1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <strings.h>
30 #include <unistd.h>
31 #include <errno.h>
32 #include <fcntl.h>
33 #include <ctype.h>
34 #include <sys/stat.h>
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/systeminfo.h>
38 #include <sys/efi_partition.h>
39 #include <sys/byteorder.h>
40 
41 #include <sys/vtoc.h>
42 #include <sys/tty.h>
43 #include <sys/dktp/fdisk.h>
44 #include <sys/dkio.h>
45 #include <sys/mnttab.h>
46 #include "libfdisk.h"
47 
48 #define	DEFAULT_PATH_PREFIX	"/dev/rdsk/"
49 
50 static void fdisk_free_ld_nodes(ext_part_t *epp);
51 static void fdisk_ext_place_in_sorted_list(ext_part_t *epp,
52     logical_drive_t *newld);
53 static void fdisk_ext_remove_from_sorted_list(ext_part_t *epp,
54     logical_drive_t *delld);
55 static int fdisk_ext_overlapping_parts(ext_part_t *epp, uint32_t begsec,
56     uint32_t endsec);
57 static int fdisk_read_extpart(ext_part_t *epp);
58 static void fdisk_set_CHS_values(ext_part_t *epp, struct ipart *part);
59 static int fdisk_init_master_part_table(ext_part_t *epp);
60 static struct ipart *fdisk_alloc_part_table();
61 static int fdisk_read_master_part_table(ext_part_t *epp);
62 
63 static int
64 fdisk_init_disk_geom(ext_part_t *epp)
65 {
66 	struct dk_geom disk_geom;
67 	struct dk_minfo disk_info;
68 	int no_virtgeom_ioctl = 0, no_physgeom_ioctl = 0;
69 
70 	/* Get disk's HBA (virtual) geometry */
71 	errno = 0;
72 	if (ioctl(epp->dev_fd, DKIOCG_VIRTGEOM, &disk_geom)) {
73 		if (errno == ENOTTY) {
74 			no_virtgeom_ioctl = 1;
75 		} else if (errno == EINVAL) {
76 			/*
77 			 * This means that the ioctl exists, but
78 			 * is invalid for this disk, meaning the
79 			 * disk doesn't have an HBA geometry
80 			 * (like, say, it's larger than 8GB).
81 			 */
82 			epp->disk_geom.virt_cyl = epp->disk_geom.virt_heads =
83 			    epp->disk_geom.virt_sec = 0;
84 		} else {
85 			return (FDISK_ENOVGEOM);
86 		}
87 	} else {
88 		/* save virtual geometry values obtained by ioctl */
89 		epp->disk_geom.virt_cyl = disk_geom.dkg_ncyl;
90 		epp->disk_geom.virt_heads = disk_geom.dkg_nhead;
91 		epp->disk_geom.virt_sec = disk_geom.dkg_nsect;
92 	}
93 
94 	errno = 0;
95 	if (ioctl(epp->dev_fd, DKIOCG_PHYGEOM, &disk_geom)) {
96 		if (errno == ENOTTY) {
97 			no_physgeom_ioctl = 1;
98 		} else {
99 			return (FDISK_ENOPGEOM);
100 		}
101 	}
102 	/*
103 	 * Call DKIOCGGEOM if the ioctls for physical and virtual
104 	 * geometry fail. Get both from this generic call.
105 	 */
106 	if (no_virtgeom_ioctl && no_physgeom_ioctl) {
107 		errno = 0;
108 		if (ioctl(epp->dev_fd, DKIOCGGEOM, &disk_geom)) {
109 			return (FDISK_ENOLGEOM);
110 		}
111 	}
112 
113 	epp->disk_geom.phys_cyl = disk_geom.dkg_ncyl;
114 	epp->disk_geom.phys_heads = disk_geom.dkg_nhead;
115 	epp->disk_geom.phys_sec = disk_geom.dkg_nsect;
116 	epp->disk_geom.alt_cyl = disk_geom.dkg_acyl;
117 
118 	/*
119 	 * If DKIOCGMEDIAINFO ioctl succeeds, set the dki_lbsize as the
120 	 * size of the sector, else default to 512
121 	 */
122 	if (ioctl(epp->dev_fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) < 0) {
123 		/* ioctl failed, falling back to default value of 512 bytes */
124 		epp->disk_geom.sectsize = 512;
125 	} else {
126 		epp->disk_geom.sectsize = ((disk_info.dki_lbsize) ?
127 		    disk_info.dki_lbsize : 512);
128 	}
129 
130 	/*
131 	 * if hba geometry was not set by DKIOC_VIRTGEOM
132 	 * or we got an invalid hba geometry
133 	 * then set hba geometry based on max values
134 	 */
135 	if (no_virtgeom_ioctl || disk_geom.dkg_ncyl == 0 ||
136 	    disk_geom.dkg_nhead == 0 || disk_geom.dkg_nsect == 0 ||
137 	    disk_geom.dkg_ncyl > MAX_CYL || disk_geom.dkg_nhead > MAX_HEAD ||
138 	    disk_geom.dkg_nsect > MAX_SECT) {
139 		epp->disk_geom.virt_sec	= MAX_SECT;
140 		epp->disk_geom.virt_heads	= MAX_HEAD + 1;
141 		epp->disk_geom.virt_cyl	= (epp->disk_geom.phys_cyl *
142 		    epp->disk_geom.phys_heads * epp->disk_geom.phys_sec) /
143 		    (epp->disk_geom.virt_sec * epp->disk_geom.virt_heads);
144 	}
145 	return (FDISK_SUCCESS);
146 }
147 
148 /*
149  * Initialise important members of the ext_part_t structure and
150  * other data structures vital to functionality of libfdisk
151  */
152 int
153 libfdisk_init(ext_part_t **epp, char *devstr, struct ipart *parttab, int opflag)
154 {
155 	ext_part_t *temp;
156 	struct stat sbuf;
157 	int rval = FDISK_SUCCESS;
158 	int found_bad_magic = 0;
159 
160 	if ((temp = calloc(1, sizeof (ext_part_t))) == NULL) {
161 		*epp = NULL;
162 		return (ENOMEM);
163 	}
164 
165 	(void) strncpy(temp->device_name, devstr,
166 	    sizeof (temp->device_name));
167 
168 	/* Try to stat the node as provided */
169 	if (stat(temp->device_name, &sbuf) != 0) {
170 
171 		/* Prefix /dev/rdsk/ and stat again */
172 		(void) snprintf(temp->device_name, sizeof (temp->device_name),
173 		    "%s%s", DEFAULT_PATH_PREFIX, devstr);
174 
175 		if (stat(temp->device_name, &sbuf) != 0) {
176 
177 			/*
178 			 * In case of an EFI labeled disk, the device name
179 			 * could be cN[tN]dN. There is no pN. So we add "p0"
180 			 * at the end if we do not find it and stat again.
181 			 */
182 			if (strrchr(temp->device_name, 'p') == NULL) {
183 				(void) strcat(temp->device_name, "p0");
184 			}
185 
186 			if (stat(temp->device_name, &sbuf) != 0) {
187 
188 				/* Failed all options, give up */
189 				rval = EINVAL;
190 				goto fail;
191 			}
192 		}
193 	}
194 
195 	/* Make sure the device is a raw device */
196 	if ((sbuf.st_mode & S_IFMT) != S_IFCHR) {
197 		rval = EINVAL;
198 		goto fail;
199 	}
200 
201 	temp->ld_head = NULL;
202 	temp->sorted_ld_head = NULL;
203 
204 	if ((temp->dev_fd = open(temp->device_name, O_RDWR, 0666)) < 0) {
205 		rval = EINVAL;
206 		goto fail;
207 	}
208 
209 	if ((temp->mtable = parttab) == NULL) {
210 		if ((rval = fdisk_init_master_part_table(temp)) !=
211 		    FDISK_SUCCESS) {
212 			/*
213 			 * When we have no fdisk magic 0xAA55 on the disk,
214 			 * we return FDISK_EBADMAGIC after successfully
215 			 * obtaining the disk geometry.
216 			 */
217 			if (rval != FDISK_EBADMAGIC)
218 				goto fail;
219 			else
220 				found_bad_magic = 1;
221 		}
222 	}
223 
224 	temp->op_flag = opflag;
225 
226 	if ((rval = fdisk_init_disk_geom(temp)) != FDISK_SUCCESS) {
227 		goto fail;
228 	}
229 
230 	*epp = temp;
231 
232 	if (found_bad_magic != 0) {
233 		return (FDISK_EBADMAGIC);
234 	}
235 
236 	if (opflag & FDISK_READ_DISK) {
237 		rval = fdisk_read_extpart(*epp);
238 	}
239 	return (rval);
240 
241 fail:
242 	*epp = NULL;
243 	free(temp);
244 	return (rval);
245 }
246 
247 int
248 libfdisk_reset(ext_part_t *epp)
249 {
250 	int rval = FDISK_SUCCESS;
251 
252 	fdisk_free_ld_nodes(epp);
253 	epp->first_ebr_is_null = 1;
254 	epp->corrupt_logical_drives = 0;
255 	epp->logical_drive_count = 0;
256 	epp->invalid_bb_sig[0] = 0;
257 	if (epp->op_flag & FDISK_READ_DISK) {
258 		rval = fdisk_read_extpart(epp);
259 	}
260 	return (rval);
261 }
262 
263 void
264 libfdisk_fini(ext_part_t **epp)
265 {
266 	if (*epp == NULL)
267 		return;
268 
269 	fdisk_free_ld_nodes(*epp);
270 	(void) close((*epp)->dev_fd);
271 	free(*epp);
272 	*epp = NULL;
273 }
274 
275 int
276 fdisk_is_linux_swap(ext_part_t *epp, uint32_t part_start, uint64_t *lsm_offset)
277 {
278 	int		i;
279 	int		rval = -1;
280 	off_t		seek_offset;
281 	uint32_t	linux_pg_size;
282 	char		*buf, *linux_swap_magic;
283 	int		sec_sz = fdisk_get_disk_geom(epp, PHYSGEOM, SSIZE);
284 	off_t		label_offset;
285 
286 	/*
287 	 * Known linux kernel page sizes
288 	 * The linux swap magic is found as the last 10 bytes of a disk chunk
289 	 * at the beginning of the linux swap partition whose size is that of
290 	 * kernel page size.
291 	 */
292 	uint32_t	linux_pg_size_arr[] = {4096, };
293 
294 	if ((buf = calloc(1, sec_sz)) == NULL) {
295 		return (ENOMEM);
296 	}
297 
298 	/*
299 	 * Check if there is a sane Solaris VTOC
300 	 * If there is a valid vtoc, no need to lookup
301 	 * for the linux swap signature.
302 	 */
303 	label_offset = (part_start + DK_LABEL_LOC) * sec_sz;
304 	if ((rval = lseek(epp->dev_fd, label_offset, SEEK_SET)) < 0)
305 		goto done;
306 
307 	if ((rval = read(epp->dev_fd, buf, sec_sz)) < sec_sz) {
308 		rval = EIO;
309 		goto done;
310 	}
311 
312 
313 	if ((((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) &&
314 	    (((struct dk_label *)buf)->dkl_vtoc.v_sanity == VTOC_SANE)) {
315 		rval = -1;
316 		goto done;
317 	}
318 
319 	/* No valid vtoc, so check for linux swap signature */
320 	linux_swap_magic = buf + sec_sz - LINUX_SWAP_MAGIC_LENGTH;
321 
322 	for (i = 0; i < sizeof (linux_pg_size_arr)/sizeof (uint32_t); i++) {
323 		linux_pg_size = linux_pg_size_arr[i];
324 		seek_offset = linux_pg_size/sec_sz - 1;
325 		seek_offset += part_start;
326 		seek_offset *= sec_sz;
327 
328 		if ((rval = lseek(epp->dev_fd, seek_offset, SEEK_SET)) < 0) {
329 			break;
330 		}
331 
332 		if ((rval = read(epp->dev_fd, buf, sec_sz)) < sec_sz) {
333 			rval = EIO;
334 			break;
335 		}
336 
337 		if ((strncmp(linux_swap_magic, "SWAP-SPACE",
338 		    LINUX_SWAP_MAGIC_LENGTH) == 0) ||
339 		    (strncmp(linux_swap_magic, "SWAPSPACE2",
340 		    LINUX_SWAP_MAGIC_LENGTH) == 0)) {
341 			/* Found a linux swap */
342 			rval = 0;
343 			if (lsm_offset != NULL)
344 				*lsm_offset = (uint64_t)seek_offset;
345 			break;
346 		}
347 	}
348 
349 done:
350 	free(buf);
351 	return (rval);
352 }
353 
354 int
355 fdisk_get_solaris_part(ext_part_t *epp, int *pnum, uint32_t *begsec,
356     uint32_t *numsec)
357 {
358 	logical_drive_t *temp = fdisk_get_ld_head(epp);
359 	uint32_t part_start;
360 	int pno;
361 	int rval = -1;
362 
363 	for (pno = 5; temp != NULL; temp = temp->next, pno++) {
364 		if (fdisk_is_solaris_part(LE_8(temp->parts[0].systid))) {
365 			part_start = temp->abs_secnum + temp->logdrive_offset;
366 			if ((temp->parts[0].systid == SUNIXOS) &&
367 			    (fdisk_is_linux_swap(epp, part_start,
368 			    NULL) == 0)) {
369 				continue;
370 			}
371 			*pnum = pno;
372 			*begsec = part_start;
373 			*numsec = temp->numsect;
374 			rval = FDISK_SUCCESS;
375 		}
376 	}
377 	return (rval);
378 }
379 
380 int
381 fdisk_get_part_info(ext_part_t *epp, int pnum, uchar_t *sysid, uint32_t *begsec,
382     uint32_t *numsec)
383 {
384 	logical_drive_t *temp = fdisk_get_ld_head(epp);
385 	int pno;
386 
387 	if ((pnum < 5) || (pnum >= MAX_EXT_PARTS + 5)) {
388 		return (EINVAL);
389 	}
390 
391 	for (pno = 5; (pno < pnum) && (temp != NULL); temp = temp->next, pno++)
392 		;
393 
394 	if (temp == NULL) {
395 		return (EINVAL);
396 	}
397 
398 	*sysid = LE_8(temp->parts[0].systid);
399 	*begsec = temp->abs_secnum + temp->logdrive_offset;
400 	*numsec = temp->numsect;
401 	return (FDISK_SUCCESS);
402 }
403 
404 /*
405  * Allocate a node of type logical_drive_t and return the pointer to it
406  */
407 static logical_drive_t *
408 fdisk_alloc_ld_node()
409 {
410 	logical_drive_t *temp;
411 
412 	if ((temp = calloc(1, sizeof (logical_drive_t))) == NULL) {
413 		return (NULL);
414 	}
415 	temp->next = NULL;
416 	return (temp);
417 }
418 
419 /*
420  * Free all the logical_drive_t's allocated during the run
421  */
422 static void
423 fdisk_free_ld_nodes(ext_part_t *epp)
424 {
425 	logical_drive_t *temp;
426 
427 	for (temp = epp->ld_head; temp != NULL; ) {
428 		temp = epp->ld_head -> next;
429 		free(epp->ld_head);
430 		epp->ld_head = temp;
431 	}
432 	epp->ld_head = NULL;
433 	epp->sorted_ld_head = NULL;
434 }
435 
436 /*
437  * Find the first free sector within the extended partition
438  */
439 int
440 fdisk_ext_find_first_free_sec(ext_part_t *epp, uint32_t *first_free_sec)
441 {
442 	logical_drive_t *temp;
443 	uint32_t last_free_sec;
444 
445 	*first_free_sec = epp->ext_beg_sec;
446 
447 	if (epp->ld_head == NULL) {
448 		return (FDISK_SUCCESS);
449 	}
450 
451 	/*
452 	 * When the first logical drive is out of order, we need to adjust
453 	 * first_free_sec accordingly. In this case, the first extended
454 	 * partition sector is not free even though the actual logical drive
455 	 * does not occupy space from the beginning of the extended partition.
456 	 * The next free sector would be the second sector of the extended
457 	 * partition.
458 	 */
459 	if (epp->ld_head->abs_secnum > epp->ext_beg_sec +
460 	    MAX_LOGDRIVE_OFFSET) {
461 		(*first_free_sec)++;
462 	}
463 
464 	while (*first_free_sec <= epp->ext_end_sec) {
465 		for (temp = epp->sorted_ld_head; temp != NULL; temp =
466 		    temp->sorted_next) {
467 			if (temp->abs_secnum == *first_free_sec) {
468 				*first_free_sec = temp->abs_secnum +
469 				    temp->logdrive_offset + temp->numsect;
470 			}
471 		}
472 
473 		last_free_sec = fdisk_ext_find_last_free_sec(epp,
474 		    *first_free_sec);
475 
476 		if ((last_free_sec - *first_free_sec) < MAX_LOGDRIVE_OFFSET) {
477 			/*
478 			 * Minimum size of a partition assumed to be atleast one
479 			 * sector.
480 			 */
481 			*first_free_sec = last_free_sec + 1;
482 			continue;
483 		}
484 
485 		break;
486 	}
487 
488 	if (*first_free_sec > epp->ext_end_sec) {
489 		return (FDISK_EOOBOUND);
490 	}
491 
492 	return (FDISK_SUCCESS);
493 }
494 
495 /*
496  * Find the last free sector within the extended partition given, a beginning
497  * sector (so that the range - "begsec to last_free_sec" is contiguous)
498  */
499 uint32_t
500 fdisk_ext_find_last_free_sec(ext_part_t *epp, uint32_t begsec)
501 {
502 	logical_drive_t *temp;
503 	uint32_t last_free_sec;
504 
505 	last_free_sec = epp->ext_end_sec;
506 	for (temp = epp->sorted_ld_head; temp != NULL;
507 	    temp = temp->sorted_next) {
508 		if (temp->abs_secnum > begsec) {
509 			last_free_sec = temp->abs_secnum - 1;
510 			break;
511 		}
512 	}
513 	return (last_free_sec);
514 }
515 
516 /*
517  * Place the given ext_part_t structure in a sorted list, sorted in the
518  * ascending order of their beginning sectors.
519  */
520 static void
521 fdisk_ext_place_in_sorted_list(ext_part_t *epp, logical_drive_t *newld)
522 {
523 	logical_drive_t *pre, *cur;
524 
525 	if (newld->abs_secnum < epp->sorted_ld_head->abs_secnum) {
526 		newld->sorted_next = epp->sorted_ld_head;
527 		epp->sorted_ld_head = newld;
528 		return;
529 	}
530 	pre = cur = epp->sorted_ld_head;
531 
532 	for (; cur != NULL; pre = cur, cur = cur->sorted_next) {
533 		if (newld->abs_secnum < cur->abs_secnum) {
534 			break;
535 		}
536 	}
537 
538 	newld->sorted_next = cur;
539 	pre->sorted_next = newld;
540 }
541 
542 static void
543 fdisk_ext_remove_from_sorted_list(ext_part_t *epp, logical_drive_t *delld)
544 {
545 	logical_drive_t *pre, *cur;
546 
547 	if (delld == epp->sorted_ld_head) {
548 		epp->sorted_ld_head = delld->sorted_next;
549 		return;
550 	}
551 
552 	pre = cur = epp->sorted_ld_head;
553 
554 	for (; cur != NULL; pre = cur, cur = cur->sorted_next) {
555 		if (cur->abs_secnum == delld->abs_secnum) {
556 			/* Found */
557 			break;
558 		}
559 	}
560 
561 	pre->sorted_next = cur->sorted_next;
562 }
563 
564 static int
565 fdisk_ext_overlapping_parts(ext_part_t *epp, uint32_t begsec, uint32_t endsec)
566 {
567 	logical_drive_t *temp;
568 	uint32_t firstsec, lastsec, last_free_sec;
569 
570 	for (temp = epp->ld_head; temp != NULL; temp = temp->next) {
571 		firstsec = temp->abs_secnum;
572 		lastsec = firstsec + temp->logdrive_offset + temp->numsect - 1;
573 		if ((begsec >= firstsec) &&
574 		    (begsec <= lastsec)) {
575 			return (1);
576 		}
577 	}
578 
579 	/*
580 	 * Find the maximum possible end sector value
581 	 * given a beginning sector value
582 	 */
583 	last_free_sec = fdisk_ext_find_last_free_sec(epp, begsec);
584 
585 	if (endsec > last_free_sec) {
586 		return (1);
587 	}
588 	return (0);
589 }
590 
591 /*
592  * Check if the logical drive boundaries are sane
593  */
594 int
595 fdisk_validate_logical_drive(ext_part_t *epp, uint32_t begsec,
596     uint32_t offset, uint32_t numsec)
597 {
598 	uint32_t endsec;
599 
600 	endsec = begsec + offset + numsec - 1;
601 	if (begsec < epp->ext_beg_sec ||
602 	    begsec > epp->ext_end_sec ||
603 	    endsec < epp->ext_beg_sec ||
604 	    endsec > epp->ext_end_sec ||
605 	    endsec < begsec ||
606 	    fdisk_ext_overlapping_parts(epp, begsec, endsec)) {
607 		return (1);
608 	}
609 
610 	return (0);
611 }
612 
613 /*
614  * Procedure to walk through the extended partitions and build a Singly
615  * Linked List out of the data.
616  */
617 static int
618 fdisk_read_extpart(ext_part_t *epp)
619 {
620 	struct ipart *fdp, *ext_fdp;
621 	int i = 0, j = 0, ext_part_found = 0, lpart = 5;
622 	off_t secnum, offset;
623 	logical_drive_t *temp, *ep_ptr;
624 	unsigned char *ext_buf;
625 	int sectsize = epp->disk_geom.sectsize;
626 
627 	if ((ext_buf = (uchar_t *)malloc(sectsize)) == NULL) {
628 		return (ENOMEM);
629 	}
630 	fdp = epp->mtable;
631 
632 	for (i = 0; (i < FD_NUMPART) && (!ext_part_found); i++, fdp++) {
633 		if (fdisk_is_dos_extended(LE_8(fdp->systid))) {
634 			ext_part_found = 1;
635 			secnum = LE_32(fdp->relsect);
636 			offset = secnum * sectsize;
637 			epp->ext_beg_sec = secnum;
638 			epp->ext_end_sec = secnum + LE_32(fdp->numsect) - 1;
639 			epp->ext_beg_cyl =
640 			    FDISK_SECT_TO_CYL(epp, epp->ext_beg_sec);
641 			epp->ext_end_cyl =
642 			    FDISK_SECT_TO_CYL(epp, epp->ext_end_sec);
643 
644 			/*LINTED*/
645 			while (B_TRUE) {
646 				if (lseek(epp->dev_fd, offset, SEEK_SET) < 0) {
647 					return (EIO);
648 				}
649 				if (read(epp->dev_fd, ext_buf, sectsize) <
650 				    sectsize) {
651 					return (EIO);
652 				}
653 				/*LINTED*/
654 				ext_fdp = (struct ipart *)
655 				    (&ext_buf[FDISK_PART_TABLE_START]);
656 				if ((LE_32(ext_fdp->relsect) == 0) &&
657 				    (epp->logical_drive_count == 0)) {
658 					/* No logical drives defined */
659 					epp->first_ebr_is_null = 0;
660 					return (FDISK_ENOLOGDRIVE);
661 				}
662 
663 				temp = fdisk_alloc_ld_node();
664 				temp->abs_secnum = secnum;
665 				temp->logdrive_offset =
666 				    LE_32(ext_fdp->relsect);
667 				temp ->numsect = LE_32(ext_fdp->numsect);
668 				if (epp->ld_head == NULL) {
669 					/* adding first logical drive */
670 					if (temp->logdrive_offset >
671 					    MAX_LOGDRIVE_OFFSET) {
672 						/* out of order */
673 						temp->abs_secnum +=
674 						    temp->logdrive_offset;
675 						temp->logdrive_offset = 0;
676 					}
677 				}
678 				temp->begcyl =
679 				    FDISK_SECT_TO_CYL(epp, temp->abs_secnum);
680 				temp->endcyl = FDISK_SECT_TO_CYL(epp,
681 				    temp->abs_secnum +
682 				    temp->logdrive_offset +
683 				    temp->numsect - 1);
684 
685 				/*
686 				 * Check for sanity of logical drives
687 				 */
688 				if (fdisk_validate_logical_drive(epp,
689 				    temp->abs_secnum, temp->logdrive_offset,
690 				    temp->numsect)) {
691 					epp->corrupt_logical_drives = 1;
692 					free(temp);
693 					return (FDISK_EBADLOGDRIVE);
694 				}
695 
696 				temp->parts[0] = *ext_fdp;
697 				ext_fdp++;
698 				temp->parts[1] = *ext_fdp;
699 
700 				if (epp->ld_head == NULL) {
701 					epp->ld_head = temp;
702 					epp->sorted_ld_head = temp;
703 					ep_ptr = temp;
704 					epp->logical_drive_count = 1;
705 				} else {
706 					ep_ptr->next = temp;
707 					ep_ptr = temp;
708 					fdisk_ext_place_in_sorted_list(epp,
709 					    temp);
710 					epp->logical_drive_count++;
711 				}
712 
713 				/*LINTED*/
714 				if (LE_16((*(uint16_t *)&ext_buf[510])) !=
715 				    MBB_MAGIC) {
716 					epp->invalid_bb_sig[j++] = lpart;
717 					temp->modified = FDISK_MINOR_WRITE;
718 				}
719 
720 				if (LE_32(ext_fdp->relsect) == 0)
721 					break;
722 				else {
723 					secnum = LE_32(fdp->relsect) +
724 					    LE_32(ext_fdp->relsect);
725 					offset = secnum * sectsize;
726 				}
727 				lpart++;
728 			}
729 		}
730 	}
731 	return (FDISK_SUCCESS);
732 }
733 
734 static int
735 fdisk_init_master_part_table(ext_part_t *epp)
736 {
737 	int rval;
738 	if ((epp->mtable = fdisk_alloc_part_table()) == NULL) {
739 		return (ENOMEM);
740 	}
741 	rval = fdisk_read_master_part_table(epp);
742 	if (rval) {
743 		return (rval);
744 	}
745 	return (FDISK_SUCCESS);
746 }
747 
748 static struct ipart *
749 fdisk_alloc_part_table()
750 {
751 	int size = sizeof (struct ipart);
752 	struct ipart *table;
753 
754 	if ((table = calloc(4, size)) == NULL) {
755 		return (NULL);
756 	}
757 
758 	return (table);
759 }
760 
761 /*
762  * Reads the master fdisk partition table from the device assuming that it has
763  * a valid table.
764  * MBR is supposed to be of 512 bytes no matter what the device block size is.
765  */
766 static int
767 fdisk_read_master_part_table(ext_part_t *epp)
768 {
769 	uchar_t buf[512];
770 	int sectsize = 512;
771 	int size = sizeof (struct ipart);
772 	int cpcnt = FD_NUMPART * size;
773 
774 	if (lseek(epp->dev_fd, 0, SEEK_SET) < 0) {
775 		return (EIO);
776 	}
777 	if (read(epp->dev_fd, buf, sectsize) < sectsize) {
778 		return (EIO);
779 	}
780 
781 	/*LINTED*/
782 	if (LE_16((*(uint16_t *)&buf[510])) != MBB_MAGIC) {
783 		bzero(epp->mtable, cpcnt);
784 		return (FDISK_EBADMAGIC);
785 	}
786 
787 	bcopy(&buf[FDISK_PART_TABLE_START], epp->mtable, cpcnt);
788 
789 	return (FDISK_SUCCESS);
790 }
791 
792 int
793 fdisk_ext_part_exists(ext_part_t *epp)
794 {
795 	int i;
796 	struct ipart *part_table = epp->mtable;
797 
798 	if (part_table == NULL) {
799 		/* No extended partition found */
800 		return (0);
801 	}
802 
803 	for (i = 0; i < FD_NUMPART; i++) {
804 		if (fdisk_is_dos_extended(LE_8(part_table[i].systid))) {
805 			break;
806 		}
807 	}
808 
809 	if (i == FD_NUMPART) {
810 		/* No extended partition found */
811 		return (0);
812 	}
813 	return (1);
814 }
815 
816 int
817 fdisk_ext_validate_part_start(ext_part_t *epp, uint32_t begcyl,
818     uint32_t *begsec)
819 {
820 	logical_drive_t *temp;
821 	uint32_t first_free_sec;
822 	uint32_t first_free_cyl;
823 	int rval;
824 
825 	rval = fdisk_ext_find_first_free_sec(epp, &first_free_sec);
826 	if (rval != FDISK_SUCCESS) {
827 		return (rval);
828 	}
829 
830 	first_free_cyl = FDISK_SECT_TO_CYL(epp, first_free_sec);
831 	if (begcyl == first_free_cyl) {
832 		*begsec = first_free_sec;
833 		return (FDISK_SUCCESS);
834 	}
835 
836 	/* Check if the cylinder number is beyond the extended partition */
837 	if ((begcyl < epp->ext_beg_cyl) || (begcyl > epp->ext_end_cyl)) {
838 		return (FDISK_EOOBOUND);
839 	}
840 
841 	for (temp = epp->ld_head; temp != NULL; temp = temp->next) {
842 		if ((begcyl >= temp->begcyl) &&
843 		    (begcyl <= temp->endcyl)) {
844 			return (FDISK_EOVERLAP);
845 		}
846 	}
847 	*begsec = FDISK_CYL_TO_SECT(epp, begcyl);
848 
849 	return (FDISK_SUCCESS);
850 }
851 
852 void
853 fdisk_change_logical_drive_id(ext_part_t *epp, int pno, uchar_t partid)
854 {
855 	logical_drive_t *temp;
856 	int i;
857 
858 	i = FD_NUMPART + 1;
859 	for (temp = epp->ld_head; i < pno; temp = temp->next, i++)
860 		;
861 
862 	temp->parts[0].systid = LE_8(partid);
863 	temp->modified = FDISK_MAJOR_WRITE;
864 }
865 
866 /*
867  * A couple of special scenarios :
868  * 1. Since the first logical drive's EBR is always at the beginning of the
869  * extended partition, any specification that starts the first logical drive
870  * out of order will need to address the following issue :
871  * If the beginning of the drive is not coinciding with the beginning of the
872  * extended partition  and :
873  * a) The start is within MAX_LOGDRIVE_OFFSET, the offset changes from the
874  *	default of 63 to less than 63.
875  *	logdrive_offset is updated to keep track of the space between
876  *	the beginning of the logical drive and extended partition. abs_secnum
877  *	points to the beginning of the extended partition.
878  * b) The start is greater than MAX_LOGDRIVE_OFFSET, the offset changes from
879  *	the default of 63 to greater than 63.
880  *	logdrive_offset is set to 0. abs_secnum points to the beginning of the
881  *	logical drive, which is at an offset from the extended partition.
882  */
883 void
884 fdisk_add_logical_drive(ext_part_t *epp, uint32_t begsec, uint32_t endsec,
885     uchar_t partid)
886 {
887 	logical_drive_t *temp, *pre, *cur;
888 	struct ipart *part;
889 
890 	temp = fdisk_alloc_ld_node();
891 	temp->abs_secnum = begsec;
892 	temp->logdrive_offset = MAX_LOGDRIVE_OFFSET;
893 	temp->numsect = endsec - begsec + 1 - MAX_LOGDRIVE_OFFSET;
894 	temp->begcyl = FDISK_SECT_TO_CYL(epp, begsec);
895 	temp->endcyl = FDISK_SECT_TO_CYL(epp, endsec);
896 	temp->modified = FDISK_MAJOR_WRITE;
897 
898 	part 		= &temp->parts[0];
899 	part->bootid	= 0;
900 	part->systid	= LE_8(partid);
901 	part->relsect	= MAX_LOGDRIVE_OFFSET;
902 	part->numsect	= LE_32(temp->numsect);
903 
904 	fdisk_set_CHS_values(epp, part);
905 
906 	if (epp->ld_head == NULL) {
907 		epp->corrupt_logical_drives = 0;
908 		if (begsec != epp->ext_beg_sec) {
909 			part->relsect = LE_32(begsec - epp->ext_beg_sec);
910 			temp->numsect = endsec - begsec + 1;
911 			part->numsect = LE_32(temp->numsect);
912 			if (LE_32(part->relsect) > MAX_LOGDRIVE_OFFSET) {
913 				temp->logdrive_offset = 0;
914 			} else {
915 				temp->abs_secnum = epp->ext_beg_sec;
916 				temp->logdrive_offset = LE_32(part->relsect);
917 			}
918 		}
919 		epp->first_ebr_is_null = 0;
920 		epp->ld_head = temp;
921 		epp->sorted_ld_head = temp;
922 		epp->logical_drive_count = 1;
923 		return;
924 	}
925 
926 	if (temp->abs_secnum == epp->ext_beg_sec) {
927 		part->relsect = LE_32(LE_32(part->relsect) - 1);
928 		temp->logdrive_offset--;
929 		temp->abs_secnum++;
930 	}
931 
932 	for (pre = cur = epp->ld_head; cur != NULL; pre = cur, cur = cur->next)
933 		;
934 
935 	part = &pre->parts[1];
936 	part->bootid	= 0;
937 	part->systid	= LE_8(EXTDOS);
938 	part->relsect	= LE_32(temp->abs_secnum - epp->ext_beg_sec);
939 	part->numsect	= LE_32(temp->numsect + temp->logdrive_offset);
940 
941 	fdisk_set_CHS_values(epp, part);
942 
943 	pre->next = temp;
944 	pre->modified = FDISK_MAJOR_WRITE;
945 	epp->logical_drive_count++;
946 	fdisk_ext_place_in_sorted_list(epp, temp);
947 }
948 
949 /*
950  * There are 2 cases that need to be handled.
951  * 1. Deleting the first extended partition :
952  *	The peculiarity of this case is that the offset of the first extended
953  *	partition is always indicated by the entry in the master boot record.
954  *	(MBR). This never changes, unless the extended partition itself is
955  *	deleted. Hence, the location of the first EBR is fixed.
956  *	It is only the logical drive which is deleted. This first EBR now gives
957  *	information of the next logical drive and the info about the subsequent
958  *	extended partition. Hence the "relsect" of the first EBR is modified to
959  *	point to the next logical drive.
960  *
961  * 2. Deleting an intermediate extended partition.
962  *	This is quite normal and follows the semantics of a normal linked list
963  *	delete operation. The node being deleted has the information about the
964  *	logical drive that it houses and the location and the size of the next
965  *	extended partition. This informationis transferred to the node previous
966  *	to the node being deleted.
967  *
968  */
969 
970 void
971 fdisk_delete_logical_drive(ext_part_t *epp, int pno)
972 {
973 	logical_drive_t *pre, *cur;
974 	int i;
975 
976 	i = FD_NUMPART + 1;
977 	pre = cur = epp->ld_head;
978 	for (; i < pno; i++) {
979 		pre = cur;
980 		cur = cur->next;
981 	}
982 
983 	if (cur == epp->ld_head) {
984 		/* Deleting the first logical drive */
985 		if (cur->next == NULL) {
986 			/* Deleting the only logical drive left */
987 			free(cur);
988 			epp->ld_head = NULL;
989 			epp->sorted_ld_head = NULL;
990 			epp->logical_drive_count = 0;
991 			epp->first_ebr_is_null = 1;
992 		} else {
993 			pre = epp->ld_head;
994 			cur = pre->next;
995 			cur->parts[0].relsect =
996 			    LE_32(LE_32(cur->parts[0].relsect) +
997 			    LE_32(pre->parts[1].relsect));
998 			/* Corner case when partitions are out of order */
999 			if ((pre->abs_secnum != epp->ext_beg_sec) &&
1000 			    (cur->abs_secnum == epp->ext_beg_sec + 1)) {
1001 				cur->logdrive_offset++;
1002 				cur->abs_secnum = epp->ext_beg_sec;
1003 			} else {
1004 				cur->abs_secnum = LE_32(cur->parts[0].relsect) +
1005 				    epp->ext_beg_sec;
1006 				cur->logdrive_offset = 0;
1007 			}
1008 			fdisk_ext_remove_from_sorted_list(epp, pre);
1009 			epp->ld_head = cur;
1010 			epp->ld_head->modified = FDISK_MAJOR_WRITE;
1011 			epp->logical_drive_count--;
1012 			free(pre);
1013 		}
1014 	} else {
1015 		pre->parts[1] = cur->parts[1];
1016 		pre->next = cur->next;
1017 		fdisk_ext_remove_from_sorted_list(epp, cur);
1018 		pre->modified = FDISK_MAJOR_WRITE;
1019 		free(cur);
1020 		epp->logical_drive_count--;
1021 	}
1022 }
1023 
1024 static void
1025 fdisk_set_CHS_values(ext_part_t *epp, struct ipart *part)
1026 {
1027 	uint32_t	lba, cy, hd, sc;
1028 	uint32_t	sectors = epp->disk_geom.virt_sec;
1029 	uint32_t	heads = epp->disk_geom.virt_heads;
1030 
1031 	lba = LE_32(part->relsect) + epp->ext_beg_sec;
1032 	if (lba >= heads * sectors * MAX_CYL) {
1033 		/*
1034 		 * the lba address cannot be expressed in CHS value
1035 		 * so store the maximum CHS field values in the CHS fields.
1036 		 */
1037 		cy = MAX_CYL + 1;
1038 		hd = MAX_HEAD;
1039 		sc = MAX_SECT;
1040 	} else {
1041 		cy = lba / sectors / heads;
1042 		hd = lba / sectors % heads;
1043 		sc = lba % sectors + 1;
1044 	}
1045 
1046 	part->begcyl = cy & 0xff;
1047 	part->beghead = (uchar_t)hd;
1048 	part->begsect = (uchar_t)(((cy >> 2) & 0xc0) | sc);
1049 
1050 	/*
1051 	 * This code is identical to the code above
1052 	 * except that it works on ending CHS values
1053 	 */
1054 	lba += LE_32(part->numsect - 1);
1055 	if (lba >= heads * sectors * MAX_CYL) {
1056 		cy = MAX_CYL + 1;
1057 		hd = MAX_HEAD;
1058 		sc = MAX_SECT;
1059 	} else {
1060 		cy = lba / sectors / heads;
1061 		hd = lba / sectors % heads;
1062 		sc = lba % sectors + 1;
1063 	}
1064 	part->endcyl = cy & 0xff;
1065 	part->endhead = (uchar_t)hd;
1066 	part->endsect = (uchar_t)(((cy >> 2) & 0xc0) | sc);
1067 }
1068 
1069 static int
1070 read_modify_write_ebr(ext_part_t *epp, unsigned char *ebr_buf,
1071     struct ipart *ebr_tab, uint32_t sec_offset)
1072 {
1073 	off_t seek_offset;
1074 	int sectsize = epp->disk_geom.sectsize;
1075 
1076 	seek_offset = (off_t)sec_offset * sectsize;
1077 
1078 	if (lseek(epp->dev_fd, seek_offset, SEEK_SET) < 0) {
1079 		return (EIO);
1080 	}
1081 	if (read(epp->dev_fd, ebr_buf, sectsize) < sectsize) {
1082 		return (EIO);
1083 	}
1084 
1085 	bzero(&ebr_buf[FDISK_PART_TABLE_START], 4 * sizeof (struct ipart));
1086 	if (ebr_tab != NULL) {
1087 		bcopy(ebr_tab, &ebr_buf[FDISK_PART_TABLE_START],
1088 		    2 * sizeof (struct ipart));
1089 	}
1090 	ebr_buf[510] = 0x55;
1091 	ebr_buf[511] = 0xAA;
1092 	if (lseek(epp->dev_fd, seek_offset, SEEK_SET) < 0) {
1093 		return (EIO);
1094 	}
1095 	if (write(epp->dev_fd, ebr_buf, sectsize) < sectsize) {
1096 		return (EIO);
1097 	}
1098 	return (0);
1099 }
1100 
1101 /*
1102  * XXX - ZFS mounts not detected. Needs to come in as a feature.
1103  * Currently only /etc/mnttab entries are being checked
1104  */
1105 int
1106 fdisk_mounted_logical_drives(ext_part_t *epp)
1107 {
1108 	char *part_str, *canonp;
1109 	char compare_pdev_str[PATH_MAX];
1110 	char compare_sdev_str[PATH_MAX];
1111 	FILE *fp;
1112 	struct mnttab mt;
1113 	int part;
1114 	int look_for_mounted_slices = 0;
1115 	uint32_t begsec, numsec;
1116 
1117 	/*
1118 	 * Do not check for mounted logical drives for
1119 	 * devices other than /dev/rdsk/
1120 	 */
1121 	if (strstr(epp->device_name, DEFAULT_PATH_PREFIX) == NULL) {
1122 		return (0);
1123 	}
1124 
1125 	if ((fp = fopen(MNTTAB, "r")) == NULL) {
1126 		return (ENOENT);
1127 	}
1128 
1129 	canonp = epp->device_name + strlen(DEFAULT_PATH_PREFIX);
1130 	(void) snprintf(compare_pdev_str, PATH_MAX, "%s%s", "/dev/dsk/",
1131 	    canonp);
1132 	part_str = strrchr(compare_pdev_str, 'p');
1133 	*(part_str + 1) = '\0';
1134 	(void) strcpy(compare_sdev_str, compare_pdev_str);
1135 	part_str = strrchr(compare_sdev_str, 'p');
1136 	*part_str = 's';
1137 
1138 	if (fdisk_get_solaris_part(epp, &part, &begsec, &numsec) ==
1139 	    FDISK_SUCCESS) {
1140 		if (part > FD_NUMPART) {
1141 			/*
1142 			 * Solaris partition is on a logical drive. Look for
1143 			 * mounted slices.
1144 			 */
1145 			look_for_mounted_slices = 1;
1146 		}
1147 	}
1148 
1149 	while (getmntent(fp, &mt) == 0) {
1150 		if (strstr(mt.mnt_special, compare_pdev_str) == NULL) {
1151 			if (strstr(mt.mnt_special, compare_sdev_str) == NULL) {
1152 				continue;
1153 			} else {
1154 				if (look_for_mounted_slices) {
1155 					return (FDISK_EMOUNTED);
1156 				}
1157 			}
1158 		}
1159 
1160 		/*
1161 		 * Get the partition number that is mounted, which would be
1162 		 * found just beyond the last 'p' in the device string.
1163 		 * For example, in /dev/dsk/c0t0d0p12, partition number 12
1164 		 * is just beyond the last 'p'.
1165 		 */
1166 		part_str = strrchr(mt.mnt_special, 'p');
1167 		if (part_str != NULL) {
1168 			part_str++;
1169 			part = atoi(part_str);
1170 			/* Extended partition numbers start from 5 */
1171 			if (part >= 5) {
1172 				return (FDISK_EMOUNTED);
1173 			}
1174 		}
1175 	}
1176 	return (0);
1177 }
1178 
1179 int
1180 fdisk_commit_ext_part(ext_part_t *epp)
1181 {
1182 	logical_drive_t *temp;
1183 	int wflag = 0;		/* write flag */
1184 	int rval;
1185 	int sectsize = epp->disk_geom.sectsize;
1186 	unsigned char *ebr_buf;
1187 	int ld_count;
1188 	uint32_t abs_secnum;
1189 	int check_mounts = 0;
1190 
1191 	if ((ebr_buf = (unsigned char *)malloc(sectsize)) == NULL) {
1192 		return (ENOMEM);
1193 	}
1194 
1195 	if (epp->first_ebr_is_null) {
1196 		/*
1197 		 * Indicator that the extended partition as a whole was
1198 		 * modifies (either created or deleted. Must check for mounts
1199 		 * and must commit
1200 		 */
1201 		check_mounts = 1;
1202 	}
1203 
1204 	/*
1205 	 * Pass1 through the logical drives to make sure that commit of minor
1206 	 * written block dont get held up due to mounts.
1207 	 */
1208 	for (temp = epp->ld_head; temp != NULL; temp = temp->next) {
1209 		if (temp == epp->ld_head) {
1210 			abs_secnum = epp->ext_beg_sec;
1211 		} else {
1212 			abs_secnum = temp->abs_secnum;
1213 		}
1214 		if (temp->modified == FDISK_MINOR_WRITE) {
1215 			rval = read_modify_write_ebr(epp, ebr_buf,
1216 			    temp->parts, abs_secnum);
1217 			if (rval) {
1218 				goto error;
1219 			}
1220 			temp->modified = 0;
1221 		} else if (temp->modified == FDISK_MAJOR_WRITE) {
1222 			check_mounts = 1;
1223 		}
1224 	}
1225 
1226 	if (!check_mounts) {
1227 		goto skip_check_mounts;
1228 	}
1229 
1230 	if ((rval = fdisk_mounted_logical_drives(epp)) != 0) {
1231 		/* One/more extended partitions are mounted */
1232 		if (ebr_buf) {
1233 			free(ebr_buf);
1234 		}
1235 		return (rval);
1236 	}
1237 
1238 skip_check_mounts:
1239 
1240 	if (epp->first_ebr_is_null) {
1241 		rval = read_modify_write_ebr(epp, ebr_buf, NULL,
1242 		    epp->ext_beg_sec);
1243 		if (rval) {
1244 			goto error;
1245 		}
1246 		wflag = 1;
1247 		ld_count = 0;
1248 	} else {
1249 		if (epp->logical_drive_count == 0) {
1250 			/*
1251 			 * Can hit this case when there is just an extended
1252 			 * partition with no logical drives, and the user
1253 			 * committed without making any changes
1254 			 * We dont have anything to commit. Return success
1255 			 */
1256 			if (ebr_buf) {
1257 				free(ebr_buf);
1258 			}
1259 			return (FDISK_SUCCESS);
1260 		}
1261 
1262 		/*
1263 		 * Make sure that the first EBR is written with the first
1264 		 * logical drive's data, which might not be the first in disk
1265 		 * order.
1266 		 */
1267 		for (temp = epp->ld_head, ld_count = 0; temp != NULL;
1268 		    temp = temp->next, ld_count++) {
1269 			if (ld_count == 0) {
1270 				abs_secnum = epp->ext_beg_sec;
1271 			} else {
1272 				abs_secnum = temp->abs_secnum;
1273 			}
1274 			if (temp->modified) {
1275 				rval = read_modify_write_ebr(epp, ebr_buf,
1276 				    temp->parts, abs_secnum);
1277 				if (rval) {
1278 					if (ld_count) {
1279 						/*
1280 						 * There was atleast one
1281 						 * write to the disk before
1282 						 * this failure. Make sure that
1283 						 * the kernel is notified.
1284 						 * Issue the ioctl.
1285 						 */
1286 						break;
1287 					}
1288 					goto error;
1289 				}
1290 				if ((!wflag) && (temp->modified ==
1291 				    FDISK_MAJOR_WRITE)) {
1292 					wflag = 1;
1293 				}
1294 			}
1295 		}
1296 
1297 		if (wflag == 0) {
1298 			/* No changes made */
1299 			rval = FDISK_SUCCESS;
1300 			goto error;
1301 		}
1302 	}
1303 
1304 	/* Issue ioctl to the driver to update extended partition info */
1305 	rval = ioctl(epp->dev_fd, DKIOCSETEXTPART);
1306 
1307 	/*
1308 	 * Certain devices ex:lofi do not support DKIOCSETEXTPART.
1309 	 * Extended partitions are still created on these devices.
1310 	 */
1311 	if (errno == ENOTTY)
1312 		rval = FDISK_SUCCESS;
1313 
1314 error:
1315 	if (ebr_buf) {
1316 		free(ebr_buf);
1317 	}
1318 	return (rval);
1319 }
1320 
1321 int
1322 fdisk_init_ext_part(ext_part_t *epp, uint32_t rsect, uint32_t nsect)
1323 {
1324 	epp->first_ebr_is_null = 1;
1325 	epp->corrupt_logical_drives = 0;
1326 	epp->logical_drive_count = 0;
1327 	epp->ext_beg_sec = rsect;
1328 	epp->ext_end_sec = rsect + nsect - 1;
1329 	epp->ext_beg_cyl = FDISK_SECT_TO_CYL(epp, epp->ext_beg_sec);
1330 	epp->ext_end_cyl = FDISK_SECT_TO_CYL(epp, epp->ext_end_sec);
1331 	epp->invalid_bb_sig[0] = 0;
1332 	return (0);
1333 }
1334 
1335 int
1336 fdisk_delete_ext_part(ext_part_t *epp)
1337 {
1338 	epp->first_ebr_is_null = 1;
1339 	/* Clear the logical drive information */
1340 	fdisk_free_ld_nodes(epp);
1341 	epp->logical_drive_count = 0;
1342 	epp->corrupt_logical_drives = 0;
1343 	epp->invalid_bb_sig[0] = 0;
1344 	return (0);
1345 }
1346 
1347 int
1348 fdisk_get_disk_geom(ext_part_t *epp, int type, int what)
1349 {
1350 	switch (type) {
1351 		case PHYSGEOM:
1352 			switch (what) {
1353 				case NCYL:
1354 					return ((int)epp->disk_geom.phys_cyl);
1355 				case NHEADS:
1356 					return ((int)epp->disk_geom.phys_heads);
1357 				case NSECTPT:
1358 					return ((int)epp->disk_geom.phys_sec);
1359 				case SSIZE:
1360 					return ((int)epp->disk_geom.sectsize);
1361 				case ACYL:
1362 					return ((int)epp->disk_geom.alt_cyl);
1363 				default:
1364 					return (EINVAL);
1365 			}
1366 		case VIRTGEOM:
1367 			switch (what) {
1368 				case NCYL:
1369 					return ((int)epp->disk_geom.virt_cyl);
1370 				case NHEADS:
1371 					return ((int)epp->disk_geom.virt_heads);
1372 				case NSECTPT:
1373 					return ((int)epp->disk_geom.virt_sec);
1374 				case SSIZE:
1375 					return ((int)epp->disk_geom.sectsize);
1376 				case ACYL:
1377 					return ((int)epp->disk_geom.alt_cyl);
1378 				default:
1379 					return (EINVAL);
1380 			}
1381 		default:
1382 			return (EINVAL);
1383 	}
1384 }
1385 
1386 int
1387 fdisk_invalid_bb_sig(ext_part_t *epp, uchar_t **bbsig_arr)
1388 {
1389 	*bbsig_arr = &(epp->invalid_bb_sig[0]);
1390 	return (epp->invalid_bb_sig[0]);
1391 }
1392