1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * These functions implement the process of commitment for a pool
30  * configuration. This process can be described as taking instructions
31  * from a static configuration file and using the information about
32  * the target system contained in the dynamic configuration to make
33  * decisions about how best to allocate resources to meet the
34  * constraints specified in the static configuration file.
35  *
36  * Mechanically, this process relies upon ordering the individual
37  * components of the file and stepping through the lists of components
38  * and taking actions depending on their type and which file they are
39  * part of.
40  *
41  * Configuration components can be broken down into different types
42  * which are then treated according to the following table:
43  *
44  * Element Type		Action
45  * system || pool ||
46  * res_comp || res_agg	If the element is a required element, then create or
47  *			update it (don't destroy required elements in the
48  *			static configuration) otherwise manipulate the
49  *			dynamic configuration to create, destroy or update
50  *			the element on the system.
51  * comp			Create, destroy or update the static configuration
52  *			component.
53  *
54  * The treatment of the different elements reflects the fact that all
55  * elements other than comp are configurable and thus libpool can
56  * create, destroy and modify these elements at will. comp elements
57  * reflect the disposition of the system, these elements can be moved
58  * around but they can't be created or destroyed in the dynamic
59  * configuration in the commit process. comp elements can be created
60  * and destroyed in the static configuration file as a result of a
61  * commit operation, since it's possible for a comp to not appear in
62  * the dynamic configuration. For instance, if the static
63  * configuration file was created on a different machine or after a DR
64  * operation which has removed or added components.
65  *
66  */
67 #include <assert.h>
68 #include <stdio.h>
69 #include <stdlib.h>
70 #include <sys/types.h>
71 #include <errno.h>
72 #include <string.h>
73 #include <limits.h>
74 #include <unistd.h>
75 
76 #include <pool.h>
77 #include "pool_internal.h"
78 #include "pool_impl.h"
79 
80 #define	MIN(x, y) ((x) < (y) ? (x) : (y))
81 #define	MAX(x, y) ((x) > (y) ? (x) : (y))
82 #define	POA_IMPORTANCE_NUM	0
83 #define	POA_SURPLUS_TO_DEFAULT_NUM	1
84 
85 /*
86  * This resource specific structure is used to determine allocation of resources
87  * during resource set allocation.  Each set will receive its min, plus
88  * some number of dealt resources based on the global allocation policy.
89  */
90 typedef struct res_info {
91 	pool_resource_t	*ri_res;	/* Resource set */
92 	uint64_t	ri_min;		/* Resource set's low watermark */
93 	uint64_t	ri_max;		/* Resource set's high watermark */
94 	uint64_t	ri_oldsize;	/* Size of resource set at the start */
95 	uint64_t	ri_newsize;	/* New resource set size allocated */
96 	uint64_t	ri_pinned;	/* Count of pinned resources in set */
97 	uint64_t	ri_dealt;	/* Count of resources dealt to set */
98 	int64_t		ri_transfer;	/* oldsize - newsize */
99 					/* The signed quantity of resources */
100 					/* to tranfer into or out of this */
101 					/* resource set */
102 					/* + transfer: tranfer resources out */
103 					/* - transfer: tranfer resources in */
104 } res_info_t;
105 
106 /*
107  * diff_and_fix operations
108  */
109 static int		commit_create(pool_conf_t *, pool_elem_t **);
110 static int		commit_delete(pool_elem_t *);
111 static int		commit_update(pool_elem_t *, pool_elem_t *, int);
112 
113 /*
114  * configuration commit processing
115  */
116 static int		diff_and_fix(pool_conf_t *, pool_conf_t *);
117 static int		process_elem_lt(pool_elem_t *, pool_conf_t *);
118 static int		process_elem_gt(pool_elem_t *, pool_conf_t *,
119     pool_conf_t *);
120 static int		process_lists(int, pool_conf_t *,
121     pool_conf_t *, int);
122 static pool_elem_t	**get_elem_list(const pool_conf_t *, int, uint_t *);
123 static int		share_resources(pool_conf_t *);
124 static int		resource_allocate(const char *, pool_resource_t **,
125     uint_t);
126 static int		resource_allocate_default(pool_resource_t **, uint_t);
127 static int		pset_allocate_imp(pool_resource_t **, uint_t);
128 static int		resource_compare_by_descending_importance(const void *,
129     const void *);
130 static int		compute_size_to_transfer(const void *, const void *);
131 static int		set_importance_cb(pool_conf_t *, pool_t *, void *);
132 static int		unset_importance_cb(pool_conf_t *, pool_t *, void *);
133 static int		add_importance_props(pool_conf_t *);
134 static int		remove_importance_props(pool_conf_t *);
135 static int		clone_element(pool_conf_t *, pool_elem_t *,
136     const char *, pool_value_t *, void *);
137 static int		clean_element(pool_conf_t *, pool_elem_t *,
138     const char *, pool_value_t *, void *);
139 
140 /*
141  * commit_create() is used to create a configuration element upon the
142  * system.  Since only pools and resource actually need to perform any
143  * action, other elements are ignored as a no-op.
144  */
145 static int
146 commit_create(pool_conf_t *conf, pool_elem_t **e1)
147 {
148 	pool_resource_t *res;
149 	pool_t *pool;
150 	const char *res_type;
151 	pool_elem_t *src = *e1;
152 	uint64_t smin, smax, dmax;
153 	pool_value_t val = POOL_VALUE_INITIALIZER;
154 	char *name;
155 
156 	switch (pool_elem_class(src)) {
157 	case PEC_SYSTEM:	/* NO-OP */
158 		break;
159 	case PEC_POOL:
160 		name = elem_get_name(src);
161 		if ((pool = pool_create(conf, name)) == NULL) {
162 			free(name);
163 			return (PO_FAIL);
164 		}
165 		free(name);
166 		/*
167 		 * Now copy the properties from the original pool to the
168 		 * new one
169 		 */
170 		if (pool_walk_properties(TO_CONF(src), src, TO_ELEM(pool),
171 		    clone_element) != PO_SUCCESS)
172 			return (PO_FAIL);
173 		/*
174 		 * Add a pointer to the src element which can be
175 		 * updated with a sys_id when the sys_id is allocated
176 		 * to the created element.
177 		 */
178 		pool_set_pair(TO_ELEM(pool), src);
179 		*e1 = TO_ELEM(pool);
180 		break;
181 	case PEC_RES_COMP:
182 	case PEC_RES_AGG:
183 		name = elem_get_name(src);
184 		res_type = pool_elem_class_string(src);
185 		if ((res = pool_resource_create(conf, res_type, name)) ==
186 		    NULL) {
187 			free(name);
188 			return (PO_FAIL);
189 		}
190 		free(name);
191 		/*
192 		 * Need to do some ordering of property updates.
193 		 * Compare the values of source min/max and
194 		 * destination min/max. If smin < dmax then update the
195 		 * smin first, else update the max first.
196 		 */
197 		if (resource_get_min(pool_elem_res(src), &smin) != PO_SUCCESS ||
198 		    resource_get_max(pool_elem_res(src), &smax) != PO_SUCCESS ||
199 		    resource_get_max(res, &dmax) != PO_SUCCESS)
200 			return (PO_FAIL);
201 		if (smin < dmax) {
202 			pool_value_set_uint64(&val, smin);
203 			if (pool_put_ns_property(TO_ELEM(res), c_min_prop,
204 			    &val) != PO_SUCCESS)
205 				return (PO_FAIL);
206 		} else {
207 			pool_value_set_uint64(&val, smax);
208 			if (pool_put_ns_property(TO_ELEM(res), c_max_prop,
209 			    &val) != PO_SUCCESS)
210 				return (PO_FAIL);
211 		}
212 		/*
213 		 * Now copy the properties from the original resource
214 		 * to the new one
215 		 */
216 		if (pool_walk_properties(TO_CONF(src), src, TO_ELEM(res),
217 		    clone_element) != PO_SUCCESS)
218 			return (PO_FAIL);
219 		/*
220 		 * Add a pointer to the src element which can be
221 		 * updated with a sys_id when the sys_id is allocated
222 		 * to the created element.
223 		 */
224 		pool_set_pair(TO_ELEM(res), src);
225 		*e1 = TO_ELEM(res);
226 		break;
227 	case PEC_COMP:		/* NO-OP */
228 		break;
229 	default:
230 		return (PO_FAIL);
231 	}
232 	return (PO_SUCCESS);
233 }
234 
235 
236 /*
237  * commit_delete() is used to delete a configuration element upon the
238  * system.  Since only pools and resources actually need to perform
239  * any action, other elements are ignored as a no-op.
240  */
241 static int
242 commit_delete(pool_elem_t *pe)
243 {
244 	pool_resource_t *res;
245 	pool_t *pool;
246 	int ret = 0;
247 
248 	switch (pool_elem_class(pe)) {
249 	case PEC_SYSTEM:	/* NO-OP */
250 		break;
251 	case PEC_POOL:
252 		pool = pool_elem_pool(pe);
253 		ret = pool_destroy(TO_CONF(pe), pool);
254 		break;
255 	case PEC_RES_COMP:
256 	case PEC_RES_AGG:
257 		res = pool_elem_res(pe);
258 		ret = pool_resource_destroy(TO_CONF(pe), res);
259 		break;
260 	case PEC_COMP:		/* NO-OP */
261 		break;
262 	default:
263 		return (PO_FAIL);
264 	}
265 	return (ret);
266 }
267 
268 /*
269  * commit_update() is used to update a configuration element upon the
270  * system or in a static configuration file. The pass parameter
271  * governs whether properties are being updated or associations.  In
272  * pass 0, properties are updated. If the element is of class
273  * PEC_COMP, then make sure that the element in the static
274  * configuration file is correctly located before proceeding with the
275  * update. Then, the element in the dynamic configuration file is
276  * updated. In pass 1, ie. pass != 0, any pool components have their
277  * associations updated in the dynamic configuration.
278  */
279 static int
280 commit_update(pool_elem_t *e1, pool_elem_t *e2, int pass)
281 {
282 	if (pass == 0) {
283 		pool_resource_t *res1;
284 		pool_resource_t *res2;
285 		if (pool_elem_class(e1) == PEC_COMP) {
286 			res1 = pool_get_owning_resource(TO_CONF(e1),
287 			    pool_elem_comp(e1));
288 			res2 = pool_get_owning_resource(TO_CONF(e2),
289 			    pool_elem_comp(e2));
290 			if (pool_elem_compare_name(TO_ELEM(res1),
291 			    TO_ELEM(res2)) != 0) {
292 				char *name;
293 				const pool_resource_t *newres;
294 				pool_component_t *comps[2] = { NULL };
295 
296 				comps[0] = pool_elem_comp(e2);
297 				name = elem_get_name(TO_ELEM(res1));
298 				newres = pool_get_resource(TO_CONF(e2),
299 				    pool_elem_class_string(TO_ELEM(res1)),
300 				    name);
301 				free(name);
302 				assert(newres);
303 #ifdef DEBUG
304 				dprintf("transferring: res, comp\n");
305 				pool_elem_dprintf(TO_ELEM(newres));
306 				pool_elem_dprintf(e2);
307 #endif	/* DEBUG */
308 				(void) pool_resource_xtransfer(TO_CONF(e2),
309 				    res2, (pool_resource_t *)newres, comps);
310 			}
311 		}
312 		if (pool_walk_properties(TO_CONF(e2), e2, NULL,
313 		    clean_element) != PO_SUCCESS) {
314 			return (PO_FAIL);
315 		}
316 		/*
317 		 * Need to do some ordering of property updates if the
318 		 * element to be updated is a resource.  Compare the
319 		 * values of source min/max and destination
320 		 * min/max. If smin < dmax then update the smin first,
321 		 * else update the max first.
322 		 */
323 		if (pool_elem_class(e1) == PEC_RES_COMP ||
324 		    pool_elem_class(e1) == PEC_RES_AGG) {
325 			uint64_t smin, smax, dmax;
326 			pool_value_t val = POOL_VALUE_INITIALIZER;
327 
328 			if (resource_get_min(pool_elem_res(e1), &smin) !=
329 			    PO_SUCCESS ||
330 			    resource_get_max(pool_elem_res(e1), &smax) !=
331 			    PO_SUCCESS ||
332 			    resource_get_max(pool_elem_res(e2), &dmax) !=
333 			    PO_SUCCESS)
334 				return (PO_FAIL);
335 			if (smin < dmax) {
336 				pool_value_set_uint64(&val, smin);
337 				if (pool_put_ns_property(e2, c_min_prop,
338 				    &val) != PO_SUCCESS)
339 					return (PO_FAIL);
340 			} else {
341 				pool_value_set_uint64(&val, smax);
342 				if (pool_put_ns_property(e2, c_max_prop,
343 				    &val) != PO_SUCCESS)
344 					return (PO_FAIL);
345 			}
346 		}
347 		/*
348 		 * This next couple of steps needs some
349 		 * explanation. The first walk, copies all the
350 		 * properties that are writeable from the static
351 		 * configuration to the dynamic configuration. The
352 		 * second walk copies all properties (writeable or
353 		 * not) from the dynamic configuration element back to
354 		 * the static configuration element. This ensures that
355 		 * updates from the static configuration element are
356 		 * correctly applied to the dynamic configuration and
357 		 * then the static configuration element is updated
358 		 * with the latest values of the read-only xproperties
359 		 * from the dynamic configuration element. The
360 		 * enforcing of permisssions is performed in
361 		 * clone_element by its choice of property
362 		 * manipulation function.
363 		 */
364 		if (pool_walk_properties(TO_CONF(e1), e1, e2, clone_element) !=
365 		    PO_SUCCESS) {
366 			return (PO_FAIL);
367 		}
368 		if (pool_walk_properties(TO_CONF(e2), e2, e1, clone_element) !=
369 		    PO_SUCCESS) {
370 			return (PO_FAIL);
371 		}
372 	} else {
373 		if (pool_elem_class(e1) == PEC_POOL) {
374 			pool_resource_t **rs;
375 			uint_t nelem;
376 			int i;
377 			pool_value_t val = POOL_VALUE_INITIALIZER;
378 			pool_value_t *pvals[] = { NULL, NULL };
379 
380 			pvals[0] = &val;
381 			if (pool_value_set_string(&val, "pset") != PO_SUCCESS ||
382 			    pool_value_set_name(&val, c_type) != PO_SUCCESS)
383 				return (PO_FAIL);
384 			if ((rs = pool_query_pool_resources(TO_CONF(e1),
385 			    pool_elem_pool(e1), &nelem, pvals)) != NULL) {
386 				for (i = 0; i < nelem; i++) {
387 					const pool_resource_t *tgt_res;
388 					char *res_name =
389 					    elem_get_name(TO_ELEM(rs[i]));
390 
391 					if ((tgt_res = pool_get_resource(
392 					    TO_CONF(e2), pool_elem_class_string(
393 					    TO_ELEM(rs[i])), res_name)) ==
394 					    NULL) {
395 						tgt_res = get_default_resource(
396 						    rs[i]);
397 					}
398 					free(res_name);
399 					if (pool_associate(TO_CONF(e2),
400 					    pool_elem_pool(e2), tgt_res) !=
401 					    PO_SUCCESS) {
402 						free(rs);
403 						return (PO_FAIL);
404 					}
405 				}
406 				free(rs);
407 			}
408 		}
409 	}
410 	return (PO_SUCCESS);
411 }
412 
413 /*
414  * diff_and_fix() works out the differences between two configurations
415  * and modifies the state of the system to match the operations
416  * required to bring the two configurations into sync.
417  *
418  * Returns PO_SUCCESS/PO_FAIL.
419  */
420 static int
421 diff_and_fix(pool_conf_t *stc, pool_conf_t *dyn)
422 {
423 	/*
424 	 * The ordering of the operations is significant, we must
425 	 * process the system element, then the pools elements, then
426 	 * the resource elements, then the pools elements again and
427 	 * finally the resource components.
428 	 *
429 	 * TODO
430 	 * PEC_RES_COMP are the only type of resources
431 	 * currently. When PEC_RES_AGG resources are added they must
432 	 * also be processed.
433 	 */
434 	if (process_lists(PEC_SYSTEM, stc, dyn, 0) != PO_SUCCESS) {
435 		return (PO_FAIL);
436 	}
437 	if (process_lists(PEC_POOL, stc, dyn, 0) != PO_SUCCESS) {
438 		return (PO_FAIL);
439 	}
440 	if (process_lists(PEC_RES_COMP, stc, dyn, 0) != PO_SUCCESS) {
441 		return (PO_FAIL);
442 	}
443 	if (process_lists(PEC_COMP, stc, dyn, 0) != PO_SUCCESS) {
444 		return (PO_FAIL);
445 	}
446 	if (process_lists(PEC_POOL, stc, dyn, 1) != PO_SUCCESS) {
447 		return (PO_FAIL);
448 	}
449 	/*
450 	 * Share the resources. It has to be called for both
451 	 * configurations to ensure that the configurations still look
452 	 * the same.
453 	 */
454 	if (share_resources(dyn) != PO_SUCCESS) {
455 		return (PO_FAIL);
456 	}
457 	if (share_resources(stc) != PO_SUCCESS) {
458 		return (PO_FAIL);
459 	}
460 	return (PO_SUCCESS);
461 }
462 
463 static int
464 process_elem_lt(pool_elem_t *pe, pool_conf_t *dyn)
465 {
466 	if (pool_elem_class(pe) == PEC_COMP) {
467 		if (pool_component_destroy(pool_elem_comp(pe)) == PO_FAIL) {
468 			return (PO_FAIL);
469 		}
470 	} else if (! elem_is_default(pe)) {
471 		if (commit_create(dyn, &pe) != PO_SUCCESS) {
472 			return (PO_FAIL);
473 		}
474 	}
475 	return (PO_SUCCESS);
476 }
477 
478 static int
479 process_elem_gt(pool_elem_t *pe, pool_conf_t *stc, pool_conf_t *dyn)
480 {
481 	if (pool_elem_class(pe) == PEC_COMP) {
482 		pool_resource_t *owner;
483 		const pool_resource_t *parent_res;
484 		pool_value_t val = POOL_VALUE_INITIALIZER;
485 		const pool_component_t *newcomp;
486 		const char *resname;
487 		const char *restype;
488 		/*
489 		 * I have to find the right parent in the static
490 		 * configuration. It may not exist, in which case it's
491 		 * correct to put it in the default
492 		 */
493 		owner = pool_get_owning_resource(dyn,
494 		    pool_elem_comp(pe));
495 		if (pool_get_ns_property(TO_ELEM(owner), "name", &val) ==
496 		    POC_INVAL)
497 			return (PO_FAIL);
498 
499 		if (pool_value_get_string(&val, &resname) == PO_FAIL)
500 			return (PO_FAIL);
501 
502 		if ((resname = strdup(resname)) == NULL)
503 			return (PO_FAIL);
504 
505 		restype = pool_elem_class_string(TO_ELEM(owner));
506 		parent_res = pool_get_resource(stc, restype, resname);
507 		free((void *)resname);
508 		if (parent_res == NULL)
509 			parent_res = resource_by_sysid(stc, PS_NONE, restype);
510 		/*
511 		 * Now need to make a copy of the component in the
512 		 * dynamic configuration in the static configuration.
513 		 */
514 		if ((newcomp = pool_component_create(stc, parent_res,
515 		    elem_get_sysid(pe))) == NULL)
516 			return (PO_FAIL);
517 
518 		if (pool_walk_properties(TO_CONF(pe), pe, TO_ELEM(newcomp),
519 		    clone_element) != PO_SUCCESS)
520 			return (PO_FAIL);
521 	} else if (elem_is_default(pe)) {
522 		pool_resource_t *newres;
523 		pool_t *newpool;
524 		char *name;
525 
526 		if ((name = elem_get_name(pe)) == NULL)
527 			return (PO_FAIL);
528 		switch (pool_elem_class(pe)) {
529 		case PEC_POOL:
530 			if ((newpool = pool_create(stc, name)) == NULL) {
531 				free(name);
532 				return (PO_FAIL);
533 			}
534 			free(name);
535 			if (pool_walk_properties(TO_CONF(pe), pe,
536 			    TO_ELEM(newpool), clone_element) != PO_SUCCESS)
537 				return (PO_FAIL);
538 			break;
539 		case PEC_RES_AGG:
540 		case PEC_RES_COMP:
541 			if ((newres = pool_resource_create(stc,
542 			    pool_elem_class_string(pe), name)) ==
543 			    NULL) {
544 				free(name);
545 				return (PO_FAIL);
546 			}
547 			free(name);
548 			if (pool_walk_properties(TO_CONF(pe), pe,
549 			    TO_ELEM(newres), clone_element) != PO_SUCCESS)
550 				return (PO_FAIL);
551 			break;
552 		default:
553 			free(name);
554 			break;
555 		}
556 	} else {
557 		if (commit_delete(pe) != PO_SUCCESS)
558 			return (PO_FAIL);
559 	}
560 	return (PO_SUCCESS);
561 }
562 
563 /*
564  * This function compares the elements of the supplied type in the
565  * static and dynamic configurations supplied. The lists of elements
566  * are compared and used to create, delete and updated elements in
567  * both the static and dynamic configurations. The pass parameter is
568  * used to indicate to commit_update() whether property updates or
569  * association updates should be performed.
570  */
571 static int
572 process_lists(int type, pool_conf_t *stc, pool_conf_t *dyn, int pass)
573 {
574 	uint_t stc_nelem = 0, dyn_nelem = 0;
575 	pool_elem_t **stc_elems, **dyn_elems;
576 	int i, j;
577 	int status = PO_SUCCESS;
578 
579 	if ((stc_elems = get_elem_list(stc, type, &stc_nelem)) == NULL)
580 		return (PO_FAIL);
581 
582 	qsort(stc_elems, stc_nelem, sizeof (pool_elem_t *),
583 	    qsort_elem_compare);
584 
585 	if ((dyn_elems = get_elem_list(dyn, type, &dyn_nelem)) == NULL) {
586 		free(stc_elems);
587 		return (PO_FAIL);
588 	}
589 
590 	qsort(dyn_elems, dyn_nelem, sizeof (pool_elem_t *),
591 	    qsort_elem_compare);
592 	/*
593 	 * Step through and do the updating, remember that we are
594 	 * comparing using the compare function for the configuration
595 	 * and that is fixed.
596 	 */
597 	i = j = 0;
598 	while (status == PO_SUCCESS && i < stc_nelem && j < dyn_nelem) {
599 		int compare;
600 		/*
601 		 * We are going to do this by stepping through the static
602 		 * list first.
603 		 */
604 		if (elem_is_default(stc_elems[i]) &&
605 		    elem_is_default(dyn_elems[j]))
606 			compare = 0;
607 		else
608 			compare = pool_elem_compare_name(stc_elems[i],
609 			    dyn_elems[j]);
610 		if (compare < 0) {
611 			status = process_elem_lt(stc_elems[i], dyn);
612 			i++;
613 		} else if (compare > 0) {
614 			status = process_elem_gt(dyn_elems[j], stc, dyn);
615 			j++;
616 		} else {	/* compare == 0 */
617 			if (commit_update(stc_elems[i], dyn_elems[j], pass)
618 			    != PO_SUCCESS) {
619 				status = PO_FAIL;
620 			}
621 			i++;
622 			j++;
623 		}
624 	}
625 	if (status == PO_FAIL) {
626 		free(stc_elems);
627 		free(dyn_elems);
628 		return (PO_FAIL);
629 	}
630 	while (status == PO_SUCCESS && i < stc_nelem) {
631 		status = process_elem_lt(stc_elems[i], dyn);
632 		i++;
633 	}
634 	if (status == PO_FAIL) {
635 		free(stc_elems);
636 		free(dyn_elems);
637 		return (PO_FAIL);
638 	}
639 	while (status == PO_SUCCESS && j < dyn_nelem) {
640 		status = process_elem_gt(dyn_elems[j], stc, dyn);
641 		j++;
642 	}
643 	free(stc_elems);
644 	free(dyn_elems);
645 	return (status);
646 }
647 
648 /*
649  * get_elem_list() returns a list of pool_elem_t's. The size of the
650  * list is written into nelem. The list contains elements of all types
651  * that pools is interested in: i.e. system, pool, resources and
652  * resource components. It is the caller's responsibility to free the
653  * list when it is finished with.
654  *
655  * The array of pointers returned by the type specific query can be
656  * safely cast to be an array of pool_elem_t pointers. In the case of
657  * PEC_RES_COMP some additional processing is required to qualify the
658  * list of elements.
659  *
660  * Returns a pointer to a list of pool_elem_t's or NULL on failure.
661  */
662 static pool_elem_t **
663 get_elem_list(const pool_conf_t *conf, int type, uint_t *nelem)
664 {
665 	pool_resource_t **rl;
666 	pool_t **pl;
667 	pool_component_t **cl;
668 	pool_elem_t **elems = NULL;
669 	int i;
670 
671 	switch (type) {
672 	case PEC_SYSTEM:
673 		if ((elems = malloc(sizeof (pool_elem_t *))) == NULL)
674 			return (NULL);
675 		*nelem = 1;
676 		elems[0] = pool_conf_to_elem(conf);
677 		break;
678 	case PEC_POOL:
679 		if ((pl = pool_query_pools(conf, nelem, NULL)) != NULL) {
680 			elems = (pool_elem_t **)pl;
681 		}
682 		break;
683 	case PEC_RES_COMP:
684 		if ((rl = pool_query_resources(conf, nelem, NULL)) != NULL) {
685 			int j = 0;
686 			elems = (pool_elem_t **)rl;
687 			for (i = 0; i < *nelem; i++) {
688 				if (pool_elem_class(TO_ELEM(rl[i])) ==
689 				    PEC_RES_COMP)
690 					elems[j++] = TO_ELEM(rl[i]);
691 			}
692 			*nelem = j;
693 		}
694 		break;
695 	case PEC_COMP:
696 		if ((cl = pool_query_components(conf, nelem, NULL)) != NULL) {
697 			elems = (pool_elem_t **)cl;
698 		}
699 		break;
700 	default:
701 		abort();
702 		break;
703 	}
704 	return (elems);
705 }
706 
707 /*
708  * share_resources() sets up the allocation of resources by each
709  * provider.  Firstly all resources are updated with the importance of
710  * each pool, then each resource provider is invoked in turn with a
711  * list of it's own resources.  Finally, the pool importance details
712  * are removed from the resources.
713  *
714  * Returns PO_SUCCESS/PO_FAIL
715  */
716 static int
717 share_resources(pool_conf_t *conf)
718 {
719 	pool_resource_t **resources;
720 	uint_t nelem;
721 	pool_value_t *props[] = { NULL, NULL };
722 	pool_value_t val = POOL_VALUE_INITIALIZER;
723 
724 	props[0] = &val;
725 
726 	/*
727 	 * Call an allocation function for each type of supported resource.
728 	 * This function is responsible for "sharing" resources to resource
729 	 * sets as determined by the system.allocate-method.
730 	 */
731 
732 	if (pool_value_set_string(props[0], "pset") != PO_SUCCESS ||
733 	    pool_value_set_name(props[0], c_type) != PO_SUCCESS)
734 		return (PO_FAIL);
735 
736 	if (add_importance_props(conf) != PO_SUCCESS) {
737 		(void) remove_importance_props(conf);
738 		return (PO_FAIL);
739 	}
740 
741 	if ((resources = pool_query_resources(conf, &nelem, props)) != NULL) {
742 		/*
743 		 * 'pool.importance' defines the importance of a pool;
744 		 * resources inherit the importance of the pool that
745 		 * is associated with them. If more than one pool is
746 		 * associated with a resource, the importance of the
747 		 * resource is the maximum importance of all
748 		 * associated pools.  Use '_importance' on resources
749 		 * to determine who gets extra.
750 		 */
751 		if (resource_allocate("pset", resources, nelem) != PO_SUCCESS) {
752 			free(resources);
753 			(void) remove_importance_props(conf);
754 			return (PO_FAIL);
755 		}
756 	}
757 	free(resources);
758 	(void) remove_importance_props(conf);
759 	return (PO_SUCCESS);
760 }
761 
762 
763 /*
764  * Work out which allocation method to use based on the value of the
765  * system.allocate-method property.
766  */
767 int
768 resource_allocate(const char *type, pool_resource_t **res, uint_t nelem)
769 {
770 	pool_elem_t *pe;
771 	const char *method_name;
772 	uint64_t method;
773 	pool_value_t val = POOL_VALUE_INITIALIZER;
774 	int ret;
775 
776 	pe = pool_conf_to_elem(TO_CONF(TO_ELEM(res[0])));
777 
778 	if (pool_get_ns_property(pe, "allocate-method", &val) != POC_STRING)
779 		method_name = POA_IMPORTANCE;
780 	else {
781 		(void) pool_value_get_string(&val, &method_name);
782 	}
783 	if (strcmp(POA_IMPORTANCE, method_name) != 0) {
784 		if (strcmp(POA_SURPLUS_TO_DEFAULT, method_name) != 0) {
785 			pool_seterror(POE_INVALID_CONF);
786 			return (PO_FAIL);
787 		} else {
788 			method = POA_SURPLUS_TO_DEFAULT_NUM;
789 		}
790 	} else {
791 		method = POA_IMPORTANCE_NUM;
792 	}
793 	switch (method) {
794 	case POA_IMPORTANCE_NUM:
795 		/*
796 		 * TODO: Add support for new resource types
797 		 */
798 		switch (pool_resource_elem_class_from_string(type)) {
799 		case PREC_PSET:
800 			ret = pset_allocate_imp(res, nelem);
801 			break;
802 		default:
803 			ret = PO_FAIL;
804 			break;
805 		}
806 		break;
807 	case POA_SURPLUS_TO_DEFAULT_NUM:
808 		ret = resource_allocate_default(res, nelem);
809 		break;
810 	}
811 
812 	return (ret);
813 }
814 
815 /*
816  * Each set will get its minimum, however if there is more than the
817  * total minimum available, then leave this in the default set.
818  */
819 int
820 resource_allocate_default(pool_resource_t **res, uint_t nelem)
821 {
822 	res_info_t *res_info;
823 	uint_t j;
824 	pool_resource_t *default_res = NULL;
825 
826 	if (nelem == 1)
827 		return (PO_SUCCESS);
828 
829 	if ((res_info = calloc(nelem, sizeof (res_info_t))) == NULL) {
830 		return (PO_FAIL);
831 	}
832 
833 	/* Load current resource values. */
834 	for (j = 0; j < nelem; j++) {
835 
836 		if (default_res == NULL &&
837 		    resource_is_default(res[j]) == PO_TRUE)
838 			default_res = res[j];
839 
840 		if (resource_get_max(res[j],
841 		    &res_info[j].ri_max) == PO_FAIL ||
842 		    resource_get_min(res[j],
843 			&res_info[j].ri_min) == PO_FAIL ||
844 		    resource_get_size(res[j],
845 			&res_info[j].ri_oldsize) == PO_FAIL ||
846 		    resource_get_pinned(res[j],
847 			&res_info[j].ri_pinned) == PO_FAIL) {
848 			free(res_info);
849 			return (PO_FAIL);
850 		}
851 		res_info[j].ri_res = res[j];
852 	}
853 
854 	/*
855 	 * Firstly, for all resources that have size greater than min,
856 	 * transfer all movable size above min to the default resource.
857 	 */
858 	for (j = 0; j < nelem; j++) {
859 
860 		uint64_t real_min;
861 
862 		/* compute the real minimum number of resources */
863 		real_min = MAX(res_info[j].ri_pinned, res_info[j].ri_min);
864 		if (res_info[j].ri_res != default_res &&
865 		    res_info[j].ri_oldsize > real_min) {
866 
867 			uint64_t num;
868 
869 			num = res_info[j].ri_oldsize - real_min;
870 			if (pool_resource_transfer(
871 			    TO_CONF(TO_ELEM(default_res)),
872 				res_info[j].ri_res, default_res, num) !=
873 			    PO_SUCCESS) {
874 				free(res_info);
875 				return (PO_FAIL);
876 			}
877 		}
878 	}
879 	/*
880 	 * Now, transfer resources below min from the default.
881 	 */
882 	for (j = 0; j < nelem; j++) {
883 		/*
884 		 * We don't want to interfere with resources which are reserved
885 		 */
886 		if (res_info[j].ri_res != default_res &&
887 		    res_info[j].ri_oldsize < res_info[j].ri_min) {
888 			if (pool_resource_transfer(
889 			    TO_CONF(TO_ELEM(default_res)),
890 			    default_res, res_info[j].ri_res,
891 			    res_info[j].ri_min - res_info[j].ri_oldsize) !=
892 			    PO_SUCCESS) {
893 				free(res_info);
894 				return (PO_FAIL);
895 			}
896 		}
897 	}
898 	free(res_info);
899 	return (PO_SUCCESS);
900 }
901 
902 /*
903  * Allocate cpus to pset resource sets, favoring sets with higher importance.
904  *
905  * Step 1: Sort resource sets by decreasing importance, and load each sets
906  *	   current size (oldsize), min, max, and number of pinned cpus.
907  *	   Compute the total number of cpus by totaling oldsize.
908  *
909  * Step 2: Compute the newsize for each set:
910  *
911  * 	Give each set its min number of cpus.  This min may be greater than
912  *	its pset.min due to pinned cpus. If there are more cpus than the total
913  *	of all mins, then the surplus cpus are dealt round-robin to all sets
914  *	(up to their max) in order of decreasing importance.  A set may be
915  *	skipped during dealing because it started with more than its min due to
916  * 	pinned cpus.  The dealing stops when there are no more cpus or all
917  *	sets are at their max. If all sets are at their max, any remaining cpus
918  *	are given to the default set.
919  *
920  * Step 3: Transfer cpus from sets with (oldsize > newsize) to sets with
921  *	   (oldsize < newsize).
922  */
923 int
924 pset_allocate_imp(pool_resource_t **res, uint_t nelem)
925 {
926 	res_info_t *res_info;
927 	res_info_t *default_res_info;
928 	const pool_resource_t *default_res = NULL;
929 	uint64_t tot_resources = 0;	/* total count of resources */
930 	uint64_t tot_min = 0;		/* total of all resource set mins */
931 	uint64_t num_to_deal = 0;	/* total resources above mins to deal */
932 	uint64_t sets_maxed = 0;	/* number of resource sets dealt to  */
933 					/* their max */
934 	uint64_t sets_finished = 0;	/* number of resource sets that have */
935 					/* size == newsize */
936 	int donor, receiver;
937 	int deal;
938 	int j;
939 	int ret = PO_SUCCESS;
940 
941 	/*
942 	 * Build list of res_info_t's
943 	 */
944 	if ((res_info = calloc(nelem, sizeof (res_info_t))) == NULL) {
945 		pool_seterror(POE_SYSTEM);
946 		return (PO_FAIL);
947 	}
948 
949 	/* Order resources by importance, most important being first */
950 	qsort(res, nelem, sizeof (pool_resource_t *),
951 	    resource_compare_by_descending_importance);
952 
953 	for (j = 0; j < nelem; j++) {
954 
955 		/* Track which resource is the default */
956 		if (default_res == NULL &&
957 		    resource_is_default(res[j]) == PO_TRUE) {
958 			default_res = res[j];
959 			default_res_info = &(res_info[j]);
960 		}
961 
962 		/* Load sets' current values */
963 		if (resource_get_max(res[j], &res_info[j].ri_max) == PO_FAIL ||
964 		    resource_get_min(res[j], &res_info[j].ri_min) == PO_FAIL ||
965 		    resource_get_size(res[j], &res_info[j].ri_oldsize) ==
966 		    PO_FAIL ||
967 		    resource_get_pinned(res[j],
968 		    &res_info[j].ri_pinned) == PO_FAIL) {
969 			free(res_info);
970 			return (PO_FAIL);
971 		}
972 
973 		/* Start each set's newsize out at their min. */
974 		res_info[j].ri_newsize = res_info[j].ri_min;
975 
976 		/* pre-deal pinned resources that exceed min */
977 		if (res_info[j].ri_pinned > res_info[j].ri_min) {
978 			res_info[j].ri_newsize = res_info[j].ri_pinned;
979 			res_info[j].ri_dealt =
980 			    res_info[j].ri_newsize - res_info[j].ri_min;
981 		}
982 		res_info[j].ri_res = res[j];
983 
984 		/* Compute total number of resources to deal out */
985 		tot_resources += res_info[j].ri_oldsize;
986 		tot_min += res_info[j].ri_newsize;
987 
988 #ifdef DEBUG
989 		dprintf("res allocation details\n");
990 		pool_elem_dprintf(TO_ELEM(res[j]));
991 		dprintf("size=%llu\n", res_info[j].ri_oldsize);
992 #endif	/* DEBUG */
993 	}
994 
995 	num_to_deal = tot_resources - tot_min;
996 
997 	/*
998 	 * Deal one resource to each set, and then another, until all
999 	 * resources are dealt or all sets are at their max.
1000 	 */
1001 	for (deal = 1; num_to_deal > 0 && sets_maxed < nelem; deal++) {
1002 		for (j = 0; j < nelem; j++) {
1003 
1004 			/*
1005 			 * Skip this resource set if it has already been
1006 			 * pre-dealt a resource due to pinned resources.
1007 			 */
1008 			if (res_info[j].ri_dealt >= deal)
1009 				continue;
1010 
1011 			if (res_info[j].ri_newsize < res_info[j].ri_max) {
1012 
1013 				res_info[j].ri_dealt++;
1014 				res_info[j].ri_newsize++;
1015 				if (res_info[j].ri_newsize ==
1016 				    res_info[j].ri_max)
1017 					sets_maxed++;
1018 
1019 				num_to_deal--;
1020 				if (num_to_deal == 0)
1021 					break;
1022 			}
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * If all resource sets are at their max, deal the remaining to the
1028 	 * default resource set.
1029 	 */
1030 	if ((sets_maxed == nelem) && (num_to_deal > 0)) {
1031 		default_res_info->ri_dealt += num_to_deal;
1032 		default_res_info->ri_newsize += num_to_deal;
1033 	}
1034 
1035 	/*
1036 	 * Sort so that resource sets needing resources preced resource sets
1037 	 * that have extra resources.  The sort function will also compute
1038 	 * The quantity of resources that need to be transfered into or out
1039 	 * of each set so that it's size == newsize.
1040 	 */
1041 	qsort(res_info, nelem, sizeof (res_info_t),
1042 	    compute_size_to_transfer);
1043 
1044 	/*
1045 	 * The donor index starts at the end of the resource set list and
1046 	 * walks up.  The receiver index starts at the beginning of the
1047 	 * resource set list and walks down.  Cpu's are transfered from the
1048 	 * donors to the receivers until all sets have transfer == 0).
1049 	 */
1050 	donor = nelem - 1;
1051 	receiver = 0;
1052 
1053 	/* Number of sets with transfer == 0 */
1054 	sets_finished = 0;
1055 
1056 	/* Tranfer resources so that each set's size becomes newsize */
1057 	for (;;) {
1058 
1059 		uint64_t ntrans;
1060 		if (donor == receiver) {
1061 			if (res_info[donor].ri_transfer != 0) {
1062 				free(res_info);
1063 				return (PO_FAIL);
1064 			}
1065 			sets_finished++;
1066 			break;
1067 		}
1068 		if (res_info[donor].ri_transfer == 0) {
1069 			sets_finished++;
1070 			donor--;
1071 			continue;
1072 		}
1073 		if (res_info[receiver].ri_transfer == 0) {
1074 			sets_finished++;
1075 			receiver++;
1076 			continue;
1077 		}
1078 
1079 		/* Transfer resources from the donor set to the receiver */
1080 		ntrans = MIN(res_info[donor].ri_transfer,
1081 			    -res_info[receiver].ri_transfer);
1082 
1083 		if (pool_resource_transfer(
1084 			TO_CONF(TO_ELEM(res_info[donor].ri_res)),
1085 			    res_info[donor].ri_res, res_info[receiver].ri_res,
1086 			    ntrans) != PO_SUCCESS) {
1087 				free(res_info);
1088 				return (PO_FAIL);
1089 			}
1090 		res_info[donor].ri_transfer -= ntrans;
1091 		res_info[receiver].ri_transfer += ntrans;
1092 	}
1093 
1094 	if (sets_finished != nelem)
1095 		ret = PO_FAIL;
1096 
1097 	free(res_info);
1098 	return (ret);
1099 }
1100 
1101 /*
1102  * Used as a qsort parameter to help order resources in terms of their
1103  * importance, higher importance being first.
1104  */
1105 int
1106 resource_compare_by_descending_importance(const void *arg1, const void *arg2)
1107 {
1108 	pool_elem_t *elem1;
1109 	pool_elem_t *elem2;
1110 	pool_resource_t **res1 = (pool_resource_t **)arg1;
1111 	pool_resource_t **res2 = (pool_resource_t **)arg2;
1112 	pool_value_t val = POOL_VALUE_INITIALIZER;
1113 	int64_t i1 = 0, i2 = 0;
1114 
1115 	elem1 = TO_ELEM(*res1);
1116 	elem2 = TO_ELEM(*res2);
1117 
1118 	if (pool_get_property(TO_CONF(elem1), elem1, "_importance", &val) ==
1119 	    POC_INT)
1120 		(void) pool_value_get_int64(&val, &i1);
1121 
1122 	if (pool_get_property(TO_CONF(elem2), elem2, "_importance", &val) ==
1123 	    POC_INT)
1124 		(void) pool_value_get_int64(&val, &i2);
1125 	return (i1 > i2 ? -1 : (i1 < i2 ? 1 : 0));
1126 }
1127 
1128 /*
1129  * Sort in increasing order so that resource sets with extra resources are at
1130  * the end and resource sets needing resources are at the beginning.
1131  */
1132 int
1133 compute_size_to_transfer(const void *arg1, const void *arg2)
1134 {
1135 	res_info_t *r1 = (res_info_t *)arg1, *r2 = (res_info_t *)arg2;
1136 	r1->ri_transfer = (int64_t)r1->ri_oldsize - (int64_t)r1->ri_newsize;
1137 	r2->ri_transfer = (int64_t)r2->ri_oldsize - (int64_t)r2->ri_newsize;
1138 	return (r1->ri_transfer > r2->ri_transfer ? 1 :
1139 	    (r1->ri_transfer < r2->ri_transfer ? -1 : 0));
1140 }
1141 
1142 /*
1143  * set_importance_cb() is used to create "_importance" props on each
1144  * resource associated with a pool.
1145  *
1146  * Returns PO_SUCCESS/PO_FAIL
1147  */
1148 /*ARGSUSED*/
1149 static int
1150 set_importance_cb(pool_conf_t *conf, pool_t *pool, void *unused)
1151 {
1152 	pool_value_t val = POOL_VALUE_INITIALIZER;
1153 	int64_t importance;
1154 	pool_resource_t **res;
1155 	uint_t nelem, i;
1156 
1157 	if (pool_get_property(conf, TO_ELEM(pool), "pool.importance", &val) !=
1158 	    POC_INT) {
1159 		pool_seterror(POE_INVALID_CONF);
1160 		return (PO_FAIL);
1161 	}
1162 	(void) pool_value_get_int64(&val, &importance);
1163 	if ((res = pool_query_pool_resources(conf, pool, &nelem, NULL)) ==
1164 	    NULL) {
1165 		return (PO_FAIL);
1166 	}
1167 	for (i = 0; res[i] != NULL; i++) {
1168 		int64_t old_importance = INT64_MIN;
1169 		pool_elem_t *elem = TO_ELEM(res[i]);
1170 
1171 		if (pool_get_property(conf, elem, "_importance", &val) ==
1172 		    POC_INT)
1173 			(void) pool_value_get_int64(&val, &old_importance);
1174 		if (old_importance <= importance) {
1175 			(void) pool_value_set_int64(&val, importance);
1176 			(void) pool_put_property(conf, elem, "_importance",
1177 			    &val);
1178 		}
1179 	}
1180 	free(res);
1181 	return (PO_SUCCESS);
1182 }
1183 
1184 /*
1185  * unset_importance_cb() is used to remove "_importance" props from
1186  * each resource associated with a pool.
1187  *
1188  * Returns PO_SUCCESS/PO_FAIL
1189  */
1190 /*ARGSUSED*/
1191 static int
1192 unset_importance_cb(pool_conf_t *conf, pool_t *pool, void *unused)
1193 {
1194 	pool_resource_t **res;
1195 	uint_t nelem, i;
1196 
1197 	if ((res = pool_query_pool_resources(conf, pool, &nelem, NULL)) ==
1198 	    NULL) {
1199 		return (PO_FAIL);
1200 	}
1201 	for (i = 0; res[i] != NULL; i++) {
1202 		if (pool_rm_property(conf, TO_ELEM(res[i]), "_importance") ==
1203 		    PO_FAIL) {
1204 			free(res);
1205 			return (PO_FAIL);
1206 		}
1207 	}
1208 	free(res);
1209 	return (PO_SUCCESS);
1210 }
1211 
1212 /*
1213  * add_importance_props() is used to create "_importance" props on
1214  * each resource associated with a pool.
1215  *
1216  * Returns PO_SUCCESS/PO_FAIL
1217  */
1218 static int
1219 add_importance_props(pool_conf_t *conf)
1220 {
1221 	return (pool_walk_pools(conf, NULL, set_importance_cb));
1222 }
1223 
1224 /*
1225  * remove_importance_props() is used to remove "_importance" props on
1226  * each resource associated with a pool.
1227  *
1228  * Returns PO_SUCCESS/PO_FAIL
1229  */
1230 static int
1231 remove_importance_props(pool_conf_t *conf)
1232 {
1233 	return (pool_walk_pools(conf, NULL, unset_importance_cb));
1234 }
1235 
1236 /*
1237  * pool_conf_commit_sys() takes a configuration and modifies both the
1238  * supplied configuration and the dynamic configuration. The goal of
1239  * this modification is to generate a dynamic configuration which best
1240  * represents the constraints laid down in the static configuration
1241  * and to update the static configuration with the results of this
1242  * process.
1243  *
1244  * Returns PO_SUCCESS/PO_FAIL
1245  */
1246 int
1247 pool_conf_commit_sys(pool_conf_t *conf, int validate)
1248 {
1249 	pool_conf_t *dyn;
1250 
1251 	if ((dyn = pool_conf_alloc()) == NULL)
1252 		return (PO_FAIL);
1253 	if (pool_conf_open(dyn, pool_dynamic_location(), PO_RDWR) !=
1254 	    PO_SUCCESS) {
1255 		pool_conf_free(dyn);
1256 		return (PO_FAIL);
1257 	}
1258 	if (validate == PO_TRUE) {
1259 		if (pool_conf_validate(conf, POV_RUNTIME) != PO_SUCCESS) {
1260 			(void) pool_conf_close(dyn);
1261 			pool_conf_free(dyn);
1262 			return (PO_FAIL);
1263 		}
1264 	}
1265 	/*
1266 	 * Now try to make the two things "the same".
1267 	 */
1268 	if (diff_and_fix(conf, dyn) != PO_SUCCESS) {
1269 		(void) pool_conf_close(dyn);
1270 		pool_conf_free(dyn);
1271 		pool_seterror(POE_INVALID_CONF);
1272 		return (PO_FAIL);
1273 	}
1274 	if (dyn->pc_prov->pc_commit(dyn) != PO_SUCCESS) {
1275 		(void) pool_conf_close(dyn);
1276 		pool_conf_free(dyn);
1277 		return (PO_FAIL);
1278 	}
1279 	(void) pool_conf_close(dyn);
1280 	pool_conf_free(dyn);
1281 	return (PO_SUCCESS);
1282 }
1283 
1284 /*
1285  * Copies all properties from one element to another. If the property
1286  * is a readonly property, then don't copy it.
1287  */
1288 /* ARGSUSED */
1289 static int
1290 clone_element(pool_conf_t *conf, pool_elem_t *pe, const char *name,
1291     pool_value_t *pv, void *user)
1292 {
1293 	pool_elem_t *tgt = (pool_elem_t *)user;
1294 	const pool_prop_t *prop;
1295 #ifdef DEBUG
1296 	dprintf("Cloning %s from %s\n",
1297 	    pool_conf_location(TO_CONF(TO_ELEM(tgt))),
1298 	    pool_conf_location(TO_CONF(pe)));
1299 	assert(TO_CONF(TO_ELEM(tgt)) != TO_CONF(pe));
1300 	dprintf("clone_element: Processing %s\n", name);
1301 	pool_value_dprintf(pv);
1302 #endif	/* DEBUG */
1303 	/*
1304 	 * Some properties should be ignored
1305 	 */
1306 	if ((prop = provider_get_prop(pe, name)) != NULL &&
1307 	    prop_is_readonly(prop) == PO_TRUE)
1308 		return (PO_SUCCESS);
1309 	return (pool_put_property(TO_CONF(tgt), tgt, name, pv) == PO_FAIL);
1310 }
1311 
1312 /*
1313  * Removes all properties from one element. Properties which are
1314  * managed by the configuration are ignored.
1315  */
1316 /* ARGSUSED3 */
1317 static int
1318 clean_element(pool_conf_t *conf, pool_elem_t *pe, const char *name,
1319     pool_value_t *pv, void *user)
1320 {
1321 	const pool_prop_t *prop;
1322 	/*
1323 	 * Some properties should be ignored
1324 	 */
1325 	if ((prop = provider_get_prop(pe, name)) != NULL &&
1326 	    prop_is_optional(prop) == PO_FALSE)
1327 		return (PO_SUCCESS);
1328 	return (pool_rm_property(conf, (pool_elem_t *)pe, name) == PO_FAIL);
1329 }
1330