/*
794 		 * We'll repeat the lookup, but this time we'll specify a
795 		 * NULL GElf_Sym -- indicating that we're only interested in
796 		 * the containing module.
797 		 */
798 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
799 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
800 			    dts.dts_object, (u_longlong_t)pc);
801 		} else {
802 			(void) snprintf(c, sizeof (c), "0x%llx",
803 			    (u_longlong_t)pc);
804 		}
805 	}
806 
807 	if (dt_printf(dtp, fp, format, c) < 0)
808 		return (-1);
809 
810 	return (0);
811 }
812 
813 int
814 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
815 {
816 	/* LINTED - alignment */
817 	uint64_t pc = *((uint64_t *)addr);
818 	dtrace_syminfo_t dts;
819 	char c[PATH_MAX * 2];
820 
821 	if (format == NULL)
822 		format = "  %-50s";
823 
824 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
825 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
826 	} else {
827 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
828 	}
829 
830 	if (dt_printf(dtp, fp, format, c) < 0)
831 		return (-1);
832 
833 	return (0);
834 }
835 
836 typedef struct dt_normal {
837 	dtrace_aggvarid_t dtnd_id;
838 	uint64_t dtnd_normal;
839 } dt_normal_t;
840 
841 static int
842 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
843 {
844 	dt_normal_t *normal = arg;
845 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
846 	dtrace_aggvarid_t id = normal->dtnd_id;
847 	uintptr_t data = (uintptr_t)aggdata->dtada_data;
848 
849 	if (agg->dtagd_nrecs == 0)
850 		return (DTRACE_AGGWALK_NEXT);
851 
852 	if (id != *(dtrace_aggvarid_t *)(data + agg->dtagd_rec[0].dtrd_offset))
853 		return (DTRACE_AGGWALK_NEXT);
854 
855 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
856 	return (DTRACE_AGGWALK_NORMALIZE);
857 }
858 
859 static int
860 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
861 {
862 	dt_normal_t normal;
863 	caddr_t addr;
864 
865 	/*
866 	 * We (should) have two records:  the aggregation ID followed by the
867 	 * normalization value.
868 	 */
869 	addr = base + rec->dtrd_offset;
870 
871 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
872 		return (dt_set_errno(dtp, EDT_BADNORMAL));
873 
874 	/* LINTED - alignment */
875 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
876 	rec++;
877 
878 	if (rec->dtrd_action != DTRACEACT_LIBACT)
879 		return (dt_set_errno(dtp, EDT_BADNORMAL));
880 
881 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
882 		return (dt_set_errno(dtp, EDT_BADNORMAL));
883 
884 	addr = base + rec->dtrd_offset;
885 
886 	switch (rec->dtrd_size) {
887 	case sizeof (uint64_t):
888 		/* LINTED - alignment */
889 		normal.dtnd_normal = *((uint64_t *)addr);
890 		break;
891 	case sizeof (uint32_t):
892 		/* LINTED - alignment */
893 		normal.dtnd_normal = *((uint32_t *)addr);
894 		break;
895 	case sizeof (uint16_t):
896 		/* LINTED - alignment */
897 		normal.dtnd_normal = *((uint16_t *)addr);
898 		break;
899 	case sizeof (uint8_t):
900 		normal.dtnd_normal = *((uint8_t *)addr);
901 		break;
902 	default:
903 		return (dt_set_errno(dtp, EDT_BADNORMAL));
904 	}
905 
906 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
907 
908 	return (0);
909 }
910 
911 static int
912 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
913 {
914 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
915 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
916 	uintptr_t data = (uintptr_t)aggdata->dtada_data;
917 
918 	if (agg->dtagd_nrecs == 0)
919 		return (DTRACE_AGGWALK_NEXT);
920 
921 	if (id != *(dtrace_aggvarid_t *)(data + agg->dtagd_rec[0].dtrd_offset))
922 		return (DTRACE_AGGWALK_NEXT);
923 
924 	return (DTRACE_AGGWALK_DENORMALIZE);
925 }
926 
927 static int
928 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
929 {
930 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
931 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
932 	uintptr_t data = (uintptr_t)aggdata->dtada_data;
933 
934 	if (agg->dtagd_nrecs == 0)
935 		return (DTRACE_AGGWALK_NEXT);
936 
937 	if (id != *(dtrace_aggvarid_t *)(data + agg->dtagd_rec[0].dtrd_offset))
938 		return (DTRACE_AGGWALK_NEXT);
939 
940 	return (DTRACE_AGGWALK_CLEAR);
941 }
942 
943 typedef struct dt_trunc {
944 	dtrace_aggvarid_t dttd_id;
945 	uint64_t dttd_remaining;
946 } dt_trunc_t;
947 
948 static int
949 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
950 {
951 	dt_trunc_t *trunc = arg;
952 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
953 	dtrace_aggvarid_t id = trunc->dttd_id;
954 	uintptr_t data = (uintptr_t)aggdata->dtada_data;
955 
956 	if (agg->dtagd_nrecs == 0)
957 		return (DTRACE_AGGWALK_NEXT);
958 
959 	if (id != *(dtrace_aggvarid_t *)(data + agg->dtagd_rec[0].dtrd_offset))
960 		return (DTRACE_AGGWALK_NEXT);
961 
962 	if (trunc->dttd_remaining == 0)
963 		return (DTRACE_AGGWALK_REMOVE);
964 
965 	trunc->dttd_remaining--;
966 	return (DTRACE_AGGWALK_NEXT);
967 }
968 
969 static int
970 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
971 {
972 	dt_trunc_t trunc;
973 	caddr_t addr;
974 	int64_t remaining;
975 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
976 
977 	/*
978 	 * We (should) have two records:  the aggregation ID followed by the
979 	 * number of aggregation entries after which the aggregation is to be
980 	 * truncated.
981 	 */
982 	addr = base + rec->dtrd_offset;
983 
984 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
985 		return (dt_set_errno(dtp, EDT_BADTRUNC));
986 
987 	/* LINTED - alignment */
988 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
989 	rec++;
990 
991 	if (rec->dtrd_action != DTRACEACT_LIBACT)
992 		return (dt_set_errno(dtp, EDT_BADTRUNC));
993 
994 	if (rec->dtrd_arg != DT_ACT_TRUNC)
995 		return (dt_set_errno(dtp, EDT_BADTRUNC));
996 
997 	addr = base + rec->dtrd_offset;
998 
999 	switch (rec->dtrd_size) {
1000 	case sizeof (uint64_t):
1001 		/* LINTED - alignment */
1002 		remaining = *((int64_t *)addr);
1003 		break;
1004 	case sizeof (uint32_t):
1005 		/* LINTED - alignment */
1006 		remaining = *((int32_t *)addr);
1007 		break;
1008 	case sizeof (uint16_t):
1009 		/* LINTED - alignment */
1010 		remaining = *((int16_t *)addr);
1011 		break;
1012 	case sizeof (uint8_t):
1013 		remaining = *((int8_t *)addr);
1014 		break;
1015 	default:
1016 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1017 	}
1018 
1019 	if (remaining < 0) {
1020 		func = dtrace_aggregate_walk_valsorted;
1021 		remaining = -remaining;
1022 	} else {
1023 		func = dtrace_aggregate_walk_valrevsorted;
1024 	}
1025 
1026 	assert(remaining >= 0);
1027 	trunc.dttd_remaining = remaining;
1028 
1029 	(void) func(dtp, dt_trunc_agg, &trunc);
1030 
1031 	return (0);
1032 }
1033 
1034 int
1035 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1036 {
1037 	int i, err = 0;
1038 	dt_print_aggdata_t *pd = arg;
1039 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1040 	FILE *fp = pd->dtpa_fp;
1041 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1042 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1043 	uintptr_t data = (uintptr_t)aggdata->dtada_data;
1044 
1045 	if (pd->dtpa_allunprint) {
1046 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1047 			return (0);
1048 	} else {
1049 		/*
1050 		 * If we're not printing all unprinted aggregations, then the
1051 		 * aggregation variable ID denotes a specific aggregation
1052 		 * variable that we should print -- skip any other aggregations
1053 		 * that we encounter.
1054 		 */
1055 		if (agg->dtagd_nrecs == 0)
1056 			return (0);
1057 
1058 		if (aggvarid != *(dtrace_aggvarid_t *)(data +
1059 		    agg->dtagd_rec[0].dtrd_offset))
1060 			return (0);
1061 	}
1062 
1063 	/*
1064 	 * Iterate over each record description, printing the traced data,
1065 	 * skipping the first datum (the tuple member created by the compiler).
1066 	 */
1067 	for (i = 1; err >= 0 && i < agg->dtagd_nrecs; i++) {
1068 		dtrace_recdesc_t *rec = &agg->dtagd_rec[i];
1069 		dtrace_actkind_t act = rec->dtrd_action;
1070 		caddr_t addr = aggdata->dtada_data + rec->dtrd_offset;
1071 		size_t size = rec->dtrd_size;
1072 		uint64_t normal;
1073 
1074 		normal = DTRACEACT_ISAGG(act) ? aggdata->dtada_normal : 1;
1075 
1076 		if (act == DTRACEACT_STACK) {
1077 			err = dt_print_stack(dtp, fp, NULL, addr,
1078 			    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg);
1079 			goto nextrec;
1080 		}
1081 
1082 		if (act == DTRACEACT_USTACK || act == DTRACEACT_JSTACK) {
1083 			err = dt_print_ustack(dtp, fp, NULL, addr,
1084 			    rec->dtrd_arg);
1085 			goto nextrec;
1086 		}
1087 
1088 		if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
1089 			err = dt_print_usym(dtp, fp, addr, act);
1090 			goto nextrec;
1091 		}
1092 
1093 		if (act == DTRACEACT_UMOD) {
1094 			err = dt_print_umod(dtp, fp, NULL, addr);
1095 			goto nextrec;
1096 		}
1097 
1098 		if (act == DTRACEACT_SYM) {
1099 			err = dt_print_sym(dtp, fp, NULL, addr);
1100 			goto nextrec;
1101 		}
1102 
1103 		if (act == DTRACEACT_MOD) {
1104 			err = dt_print_mod(dtp, fp, NULL, addr);
1105 			goto nextrec;
1106 		}
1107 
1108 		if (act == DTRACEAGG_QUANTIZE) {
1109 			err = dt_print_quantize(dtp, fp, addr, size, normal);
1110 			goto nextrec;
1111 		}
1112 
1113 		if (act == DTRACEAGG_LQUANTIZE) {
1114 			err = dt_print_lquantize(dtp, fp, addr, size, normal);
1115 			goto nextrec;
1116 		}
1117 
1118 		if (act == DTRACEAGG_AVG) {
1119 			err = dt_print_average(dtp, fp, addr, size, normal);
1120 			goto nextrec;
1121 		}
1122 
1123 		switch (size) {
1124 		case sizeof (uint64_t):
1125 			err = dt_printf(dtp, fp, " %16lld",
1126 			    /* LINTED - alignment */
1127 			    (long long)*((uint64_t *)addr) / normal);
1128 			break;
1129 		case sizeof (uint32_t):
1130 			/* LINTED - alignment */
1131 			err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1132 			    (uint32_t)normal);
1133 			break;
1134 		case sizeof (uint16_t):
1135 			/* LINTED - alignment */
1136 			err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1137 			    (uint32_t)normal);
1138 			break;
1139 		case sizeof (uint8_t):
1140 			err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1141 			    (uint32_t)normal);
1142 			break;
1143 		default:
1144 			err = dt_print_bytes(dtp, fp, addr, size, 50, 0);
1145 			break;
1146 		}
1147 
1148 nextrec:
1149 		if (dt_buffered_flush(dtp, NULL, rec, aggdata) < 0)
1150 			return (-1);
1151 	}
1152 
1153 	if (err >= 0)
1154 		err = dt_printf(dtp, fp, "\n");
1155 
1156 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata) < 0)
1157 		return (-1);
1158 
1159 	if (!pd->dtpa_allunprint)
1160 		agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1161 
1162 	return (err < 0 ? -1 : 0);
1163 }
1164 
1165 
1166 int
1167 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1168     const char *option, const char *value)
1169 {
1170 	int len, rval;
1171 	char *msg;
1172 	const char *errstr;
1173 	dtrace_setoptdata_t optdata;
1174 
1175 	bzero(&optdata, sizeof (optdata));
1176 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1177 
1178 	if (dtrace_setopt(dtp, option, value) == 0) {
1179 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1180 		optdata.dtsda_probe = data;
1181 		optdata.dtsda_option = option;
1182 		optdata.dtsda_handle = dtp;
1183 
1184 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1185 			return (rval);
1186 
1187 		return (0);
1188 	}
1189 
1190 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
1191 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
1192 	msg = alloca(len);
1193 
1194 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
1195 	    option, value, errstr);
1196 
1197 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
1198 		return (0);
1199 
1200 	return (rval);
1201 }
1202 
1203 static int
1204 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
1205     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
1206 {
1207 	dtrace_epid_t id;
1208 	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
1209 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
1210 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1211 	int rval, i, n;
1212 	dtrace_epid_t last = DTRACE_EPIDNONE;
1213 	dtrace_probedata_t data;
1214 	uint64_t drops;
1215 	caddr_t addr;
1216 
1217 	bzero(&data, sizeof (data));
1218 	data.dtpda_handle = dtp;
1219 	data.dtpda_cpu = cpu;
1220 
1221 again:
1222 	for (offs = start; offs < end; ) {
1223 		dtrace_eprobedesc_t *epd;
1224 
1225 		/*
1226 		 * We're guaranteed to have an ID.
1227 		 */
1228 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
1229 
1230 		if (id == DTRACE_EPIDNONE) {
1231 			/*
1232 			 * This is filler to assure proper alignment of the
1233 			 * next record; we simply ignore it.
1234 			 */
1235 			offs += sizeof (id);
1236 			continue;
1237 		}
1238 
1239 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
1240 		    &data.dtpda_pdesc)) != 0)
1241 			return (rval);
1242 
1243 		epd = data.dtpda_edesc;
1244 		data.dtpda_data = buf->dtbd_data + offs;
1245 
1246 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
1247 			rval = dt_handle(dtp, &data);
1248 
1249 			if (rval == DTRACE_CONSUME_NEXT)
1250 				goto nextepid;
1251 
1252 			if (rval == DTRACE_CONSUME_ERROR)
1253 				return (-1);
1254 		}
1255 
1256 		if (flow)
1257 			(void) dt_flowindent(dtp, &data, last, buf, offs);
1258 
1259 		rval = (*efunc)(&data, arg);
1260 
1261 		if (flow) {
1262 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
1263 				data.dtpda_indent += 2;
1264 		}
1265 
1266 		if (rval == DTRACE_CONSUME_NEXT)
1267 			goto nextepid;
1268 
1269 		if (rval == DTRACE_CONSUME_ABORT)
1270 			return (dt_set_errno(dtp, EDT_DIRABORT));
1271 
1272 		if (rval != DTRACE_CONSUME_THIS)
1273 			return (dt_set_errno(dtp, EDT_BADRVAL));
1274 
1275 		for (i = 0; i < epd->dtepd_nrecs; i++) {
1276 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
1277 			dtrace_actkind_t act = rec->dtrd_action;
1278 
1279 			data.dtpda_data = buf->dtbd_data + offs +
1280 			    rec->dtrd_offset;
1281 			addr = data.dtpda_data;
1282 
1283 			if (act == DTRACEACT_LIBACT) {
1284 				uint64_t arg = rec->dtrd_arg;
1285 				dtrace_aggvarid_t id;
1286 
1287 				switch (arg) {
1288 				case DT_ACT_CLEAR:
1289 					/* LINTED - alignment */
1290 					id = *((dtrace_aggvarid_t *)addr);
1291 					(void) dtrace_aggregate_walk(dtp,
1292 					    dt_clear_agg, &id);
1293 					continue;
1294 
1295 				case DT_ACT_DENORMALIZE:
1296 					/* LINTED - alignment */
1297 					id = *((dtrace_aggvarid_t *)addr);
1298 					(void) dtrace_aggregate_walk(dtp,
1299 					    dt_denormalize_agg, &id);
1300 					continue;
1301 
1302 				case DT_ACT_FTRUNCATE:
1303 					if (fp == NULL)
1304 						continue;
1305 
1306 					(void) fflush(fp);
1307 					(void) ftruncate(fileno(fp), 0);
1308 					(void) fseeko(fp, 0, SEEK_SET);
1309 					continue;
1310 
1311 				case DT_ACT_NORMALIZE:
1312 					if (i == epd->dtepd_nrecs - 1)
1313 						return (dt_set_errno(dtp,
1314 						    EDT_BADNORMAL));
1315 
1316 					if (dt_normalize(dtp,
1317 					    buf->dtbd_data + offs, rec) != 0)
1318 						return (-1);
1319 
1320 					i++;
1321 					continue;
1322 
1323 				case DT_ACT_SETOPT: {
1324 					uint64_t *opts = dtp->dt_options;
1325 					dtrace_recdesc_t *valrec;
1326 					uint32_t valsize;
1327 					caddr_t val;
1328 					int rv;
1329 
1330 					if (i == epd->dtepd_nrecs - 1) {
1331 						return (dt_set_errno(dtp,
1332 						    EDT_BADSETOPT));
1333 					}
1334 
1335 					valrec = &epd->dtepd_rec[++i];
1336 					valsize = valrec->dtrd_size;
1337 
1338 					if (valrec->dtrd_action != act ||
1339 					    valrec->dtrd_arg != arg) {
1340 						return (dt_set_errno(dtp,
1341 						    EDT_BADSETOPT));
1342 					}
1343 
1344 					if (valsize > sizeof (uint64_t)) {
1345 						val = buf->dtbd_data + offs +
1346 						    valrec->dtrd_offset;
1347 					} else {
1348 						val = "1";
1349 					}
1350 
1351 					rv = dt_setopt(dtp, &data, addr, val);
1352 
1353 					if (rv != 0)
1354 						return (-1);
1355 
1356 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
1357 					    DTRACEOPT_UNSET);
1358 					quiet = (opts[DTRACEOPT_QUIET] !=
1359 					    DTRACEOPT_UNSET);
1360 
1361 					continue;
1362 				}
1363 
1364 				case DT_ACT_TRUNC:
1365 					if (i == epd->dtepd_nrecs - 1)
1366 						return (dt_set_errno(dtp,
1367 						    EDT_BADTRUNC));
1368 
1369 					if (dt_trunc(dtp,
1370 					    buf->dtbd_data + offs, rec) != 0)
1371 						return (-1);
1372 
1373 					i++;
1374 					continue;
1375 
1376 				default:
1377 					continue;
1378 				}
1379 			}
1380 
1381 			rval = (*rfunc)(&data, rec, arg);
1382 
1383 			if (rval == DTRACE_CONSUME_NEXT)
1384 				continue;
1385 
1386 			if (rval == DTRACE_CONSUME_ABORT)
1387 				return (dt_set_errno(dtp, EDT_DIRABORT));
1388 
1389 			if (rval != DTRACE_CONSUME_THIS)
1390 				return (dt_set_errno(dtp, EDT_BADRVAL));
1391 
1392 			if (act == DTRACEACT_STACK) {
1393 				int depth = rec->dtrd_arg;
1394 
1395 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
1396 				    rec->dtrd_size / depth) < 0)
1397 					return (-1);
1398 				goto nextrec;
1399 			}
1400 
1401 			if (act == DTRACEACT_USTACK ||
1402 			    act == DTRACEACT_JSTACK) {
1403 				if (dt_print_ustack(dtp, fp, NULL,
1404 				    addr, rec->dtrd_arg) < 0)
1405 					return (-1);
1406 				goto nextrec;
1407 			}
1408 
1409 			if (act == DTRACEACT_SYM) {
1410 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
1411 					return (-1);
1412 				goto nextrec;
1413 			}
1414 
1415 			if (act == DTRACEACT_MOD) {
1416 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
1417 					return (-1);
1418 				goto nextrec;
1419 			}
1420 
1421 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
1422 				if (dt_print_usym(dtp, fp, addr, act) < 0)
1423 					return (-1);
1424 				goto nextrec;
1425 			}
1426 
1427 			if (act == DTRACEACT_UMOD) {
1428 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
1429 					return (-1);
1430 				goto nextrec;
1431 			}
1432 
1433 			if (DTRACEACT_ISPRINTFLIKE(act)) {
1434 				void *fmtdata;
1435 				int (*func)(dtrace_hdl_t *, FILE *, void *,
1436 				    const dtrace_probedata_t *,
1437 				    const dtrace_recdesc_t *, uint_t,
1438 				    const void *buf, size_t);
1439 
1440 				if ((fmtdata = dt_format_lookup(dtp,
1441 				    rec->dtrd_format)) == NULL)
1442 					goto nofmt;
1443 
1444 				switch (act) {
1445 				case DTRACEACT_PRINTF:
1446 					func = dtrace_fprintf;
1447 					break;
1448 				case DTRACEACT_PRINTA:
1449 					func = dtrace_fprinta;
1450 					break;
1451 				case DTRACEACT_SYSTEM:
1452 					func = dtrace_system;
1453 					break;
1454 				case DTRACEACT_FREOPEN:
1455 					func = dtrace_freopen;
1456 					break;
1457 				}
1458 
1459 				n = (*func)(dtp, fp, fmtdata, &data,
1460 				    rec, epd->dtepd_nrecs - i,
1461 				    (uchar_t *)buf->dtbd_data + offs,
1462 				    buf->dtbd_size - offs);
1463 
1464 				if (n < 0)
1465 					return (-1); /* errno is set for us */
1466 
1467 				if (n > 0)
1468 					i += n - 1;
1469 				goto nextrec;
1470 			}
1471 
1472 nofmt:
1473 			if (act == DTRACEACT_PRINTA) {
1474 				dt_print_aggdata_t pd;
1475 
1476 				bzero(&pd, sizeof (pd));
1477 				pd.dtpa_dtp = dtp;
1478 				pd.dtpa_fp = fp;
1479 				/* LINTED - alignment */
1480 				pd.dtpa_id = *((dtrace_aggvarid_t *)addr);
1481 
1482 				if (dt_printf(dtp, fp, "\n") < 0 ||
1483 				    dtrace_aggregate_walk_valsorted(dtp,
1484 				    dt_print_agg, &pd) < 0)
1485 					return (-1);
1486 
1487 				goto nextrec;
1488 			}
1489 
1490 			switch (rec->dtrd_size) {
1491 			case sizeof (uint64_t):
1492 				n = dt_printf(dtp, fp,
1493 				    quiet ? "%lld" : " %16lld",
1494 				    /* LINTED - alignment */
1495 				    *((unsigned long long *)addr));
1496 				break;
1497 			case sizeof (uint32_t):
1498 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
1499 				    /* LINTED - alignment */
1500 				    *((uint32_t *)addr));
1501 				break;
1502 			case sizeof (uint16_t):
1503 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
1504 				    /* LINTED - alignment */
1505 				    *((uint16_t *)addr));
1506 				break;
1507 			case sizeof (uint8_t):
1508 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
1509 				    *((uint8_t *)addr));
1510 				break;
1511 			default:
1512 				n = dt_print_bytes(dtp, fp, addr,
1513 				    rec->dtrd_size, 33, quiet);
1514 				break;
1515 			}
1516 
1517 			if (n < 0)
1518 				return (-1); /* errno is set for us */
1519 
1520 nextrec:
1521 			if (dt_buffered_flush(dtp, &data, rec, NULL) < 0)
1522 				return (-1); /* errno is set for us */
1523 		}
1524 
1525 		/*
1526 		 * Call the record callback with a NULL record to indicate
1527 		 * that we're done processing this EPID.
1528 		 */
1529 		rval = (*rfunc)(&data, NULL, arg);
1530 nextepid:
1531 		offs += epd->dtepd_size;
1532 		last = id;
1533 	}
1534 
1535 	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
1536 		end = buf->dtbd_oldest;
1537 		start = 0;
1538 		goto again;
1539 	}
1540 
1541 	if ((drops = buf->dtbd_drops) == 0)
1542 		return (0);
1543 
1544 	/*
1545 	 * Explicitly zero the drops to prevent us from processing them again.
1546 	 */
1547 	buf->dtbd_drops = 0;
1548 
1549 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
1550 }
1551 
1552 typedef struct dt_begin {
1553 	dtrace_consume_probe_f *dtbgn_probefunc;
1554 	dtrace_consume_rec_f *dtbgn_recfunc;
1555 	void *dtbgn_arg;
1556 	dtrace_handle_err_f *dtbgn_errhdlr;
1557 	void *dtbgn_errarg;
1558 	int dtbgn_beginonly;
1559 } dt_begin_t;
1560 
1561 static int
1562 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
1563 {
1564 	dt_begin_t *begin = (dt_begin_t *)arg;
1565 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
1566 
1567 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
1568 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
1569 
1570 	if (begin->dtbgn_beginonly) {
1571 		if (!(r1 && r2))
1572 			return (DTRACE_CONSUME_NEXT);
1573 	} else {
1574 		if (r1 && r2)
1575 			return (DTRACE_CONSUME_NEXT);
1576 	}
1577 
1578 	/*
1579 	 * We have a record that we're interested in.  Now call the underlying
1580 	 * probe function...
1581 	 */
1582 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
1583 }
1584 
1585 static int
1586 dt_consume_begin_record(const dtrace_probedata_t *data,
1587     const dtrace_recdesc_t *rec, void *arg)
1588 {
1589 	dt_begin_t *begin = (dt_begin_t *)arg;
1590 
1591 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
1592 }
1593 
1594 static int
1595 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
1596 {
1597 	dt_begin_t *begin = (dt_begin_t *)arg;
1598 	dtrace_probedesc_t *pd = data->dteda_pdesc;
1599 
1600 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
1601 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
1602 
1603 	if (begin->dtbgn_beginonly) {
1604 		if (!(r1 && r2))
1605 			return (DTRACE_HANDLE_OK);
1606 	} else {
1607 		if (r1 && r2)
1608 			return (DTRACE_HANDLE_OK);
1609 	}
1610 
1611 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
1612 }
1613 
1614 static int
1615 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
1616     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
1617 {
1618 	/*
1619 	 * There's this idea that the BEGIN probe should be processed before
1620 	 * everything else, and that the END probe should be processed after
1621 	 * anything else.  In the common case, this is pretty easy to deal
1622 	 * with.  However, a situation may arise where the BEGIN enabling and
1623 	 * END enabling are on the same CPU, and some enabling in the middle
1624 	 * occurred on a different CPU.  To deal with this (blech!) we need to
1625 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
1626 	 * then set it aside.  We will then process every other CPU, and then
1627 	 * we'll return to the BEGIN CPU and process the rest of the data
1628 	 * (which will inevitably include the END probe, if any).  Making this
1629 	 * even more complicated (!) is the library's ERROR enabling.  Because
1630 	 * this enabling is processed before we even get into the consume call
1631 	 * back, any ERROR firing would result in the library's ERROR enabling
1632 	 * being processed twice -- once in our first pass (for BEGIN probes),
1633 	 * and again in our second pass (for everything but BEGIN probes).  To
1634 	 * deal with this, we interpose on the ERROR handler to assure that we
1635 	 * only process ERROR enablings induced by BEGIN enablings in the
1636 	 * first pass, and that we only process ERROR enablings _not_ induced
1637 	 * by BEGIN enablings in the second pass.
1638 	 */
1639 	dt_begin_t begin;
1640 	processorid_t cpu = dtp->dt_beganon;
1641 	dtrace_bufdesc_t nbuf;
1642 	int rval, i;
1643 	static int max_ncpus;
1644 	dtrace_optval_t size;
1645 
1646 	dtp->dt_beganon = -1;
1647 
1648 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
1649 		/*
1650 		 * We really don't expect this to fail, but it is at least
1651 		 * technically possible for this to fail with ENOENT.  In this
1652 		 * case, we just drive on...
1653 		 */
1654 		if (errno == ENOENT)
1655 			return (0);
1656 
1657 		return (dt_set_errno(dtp, errno));
1658 	}
1659 
1660 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
1661 		/*
1662 		 * This is the simple case.  We're either not stopped, or if
1663 		 * we are, we actually processed any END probes on another
1664 		 * CPU.  We can simply consume this buffer and return.
1665 		 */
1666 		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
1667 	}
1668 
1669 	begin.dtbgn_probefunc = pf;
1670 	begin.dtbgn_recfunc = rf;
1671 	begin.dtbgn_arg = arg;
1672 	begin.dtbgn_beginonly = 1;
1673 
1674 	/*
1675 	 * We need to interpose on the ERROR handler to be sure that we
1676 	 * only process ERRORs induced by BEGIN.
1677 	 */
1678 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
1679 	begin.dtbgn_errarg = dtp->dt_errarg;
1680 	dtp->dt_errhdlr = dt_consume_begin_error;
1681 	dtp->dt_errarg = &begin;
1682 
1683 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
1684 	    dt_consume_begin_record, &begin);
1685 
1686 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
1687 	dtp->dt_errarg = begin.dtbgn_errarg;
1688 
1689 	if (rval != 0)
1690 		return (rval);
1691 
1692 	/*
1693 	 * Now allocate a new buffer.  We'll use this to deal with every other
1694 	 * CPU.
1695 	 */
1696 	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
1697 	(void) dtrace_getopt(dtp, "bufsize", &size);
1698 	if ((nbuf.dtbd_data = malloc(size)) == NULL)
1699 		return (dt_set_errno(dtp, EDT_NOMEM));
1700 
1701 	if (max_ncpus == 0)
1702 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
1703 
1704 	for (i = 0; i < max_ncpus; i++) {
1705 		nbuf.dtbd_cpu = i;
1706 
1707 		if (i == cpu)
1708 			continue;
1709 
1710 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
1711 			/*
1712 			 * If we failed with ENOENT, it may be because the
1713 			 * CPU was unconfigured -- this is okay.  Any other
1714 			 * error, however, is unexpected.
1715 			 */
1716 			if (errno == ENOENT)
1717 				continue;
1718 
1719 			free(nbuf.dtbd_data);
1720 
1721 			return (dt_set_errno(dtp, errno));
1722 		}
1723 
1724 		if ((rval = dt_consume_cpu(dtp, fp,
1725 		    i, &nbuf, pf, rf, arg)) != 0) {
1726 			free(nbuf.dtbd_data);
1727 			return (rval);
1728 		}
1729 	}
1730 
1731 	free(nbuf.dtbd_data);
1732 
1733 	/*
1734 	 * Okay -- we're done with the other buffers.  Now we want to
1735 	 * reconsume the first buffer -- but this time we're looking for
1736 	 * everything _but_ BEGIN.  And of course, in order to only consume
1737 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
1738 	 * ERROR interposition function...
1739 	 */
1740 	begin.dtbgn_beginonly = 0;
1741 
1742 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
1743 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
1744 	dtp->dt_errhdlr = dt_consume_begin_error;
1745 	dtp->dt_errarg = &begin;
1746 
1747 	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
1748 	    dt_consume_begin_record, &begin);
1749 
1750 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
1751 	dtp->dt_errarg = begin.dtbgn_errarg;
1752 
1753 	return (rval);
1754 }
1755 
1756 int
1757 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
1758     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
1759 {
1760 	dtrace_bufdesc_t *buf = &dtp->dt_buf;
1761 	dtrace_optval_t size;
1762 	static int max_ncpus;
1763 	int i, rval;
1764 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
1765 	hrtime_t now = gethrtime();
1766 
1767 	if (dtp->dt_lastswitch != 0) {
1768 		if (now - dtp->dt_lastswitch < interval)
1769 			return (0);
1770 
1771 		dtp->dt_lastswitch += interval;
1772 	} else {
1773 		dtp->dt_lastswitch = now;
1774 	}
1775 
1776 	if (!dtp->dt_active)
1777 		return (dt_set_errno(dtp, EINVAL));
1778 
1779 	if (max_ncpus == 0)
1780 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
1781 
1782 	if (pf == NULL)
1783 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
1784 
1785 	if (rf == NULL)
1786 		rf = (dtrace_consume_rec_f *)dt_nullrec;
1787 
1788 	if (buf->dtbd_data == NULL) {
1789 		(void) dtrace_getopt(dtp, "bufsize", &size);
1790 		if ((buf->dtbd_data = malloc(size)) == NULL)
1791 			return (dt_set_errno(dtp, EDT_NOMEM));
1792 
1793 		buf->dtbd_size = size;
1794 	}
1795 
1796 	/*
1797 	 * If we have just begun, we want to first process the CPU that
1798 	 * executed the BEGIN probe (if any).
1799 	 */
1800 	if (dtp->dt_active && dtp->dt_beganon != -1) {
1801 		buf->dtbd_cpu = dtp->dt_beganon;
1802 		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
1803 			return (rval);
1804 	}
1805 
1806 	for (i = 0; i < max_ncpus; i++) {
1807 		buf->dtbd_cpu = i;
1808 
1809 		/*
1810 		 * If we have stopped, we want to process the CPU on which the
1811 		 * END probe was processed only _after_ we have processed
1812 		 * everything else.
1813 		 */
1814 		if (dtp->dt_stopped && (i == dtp->dt_endedon))
1815 			continue;
1816 
1817 		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
1818 			/*
1819 			 * If we failed with ENOENT, it may be because the
1820 			 * CPU was unconfigured -- this is okay.  Any other
1821 			 * error, however, is unexpected.
1822 			 */
1823 			if (errno == ENOENT)
1824 				continue;
1825 
1826 			return (dt_set_errno(dtp, errno));
1827 		}
1828 
1829 		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
1830 			return (rval);
1831 	}
1832 
1833 	if (!dtp->dt_stopped)
1834 		return (0);
1835 
1836 	buf->dtbd_cpu = dtp->dt_endedon;
1837 
1838 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
1839 		/*
1840 		 * This _really_ shouldn't fail, but it is strictly speaking
1841 		 * possible for this to return ENOENT if the CPU that called
1842 		 * the END enabling somehow managed to become unconfigured.
1843 		 * It's unclear how the user can possibly expect anything
1844 		 * rational to happen in this case -- the state has been thrown
1845 		 * out along with the unconfigured CPU -- so we'll just drive
1846 		 * on...
1847 		 */
1848 		if (errno == ENOENT)
1849 			return (0);
1850 
1851 		return (dt_set_errno(dtp, errno));
1852 	}
1853 
1854 	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
1855 }
1856