1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 /*
31  * This file and its contents are supplied under the terms of the
32  * Common Development and Distribution License ("CDDL"), version 1.0.
33  * You may only use this file in accordance with the terms of version
34  * 1.0 of the CDDL.
35  *
36  * A full copy of the text of the CDDL should have accompanied this
37  * source.  A copy of the CDDL is also available via the Internet at
38  * http://www.illumos.org/license/CDDL.
39  *
40  * Copyright 2015 Pluribus Networks Inc.
41  * Copyright 2019 Joyent, Inc.
42  * Copyright 2021 Oxide Computer Company
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/sysctl.h>
50 #include <sys/ioctl.h>
51 #ifdef	__FreeBSD__
52 #include <sys/linker.h>
53 #endif
54 #include <sys/mman.h>
55 #include <sys/module.h>
56 #include <sys/_iovec.h>
57 #include <sys/cpuset.h>
58 
59 #include <x86/segments.h>
60 #include <machine/specialreg.h>
61 
62 #include <errno.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65 #include <assert.h>
66 #include <string.h>
67 #include <fcntl.h>
68 #include <unistd.h>
69 
70 #include <libutil.h>
71 
72 #include <machine/vmm.h>
73 #include <machine/vmm_dev.h>
74 
75 #include "vmmapi.h"
76 
77 #define	MB	(1024 * 1024UL)
78 #define	GB	(1024 * 1024 * 1024UL)
79 
80 #ifndef __FreeBSD__
81 /* shim to no-op for now */
82 #define	MAP_NOCORE		0
83 #define	MAP_ALIGNED_SUPER	0
84 
85 /* Rely on PROT_NONE for guard purposes */
86 #define	MAP_GUARD		(MAP_PRIVATE | MAP_ANON | MAP_NORESERVE)
87 #endif
88 
89 /*
90  * Size of the guard region before and after the virtual address space
91  * mapping the guest physical memory. This must be a multiple of the
92  * superpage size for performance reasons.
93  */
94 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
95 
96 #define	PROT_RW		(PROT_READ | PROT_WRITE)
97 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
98 
99 struct vmctx {
100 	int	fd;
101 	uint32_t lowmem_limit;
102 	int	memflags;
103 	size_t	lowmem;
104 	size_t	highmem;
105 	char	*baseaddr;
106 	char	*name;
107 };
108 
109 #ifdef	__FreeBSD__
110 #define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
111 #define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
112 
113 int
114 vm_create(const char *name)
115 {
116 	/* Try to load vmm(4) module before creating a guest. */
117 	if (modfind("vmm") < 0)
118 		kldload("vmm");
119 	return (CREATE(name));
120 }
121 
122 void
123 vm_destroy(struct vmctx *vm)
124 {
125 	assert(vm != NULL);
126 
127 	if (vm->fd >= 0)
128 		close(vm->fd);
129 	DESTROY(vm->name);
130 
131 	free(vm);
132 }
133 
134 #else
135 static int
136 vm_do_ctl(int cmd, void *req)
137 {
138 	int ctl_fd;
139 
140 	ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR);
141 	if (ctl_fd < 0) {
142 		return (-1);
143 	}
144 
145 	if (ioctl(ctl_fd, cmd, req) == -1) {
146 		int err = errno;
147 
148 		/* Do not lose ioctl errno through the close(2) */
149 		(void) close(ctl_fd);
150 		errno = err;
151 		return (-1);
152 	}
153 	(void) close(ctl_fd);
154 
155 	return (0);
156 }
157 
158 int
159 vm_create(const char *name, uint64_t flags)
160 {
161 	struct vm_create_req req;
162 
163 	(void) strncpy(req.name, name, VM_MAX_NAMELEN);
164 	req.flags = flags;
165 
166 	return (vm_do_ctl(VMM_CREATE_VM, &req));
167 }
168 
169 void
170 vm_close(struct vmctx *vm)
171 {
172 	assert(vm != NULL);
173 	assert(vm->fd >= 0);
174 
175 	(void) close(vm->fd);
176 
177 	free(vm);
178 }
179 
180 void
181 vm_destroy(struct vmctx *vm)
182 {
183 	struct vm_destroy_req req;
184 
185 	assert(vm != NULL);
186 
187 	if (vm->fd >= 0) {
188 		(void) close(vm->fd);
189 		vm->fd = -1;
190 	}
191 
192 	(void) strncpy(req.name, vm->name, VM_MAX_NAMELEN);
193 	(void) vm_do_ctl(VMM_DESTROY_VM, &req);
194 
195 	free(vm);
196 }
197 #endif
198 
199 static int
200 vm_device_open(const char *name)
201 {
202 	int fd, len;
203 	char *vmfile;
204 
205 	len = strlen("/dev/vmm/") + strlen(name) + 1;
206 	vmfile = malloc(len);
207 	assert(vmfile != NULL);
208 	snprintf(vmfile, len, "/dev/vmm/%s", name);
209 
210 	/* Open the device file */
211 	fd = open(vmfile, O_RDWR, 0);
212 
213 	free(vmfile);
214 	return (fd);
215 }
216 
217 struct vmctx *
218 vm_open(const char *name)
219 {
220 	struct vmctx *vm;
221 	int saved_errno;
222 
223 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
224 	assert(vm != NULL);
225 
226 	vm->fd = -1;
227 	vm->memflags = 0;
228 	vm->lowmem_limit = 3 * GB;
229 	vm->name = (char *)(vm + 1);
230 	strcpy(vm->name, name);
231 
232 	if ((vm->fd = vm_device_open(vm->name)) < 0)
233 		goto err;
234 
235 	return (vm);
236 err:
237 	saved_errno = errno;
238 	free(vm);
239 	errno = saved_errno;
240 	return (NULL);
241 }
242 
243 
244 int
245 vm_parse_memsize(const char *opt, size_t *ret_memsize)
246 {
247 	char *endptr;
248 	size_t optval;
249 	int error;
250 
251 	optval = strtoul(opt, &endptr, 0);
252 	if (*opt != '\0' && *endptr == '\0') {
253 		/*
254 		 * For the sake of backward compatibility if the memory size
255 		 * specified on the command line is less than a megabyte then
256 		 * it is interpreted as being in units of MB.
257 		 */
258 		if (optval < MB)
259 			optval *= MB;
260 		*ret_memsize = optval;
261 		error = 0;
262 	} else
263 		error = expand_number(opt, ret_memsize);
264 
265 	return (error);
266 }
267 
268 uint32_t
269 vm_get_lowmem_limit(struct vmctx *ctx)
270 {
271 
272 	return (ctx->lowmem_limit);
273 }
274 
275 void
276 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
277 {
278 
279 	ctx->lowmem_limit = limit;
280 }
281 
282 void
283 vm_set_memflags(struct vmctx *ctx, int flags)
284 {
285 
286 	ctx->memflags = flags;
287 }
288 
289 int
290 vm_get_memflags(struct vmctx *ctx)
291 {
292 
293 	return (ctx->memflags);
294 }
295 
296 /*
297  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
298  */
299 int
300 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
301     size_t len, int prot)
302 {
303 	struct vm_memmap memmap;
304 	int error, flags;
305 
306 	memmap.gpa = gpa;
307 	memmap.segid = segid;
308 	memmap.segoff = off;
309 	memmap.len = len;
310 	memmap.prot = prot;
311 	memmap.flags = 0;
312 
313 	if (ctx->memflags & VM_MEM_F_WIRED)
314 		memmap.flags |= VM_MEMMAP_F_WIRED;
315 
316 	/*
317 	 * If this mapping already exists then don't create it again. This
318 	 * is the common case for SYSMEM mappings created by bhyveload(8).
319 	 */
320 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
321 	if (error == 0 && gpa == memmap.gpa) {
322 		if (segid != memmap.segid || off != memmap.segoff ||
323 		    prot != memmap.prot || flags != memmap.flags) {
324 			errno = EEXIST;
325 			return (-1);
326 		} else {
327 			return (0);
328 		}
329 	}
330 
331 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
332 	return (error);
333 }
334 
335 int
336 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
337 {
338 	struct vm_munmap munmap;
339 	int error;
340 
341 	munmap.gpa = gpa;
342 	munmap.len = len;
343 
344 	error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
345 	return (error);
346 }
347 
348 int
349 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
350     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
351 {
352 	struct vm_memmap memmap;
353 	int error;
354 
355 	bzero(&memmap, sizeof(struct vm_memmap));
356 	memmap.gpa = *gpa;
357 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
358 	if (error == 0) {
359 		*gpa = memmap.gpa;
360 		*segid = memmap.segid;
361 		*segoff = memmap.segoff;
362 		*len = memmap.len;
363 		*prot = memmap.prot;
364 		*flags = memmap.flags;
365 	}
366 	return (error);
367 }
368 
369 /*
370  * Return 0 if the segments are identical and non-zero otherwise.
371  *
372  * This is slightly complicated by the fact that only device memory segments
373  * are named.
374  */
375 static int
376 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
377 {
378 
379 	if (len == len2) {
380 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
381 			return (0);
382 	}
383 	return (-1);
384 }
385 
386 static int
387 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
388 {
389 	struct vm_memseg memseg;
390 	size_t n;
391 	int error;
392 
393 	/*
394 	 * If the memory segment has already been created then just return.
395 	 * This is the usual case for the SYSMEM segment created by userspace
396 	 * loaders like bhyveload(8).
397 	 */
398 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
399 	    sizeof(memseg.name));
400 	if (error)
401 		return (error);
402 
403 	if (memseg.len != 0) {
404 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
405 			errno = EINVAL;
406 			return (-1);
407 		} else {
408 			return (0);
409 		}
410 	}
411 
412 	bzero(&memseg, sizeof(struct vm_memseg));
413 	memseg.segid = segid;
414 	memseg.len = len;
415 	if (name != NULL) {
416 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
417 		if (n >= sizeof(memseg.name)) {
418 			errno = ENAMETOOLONG;
419 			return (-1);
420 		}
421 	}
422 
423 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
424 	return (error);
425 }
426 
427 int
428 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
429     size_t bufsize)
430 {
431 	struct vm_memseg memseg;
432 	size_t n;
433 	int error;
434 
435 	memseg.segid = segid;
436 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
437 	if (error == 0) {
438 		*lenp = memseg.len;
439 		n = strlcpy(namebuf, memseg.name, bufsize);
440 		if (n >= bufsize) {
441 			errno = ENAMETOOLONG;
442 			error = -1;
443 		}
444 	}
445 	return (error);
446 }
447 
448 static int
449 #ifdef __FreeBSD__
450 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
451 #else
452 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len,
453     char *base)
454 #endif
455 {
456 	char *ptr;
457 	int error, flags;
458 
459 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
460 #ifdef __FreeBSD__
461 	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
462 #else
463 	/*
464 	 * As we use two segments for lowmem/highmem the offset within the
465 	 * segment is 0 on illumos.
466 	 */
467 	error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL);
468 #endif
469 	if (error)
470 		return (error);
471 
472 	flags = MAP_SHARED | MAP_FIXED;
473 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
474 		flags |= MAP_NOCORE;
475 
476 	/* mmap into the process address space on the host */
477 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
478 	if (ptr == MAP_FAILED)
479 		return (-1);
480 
481 	return (0);
482 }
483 
484 int
485 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
486 {
487 	size_t objsize, len;
488 	vm_paddr_t gpa;
489 	char *baseaddr, *ptr;
490 	int error;
491 
492 	assert(vms == VM_MMAP_ALL);
493 
494 	/*
495 	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
496 	 * create another 'highmem' segment above 4GB for the remainder.
497 	 */
498 	if (memsize > ctx->lowmem_limit) {
499 		ctx->lowmem = ctx->lowmem_limit;
500 		ctx->highmem = memsize - ctx->lowmem_limit;
501 		objsize = 4*GB + ctx->highmem;
502 	} else {
503 		ctx->lowmem = memsize;
504 		ctx->highmem = 0;
505 		objsize = ctx->lowmem;
506 	}
507 
508 #ifdef __FreeBSD__
509 	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
510 	if (error)
511 		return (error);
512 #endif
513 
514 	/*
515 	 * Stake out a contiguous region covering the guest physical memory
516 	 * and the adjoining guard regions.
517 	 */
518 	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
519 	ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
520 	if (ptr == MAP_FAILED)
521 		return (-1);
522 
523 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
524 
525 #ifdef __FreeBSD__
526 	if (ctx->highmem > 0) {
527 		gpa = 4*GB;
528 		len = ctx->highmem;
529 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
530 		if (error)
531 			return (error);
532 	}
533 
534 	if (ctx->lowmem > 0) {
535 		gpa = 0;
536 		len = ctx->lowmem;
537 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
538 		if (error)
539 			return (error);
540 	}
541 #else
542 	if (ctx->highmem > 0) {
543 		error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL);
544 		if (error)
545 			return (error);
546 		gpa = 4*GB;
547 		len = ctx->highmem;
548 		error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr);
549 		if (error)
550 			return (error);
551 	}
552 
553 	if (ctx->lowmem > 0) {
554 		error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL);
555 		if (error)
556 			return (error);
557 		gpa = 0;
558 		len = ctx->lowmem;
559 		error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr);
560 		if (error)
561 			return (error);
562 	}
563 #endif
564 
565 	ctx->baseaddr = baseaddr;
566 
567 	return (0);
568 }
569 
570 /*
571  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
572  * the lowmem or highmem regions.
573  *
574  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
575  * The instruction emulation code depends on this behavior.
576  */
577 void *
578 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
579 {
580 
581 	if (ctx->lowmem > 0) {
582 		if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
583 		    gaddr + len <= ctx->lowmem)
584 			return (ctx->baseaddr + gaddr);
585 	}
586 
587 	if (ctx->highmem > 0) {
588                 if (gaddr >= 4*GB) {
589 			if (gaddr < 4*GB + ctx->highmem &&
590 			    len <= ctx->highmem &&
591 			    gaddr + len <= 4*GB + ctx->highmem)
592 				return (ctx->baseaddr + gaddr);
593 		}
594 	}
595 
596 	return (NULL);
597 }
598 
599 size_t
600 vm_get_lowmem_size(struct vmctx *ctx)
601 {
602 
603 	return (ctx->lowmem);
604 }
605 
606 size_t
607 vm_get_highmem_size(struct vmctx *ctx)
608 {
609 
610 	return (ctx->highmem);
611 }
612 
613 #ifndef __FreeBSD__
614 int
615 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff)
616 {
617 	struct vm_devmem_offset vdo;
618 	int error;
619 
620 	vdo.segid = segid;
621 	error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo);
622 	if (error == 0)
623 		*mapoff = vdo.offset;
624 
625 	return (error);
626 }
627 #endif
628 
629 void *
630 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
631 {
632 #ifdef	__FreeBSD__
633 	char pathname[MAXPATHLEN];
634 #endif
635 	size_t len2;
636 	char *base, *ptr;
637 	int fd, error, flags;
638 	off_t mapoff;
639 
640 	fd = -1;
641 	ptr = MAP_FAILED;
642 	if (name == NULL || strlen(name) == 0) {
643 		errno = EINVAL;
644 		goto done;
645 	}
646 
647 	error = vm_alloc_memseg(ctx, segid, len, name);
648 	if (error)
649 		goto done;
650 
651 #ifdef	__FreeBSD__
652 	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
653 	strlcat(pathname, ctx->name, sizeof(pathname));
654 	strlcat(pathname, ".", sizeof(pathname));
655 	strlcat(pathname, name, sizeof(pathname));
656 
657 	fd = open(pathname, O_RDWR);
658 	if (fd < 0)
659 		goto done;
660 #else
661 	if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0)
662 		goto done;
663 #endif
664 
665 	/*
666 	 * Stake out a contiguous region covering the device memory and the
667 	 * adjoining guard regions.
668 	 */
669 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
670 	base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
671 	    0);
672 	if (base == MAP_FAILED)
673 		goto done;
674 
675 	flags = MAP_SHARED | MAP_FIXED;
676 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
677 		flags |= MAP_NOCORE;
678 
679 #ifdef	__FreeBSD__
680 	/* mmap the devmem region in the host address space */
681 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
682 #else
683 	/* mmap the devmem region in the host address space */
684 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd,
685 	    mapoff);
686 #endif
687 done:
688 	if (fd >= 0)
689 		close(fd);
690 	return (ptr);
691 }
692 
693 int
694 vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
695 	    uint64_t base, uint32_t limit, uint32_t access)
696 {
697 	int error;
698 	struct vm_seg_desc vmsegdesc;
699 
700 	bzero(&vmsegdesc, sizeof(vmsegdesc));
701 	vmsegdesc.cpuid = vcpu;
702 	vmsegdesc.regnum = reg;
703 	vmsegdesc.desc.base = base;
704 	vmsegdesc.desc.limit = limit;
705 	vmsegdesc.desc.access = access;
706 
707 	error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
708 	return (error);
709 }
710 
711 int
712 vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
713 	    uint64_t *base, uint32_t *limit, uint32_t *access)
714 {
715 	int error;
716 	struct vm_seg_desc vmsegdesc;
717 
718 	bzero(&vmsegdesc, sizeof(vmsegdesc));
719 	vmsegdesc.cpuid = vcpu;
720 	vmsegdesc.regnum = reg;
721 
722 	error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
723 	if (error == 0) {
724 		*base = vmsegdesc.desc.base;
725 		*limit = vmsegdesc.desc.limit;
726 		*access = vmsegdesc.desc.access;
727 	}
728 	return (error);
729 }
730 
731 int
732 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
733 {
734 	int error;
735 
736 	error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
737 	    &seg_desc->access);
738 	return (error);
739 }
740 
741 int
742 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
743 {
744 	int error;
745 	struct vm_register vmreg;
746 
747 	bzero(&vmreg, sizeof(vmreg));
748 	vmreg.cpuid = vcpu;
749 	vmreg.regnum = reg;
750 	vmreg.regval = val;
751 
752 	error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
753 	return (error);
754 }
755 
756 int
757 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
758 {
759 	int error;
760 	struct vm_register vmreg;
761 
762 	bzero(&vmreg, sizeof(vmreg));
763 	vmreg.cpuid = vcpu;
764 	vmreg.regnum = reg;
765 
766 	error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
767 	*ret_val = vmreg.regval;
768 	return (error);
769 }
770 
771 int
772 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
773     const int *regnums, uint64_t *regvals)
774 {
775 	int error;
776 	struct vm_register_set vmregset;
777 
778 	bzero(&vmregset, sizeof(vmregset));
779 	vmregset.cpuid = vcpu;
780 	vmregset.count = count;
781 	vmregset.regnums = regnums;
782 	vmregset.regvals = regvals;
783 
784 	error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset);
785 	return (error);
786 }
787 
788 int
789 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
790     const int *regnums, uint64_t *regvals)
791 {
792 	int error;
793 	struct vm_register_set vmregset;
794 
795 	bzero(&vmregset, sizeof(vmregset));
796 	vmregset.cpuid = vcpu;
797 	vmregset.count = count;
798 	vmregset.regnums = regnums;
799 	vmregset.regvals = regvals;
800 
801 	error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset);
802 	return (error);
803 }
804 
805 int
806 vm_run(struct vmctx *ctx, int vcpu, const struct vm_entry *vm_entry,
807     struct vm_exit *vm_exit)
808 {
809 	struct vm_entry entry;
810 
811 	bcopy(vm_entry, &entry, sizeof (entry));
812 	entry.cpuid = vcpu;
813 	entry.exit_data = vm_exit;
814 
815 	return (ioctl(ctx->fd, VM_RUN, &entry));
816 }
817 
818 int
819 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
820 {
821 	struct vm_suspend vmsuspend;
822 
823 	bzero(&vmsuspend, sizeof(vmsuspend));
824 	vmsuspend.how = how;
825 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
826 }
827 
828 #ifndef __FreeBSD__
829 int
830 vm_reinit(struct vmctx *ctx, uint64_t flags)
831 {
832 	struct vm_reinit reinit = {
833 		.flags = flags
834 	};
835 
836 	return (ioctl(ctx->fd, VM_REINIT, &reinit));
837 }
838 #else
839 int
840 vm_reinit(struct vmctx *ctx)
841 {
842 
843 	return (ioctl(ctx->fd, VM_REINIT, 0));
844 }
845 #endif
846 
847 int
848 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
849     uint32_t errcode, int restart_instruction)
850 {
851 	struct vm_exception exc;
852 
853 	exc.cpuid = vcpu;
854 	exc.vector = vector;
855 	exc.error_code = errcode;
856 	exc.error_code_valid = errcode_valid;
857 	exc.restart_instruction = restart_instruction;
858 
859 	return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
860 }
861 
862 #ifndef __FreeBSD__
863 void
864 vm_inject_fault(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
865     int errcode)
866 {
867 	int error;
868 	struct vm_exception exc;
869 
870 	exc.cpuid = vcpu;
871 	exc.vector = vector;
872 	exc.error_code = errcode;
873 	exc.error_code_valid = errcode_valid;
874 	exc.restart_instruction = 1;
875 	error = ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc);
876 
877 	assert(error == 0);
878 }
879 #endif /* __FreeBSD__ */
880 
881 int
882 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid)
883 {
884 	/*
885 	 * The apic id associated with the 'vcpu' has the same numerical value
886 	 * as the 'vcpu' itself.
887 	 */
888 	return (apicid);
889 }
890 
891 int
892 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
893 {
894 	struct vm_lapic_irq vmirq;
895 
896 	bzero(&vmirq, sizeof(vmirq));
897 	vmirq.cpuid = vcpu;
898 	vmirq.vector = vector;
899 
900 	return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
901 }
902 
903 int
904 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
905 {
906 	struct vm_lapic_irq vmirq;
907 
908 	bzero(&vmirq, sizeof(vmirq));
909 	vmirq.cpuid = vcpu;
910 	vmirq.vector = vector;
911 
912 	return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
913 }
914 
915 int
916 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
917 {
918 	struct vm_lapic_msi vmmsi;
919 
920 	bzero(&vmmsi, sizeof(vmmsi));
921 	vmmsi.addr = addr;
922 	vmmsi.msg = msg;
923 
924 	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
925 }
926 
927 int
928 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
929 {
930 	struct vm_ioapic_irq ioapic_irq;
931 
932 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
933 	ioapic_irq.irq = irq;
934 
935 	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
936 }
937 
938 int
939 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
940 {
941 	struct vm_ioapic_irq ioapic_irq;
942 
943 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
944 	ioapic_irq.irq = irq;
945 
946 	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
947 }
948 
949 int
950 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
951 {
952 	struct vm_ioapic_irq ioapic_irq;
953 
954 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
955 	ioapic_irq.irq = irq;
956 
957 	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
958 }
959 
960 int
961 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
962 {
963 
964 	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
965 }
966 
967 int
968 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa,
969     bool write, int size, uint64_t *value)
970 {
971 	struct vm_readwrite_kernemu_device irp = {
972 		.vcpuid = vcpu,
973 		.access_width = fls(size) - 1,
974 		.gpa = gpa,
975 		.value = write ? *value : ~0ul,
976 	};
977 	long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV);
978 	int rc;
979 
980 	rc = ioctl(ctx->fd, cmd, &irp);
981 	if (rc == 0 && !write)
982 		*value = irp.value;
983 	return (rc);
984 }
985 
986 int
987 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
988 {
989 	struct vm_isa_irq isa_irq;
990 
991 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
992 	isa_irq.atpic_irq = atpic_irq;
993 	isa_irq.ioapic_irq = ioapic_irq;
994 
995 	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
996 }
997 
998 int
999 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
1000 {
1001 	struct vm_isa_irq isa_irq;
1002 
1003 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
1004 	isa_irq.atpic_irq = atpic_irq;
1005 	isa_irq.ioapic_irq = ioapic_irq;
1006 
1007 	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
1008 }
1009 
1010 int
1011 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
1012 {
1013 	struct vm_isa_irq isa_irq;
1014 
1015 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
1016 	isa_irq.atpic_irq = atpic_irq;
1017 	isa_irq.ioapic_irq = ioapic_irq;
1018 
1019 	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
1020 }
1021 
1022 int
1023 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
1024     enum vm_intr_trigger trigger)
1025 {
1026 	struct vm_isa_irq_trigger isa_irq_trigger;
1027 
1028 	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
1029 	isa_irq_trigger.atpic_irq = atpic_irq;
1030 	isa_irq_trigger.trigger = trigger;
1031 
1032 	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
1033 }
1034 
1035 int
1036 vm_inject_nmi(struct vmctx *ctx, int vcpu)
1037 {
1038 	struct vm_nmi vmnmi;
1039 
1040 	bzero(&vmnmi, sizeof(vmnmi));
1041 	vmnmi.cpuid = vcpu;
1042 
1043 	return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
1044 }
1045 
1046 static const char *capstrmap[] = {
1047 	[VM_CAP_HALT_EXIT]  = "hlt_exit",
1048 	[VM_CAP_MTRAP_EXIT] = "mtrap_exit",
1049 	[VM_CAP_PAUSE_EXIT] = "pause_exit",
1050 #ifdef __FreeBSD__
1051 	[VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest",
1052 #endif
1053 	[VM_CAP_ENABLE_INVPCID] = "enable_invpcid",
1054 	[VM_CAP_BPT_EXIT] = "bpt_exit",
1055 };
1056 
1057 int
1058 vm_capability_name2type(const char *capname)
1059 {
1060 	int i;
1061 
1062 	for (i = 0; i < (int)nitems(capstrmap); i++) {
1063 		if (strcmp(capstrmap[i], capname) == 0)
1064 			return (i);
1065 	}
1066 
1067 	return (-1);
1068 }
1069 
1070 const char *
1071 vm_capability_type2name(int type)
1072 {
1073 	if (type >= 0 && type < (int)nitems(capstrmap))
1074 		return (capstrmap[type]);
1075 
1076 	return (NULL);
1077 }
1078 
1079 int
1080 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
1081 		  int *retval)
1082 {
1083 	int error;
1084 	struct vm_capability vmcap;
1085 
1086 	bzero(&vmcap, sizeof(vmcap));
1087 	vmcap.cpuid = vcpu;
1088 	vmcap.captype = cap;
1089 
1090 	error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
1091 	*retval = vmcap.capval;
1092 	return (error);
1093 }
1094 
1095 int
1096 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
1097 {
1098 	struct vm_capability vmcap;
1099 
1100 	bzero(&vmcap, sizeof(vmcap));
1101 	vmcap.cpuid = vcpu;
1102 	vmcap.captype = cap;
1103 	vmcap.capval = val;
1104 
1105 	return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
1106 }
1107 
1108 #ifdef __FreeBSD__
1109 int
1110 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1111 {
1112 	struct vm_pptdev pptdev;
1113 
1114 	bzero(&pptdev, sizeof(pptdev));
1115 	pptdev.bus = bus;
1116 	pptdev.slot = slot;
1117 	pptdev.func = func;
1118 
1119 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1120 }
1121 
1122 int
1123 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1124 {
1125 	struct vm_pptdev pptdev;
1126 
1127 	bzero(&pptdev, sizeof(pptdev));
1128 	pptdev.bus = bus;
1129 	pptdev.slot = slot;
1130 	pptdev.func = func;
1131 
1132 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1133 }
1134 
1135 int
1136 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1137 		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
1138 {
1139 	struct vm_pptdev_mmio pptmmio;
1140 
1141 	bzero(&pptmmio, sizeof(pptmmio));
1142 	pptmmio.bus = bus;
1143 	pptmmio.slot = slot;
1144 	pptmmio.func = func;
1145 	pptmmio.gpa = gpa;
1146 	pptmmio.len = len;
1147 	pptmmio.hpa = hpa;
1148 
1149 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1150 }
1151 
1152 int
1153 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1154 		     vm_paddr_t gpa, size_t len)
1155 {
1156 	struct vm_pptdev_mmio pptmmio;
1157 
1158 	bzero(&pptmmio, sizeof(pptmmio));
1159 	pptmmio.bus = bus;
1160 	pptmmio.slot = slot;
1161 	pptmmio.func = func;
1162 	pptmmio.gpa = gpa;
1163 	pptmmio.len = len;
1164 
1165 	return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1166 }
1167 
1168 int
1169 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1170     uint64_t addr, uint64_t msg, int numvec)
1171 {
1172 	struct vm_pptdev_msi pptmsi;
1173 
1174 	bzero(&pptmsi, sizeof(pptmsi));
1175 	pptmsi.vcpu = vcpu;
1176 	pptmsi.bus = bus;
1177 	pptmsi.slot = slot;
1178 	pptmsi.func = func;
1179 	pptmsi.msg = msg;
1180 	pptmsi.addr = addr;
1181 	pptmsi.numvec = numvec;
1182 
1183 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1184 }
1185 
1186 int
1187 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1188     int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
1189 {
1190 	struct vm_pptdev_msix pptmsix;
1191 
1192 	bzero(&pptmsix, sizeof(pptmsix));
1193 	pptmsix.vcpu = vcpu;
1194 	pptmsix.bus = bus;
1195 	pptmsix.slot = slot;
1196 	pptmsix.func = func;
1197 	pptmsix.idx = idx;
1198 	pptmsix.msg = msg;
1199 	pptmsix.addr = addr;
1200 	pptmsix.vector_control = vector_control;
1201 
1202 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1203 }
1204 
1205 int
1206 vm_get_pptdev_limits(struct vmctx *ctx, int bus, int slot, int func,
1207     int *msi_limit, int *msix_limit)
1208 {
1209 	struct vm_pptdev_limits pptlimits;
1210 	int error;
1211 
1212 	bzero(&pptlimits, sizeof (pptlimits));
1213 	pptlimits.bus = bus;
1214 	pptlimits.slot = slot;
1215 	pptlimits.func = func;
1216 
1217 	error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1218 
1219 	*msi_limit = pptlimits.msi_limit;
1220 	*msix_limit = pptlimits.msix_limit;
1221 
1222 	return (error);
1223 }
1224 
1225 int
1226 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func)
1227 {
1228 	struct vm_pptdev ppt;
1229 
1230 	bzero(&ppt, sizeof(ppt));
1231 	ppt.bus = bus;
1232 	ppt.slot = slot;
1233 	ppt.func = func;
1234 
1235 	return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt);
1236 }
1237 
1238 #else /* __FreeBSD__ */
1239 
1240 int
1241 vm_assign_pptdev(struct vmctx *ctx, int pptfd)
1242 {
1243 	struct vm_pptdev pptdev;
1244 
1245 	pptdev.pptfd = pptfd;
1246 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1247 }
1248 
1249 int
1250 vm_unassign_pptdev(struct vmctx *ctx, int pptfd)
1251 {
1252 	struct vm_pptdev pptdev;
1253 
1254 	pptdev.pptfd = pptfd;
1255 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1256 }
1257 
1258 int
1259 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len,
1260     vm_paddr_t hpa)
1261 {
1262 	struct vm_pptdev_mmio pptmmio;
1263 
1264 	pptmmio.pptfd = pptfd;
1265 	pptmmio.gpa = gpa;
1266 	pptmmio.len = len;
1267 	pptmmio.hpa = hpa;
1268 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1269 }
1270 
1271 int
1272 vm_unmap_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len)
1273 {
1274 	struct vm_pptdev_mmio pptmmio;
1275 
1276 	bzero(&pptmmio, sizeof(pptmmio));
1277 	pptmmio.pptfd = pptfd;
1278 	pptmmio.gpa = gpa;
1279 	pptmmio.len = len;
1280 
1281 	return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1282 }
1283 
1284 int
1285 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int pptfd, uint64_t addr,
1286     uint64_t msg, int numvec)
1287 {
1288 	struct vm_pptdev_msi pptmsi;
1289 
1290 	pptmsi.vcpu = vcpu;
1291 	pptmsi.pptfd = pptfd;
1292 	pptmsi.msg = msg;
1293 	pptmsi.addr = addr;
1294 	pptmsi.numvec = numvec;
1295 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1296 }
1297 
1298 int
1299 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int pptfd, int idx,
1300     uint64_t addr, uint64_t msg, uint32_t vector_control)
1301 {
1302 	struct vm_pptdev_msix pptmsix;
1303 
1304 	pptmsix.vcpu = vcpu;
1305 	pptmsix.pptfd = pptfd;
1306 	pptmsix.idx = idx;
1307 	pptmsix.msg = msg;
1308 	pptmsix.addr = addr;
1309 	pptmsix.vector_control = vector_control;
1310 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1311 }
1312 
1313 int
1314 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit,
1315     int *msix_limit)
1316 {
1317 	struct vm_pptdev_limits pptlimits;
1318 	int error;
1319 
1320 	bzero(&pptlimits, sizeof (pptlimits));
1321 	pptlimits.pptfd = pptfd;
1322 	error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1323 
1324 	*msi_limit = pptlimits.msi_limit;
1325 	*msix_limit = pptlimits.msix_limit;
1326 	return (error);
1327 }
1328 
1329 int
1330 vm_disable_pptdev_msix(struct vmctx *ctx, int pptfd)
1331 {
1332 	struct vm_pptdev pptdev;
1333 
1334 	pptdev.pptfd = pptfd;
1335 	return (ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &pptdev));
1336 }
1337 #endif /* __FreeBSD__ */
1338 
1339 uint64_t *
1340 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
1341 	     int *ret_entries)
1342 {
1343 	int error;
1344 
1345 	static struct vm_stats vmstats;
1346 
1347 	vmstats.cpuid = vcpu;
1348 
1349 	error = ioctl(ctx->fd, VM_STATS_IOC, &vmstats);
1350 	if (error == 0) {
1351 		if (ret_entries)
1352 			*ret_entries = vmstats.num_entries;
1353 		if (ret_tv)
1354 			*ret_tv = vmstats.tv;
1355 		return (vmstats.statbuf);
1356 	} else
1357 		return (NULL);
1358 }
1359 
1360 const char *
1361 vm_get_stat_desc(struct vmctx *ctx, int index)
1362 {
1363 	static struct vm_stat_desc statdesc;
1364 
1365 	statdesc.index = index;
1366 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
1367 		return (statdesc.desc);
1368 	else
1369 		return (NULL);
1370 }
1371 
1372 int
1373 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
1374 {
1375 	int error;
1376 	struct vm_x2apic x2apic;
1377 
1378 	bzero(&x2apic, sizeof(x2apic));
1379 	x2apic.cpuid = vcpu;
1380 
1381 	error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
1382 	*state = x2apic.state;
1383 	return (error);
1384 }
1385 
1386 int
1387 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
1388 {
1389 	int error;
1390 	struct vm_x2apic x2apic;
1391 
1392 	bzero(&x2apic, sizeof(x2apic));
1393 	x2apic.cpuid = vcpu;
1394 	x2apic.state = state;
1395 
1396 	error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
1397 
1398 	return (error);
1399 }
1400 
1401 #ifndef __FreeBSD__
1402 int
1403 vcpu_reset(struct vmctx *vmctx, int vcpu)
1404 {
1405 	struct vm_vcpu_reset vvr;
1406 
1407 	vvr.vcpuid = vcpu;
1408 	vvr.kind = VRK_RESET;
1409 
1410 	return (ioctl(vmctx->fd, VM_RESET_CPU, &vvr));
1411 }
1412 #else /* __FreeBSD__ */
1413 /*
1414  * From Intel Vol 3a:
1415  * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
1416  */
1417 int
1418 vcpu_reset(struct vmctx *vmctx, int vcpu)
1419 {
1420 	int error;
1421 	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
1422 	uint32_t desc_access, desc_limit;
1423 	uint16_t sel;
1424 
1425 	zero = 0;
1426 
1427 	rflags = 0x2;
1428 	error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
1429 	if (error)
1430 		goto done;
1431 
1432 	rip = 0xfff0;
1433 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1434 		goto done;
1435 
1436 	cr0 = CR0_NE;
1437 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1438 		goto done;
1439 
1440 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1441 		goto done;
1442 
1443 	cr4 = 0;
1444 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1445 		goto done;
1446 
1447 	/*
1448 	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1449 	 */
1450 	desc_base = 0xffff0000;
1451 	desc_limit = 0xffff;
1452 	desc_access = 0x0093;
1453 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
1454 			    desc_base, desc_limit, desc_access);
1455 	if (error)
1456 		goto done;
1457 
1458 	sel = 0xf000;
1459 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
1460 		goto done;
1461 
1462 	/*
1463 	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1464 	 */
1465 	desc_base = 0;
1466 	desc_limit = 0xffff;
1467 	desc_access = 0x0093;
1468 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
1469 			    desc_base, desc_limit, desc_access);
1470 	if (error)
1471 		goto done;
1472 
1473 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
1474 			    desc_base, desc_limit, desc_access);
1475 	if (error)
1476 		goto done;
1477 
1478 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
1479 			    desc_base, desc_limit, desc_access);
1480 	if (error)
1481 		goto done;
1482 
1483 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
1484 			    desc_base, desc_limit, desc_access);
1485 	if (error)
1486 		goto done;
1487 
1488 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
1489 			    desc_base, desc_limit, desc_access);
1490 	if (error)
1491 		goto done;
1492 
1493 	sel = 0;
1494 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
1495 		goto done;
1496 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
1497 		goto done;
1498 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
1499 		goto done;
1500 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
1501 		goto done;
1502 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
1503 		goto done;
1504 
1505 	/* General purpose registers */
1506 	rdx = 0xf00;
1507 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1508 		goto done;
1509 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1510 		goto done;
1511 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1512 		goto done;
1513 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1514 		goto done;
1515 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1516 		goto done;
1517 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1518 		goto done;
1519 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1520 		goto done;
1521 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1522 		goto done;
1523 
1524 	/* GDTR, IDTR */
1525 	desc_base = 0;
1526 	desc_limit = 0xffff;
1527 	desc_access = 0;
1528 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
1529 			    desc_base, desc_limit, desc_access);
1530 	if (error != 0)
1531 		goto done;
1532 
1533 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
1534 			    desc_base, desc_limit, desc_access);
1535 	if (error != 0)
1536 		goto done;
1537 
1538 	/* TR */
1539 	desc_base = 0;
1540 	desc_limit = 0xffff;
1541 	desc_access = 0x0000008b;
1542 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1543 	if (error)
1544 		goto done;
1545 
1546 	sel = 0;
1547 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
1548 		goto done;
1549 
1550 	/* LDTR */
1551 	desc_base = 0;
1552 	desc_limit = 0xffff;
1553 	desc_access = 0x00000082;
1554 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
1555 			    desc_limit, desc_access);
1556 	if (error)
1557 		goto done;
1558 
1559 	sel = 0;
1560 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1561 		goto done;
1562 
1563 	/* XXX cr2, debug registers */
1564 
1565 	error = 0;
1566 done:
1567 	return (error);
1568 }
1569 #endif /* __FreeBSD__ */
1570 
1571 int
1572 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1573 {
1574 	int error, i;
1575 	struct vm_gpa_pte gpapte;
1576 
1577 	bzero(&gpapte, sizeof(gpapte));
1578 	gpapte.gpa = gpa;
1579 
1580 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1581 
1582 	if (error == 0) {
1583 		*num = gpapte.ptenum;
1584 		for (i = 0; i < gpapte.ptenum; i++)
1585 			pte[i] = gpapte.pte[i];
1586 	}
1587 
1588 	return (error);
1589 }
1590 
1591 int
1592 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1593 {
1594 	int error;
1595 	struct vm_hpet_cap cap;
1596 
1597 	bzero(&cap, sizeof(struct vm_hpet_cap));
1598 	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1599 	if (capabilities != NULL)
1600 		*capabilities = cap.capabilities;
1601 	return (error);
1602 }
1603 
1604 int
1605 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1606     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1607 {
1608 	struct vm_gla2gpa gg;
1609 	int error;
1610 
1611 	bzero(&gg, sizeof(struct vm_gla2gpa));
1612 	gg.vcpuid = vcpu;
1613 	gg.prot = prot;
1614 	gg.gla = gla;
1615 	gg.paging = *paging;
1616 
1617 	error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
1618 	if (error == 0) {
1619 		*fault = gg.fault;
1620 		*gpa = gg.gpa;
1621 	}
1622 	return (error);
1623 }
1624 
1625 int
1626 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1627     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1628 {
1629 	struct vm_gla2gpa gg;
1630 	int error;
1631 
1632 	bzero(&gg, sizeof(struct vm_gla2gpa));
1633 	gg.vcpuid = vcpu;
1634 	gg.prot = prot;
1635 	gg.gla = gla;
1636 	gg.paging = *paging;
1637 
1638 	error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg);
1639 	if (error == 0) {
1640 		*fault = gg.fault;
1641 		*gpa = gg.gpa;
1642 	}
1643 	return (error);
1644 }
1645 
1646 #ifndef min
1647 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
1648 #endif
1649 
1650 int
1651 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1652     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1653     int *fault)
1654 {
1655 	void *va;
1656 	uint64_t gpa, off;
1657 	int error, i, n;
1658 
1659 	for (i = 0; i < iovcnt; i++) {
1660 		iov[i].iov_base = 0;
1661 		iov[i].iov_len = 0;
1662 	}
1663 
1664 	while (len) {
1665 		assert(iovcnt > 0);
1666 		error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
1667 		if (error || *fault)
1668 			return (error);
1669 
1670 		off = gpa & PAGE_MASK;
1671 		n = MIN(len, PAGE_SIZE - off);
1672 
1673 		va = vm_map_gpa(ctx, gpa, n);
1674 		if (va == NULL)
1675 			return (EFAULT);
1676 
1677 		iov->iov_base = va;
1678 		iov->iov_len = n;
1679 		iov++;
1680 		iovcnt--;
1681 
1682 		gla += n;
1683 		len -= n;
1684 	}
1685 	return (0);
1686 }
1687 
1688 void
1689 vm_copy_teardown(struct vmctx *ctx __unused, int vcpu __unused,
1690     struct iovec *iov __unused, int iovcnt __unused)
1691 {
1692 }
1693 
1694 void
1695 vm_copyin(struct vmctx *ctx __unused, int vcpu __unused, struct iovec *iov,
1696     void *vp, size_t len)
1697 {
1698 	const char *src;
1699 	char *dst;
1700 	size_t n;
1701 
1702 	dst = vp;
1703 	while (len) {
1704 		assert(iov->iov_len);
1705 		n = min(len, iov->iov_len);
1706 		src = iov->iov_base;
1707 		bcopy(src, dst, n);
1708 
1709 		iov++;
1710 		dst += n;
1711 		len -= n;
1712 	}
1713 }
1714 
1715 void
1716 vm_copyout(struct vmctx *ctx __unused, int vcpu __unused, const void *vp,
1717     struct iovec *iov, size_t len)
1718 {
1719 	const char *src;
1720 	char *dst;
1721 	size_t n;
1722 
1723 	src = vp;
1724 	while (len) {
1725 		assert(iov->iov_len);
1726 		n = min(len, iov->iov_len);
1727 		dst = iov->iov_base;
1728 		bcopy(src, dst, n);
1729 
1730 		iov++;
1731 		src += n;
1732 		len -= n;
1733 	}
1734 }
1735 
1736 static int
1737 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1738 {
1739 	struct vm_cpuset vm_cpuset;
1740 	int error;
1741 
1742 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1743 	vm_cpuset.which = which;
1744 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1745 	vm_cpuset.cpus = cpus;
1746 
1747 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1748 	return (error);
1749 }
1750 
1751 int
1752 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1753 {
1754 
1755 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1756 }
1757 
1758 int
1759 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1760 {
1761 
1762 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1763 }
1764 
1765 int
1766 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1767 {
1768 
1769 	return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1770 }
1771 
1772 int
1773 vm_activate_cpu(struct vmctx *ctx, int vcpu)
1774 {
1775 	struct vm_activate_cpu ac;
1776 	int error;
1777 
1778 	bzero(&ac, sizeof(struct vm_activate_cpu));
1779 	ac.vcpuid = vcpu;
1780 	error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
1781 	return (error);
1782 }
1783 
1784 int
1785 vm_suspend_cpu(struct vmctx *ctx, int vcpu)
1786 {
1787 	struct vm_activate_cpu ac;
1788 	int error;
1789 
1790 	bzero(&ac, sizeof(struct vm_activate_cpu));
1791 	ac.vcpuid = vcpu;
1792 	error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1793 	return (error);
1794 }
1795 
1796 int
1797 vm_resume_cpu(struct vmctx *ctx, int vcpu)
1798 {
1799 	struct vm_activate_cpu ac;
1800 	int error;
1801 
1802 	bzero(&ac, sizeof(struct vm_activate_cpu));
1803 	ac.vcpuid = vcpu;
1804 	error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1805 	return (error);
1806 }
1807 
1808 int
1809 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
1810 {
1811 	struct vm_intinfo vmii;
1812 	int error;
1813 
1814 	bzero(&vmii, sizeof(struct vm_intinfo));
1815 	vmii.vcpuid = vcpu;
1816 	error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
1817 	if (error == 0) {
1818 		*info1 = vmii.info1;
1819 		*info2 = vmii.info2;
1820 	}
1821 	return (error);
1822 }
1823 
1824 int
1825 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
1826 {
1827 	struct vm_intinfo vmii;
1828 	int error;
1829 
1830 	bzero(&vmii, sizeof(struct vm_intinfo));
1831 	vmii.vcpuid = vcpu;
1832 	vmii.info1 = info1;
1833 	error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
1834 	return (error);
1835 }
1836 
1837 int
1838 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1839 {
1840 	struct vm_rtc_data rtcdata;
1841 	int error;
1842 
1843 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1844 	rtcdata.offset = offset;
1845 	rtcdata.value = value;
1846 	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1847 	return (error);
1848 }
1849 
1850 int
1851 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1852 {
1853 	struct vm_rtc_data rtcdata;
1854 	int error;
1855 
1856 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1857 	rtcdata.offset = offset;
1858 	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1859 	if (error == 0)
1860 		*retval = rtcdata.value;
1861 	return (error);
1862 }
1863 
1864 int
1865 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1866 {
1867 	struct vm_rtc_time rtctime;
1868 	int error;
1869 
1870 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1871 	rtctime.secs = secs;
1872 	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1873 	return (error);
1874 }
1875 
1876 int
1877 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1878 {
1879 	struct vm_rtc_time rtctime;
1880 	int error;
1881 
1882 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1883 	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1884 	if (error == 0)
1885 		*secs = rtctime.secs;
1886 	return (error);
1887 }
1888 
1889 int
1890 vm_restart_instruction(void *arg, int vcpu)
1891 {
1892 	struct vmctx *ctx = arg;
1893 
1894 	return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
1895 }
1896 
1897 int
1898 vm_set_topology(struct vmctx *ctx,
1899     uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1900 {
1901 	struct vm_cpu_topology topology;
1902 
1903 	bzero(&topology, sizeof (struct vm_cpu_topology));
1904 	topology.sockets = sockets;
1905 	topology.cores = cores;
1906 	topology.threads = threads;
1907 	topology.maxcpus = maxcpus;
1908 	return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1909 }
1910 
1911 int
1912 vm_get_topology(struct vmctx *ctx,
1913     uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1914 {
1915 	struct vm_cpu_topology topology;
1916 	int error;
1917 
1918 	bzero(&topology, sizeof (struct vm_cpu_topology));
1919 	error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1920 	if (error == 0) {
1921 		*sockets = topology.sockets;
1922 		*cores = topology.cores;
1923 		*threads = topology.threads;
1924 		*maxcpus = topology.maxcpus;
1925 	}
1926 	return (error);
1927 }
1928 
1929 int
1930 vm_get_device_fd(struct vmctx *ctx)
1931 {
1932 
1933 	return (ctx->fd);
1934 }
1935 
1936 #ifndef __FreeBSD__
1937 int
1938 vm_pmtmr_set_location(struct vmctx *ctx, uint16_t ioport)
1939 {
1940 	return (ioctl(ctx->fd, VM_PMTMR_LOCATE, ioport));
1941 }
1942 
1943 int
1944 vm_wrlock_cycle(struct vmctx *ctx)
1945 {
1946 	if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) {
1947 		return (errno);
1948 	}
1949 	return (0);
1950 }
1951 
1952 int
1953 vm_get_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state *state,
1954     uint8_t *sipi_vector)
1955 {
1956 	struct vm_run_state data;
1957 
1958 	data.vcpuid = vcpu;
1959 	if (ioctl(ctx->fd, VM_GET_RUN_STATE, &data) != 0) {
1960 		return (errno);
1961 	}
1962 
1963 	*state = data.state;
1964 	*sipi_vector = data.sipi_vector;
1965 	return (0);
1966 }
1967 
1968 int
1969 vm_set_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state state,
1970     uint8_t sipi_vector)
1971 {
1972 	struct vm_run_state data;
1973 
1974 	data.vcpuid = vcpu;
1975 	data.state = state;
1976 	data.sipi_vector = sipi_vector;
1977 	if (ioctl(ctx->fd, VM_SET_RUN_STATE, &data) != 0) {
1978 		return (errno);
1979 	}
1980 
1981 	return (0);
1982 }
1983 
1984 #endif /* __FreeBSD__ */
1985 
1986 #ifdef __FreeBSD__
1987 const cap_ioctl_t *
1988 vm_get_ioctls(size_t *len)
1989 {
1990 	cap_ioctl_t *cmds;
1991 	/* keep in sync with machine/vmm_dev.h */
1992 	static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
1993 	    VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
1994 	    VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER,
1995 	    VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
1996 	    VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
1997 	    VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV,
1998 	    VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
1999 	    VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
2000 	    VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
2001 	    VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
2002 	    VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
2003 	    VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
2004 	    VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX,
2005 	    VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
2006 	    VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
2007 	    VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
2008 	    VM_GLA2GPA_NOFAULT,
2009 	    VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
2010 	    VM_SET_INTINFO, VM_GET_INTINFO,
2011 	    VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
2012 	    VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY };
2013 
2014 	if (len == NULL) {
2015 		cmds = malloc(sizeof(vm_ioctl_cmds));
2016 		if (cmds == NULL)
2017 			return (NULL);
2018 		bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
2019 		return (cmds);
2020 	}
2021 
2022 	*len = nitems(vm_ioctl_cmds);
2023 	return (NULL);
2024 }
2025 #endif /* __FreeBSD__ */
2026