xref: /illumos-gate/usr/src/uts/common/dtrace/dtrace.c (revision c10c16de)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * DTrace - Dynamic Tracing for Solaris
28  *
29  * This is the implementation of the Solaris Dynamic Tracing framework
30  * (DTrace).  The user-visible interface to DTrace is described at length in
31  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
32  * library, the in-kernel DTrace framework, and the DTrace providers are
33  * described in the block comments in the <sys/dtrace.h> header file.  The
34  * internal architecture of DTrace is described in the block comments in the
35  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
36  * implementation very much assume mastery of all of these sources; if one has
37  * an unanswered question about the implementation, one should consult them
38  * first.
39  *
40  * The functions here are ordered roughly as follows:
41  *
42  *   - Probe context functions
43  *   - Probe hashing functions
44  *   - Non-probe context utility functions
45  *   - Matching functions
46  *   - Provider-to-Framework API functions
47  *   - Probe management functions
48  *   - DIF object functions
49  *   - Format functions
50  *   - Predicate functions
51  *   - ECB functions
52  *   - Buffer functions
53  *   - Enabling functions
54  *   - DOF functions
55  *   - Anonymous enabling functions
56  *   - Consumer state functions
57  *   - Helper functions
58  *   - Hook functions
59  *   - Driver cookbook functions
60  *
61  * Each group of functions begins with a block comment labelled the "DTrace
62  * [Group] Functions", allowing one to find each block by searching forward
63  * on capital-f functions.
64  */
65 #include <sys/errno.h>
66 #include <sys/stat.h>
67 #include <sys/modctl.h>
68 #include <sys/conf.h>
69 #include <sys/systm.h>
70 #include <sys/ddi.h>
71 #include <sys/sunddi.h>
72 #include <sys/cpuvar.h>
73 #include <sys/kmem.h>
74 #include <sys/strsubr.h>
75 #include <sys/sysmacros.h>
76 #include <sys/dtrace_impl.h>
77 #include <sys/atomic.h>
78 #include <sys/cmn_err.h>
79 #include <sys/mutex_impl.h>
80 #include <sys/rwlock_impl.h>
81 #include <sys/ctf_api.h>
82 #include <sys/panic.h>
83 #include <sys/priv_impl.h>
84 #include <sys/policy.h>
85 #include <sys/cred_impl.h>
86 #include <sys/procfs_isa.h>
87 #include <sys/taskq.h>
88 #include <sys/mkdev.h>
89 #include <sys/kdi.h>
90 #include <sys/zone.h>
91 #include <sys/socket.h>
92 #include <netinet/in.h>
93 
94 /*
95  * DTrace Tunable Variables
96  *
97  * The following variables may be tuned by adding a line to /etc/system that
98  * includes both the name of the DTrace module ("dtrace") and the name of the
99  * variable.  For example:
100  *
101  *   set dtrace:dtrace_destructive_disallow = 1
102  *
103  * In general, the only variables that one should be tuning this way are those
104  * that affect system-wide DTrace behavior, and for which the default behavior
105  * is undesirable.  Most of these variables are tunable on a per-consumer
106  * basis using DTrace options, and need not be tuned on a system-wide basis.
107  * When tuning these variables, avoid pathological values; while some attempt
108  * is made to verify the integrity of these variables, they are not considered
109  * part of the supported interface to DTrace, and they are therefore not
110  * checked comprehensively.  Further, these variables should not be tuned
111  * dynamically via "mdb -kw" or other means; they should only be tuned via
112  * /etc/system.
113  */
114 int		dtrace_destructive_disallow = 0;
115 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
116 size_t		dtrace_difo_maxsize = (256 * 1024);
117 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
118 size_t		dtrace_global_maxsize = (16 * 1024);
119 size_t		dtrace_actions_max = (16 * 1024);
120 size_t		dtrace_retain_max = 1024;
121 dtrace_optval_t	dtrace_helper_actions_max = 32;
122 dtrace_optval_t	dtrace_helper_providers_max = 32;
123 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
124 size_t		dtrace_strsize_default = 256;
125 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
126 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
127 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
128 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
129 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
131 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
132 dtrace_optval_t	dtrace_nspec_default = 1;
133 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
134 dtrace_optval_t dtrace_stackframes_default = 20;
135 dtrace_optval_t dtrace_ustackframes_default = 20;
136 dtrace_optval_t dtrace_jstackframes_default = 50;
137 dtrace_optval_t dtrace_jstackstrsize_default = 512;
138 int		dtrace_msgdsize_max = 128;
139 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
140 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
141 int		dtrace_devdepth_max = 32;
142 int		dtrace_err_verbose;
143 hrtime_t	dtrace_deadman_interval = NANOSEC;
144 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
145 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
146 
147 /*
148  * DTrace External Variables
149  *
150  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
151  * available to DTrace consumers via the backtick (`) syntax.  One of these,
152  * dtrace_zero, is made deliberately so:  it is provided as a source of
153  * well-known, zero-filled memory.  While this variable is not documented,
154  * it is used by some translators as an implementation detail.
155  */
156 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
157 
158 /*
159  * DTrace Internal Variables
160  */
161 static dev_info_t	*dtrace_devi;		/* device info */
162 static vmem_t		*dtrace_arena;		/* probe ID arena */
163 static vmem_t		*dtrace_minor;		/* minor number arena */
164 static taskq_t		*dtrace_taskq;		/* task queue */
165 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
166 static int		dtrace_nprobes;		/* number of probes */
167 static dtrace_provider_t *dtrace_provider;	/* provider list */
168 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
169 static int		dtrace_opens;		/* number of opens */
170 static int		dtrace_helpers;		/* number of helpers */
171 static void		*dtrace_softstate;	/* softstate pointer */
172 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
173 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
174 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
175 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
176 static int		dtrace_toxranges;	/* number of toxic ranges */
177 static int		dtrace_toxranges_max;	/* size of toxic range array */
178 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
179 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
180 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
181 static kthread_t	*dtrace_panicked;	/* panicking thread */
182 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
183 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
184 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
185 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
186 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
187 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
188 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
189 
190 /*
191  * DTrace Locking
192  * DTrace is protected by three (relatively coarse-grained) locks:
193  *
194  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
195  *     including enabling state, probes, ECBs, consumer state, helper state,
196  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
197  *     probe context is lock-free -- synchronization is handled via the
198  *     dtrace_sync() cross call mechanism.
199  *
200  * (2) dtrace_provider_lock is required when manipulating provider state, or
201  *     when provider state must be held constant.
202  *
203  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
204  *     when meta provider state must be held constant.
205  *
206  * The lock ordering between these three locks is dtrace_meta_lock before
207  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
208  * several places where dtrace_provider_lock is held by the framework as it
209  * calls into the providers -- which then call back into the framework,
210  * grabbing dtrace_lock.)
211  *
212  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
213  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
214  * role as a coarse-grained lock; it is acquired before both of these locks.
215  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
216  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
217  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
218  * acquired _between_ dtrace_provider_lock and dtrace_lock.
219  */
220 static kmutex_t		dtrace_lock;		/* probe state lock */
221 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
222 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
223 
224 /*
225  * DTrace Provider Variables
226  *
227  * These are the variables relating to DTrace as a provider (that is, the
228  * provider of the BEGIN, END, and ERROR probes).
229  */
230 static dtrace_pattr_t	dtrace_provider_attr = {
231 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
236 };
237 
238 static void
239 dtrace_nullop(void)
240 {}
241 
242 static int
243 dtrace_enable_nullop(void)
244 {
245 	return (0);
246 }
247 
248 static dtrace_pops_t	dtrace_provider_ops = {
249 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
250 	(void (*)(void *, struct modctl *))dtrace_nullop,
251 	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
252 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
253 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
254 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
255 	NULL,
256 	NULL,
257 	NULL,
258 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
259 };
260 
261 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
262 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
263 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
264 
265 /*
266  * DTrace Helper Tracing Variables
267  */
268 uint32_t dtrace_helptrace_next = 0;
269 uint32_t dtrace_helptrace_nlocals;
270 char	*dtrace_helptrace_buffer;
271 int	dtrace_helptrace_bufsize = 512 * 1024;
272 
273 #ifdef DEBUG
274 int	dtrace_helptrace_enabled = 1;
275 #else
276 int	dtrace_helptrace_enabled = 0;
277 #endif
278 
279 /*
280  * DTrace Error Hashing
281  *
282  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
283  * table.  This is very useful for checking coverage of tests that are
284  * expected to induce DIF or DOF processing errors, and may be useful for
285  * debugging problems in the DIF code generator or in DOF generation .  The
286  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
287  */
288 #ifdef DEBUG
289 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
290 static const char *dtrace_errlast;
291 static kthread_t *dtrace_errthread;
292 static kmutex_t dtrace_errlock;
293 #endif
294 
295 /*
296  * DTrace Macros and Constants
297  *
298  * These are various macros that are useful in various spots in the
299  * implementation, along with a few random constants that have no meaning
300  * outside of the implementation.  There is no real structure to this cpp
301  * mishmash -- but is there ever?
302  */
303 #define	DTRACE_HASHSTR(hash, probe)	\
304 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
305 
306 #define	DTRACE_HASHNEXT(hash, probe)	\
307 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
308 
309 #define	DTRACE_HASHPREV(hash, probe)	\
310 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
311 
312 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
313 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
314 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
315 
316 #define	DTRACE_AGGHASHSIZE_SLEW		17
317 
318 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
319 
320 /*
321  * The key for a thread-local variable consists of the lower 61 bits of the
322  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
323  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
324  * equal to a variable identifier.  This is necessary (but not sufficient) to
325  * assure that global associative arrays never collide with thread-local
326  * variables.  To guarantee that they cannot collide, we must also define the
327  * order for keying dynamic variables.  That order is:
328  *
329  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
330  *
331  * Because the variable-key and the tls-key are in orthogonal spaces, there is
332  * no way for a global variable key signature to match a thread-local key
333  * signature.
334  */
335 #define	DTRACE_TLS_THRKEY(where) { \
336 	uint_t intr = 0; \
337 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
338 	for (; actv; actv >>= 1) \
339 		intr++; \
340 	ASSERT(intr < (1 << 3)); \
341 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
342 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
343 }
344 
345 #define	DT_BSWAP_8(x)	((x) & 0xff)
346 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
347 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
348 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
349 
350 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
351 
352 #define	DTRACE_STORE(type, tomax, offset, what) \
353 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
354 
355 #ifndef __i386
356 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
357 	if (addr & (size - 1)) {					\
358 		*flags |= CPU_DTRACE_BADALIGN;				\
359 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
360 		return (0);						\
361 	}
362 #else
363 #define	DTRACE_ALIGNCHECK(addr, size, flags)
364 #endif
365 
366 /*
367  * Test whether a range of memory starting at testaddr of size testsz falls
368  * within the range of memory described by addr, sz.  We take care to avoid
369  * problems with overflow and underflow of the unsigned quantities, and
370  * disallow all negative sizes.  Ranges of size 0 are allowed.
371  */
372 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
373 	((testaddr) - (baseaddr) < (basesz) && \
374 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
375 	(testaddr) + (testsz) >= (testaddr))
376 
377 /*
378  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
379  * alloc_sz on the righthand side of the comparison in order to avoid overflow
380  * or underflow in the comparison with it.  This is simpler than the INRANGE
381  * check above, because we know that the dtms_scratch_ptr is valid in the
382  * range.  Allocations of size zero are allowed.
383  */
384 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
385 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
386 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
387 
388 #define	DTRACE_LOADFUNC(bits)						\
389 /*CSTYLED*/								\
390 uint##bits##_t								\
391 dtrace_load##bits(uintptr_t addr)					\
392 {									\
393 	size_t size = bits / NBBY;					\
394 	/*CSTYLED*/							\
395 	uint##bits##_t rval;						\
396 	int i;								\
397 	volatile uint16_t *flags = (volatile uint16_t *)		\
398 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
399 									\
400 	DTRACE_ALIGNCHECK(addr, size, flags);				\
401 									\
402 	for (i = 0; i < dtrace_toxranges; i++) {			\
403 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
404 			continue;					\
405 									\
406 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
407 			continue;					\
408 									\
409 		/*							\
410 		 * This address falls within a toxic region; return 0.	\
411 		 */							\
412 		*flags |= CPU_DTRACE_BADADDR;				\
413 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
414 		return (0);						\
415 	}								\
416 									\
417 	*flags |= CPU_DTRACE_NOFAULT;					\
418 	/*CSTYLED*/							\
419 	rval = *((volatile uint##bits##_t *)addr);			\
420 	*flags &= ~CPU_DTRACE_NOFAULT;					\
421 									\
422 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
423 }
424 
425 #ifdef _LP64
426 #define	dtrace_loadptr	dtrace_load64
427 #else
428 #define	dtrace_loadptr	dtrace_load32
429 #endif
430 
431 #define	DTRACE_DYNHASH_FREE	0
432 #define	DTRACE_DYNHASH_SINK	1
433 #define	DTRACE_DYNHASH_VALID	2
434 
435 #define	DTRACE_MATCH_FAIL	-1
436 #define	DTRACE_MATCH_NEXT	0
437 #define	DTRACE_MATCH_DONE	1
438 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
439 #define	DTRACE_STATE_ALIGN	64
440 
441 #define	DTRACE_FLAGS2FLT(flags)						\
442 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
443 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
444 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
445 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
446 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
447 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
448 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
449 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
450 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
451 	DTRACEFLT_UNKNOWN)
452 
453 #define	DTRACEACT_ISSTRING(act)						\
454 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
455 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
456 
457 static size_t dtrace_strlen(const char *, size_t);
458 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
459 static void dtrace_enabling_provide(dtrace_provider_t *);
460 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
461 static void dtrace_enabling_matchall(void);
462 static dtrace_state_t *dtrace_anon_grab(void);
463 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
464     dtrace_state_t *, uint64_t, uint64_t);
465 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
466 static void dtrace_buffer_drop(dtrace_buffer_t *);
467 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
468     dtrace_state_t *, dtrace_mstate_t *);
469 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
470     dtrace_optval_t);
471 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
472 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
473 
474 /*
475  * DTrace Probe Context Functions
476  *
477  * These functions are called from probe context.  Because probe context is
478  * any context in which C may be called, arbitrarily locks may be held,
479  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
480  * As a result, functions called from probe context may only call other DTrace
481  * support functions -- they may not interact at all with the system at large.
482  * (Note that the ASSERT macro is made probe-context safe by redefining it in
483  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
484  * loads are to be performed from probe context, they _must_ be in terms of
485  * the safe dtrace_load*() variants.
486  *
487  * Some functions in this block are not actually called from probe context;
488  * for these functions, there will be a comment above the function reading
489  * "Note:  not called from probe context."
490  */
491 void
492 dtrace_panic(const char *format, ...)
493 {
494 	va_list alist;
495 
496 	va_start(alist, format);
497 	dtrace_vpanic(format, alist);
498 	va_end(alist);
499 }
500 
501 int
502 dtrace_assfail(const char *a, const char *f, int l)
503 {
504 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
505 
506 	/*
507 	 * We just need something here that even the most clever compiler
508 	 * cannot optimize away.
509 	 */
510 	return (a[(uintptr_t)f]);
511 }
512 
513 /*
514  * Atomically increment a specified error counter from probe context.
515  */
516 static void
517 dtrace_error(uint32_t *counter)
518 {
519 	/*
520 	 * Most counters stored to in probe context are per-CPU counters.
521 	 * However, there are some error conditions that are sufficiently
522 	 * arcane that they don't merit per-CPU storage.  If these counters
523 	 * are incremented concurrently on different CPUs, scalability will be
524 	 * adversely affected -- but we don't expect them to be white-hot in a
525 	 * correctly constructed enabling...
526 	 */
527 	uint32_t oval, nval;
528 
529 	do {
530 		oval = *counter;
531 
532 		if ((nval = oval + 1) == 0) {
533 			/*
534 			 * If the counter would wrap, set it to 1 -- assuring
535 			 * that the counter is never zero when we have seen
536 			 * errors.  (The counter must be 32-bits because we
537 			 * aren't guaranteed a 64-bit compare&swap operation.)
538 			 * To save this code both the infamy of being fingered
539 			 * by a priggish news story and the indignity of being
540 			 * the target of a neo-puritan witch trial, we're
541 			 * carefully avoiding any colorful description of the
542 			 * likelihood of this condition -- but suffice it to
543 			 * say that it is only slightly more likely than the
544 			 * overflow of predicate cache IDs, as discussed in
545 			 * dtrace_predicate_create().
546 			 */
547 			nval = 1;
548 		}
549 	} while (dtrace_cas32(counter, oval, nval) != oval);
550 }
551 
552 /*
553  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
554  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
555  */
556 DTRACE_LOADFUNC(8)
557 DTRACE_LOADFUNC(16)
558 DTRACE_LOADFUNC(32)
559 DTRACE_LOADFUNC(64)
560 
561 static int
562 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
563 {
564 	if (dest < mstate->dtms_scratch_base)
565 		return (0);
566 
567 	if (dest + size < dest)
568 		return (0);
569 
570 	if (dest + size > mstate->dtms_scratch_ptr)
571 		return (0);
572 
573 	return (1);
574 }
575 
576 static int
577 dtrace_canstore_statvar(uint64_t addr, size_t sz,
578     dtrace_statvar_t **svars, int nsvars)
579 {
580 	int i;
581 
582 	for (i = 0; i < nsvars; i++) {
583 		dtrace_statvar_t *svar = svars[i];
584 
585 		if (svar == NULL || svar->dtsv_size == 0)
586 			continue;
587 
588 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
589 			return (1);
590 	}
591 
592 	return (0);
593 }
594 
595 /*
596  * Check to see if the address is within a memory region to which a store may
597  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
598  * region.  The caller of dtrace_canstore() is responsible for performing any
599  * alignment checks that are needed before stores are actually executed.
600  */
601 static int
602 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
603     dtrace_vstate_t *vstate)
604 {
605 	/*
606 	 * First, check to see if the address is in scratch space...
607 	 */
608 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
609 	    mstate->dtms_scratch_size))
610 		return (1);
611 
612 	/*
613 	 * Now check to see if it's a dynamic variable.  This check will pick
614 	 * up both thread-local variables and any global dynamically-allocated
615 	 * variables.
616 	 */
617 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
618 	    vstate->dtvs_dynvars.dtds_size)) {
619 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
620 		uintptr_t base = (uintptr_t)dstate->dtds_base +
621 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
622 		uintptr_t chunkoffs;
623 
624 		/*
625 		 * Before we assume that we can store here, we need to make
626 		 * sure that it isn't in our metadata -- storing to our
627 		 * dynamic variable metadata would corrupt our state.  For
628 		 * the range to not include any dynamic variable metadata,
629 		 * it must:
630 		 *
631 		 *	(1) Start above the hash table that is at the base of
632 		 *	the dynamic variable space
633 		 *
634 		 *	(2) Have a starting chunk offset that is beyond the
635 		 *	dtrace_dynvar_t that is at the base of every chunk
636 		 *
637 		 *	(3) Not span a chunk boundary
638 		 *
639 		 */
640 		if (addr < base)
641 			return (0);
642 
643 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
644 
645 		if (chunkoffs < sizeof (dtrace_dynvar_t))
646 			return (0);
647 
648 		if (chunkoffs + sz > dstate->dtds_chunksize)
649 			return (0);
650 
651 		return (1);
652 	}
653 
654 	/*
655 	 * Finally, check the static local and global variables.  These checks
656 	 * take the longest, so we perform them last.
657 	 */
658 	if (dtrace_canstore_statvar(addr, sz,
659 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
660 		return (1);
661 
662 	if (dtrace_canstore_statvar(addr, sz,
663 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
664 		return (1);
665 
666 	return (0);
667 }
668 
669 
670 /*
671  * Convenience routine to check to see if the address is within a memory
672  * region in which a load may be issued given the user's privilege level;
673  * if not, it sets the appropriate error flags and loads 'addr' into the
674  * illegal value slot.
675  *
676  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
677  * appropriate memory access protection.
678  */
679 static int
680 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
681     dtrace_vstate_t *vstate)
682 {
683 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
684 
685 	/*
686 	 * If we hold the privilege to read from kernel memory, then
687 	 * everything is readable.
688 	 */
689 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
690 		return (1);
691 
692 	/*
693 	 * You can obviously read that which you can store.
694 	 */
695 	if (dtrace_canstore(addr, sz, mstate, vstate))
696 		return (1);
697 
698 	/*
699 	 * We're allowed to read from our own string table.
700 	 */
701 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
702 	    mstate->dtms_difo->dtdo_strlen))
703 		return (1);
704 
705 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
706 	*illval = addr;
707 	return (0);
708 }
709 
710 /*
711  * Convenience routine to check to see if a given string is within a memory
712  * region in which a load may be issued given the user's privilege level;
713  * this exists so that we don't need to issue unnecessary dtrace_strlen()
714  * calls in the event that the user has all privileges.
715  */
716 static int
717 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
718     dtrace_vstate_t *vstate)
719 {
720 	size_t strsz;
721 
722 	/*
723 	 * If we hold the privilege to read from kernel memory, then
724 	 * everything is readable.
725 	 */
726 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
727 		return (1);
728 
729 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
730 	if (dtrace_canload(addr, strsz, mstate, vstate))
731 		return (1);
732 
733 	return (0);
734 }
735 
736 /*
737  * Convenience routine to check to see if a given variable is within a memory
738  * region in which a load may be issued given the user's privilege level.
739  */
740 static int
741 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
742     dtrace_vstate_t *vstate)
743 {
744 	size_t sz;
745 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
746 
747 	/*
748 	 * If we hold the privilege to read from kernel memory, then
749 	 * everything is readable.
750 	 */
751 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
752 		return (1);
753 
754 	if (type->dtdt_kind == DIF_TYPE_STRING)
755 		sz = dtrace_strlen(src,
756 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
757 	else
758 		sz = type->dtdt_size;
759 
760 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
761 }
762 
763 /*
764  * Compare two strings using safe loads.
765  */
766 static int
767 dtrace_strncmp(char *s1, char *s2, size_t limit)
768 {
769 	uint8_t c1, c2;
770 	volatile uint16_t *flags;
771 
772 	if (s1 == s2 || limit == 0)
773 		return (0);
774 
775 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
776 
777 	do {
778 		if (s1 == NULL) {
779 			c1 = '\0';
780 		} else {
781 			c1 = dtrace_load8((uintptr_t)s1++);
782 		}
783 
784 		if (s2 == NULL) {
785 			c2 = '\0';
786 		} else {
787 			c2 = dtrace_load8((uintptr_t)s2++);
788 		}
789 
790 		if (c1 != c2)
791 			return (c1 - c2);
792 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
793 
794 	return (0);
795 }
796 
797 /*
798  * Compute strlen(s) for a string using safe memory accesses.  The additional
799  * len parameter is used to specify a maximum length to ensure completion.
800  */
801 static size_t
802 dtrace_strlen(const char *s, size_t lim)
803 {
804 	uint_t len;
805 
806 	for (len = 0; len != lim; len++) {
807 		if (dtrace_load8((uintptr_t)s++) == '\0')
808 			break;
809 	}
810 
811 	return (len);
812 }
813 
814 /*
815  * Check if an address falls within a toxic region.
816  */
817 static int
818 dtrace_istoxic(uintptr_t kaddr, size_t size)
819 {
820 	uintptr_t taddr, tsize;
821 	int i;
822 
823 	for (i = 0; i < dtrace_toxranges; i++) {
824 		taddr = dtrace_toxrange[i].dtt_base;
825 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
826 
827 		if (kaddr - taddr < tsize) {
828 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
829 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
830 			return (1);
831 		}
832 
833 		if (taddr - kaddr < size) {
834 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
835 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
836 			return (1);
837 		}
838 	}
839 
840 	return (0);
841 }
842 
843 /*
844  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
845  * memory specified by the DIF program.  The dst is assumed to be safe memory
846  * that we can store to directly because it is managed by DTrace.  As with
847  * standard bcopy, overlapping copies are handled properly.
848  */
849 static void
850 dtrace_bcopy(const void *src, void *dst, size_t len)
851 {
852 	if (len != 0) {
853 		uint8_t *s1 = dst;
854 		const uint8_t *s2 = src;
855 
856 		if (s1 <= s2) {
857 			do {
858 				*s1++ = dtrace_load8((uintptr_t)s2++);
859 			} while (--len != 0);
860 		} else {
861 			s2 += len;
862 			s1 += len;
863 
864 			do {
865 				*--s1 = dtrace_load8((uintptr_t)--s2);
866 			} while (--len != 0);
867 		}
868 	}
869 }
870 
871 /*
872  * Copy src to dst using safe memory accesses, up to either the specified
873  * length, or the point that a nul byte is encountered.  The src is assumed to
874  * be unsafe memory specified by the DIF program.  The dst is assumed to be
875  * safe memory that we can store to directly because it is managed by DTrace.
876  * Unlike dtrace_bcopy(), overlapping regions are not handled.
877  */
878 static void
879 dtrace_strcpy(const void *src, void *dst, size_t len)
880 {
881 	if (len != 0) {
882 		uint8_t *s1 = dst, c;
883 		const uint8_t *s2 = src;
884 
885 		do {
886 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
887 		} while (--len != 0 && c != '\0');
888 	}
889 }
890 
891 /*
892  * Copy src to dst, deriving the size and type from the specified (BYREF)
893  * variable type.  The src is assumed to be unsafe memory specified by the DIF
894  * program.  The dst is assumed to be DTrace variable memory that is of the
895  * specified type; we assume that we can store to directly.
896  */
897 static void
898 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
899 {
900 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
901 
902 	if (type->dtdt_kind == DIF_TYPE_STRING) {
903 		dtrace_strcpy(src, dst, type->dtdt_size);
904 	} else {
905 		dtrace_bcopy(src, dst, type->dtdt_size);
906 	}
907 }
908 
909 /*
910  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
911  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
912  * safe memory that we can access directly because it is managed by DTrace.
913  */
914 static int
915 dtrace_bcmp(const void *s1, const void *s2, size_t len)
916 {
917 	volatile uint16_t *flags;
918 
919 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
920 
921 	if (s1 == s2)
922 		return (0);
923 
924 	if (s1 == NULL || s2 == NULL)
925 		return (1);
926 
927 	if (s1 != s2 && len != 0) {
928 		const uint8_t *ps1 = s1;
929 		const uint8_t *ps2 = s2;
930 
931 		do {
932 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
933 				return (1);
934 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
935 	}
936 	return (0);
937 }
938 
939 /*
940  * Zero the specified region using a simple byte-by-byte loop.  Note that this
941  * is for safe DTrace-managed memory only.
942  */
943 static void
944 dtrace_bzero(void *dst, size_t len)
945 {
946 	uchar_t *cp;
947 
948 	for (cp = dst; len != 0; len--)
949 		*cp++ = 0;
950 }
951 
952 static void
953 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
954 {
955 	uint64_t result[2];
956 
957 	result[0] = addend1[0] + addend2[0];
958 	result[1] = addend1[1] + addend2[1] +
959 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
960 
961 	sum[0] = result[0];
962 	sum[1] = result[1];
963 }
964 
965 /*
966  * Shift the 128-bit value in a by b. If b is positive, shift left.
967  * If b is negative, shift right.
968  */
969 static void
970 dtrace_shift_128(uint64_t *a, int b)
971 {
972 	uint64_t mask;
973 
974 	if (b == 0)
975 		return;
976 
977 	if (b < 0) {
978 		b = -b;
979 		if (b >= 64) {
980 			a[0] = a[1] >> (b - 64);
981 			a[1] = 0;
982 		} else {
983 			a[0] >>= b;
984 			mask = 1LL << (64 - b);
985 			mask -= 1;
986 			a[0] |= ((a[1] & mask) << (64 - b));
987 			a[1] >>= b;
988 		}
989 	} else {
990 		if (b >= 64) {
991 			a[1] = a[0] << (b - 64);
992 			a[0] = 0;
993 		} else {
994 			a[1] <<= b;
995 			mask = a[0] >> (64 - b);
996 			a[1] |= mask;
997 			a[0] <<= b;
998 		}
999 	}
1000 }
1001 
1002 /*
1003  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1004  * use native multiplication on those, and then re-combine into the
1005  * resulting 128-bit value.
1006  *
1007  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1008  *     hi1 * hi2 << 64 +
1009  *     hi1 * lo2 << 32 +
1010  *     hi2 * lo1 << 32 +
1011  *     lo1 * lo2
1012  */
1013 static void
1014 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1015 {
1016 	uint64_t hi1, hi2, lo1, lo2;
1017 	uint64_t tmp[2];
1018 
1019 	hi1 = factor1 >> 32;
1020 	hi2 = factor2 >> 32;
1021 
1022 	lo1 = factor1 & DT_MASK_LO;
1023 	lo2 = factor2 & DT_MASK_LO;
1024 
1025 	product[0] = lo1 * lo2;
1026 	product[1] = hi1 * hi2;
1027 
1028 	tmp[0] = hi1 * lo2;
1029 	tmp[1] = 0;
1030 	dtrace_shift_128(tmp, 32);
1031 	dtrace_add_128(product, tmp, product);
1032 
1033 	tmp[0] = hi2 * lo1;
1034 	tmp[1] = 0;
1035 	dtrace_shift_128(tmp, 32);
1036 	dtrace_add_128(product, tmp, product);
1037 }
1038 
1039 /*
1040  * This privilege check should be used by actions and subroutines to
1041  * verify that the user credentials of the process that enabled the
1042  * invoking ECB match the target credentials
1043  */
1044 static int
1045 dtrace_priv_proc_common_user(dtrace_state_t *state)
1046 {
1047 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1048 
1049 	/*
1050 	 * We should always have a non-NULL state cred here, since if cred
1051 	 * is null (anonymous tracing), we fast-path bypass this routine.
1052 	 */
1053 	ASSERT(s_cr != NULL);
1054 
1055 	if ((cr = CRED()) != NULL &&
1056 	    s_cr->cr_uid == cr->cr_uid &&
1057 	    s_cr->cr_uid == cr->cr_ruid &&
1058 	    s_cr->cr_uid == cr->cr_suid &&
1059 	    s_cr->cr_gid == cr->cr_gid &&
1060 	    s_cr->cr_gid == cr->cr_rgid &&
1061 	    s_cr->cr_gid == cr->cr_sgid)
1062 		return (1);
1063 
1064 	return (0);
1065 }
1066 
1067 /*
1068  * This privilege check should be used by actions and subroutines to
1069  * verify that the zone of the process that enabled the invoking ECB
1070  * matches the target credentials
1071  */
1072 static int
1073 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1074 {
1075 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1076 
1077 	/*
1078 	 * We should always have a non-NULL state cred here, since if cred
1079 	 * is null (anonymous tracing), we fast-path bypass this routine.
1080 	 */
1081 	ASSERT(s_cr != NULL);
1082 
1083 	if ((cr = CRED()) != NULL &&
1084 	    s_cr->cr_zone == cr->cr_zone)
1085 		return (1);
1086 
1087 	return (0);
1088 }
1089 
1090 /*
1091  * This privilege check should be used by actions and subroutines to
1092  * verify that the process has not setuid or changed credentials.
1093  */
1094 static int
1095 dtrace_priv_proc_common_nocd()
1096 {
1097 	proc_t *proc;
1098 
1099 	if ((proc = ttoproc(curthread)) != NULL &&
1100 	    !(proc->p_flag & SNOCD))
1101 		return (1);
1102 
1103 	return (0);
1104 }
1105 
1106 static int
1107 dtrace_priv_proc_destructive(dtrace_state_t *state)
1108 {
1109 	int action = state->dts_cred.dcr_action;
1110 
1111 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1112 	    dtrace_priv_proc_common_zone(state) == 0)
1113 		goto bad;
1114 
1115 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1116 	    dtrace_priv_proc_common_user(state) == 0)
1117 		goto bad;
1118 
1119 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1120 	    dtrace_priv_proc_common_nocd() == 0)
1121 		goto bad;
1122 
1123 	return (1);
1124 
1125 bad:
1126 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1127 
1128 	return (0);
1129 }
1130 
1131 static int
1132 dtrace_priv_proc_control(dtrace_state_t *state)
1133 {
1134 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1135 		return (1);
1136 
1137 	if (dtrace_priv_proc_common_zone(state) &&
1138 	    dtrace_priv_proc_common_user(state) &&
1139 	    dtrace_priv_proc_common_nocd())
1140 		return (1);
1141 
1142 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1143 
1144 	return (0);
1145 }
1146 
1147 static int
1148 dtrace_priv_proc(dtrace_state_t *state)
1149 {
1150 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1151 		return (1);
1152 
1153 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1154 
1155 	return (0);
1156 }
1157 
1158 static int
1159 dtrace_priv_kernel(dtrace_state_t *state)
1160 {
1161 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1162 		return (1);
1163 
1164 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1165 
1166 	return (0);
1167 }
1168 
1169 static int
1170 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1171 {
1172 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1173 		return (1);
1174 
1175 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1176 
1177 	return (0);
1178 }
1179 
1180 /*
1181  * Note:  not called from probe context.  This function is called
1182  * asynchronously (and at a regular interval) from outside of probe context to
1183  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1184  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1185  */
1186 void
1187 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1188 {
1189 	dtrace_dynvar_t *dirty;
1190 	dtrace_dstate_percpu_t *dcpu;
1191 	dtrace_dynvar_t **rinsep;
1192 	int i, j, work = 0;
1193 
1194 	for (i = 0; i < NCPU; i++) {
1195 		dcpu = &dstate->dtds_percpu[i];
1196 		rinsep = &dcpu->dtdsc_rinsing;
1197 
1198 		/*
1199 		 * If the dirty list is NULL, there is no dirty work to do.
1200 		 */
1201 		if (dcpu->dtdsc_dirty == NULL)
1202 			continue;
1203 
1204 		if (dcpu->dtdsc_rinsing != NULL) {
1205 			/*
1206 			 * If the rinsing list is non-NULL, then it is because
1207 			 * this CPU was selected to accept another CPU's
1208 			 * dirty list -- and since that time, dirty buffers
1209 			 * have accumulated.  This is a highly unlikely
1210 			 * condition, but we choose to ignore the dirty
1211 			 * buffers -- they'll be picked up a future cleanse.
1212 			 */
1213 			continue;
1214 		}
1215 
1216 		if (dcpu->dtdsc_clean != NULL) {
1217 			/*
1218 			 * If the clean list is non-NULL, then we're in a
1219 			 * situation where a CPU has done deallocations (we
1220 			 * have a non-NULL dirty list) but no allocations (we
1221 			 * also have a non-NULL clean list).  We can't simply
1222 			 * move the dirty list into the clean list on this
1223 			 * CPU, yet we also don't want to allow this condition
1224 			 * to persist, lest a short clean list prevent a
1225 			 * massive dirty list from being cleaned (which in
1226 			 * turn could lead to otherwise avoidable dynamic
1227 			 * drops).  To deal with this, we look for some CPU
1228 			 * with a NULL clean list, NULL dirty list, and NULL
1229 			 * rinsing list -- and then we borrow this CPU to
1230 			 * rinse our dirty list.
1231 			 */
1232 			for (j = 0; j < NCPU; j++) {
1233 				dtrace_dstate_percpu_t *rinser;
1234 
1235 				rinser = &dstate->dtds_percpu[j];
1236 
1237 				if (rinser->dtdsc_rinsing != NULL)
1238 					continue;
1239 
1240 				if (rinser->dtdsc_dirty != NULL)
1241 					continue;
1242 
1243 				if (rinser->dtdsc_clean != NULL)
1244 					continue;
1245 
1246 				rinsep = &rinser->dtdsc_rinsing;
1247 				break;
1248 			}
1249 
1250 			if (j == NCPU) {
1251 				/*
1252 				 * We were unable to find another CPU that
1253 				 * could accept this dirty list -- we are
1254 				 * therefore unable to clean it now.
1255 				 */
1256 				dtrace_dynvar_failclean++;
1257 				continue;
1258 			}
1259 		}
1260 
1261 		work = 1;
1262 
1263 		/*
1264 		 * Atomically move the dirty list aside.
1265 		 */
1266 		do {
1267 			dirty = dcpu->dtdsc_dirty;
1268 
1269 			/*
1270 			 * Before we zap the dirty list, set the rinsing list.
1271 			 * (This allows for a potential assertion in
1272 			 * dtrace_dynvar():  if a free dynamic variable appears
1273 			 * on a hash chain, either the dirty list or the
1274 			 * rinsing list for some CPU must be non-NULL.)
1275 			 */
1276 			*rinsep = dirty;
1277 			dtrace_membar_producer();
1278 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1279 		    dirty, NULL) != dirty);
1280 	}
1281 
1282 	if (!work) {
1283 		/*
1284 		 * We have no work to do; we can simply return.
1285 		 */
1286 		return;
1287 	}
1288 
1289 	dtrace_sync();
1290 
1291 	for (i = 0; i < NCPU; i++) {
1292 		dcpu = &dstate->dtds_percpu[i];
1293 
1294 		if (dcpu->dtdsc_rinsing == NULL)
1295 			continue;
1296 
1297 		/*
1298 		 * We are now guaranteed that no hash chain contains a pointer
1299 		 * into this dirty list; we can make it clean.
1300 		 */
1301 		ASSERT(dcpu->dtdsc_clean == NULL);
1302 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1303 		dcpu->dtdsc_rinsing = NULL;
1304 	}
1305 
1306 	/*
1307 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1308 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1309 	 * This prevents a race whereby a CPU incorrectly decides that
1310 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1311 	 * after dtrace_dynvar_clean() has completed.
1312 	 */
1313 	dtrace_sync();
1314 
1315 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1316 }
1317 
1318 /*
1319  * Depending on the value of the op parameter, this function looks-up,
1320  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1321  * allocation is requested, this function will return a pointer to a
1322  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1323  * variable can be allocated.  If NULL is returned, the appropriate counter
1324  * will be incremented.
1325  */
1326 dtrace_dynvar_t *
1327 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1328     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1329     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1330 {
1331 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1332 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1333 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1334 	processorid_t me = CPU->cpu_id, cpu = me;
1335 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1336 	size_t bucket, ksize;
1337 	size_t chunksize = dstate->dtds_chunksize;
1338 	uintptr_t kdata, lock, nstate;
1339 	uint_t i;
1340 
1341 	ASSERT(nkeys != 0);
1342 
1343 	/*
1344 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1345 	 * algorithm.  For the by-value portions, we perform the algorithm in
1346 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1347 	 * bit, and seems to have only a minute effect on distribution.  For
1348 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1349 	 * over each referenced byte.  It's painful to do this, but it's much
1350 	 * better than pathological hash distribution.  The efficacy of the
1351 	 * hashing algorithm (and a comparison with other algorithms) may be
1352 	 * found by running the ::dtrace_dynstat MDB dcmd.
1353 	 */
1354 	for (i = 0; i < nkeys; i++) {
1355 		if (key[i].dttk_size == 0) {
1356 			uint64_t val = key[i].dttk_value;
1357 
1358 			hashval += (val >> 48) & 0xffff;
1359 			hashval += (hashval << 10);
1360 			hashval ^= (hashval >> 6);
1361 
1362 			hashval += (val >> 32) & 0xffff;
1363 			hashval += (hashval << 10);
1364 			hashval ^= (hashval >> 6);
1365 
1366 			hashval += (val >> 16) & 0xffff;
1367 			hashval += (hashval << 10);
1368 			hashval ^= (hashval >> 6);
1369 
1370 			hashval += val & 0xffff;
1371 			hashval += (hashval << 10);
1372 			hashval ^= (hashval >> 6);
1373 		} else {
1374 			/*
1375 			 * This is incredibly painful, but it beats the hell
1376 			 * out of the alternative.
1377 			 */
1378 			uint64_t j, size = key[i].dttk_size;
1379 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1380 
1381 			if (!dtrace_canload(base, size, mstate, vstate))
1382 				break;
1383 
1384 			for (j = 0; j < size; j++) {
1385 				hashval += dtrace_load8(base + j);
1386 				hashval += (hashval << 10);
1387 				hashval ^= (hashval >> 6);
1388 			}
1389 		}
1390 	}
1391 
1392 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1393 		return (NULL);
1394 
1395 	hashval += (hashval << 3);
1396 	hashval ^= (hashval >> 11);
1397 	hashval += (hashval << 15);
1398 
1399 	/*
1400 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1401 	 * comes out to be one of our two sentinel hash values.  If this
1402 	 * actually happens, we set the hashval to be a value known to be a
1403 	 * non-sentinel value.
1404 	 */
1405 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1406 		hashval = DTRACE_DYNHASH_VALID;
1407 
1408 	/*
1409 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1410 	 * important here, tricks can be pulled to reduce it.  (However, it's
1411 	 * critical that hash collisions be kept to an absolute minimum;
1412 	 * they're much more painful than a divide.)  It's better to have a
1413 	 * solution that generates few collisions and still keeps things
1414 	 * relatively simple.
1415 	 */
1416 	bucket = hashval % dstate->dtds_hashsize;
1417 
1418 	if (op == DTRACE_DYNVAR_DEALLOC) {
1419 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1420 
1421 		for (;;) {
1422 			while ((lock = *lockp) & 1)
1423 				continue;
1424 
1425 			if (dtrace_casptr((void *)lockp,
1426 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1427 				break;
1428 		}
1429 
1430 		dtrace_membar_producer();
1431 	}
1432 
1433 top:
1434 	prev = NULL;
1435 	lock = hash[bucket].dtdh_lock;
1436 
1437 	dtrace_membar_consumer();
1438 
1439 	start = hash[bucket].dtdh_chain;
1440 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1441 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1442 	    op != DTRACE_DYNVAR_DEALLOC));
1443 
1444 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1445 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1446 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1447 
1448 		if (dvar->dtdv_hashval != hashval) {
1449 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1450 				/*
1451 				 * We've reached the sink, and therefore the
1452 				 * end of the hash chain; we can kick out of
1453 				 * the loop knowing that we have seen a valid
1454 				 * snapshot of state.
1455 				 */
1456 				ASSERT(dvar->dtdv_next == NULL);
1457 				ASSERT(dvar == &dtrace_dynhash_sink);
1458 				break;
1459 			}
1460 
1461 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1462 				/*
1463 				 * We've gone off the rails:  somewhere along
1464 				 * the line, one of the members of this hash
1465 				 * chain was deleted.  Note that we could also
1466 				 * detect this by simply letting this loop run
1467 				 * to completion, as we would eventually hit
1468 				 * the end of the dirty list.  However, we
1469 				 * want to avoid running the length of the
1470 				 * dirty list unnecessarily (it might be quite
1471 				 * long), so we catch this as early as
1472 				 * possible by detecting the hash marker.  In
1473 				 * this case, we simply set dvar to NULL and
1474 				 * break; the conditional after the loop will
1475 				 * send us back to top.
1476 				 */
1477 				dvar = NULL;
1478 				break;
1479 			}
1480 
1481 			goto next;
1482 		}
1483 
1484 		if (dtuple->dtt_nkeys != nkeys)
1485 			goto next;
1486 
1487 		for (i = 0; i < nkeys; i++, dkey++) {
1488 			if (dkey->dttk_size != key[i].dttk_size)
1489 				goto next; /* size or type mismatch */
1490 
1491 			if (dkey->dttk_size != 0) {
1492 				if (dtrace_bcmp(
1493 				    (void *)(uintptr_t)key[i].dttk_value,
1494 				    (void *)(uintptr_t)dkey->dttk_value,
1495 				    dkey->dttk_size))
1496 					goto next;
1497 			} else {
1498 				if (dkey->dttk_value != key[i].dttk_value)
1499 					goto next;
1500 			}
1501 		}
1502 
1503 		if (op != DTRACE_DYNVAR_DEALLOC)
1504 			return (dvar);
1505 
1506 		ASSERT(dvar->dtdv_next == NULL ||
1507 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1508 
1509 		if (prev != NULL) {
1510 			ASSERT(hash[bucket].dtdh_chain != dvar);
1511 			ASSERT(start != dvar);
1512 			ASSERT(prev->dtdv_next == dvar);
1513 			prev->dtdv_next = dvar->dtdv_next;
1514 		} else {
1515 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1516 			    start, dvar->dtdv_next) != start) {
1517 				/*
1518 				 * We have failed to atomically swing the
1519 				 * hash table head pointer, presumably because
1520 				 * of a conflicting allocation on another CPU.
1521 				 * We need to reread the hash chain and try
1522 				 * again.
1523 				 */
1524 				goto top;
1525 			}
1526 		}
1527 
1528 		dtrace_membar_producer();
1529 
1530 		/*
1531 		 * Now set the hash value to indicate that it's free.
1532 		 */
1533 		ASSERT(hash[bucket].dtdh_chain != dvar);
1534 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1535 
1536 		dtrace_membar_producer();
1537 
1538 		/*
1539 		 * Set the next pointer to point at the dirty list, and
1540 		 * atomically swing the dirty pointer to the newly freed dvar.
1541 		 */
1542 		do {
1543 			next = dcpu->dtdsc_dirty;
1544 			dvar->dtdv_next = next;
1545 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1546 
1547 		/*
1548 		 * Finally, unlock this hash bucket.
1549 		 */
1550 		ASSERT(hash[bucket].dtdh_lock == lock);
1551 		ASSERT(lock & 1);
1552 		hash[bucket].dtdh_lock++;
1553 
1554 		return (NULL);
1555 next:
1556 		prev = dvar;
1557 		continue;
1558 	}
1559 
1560 	if (dvar == NULL) {
1561 		/*
1562 		 * If dvar is NULL, it is because we went off the rails:
1563 		 * one of the elements that we traversed in the hash chain
1564 		 * was deleted while we were traversing it.  In this case,
1565 		 * we assert that we aren't doing a dealloc (deallocs lock
1566 		 * the hash bucket to prevent themselves from racing with
1567 		 * one another), and retry the hash chain traversal.
1568 		 */
1569 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1570 		goto top;
1571 	}
1572 
1573 	if (op != DTRACE_DYNVAR_ALLOC) {
1574 		/*
1575 		 * If we are not to allocate a new variable, we want to
1576 		 * return NULL now.  Before we return, check that the value
1577 		 * of the lock word hasn't changed.  If it has, we may have
1578 		 * seen an inconsistent snapshot.
1579 		 */
1580 		if (op == DTRACE_DYNVAR_NOALLOC) {
1581 			if (hash[bucket].dtdh_lock != lock)
1582 				goto top;
1583 		} else {
1584 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1585 			ASSERT(hash[bucket].dtdh_lock == lock);
1586 			ASSERT(lock & 1);
1587 			hash[bucket].dtdh_lock++;
1588 		}
1589 
1590 		return (NULL);
1591 	}
1592 
1593 	/*
1594 	 * We need to allocate a new dynamic variable.  The size we need is the
1595 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1596 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1597 	 * the size of any referred-to data (dsize).  We then round the final
1598 	 * size up to the chunksize for allocation.
1599 	 */
1600 	for (ksize = 0, i = 0; i < nkeys; i++)
1601 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1602 
1603 	/*
1604 	 * This should be pretty much impossible, but could happen if, say,
1605 	 * strange DIF specified the tuple.  Ideally, this should be an
1606 	 * assertion and not an error condition -- but that requires that the
1607 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1608 	 * bullet-proof.  (That is, it must not be able to be fooled by
1609 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1610 	 * solving this would presumably not amount to solving the Halting
1611 	 * Problem -- but it still seems awfully hard.
1612 	 */
1613 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1614 	    ksize + dsize > chunksize) {
1615 		dcpu->dtdsc_drops++;
1616 		return (NULL);
1617 	}
1618 
1619 	nstate = DTRACE_DSTATE_EMPTY;
1620 
1621 	do {
1622 retry:
1623 		free = dcpu->dtdsc_free;
1624 
1625 		if (free == NULL) {
1626 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1627 			void *rval;
1628 
1629 			if (clean == NULL) {
1630 				/*
1631 				 * We're out of dynamic variable space on
1632 				 * this CPU.  Unless we have tried all CPUs,
1633 				 * we'll try to allocate from a different
1634 				 * CPU.
1635 				 */
1636 				switch (dstate->dtds_state) {
1637 				case DTRACE_DSTATE_CLEAN: {
1638 					void *sp = &dstate->dtds_state;
1639 
1640 					if (++cpu >= NCPU)
1641 						cpu = 0;
1642 
1643 					if (dcpu->dtdsc_dirty != NULL &&
1644 					    nstate == DTRACE_DSTATE_EMPTY)
1645 						nstate = DTRACE_DSTATE_DIRTY;
1646 
1647 					if (dcpu->dtdsc_rinsing != NULL)
1648 						nstate = DTRACE_DSTATE_RINSING;
1649 
1650 					dcpu = &dstate->dtds_percpu[cpu];
1651 
1652 					if (cpu != me)
1653 						goto retry;
1654 
1655 					(void) dtrace_cas32(sp,
1656 					    DTRACE_DSTATE_CLEAN, nstate);
1657 
1658 					/*
1659 					 * To increment the correct bean
1660 					 * counter, take another lap.
1661 					 */
1662 					goto retry;
1663 				}
1664 
1665 				case DTRACE_DSTATE_DIRTY:
1666 					dcpu->dtdsc_dirty_drops++;
1667 					break;
1668 
1669 				case DTRACE_DSTATE_RINSING:
1670 					dcpu->dtdsc_rinsing_drops++;
1671 					break;
1672 
1673 				case DTRACE_DSTATE_EMPTY:
1674 					dcpu->dtdsc_drops++;
1675 					break;
1676 				}
1677 
1678 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1679 				return (NULL);
1680 			}
1681 
1682 			/*
1683 			 * The clean list appears to be non-empty.  We want to
1684 			 * move the clean list to the free list; we start by
1685 			 * moving the clean pointer aside.
1686 			 */
1687 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1688 			    clean, NULL) != clean) {
1689 				/*
1690 				 * We are in one of two situations:
1691 				 *
1692 				 *  (a)	The clean list was switched to the
1693 				 *	free list by another CPU.
1694 				 *
1695 				 *  (b)	The clean list was added to by the
1696 				 *	cleansing cyclic.
1697 				 *
1698 				 * In either of these situations, we can
1699 				 * just reattempt the free list allocation.
1700 				 */
1701 				goto retry;
1702 			}
1703 
1704 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1705 
1706 			/*
1707 			 * Now we'll move the clean list to our free list.
1708 			 * It's impossible for this to fail:  the only way
1709 			 * the free list can be updated is through this
1710 			 * code path, and only one CPU can own the clean list.
1711 			 * Thus, it would only be possible for this to fail if
1712 			 * this code were racing with dtrace_dynvar_clean().
1713 			 * (That is, if dtrace_dynvar_clean() updated the clean
1714 			 * list, and we ended up racing to update the free
1715 			 * list.)  This race is prevented by the dtrace_sync()
1716 			 * in dtrace_dynvar_clean() -- which flushes the
1717 			 * owners of the clean lists out before resetting
1718 			 * the clean lists.
1719 			 */
1720 			dcpu = &dstate->dtds_percpu[me];
1721 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1722 			ASSERT(rval == NULL);
1723 			goto retry;
1724 		}
1725 
1726 		dvar = free;
1727 		new_free = dvar->dtdv_next;
1728 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1729 
1730 	/*
1731 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1732 	 * tuple array and copy any referenced key data into the data space
1733 	 * following the tuple array.  As we do this, we relocate dttk_value
1734 	 * in the final tuple to point to the key data address in the chunk.
1735 	 */
1736 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1737 	dvar->dtdv_data = (void *)(kdata + ksize);
1738 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1739 
1740 	for (i = 0; i < nkeys; i++) {
1741 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1742 		size_t kesize = key[i].dttk_size;
1743 
1744 		if (kesize != 0) {
1745 			dtrace_bcopy(
1746 			    (const void *)(uintptr_t)key[i].dttk_value,
1747 			    (void *)kdata, kesize);
1748 			dkey->dttk_value = kdata;
1749 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1750 		} else {
1751 			dkey->dttk_value = key[i].dttk_value;
1752 		}
1753 
1754 		dkey->dttk_size = kesize;
1755 	}
1756 
1757 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1758 	dvar->dtdv_hashval = hashval;
1759 	dvar->dtdv_next = start;
1760 
1761 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1762 		return (dvar);
1763 
1764 	/*
1765 	 * The cas has failed.  Either another CPU is adding an element to
1766 	 * this hash chain, or another CPU is deleting an element from this
1767 	 * hash chain.  The simplest way to deal with both of these cases
1768 	 * (though not necessarily the most efficient) is to free our
1769 	 * allocated block and tail-call ourselves.  Note that the free is
1770 	 * to the dirty list and _not_ to the free list.  This is to prevent
1771 	 * races with allocators, above.
1772 	 */
1773 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1774 
1775 	dtrace_membar_producer();
1776 
1777 	do {
1778 		free = dcpu->dtdsc_dirty;
1779 		dvar->dtdv_next = free;
1780 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1781 
1782 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1783 }
1784 
1785 /*ARGSUSED*/
1786 static void
1787 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1788 {
1789 	if ((int64_t)nval < (int64_t)*oval)
1790 		*oval = nval;
1791 }
1792 
1793 /*ARGSUSED*/
1794 static void
1795 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1796 {
1797 	if ((int64_t)nval > (int64_t)*oval)
1798 		*oval = nval;
1799 }
1800 
1801 static void
1802 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1803 {
1804 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1805 	int64_t val = (int64_t)nval;
1806 
1807 	if (val < 0) {
1808 		for (i = 0; i < zero; i++) {
1809 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1810 				quanta[i] += incr;
1811 				return;
1812 			}
1813 		}
1814 	} else {
1815 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1816 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1817 				quanta[i - 1] += incr;
1818 				return;
1819 			}
1820 		}
1821 
1822 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1823 		return;
1824 	}
1825 
1826 	ASSERT(0);
1827 }
1828 
1829 static void
1830 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1831 {
1832 	uint64_t arg = *lquanta++;
1833 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1834 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1835 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1836 	int32_t val = (int32_t)nval, level;
1837 
1838 	ASSERT(step != 0);
1839 	ASSERT(levels != 0);
1840 
1841 	if (val < base) {
1842 		/*
1843 		 * This is an underflow.
1844 		 */
1845 		lquanta[0] += incr;
1846 		return;
1847 	}
1848 
1849 	level = (val - base) / step;
1850 
1851 	if (level < levels) {
1852 		lquanta[level + 1] += incr;
1853 		return;
1854 	}
1855 
1856 	/*
1857 	 * This is an overflow.
1858 	 */
1859 	lquanta[levels + 1] += incr;
1860 }
1861 
1862 /*ARGSUSED*/
1863 static void
1864 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1865 {
1866 	data[0]++;
1867 	data[1] += nval;
1868 }
1869 
1870 /*ARGSUSED*/
1871 static void
1872 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1873 {
1874 	int64_t snval = (int64_t)nval;
1875 	uint64_t tmp[2];
1876 
1877 	data[0]++;
1878 	data[1] += nval;
1879 
1880 	/*
1881 	 * What we want to say here is:
1882 	 *
1883 	 * data[2] += nval * nval;
1884 	 *
1885 	 * But given that nval is 64-bit, we could easily overflow, so
1886 	 * we do this as 128-bit arithmetic.
1887 	 */
1888 	if (snval < 0)
1889 		snval = -snval;
1890 
1891 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1892 	dtrace_add_128(data + 2, tmp, data + 2);
1893 }
1894 
1895 /*ARGSUSED*/
1896 static void
1897 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1898 {
1899 	*oval = *oval + 1;
1900 }
1901 
1902 /*ARGSUSED*/
1903 static void
1904 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1905 {
1906 	*oval += nval;
1907 }
1908 
1909 /*
1910  * Aggregate given the tuple in the principal data buffer, and the aggregating
1911  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1912  * buffer is specified as the buf parameter.  This routine does not return
1913  * failure; if there is no space in the aggregation buffer, the data will be
1914  * dropped, and a corresponding counter incremented.
1915  */
1916 static void
1917 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1918     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1919 {
1920 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1921 	uint32_t i, ndx, size, fsize;
1922 	uint32_t align = sizeof (uint64_t) - 1;
1923 	dtrace_aggbuffer_t *agb;
1924 	dtrace_aggkey_t *key;
1925 	uint32_t hashval = 0, limit, isstr;
1926 	caddr_t tomax, data, kdata;
1927 	dtrace_actkind_t action;
1928 	dtrace_action_t *act;
1929 	uintptr_t offs;
1930 
1931 	if (buf == NULL)
1932 		return;
1933 
1934 	if (!agg->dtag_hasarg) {
1935 		/*
1936 		 * Currently, only quantize() and lquantize() take additional
1937 		 * arguments, and they have the same semantics:  an increment
1938 		 * value that defaults to 1 when not present.  If additional
1939 		 * aggregating actions take arguments, the setting of the
1940 		 * default argument value will presumably have to become more
1941 		 * sophisticated...
1942 		 */
1943 		arg = 1;
1944 	}
1945 
1946 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1947 	size = rec->dtrd_offset - agg->dtag_base;
1948 	fsize = size + rec->dtrd_size;
1949 
1950 	ASSERT(dbuf->dtb_tomax != NULL);
1951 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1952 
1953 	if ((tomax = buf->dtb_tomax) == NULL) {
1954 		dtrace_buffer_drop(buf);
1955 		return;
1956 	}
1957 
1958 	/*
1959 	 * The metastructure is always at the bottom of the buffer.
1960 	 */
1961 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1962 	    sizeof (dtrace_aggbuffer_t));
1963 
1964 	if (buf->dtb_offset == 0) {
1965 		/*
1966 		 * We just kludge up approximately 1/8th of the size to be
1967 		 * buckets.  If this guess ends up being routinely
1968 		 * off-the-mark, we may need to dynamically readjust this
1969 		 * based on past performance.
1970 		 */
1971 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1972 
1973 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1974 		    (uintptr_t)tomax || hashsize == 0) {
1975 			/*
1976 			 * We've been given a ludicrously small buffer;
1977 			 * increment our drop count and leave.
1978 			 */
1979 			dtrace_buffer_drop(buf);
1980 			return;
1981 		}
1982 
1983 		/*
1984 		 * And now, a pathetic attempt to try to get a an odd (or
1985 		 * perchance, a prime) hash size for better hash distribution.
1986 		 */
1987 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1988 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1989 
1990 		agb->dtagb_hashsize = hashsize;
1991 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1992 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1993 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1994 
1995 		for (i = 0; i < agb->dtagb_hashsize; i++)
1996 			agb->dtagb_hash[i] = NULL;
1997 	}
1998 
1999 	ASSERT(agg->dtag_first != NULL);
2000 	ASSERT(agg->dtag_first->dta_intuple);
2001 
2002 	/*
2003 	 * Calculate the hash value based on the key.  Note that we _don't_
2004 	 * include the aggid in the hashing (but we will store it as part of
2005 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2006 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2007 	 * gets good distribution in practice.  The efficacy of the hashing
2008 	 * algorithm (and a comparison with other algorithms) may be found by
2009 	 * running the ::dtrace_aggstat MDB dcmd.
2010 	 */
2011 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2012 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2013 		limit = i + act->dta_rec.dtrd_size;
2014 		ASSERT(limit <= size);
2015 		isstr = DTRACEACT_ISSTRING(act);
2016 
2017 		for (; i < limit; i++) {
2018 			hashval += data[i];
2019 			hashval += (hashval << 10);
2020 			hashval ^= (hashval >> 6);
2021 
2022 			if (isstr && data[i] == '\0')
2023 				break;
2024 		}
2025 	}
2026 
2027 	hashval += (hashval << 3);
2028 	hashval ^= (hashval >> 11);
2029 	hashval += (hashval << 15);
2030 
2031 	/*
2032 	 * Yes, the divide here is expensive -- but it's generally the least
2033 	 * of the performance issues given the amount of data that we iterate
2034 	 * over to compute hash values, compare data, etc.
2035 	 */
2036 	ndx = hashval % agb->dtagb_hashsize;
2037 
2038 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2039 		ASSERT((caddr_t)key >= tomax);
2040 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2041 
2042 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2043 			continue;
2044 
2045 		kdata = key->dtak_data;
2046 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2047 
2048 		for (act = agg->dtag_first; act->dta_intuple;
2049 		    act = act->dta_next) {
2050 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2051 			limit = i + act->dta_rec.dtrd_size;
2052 			ASSERT(limit <= size);
2053 			isstr = DTRACEACT_ISSTRING(act);
2054 
2055 			for (; i < limit; i++) {
2056 				if (kdata[i] != data[i])
2057 					goto next;
2058 
2059 				if (isstr && data[i] == '\0')
2060 					break;
2061 			}
2062 		}
2063 
2064 		if (action != key->dtak_action) {
2065 			/*
2066 			 * We are aggregating on the same value in the same
2067 			 * aggregation with two different aggregating actions.
2068 			 * (This should have been picked up in the compiler,
2069 			 * so we may be dealing with errant or devious DIF.)
2070 			 * This is an error condition; we indicate as much,
2071 			 * and return.
2072 			 */
2073 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2074 			return;
2075 		}
2076 
2077 		/*
2078 		 * This is a hit:  we need to apply the aggregator to
2079 		 * the value at this key.
2080 		 */
2081 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2082 		return;
2083 next:
2084 		continue;
2085 	}
2086 
2087 	/*
2088 	 * We didn't find it.  We need to allocate some zero-filled space,
2089 	 * link it into the hash table appropriately, and apply the aggregator
2090 	 * to the (zero-filled) value.
2091 	 */
2092 	offs = buf->dtb_offset;
2093 	while (offs & (align - 1))
2094 		offs += sizeof (uint32_t);
2095 
2096 	/*
2097 	 * If we don't have enough room to both allocate a new key _and_
2098 	 * its associated data, increment the drop count and return.
2099 	 */
2100 	if ((uintptr_t)tomax + offs + fsize >
2101 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2102 		dtrace_buffer_drop(buf);
2103 		return;
2104 	}
2105 
2106 	/*CONSTCOND*/
2107 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2108 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2109 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2110 
2111 	key->dtak_data = kdata = tomax + offs;
2112 	buf->dtb_offset = offs + fsize;
2113 
2114 	/*
2115 	 * Now copy the data across.
2116 	 */
2117 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2118 
2119 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2120 		kdata[i] = data[i];
2121 
2122 	/*
2123 	 * Because strings are not zeroed out by default, we need to iterate
2124 	 * looking for actions that store strings, and we need to explicitly
2125 	 * pad these strings out with zeroes.
2126 	 */
2127 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2128 		int nul;
2129 
2130 		if (!DTRACEACT_ISSTRING(act))
2131 			continue;
2132 
2133 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2134 		limit = i + act->dta_rec.dtrd_size;
2135 		ASSERT(limit <= size);
2136 
2137 		for (nul = 0; i < limit; i++) {
2138 			if (nul) {
2139 				kdata[i] = '\0';
2140 				continue;
2141 			}
2142 
2143 			if (data[i] != '\0')
2144 				continue;
2145 
2146 			nul = 1;
2147 		}
2148 	}
2149 
2150 	for (i = size; i < fsize; i++)
2151 		kdata[i] = 0;
2152 
2153 	key->dtak_hashval = hashval;
2154 	key->dtak_size = size;
2155 	key->dtak_action = action;
2156 	key->dtak_next = agb->dtagb_hash[ndx];
2157 	agb->dtagb_hash[ndx] = key;
2158 
2159 	/*
2160 	 * Finally, apply the aggregator.
2161 	 */
2162 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2163 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2164 }
2165 
2166 /*
2167  * Given consumer state, this routine finds a speculation in the INACTIVE
2168  * state and transitions it into the ACTIVE state.  If there is no speculation
2169  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2170  * incremented -- it is up to the caller to take appropriate action.
2171  */
2172 static int
2173 dtrace_speculation(dtrace_state_t *state)
2174 {
2175 	int i = 0;
2176 	dtrace_speculation_state_t current;
2177 	uint32_t *stat = &state->dts_speculations_unavail, count;
2178 
2179 	while (i < state->dts_nspeculations) {
2180 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2181 
2182 		current = spec->dtsp_state;
2183 
2184 		if (current != DTRACESPEC_INACTIVE) {
2185 			if (current == DTRACESPEC_COMMITTINGMANY ||
2186 			    current == DTRACESPEC_COMMITTING ||
2187 			    current == DTRACESPEC_DISCARDING)
2188 				stat = &state->dts_speculations_busy;
2189 			i++;
2190 			continue;
2191 		}
2192 
2193 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2194 		    current, DTRACESPEC_ACTIVE) == current)
2195 			return (i + 1);
2196 	}
2197 
2198 	/*
2199 	 * We couldn't find a speculation.  If we found as much as a single
2200 	 * busy speculation buffer, we'll attribute this failure as "busy"
2201 	 * instead of "unavail".
2202 	 */
2203 	do {
2204 		count = *stat;
2205 	} while (dtrace_cas32(stat, count, count + 1) != count);
2206 
2207 	return (0);
2208 }
2209 
2210 /*
2211  * This routine commits an active speculation.  If the specified speculation
2212  * is not in a valid state to perform a commit(), this routine will silently do
2213  * nothing.  The state of the specified speculation is transitioned according
2214  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2215  */
2216 static void
2217 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2218     dtrace_specid_t which)
2219 {
2220 	dtrace_speculation_t *spec;
2221 	dtrace_buffer_t *src, *dest;
2222 	uintptr_t daddr, saddr, dlimit;
2223 	dtrace_speculation_state_t current, new;
2224 	intptr_t offs;
2225 
2226 	if (which == 0)
2227 		return;
2228 
2229 	if (which > state->dts_nspeculations) {
2230 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2231 		return;
2232 	}
2233 
2234 	spec = &state->dts_speculations[which - 1];
2235 	src = &spec->dtsp_buffer[cpu];
2236 	dest = &state->dts_buffer[cpu];
2237 
2238 	do {
2239 		current = spec->dtsp_state;
2240 
2241 		if (current == DTRACESPEC_COMMITTINGMANY)
2242 			break;
2243 
2244 		switch (current) {
2245 		case DTRACESPEC_INACTIVE:
2246 		case DTRACESPEC_DISCARDING:
2247 			return;
2248 
2249 		case DTRACESPEC_COMMITTING:
2250 			/*
2251 			 * This is only possible if we are (a) commit()'ing
2252 			 * without having done a prior speculate() on this CPU
2253 			 * and (b) racing with another commit() on a different
2254 			 * CPU.  There's nothing to do -- we just assert that
2255 			 * our offset is 0.
2256 			 */
2257 			ASSERT(src->dtb_offset == 0);
2258 			return;
2259 
2260 		case DTRACESPEC_ACTIVE:
2261 			new = DTRACESPEC_COMMITTING;
2262 			break;
2263 
2264 		case DTRACESPEC_ACTIVEONE:
2265 			/*
2266 			 * This speculation is active on one CPU.  If our
2267 			 * buffer offset is non-zero, we know that the one CPU
2268 			 * must be us.  Otherwise, we are committing on a
2269 			 * different CPU from the speculate(), and we must
2270 			 * rely on being asynchronously cleaned.
2271 			 */
2272 			if (src->dtb_offset != 0) {
2273 				new = DTRACESPEC_COMMITTING;
2274 				break;
2275 			}
2276 			/*FALLTHROUGH*/
2277 
2278 		case DTRACESPEC_ACTIVEMANY:
2279 			new = DTRACESPEC_COMMITTINGMANY;
2280 			break;
2281 
2282 		default:
2283 			ASSERT(0);
2284 		}
2285 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2286 	    current, new) != current);
2287 
2288 	/*
2289 	 * We have set the state to indicate that we are committing this
2290 	 * speculation.  Now reserve the necessary space in the destination
2291 	 * buffer.
2292 	 */
2293 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2294 	    sizeof (uint64_t), state, NULL)) < 0) {
2295 		dtrace_buffer_drop(dest);
2296 		goto out;
2297 	}
2298 
2299 	/*
2300 	 * We have the space; copy the buffer across.  (Note that this is a
2301 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2302 	 * a serious performance issue, a high-performance DTrace-specific
2303 	 * bcopy() should obviously be invented.)
2304 	 */
2305 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2306 	dlimit = daddr + src->dtb_offset;
2307 	saddr = (uintptr_t)src->dtb_tomax;
2308 
2309 	/*
2310 	 * First, the aligned portion.
2311 	 */
2312 	while (dlimit - daddr >= sizeof (uint64_t)) {
2313 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2314 
2315 		daddr += sizeof (uint64_t);
2316 		saddr += sizeof (uint64_t);
2317 	}
2318 
2319 	/*
2320 	 * Now any left-over bit...
2321 	 */
2322 	while (dlimit - daddr)
2323 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2324 
2325 	/*
2326 	 * Finally, commit the reserved space in the destination buffer.
2327 	 */
2328 	dest->dtb_offset = offs + src->dtb_offset;
2329 
2330 out:
2331 	/*
2332 	 * If we're lucky enough to be the only active CPU on this speculation
2333 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2334 	 */
2335 	if (current == DTRACESPEC_ACTIVE ||
2336 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2337 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2338 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2339 
2340 		ASSERT(rval == DTRACESPEC_COMMITTING);
2341 	}
2342 
2343 	src->dtb_offset = 0;
2344 	src->dtb_xamot_drops += src->dtb_drops;
2345 	src->dtb_drops = 0;
2346 }
2347 
2348 /*
2349  * This routine discards an active speculation.  If the specified speculation
2350  * is not in a valid state to perform a discard(), this routine will silently
2351  * do nothing.  The state of the specified speculation is transitioned
2352  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2353  */
2354 static void
2355 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2356     dtrace_specid_t which)
2357 {
2358 	dtrace_speculation_t *spec;
2359 	dtrace_speculation_state_t current, new;
2360 	dtrace_buffer_t *buf;
2361 
2362 	if (which == 0)
2363 		return;
2364 
2365 	if (which > state->dts_nspeculations) {
2366 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2367 		return;
2368 	}
2369 
2370 	spec = &state->dts_speculations[which - 1];
2371 	buf = &spec->dtsp_buffer[cpu];
2372 
2373 	do {
2374 		current = spec->dtsp_state;
2375 
2376 		switch (current) {
2377 		case DTRACESPEC_INACTIVE:
2378 		case DTRACESPEC_COMMITTINGMANY:
2379 		case DTRACESPEC_COMMITTING:
2380 		case DTRACESPEC_DISCARDING:
2381 			return;
2382 
2383 		case DTRACESPEC_ACTIVE:
2384 		case DTRACESPEC_ACTIVEMANY:
2385 			new = DTRACESPEC_DISCARDING;
2386 			break;
2387 
2388 		case DTRACESPEC_ACTIVEONE:
2389 			if (buf->dtb_offset != 0) {
2390 				new = DTRACESPEC_INACTIVE;
2391 			} else {
2392 				new = DTRACESPEC_DISCARDING;
2393 			}
2394 			break;
2395 
2396 		default:
2397 			ASSERT(0);
2398 		}
2399 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2400 	    current, new) != current);
2401 
2402 	buf->dtb_offset = 0;
2403 	buf->dtb_drops = 0;
2404 }
2405 
2406 /*
2407  * Note:  not called from probe context.  This function is called
2408  * asynchronously from cross call context to clean any speculations that are
2409  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2410  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2411  * speculation.
2412  */
2413 static void
2414 dtrace_speculation_clean_here(dtrace_state_t *state)
2415 {
2416 	dtrace_icookie_t cookie;
2417 	processorid_t cpu = CPU->cpu_id;
2418 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2419 	dtrace_specid_t i;
2420 
2421 	cookie = dtrace_interrupt_disable();
2422 
2423 	if (dest->dtb_tomax == NULL) {
2424 		dtrace_interrupt_enable(cookie);
2425 		return;
2426 	}
2427 
2428 	for (i = 0; i < state->dts_nspeculations; i++) {
2429 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2430 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2431 
2432 		if (src->dtb_tomax == NULL)
2433 			continue;
2434 
2435 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2436 			src->dtb_offset = 0;
2437 			continue;
2438 		}
2439 
2440 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2441 			continue;
2442 
2443 		if (src->dtb_offset == 0)
2444 			continue;
2445 
2446 		dtrace_speculation_commit(state, cpu, i + 1);
2447 	}
2448 
2449 	dtrace_interrupt_enable(cookie);
2450 }
2451 
2452 /*
2453  * Note:  not called from probe context.  This function is called
2454  * asynchronously (and at a regular interval) to clean any speculations that
2455  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2456  * is work to be done, it cross calls all CPUs to perform that work;
2457  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2458  * INACTIVE state until they have been cleaned by all CPUs.
2459  */
2460 static void
2461 dtrace_speculation_clean(dtrace_state_t *state)
2462 {
2463 	int work = 0, rv;
2464 	dtrace_specid_t i;
2465 
2466 	for (i = 0; i < state->dts_nspeculations; i++) {
2467 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2468 
2469 		ASSERT(!spec->dtsp_cleaning);
2470 
2471 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2472 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2473 			continue;
2474 
2475 		work++;
2476 		spec->dtsp_cleaning = 1;
2477 	}
2478 
2479 	if (!work)
2480 		return;
2481 
2482 	dtrace_xcall(DTRACE_CPUALL,
2483 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2484 
2485 	/*
2486 	 * We now know that all CPUs have committed or discarded their
2487 	 * speculation buffers, as appropriate.  We can now set the state
2488 	 * to inactive.
2489 	 */
2490 	for (i = 0; i < state->dts_nspeculations; i++) {
2491 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2492 		dtrace_speculation_state_t current, new;
2493 
2494 		if (!spec->dtsp_cleaning)
2495 			continue;
2496 
2497 		current = spec->dtsp_state;
2498 		ASSERT(current == DTRACESPEC_DISCARDING ||
2499 		    current == DTRACESPEC_COMMITTINGMANY);
2500 
2501 		new = DTRACESPEC_INACTIVE;
2502 
2503 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2504 		ASSERT(rv == current);
2505 		spec->dtsp_cleaning = 0;
2506 	}
2507 }
2508 
2509 /*
2510  * Called as part of a speculate() to get the speculative buffer associated
2511  * with a given speculation.  Returns NULL if the specified speculation is not
2512  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2513  * the active CPU is not the specified CPU -- the speculation will be
2514  * atomically transitioned into the ACTIVEMANY state.
2515  */
2516 static dtrace_buffer_t *
2517 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2518     dtrace_specid_t which)
2519 {
2520 	dtrace_speculation_t *spec;
2521 	dtrace_speculation_state_t current, new;
2522 	dtrace_buffer_t *buf;
2523 
2524 	if (which == 0)
2525 		return (NULL);
2526 
2527 	if (which > state->dts_nspeculations) {
2528 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2529 		return (NULL);
2530 	}
2531 
2532 	spec = &state->dts_speculations[which - 1];
2533 	buf = &spec->dtsp_buffer[cpuid];
2534 
2535 	do {
2536 		current = spec->dtsp_state;
2537 
2538 		switch (current) {
2539 		case DTRACESPEC_INACTIVE:
2540 		case DTRACESPEC_COMMITTINGMANY:
2541 		case DTRACESPEC_DISCARDING:
2542 			return (NULL);
2543 
2544 		case DTRACESPEC_COMMITTING:
2545 			ASSERT(buf->dtb_offset == 0);
2546 			return (NULL);
2547 
2548 		case DTRACESPEC_ACTIVEONE:
2549 			/*
2550 			 * This speculation is currently active on one CPU.
2551 			 * Check the offset in the buffer; if it's non-zero,
2552 			 * that CPU must be us (and we leave the state alone).
2553 			 * If it's zero, assume that we're starting on a new
2554 			 * CPU -- and change the state to indicate that the
2555 			 * speculation is active on more than one CPU.
2556 			 */
2557 			if (buf->dtb_offset != 0)
2558 				return (buf);
2559 
2560 			new = DTRACESPEC_ACTIVEMANY;
2561 			break;
2562 
2563 		case DTRACESPEC_ACTIVEMANY:
2564 			return (buf);
2565 
2566 		case DTRACESPEC_ACTIVE:
2567 			new = DTRACESPEC_ACTIVEONE;
2568 			break;
2569 
2570 		default:
2571 			ASSERT(0);
2572 		}
2573 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2574 	    current, new) != current);
2575 
2576 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2577 	return (buf);
2578 }
2579 
2580 /*
2581  * Return a string.  In the event that the user lacks the privilege to access
2582  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2583  * don't fail access checking.
2584  *
2585  * dtrace_dif_variable() uses this routine as a helper for various
2586  * builtin values such as 'execname' and 'probefunc.'
2587  */
2588 uintptr_t
2589 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2590     dtrace_mstate_t *mstate)
2591 {
2592 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2593 	uintptr_t ret;
2594 	size_t strsz;
2595 
2596 	/*
2597 	 * The easy case: this probe is allowed to read all of memory, so
2598 	 * we can just return this as a vanilla pointer.
2599 	 */
2600 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2601 		return (addr);
2602 
2603 	/*
2604 	 * This is the tougher case: we copy the string in question from
2605 	 * kernel memory into scratch memory and return it that way: this
2606 	 * ensures that we won't trip up when access checking tests the
2607 	 * BYREF return value.
2608 	 */
2609 	strsz = dtrace_strlen((char *)addr, size) + 1;
2610 
2611 	if (mstate->dtms_scratch_ptr + strsz >
2612 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2613 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2614 		return (NULL);
2615 	}
2616 
2617 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2618 	    strsz);
2619 	ret = mstate->dtms_scratch_ptr;
2620 	mstate->dtms_scratch_ptr += strsz;
2621 	return (ret);
2622 }
2623 
2624 /*
2625  * This function implements the DIF emulator's variable lookups.  The emulator
2626  * passes a reserved variable identifier and optional built-in array index.
2627  */
2628 static uint64_t
2629 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2630     uint64_t ndx)
2631 {
2632 	/*
2633 	 * If we're accessing one of the uncached arguments, we'll turn this
2634 	 * into a reference in the args array.
2635 	 */
2636 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2637 		ndx = v - DIF_VAR_ARG0;
2638 		v = DIF_VAR_ARGS;
2639 	}
2640 
2641 	switch (v) {
2642 	case DIF_VAR_ARGS:
2643 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2644 		if (ndx >= sizeof (mstate->dtms_arg) /
2645 		    sizeof (mstate->dtms_arg[0])) {
2646 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2647 			dtrace_provider_t *pv;
2648 			uint64_t val;
2649 
2650 			pv = mstate->dtms_probe->dtpr_provider;
2651 			if (pv->dtpv_pops.dtps_getargval != NULL)
2652 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2653 				    mstate->dtms_probe->dtpr_id,
2654 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2655 			else
2656 				val = dtrace_getarg(ndx, aframes);
2657 
2658 			/*
2659 			 * This is regrettably required to keep the compiler
2660 			 * from tail-optimizing the call to dtrace_getarg().
2661 			 * The condition always evaluates to true, but the
2662 			 * compiler has no way of figuring that out a priori.
2663 			 * (None of this would be necessary if the compiler
2664 			 * could be relied upon to _always_ tail-optimize
2665 			 * the call to dtrace_getarg() -- but it can't.)
2666 			 */
2667 			if (mstate->dtms_probe != NULL)
2668 				return (val);
2669 
2670 			ASSERT(0);
2671 		}
2672 
2673 		return (mstate->dtms_arg[ndx]);
2674 
2675 	case DIF_VAR_UREGS: {
2676 		klwp_t *lwp;
2677 
2678 		if (!dtrace_priv_proc(state))
2679 			return (0);
2680 
2681 		if ((lwp = curthread->t_lwp) == NULL) {
2682 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2683 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2684 			return (0);
2685 		}
2686 
2687 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2688 	}
2689 
2690 	case DIF_VAR_CURTHREAD:
2691 		if (!dtrace_priv_kernel(state))
2692 			return (0);
2693 		return ((uint64_t)(uintptr_t)curthread);
2694 
2695 	case DIF_VAR_TIMESTAMP:
2696 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2697 			mstate->dtms_timestamp = dtrace_gethrtime();
2698 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2699 		}
2700 		return (mstate->dtms_timestamp);
2701 
2702 	case DIF_VAR_VTIMESTAMP:
2703 		ASSERT(dtrace_vtime_references != 0);
2704 		return (curthread->t_dtrace_vtime);
2705 
2706 	case DIF_VAR_WALLTIMESTAMP:
2707 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2708 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2709 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2710 		}
2711 		return (mstate->dtms_walltimestamp);
2712 
2713 	case DIF_VAR_IPL:
2714 		if (!dtrace_priv_kernel(state))
2715 			return (0);
2716 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2717 			mstate->dtms_ipl = dtrace_getipl();
2718 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2719 		}
2720 		return (mstate->dtms_ipl);
2721 
2722 	case DIF_VAR_EPID:
2723 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2724 		return (mstate->dtms_epid);
2725 
2726 	case DIF_VAR_ID:
2727 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2728 		return (mstate->dtms_probe->dtpr_id);
2729 
2730 	case DIF_VAR_STACKDEPTH:
2731 		if (!dtrace_priv_kernel(state))
2732 			return (0);
2733 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2734 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2735 
2736 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2737 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2738 		}
2739 		return (mstate->dtms_stackdepth);
2740 
2741 	case DIF_VAR_USTACKDEPTH:
2742 		if (!dtrace_priv_proc(state))
2743 			return (0);
2744 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2745 			/*
2746 			 * See comment in DIF_VAR_PID.
2747 			 */
2748 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2749 			    CPU_ON_INTR(CPU)) {
2750 				mstate->dtms_ustackdepth = 0;
2751 			} else {
2752 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2753 				mstate->dtms_ustackdepth =
2754 				    dtrace_getustackdepth();
2755 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2756 			}
2757 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2758 		}
2759 		return (mstate->dtms_ustackdepth);
2760 
2761 	case DIF_VAR_CALLER:
2762 		if (!dtrace_priv_kernel(state))
2763 			return (0);
2764 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2765 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2766 
2767 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2768 				/*
2769 				 * If this is an unanchored probe, we are
2770 				 * required to go through the slow path:
2771 				 * dtrace_caller() only guarantees correct
2772 				 * results for anchored probes.
2773 				 */
2774 				pc_t caller[2];
2775 
2776 				dtrace_getpcstack(caller, 2, aframes,
2777 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2778 				mstate->dtms_caller = caller[1];
2779 			} else if ((mstate->dtms_caller =
2780 			    dtrace_caller(aframes)) == -1) {
2781 				/*
2782 				 * We have failed to do this the quick way;
2783 				 * we must resort to the slower approach of
2784 				 * calling dtrace_getpcstack().
2785 				 */
2786 				pc_t caller;
2787 
2788 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2789 				mstate->dtms_caller = caller;
2790 			}
2791 
2792 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2793 		}
2794 		return (mstate->dtms_caller);
2795 
2796 	case DIF_VAR_UCALLER:
2797 		if (!dtrace_priv_proc(state))
2798 			return (0);
2799 
2800 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2801 			uint64_t ustack[3];
2802 
2803 			/*
2804 			 * dtrace_getupcstack() fills in the first uint64_t
2805 			 * with the current PID.  The second uint64_t will
2806 			 * be the program counter at user-level.  The third
2807 			 * uint64_t will contain the caller, which is what
2808 			 * we're after.
2809 			 */
2810 			ustack[2] = NULL;
2811 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2812 			dtrace_getupcstack(ustack, 3);
2813 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2814 			mstate->dtms_ucaller = ustack[2];
2815 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2816 		}
2817 
2818 		return (mstate->dtms_ucaller);
2819 
2820 	case DIF_VAR_PROBEPROV:
2821 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2822 		return (dtrace_dif_varstr(
2823 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2824 		    state, mstate));
2825 
2826 	case DIF_VAR_PROBEMOD:
2827 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2828 		return (dtrace_dif_varstr(
2829 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2830 		    state, mstate));
2831 
2832 	case DIF_VAR_PROBEFUNC:
2833 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2834 		return (dtrace_dif_varstr(
2835 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2836 		    state, mstate));
2837 
2838 	case DIF_VAR_PROBENAME:
2839 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2840 		return (dtrace_dif_varstr(
2841 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2842 		    state, mstate));
2843 
2844 	case DIF_VAR_PID:
2845 		if (!dtrace_priv_proc(state))
2846 			return (0);
2847 
2848 		/*
2849 		 * Note that we are assuming that an unanchored probe is
2850 		 * always due to a high-level interrupt.  (And we're assuming
2851 		 * that there is only a single high level interrupt.)
2852 		 */
2853 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2854 			return (pid0.pid_id);
2855 
2856 		/*
2857 		 * It is always safe to dereference one's own t_procp pointer:
2858 		 * it always points to a valid, allocated proc structure.
2859 		 * Further, it is always safe to dereference the p_pidp member
2860 		 * of one's own proc structure.  (These are truisms becuase
2861 		 * threads and processes don't clean up their own state --
2862 		 * they leave that task to whomever reaps them.)
2863 		 */
2864 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2865 
2866 	case DIF_VAR_PPID:
2867 		if (!dtrace_priv_proc(state))
2868 			return (0);
2869 
2870 		/*
2871 		 * See comment in DIF_VAR_PID.
2872 		 */
2873 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2874 			return (pid0.pid_id);
2875 
2876 		/*
2877 		 * It is always safe to dereference one's own t_procp pointer:
2878 		 * it always points to a valid, allocated proc structure.
2879 		 * (This is true because threads don't clean up their own
2880 		 * state -- they leave that task to whomever reaps them.)
2881 		 */
2882 		return ((uint64_t)curthread->t_procp->p_ppid);
2883 
2884 	case DIF_VAR_TID:
2885 		/*
2886 		 * See comment in DIF_VAR_PID.
2887 		 */
2888 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2889 			return (0);
2890 
2891 		return ((uint64_t)curthread->t_tid);
2892 
2893 	case DIF_VAR_EXECNAME:
2894 		if (!dtrace_priv_proc(state))
2895 			return (0);
2896 
2897 		/*
2898 		 * See comment in DIF_VAR_PID.
2899 		 */
2900 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2901 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2902 
2903 		/*
2904 		 * It is always safe to dereference one's own t_procp pointer:
2905 		 * it always points to a valid, allocated proc structure.
2906 		 * (This is true because threads don't clean up their own
2907 		 * state -- they leave that task to whomever reaps them.)
2908 		 */
2909 		return (dtrace_dif_varstr(
2910 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
2911 		    state, mstate));
2912 
2913 	case DIF_VAR_ZONENAME:
2914 		if (!dtrace_priv_proc(state))
2915 			return (0);
2916 
2917 		/*
2918 		 * See comment in DIF_VAR_PID.
2919 		 */
2920 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2921 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2922 
2923 		/*
2924 		 * It is always safe to dereference one's own t_procp pointer:
2925 		 * it always points to a valid, allocated proc structure.
2926 		 * (This is true because threads don't clean up their own
2927 		 * state -- they leave that task to whomever reaps them.)
2928 		 */
2929 		return (dtrace_dif_varstr(
2930 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
2931 		    state, mstate));
2932 
2933 	case DIF_VAR_UID:
2934 		if (!dtrace_priv_proc(state))
2935 			return (0);
2936 
2937 		/*
2938 		 * See comment in DIF_VAR_PID.
2939 		 */
2940 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2941 			return ((uint64_t)p0.p_cred->cr_uid);
2942 
2943 		/*
2944 		 * It is always safe to dereference one's own t_procp pointer:
2945 		 * it always points to a valid, allocated proc structure.
2946 		 * (This is true because threads don't clean up their own
2947 		 * state -- they leave that task to whomever reaps them.)
2948 		 *
2949 		 * Additionally, it is safe to dereference one's own process
2950 		 * credential, since this is never NULL after process birth.
2951 		 */
2952 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
2953 
2954 	case DIF_VAR_GID:
2955 		if (!dtrace_priv_proc(state))
2956 			return (0);
2957 
2958 		/*
2959 		 * See comment in DIF_VAR_PID.
2960 		 */
2961 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2962 			return ((uint64_t)p0.p_cred->cr_gid);
2963 
2964 		/*
2965 		 * It is always safe to dereference one's own t_procp pointer:
2966 		 * it always points to a valid, allocated proc structure.
2967 		 * (This is true because threads don't clean up their own
2968 		 * state -- they leave that task to whomever reaps them.)
2969 		 *
2970 		 * Additionally, it is safe to dereference one's own process
2971 		 * credential, since this is never NULL after process birth.
2972 		 */
2973 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
2974 
2975 	case DIF_VAR_ERRNO: {
2976 		klwp_t *lwp;
2977 		if (!dtrace_priv_proc(state))
2978 			return (0);
2979 
2980 		/*
2981 		 * See comment in DIF_VAR_PID.
2982 		 */
2983 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2984 			return (0);
2985 
2986 		/*
2987 		 * It is always safe to dereference one's own t_lwp pointer in
2988 		 * the event that this pointer is non-NULL.  (This is true
2989 		 * because threads and lwps don't clean up their own state --
2990 		 * they leave that task to whomever reaps them.)
2991 		 */
2992 		if ((lwp = curthread->t_lwp) == NULL)
2993 			return (0);
2994 
2995 		return ((uint64_t)lwp->lwp_errno);
2996 	}
2997 	default:
2998 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2999 		return (0);
3000 	}
3001 }
3002 
3003 /*
3004  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3005  * Notice that we don't bother validating the proper number of arguments or
3006  * their types in the tuple stack.  This isn't needed because all argument
3007  * interpretation is safe because of our load safety -- the worst that can
3008  * happen is that a bogus program can obtain bogus results.
3009  */
3010 static void
3011 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3012     dtrace_key_t *tupregs, int nargs,
3013     dtrace_mstate_t *mstate, dtrace_state_t *state)
3014 {
3015 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3016 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3017 	dtrace_vstate_t *vstate = &state->dts_vstate;
3018 
3019 	union {
3020 		mutex_impl_t mi;
3021 		uint64_t mx;
3022 	} m;
3023 
3024 	union {
3025 		krwlock_t ri;
3026 		uintptr_t rw;
3027 	} r;
3028 
3029 	switch (subr) {
3030 	case DIF_SUBR_RAND:
3031 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3032 		break;
3033 
3034 	case DIF_SUBR_MUTEX_OWNED:
3035 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3036 		    mstate, vstate)) {
3037 			regs[rd] = NULL;
3038 			break;
3039 		}
3040 
3041 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3042 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3043 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3044 		else
3045 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3046 		break;
3047 
3048 	case DIF_SUBR_MUTEX_OWNER:
3049 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3050 		    mstate, vstate)) {
3051 			regs[rd] = NULL;
3052 			break;
3053 		}
3054 
3055 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3056 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3057 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3058 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3059 		else
3060 			regs[rd] = 0;
3061 		break;
3062 
3063 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3064 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3065 		    mstate, vstate)) {
3066 			regs[rd] = NULL;
3067 			break;
3068 		}
3069 
3070 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3071 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3072 		break;
3073 
3074 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3075 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3076 		    mstate, vstate)) {
3077 			regs[rd] = NULL;
3078 			break;
3079 		}
3080 
3081 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3082 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3083 		break;
3084 
3085 	case DIF_SUBR_RW_READ_HELD: {
3086 		uintptr_t tmp;
3087 
3088 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3089 		    mstate, vstate)) {
3090 			regs[rd] = NULL;
3091 			break;
3092 		}
3093 
3094 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3095 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3096 		break;
3097 	}
3098 
3099 	case DIF_SUBR_RW_WRITE_HELD:
3100 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3101 		    mstate, vstate)) {
3102 			regs[rd] = NULL;
3103 			break;
3104 		}
3105 
3106 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3107 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3108 		break;
3109 
3110 	case DIF_SUBR_RW_ISWRITER:
3111 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3112 		    mstate, vstate)) {
3113 			regs[rd] = NULL;
3114 			break;
3115 		}
3116 
3117 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3118 		regs[rd] = _RW_ISWRITER(&r.ri);
3119 		break;
3120 
3121 	case DIF_SUBR_BCOPY: {
3122 		/*
3123 		 * We need to be sure that the destination is in the scratch
3124 		 * region -- no other region is allowed.
3125 		 */
3126 		uintptr_t src = tupregs[0].dttk_value;
3127 		uintptr_t dest = tupregs[1].dttk_value;
3128 		size_t size = tupregs[2].dttk_value;
3129 
3130 		if (!dtrace_inscratch(dest, size, mstate)) {
3131 			*flags |= CPU_DTRACE_BADADDR;
3132 			*illval = regs[rd];
3133 			break;
3134 		}
3135 
3136 		if (!dtrace_canload(src, size, mstate, vstate)) {
3137 			regs[rd] = NULL;
3138 			break;
3139 		}
3140 
3141 		dtrace_bcopy((void *)src, (void *)dest, size);
3142 		break;
3143 	}
3144 
3145 	case DIF_SUBR_ALLOCA:
3146 	case DIF_SUBR_COPYIN: {
3147 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3148 		uint64_t size =
3149 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3150 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3151 
3152 		/*
3153 		 * This action doesn't require any credential checks since
3154 		 * probes will not activate in user contexts to which the
3155 		 * enabling user does not have permissions.
3156 		 */
3157 
3158 		/*
3159 		 * Rounding up the user allocation size could have overflowed
3160 		 * a large, bogus allocation (like -1ULL) to 0.
3161 		 */
3162 		if (scratch_size < size ||
3163 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3164 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3165 			regs[rd] = NULL;
3166 			break;
3167 		}
3168 
3169 		if (subr == DIF_SUBR_COPYIN) {
3170 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3171 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3172 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3173 		}
3174 
3175 		mstate->dtms_scratch_ptr += scratch_size;
3176 		regs[rd] = dest;
3177 		break;
3178 	}
3179 
3180 	case DIF_SUBR_COPYINTO: {
3181 		uint64_t size = tupregs[1].dttk_value;
3182 		uintptr_t dest = tupregs[2].dttk_value;
3183 
3184 		/*
3185 		 * This action doesn't require any credential checks since
3186 		 * probes will not activate in user contexts to which the
3187 		 * enabling user does not have permissions.
3188 		 */
3189 		if (!dtrace_inscratch(dest, size, mstate)) {
3190 			*flags |= CPU_DTRACE_BADADDR;
3191 			*illval = regs[rd];
3192 			break;
3193 		}
3194 
3195 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3196 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3197 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3198 		break;
3199 	}
3200 
3201 	case DIF_SUBR_COPYINSTR: {
3202 		uintptr_t dest = mstate->dtms_scratch_ptr;
3203 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3204 
3205 		if (nargs > 1 && tupregs[1].dttk_value < size)
3206 			size = tupregs[1].dttk_value + 1;
3207 
3208 		/*
3209 		 * This action doesn't require any credential checks since
3210 		 * probes will not activate in user contexts to which the
3211 		 * enabling user does not have permissions.
3212 		 */
3213 		if (!DTRACE_INSCRATCH(mstate, size)) {
3214 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3215 			regs[rd] = NULL;
3216 			break;
3217 		}
3218 
3219 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3220 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3221 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3222 
3223 		((char *)dest)[size - 1] = '\0';
3224 		mstate->dtms_scratch_ptr += size;
3225 		regs[rd] = dest;
3226 		break;
3227 	}
3228 
3229 	case DIF_SUBR_MSGSIZE:
3230 	case DIF_SUBR_MSGDSIZE: {
3231 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3232 		uintptr_t wptr, rptr;
3233 		size_t count = 0;
3234 		int cont = 0;
3235 
3236 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3237 
3238 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3239 			    vstate)) {
3240 				regs[rd] = NULL;
3241 				break;
3242 			}
3243 
3244 			wptr = dtrace_loadptr(baddr +
3245 			    offsetof(mblk_t, b_wptr));
3246 
3247 			rptr = dtrace_loadptr(baddr +
3248 			    offsetof(mblk_t, b_rptr));
3249 
3250 			if (wptr < rptr) {
3251 				*flags |= CPU_DTRACE_BADADDR;
3252 				*illval = tupregs[0].dttk_value;
3253 				break;
3254 			}
3255 
3256 			daddr = dtrace_loadptr(baddr +
3257 			    offsetof(mblk_t, b_datap));
3258 
3259 			baddr = dtrace_loadptr(baddr +
3260 			    offsetof(mblk_t, b_cont));
3261 
3262 			/*
3263 			 * We want to prevent against denial-of-service here,
3264 			 * so we're only going to search the list for
3265 			 * dtrace_msgdsize_max mblks.
3266 			 */
3267 			if (cont++ > dtrace_msgdsize_max) {
3268 				*flags |= CPU_DTRACE_ILLOP;
3269 				break;
3270 			}
3271 
3272 			if (subr == DIF_SUBR_MSGDSIZE) {
3273 				if (dtrace_load8(daddr +
3274 				    offsetof(dblk_t, db_type)) != M_DATA)
3275 					continue;
3276 			}
3277 
3278 			count += wptr - rptr;
3279 		}
3280 
3281 		if (!(*flags & CPU_DTRACE_FAULT))
3282 			regs[rd] = count;
3283 
3284 		break;
3285 	}
3286 
3287 	case DIF_SUBR_PROGENYOF: {
3288 		pid_t pid = tupregs[0].dttk_value;
3289 		proc_t *p;
3290 		int rval = 0;
3291 
3292 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3293 
3294 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3295 			if (p->p_pidp->pid_id == pid) {
3296 				rval = 1;
3297 				break;
3298 			}
3299 		}
3300 
3301 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3302 
3303 		regs[rd] = rval;
3304 		break;
3305 	}
3306 
3307 	case DIF_SUBR_SPECULATION:
3308 		regs[rd] = dtrace_speculation(state);
3309 		break;
3310 
3311 	case DIF_SUBR_COPYOUT: {
3312 		uintptr_t kaddr = tupregs[0].dttk_value;
3313 		uintptr_t uaddr = tupregs[1].dttk_value;
3314 		uint64_t size = tupregs[2].dttk_value;
3315 
3316 		if (!dtrace_destructive_disallow &&
3317 		    dtrace_priv_proc_control(state) &&
3318 		    !dtrace_istoxic(kaddr, size)) {
3319 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3320 			dtrace_copyout(kaddr, uaddr, size, flags);
3321 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3322 		}
3323 		break;
3324 	}
3325 
3326 	case DIF_SUBR_COPYOUTSTR: {
3327 		uintptr_t kaddr = tupregs[0].dttk_value;
3328 		uintptr_t uaddr = tupregs[1].dttk_value;
3329 		uint64_t size = tupregs[2].dttk_value;
3330 
3331 		if (!dtrace_destructive_disallow &&
3332 		    dtrace_priv_proc_control(state) &&
3333 		    !dtrace_istoxic(kaddr, size)) {
3334 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3335 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3336 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3337 		}
3338 		break;
3339 	}
3340 
3341 	case DIF_SUBR_STRLEN: {
3342 		size_t sz;
3343 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3344 		sz = dtrace_strlen((char *)addr,
3345 		    state->dts_options[DTRACEOPT_STRSIZE]);
3346 
3347 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3348 			regs[rd] = NULL;
3349 			break;
3350 		}
3351 
3352 		regs[rd] = sz;
3353 
3354 		break;
3355 	}
3356 
3357 	case DIF_SUBR_STRCHR:
3358 	case DIF_SUBR_STRRCHR: {
3359 		/*
3360 		 * We're going to iterate over the string looking for the
3361 		 * specified character.  We will iterate until we have reached
3362 		 * the string length or we have found the character.  If this
3363 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3364 		 * of the specified character instead of the first.
3365 		 */
3366 		uintptr_t saddr = tupregs[0].dttk_value;
3367 		uintptr_t addr = tupregs[0].dttk_value;
3368 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3369 		char c, target = (char)tupregs[1].dttk_value;
3370 
3371 		for (regs[rd] = NULL; addr < limit; addr++) {
3372 			if ((c = dtrace_load8(addr)) == target) {
3373 				regs[rd] = addr;
3374 
3375 				if (subr == DIF_SUBR_STRCHR)
3376 					break;
3377 			}
3378 
3379 			if (c == '\0')
3380 				break;
3381 		}
3382 
3383 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3384 			regs[rd] = NULL;
3385 			break;
3386 		}
3387 
3388 		break;
3389 	}
3390 
3391 	case DIF_SUBR_STRSTR:
3392 	case DIF_SUBR_INDEX:
3393 	case DIF_SUBR_RINDEX: {
3394 		/*
3395 		 * We're going to iterate over the string looking for the
3396 		 * specified string.  We will iterate until we have reached
3397 		 * the string length or we have found the string.  (Yes, this
3398 		 * is done in the most naive way possible -- but considering
3399 		 * that the string we're searching for is likely to be
3400 		 * relatively short, the complexity of Rabin-Karp or similar
3401 		 * hardly seems merited.)
3402 		 */
3403 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3404 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3405 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3406 		size_t len = dtrace_strlen(addr, size);
3407 		size_t sublen = dtrace_strlen(substr, size);
3408 		char *limit = addr + len, *orig = addr;
3409 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3410 		int inc = 1;
3411 
3412 		regs[rd] = notfound;
3413 
3414 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3415 			regs[rd] = NULL;
3416 			break;
3417 		}
3418 
3419 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3420 		    vstate)) {
3421 			regs[rd] = NULL;
3422 			break;
3423 		}
3424 
3425 		/*
3426 		 * strstr() and index()/rindex() have similar semantics if
3427 		 * both strings are the empty string: strstr() returns a
3428 		 * pointer to the (empty) string, and index() and rindex()
3429 		 * both return index 0 (regardless of any position argument).
3430 		 */
3431 		if (sublen == 0 && len == 0) {
3432 			if (subr == DIF_SUBR_STRSTR)
3433 				regs[rd] = (uintptr_t)addr;
3434 			else
3435 				regs[rd] = 0;
3436 			break;
3437 		}
3438 
3439 		if (subr != DIF_SUBR_STRSTR) {
3440 			if (subr == DIF_SUBR_RINDEX) {
3441 				limit = orig - 1;
3442 				addr += len;
3443 				inc = -1;
3444 			}
3445 
3446 			/*
3447 			 * Both index() and rindex() take an optional position
3448 			 * argument that denotes the starting position.
3449 			 */
3450 			if (nargs == 3) {
3451 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3452 
3453 				/*
3454 				 * If the position argument to index() is
3455 				 * negative, Perl implicitly clamps it at
3456 				 * zero.  This semantic is a little surprising
3457 				 * given the special meaning of negative
3458 				 * positions to similar Perl functions like
3459 				 * substr(), but it appears to reflect a
3460 				 * notion that index() can start from a
3461 				 * negative index and increment its way up to
3462 				 * the string.  Given this notion, Perl's
3463 				 * rindex() is at least self-consistent in
3464 				 * that it implicitly clamps positions greater
3465 				 * than the string length to be the string
3466 				 * length.  Where Perl completely loses
3467 				 * coherence, however, is when the specified
3468 				 * substring is the empty string ("").  In
3469 				 * this case, even if the position is
3470 				 * negative, rindex() returns 0 -- and even if
3471 				 * the position is greater than the length,
3472 				 * index() returns the string length.  These
3473 				 * semantics violate the notion that index()
3474 				 * should never return a value less than the
3475 				 * specified position and that rindex() should
3476 				 * never return a value greater than the
3477 				 * specified position.  (One assumes that
3478 				 * these semantics are artifacts of Perl's
3479 				 * implementation and not the results of
3480 				 * deliberate design -- it beggars belief that
3481 				 * even Larry Wall could desire such oddness.)
3482 				 * While in the abstract one would wish for
3483 				 * consistent position semantics across
3484 				 * substr(), index() and rindex() -- or at the
3485 				 * very least self-consistent position
3486 				 * semantics for index() and rindex() -- we
3487 				 * instead opt to keep with the extant Perl
3488 				 * semantics, in all their broken glory.  (Do
3489 				 * we have more desire to maintain Perl's
3490 				 * semantics than Perl does?  Probably.)
3491 				 */
3492 				if (subr == DIF_SUBR_RINDEX) {
3493 					if (pos < 0) {
3494 						if (sublen == 0)
3495 							regs[rd] = 0;
3496 						break;
3497 					}
3498 
3499 					if (pos > len)
3500 						pos = len;
3501 				} else {
3502 					if (pos < 0)
3503 						pos = 0;
3504 
3505 					if (pos >= len) {
3506 						if (sublen == 0)
3507 							regs[rd] = len;
3508 						break;
3509 					}
3510 				}
3511 
3512 				addr = orig + pos;
3513 			}
3514 		}
3515 
3516 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3517 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3518 				if (subr != DIF_SUBR_STRSTR) {
3519 					/*
3520 					 * As D index() and rindex() are
3521 					 * modeled on Perl (and not on awk),
3522 					 * we return a zero-based (and not a
3523 					 * one-based) index.  (For you Perl
3524 					 * weenies: no, we're not going to add
3525 					 * $[ -- and shouldn't you be at a con
3526 					 * or something?)
3527 					 */
3528 					regs[rd] = (uintptr_t)(addr - orig);
3529 					break;
3530 				}
3531 
3532 				ASSERT(subr == DIF_SUBR_STRSTR);
3533 				regs[rd] = (uintptr_t)addr;
3534 				break;
3535 			}
3536 		}
3537 
3538 		break;
3539 	}
3540 
3541 	case DIF_SUBR_STRTOK: {
3542 		uintptr_t addr = tupregs[0].dttk_value;
3543 		uintptr_t tokaddr = tupregs[1].dttk_value;
3544 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3545 		uintptr_t limit, toklimit = tokaddr + size;
3546 		uint8_t c, tokmap[32];	 /* 256 / 8 */
3547 		char *dest = (char *)mstate->dtms_scratch_ptr;
3548 		int i;
3549 
3550 		/*
3551 		 * Check both the token buffer and (later) the input buffer,
3552 		 * since both could be non-scratch addresses.
3553 		 */
3554 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3555 			regs[rd] = NULL;
3556 			break;
3557 		}
3558 
3559 		if (!DTRACE_INSCRATCH(mstate, size)) {
3560 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3561 			regs[rd] = NULL;
3562 			break;
3563 		}
3564 
3565 		if (addr == NULL) {
3566 			/*
3567 			 * If the address specified is NULL, we use our saved
3568 			 * strtok pointer from the mstate.  Note that this
3569 			 * means that the saved strtok pointer is _only_
3570 			 * valid within multiple enablings of the same probe --
3571 			 * it behaves like an implicit clause-local variable.
3572 			 */
3573 			addr = mstate->dtms_strtok;
3574 		} else {
3575 			/*
3576 			 * If the user-specified address is non-NULL we must
3577 			 * access check it.  This is the only time we have
3578 			 * a chance to do so, since this address may reside
3579 			 * in the string table of this clause-- future calls
3580 			 * (when we fetch addr from mstate->dtms_strtok)
3581 			 * would fail this access check.
3582 			 */
3583 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3584 				regs[rd] = NULL;
3585 				break;
3586 			}
3587 		}
3588 
3589 		/*
3590 		 * First, zero the token map, and then process the token
3591 		 * string -- setting a bit in the map for every character
3592 		 * found in the token string.
3593 		 */
3594 		for (i = 0; i < sizeof (tokmap); i++)
3595 			tokmap[i] = 0;
3596 
3597 		for (; tokaddr < toklimit; tokaddr++) {
3598 			if ((c = dtrace_load8(tokaddr)) == '\0')
3599 				break;
3600 
3601 			ASSERT((c >> 3) < sizeof (tokmap));
3602 			tokmap[c >> 3] |= (1 << (c & 0x7));
3603 		}
3604 
3605 		for (limit = addr + size; addr < limit; addr++) {
3606 			/*
3607 			 * We're looking for a character that is _not_ contained
3608 			 * in the token string.
3609 			 */
3610 			if ((c = dtrace_load8(addr)) == '\0')
3611 				break;
3612 
3613 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3614 				break;
3615 		}
3616 
3617 		if (c == '\0') {
3618 			/*
3619 			 * We reached the end of the string without finding
3620 			 * any character that was not in the token string.
3621 			 * We return NULL in this case, and we set the saved
3622 			 * address to NULL as well.
3623 			 */
3624 			regs[rd] = NULL;
3625 			mstate->dtms_strtok = NULL;
3626 			break;
3627 		}
3628 
3629 		/*
3630 		 * From here on, we're copying into the destination string.
3631 		 */
3632 		for (i = 0; addr < limit && i < size - 1; addr++) {
3633 			if ((c = dtrace_load8(addr)) == '\0')
3634 				break;
3635 
3636 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3637 				break;
3638 
3639 			ASSERT(i < size);
3640 			dest[i++] = c;
3641 		}
3642 
3643 		ASSERT(i < size);
3644 		dest[i] = '\0';
3645 		regs[rd] = (uintptr_t)dest;
3646 		mstate->dtms_scratch_ptr += size;
3647 		mstate->dtms_strtok = addr;
3648 		break;
3649 	}
3650 
3651 	case DIF_SUBR_SUBSTR: {
3652 		uintptr_t s = tupregs[0].dttk_value;
3653 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3654 		char *d = (char *)mstate->dtms_scratch_ptr;
3655 		int64_t index = (int64_t)tupregs[1].dttk_value;
3656 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3657 		size_t len = dtrace_strlen((char *)s, size);
3658 		int64_t i;
3659 
3660 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3661 			regs[rd] = NULL;
3662 			break;
3663 		}
3664 
3665 		if (!DTRACE_INSCRATCH(mstate, size)) {
3666 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3667 			regs[rd] = NULL;
3668 			break;
3669 		}
3670 
3671 		if (nargs <= 2)
3672 			remaining = (int64_t)size;
3673 
3674 		if (index < 0) {
3675 			index += len;
3676 
3677 			if (index < 0 && index + remaining > 0) {
3678 				remaining += index;
3679 				index = 0;
3680 			}
3681 		}
3682 
3683 		if (index >= len || index < 0) {
3684 			remaining = 0;
3685 		} else if (remaining < 0) {
3686 			remaining += len - index;
3687 		} else if (index + remaining > size) {
3688 			remaining = size - index;
3689 		}
3690 
3691 		for (i = 0; i < remaining; i++) {
3692 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3693 				break;
3694 		}
3695 
3696 		d[i] = '\0';
3697 
3698 		mstate->dtms_scratch_ptr += size;
3699 		regs[rd] = (uintptr_t)d;
3700 		break;
3701 	}
3702 
3703 	case DIF_SUBR_GETMAJOR:
3704 #ifdef _LP64
3705 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3706 #else
3707 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3708 #endif
3709 		break;
3710 
3711 	case DIF_SUBR_GETMINOR:
3712 #ifdef _LP64
3713 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3714 #else
3715 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3716 #endif
3717 		break;
3718 
3719 	case DIF_SUBR_DDI_PATHNAME: {
3720 		/*
3721 		 * This one is a galactic mess.  We are going to roughly
3722 		 * emulate ddi_pathname(), but it's made more complicated
3723 		 * by the fact that we (a) want to include the minor name and
3724 		 * (b) must proceed iteratively instead of recursively.
3725 		 */
3726 		uintptr_t dest = mstate->dtms_scratch_ptr;
3727 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3728 		char *start = (char *)dest, *end = start + size - 1;
3729 		uintptr_t daddr = tupregs[0].dttk_value;
3730 		int64_t minor = (int64_t)tupregs[1].dttk_value;
3731 		char *s;
3732 		int i, len, depth = 0;
3733 
3734 		/*
3735 		 * Due to all the pointer jumping we do and context we must
3736 		 * rely upon, we just mandate that the user must have kernel
3737 		 * read privileges to use this routine.
3738 		 */
3739 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3740 			*flags |= CPU_DTRACE_KPRIV;
3741 			*illval = daddr;
3742 			regs[rd] = NULL;
3743 		}
3744 
3745 		if (!DTRACE_INSCRATCH(mstate, size)) {
3746 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3747 			regs[rd] = NULL;
3748 			break;
3749 		}
3750 
3751 		*end = '\0';
3752 
3753 		/*
3754 		 * We want to have a name for the minor.  In order to do this,
3755 		 * we need to walk the minor list from the devinfo.  We want
3756 		 * to be sure that we don't infinitely walk a circular list,
3757 		 * so we check for circularity by sending a scout pointer
3758 		 * ahead two elements for every element that we iterate over;
3759 		 * if the list is circular, these will ultimately point to the
3760 		 * same element.  You may recognize this little trick as the
3761 		 * answer to a stupid interview question -- one that always
3762 		 * seems to be asked by those who had to have it laboriously
3763 		 * explained to them, and who can't even concisely describe
3764 		 * the conditions under which one would be forced to resort to
3765 		 * this technique.  Needless to say, those conditions are
3766 		 * found here -- and probably only here.  Is this the only use
3767 		 * of this infamous trick in shipping, production code?  If it
3768 		 * isn't, it probably should be...
3769 		 */
3770 		if (minor != -1) {
3771 			uintptr_t maddr = dtrace_loadptr(daddr +
3772 			    offsetof(struct dev_info, devi_minor));
3773 
3774 			uintptr_t next = offsetof(struct ddi_minor_data, next);
3775 			uintptr_t name = offsetof(struct ddi_minor_data,
3776 			    d_minor) + offsetof(struct ddi_minor, name);
3777 			uintptr_t dev = offsetof(struct ddi_minor_data,
3778 			    d_minor) + offsetof(struct ddi_minor, dev);
3779 			uintptr_t scout;
3780 
3781 			if (maddr != NULL)
3782 				scout = dtrace_loadptr(maddr + next);
3783 
3784 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3785 				uint64_t m;
3786 #ifdef _LP64
3787 				m = dtrace_load64(maddr + dev) & MAXMIN64;
3788 #else
3789 				m = dtrace_load32(maddr + dev) & MAXMIN;
3790 #endif
3791 				if (m != minor) {
3792 					maddr = dtrace_loadptr(maddr + next);
3793 
3794 					if (scout == NULL)
3795 						continue;
3796 
3797 					scout = dtrace_loadptr(scout + next);
3798 
3799 					if (scout == NULL)
3800 						continue;
3801 
3802 					scout = dtrace_loadptr(scout + next);
3803 
3804 					if (scout == NULL)
3805 						continue;
3806 
3807 					if (scout == maddr) {
3808 						*flags |= CPU_DTRACE_ILLOP;
3809 						break;
3810 					}
3811 
3812 					continue;
3813 				}
3814 
3815 				/*
3816 				 * We have the minor data.  Now we need to
3817 				 * copy the minor's name into the end of the
3818 				 * pathname.
3819 				 */
3820 				s = (char *)dtrace_loadptr(maddr + name);
3821 				len = dtrace_strlen(s, size);
3822 
3823 				if (*flags & CPU_DTRACE_FAULT)
3824 					break;
3825 
3826 				if (len != 0) {
3827 					if ((end -= (len + 1)) < start)
3828 						break;
3829 
3830 					*end = ':';
3831 				}
3832 
3833 				for (i = 1; i <= len; i++)
3834 					end[i] = dtrace_load8((uintptr_t)s++);
3835 				break;
3836 			}
3837 		}
3838 
3839 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3840 			ddi_node_state_t devi_state;
3841 
3842 			devi_state = dtrace_load32(daddr +
3843 			    offsetof(struct dev_info, devi_node_state));
3844 
3845 			if (*flags & CPU_DTRACE_FAULT)
3846 				break;
3847 
3848 			if (devi_state >= DS_INITIALIZED) {
3849 				s = (char *)dtrace_loadptr(daddr +
3850 				    offsetof(struct dev_info, devi_addr));
3851 				len = dtrace_strlen(s, size);
3852 
3853 				if (*flags & CPU_DTRACE_FAULT)
3854 					break;
3855 
3856 				if (len != 0) {
3857 					if ((end -= (len + 1)) < start)
3858 						break;
3859 
3860 					*end = '@';
3861 				}
3862 
3863 				for (i = 1; i <= len; i++)
3864 					end[i] = dtrace_load8((uintptr_t)s++);
3865 			}
3866 
3867 			/*
3868 			 * Now for the node name...
3869 			 */
3870 			s = (char *)dtrace_loadptr(daddr +
3871 			    offsetof(struct dev_info, devi_node_name));
3872 
3873 			daddr = dtrace_loadptr(daddr +
3874 			    offsetof(struct dev_info, devi_parent));
3875 
3876 			/*
3877 			 * If our parent is NULL (that is, if we're the root
3878 			 * node), we're going to use the special path
3879 			 * "devices".
3880 			 */
3881 			if (daddr == NULL)
3882 				s = "devices";
3883 
3884 			len = dtrace_strlen(s, size);
3885 			if (*flags & CPU_DTRACE_FAULT)
3886 				break;
3887 
3888 			if ((end -= (len + 1)) < start)
3889 				break;
3890 
3891 			for (i = 1; i <= len; i++)
3892 				end[i] = dtrace_load8((uintptr_t)s++);
3893 			*end = '/';
3894 
3895 			if (depth++ > dtrace_devdepth_max) {
3896 				*flags |= CPU_DTRACE_ILLOP;
3897 				break;
3898 			}
3899 		}
3900 
3901 		if (end < start)
3902 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3903 
3904 		if (daddr == NULL) {
3905 			regs[rd] = (uintptr_t)end;
3906 			mstate->dtms_scratch_ptr += size;
3907 		}
3908 
3909 		break;
3910 	}
3911 
3912 	case DIF_SUBR_STRJOIN: {
3913 		char *d = (char *)mstate->dtms_scratch_ptr;
3914 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3915 		uintptr_t s1 = tupregs[0].dttk_value;
3916 		uintptr_t s2 = tupregs[1].dttk_value;
3917 		int i = 0;
3918 
3919 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
3920 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
3921 			regs[rd] = NULL;
3922 			break;
3923 		}
3924 
3925 		if (!DTRACE_INSCRATCH(mstate, size)) {
3926 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3927 			regs[rd] = NULL;
3928 			break;
3929 		}
3930 
3931 		for (;;) {
3932 			if (i >= size) {
3933 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3934 				regs[rd] = NULL;
3935 				break;
3936 			}
3937 
3938 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3939 				i--;
3940 				break;
3941 			}
3942 		}
3943 
3944 		for (;;) {
3945 			if (i >= size) {
3946 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3947 				regs[rd] = NULL;
3948 				break;
3949 			}
3950 
3951 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3952 				break;
3953 		}
3954 
3955 		if (i < size) {
3956 			mstate->dtms_scratch_ptr += i;
3957 			regs[rd] = (uintptr_t)d;
3958 		}
3959 
3960 		break;
3961 	}
3962 
3963 	case DIF_SUBR_LLTOSTR: {
3964 		int64_t i = (int64_t)tupregs[0].dttk_value;
3965 		int64_t val = i < 0 ? i * -1 : i;
3966 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3967 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3968 
3969 		if (!DTRACE_INSCRATCH(mstate, size)) {
3970 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3971 			regs[rd] = NULL;
3972 			break;
3973 		}
3974 
3975 		for (*end-- = '\0'; val; val /= 10)
3976 			*end-- = '0' + (val % 10);
3977 
3978 		if (i == 0)
3979 			*end-- = '0';
3980 
3981 		if (i < 0)
3982 			*end-- = '-';
3983 
3984 		regs[rd] = (uintptr_t)end + 1;
3985 		mstate->dtms_scratch_ptr += size;
3986 		break;
3987 	}
3988 
3989 	case DIF_SUBR_HTONS:
3990 	case DIF_SUBR_NTOHS:
3991 #ifdef _BIG_ENDIAN
3992 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
3993 #else
3994 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
3995 #endif
3996 		break;
3997 
3998 
3999 	case DIF_SUBR_HTONL:
4000 	case DIF_SUBR_NTOHL:
4001 #ifdef _BIG_ENDIAN
4002 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4003 #else
4004 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4005 #endif
4006 		break;
4007 
4008 
4009 	case DIF_SUBR_HTONLL:
4010 	case DIF_SUBR_NTOHLL:
4011 #ifdef _BIG_ENDIAN
4012 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4013 #else
4014 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4015 #endif
4016 		break;
4017 
4018 
4019 	case DIF_SUBR_DIRNAME:
4020 	case DIF_SUBR_BASENAME: {
4021 		char *dest = (char *)mstate->dtms_scratch_ptr;
4022 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4023 		uintptr_t src = tupregs[0].dttk_value;
4024 		int i, j, len = dtrace_strlen((char *)src, size);
4025 		int lastbase = -1, firstbase = -1, lastdir = -1;
4026 		int start, end;
4027 
4028 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4029 			regs[rd] = NULL;
4030 			break;
4031 		}
4032 
4033 		if (!DTRACE_INSCRATCH(mstate, size)) {
4034 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4035 			regs[rd] = NULL;
4036 			break;
4037 		}
4038 
4039 		/*
4040 		 * The basename and dirname for a zero-length string is
4041 		 * defined to be "."
4042 		 */
4043 		if (len == 0) {
4044 			len = 1;
4045 			src = (uintptr_t)".";
4046 		}
4047 
4048 		/*
4049 		 * Start from the back of the string, moving back toward the
4050 		 * front until we see a character that isn't a slash.  That
4051 		 * character is the last character in the basename.
4052 		 */
4053 		for (i = len - 1; i >= 0; i--) {
4054 			if (dtrace_load8(src + i) != '/')
4055 				break;
4056 		}
4057 
4058 		if (i >= 0)
4059 			lastbase = i;
4060 
4061 		/*
4062 		 * Starting from the last character in the basename, move
4063 		 * towards the front until we find a slash.  The character
4064 		 * that we processed immediately before that is the first
4065 		 * character in the basename.
4066 		 */
4067 		for (; i >= 0; i--) {
4068 			if (dtrace_load8(src + i) == '/')
4069 				break;
4070 		}
4071 
4072 		if (i >= 0)
4073 			firstbase = i + 1;
4074 
4075 		/*
4076 		 * Now keep going until we find a non-slash character.  That
4077 		 * character is the last character in the dirname.
4078 		 */
4079 		for (; i >= 0; i--) {
4080 			if (dtrace_load8(src + i) != '/')
4081 				break;
4082 		}
4083 
4084 		if (i >= 0)
4085 			lastdir = i;
4086 
4087 		ASSERT(!(lastbase == -1 && firstbase != -1));
4088 		ASSERT(!(firstbase == -1 && lastdir != -1));
4089 
4090 		if (lastbase == -1) {
4091 			/*
4092 			 * We didn't find a non-slash character.  We know that
4093 			 * the length is non-zero, so the whole string must be
4094 			 * slashes.  In either the dirname or the basename
4095 			 * case, we return '/'.
4096 			 */
4097 			ASSERT(firstbase == -1);
4098 			firstbase = lastbase = lastdir = 0;
4099 		}
4100 
4101 		if (firstbase == -1) {
4102 			/*
4103 			 * The entire string consists only of a basename
4104 			 * component.  If we're looking for dirname, we need
4105 			 * to change our string to be just "."; if we're
4106 			 * looking for a basename, we'll just set the first
4107 			 * character of the basename to be 0.
4108 			 */
4109 			if (subr == DIF_SUBR_DIRNAME) {
4110 				ASSERT(lastdir == -1);
4111 				src = (uintptr_t)".";
4112 				lastdir = 0;
4113 			} else {
4114 				firstbase = 0;
4115 			}
4116 		}
4117 
4118 		if (subr == DIF_SUBR_DIRNAME) {
4119 			if (lastdir == -1) {
4120 				/*
4121 				 * We know that we have a slash in the name --
4122 				 * or lastdir would be set to 0, above.  And
4123 				 * because lastdir is -1, we know that this
4124 				 * slash must be the first character.  (That
4125 				 * is, the full string must be of the form
4126 				 * "/basename".)  In this case, the last
4127 				 * character of the directory name is 0.
4128 				 */
4129 				lastdir = 0;
4130 			}
4131 
4132 			start = 0;
4133 			end = lastdir;
4134 		} else {
4135 			ASSERT(subr == DIF_SUBR_BASENAME);
4136 			ASSERT(firstbase != -1 && lastbase != -1);
4137 			start = firstbase;
4138 			end = lastbase;
4139 		}
4140 
4141 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4142 			dest[j] = dtrace_load8(src + i);
4143 
4144 		dest[j] = '\0';
4145 		regs[rd] = (uintptr_t)dest;
4146 		mstate->dtms_scratch_ptr += size;
4147 		break;
4148 	}
4149 
4150 	case DIF_SUBR_CLEANPATH: {
4151 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4152 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4153 		uintptr_t src = tupregs[0].dttk_value;
4154 		int i = 0, j = 0;
4155 
4156 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4157 			regs[rd] = NULL;
4158 			break;
4159 		}
4160 
4161 		if (!DTRACE_INSCRATCH(mstate, size)) {
4162 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4163 			regs[rd] = NULL;
4164 			break;
4165 		}
4166 
4167 		/*
4168 		 * Move forward, loading each character.
4169 		 */
4170 		do {
4171 			c = dtrace_load8(src + i++);
4172 next:
4173 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4174 				break;
4175 
4176 			if (c != '/') {
4177 				dest[j++] = c;
4178 				continue;
4179 			}
4180 
4181 			c = dtrace_load8(src + i++);
4182 
4183 			if (c == '/') {
4184 				/*
4185 				 * We have two slashes -- we can just advance
4186 				 * to the next character.
4187 				 */
4188 				goto next;
4189 			}
4190 
4191 			if (c != '.') {
4192 				/*
4193 				 * This is not "." and it's not ".." -- we can
4194 				 * just store the "/" and this character and
4195 				 * drive on.
4196 				 */
4197 				dest[j++] = '/';
4198 				dest[j++] = c;
4199 				continue;
4200 			}
4201 
4202 			c = dtrace_load8(src + i++);
4203 
4204 			if (c == '/') {
4205 				/*
4206 				 * This is a "/./" component.  We're not going
4207 				 * to store anything in the destination buffer;
4208 				 * we're just going to go to the next component.
4209 				 */
4210 				goto next;
4211 			}
4212 
4213 			if (c != '.') {
4214 				/*
4215 				 * This is not ".." -- we can just store the
4216 				 * "/." and this character and continue
4217 				 * processing.
4218 				 */
4219 				dest[j++] = '/';
4220 				dest[j++] = '.';
4221 				dest[j++] = c;
4222 				continue;
4223 			}
4224 
4225 			c = dtrace_load8(src + i++);
4226 
4227 			if (c != '/' && c != '\0') {
4228 				/*
4229 				 * This is not ".." -- it's "..[mumble]".
4230 				 * We'll store the "/.." and this character
4231 				 * and continue processing.
4232 				 */
4233 				dest[j++] = '/';
4234 				dest[j++] = '.';
4235 				dest[j++] = '.';
4236 				dest[j++] = c;
4237 				continue;
4238 			}
4239 
4240 			/*
4241 			 * This is "/../" or "/..\0".  We need to back up
4242 			 * our destination pointer until we find a "/".
4243 			 */
4244 			i--;
4245 			while (j != 0 && dest[--j] != '/')
4246 				continue;
4247 
4248 			if (c == '\0')
4249 				dest[++j] = '/';
4250 		} while (c != '\0');
4251 
4252 		dest[j] = '\0';
4253 		regs[rd] = (uintptr_t)dest;
4254 		mstate->dtms_scratch_ptr += size;
4255 		break;
4256 	}
4257 
4258 	case DIF_SUBR_INET_NTOA:
4259 	case DIF_SUBR_INET_NTOA6:
4260 	case DIF_SUBR_INET_NTOP: {
4261 		size_t size;
4262 		int af, argi, i;
4263 		char *base, *end;
4264 
4265 		if (subr == DIF_SUBR_INET_NTOP) {
4266 			af = (int)tupregs[0].dttk_value;
4267 			argi = 1;
4268 		} else {
4269 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4270 			argi = 0;
4271 		}
4272 
4273 		if (af == AF_INET) {
4274 			ipaddr_t ip4;
4275 			uint8_t *ptr8, val;
4276 
4277 			/*
4278 			 * Safely load the IPv4 address.
4279 			 */
4280 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4281 
4282 			/*
4283 			 * Check an IPv4 string will fit in scratch.
4284 			 */
4285 			size = INET_ADDRSTRLEN;
4286 			if (!DTRACE_INSCRATCH(mstate, size)) {
4287 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4288 				regs[rd] = NULL;
4289 				break;
4290 			}
4291 			base = (char *)mstate->dtms_scratch_ptr;
4292 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4293 
4294 			/*
4295 			 * Stringify as a dotted decimal quad.
4296 			 */
4297 			*end-- = '\0';
4298 			ptr8 = (uint8_t *)&ip4;
4299 			for (i = 3; i >= 0; i--) {
4300 				val = ptr8[i];
4301 
4302 				if (val == 0) {
4303 					*end-- = '0';
4304 				} else {
4305 					for (; val; val /= 10) {
4306 						*end-- = '0' + (val % 10);
4307 					}
4308 				}
4309 
4310 				if (i > 0)
4311 					*end-- = '.';
4312 			}
4313 			ASSERT(end + 1 >= base);
4314 
4315 		} else if (af == AF_INET6) {
4316 			struct in6_addr ip6;
4317 			int firstzero, tryzero, numzero, v6end;
4318 			uint16_t val;
4319 			const char digits[] = "0123456789abcdef";
4320 
4321 			/*
4322 			 * Stringify using RFC 1884 convention 2 - 16 bit
4323 			 * hexadecimal values with a zero-run compression.
4324 			 * Lower case hexadecimal digits are used.
4325 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4326 			 * The IPv4 embedded form is returned for inet_ntop,
4327 			 * just the IPv4 string is returned for inet_ntoa6.
4328 			 */
4329 
4330 			/*
4331 			 * Safely load the IPv6 address.
4332 			 */
4333 			dtrace_bcopy(
4334 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4335 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4336 
4337 			/*
4338 			 * Check an IPv6 string will fit in scratch.
4339 			 */
4340 			size = INET6_ADDRSTRLEN;
4341 			if (!DTRACE_INSCRATCH(mstate, size)) {
4342 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4343 				regs[rd] = NULL;
4344 				break;
4345 			}
4346 			base = (char *)mstate->dtms_scratch_ptr;
4347 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4348 			*end-- = '\0';
4349 
4350 			/*
4351 			 * Find the longest run of 16 bit zero values
4352 			 * for the single allowed zero compression - "::".
4353 			 */
4354 			firstzero = -1;
4355 			tryzero = -1;
4356 			numzero = 1;
4357 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4358 				if (ip6._S6_un._S6_u8[i] == 0 &&
4359 				    tryzero == -1 && i % 2 == 0) {
4360 					tryzero = i;
4361 					continue;
4362 				}
4363 
4364 				if (tryzero != -1 &&
4365 				    (ip6._S6_un._S6_u8[i] != 0 ||
4366 				    i == sizeof (struct in6_addr) - 1)) {
4367 
4368 					if (i - tryzero <= numzero) {
4369 						tryzero = -1;
4370 						continue;
4371 					}
4372 
4373 					firstzero = tryzero;
4374 					numzero = i - i % 2 - tryzero;
4375 					tryzero = -1;
4376 
4377 					if (ip6._S6_un._S6_u8[i] == 0 &&
4378 					    i == sizeof (struct in6_addr) - 1)
4379 						numzero += 2;
4380 				}
4381 			}
4382 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4383 
4384 			/*
4385 			 * Check for an IPv4 embedded address.
4386 			 */
4387 			v6end = sizeof (struct in6_addr) - 2;
4388 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4389 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4390 				for (i = sizeof (struct in6_addr) - 1;
4391 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4392 					ASSERT(end >= base);
4393 
4394 					val = ip6._S6_un._S6_u8[i];
4395 
4396 					if (val == 0) {
4397 						*end-- = '0';
4398 					} else {
4399 						for (; val; val /= 10) {
4400 							*end-- = '0' + val % 10;
4401 						}
4402 					}
4403 
4404 					if (i > DTRACE_V4MAPPED_OFFSET)
4405 						*end-- = '.';
4406 				}
4407 
4408 				if (subr == DIF_SUBR_INET_NTOA6)
4409 					goto inetout;
4410 
4411 				/*
4412 				 * Set v6end to skip the IPv4 address that
4413 				 * we have already stringified.
4414 				 */
4415 				v6end = 10;
4416 			}
4417 
4418 			/*
4419 			 * Build the IPv6 string by working through the
4420 			 * address in reverse.
4421 			 */
4422 			for (i = v6end; i >= 0; i -= 2) {
4423 				ASSERT(end >= base);
4424 
4425 				if (i == firstzero + numzero - 2) {
4426 					*end-- = ':';
4427 					*end-- = ':';
4428 					i -= numzero - 2;
4429 					continue;
4430 				}
4431 
4432 				if (i < 14 && i != firstzero - 2)
4433 					*end-- = ':';
4434 
4435 				val = (ip6._S6_un._S6_u8[i] << 8) +
4436 				    ip6._S6_un._S6_u8[i + 1];
4437 
4438 				if (val == 0) {
4439 					*end-- = '0';
4440 				} else {
4441 					for (; val; val /= 16) {
4442 						*end-- = digits[val % 16];
4443 					}
4444 				}
4445 			}
4446 			ASSERT(end + 1 >= base);
4447 
4448 		} else {
4449 			/*
4450 			 * The user didn't use AH_INET or AH_INET6.
4451 			 */
4452 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4453 			regs[rd] = NULL;
4454 			break;
4455 		}
4456 
4457 inetout:	regs[rd] = (uintptr_t)end + 1;
4458 		mstate->dtms_scratch_ptr += size;
4459 		break;
4460 	}
4461 
4462 	}
4463 }
4464 
4465 /*
4466  * Emulate the execution of DTrace IR instructions specified by the given
4467  * DIF object.  This function is deliberately void of assertions as all of
4468  * the necessary checks are handled by a call to dtrace_difo_validate().
4469  */
4470 static uint64_t
4471 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4472     dtrace_vstate_t *vstate, dtrace_state_t *state)
4473 {
4474 	const dif_instr_t *text = difo->dtdo_buf;
4475 	const uint_t textlen = difo->dtdo_len;
4476 	const char *strtab = difo->dtdo_strtab;
4477 	const uint64_t *inttab = difo->dtdo_inttab;
4478 
4479 	uint64_t rval = 0;
4480 	dtrace_statvar_t *svar;
4481 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4482 	dtrace_difv_t *v;
4483 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4484 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4485 
4486 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4487 	uint64_t regs[DIF_DIR_NREGS];
4488 	uint64_t *tmp;
4489 
4490 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4491 	int64_t cc_r;
4492 	uint_t pc = 0, id, opc;
4493 	uint8_t ttop = 0;
4494 	dif_instr_t instr;
4495 	uint_t r1, r2, rd;
4496 
4497 	/*
4498 	 * We stash the current DIF object into the machine state: we need it
4499 	 * for subsequent access checking.
4500 	 */
4501 	mstate->dtms_difo = difo;
4502 
4503 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4504 
4505 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4506 		opc = pc;
4507 
4508 		instr = text[pc++];
4509 		r1 = DIF_INSTR_R1(instr);
4510 		r2 = DIF_INSTR_R2(instr);
4511 		rd = DIF_INSTR_RD(instr);
4512 
4513 		switch (DIF_INSTR_OP(instr)) {
4514 		case DIF_OP_OR:
4515 			regs[rd] = regs[r1] | regs[r2];
4516 			break;
4517 		case DIF_OP_XOR:
4518 			regs[rd] = regs[r1] ^ regs[r2];
4519 			break;
4520 		case DIF_OP_AND:
4521 			regs[rd] = regs[r1] & regs[r2];
4522 			break;
4523 		case DIF_OP_SLL:
4524 			regs[rd] = regs[r1] << regs[r2];
4525 			break;
4526 		case DIF_OP_SRL:
4527 			regs[rd] = regs[r1] >> regs[r2];
4528 			break;
4529 		case DIF_OP_SUB:
4530 			regs[rd] = regs[r1] - regs[r2];
4531 			break;
4532 		case DIF_OP_ADD:
4533 			regs[rd] = regs[r1] + regs[r2];
4534 			break;
4535 		case DIF_OP_MUL:
4536 			regs[rd] = regs[r1] * regs[r2];
4537 			break;
4538 		case DIF_OP_SDIV:
4539 			if (regs[r2] == 0) {
4540 				regs[rd] = 0;
4541 				*flags |= CPU_DTRACE_DIVZERO;
4542 			} else {
4543 				regs[rd] = (int64_t)regs[r1] /
4544 				    (int64_t)regs[r2];
4545 			}
4546 			break;
4547 
4548 		case DIF_OP_UDIV:
4549 			if (regs[r2] == 0) {
4550 				regs[rd] = 0;
4551 				*flags |= CPU_DTRACE_DIVZERO;
4552 			} else {
4553 				regs[rd] = regs[r1] / regs[r2];
4554 			}
4555 			break;
4556 
4557 		case DIF_OP_SREM:
4558 			if (regs[r2] == 0) {
4559 				regs[rd] = 0;
4560 				*flags |= CPU_DTRACE_DIVZERO;
4561 			} else {
4562 				regs[rd] = (int64_t)regs[r1] %
4563 				    (int64_t)regs[r2];
4564 			}
4565 			break;
4566 
4567 		case DIF_OP_UREM:
4568 			if (regs[r2] == 0) {
4569 				regs[rd] = 0;
4570 				*flags |= CPU_DTRACE_DIVZERO;
4571 			} else {
4572 				regs[rd] = regs[r1] % regs[r2];
4573 			}
4574 			break;
4575 
4576 		case DIF_OP_NOT:
4577 			regs[rd] = ~regs[r1];
4578 			break;
4579 		case DIF_OP_MOV:
4580 			regs[rd] = regs[r1];
4581 			break;
4582 		case DIF_OP_CMP:
4583 			cc_r = regs[r1] - regs[r2];
4584 			cc_n = cc_r < 0;
4585 			cc_z = cc_r == 0;
4586 			cc_v = 0;
4587 			cc_c = regs[r1] < regs[r2];
4588 			break;
4589 		case DIF_OP_TST:
4590 			cc_n = cc_v = cc_c = 0;
4591 			cc_z = regs[r1] == 0;
4592 			break;
4593 		case DIF_OP_BA:
4594 			pc = DIF_INSTR_LABEL(instr);
4595 			break;
4596 		case DIF_OP_BE:
4597 			if (cc_z)
4598 				pc = DIF_INSTR_LABEL(instr);
4599 			break;
4600 		case DIF_OP_BNE:
4601 			if (cc_z == 0)
4602 				pc = DIF_INSTR_LABEL(instr);
4603 			break;
4604 		case DIF_OP_BG:
4605 			if ((cc_z | (cc_n ^ cc_v)) == 0)
4606 				pc = DIF_INSTR_LABEL(instr);
4607 			break;
4608 		case DIF_OP_BGU:
4609 			if ((cc_c | cc_z) == 0)
4610 				pc = DIF_INSTR_LABEL(instr);
4611 			break;
4612 		case DIF_OP_BGE:
4613 			if ((cc_n ^ cc_v) == 0)
4614 				pc = DIF_INSTR_LABEL(instr);
4615 			break;
4616 		case DIF_OP_BGEU:
4617 			if (cc_c == 0)
4618 				pc = DIF_INSTR_LABEL(instr);
4619 			break;
4620 		case DIF_OP_BL:
4621 			if (cc_n ^ cc_v)
4622 				pc = DIF_INSTR_LABEL(instr);
4623 			break;
4624 		case DIF_OP_BLU:
4625 			if (cc_c)
4626 				pc = DIF_INSTR_LABEL(instr);
4627 			break;
4628 		case DIF_OP_BLE:
4629 			if (cc_z | (cc_n ^ cc_v))
4630 				pc = DIF_INSTR_LABEL(instr);
4631 			break;
4632 		case DIF_OP_BLEU:
4633 			if (cc_c | cc_z)
4634 				pc = DIF_INSTR_LABEL(instr);
4635 			break;
4636 		case DIF_OP_RLDSB:
4637 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4638 				*flags |= CPU_DTRACE_KPRIV;
4639 				*illval = regs[r1];
4640 				break;
4641 			}
4642 			/*FALLTHROUGH*/
4643 		case DIF_OP_LDSB:
4644 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4645 			break;
4646 		case DIF_OP_RLDSH:
4647 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4648 				*flags |= CPU_DTRACE_KPRIV;
4649 				*illval = regs[r1];
4650 				break;
4651 			}
4652 			/*FALLTHROUGH*/
4653 		case DIF_OP_LDSH:
4654 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4655 			break;
4656 		case DIF_OP_RLDSW:
4657 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4658 				*flags |= CPU_DTRACE_KPRIV;
4659 				*illval = regs[r1];
4660 				break;
4661 			}
4662 			/*FALLTHROUGH*/
4663 		case DIF_OP_LDSW:
4664 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4665 			break;
4666 		case DIF_OP_RLDUB:
4667 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4668 				*flags |= CPU_DTRACE_KPRIV;
4669 				*illval = regs[r1];
4670 				break;
4671 			}
4672 			/*FALLTHROUGH*/
4673 		case DIF_OP_LDUB:
4674 			regs[rd] = dtrace_load8(regs[r1]);
4675 			break;
4676 		case DIF_OP_RLDUH:
4677 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4678 				*flags |= CPU_DTRACE_KPRIV;
4679 				*illval = regs[r1];
4680 				break;
4681 			}
4682 			/*FALLTHROUGH*/
4683 		case DIF_OP_LDUH:
4684 			regs[rd] = dtrace_load16(regs[r1]);
4685 			break;
4686 		case DIF_OP_RLDUW:
4687 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4688 				*flags |= CPU_DTRACE_KPRIV;
4689 				*illval = regs[r1];
4690 				break;
4691 			}
4692 			/*FALLTHROUGH*/
4693 		case DIF_OP_LDUW:
4694 			regs[rd] = dtrace_load32(regs[r1]);
4695 			break;
4696 		case DIF_OP_RLDX:
4697 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4698 				*flags |= CPU_DTRACE_KPRIV;
4699 				*illval = regs[r1];
4700 				break;
4701 			}
4702 			/*FALLTHROUGH*/
4703 		case DIF_OP_LDX:
4704 			regs[rd] = dtrace_load64(regs[r1]);
4705 			break;
4706 		case DIF_OP_ULDSB:
4707 			regs[rd] = (int8_t)
4708 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4709 			break;
4710 		case DIF_OP_ULDSH:
4711 			regs[rd] = (int16_t)
4712 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4713 			break;
4714 		case DIF_OP_ULDSW:
4715 			regs[rd] = (int32_t)
4716 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4717 			break;
4718 		case DIF_OP_ULDUB:
4719 			regs[rd] =
4720 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4721 			break;
4722 		case DIF_OP_ULDUH:
4723 			regs[rd] =
4724 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4725 			break;
4726 		case DIF_OP_ULDUW:
4727 			regs[rd] =
4728 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4729 			break;
4730 		case DIF_OP_ULDX:
4731 			regs[rd] =
4732 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
4733 			break;
4734 		case DIF_OP_RET:
4735 			rval = regs[rd];
4736 			pc = textlen;
4737 			break;
4738 		case DIF_OP_NOP:
4739 			break;
4740 		case DIF_OP_SETX:
4741 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
4742 			break;
4743 		case DIF_OP_SETS:
4744 			regs[rd] = (uint64_t)(uintptr_t)
4745 			    (strtab + DIF_INSTR_STRING(instr));
4746 			break;
4747 		case DIF_OP_SCMP: {
4748 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
4749 			uintptr_t s1 = regs[r1];
4750 			uintptr_t s2 = regs[r2];
4751 
4752 			if (s1 != NULL &&
4753 			    !dtrace_strcanload(s1, sz, mstate, vstate))
4754 				break;
4755 			if (s2 != NULL &&
4756 			    !dtrace_strcanload(s2, sz, mstate, vstate))
4757 				break;
4758 
4759 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
4760 
4761 			cc_n = cc_r < 0;
4762 			cc_z = cc_r == 0;
4763 			cc_v = cc_c = 0;
4764 			break;
4765 		}
4766 		case DIF_OP_LDGA:
4767 			regs[rd] = dtrace_dif_variable(mstate, state,
4768 			    r1, regs[r2]);
4769 			break;
4770 		case DIF_OP_LDGS:
4771 			id = DIF_INSTR_VAR(instr);
4772 
4773 			if (id >= DIF_VAR_OTHER_UBASE) {
4774 				uintptr_t a;
4775 
4776 				id -= DIF_VAR_OTHER_UBASE;
4777 				svar = vstate->dtvs_globals[id];
4778 				ASSERT(svar != NULL);
4779 				v = &svar->dtsv_var;
4780 
4781 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
4782 					regs[rd] = svar->dtsv_data;
4783 					break;
4784 				}
4785 
4786 				a = (uintptr_t)svar->dtsv_data;
4787 
4788 				if (*(uint8_t *)a == UINT8_MAX) {
4789 					/*
4790 					 * If the 0th byte is set to UINT8_MAX
4791 					 * then this is to be treated as a
4792 					 * reference to a NULL variable.
4793 					 */
4794 					regs[rd] = NULL;
4795 				} else {
4796 					regs[rd] = a + sizeof (uint64_t);
4797 				}
4798 
4799 				break;
4800 			}
4801 
4802 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
4803 			break;
4804 
4805 		case DIF_OP_STGS:
4806 			id = DIF_INSTR_VAR(instr);
4807 
4808 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4809 			id -= DIF_VAR_OTHER_UBASE;
4810 
4811 			svar = vstate->dtvs_globals[id];
4812 			ASSERT(svar != NULL);
4813 			v = &svar->dtsv_var;
4814 
4815 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4816 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4817 
4818 				ASSERT(a != NULL);
4819 				ASSERT(svar->dtsv_size != 0);
4820 
4821 				if (regs[rd] == NULL) {
4822 					*(uint8_t *)a = UINT8_MAX;
4823 					break;
4824 				} else {
4825 					*(uint8_t *)a = 0;
4826 					a += sizeof (uint64_t);
4827 				}
4828 				if (!dtrace_vcanload(
4829 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4830 				    mstate, vstate))
4831 					break;
4832 
4833 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4834 				    (void *)a, &v->dtdv_type);
4835 				break;
4836 			}
4837 
4838 			svar->dtsv_data = regs[rd];
4839 			break;
4840 
4841 		case DIF_OP_LDTA:
4842 			/*
4843 			 * There are no DTrace built-in thread-local arrays at
4844 			 * present.  This opcode is saved for future work.
4845 			 */
4846 			*flags |= CPU_DTRACE_ILLOP;
4847 			regs[rd] = 0;
4848 			break;
4849 
4850 		case DIF_OP_LDLS:
4851 			id = DIF_INSTR_VAR(instr);
4852 
4853 			if (id < DIF_VAR_OTHER_UBASE) {
4854 				/*
4855 				 * For now, this has no meaning.
4856 				 */
4857 				regs[rd] = 0;
4858 				break;
4859 			}
4860 
4861 			id -= DIF_VAR_OTHER_UBASE;
4862 
4863 			ASSERT(id < vstate->dtvs_nlocals);
4864 			ASSERT(vstate->dtvs_locals != NULL);
4865 
4866 			svar = vstate->dtvs_locals[id];
4867 			ASSERT(svar != NULL);
4868 			v = &svar->dtsv_var;
4869 
4870 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4871 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4872 				size_t sz = v->dtdv_type.dtdt_size;
4873 
4874 				sz += sizeof (uint64_t);
4875 				ASSERT(svar->dtsv_size == NCPU * sz);
4876 				a += CPU->cpu_id * sz;
4877 
4878 				if (*(uint8_t *)a == UINT8_MAX) {
4879 					/*
4880 					 * If the 0th byte is set to UINT8_MAX
4881 					 * then this is to be treated as a
4882 					 * reference to a NULL variable.
4883 					 */
4884 					regs[rd] = NULL;
4885 				} else {
4886 					regs[rd] = a + sizeof (uint64_t);
4887 				}
4888 
4889 				break;
4890 			}
4891 
4892 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4893 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4894 			regs[rd] = tmp[CPU->cpu_id];
4895 			break;
4896 
4897 		case DIF_OP_STLS:
4898 			id = DIF_INSTR_VAR(instr);
4899 
4900 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4901 			id -= DIF_VAR_OTHER_UBASE;
4902 			ASSERT(id < vstate->dtvs_nlocals);
4903 
4904 			ASSERT(vstate->dtvs_locals != NULL);
4905 			svar = vstate->dtvs_locals[id];
4906 			ASSERT(svar != NULL);
4907 			v = &svar->dtsv_var;
4908 
4909 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4910 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4911 				size_t sz = v->dtdv_type.dtdt_size;
4912 
4913 				sz += sizeof (uint64_t);
4914 				ASSERT(svar->dtsv_size == NCPU * sz);
4915 				a += CPU->cpu_id * sz;
4916 
4917 				if (regs[rd] == NULL) {
4918 					*(uint8_t *)a = UINT8_MAX;
4919 					break;
4920 				} else {
4921 					*(uint8_t *)a = 0;
4922 					a += sizeof (uint64_t);
4923 				}
4924 
4925 				if (!dtrace_vcanload(
4926 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4927 				    mstate, vstate))
4928 					break;
4929 
4930 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4931 				    (void *)a, &v->dtdv_type);
4932 				break;
4933 			}
4934 
4935 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4936 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4937 			tmp[CPU->cpu_id] = regs[rd];
4938 			break;
4939 
4940 		case DIF_OP_LDTS: {
4941 			dtrace_dynvar_t *dvar;
4942 			dtrace_key_t *key;
4943 
4944 			id = DIF_INSTR_VAR(instr);
4945 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4946 			id -= DIF_VAR_OTHER_UBASE;
4947 			v = &vstate->dtvs_tlocals[id];
4948 
4949 			key = &tupregs[DIF_DTR_NREGS];
4950 			key[0].dttk_value = (uint64_t)id;
4951 			key[0].dttk_size = 0;
4952 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4953 			key[1].dttk_size = 0;
4954 
4955 			dvar = dtrace_dynvar(dstate, 2, key,
4956 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
4957 			    mstate, vstate);
4958 
4959 			if (dvar == NULL) {
4960 				regs[rd] = 0;
4961 				break;
4962 			}
4963 
4964 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4965 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4966 			} else {
4967 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4968 			}
4969 
4970 			break;
4971 		}
4972 
4973 		case DIF_OP_STTS: {
4974 			dtrace_dynvar_t *dvar;
4975 			dtrace_key_t *key;
4976 
4977 			id = DIF_INSTR_VAR(instr);
4978 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4979 			id -= DIF_VAR_OTHER_UBASE;
4980 
4981 			key = &tupregs[DIF_DTR_NREGS];
4982 			key[0].dttk_value = (uint64_t)id;
4983 			key[0].dttk_size = 0;
4984 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4985 			key[1].dttk_size = 0;
4986 			v = &vstate->dtvs_tlocals[id];
4987 
4988 			dvar = dtrace_dynvar(dstate, 2, key,
4989 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4990 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4991 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4992 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
4993 
4994 			/*
4995 			 * Given that we're storing to thread-local data,
4996 			 * we need to flush our predicate cache.
4997 			 */
4998 			curthread->t_predcache = NULL;
4999 
5000 			if (dvar == NULL)
5001 				break;
5002 
5003 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5004 				if (!dtrace_vcanload(
5005 				    (void *)(uintptr_t)regs[rd],
5006 				    &v->dtdv_type, mstate, vstate))
5007 					break;
5008 
5009 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5010 				    dvar->dtdv_data, &v->dtdv_type);
5011 			} else {
5012 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5013 			}
5014 
5015 			break;
5016 		}
5017 
5018 		case DIF_OP_SRA:
5019 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5020 			break;
5021 
5022 		case DIF_OP_CALL:
5023 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5024 			    regs, tupregs, ttop, mstate, state);
5025 			break;
5026 
5027 		case DIF_OP_PUSHTR:
5028 			if (ttop == DIF_DTR_NREGS) {
5029 				*flags |= CPU_DTRACE_TUPOFLOW;
5030 				break;
5031 			}
5032 
5033 			if (r1 == DIF_TYPE_STRING) {
5034 				/*
5035 				 * If this is a string type and the size is 0,
5036 				 * we'll use the system-wide default string
5037 				 * size.  Note that we are _not_ looking at
5038 				 * the value of the DTRACEOPT_STRSIZE option;
5039 				 * had this been set, we would expect to have
5040 				 * a non-zero size value in the "pushtr".
5041 				 */
5042 				tupregs[ttop].dttk_size =
5043 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5044 				    regs[r2] ? regs[r2] :
5045 				    dtrace_strsize_default) + 1;
5046 			} else {
5047 				tupregs[ttop].dttk_size = regs[r2];
5048 			}
5049 
5050 			tupregs[ttop++].dttk_value = regs[rd];
5051 			break;
5052 
5053 		case DIF_OP_PUSHTV:
5054 			if (ttop == DIF_DTR_NREGS) {
5055 				*flags |= CPU_DTRACE_TUPOFLOW;
5056 				break;
5057 			}
5058 
5059 			tupregs[ttop].dttk_value = regs[rd];
5060 			tupregs[ttop++].dttk_size = 0;
5061 			break;
5062 
5063 		case DIF_OP_POPTS:
5064 			if (ttop != 0)
5065 				ttop--;
5066 			break;
5067 
5068 		case DIF_OP_FLUSHTS:
5069 			ttop = 0;
5070 			break;
5071 
5072 		case DIF_OP_LDGAA:
5073 		case DIF_OP_LDTAA: {
5074 			dtrace_dynvar_t *dvar;
5075 			dtrace_key_t *key = tupregs;
5076 			uint_t nkeys = ttop;
5077 
5078 			id = DIF_INSTR_VAR(instr);
5079 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5080 			id -= DIF_VAR_OTHER_UBASE;
5081 
5082 			key[nkeys].dttk_value = (uint64_t)id;
5083 			key[nkeys++].dttk_size = 0;
5084 
5085 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5086 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5087 				key[nkeys++].dttk_size = 0;
5088 				v = &vstate->dtvs_tlocals[id];
5089 			} else {
5090 				v = &vstate->dtvs_globals[id]->dtsv_var;
5091 			}
5092 
5093 			dvar = dtrace_dynvar(dstate, nkeys, key,
5094 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5095 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5096 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5097 
5098 			if (dvar == NULL) {
5099 				regs[rd] = 0;
5100 				break;
5101 			}
5102 
5103 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5104 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5105 			} else {
5106 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5107 			}
5108 
5109 			break;
5110 		}
5111 
5112 		case DIF_OP_STGAA:
5113 		case DIF_OP_STTAA: {
5114 			dtrace_dynvar_t *dvar;
5115 			dtrace_key_t *key = tupregs;
5116 			uint_t nkeys = ttop;
5117 
5118 			id = DIF_INSTR_VAR(instr);
5119 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5120 			id -= DIF_VAR_OTHER_UBASE;
5121 
5122 			key[nkeys].dttk_value = (uint64_t)id;
5123 			key[nkeys++].dttk_size = 0;
5124 
5125 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5126 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5127 				key[nkeys++].dttk_size = 0;
5128 				v = &vstate->dtvs_tlocals[id];
5129 			} else {
5130 				v = &vstate->dtvs_globals[id]->dtsv_var;
5131 			}
5132 
5133 			dvar = dtrace_dynvar(dstate, nkeys, key,
5134 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5135 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5136 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5137 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5138 
5139 			if (dvar == NULL)
5140 				break;
5141 
5142 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5143 				if (!dtrace_vcanload(
5144 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5145 				    mstate, vstate))
5146 					break;
5147 
5148 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5149 				    dvar->dtdv_data, &v->dtdv_type);
5150 			} else {
5151 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5152 			}
5153 
5154 			break;
5155 		}
5156 
5157 		case DIF_OP_ALLOCS: {
5158 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5159 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5160 
5161 			/*
5162 			 * Rounding up the user allocation size could have
5163 			 * overflowed large, bogus allocations (like -1ULL) to
5164 			 * 0.
5165 			 */
5166 			if (size < regs[r1] ||
5167 			    !DTRACE_INSCRATCH(mstate, size)) {
5168 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5169 				regs[rd] = NULL;
5170 				break;
5171 			}
5172 
5173 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5174 			mstate->dtms_scratch_ptr += size;
5175 			regs[rd] = ptr;
5176 			break;
5177 		}
5178 
5179 		case DIF_OP_COPYS:
5180 			if (!dtrace_canstore(regs[rd], regs[r2],
5181 			    mstate, vstate)) {
5182 				*flags |= CPU_DTRACE_BADADDR;
5183 				*illval = regs[rd];
5184 				break;
5185 			}
5186 
5187 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5188 				break;
5189 
5190 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5191 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5192 			break;
5193 
5194 		case DIF_OP_STB:
5195 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5196 				*flags |= CPU_DTRACE_BADADDR;
5197 				*illval = regs[rd];
5198 				break;
5199 			}
5200 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5201 			break;
5202 
5203 		case DIF_OP_STH:
5204 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5205 				*flags |= CPU_DTRACE_BADADDR;
5206 				*illval = regs[rd];
5207 				break;
5208 			}
5209 			if (regs[rd] & 1) {
5210 				*flags |= CPU_DTRACE_BADALIGN;
5211 				*illval = regs[rd];
5212 				break;
5213 			}
5214 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5215 			break;
5216 
5217 		case DIF_OP_STW:
5218 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5219 				*flags |= CPU_DTRACE_BADADDR;
5220 				*illval = regs[rd];
5221 				break;
5222 			}
5223 			if (regs[rd] & 3) {
5224 				*flags |= CPU_DTRACE_BADALIGN;
5225 				*illval = regs[rd];
5226 				break;
5227 			}
5228 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5229 			break;
5230 
5231 		case DIF_OP_STX:
5232 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5233 				*flags |= CPU_DTRACE_BADADDR;
5234 				*illval = regs[rd];
5235 				break;
5236 			}
5237 			if (regs[rd] & 7) {
5238 				*flags |= CPU_DTRACE_BADALIGN;
5239 				*illval = regs[rd];
5240 				break;
5241 			}
5242 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5243 			break;
5244 		}
5245 	}
5246 
5247 	if (!(*flags & CPU_DTRACE_FAULT))
5248 		return (rval);
5249 
5250 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5251 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5252 
5253 	return (0);
5254 }
5255 
5256 static void
5257 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5258 {
5259 	dtrace_probe_t *probe = ecb->dte_probe;
5260 	dtrace_provider_t *prov = probe->dtpr_provider;
5261 	char c[DTRACE_FULLNAMELEN + 80], *str;
5262 	char *msg = "dtrace: breakpoint action at probe ";
5263 	char *ecbmsg = " (ecb ";
5264 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5265 	uintptr_t val = (uintptr_t)ecb;
5266 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5267 
5268 	if (dtrace_destructive_disallow)
5269 		return;
5270 
5271 	/*
5272 	 * It's impossible to be taking action on the NULL probe.
5273 	 */
5274 	ASSERT(probe != NULL);
5275 
5276 	/*
5277 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5278 	 * print the provider name, module name, function name and name of
5279 	 * the probe, along with the hex address of the ECB with the breakpoint
5280 	 * action -- all of which we must place in the character buffer by
5281 	 * hand.
5282 	 */
5283 	while (*msg != '\0')
5284 		c[i++] = *msg++;
5285 
5286 	for (str = prov->dtpv_name; *str != '\0'; str++)
5287 		c[i++] = *str;
5288 	c[i++] = ':';
5289 
5290 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5291 		c[i++] = *str;
5292 	c[i++] = ':';
5293 
5294 	for (str = probe->dtpr_func; *str != '\0'; str++)
5295 		c[i++] = *str;
5296 	c[i++] = ':';
5297 
5298 	for (str = probe->dtpr_name; *str != '\0'; str++)
5299 		c[i++] = *str;
5300 
5301 	while (*ecbmsg != '\0')
5302 		c[i++] = *ecbmsg++;
5303 
5304 	while (shift >= 0) {
5305 		mask = (uintptr_t)0xf << shift;
5306 
5307 		if (val >= ((uintptr_t)1 << shift))
5308 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5309 		shift -= 4;
5310 	}
5311 
5312 	c[i++] = ')';
5313 	c[i] = '\0';
5314 
5315 	debug_enter(c);
5316 }
5317 
5318 static void
5319 dtrace_action_panic(dtrace_ecb_t *ecb)
5320 {
5321 	dtrace_probe_t *probe = ecb->dte_probe;
5322 
5323 	/*
5324 	 * It's impossible to be taking action on the NULL probe.
5325 	 */
5326 	ASSERT(probe != NULL);
5327 
5328 	if (dtrace_destructive_disallow)
5329 		return;
5330 
5331 	if (dtrace_panicked != NULL)
5332 		return;
5333 
5334 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5335 		return;
5336 
5337 	/*
5338 	 * We won the right to panic.  (We want to be sure that only one
5339 	 * thread calls panic() from dtrace_probe(), and that panic() is
5340 	 * called exactly once.)
5341 	 */
5342 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5343 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5344 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5345 }
5346 
5347 static void
5348 dtrace_action_raise(uint64_t sig)
5349 {
5350 	if (dtrace_destructive_disallow)
5351 		return;
5352 
5353 	if (sig >= NSIG) {
5354 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5355 		return;
5356 	}
5357 
5358 	/*
5359 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5360 	 * invocations of the raise() action.
5361 	 */
5362 	if (curthread->t_dtrace_sig == 0)
5363 		curthread->t_dtrace_sig = (uint8_t)sig;
5364 
5365 	curthread->t_sig_check = 1;
5366 	aston(curthread);
5367 }
5368 
5369 static void
5370 dtrace_action_stop(void)
5371 {
5372 	if (dtrace_destructive_disallow)
5373 		return;
5374 
5375 	if (!curthread->t_dtrace_stop) {
5376 		curthread->t_dtrace_stop = 1;
5377 		curthread->t_sig_check = 1;
5378 		aston(curthread);
5379 	}
5380 }
5381 
5382 static void
5383 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5384 {
5385 	hrtime_t now;
5386 	volatile uint16_t *flags;
5387 	cpu_t *cpu = CPU;
5388 
5389 	if (dtrace_destructive_disallow)
5390 		return;
5391 
5392 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5393 
5394 	now = dtrace_gethrtime();
5395 
5396 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5397 		/*
5398 		 * We need to advance the mark to the current time.
5399 		 */
5400 		cpu->cpu_dtrace_chillmark = now;
5401 		cpu->cpu_dtrace_chilled = 0;
5402 	}
5403 
5404 	/*
5405 	 * Now check to see if the requested chill time would take us over
5406 	 * the maximum amount of time allowed in the chill interval.  (Or
5407 	 * worse, if the calculation itself induces overflow.)
5408 	 */
5409 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5410 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5411 		*flags |= CPU_DTRACE_ILLOP;
5412 		return;
5413 	}
5414 
5415 	while (dtrace_gethrtime() - now < val)
5416 		continue;
5417 
5418 	/*
5419 	 * Normally, we assure that the value of the variable "timestamp" does
5420 	 * not change within an ECB.  The presence of chill() represents an
5421 	 * exception to this rule, however.
5422 	 */
5423 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5424 	cpu->cpu_dtrace_chilled += val;
5425 }
5426 
5427 static void
5428 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5429     uint64_t *buf, uint64_t arg)
5430 {
5431 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5432 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5433 	uint64_t *pcs = &buf[1], *fps;
5434 	char *str = (char *)&pcs[nframes];
5435 	int size, offs = 0, i, j;
5436 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5437 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5438 	char *sym;
5439 
5440 	/*
5441 	 * Should be taking a faster path if string space has not been
5442 	 * allocated.
5443 	 */
5444 	ASSERT(strsize != 0);
5445 
5446 	/*
5447 	 * We will first allocate some temporary space for the frame pointers.
5448 	 */
5449 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5450 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5451 	    (nframes * sizeof (uint64_t));
5452 
5453 	if (!DTRACE_INSCRATCH(mstate, size)) {
5454 		/*
5455 		 * Not enough room for our frame pointers -- need to indicate
5456 		 * that we ran out of scratch space.
5457 		 */
5458 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5459 		return;
5460 	}
5461 
5462 	mstate->dtms_scratch_ptr += size;
5463 	saved = mstate->dtms_scratch_ptr;
5464 
5465 	/*
5466 	 * Now get a stack with both program counters and frame pointers.
5467 	 */
5468 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5469 	dtrace_getufpstack(buf, fps, nframes + 1);
5470 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5471 
5472 	/*
5473 	 * If that faulted, we're cooked.
5474 	 */
5475 	if (*flags & CPU_DTRACE_FAULT)
5476 		goto out;
5477 
5478 	/*
5479 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5480 	 * each iteration, we restore the scratch pointer.
5481 	 */
5482 	for (i = 0; i < nframes; i++) {
5483 		mstate->dtms_scratch_ptr = saved;
5484 
5485 		if (offs >= strsize)
5486 			break;
5487 
5488 		sym = (char *)(uintptr_t)dtrace_helper(
5489 		    DTRACE_HELPER_ACTION_USTACK,
5490 		    mstate, state, pcs[i], fps[i]);
5491 
5492 		/*
5493 		 * If we faulted while running the helper, we're going to
5494 		 * clear the fault and null out the corresponding string.
5495 		 */
5496 		if (*flags & CPU_DTRACE_FAULT) {
5497 			*flags &= ~CPU_DTRACE_FAULT;
5498 			str[offs++] = '\0';
5499 			continue;
5500 		}
5501 
5502 		if (sym == NULL) {
5503 			str[offs++] = '\0';
5504 			continue;
5505 		}
5506 
5507 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5508 
5509 		/*
5510 		 * Now copy in the string that the helper returned to us.
5511 		 */
5512 		for (j = 0; offs + j < strsize; j++) {
5513 			if ((str[offs + j] = sym[j]) == '\0')
5514 				break;
5515 		}
5516 
5517 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5518 
5519 		offs += j + 1;
5520 	}
5521 
5522 	if (offs >= strsize) {
5523 		/*
5524 		 * If we didn't have room for all of the strings, we don't
5525 		 * abort processing -- this needn't be a fatal error -- but we
5526 		 * still want to increment a counter (dts_stkstroverflows) to
5527 		 * allow this condition to be warned about.  (If this is from
5528 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5529 		 */
5530 		dtrace_error(&state->dts_stkstroverflows);
5531 	}
5532 
5533 	while (offs < strsize)
5534 		str[offs++] = '\0';
5535 
5536 out:
5537 	mstate->dtms_scratch_ptr = old;
5538 }
5539 
5540 /*
5541  * If you're looking for the epicenter of DTrace, you just found it.  This
5542  * is the function called by the provider to fire a probe -- from which all
5543  * subsequent probe-context DTrace activity emanates.
5544  */
5545 void
5546 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5547     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5548 {
5549 	processorid_t cpuid;
5550 	dtrace_icookie_t cookie;
5551 	dtrace_probe_t *probe;
5552 	dtrace_mstate_t mstate;
5553 	dtrace_ecb_t *ecb;
5554 	dtrace_action_t *act;
5555 	intptr_t offs;
5556 	size_t size;
5557 	int vtime, onintr;
5558 	volatile uint16_t *flags;
5559 	hrtime_t now;
5560 
5561 	/*
5562 	 * Kick out immediately if this CPU is still being born (in which case
5563 	 * curthread will be set to -1) or the current thread can't allow
5564 	 * probes in its current context.
5565 	 */
5566 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5567 		return;
5568 
5569 	cookie = dtrace_interrupt_disable();
5570 	probe = dtrace_probes[id - 1];
5571 	cpuid = CPU->cpu_id;
5572 	onintr = CPU_ON_INTR(CPU);
5573 
5574 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5575 	    probe->dtpr_predcache == curthread->t_predcache) {
5576 		/*
5577 		 * We have hit in the predicate cache; we know that
5578 		 * this predicate would evaluate to be false.
5579 		 */
5580 		dtrace_interrupt_enable(cookie);
5581 		return;
5582 	}
5583 
5584 	if (panic_quiesce) {
5585 		/*
5586 		 * We don't trace anything if we're panicking.
5587 		 */
5588 		dtrace_interrupt_enable(cookie);
5589 		return;
5590 	}
5591 
5592 	now = dtrace_gethrtime();
5593 	vtime = dtrace_vtime_references != 0;
5594 
5595 	if (vtime && curthread->t_dtrace_start)
5596 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5597 
5598 	mstate.dtms_difo = NULL;
5599 	mstate.dtms_probe = probe;
5600 	mstate.dtms_strtok = NULL;
5601 	mstate.dtms_arg[0] = arg0;
5602 	mstate.dtms_arg[1] = arg1;
5603 	mstate.dtms_arg[2] = arg2;
5604 	mstate.dtms_arg[3] = arg3;
5605 	mstate.dtms_arg[4] = arg4;
5606 
5607 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5608 
5609 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5610 		dtrace_predicate_t *pred = ecb->dte_predicate;
5611 		dtrace_state_t *state = ecb->dte_state;
5612 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5613 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5614 		dtrace_vstate_t *vstate = &state->dts_vstate;
5615 		dtrace_provider_t *prov = probe->dtpr_provider;
5616 		int committed = 0;
5617 		caddr_t tomax;
5618 
5619 		/*
5620 		 * A little subtlety with the following (seemingly innocuous)
5621 		 * declaration of the automatic 'val':  by looking at the
5622 		 * code, you might think that it could be declared in the
5623 		 * action processing loop, below.  (That is, it's only used in
5624 		 * the action processing loop.)  However, it must be declared
5625 		 * out of that scope because in the case of DIF expression
5626 		 * arguments to aggregating actions, one iteration of the
5627 		 * action loop will use the last iteration's value.
5628 		 */
5629 #ifdef lint
5630 		uint64_t val = 0;
5631 #else
5632 		uint64_t val;
5633 #endif
5634 
5635 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5636 		*flags &= ~CPU_DTRACE_ERROR;
5637 
5638 		if (prov == dtrace_provider) {
5639 			/*
5640 			 * If dtrace itself is the provider of this probe,
5641 			 * we're only going to continue processing the ECB if
5642 			 * arg0 (the dtrace_state_t) is equal to the ECB's
5643 			 * creating state.  (This prevents disjoint consumers
5644 			 * from seeing one another's metaprobes.)
5645 			 */
5646 			if (arg0 != (uint64_t)(uintptr_t)state)
5647 				continue;
5648 		}
5649 
5650 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5651 			/*
5652 			 * We're not currently active.  If our provider isn't
5653 			 * the dtrace pseudo provider, we're not interested.
5654 			 */
5655 			if (prov != dtrace_provider)
5656 				continue;
5657 
5658 			/*
5659 			 * Now we must further check if we are in the BEGIN
5660 			 * probe.  If we are, we will only continue processing
5661 			 * if we're still in WARMUP -- if one BEGIN enabling
5662 			 * has invoked the exit() action, we don't want to
5663 			 * evaluate subsequent BEGIN enablings.
5664 			 */
5665 			if (probe->dtpr_id == dtrace_probeid_begin &&
5666 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5667 				ASSERT(state->dts_activity ==
5668 				    DTRACE_ACTIVITY_DRAINING);
5669 				continue;
5670 			}
5671 		}
5672 
5673 		if (ecb->dte_cond) {
5674 			/*
5675 			 * If the dte_cond bits indicate that this
5676 			 * consumer is only allowed to see user-mode firings
5677 			 * of this probe, call the provider's dtps_usermode()
5678 			 * entry point to check that the probe was fired
5679 			 * while in a user context. Skip this ECB if that's
5680 			 * not the case.
5681 			 */
5682 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5683 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5684 			    probe->dtpr_id, probe->dtpr_arg) == 0)
5685 				continue;
5686 
5687 			/*
5688 			 * This is more subtle than it looks. We have to be
5689 			 * absolutely certain that CRED() isn't going to
5690 			 * change out from under us so it's only legit to
5691 			 * examine that structure if we're in constrained
5692 			 * situations. Currently, the only times we'll this
5693 			 * check is if a non-super-user has enabled the
5694 			 * profile or syscall providers -- providers that
5695 			 * allow visibility of all processes. For the
5696 			 * profile case, the check above will ensure that
5697 			 * we're examining a user context.
5698 			 */
5699 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
5700 				cred_t *cr;
5701 				cred_t *s_cr =
5702 				    ecb->dte_state->dts_cred.dcr_cred;
5703 				proc_t *proc;
5704 
5705 				ASSERT(s_cr != NULL);
5706 
5707 				if ((cr = CRED()) == NULL ||
5708 				    s_cr->cr_uid != cr->cr_uid ||
5709 				    s_cr->cr_uid != cr->cr_ruid ||
5710 				    s_cr->cr_uid != cr->cr_suid ||
5711 				    s_cr->cr_gid != cr->cr_gid ||
5712 				    s_cr->cr_gid != cr->cr_rgid ||
5713 				    s_cr->cr_gid != cr->cr_sgid ||
5714 				    (proc = ttoproc(curthread)) == NULL ||
5715 				    (proc->p_flag & SNOCD))
5716 					continue;
5717 			}
5718 
5719 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
5720 				cred_t *cr;
5721 				cred_t *s_cr =
5722 				    ecb->dte_state->dts_cred.dcr_cred;
5723 
5724 				ASSERT(s_cr != NULL);
5725 
5726 				if ((cr = CRED()) == NULL ||
5727 				    s_cr->cr_zone->zone_id !=
5728 				    cr->cr_zone->zone_id)
5729 					continue;
5730 			}
5731 		}
5732 
5733 		if (now - state->dts_alive > dtrace_deadman_timeout) {
5734 			/*
5735 			 * We seem to be dead.  Unless we (a) have kernel
5736 			 * destructive permissions (b) have expicitly enabled
5737 			 * destructive actions and (c) destructive actions have
5738 			 * not been disabled, we're going to transition into
5739 			 * the KILLED state, from which no further processing
5740 			 * on this state will be performed.
5741 			 */
5742 			if (!dtrace_priv_kernel_destructive(state) ||
5743 			    !state->dts_cred.dcr_destructive ||
5744 			    dtrace_destructive_disallow) {
5745 				void *activity = &state->dts_activity;
5746 				dtrace_activity_t current;
5747 
5748 				do {
5749 					current = state->dts_activity;
5750 				} while (dtrace_cas32(activity, current,
5751 				    DTRACE_ACTIVITY_KILLED) != current);
5752 
5753 				continue;
5754 			}
5755 		}
5756 
5757 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
5758 		    ecb->dte_alignment, state, &mstate)) < 0)
5759 			continue;
5760 
5761 		tomax = buf->dtb_tomax;
5762 		ASSERT(tomax != NULL);
5763 
5764 		if (ecb->dte_size != 0)
5765 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
5766 
5767 		mstate.dtms_epid = ecb->dte_epid;
5768 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
5769 
5770 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
5771 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
5772 		else
5773 			mstate.dtms_access = 0;
5774 
5775 		if (pred != NULL) {
5776 			dtrace_difo_t *dp = pred->dtp_difo;
5777 			int rval;
5778 
5779 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
5780 
5781 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
5782 				dtrace_cacheid_t cid = probe->dtpr_predcache;
5783 
5784 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
5785 					/*
5786 					 * Update the predicate cache...
5787 					 */
5788 					ASSERT(cid == pred->dtp_cacheid);
5789 					curthread->t_predcache = cid;
5790 				}
5791 
5792 				continue;
5793 			}
5794 		}
5795 
5796 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
5797 		    act != NULL; act = act->dta_next) {
5798 			size_t valoffs;
5799 			dtrace_difo_t *dp;
5800 			dtrace_recdesc_t *rec = &act->dta_rec;
5801 
5802 			size = rec->dtrd_size;
5803 			valoffs = offs + rec->dtrd_offset;
5804 
5805 			if (DTRACEACT_ISAGG(act->dta_kind)) {
5806 				uint64_t v = 0xbad;
5807 				dtrace_aggregation_t *agg;
5808 
5809 				agg = (dtrace_aggregation_t *)act;
5810 
5811 				if ((dp = act->dta_difo) != NULL)
5812 					v = dtrace_dif_emulate(dp,
5813 					    &mstate, vstate, state);
5814 
5815 				if (*flags & CPU_DTRACE_ERROR)
5816 					continue;
5817 
5818 				/*
5819 				 * Note that we always pass the expression
5820 				 * value from the previous iteration of the
5821 				 * action loop.  This value will only be used
5822 				 * if there is an expression argument to the
5823 				 * aggregating action, denoted by the
5824 				 * dtag_hasarg field.
5825 				 */
5826 				dtrace_aggregate(agg, buf,
5827 				    offs, aggbuf, v, val);
5828 				continue;
5829 			}
5830 
5831 			switch (act->dta_kind) {
5832 			case DTRACEACT_STOP:
5833 				if (dtrace_priv_proc_destructive(state))
5834 					dtrace_action_stop();
5835 				continue;
5836 
5837 			case DTRACEACT_BREAKPOINT:
5838 				if (dtrace_priv_kernel_destructive(state))
5839 					dtrace_action_breakpoint(ecb);
5840 				continue;
5841 
5842 			case DTRACEACT_PANIC:
5843 				if (dtrace_priv_kernel_destructive(state))
5844 					dtrace_action_panic(ecb);
5845 				continue;
5846 
5847 			case DTRACEACT_STACK:
5848 				if (!dtrace_priv_kernel(state))
5849 					continue;
5850 
5851 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
5852 				    size / sizeof (pc_t), probe->dtpr_aframes,
5853 				    DTRACE_ANCHORED(probe) ? NULL :
5854 				    (uint32_t *)arg0);
5855 
5856 				continue;
5857 
5858 			case DTRACEACT_JSTACK:
5859 			case DTRACEACT_USTACK:
5860 				if (!dtrace_priv_proc(state))
5861 					continue;
5862 
5863 				/*
5864 				 * See comment in DIF_VAR_PID.
5865 				 */
5866 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
5867 				    CPU_ON_INTR(CPU)) {
5868 					int depth = DTRACE_USTACK_NFRAMES(
5869 					    rec->dtrd_arg) + 1;
5870 
5871 					dtrace_bzero((void *)(tomax + valoffs),
5872 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
5873 					    + depth * sizeof (uint64_t));
5874 
5875 					continue;
5876 				}
5877 
5878 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
5879 				    curproc->p_dtrace_helpers != NULL) {
5880 					/*
5881 					 * This is the slow path -- we have
5882 					 * allocated string space, and we're
5883 					 * getting the stack of a process that
5884 					 * has helpers.  Call into a separate
5885 					 * routine to perform this processing.
5886 					 */
5887 					dtrace_action_ustack(&mstate, state,
5888 					    (uint64_t *)(tomax + valoffs),
5889 					    rec->dtrd_arg);
5890 					continue;
5891 				}
5892 
5893 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5894 				dtrace_getupcstack((uint64_t *)
5895 				    (tomax + valoffs),
5896 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
5897 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5898 				continue;
5899 
5900 			default:
5901 				break;
5902 			}
5903 
5904 			dp = act->dta_difo;
5905 			ASSERT(dp != NULL);
5906 
5907 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
5908 
5909 			if (*flags & CPU_DTRACE_ERROR)
5910 				continue;
5911 
5912 			switch (act->dta_kind) {
5913 			case DTRACEACT_SPECULATE:
5914 				ASSERT(buf == &state->dts_buffer[cpuid]);
5915 				buf = dtrace_speculation_buffer(state,
5916 				    cpuid, val);
5917 
5918 				if (buf == NULL) {
5919 					*flags |= CPU_DTRACE_DROP;
5920 					continue;
5921 				}
5922 
5923 				offs = dtrace_buffer_reserve(buf,
5924 				    ecb->dte_needed, ecb->dte_alignment,
5925 				    state, NULL);
5926 
5927 				if (offs < 0) {
5928 					*flags |= CPU_DTRACE_DROP;
5929 					continue;
5930 				}
5931 
5932 				tomax = buf->dtb_tomax;
5933 				ASSERT(tomax != NULL);
5934 
5935 				if (ecb->dte_size != 0)
5936 					DTRACE_STORE(uint32_t, tomax, offs,
5937 					    ecb->dte_epid);
5938 				continue;
5939 
5940 			case DTRACEACT_CHILL:
5941 				if (dtrace_priv_kernel_destructive(state))
5942 					dtrace_action_chill(&mstate, val);
5943 				continue;
5944 
5945 			case DTRACEACT_RAISE:
5946 				if (dtrace_priv_proc_destructive(state))
5947 					dtrace_action_raise(val);
5948 				continue;
5949 
5950 			case DTRACEACT_COMMIT:
5951 				ASSERT(!committed);
5952 
5953 				/*
5954 				 * We need to commit our buffer state.
5955 				 */
5956 				if (ecb->dte_size)
5957 					buf->dtb_offset = offs + ecb->dte_size;
5958 				buf = &state->dts_buffer[cpuid];
5959 				dtrace_speculation_commit(state, cpuid, val);
5960 				committed = 1;
5961 				continue;
5962 
5963 			case DTRACEACT_DISCARD:
5964 				dtrace_speculation_discard(state, cpuid, val);
5965 				continue;
5966 
5967 			case DTRACEACT_DIFEXPR:
5968 			case DTRACEACT_LIBACT:
5969 			case DTRACEACT_PRINTF:
5970 			case DTRACEACT_PRINTA:
5971 			case DTRACEACT_SYSTEM:
5972 			case DTRACEACT_FREOPEN:
5973 				break;
5974 
5975 			case DTRACEACT_SYM:
5976 			case DTRACEACT_MOD:
5977 				if (!dtrace_priv_kernel(state))
5978 					continue;
5979 				break;
5980 
5981 			case DTRACEACT_USYM:
5982 			case DTRACEACT_UMOD:
5983 			case DTRACEACT_UADDR: {
5984 				struct pid *pid = curthread->t_procp->p_pidp;
5985 
5986 				if (!dtrace_priv_proc(state))
5987 					continue;
5988 
5989 				DTRACE_STORE(uint64_t, tomax,
5990 				    valoffs, (uint64_t)pid->pid_id);
5991 				DTRACE_STORE(uint64_t, tomax,
5992 				    valoffs + sizeof (uint64_t), val);
5993 
5994 				continue;
5995 			}
5996 
5997 			case DTRACEACT_EXIT: {
5998 				/*
5999 				 * For the exit action, we are going to attempt
6000 				 * to atomically set our activity to be
6001 				 * draining.  If this fails (either because
6002 				 * another CPU has beat us to the exit action,
6003 				 * or because our current activity is something
6004 				 * other than ACTIVE or WARMUP), we will
6005 				 * continue.  This assures that the exit action
6006 				 * can be successfully recorded at most once
6007 				 * when we're in the ACTIVE state.  If we're
6008 				 * encountering the exit() action while in
6009 				 * COOLDOWN, however, we want to honor the new
6010 				 * status code.  (We know that we're the only
6011 				 * thread in COOLDOWN, so there is no race.)
6012 				 */
6013 				void *activity = &state->dts_activity;
6014 				dtrace_activity_t current = state->dts_activity;
6015 
6016 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6017 					break;
6018 
6019 				if (current != DTRACE_ACTIVITY_WARMUP)
6020 					current = DTRACE_ACTIVITY_ACTIVE;
6021 
6022 				if (dtrace_cas32(activity, current,
6023 				    DTRACE_ACTIVITY_DRAINING) != current) {
6024 					*flags |= CPU_DTRACE_DROP;
6025 					continue;
6026 				}
6027 
6028 				break;
6029 			}
6030 
6031 			default:
6032 				ASSERT(0);
6033 			}
6034 
6035 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6036 				uintptr_t end = valoffs + size;
6037 
6038 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6039 				    &dp->dtdo_rtype, &mstate, vstate))
6040 					continue;
6041 
6042 				/*
6043 				 * If this is a string, we're going to only
6044 				 * load until we find the zero byte -- after
6045 				 * which we'll store zero bytes.
6046 				 */
6047 				if (dp->dtdo_rtype.dtdt_kind ==
6048 				    DIF_TYPE_STRING) {
6049 					char c = '\0' + 1;
6050 					int intuple = act->dta_intuple;
6051 					size_t s;
6052 
6053 					for (s = 0; s < size; s++) {
6054 						if (c != '\0')
6055 							c = dtrace_load8(val++);
6056 
6057 						DTRACE_STORE(uint8_t, tomax,
6058 						    valoffs++, c);
6059 
6060 						if (c == '\0' && intuple)
6061 							break;
6062 					}
6063 
6064 					continue;
6065 				}
6066 
6067 				while (valoffs < end) {
6068 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6069 					    dtrace_load8(val++));
6070 				}
6071 
6072 				continue;
6073 			}
6074 
6075 			switch (size) {
6076 			case 0:
6077 				break;
6078 
6079 			case sizeof (uint8_t):
6080 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6081 				break;
6082 			case sizeof (uint16_t):
6083 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6084 				break;
6085 			case sizeof (uint32_t):
6086 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6087 				break;
6088 			case sizeof (uint64_t):
6089 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6090 				break;
6091 			default:
6092 				/*
6093 				 * Any other size should have been returned by
6094 				 * reference, not by value.
6095 				 */
6096 				ASSERT(0);
6097 				break;
6098 			}
6099 		}
6100 
6101 		if (*flags & CPU_DTRACE_DROP)
6102 			continue;
6103 
6104 		if (*flags & CPU_DTRACE_FAULT) {
6105 			int ndx;
6106 			dtrace_action_t *err;
6107 
6108 			buf->dtb_errors++;
6109 
6110 			if (probe->dtpr_id == dtrace_probeid_error) {
6111 				/*
6112 				 * There's nothing we can do -- we had an
6113 				 * error on the error probe.  We bump an
6114 				 * error counter to at least indicate that
6115 				 * this condition happened.
6116 				 */
6117 				dtrace_error(&state->dts_dblerrors);
6118 				continue;
6119 			}
6120 
6121 			if (vtime) {
6122 				/*
6123 				 * Before recursing on dtrace_probe(), we
6124 				 * need to explicitly clear out our start
6125 				 * time to prevent it from being accumulated
6126 				 * into t_dtrace_vtime.
6127 				 */
6128 				curthread->t_dtrace_start = 0;
6129 			}
6130 
6131 			/*
6132 			 * Iterate over the actions to figure out which action
6133 			 * we were processing when we experienced the error.
6134 			 * Note that act points _past_ the faulting action; if
6135 			 * act is ecb->dte_action, the fault was in the
6136 			 * predicate, if it's ecb->dte_action->dta_next it's
6137 			 * in action #1, and so on.
6138 			 */
6139 			for (err = ecb->dte_action, ndx = 0;
6140 			    err != act; err = err->dta_next, ndx++)
6141 				continue;
6142 
6143 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6144 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6145 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6146 			    cpu_core[cpuid].cpuc_dtrace_illval);
6147 
6148 			continue;
6149 		}
6150 
6151 		if (!committed)
6152 			buf->dtb_offset = offs + ecb->dte_size;
6153 	}
6154 
6155 	if (vtime)
6156 		curthread->t_dtrace_start = dtrace_gethrtime();
6157 
6158 	dtrace_interrupt_enable(cookie);
6159 }
6160 
6161 /*
6162  * DTrace Probe Hashing Functions
6163  *
6164  * The functions in this section (and indeed, the functions in remaining
6165  * sections) are not _called_ from probe context.  (Any exceptions to this are
6166  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6167  * DTrace framework to look-up probes in, add probes to and remove probes from
6168  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6169  * probe tuple -- allowing for fast lookups, regardless of what was
6170  * specified.)
6171  */
6172 static uint_t
6173 dtrace_hash_str(char *p)
6174 {
6175 	unsigned int g;
6176 	uint_t hval = 0;
6177 
6178 	while (*p) {
6179 		hval = (hval << 4) + *p++;
6180 		if ((g = (hval & 0xf0000000)) != 0)
6181 			hval ^= g >> 24;
6182 		hval &= ~g;
6183 	}
6184 	return (hval);
6185 }
6186 
6187 static dtrace_hash_t *
6188 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6189 {
6190 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6191 
6192 	hash->dth_stroffs = stroffs;
6193 	hash->dth_nextoffs = nextoffs;
6194 	hash->dth_prevoffs = prevoffs;
6195 
6196 	hash->dth_size = 1;
6197 	hash->dth_mask = hash->dth_size - 1;
6198 
6199 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6200 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6201 
6202 	return (hash);
6203 }
6204 
6205 static void
6206 dtrace_hash_destroy(dtrace_hash_t *hash)
6207 {
6208 #ifdef DEBUG
6209 	int i;
6210 
6211 	for (i = 0; i < hash->dth_size; i++)
6212 		ASSERT(hash->dth_tab[i] == NULL);
6213 #endif
6214 
6215 	kmem_free(hash->dth_tab,
6216 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6217 	kmem_free(hash, sizeof (dtrace_hash_t));
6218 }
6219 
6220 static void
6221 dtrace_hash_resize(dtrace_hash_t *hash)
6222 {
6223 	int size = hash->dth_size, i, ndx;
6224 	int new_size = hash->dth_size << 1;
6225 	int new_mask = new_size - 1;
6226 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6227 
6228 	ASSERT((new_size & new_mask) == 0);
6229 
6230 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6231 
6232 	for (i = 0; i < size; i++) {
6233 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6234 			dtrace_probe_t *probe = bucket->dthb_chain;
6235 
6236 			ASSERT(probe != NULL);
6237 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6238 
6239 			next = bucket->dthb_next;
6240 			bucket->dthb_next = new_tab[ndx];
6241 			new_tab[ndx] = bucket;
6242 		}
6243 	}
6244 
6245 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6246 	hash->dth_tab = new_tab;
6247 	hash->dth_size = new_size;
6248 	hash->dth_mask = new_mask;
6249 }
6250 
6251 static void
6252 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6253 {
6254 	int hashval = DTRACE_HASHSTR(hash, new);
6255 	int ndx = hashval & hash->dth_mask;
6256 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6257 	dtrace_probe_t **nextp, **prevp;
6258 
6259 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6260 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6261 			goto add;
6262 	}
6263 
6264 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6265 		dtrace_hash_resize(hash);
6266 		dtrace_hash_add(hash, new);
6267 		return;
6268 	}
6269 
6270 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6271 	bucket->dthb_next = hash->dth_tab[ndx];
6272 	hash->dth_tab[ndx] = bucket;
6273 	hash->dth_nbuckets++;
6274 
6275 add:
6276 	nextp = DTRACE_HASHNEXT(hash, new);
6277 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6278 	*nextp = bucket->dthb_chain;
6279 
6280 	if (bucket->dthb_chain != NULL) {
6281 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6282 		ASSERT(*prevp == NULL);
6283 		*prevp = new;
6284 	}
6285 
6286 	bucket->dthb_chain = new;
6287 	bucket->dthb_len++;
6288 }
6289 
6290 static dtrace_probe_t *
6291 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6292 {
6293 	int hashval = DTRACE_HASHSTR(hash, template);
6294 	int ndx = hashval & hash->dth_mask;
6295 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6296 
6297 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6298 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6299 			return (bucket->dthb_chain);
6300 	}
6301 
6302 	return (NULL);
6303 }
6304 
6305 static int
6306 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6307 {
6308 	int hashval = DTRACE_HASHSTR(hash, template);
6309 	int ndx = hashval & hash->dth_mask;
6310 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6311 
6312 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6313 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6314 			return (bucket->dthb_len);
6315 	}
6316 
6317 	return (NULL);
6318 }
6319 
6320 static void
6321 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6322 {
6323 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6324 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6325 
6326 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6327 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6328 
6329 	/*
6330 	 * Find the bucket that we're removing this probe from.
6331 	 */
6332 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6333 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6334 			break;
6335 	}
6336 
6337 	ASSERT(bucket != NULL);
6338 
6339 	if (*prevp == NULL) {
6340 		if (*nextp == NULL) {
6341 			/*
6342 			 * The removed probe was the only probe on this
6343 			 * bucket; we need to remove the bucket.
6344 			 */
6345 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6346 
6347 			ASSERT(bucket->dthb_chain == probe);
6348 			ASSERT(b != NULL);
6349 
6350 			if (b == bucket) {
6351 				hash->dth_tab[ndx] = bucket->dthb_next;
6352 			} else {
6353 				while (b->dthb_next != bucket)
6354 					b = b->dthb_next;
6355 				b->dthb_next = bucket->dthb_next;
6356 			}
6357 
6358 			ASSERT(hash->dth_nbuckets > 0);
6359 			hash->dth_nbuckets--;
6360 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6361 			return;
6362 		}
6363 
6364 		bucket->dthb_chain = *nextp;
6365 	} else {
6366 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6367 	}
6368 
6369 	if (*nextp != NULL)
6370 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6371 }
6372 
6373 /*
6374  * DTrace Utility Functions
6375  *
6376  * These are random utility functions that are _not_ called from probe context.
6377  */
6378 static int
6379 dtrace_badattr(const dtrace_attribute_t *a)
6380 {
6381 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6382 	    a->dtat_data > DTRACE_STABILITY_MAX ||
6383 	    a->dtat_class > DTRACE_CLASS_MAX);
6384 }
6385 
6386 /*
6387  * Return a duplicate copy of a string.  If the specified string is NULL,
6388  * this function returns a zero-length string.
6389  */
6390 static char *
6391 dtrace_strdup(const char *str)
6392 {
6393 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6394 
6395 	if (str != NULL)
6396 		(void) strcpy(new, str);
6397 
6398 	return (new);
6399 }
6400 
6401 #define	DTRACE_ISALPHA(c)	\
6402 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6403 
6404 static int
6405 dtrace_badname(const char *s)
6406 {
6407 	char c;
6408 
6409 	if (s == NULL || (c = *s++) == '\0')
6410 		return (0);
6411 
6412 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6413 		return (1);
6414 
6415 	while ((c = *s++) != '\0') {
6416 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6417 		    c != '-' && c != '_' && c != '.' && c != '`')
6418 			return (1);
6419 	}
6420 
6421 	return (0);
6422 }
6423 
6424 static void
6425 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6426 {
6427 	uint32_t priv;
6428 
6429 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6430 		/*
6431 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6432 		 */
6433 		priv = DTRACE_PRIV_ALL;
6434 	} else {
6435 		*uidp = crgetuid(cr);
6436 		*zoneidp = crgetzoneid(cr);
6437 
6438 		priv = 0;
6439 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6440 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6441 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6442 			priv |= DTRACE_PRIV_USER;
6443 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6444 			priv |= DTRACE_PRIV_PROC;
6445 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6446 			priv |= DTRACE_PRIV_OWNER;
6447 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6448 			priv |= DTRACE_PRIV_ZONEOWNER;
6449 	}
6450 
6451 	*privp = priv;
6452 }
6453 
6454 #ifdef DTRACE_ERRDEBUG
6455 static void
6456 dtrace_errdebug(const char *str)
6457 {
6458 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6459 	int occupied = 0;
6460 
6461 	mutex_enter(&dtrace_errlock);
6462 	dtrace_errlast = str;
6463 	dtrace_errthread = curthread;
6464 
6465 	while (occupied++ < DTRACE_ERRHASHSZ) {
6466 		if (dtrace_errhash[hval].dter_msg == str) {
6467 			dtrace_errhash[hval].dter_count++;
6468 			goto out;
6469 		}
6470 
6471 		if (dtrace_errhash[hval].dter_msg != NULL) {
6472 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6473 			continue;
6474 		}
6475 
6476 		dtrace_errhash[hval].dter_msg = str;
6477 		dtrace_errhash[hval].dter_count = 1;
6478 		goto out;
6479 	}
6480 
6481 	panic("dtrace: undersized error hash");
6482 out:
6483 	mutex_exit(&dtrace_errlock);
6484 }
6485 #endif
6486 
6487 /*
6488  * DTrace Matching Functions
6489  *
6490  * These functions are used to match groups of probes, given some elements of
6491  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6492  */
6493 static int
6494 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6495     zoneid_t zoneid)
6496 {
6497 	if (priv != DTRACE_PRIV_ALL) {
6498 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6499 		uint32_t match = priv & ppriv;
6500 
6501 		/*
6502 		 * No PRIV_DTRACE_* privileges...
6503 		 */
6504 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6505 		    DTRACE_PRIV_KERNEL)) == 0)
6506 			return (0);
6507 
6508 		/*
6509 		 * No matching bits, but there were bits to match...
6510 		 */
6511 		if (match == 0 && ppriv != 0)
6512 			return (0);
6513 
6514 		/*
6515 		 * Need to have permissions to the process, but don't...
6516 		 */
6517 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6518 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6519 			return (0);
6520 		}
6521 
6522 		/*
6523 		 * Need to be in the same zone unless we possess the
6524 		 * privilege to examine all zones.
6525 		 */
6526 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6527 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6528 			return (0);
6529 		}
6530 	}
6531 
6532 	return (1);
6533 }
6534 
6535 /*
6536  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6537  * consists of input pattern strings and an ops-vector to evaluate them.
6538  * This function returns >0 for match, 0 for no match, and <0 for error.
6539  */
6540 static int
6541 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6542     uint32_t priv, uid_t uid, zoneid_t zoneid)
6543 {
6544 	dtrace_provider_t *pvp = prp->dtpr_provider;
6545 	int rv;
6546 
6547 	if (pvp->dtpv_defunct)
6548 		return (0);
6549 
6550 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6551 		return (rv);
6552 
6553 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6554 		return (rv);
6555 
6556 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6557 		return (rv);
6558 
6559 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6560 		return (rv);
6561 
6562 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6563 		return (0);
6564 
6565 	return (rv);
6566 }
6567 
6568 /*
6569  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6570  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6571  * libc's version, the kernel version only applies to 8-bit ASCII strings.
6572  * In addition, all of the recursion cases except for '*' matching have been
6573  * unwound.  For '*', we still implement recursive evaluation, but a depth
6574  * counter is maintained and matching is aborted if we recurse too deep.
6575  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6576  */
6577 static int
6578 dtrace_match_glob(const char *s, const char *p, int depth)
6579 {
6580 	const char *olds;
6581 	char s1, c;
6582 	int gs;
6583 
6584 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6585 		return (-1);
6586 
6587 	if (s == NULL)
6588 		s = ""; /* treat NULL as empty string */
6589 
6590 top:
6591 	olds = s;
6592 	s1 = *s++;
6593 
6594 	if (p == NULL)
6595 		return (0);
6596 
6597 	if ((c = *p++) == '\0')
6598 		return (s1 == '\0');
6599 
6600 	switch (c) {
6601 	case '[': {
6602 		int ok = 0, notflag = 0;
6603 		char lc = '\0';
6604 
6605 		if (s1 == '\0')
6606 			return (0);
6607 
6608 		if (*p == '!') {
6609 			notflag = 1;
6610 			p++;
6611 		}
6612 
6613 		if ((c = *p++) == '\0')
6614 			return (0);
6615 
6616 		do {
6617 			if (c == '-' && lc != '\0' && *p != ']') {
6618 				if ((c = *p++) == '\0')
6619 					return (0);
6620 				if (c == '\\' && (c = *p++) == '\0')
6621 					return (0);
6622 
6623 				if (notflag) {
6624 					if (s1 < lc || s1 > c)
6625 						ok++;
6626 					else
6627 						return (0);
6628 				} else if (lc <= s1 && s1 <= c)
6629 					ok++;
6630 
6631 			} else if (c == '\\' && (c = *p++) == '\0')
6632 				return (0);
6633 
6634 			lc = c; /* save left-hand 'c' for next iteration */
6635 
6636 			if (notflag) {
6637 				if (s1 != c)
6638 					ok++;
6639 				else
6640 					return (0);
6641 			} else if (s1 == c)
6642 				ok++;
6643 
6644 			if ((c = *p++) == '\0')
6645 				return (0);
6646 
6647 		} while (c != ']');
6648 
6649 		if (ok)
6650 			goto top;
6651 
6652 		return (0);
6653 	}
6654 
6655 	case '\\':
6656 		if ((c = *p++) == '\0')
6657 			return (0);
6658 		/*FALLTHRU*/
6659 
6660 	default:
6661 		if (c != s1)
6662 			return (0);
6663 		/*FALLTHRU*/
6664 
6665 	case '?':
6666 		if (s1 != '\0')
6667 			goto top;
6668 		return (0);
6669 
6670 	case '*':
6671 		while (*p == '*')
6672 			p++; /* consecutive *'s are identical to a single one */
6673 
6674 		if (*p == '\0')
6675 			return (1);
6676 
6677 		for (s = olds; *s != '\0'; s++) {
6678 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
6679 				return (gs);
6680 		}
6681 
6682 		return (0);
6683 	}
6684 }
6685 
6686 /*ARGSUSED*/
6687 static int
6688 dtrace_match_string(const char *s, const char *p, int depth)
6689 {
6690 	return (s != NULL && strcmp(s, p) == 0);
6691 }
6692 
6693 /*ARGSUSED*/
6694 static int
6695 dtrace_match_nul(const char *s, const char *p, int depth)
6696 {
6697 	return (1); /* always match the empty pattern */
6698 }
6699 
6700 /*ARGSUSED*/
6701 static int
6702 dtrace_match_nonzero(const char *s, const char *p, int depth)
6703 {
6704 	return (s != NULL && s[0] != '\0');
6705 }
6706 
6707 static int
6708 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
6709     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
6710 {
6711 	dtrace_probe_t template, *probe;
6712 	dtrace_hash_t *hash = NULL;
6713 	int len, rc, best = INT_MAX, nmatched = 0;
6714 	dtrace_id_t i;
6715 
6716 	ASSERT(MUTEX_HELD(&dtrace_lock));
6717 
6718 	/*
6719 	 * If the probe ID is specified in the key, just lookup by ID and
6720 	 * invoke the match callback once if a matching probe is found.
6721 	 */
6722 	if (pkp->dtpk_id != DTRACE_IDNONE) {
6723 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
6724 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
6725 			if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
6726 				return (DTRACE_MATCH_FAIL);
6727 			nmatched++;
6728 		}
6729 		return (nmatched);
6730 	}
6731 
6732 	template.dtpr_mod = (char *)pkp->dtpk_mod;
6733 	template.dtpr_func = (char *)pkp->dtpk_func;
6734 	template.dtpr_name = (char *)pkp->dtpk_name;
6735 
6736 	/*
6737 	 * We want to find the most distinct of the module name, function
6738 	 * name, and name.  So for each one that is not a glob pattern or
6739 	 * empty string, we perform a lookup in the corresponding hash and
6740 	 * use the hash table with the fewest collisions to do our search.
6741 	 */
6742 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
6743 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
6744 		best = len;
6745 		hash = dtrace_bymod;
6746 	}
6747 
6748 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
6749 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
6750 		best = len;
6751 		hash = dtrace_byfunc;
6752 	}
6753 
6754 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
6755 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
6756 		best = len;
6757 		hash = dtrace_byname;
6758 	}
6759 
6760 	/*
6761 	 * If we did not select a hash table, iterate over every probe and
6762 	 * invoke our callback for each one that matches our input probe key.
6763 	 */
6764 	if (hash == NULL) {
6765 		for (i = 0; i < dtrace_nprobes; i++) {
6766 			if ((probe = dtrace_probes[i]) == NULL ||
6767 			    dtrace_match_probe(probe, pkp, priv, uid,
6768 			    zoneid) <= 0)
6769 				continue;
6770 
6771 			nmatched++;
6772 
6773 			if ((rc = (*matched)(probe, arg)) !=
6774 			    DTRACE_MATCH_NEXT) {
6775 				if (rc == DTRACE_MATCH_FAIL)
6776 					return (DTRACE_MATCH_FAIL);
6777 				break;
6778 			}
6779 		}
6780 
6781 		return (nmatched);
6782 	}
6783 
6784 	/*
6785 	 * If we selected a hash table, iterate over each probe of the same key
6786 	 * name and invoke the callback for every probe that matches the other
6787 	 * attributes of our input probe key.
6788 	 */
6789 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
6790 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
6791 
6792 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
6793 			continue;
6794 
6795 		nmatched++;
6796 
6797 		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
6798 			if (rc == DTRACE_MATCH_FAIL)
6799 				return (DTRACE_MATCH_FAIL);
6800 			break;
6801 		}
6802 	}
6803 
6804 	return (nmatched);
6805 }
6806 
6807 /*
6808  * Return the function pointer dtrace_probecmp() should use to compare the
6809  * specified pattern with a string.  For NULL or empty patterns, we select
6810  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
6811  * For non-empty non-glob strings, we use dtrace_match_string().
6812  */
6813 static dtrace_probekey_f *
6814 dtrace_probekey_func(const char *p)
6815 {
6816 	char c;
6817 
6818 	if (p == NULL || *p == '\0')
6819 		return (&dtrace_match_nul);
6820 
6821 	while ((c = *p++) != '\0') {
6822 		if (c == '[' || c == '?' || c == '*' || c == '\\')
6823 			return (&dtrace_match_glob);
6824 	}
6825 
6826 	return (&dtrace_match_string);
6827 }
6828 
6829 /*
6830  * Build a probe comparison key for use with dtrace_match_probe() from the
6831  * given probe description.  By convention, a null key only matches anchored
6832  * probes: if each field is the empty string, reset dtpk_fmatch to
6833  * dtrace_match_nonzero().
6834  */
6835 static void
6836 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
6837 {
6838 	pkp->dtpk_prov = pdp->dtpd_provider;
6839 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
6840 
6841 	pkp->dtpk_mod = pdp->dtpd_mod;
6842 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
6843 
6844 	pkp->dtpk_func = pdp->dtpd_func;
6845 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
6846 
6847 	pkp->dtpk_name = pdp->dtpd_name;
6848 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
6849 
6850 	pkp->dtpk_id = pdp->dtpd_id;
6851 
6852 	if (pkp->dtpk_id == DTRACE_IDNONE &&
6853 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
6854 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
6855 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
6856 	    pkp->dtpk_nmatch == &dtrace_match_nul)
6857 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
6858 }
6859 
6860 /*
6861  * DTrace Provider-to-Framework API Functions
6862  *
6863  * These functions implement much of the Provider-to-Framework API, as
6864  * described in <sys/dtrace.h>.  The parts of the API not in this section are
6865  * the functions in the API for probe management (found below), and
6866  * dtrace_probe() itself (found above).
6867  */
6868 
6869 /*
6870  * Register the calling provider with the DTrace framework.  This should
6871  * generally be called by DTrace providers in their attach(9E) entry point.
6872  */
6873 int
6874 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
6875     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
6876 {
6877 	dtrace_provider_t *provider;
6878 
6879 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
6880 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6881 		    "arguments", name ? name : "<NULL>");
6882 		return (EINVAL);
6883 	}
6884 
6885 	if (name[0] == '\0' || dtrace_badname(name)) {
6886 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6887 		    "provider name", name);
6888 		return (EINVAL);
6889 	}
6890 
6891 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
6892 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
6893 	    pops->dtps_destroy == NULL ||
6894 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
6895 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6896 		    "provider ops", name);
6897 		return (EINVAL);
6898 	}
6899 
6900 	if (dtrace_badattr(&pap->dtpa_provider) ||
6901 	    dtrace_badattr(&pap->dtpa_mod) ||
6902 	    dtrace_badattr(&pap->dtpa_func) ||
6903 	    dtrace_badattr(&pap->dtpa_name) ||
6904 	    dtrace_badattr(&pap->dtpa_args)) {
6905 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6906 		    "provider attributes", name);
6907 		return (EINVAL);
6908 	}
6909 
6910 	if (priv & ~DTRACE_PRIV_ALL) {
6911 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6912 		    "privilege attributes", name);
6913 		return (EINVAL);
6914 	}
6915 
6916 	if ((priv & DTRACE_PRIV_KERNEL) &&
6917 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
6918 	    pops->dtps_usermode == NULL) {
6919 		cmn_err(CE_WARN, "failed to register provider '%s': need "
6920 		    "dtps_usermode() op for given privilege attributes", name);
6921 		return (EINVAL);
6922 	}
6923 
6924 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
6925 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6926 	(void) strcpy(provider->dtpv_name, name);
6927 
6928 	provider->dtpv_attr = *pap;
6929 	provider->dtpv_priv.dtpp_flags = priv;
6930 	if (cr != NULL) {
6931 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
6932 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
6933 	}
6934 	provider->dtpv_pops = *pops;
6935 
6936 	if (pops->dtps_provide == NULL) {
6937 		ASSERT(pops->dtps_provide_module != NULL);
6938 		provider->dtpv_pops.dtps_provide =
6939 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
6940 	}
6941 
6942 	if (pops->dtps_provide_module == NULL) {
6943 		ASSERT(pops->dtps_provide != NULL);
6944 		provider->dtpv_pops.dtps_provide_module =
6945 		    (void (*)(void *, struct modctl *))dtrace_nullop;
6946 	}
6947 
6948 	if (pops->dtps_suspend == NULL) {
6949 		ASSERT(pops->dtps_resume == NULL);
6950 		provider->dtpv_pops.dtps_suspend =
6951 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6952 		provider->dtpv_pops.dtps_resume =
6953 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6954 	}
6955 
6956 	provider->dtpv_arg = arg;
6957 	*idp = (dtrace_provider_id_t)provider;
6958 
6959 	if (pops == &dtrace_provider_ops) {
6960 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6961 		ASSERT(MUTEX_HELD(&dtrace_lock));
6962 		ASSERT(dtrace_anon.dta_enabling == NULL);
6963 
6964 		/*
6965 		 * We make sure that the DTrace provider is at the head of
6966 		 * the provider chain.
6967 		 */
6968 		provider->dtpv_next = dtrace_provider;
6969 		dtrace_provider = provider;
6970 		return (0);
6971 	}
6972 
6973 	mutex_enter(&dtrace_provider_lock);
6974 	mutex_enter(&dtrace_lock);
6975 
6976 	/*
6977 	 * If there is at least one provider registered, we'll add this
6978 	 * provider after the first provider.
6979 	 */
6980 	if (dtrace_provider != NULL) {
6981 		provider->dtpv_next = dtrace_provider->dtpv_next;
6982 		dtrace_provider->dtpv_next = provider;
6983 	} else {
6984 		dtrace_provider = provider;
6985 	}
6986 
6987 	if (dtrace_retained != NULL) {
6988 		dtrace_enabling_provide(provider);
6989 
6990 		/*
6991 		 * Now we need to call dtrace_enabling_matchall() -- which
6992 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
6993 		 * to drop all of our locks before calling into it...
6994 		 */
6995 		mutex_exit(&dtrace_lock);
6996 		mutex_exit(&dtrace_provider_lock);
6997 		dtrace_enabling_matchall();
6998 
6999 		return (0);
7000 	}
7001 
7002 	mutex_exit(&dtrace_lock);
7003 	mutex_exit(&dtrace_provider_lock);
7004 
7005 	return (0);
7006 }
7007 
7008 /*
7009  * Unregister the specified provider from the DTrace framework.  This should
7010  * generally be called by DTrace providers in their detach(9E) entry point.
7011  */
7012 int
7013 dtrace_unregister(dtrace_provider_id_t id)
7014 {
7015 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7016 	dtrace_provider_t *prev = NULL;
7017 	int i, self = 0;
7018 	dtrace_probe_t *probe, *first = NULL;
7019 
7020 	if (old->dtpv_pops.dtps_enable ==
7021 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7022 		/*
7023 		 * If DTrace itself is the provider, we're called with locks
7024 		 * already held.
7025 		 */
7026 		ASSERT(old == dtrace_provider);
7027 		ASSERT(dtrace_devi != NULL);
7028 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7029 		ASSERT(MUTEX_HELD(&dtrace_lock));
7030 		self = 1;
7031 
7032 		if (dtrace_provider->dtpv_next != NULL) {
7033 			/*
7034 			 * There's another provider here; return failure.
7035 			 */
7036 			return (EBUSY);
7037 		}
7038 	} else {
7039 		mutex_enter(&dtrace_provider_lock);
7040 		mutex_enter(&mod_lock);
7041 		mutex_enter(&dtrace_lock);
7042 	}
7043 
7044 	/*
7045 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7046 	 * probes, we refuse to let providers slither away, unless this
7047 	 * provider has already been explicitly invalidated.
7048 	 */
7049 	if (!old->dtpv_defunct &&
7050 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7051 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7052 		if (!self) {
7053 			mutex_exit(&dtrace_lock);
7054 			mutex_exit(&mod_lock);
7055 			mutex_exit(&dtrace_provider_lock);
7056 		}
7057 		return (EBUSY);
7058 	}
7059 
7060 	/*
7061 	 * Attempt to destroy the probes associated with this provider.
7062 	 */
7063 	for (i = 0; i < dtrace_nprobes; i++) {
7064 		if ((probe = dtrace_probes[i]) == NULL)
7065 			continue;
7066 
7067 		if (probe->dtpr_provider != old)
7068 			continue;
7069 
7070 		if (probe->dtpr_ecb == NULL)
7071 			continue;
7072 
7073 		/*
7074 		 * We have at least one ECB; we can't remove this provider.
7075 		 */
7076 		if (!self) {
7077 			mutex_exit(&dtrace_lock);
7078 			mutex_exit(&mod_lock);
7079 			mutex_exit(&dtrace_provider_lock);
7080 		}
7081 		return (EBUSY);
7082 	}
7083 
7084 	/*
7085 	 * All of the probes for this provider are disabled; we can safely
7086 	 * remove all of them from their hash chains and from the probe array.
7087 	 */
7088 	for (i = 0; i < dtrace_nprobes; i++) {
7089 		if ((probe = dtrace_probes[i]) == NULL)
7090 			continue;
7091 
7092 		if (probe->dtpr_provider != old)
7093 			continue;
7094 
7095 		dtrace_probes[i] = NULL;
7096 
7097 		dtrace_hash_remove(dtrace_bymod, probe);
7098 		dtrace_hash_remove(dtrace_byfunc, probe);
7099 		dtrace_hash_remove(dtrace_byname, probe);
7100 
7101 		if (first == NULL) {
7102 			first = probe;
7103 			probe->dtpr_nextmod = NULL;
7104 		} else {
7105 			probe->dtpr_nextmod = first;
7106 			first = probe;
7107 		}
7108 	}
7109 
7110 	/*
7111 	 * The provider's probes have been removed from the hash chains and
7112 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7113 	 * everyone has cleared out from any probe array processing.
7114 	 */
7115 	dtrace_sync();
7116 
7117 	for (probe = first; probe != NULL; probe = first) {
7118 		first = probe->dtpr_nextmod;
7119 
7120 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7121 		    probe->dtpr_arg);
7122 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7123 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7124 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7125 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7126 		kmem_free(probe, sizeof (dtrace_probe_t));
7127 	}
7128 
7129 	if ((prev = dtrace_provider) == old) {
7130 		ASSERT(self || dtrace_devi == NULL);
7131 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7132 		dtrace_provider = old->dtpv_next;
7133 	} else {
7134 		while (prev != NULL && prev->dtpv_next != old)
7135 			prev = prev->dtpv_next;
7136 
7137 		if (prev == NULL) {
7138 			panic("attempt to unregister non-existent "
7139 			    "dtrace provider %p\n", (void *)id);
7140 		}
7141 
7142 		prev->dtpv_next = old->dtpv_next;
7143 	}
7144 
7145 	if (!self) {
7146 		mutex_exit(&dtrace_lock);
7147 		mutex_exit(&mod_lock);
7148 		mutex_exit(&dtrace_provider_lock);
7149 	}
7150 
7151 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7152 	kmem_free(old, sizeof (dtrace_provider_t));
7153 
7154 	return (0);
7155 }
7156 
7157 /*
7158  * Invalidate the specified provider.  All subsequent probe lookups for the
7159  * specified provider will fail, but its probes will not be removed.
7160  */
7161 void
7162 dtrace_invalidate(dtrace_provider_id_t id)
7163 {
7164 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7165 
7166 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7167 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7168 
7169 	mutex_enter(&dtrace_provider_lock);
7170 	mutex_enter(&dtrace_lock);
7171 
7172 	pvp->dtpv_defunct = 1;
7173 
7174 	mutex_exit(&dtrace_lock);
7175 	mutex_exit(&dtrace_provider_lock);
7176 }
7177 
7178 /*
7179  * Indicate whether or not DTrace has attached.
7180  */
7181 int
7182 dtrace_attached(void)
7183 {
7184 	/*
7185 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7186 	 * attached.  (It's non-NULL because DTrace is always itself a
7187 	 * provider.)
7188 	 */
7189 	return (dtrace_provider != NULL);
7190 }
7191 
7192 /*
7193  * Remove all the unenabled probes for the given provider.  This function is
7194  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7195  * -- just as many of its associated probes as it can.
7196  */
7197 int
7198 dtrace_condense(dtrace_provider_id_t id)
7199 {
7200 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7201 	int i;
7202 	dtrace_probe_t *probe;
7203 
7204 	/*
7205 	 * Make sure this isn't the dtrace provider itself.
7206 	 */
7207 	ASSERT(prov->dtpv_pops.dtps_enable !=
7208 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7209 
7210 	mutex_enter(&dtrace_provider_lock);
7211 	mutex_enter(&dtrace_lock);
7212 
7213 	/*
7214 	 * Attempt to destroy the probes associated with this provider.
7215 	 */
7216 	for (i = 0; i < dtrace_nprobes; i++) {
7217 		if ((probe = dtrace_probes[i]) == NULL)
7218 			continue;
7219 
7220 		if (probe->dtpr_provider != prov)
7221 			continue;
7222 
7223 		if (probe->dtpr_ecb != NULL)
7224 			continue;
7225 
7226 		dtrace_probes[i] = NULL;
7227 
7228 		dtrace_hash_remove(dtrace_bymod, probe);
7229 		dtrace_hash_remove(dtrace_byfunc, probe);
7230 		dtrace_hash_remove(dtrace_byname, probe);
7231 
7232 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7233 		    probe->dtpr_arg);
7234 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7235 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7236 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7237 		kmem_free(probe, sizeof (dtrace_probe_t));
7238 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7239 	}
7240 
7241 	mutex_exit(&dtrace_lock);
7242 	mutex_exit(&dtrace_provider_lock);
7243 
7244 	return (0);
7245 }
7246 
7247 /*
7248  * DTrace Probe Management Functions
7249  *
7250  * The functions in this section perform the DTrace probe management,
7251  * including functions to create probes, look-up probes, and call into the
7252  * providers to request that probes be provided.  Some of these functions are
7253  * in the Provider-to-Framework API; these functions can be identified by the
7254  * fact that they are not declared "static".
7255  */
7256 
7257 /*
7258  * Create a probe with the specified module name, function name, and name.
7259  */
7260 dtrace_id_t
7261 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7262     const char *func, const char *name, int aframes, void *arg)
7263 {
7264 	dtrace_probe_t *probe, **probes;
7265 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7266 	dtrace_id_t id;
7267 
7268 	if (provider == dtrace_provider) {
7269 		ASSERT(MUTEX_HELD(&dtrace_lock));
7270 	} else {
7271 		mutex_enter(&dtrace_lock);
7272 	}
7273 
7274 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7275 	    VM_BESTFIT | VM_SLEEP);
7276 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7277 
7278 	probe->dtpr_id = id;
7279 	probe->dtpr_gen = dtrace_probegen++;
7280 	probe->dtpr_mod = dtrace_strdup(mod);
7281 	probe->dtpr_func = dtrace_strdup(func);
7282 	probe->dtpr_name = dtrace_strdup(name);
7283 	probe->dtpr_arg = arg;
7284 	probe->dtpr_aframes = aframes;
7285 	probe->dtpr_provider = provider;
7286 
7287 	dtrace_hash_add(dtrace_bymod, probe);
7288 	dtrace_hash_add(dtrace_byfunc, probe);
7289 	dtrace_hash_add(dtrace_byname, probe);
7290 
7291 	if (id - 1 >= dtrace_nprobes) {
7292 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7293 		size_t nsize = osize << 1;
7294 
7295 		if (nsize == 0) {
7296 			ASSERT(osize == 0);
7297 			ASSERT(dtrace_probes == NULL);
7298 			nsize = sizeof (dtrace_probe_t *);
7299 		}
7300 
7301 		probes = kmem_zalloc(nsize, KM_SLEEP);
7302 
7303 		if (dtrace_probes == NULL) {
7304 			ASSERT(osize == 0);
7305 			dtrace_probes = probes;
7306 			dtrace_nprobes = 1;
7307 		} else {
7308 			dtrace_probe_t **oprobes = dtrace_probes;
7309 
7310 			bcopy(oprobes, probes, osize);
7311 			dtrace_membar_producer();
7312 			dtrace_probes = probes;
7313 
7314 			dtrace_sync();
7315 
7316 			/*
7317 			 * All CPUs are now seeing the new probes array; we can
7318 			 * safely free the old array.
7319 			 */
7320 			kmem_free(oprobes, osize);
7321 			dtrace_nprobes <<= 1;
7322 		}
7323 
7324 		ASSERT(id - 1 < dtrace_nprobes);
7325 	}
7326 
7327 	ASSERT(dtrace_probes[id - 1] == NULL);
7328 	dtrace_probes[id - 1] = probe;
7329 
7330 	if (provider != dtrace_provider)
7331 		mutex_exit(&dtrace_lock);
7332 
7333 	return (id);
7334 }
7335 
7336 static dtrace_probe_t *
7337 dtrace_probe_lookup_id(dtrace_id_t id)
7338 {
7339 	ASSERT(MUTEX_HELD(&dtrace_lock));
7340 
7341 	if (id == 0 || id > dtrace_nprobes)
7342 		return (NULL);
7343 
7344 	return (dtrace_probes[id - 1]);
7345 }
7346 
7347 static int
7348 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7349 {
7350 	*((dtrace_id_t *)arg) = probe->dtpr_id;
7351 
7352 	return (DTRACE_MATCH_DONE);
7353 }
7354 
7355 /*
7356  * Look up a probe based on provider and one or more of module name, function
7357  * name and probe name.
7358  */
7359 dtrace_id_t
7360 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7361     const char *func, const char *name)
7362 {
7363 	dtrace_probekey_t pkey;
7364 	dtrace_id_t id;
7365 	int match;
7366 
7367 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7368 	pkey.dtpk_pmatch = &dtrace_match_string;
7369 	pkey.dtpk_mod = mod;
7370 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7371 	pkey.dtpk_func = func;
7372 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7373 	pkey.dtpk_name = name;
7374 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7375 	pkey.dtpk_id = DTRACE_IDNONE;
7376 
7377 	mutex_enter(&dtrace_lock);
7378 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7379 	    dtrace_probe_lookup_match, &id);
7380 	mutex_exit(&dtrace_lock);
7381 
7382 	ASSERT(match == 1 || match == 0);
7383 	return (match ? id : 0);
7384 }
7385 
7386 /*
7387  * Returns the probe argument associated with the specified probe.
7388  */
7389 void *
7390 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7391 {
7392 	dtrace_probe_t *probe;
7393 	void *rval = NULL;
7394 
7395 	mutex_enter(&dtrace_lock);
7396 
7397 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7398 	    probe->dtpr_provider == (dtrace_provider_t *)id)
7399 		rval = probe->dtpr_arg;
7400 
7401 	mutex_exit(&dtrace_lock);
7402 
7403 	return (rval);
7404 }
7405 
7406 /*
7407  * Copy a probe into a probe description.
7408  */
7409 static void
7410 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7411 {
7412 	bzero(pdp, sizeof (dtrace_probedesc_t));
7413 	pdp->dtpd_id = prp->dtpr_id;
7414 
7415 	(void) strncpy(pdp->dtpd_provider,
7416 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7417 
7418 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7419 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7420 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7421 }
7422 
7423 /*
7424  * Called to indicate that a probe -- or probes -- should be provided by a
7425  * specfied provider.  If the specified description is NULL, the provider will
7426  * be told to provide all of its probes.  (This is done whenever a new
7427  * consumer comes along, or whenever a retained enabling is to be matched.) If
7428  * the specified description is non-NULL, the provider is given the
7429  * opportunity to dynamically provide the specified probe, allowing providers
7430  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7431  * probes.)  If the provider is NULL, the operations will be applied to all
7432  * providers; if the provider is non-NULL the operations will only be applied
7433  * to the specified provider.  The dtrace_provider_lock must be held, and the
7434  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7435  * will need to grab the dtrace_lock when it reenters the framework through
7436  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7437  */
7438 static void
7439 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7440 {
7441 	struct modctl *ctl;
7442 	int all = 0;
7443 
7444 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7445 
7446 	if (prv == NULL) {
7447 		all = 1;
7448 		prv = dtrace_provider;
7449 	}
7450 
7451 	do {
7452 		/*
7453 		 * First, call the blanket provide operation.
7454 		 */
7455 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7456 
7457 		/*
7458 		 * Now call the per-module provide operation.  We will grab
7459 		 * mod_lock to prevent the list from being modified.  Note
7460 		 * that this also prevents the mod_busy bits from changing.
7461 		 * (mod_busy can only be changed with mod_lock held.)
7462 		 */
7463 		mutex_enter(&mod_lock);
7464 
7465 		ctl = &modules;
7466 		do {
7467 			if (ctl->mod_busy || ctl->mod_mp == NULL)
7468 				continue;
7469 
7470 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7471 
7472 		} while ((ctl = ctl->mod_next) != &modules);
7473 
7474 		mutex_exit(&mod_lock);
7475 	} while (all && (prv = prv->dtpv_next) != NULL);
7476 }
7477 
7478 /*
7479  * Iterate over each probe, and call the Framework-to-Provider API function
7480  * denoted by offs.
7481  */
7482 static void
7483 dtrace_probe_foreach(uintptr_t offs)
7484 {
7485 	dtrace_provider_t *prov;
7486 	void (*func)(void *, dtrace_id_t, void *);
7487 	dtrace_probe_t *probe;
7488 	dtrace_icookie_t cookie;
7489 	int i;
7490 
7491 	/*
7492 	 * We disable interrupts to walk through the probe array.  This is
7493 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7494 	 * won't see stale data.
7495 	 */
7496 	cookie = dtrace_interrupt_disable();
7497 
7498 	for (i = 0; i < dtrace_nprobes; i++) {
7499 		if ((probe = dtrace_probes[i]) == NULL)
7500 			continue;
7501 
7502 		if (probe->dtpr_ecb == NULL) {
7503 			/*
7504 			 * This probe isn't enabled -- don't call the function.
7505 			 */
7506 			continue;
7507 		}
7508 
7509 		prov = probe->dtpr_provider;
7510 		func = *((void(**)(void *, dtrace_id_t, void *))
7511 		    ((uintptr_t)&prov->dtpv_pops + offs));
7512 
7513 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7514 	}
7515 
7516 	dtrace_interrupt_enable(cookie);
7517 }
7518 
7519 static int
7520 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7521 {
7522 	dtrace_probekey_t pkey;
7523 	uint32_t priv;
7524 	uid_t uid;
7525 	zoneid_t zoneid;
7526 
7527 	ASSERT(MUTEX_HELD(&dtrace_lock));
7528 	dtrace_ecb_create_cache = NULL;
7529 
7530 	if (desc == NULL) {
7531 		/*
7532 		 * If we're passed a NULL description, we're being asked to
7533 		 * create an ECB with a NULL probe.
7534 		 */
7535 		(void) dtrace_ecb_create_enable(NULL, enab);
7536 		return (0);
7537 	}
7538 
7539 	dtrace_probekey(desc, &pkey);
7540 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7541 	    &priv, &uid, &zoneid);
7542 
7543 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7544 	    enab));
7545 }
7546 
7547 /*
7548  * DTrace Helper Provider Functions
7549  */
7550 static void
7551 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7552 {
7553 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
7554 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
7555 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7556 }
7557 
7558 static void
7559 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7560     const dof_provider_t *dofprov, char *strtab)
7561 {
7562 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7563 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7564 	    dofprov->dofpv_provattr);
7565 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
7566 	    dofprov->dofpv_modattr);
7567 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
7568 	    dofprov->dofpv_funcattr);
7569 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
7570 	    dofprov->dofpv_nameattr);
7571 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
7572 	    dofprov->dofpv_argsattr);
7573 }
7574 
7575 static void
7576 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7577 {
7578 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7579 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7580 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
7581 	dof_provider_t *provider;
7582 	dof_probe_t *probe;
7583 	uint32_t *off, *enoff;
7584 	uint8_t *arg;
7585 	char *strtab;
7586 	uint_t i, nprobes;
7587 	dtrace_helper_provdesc_t dhpv;
7588 	dtrace_helper_probedesc_t dhpb;
7589 	dtrace_meta_t *meta = dtrace_meta_pid;
7590 	dtrace_mops_t *mops = &meta->dtm_mops;
7591 	void *parg;
7592 
7593 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7594 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7595 	    provider->dofpv_strtab * dof->dofh_secsize);
7596 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7597 	    provider->dofpv_probes * dof->dofh_secsize);
7598 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7599 	    provider->dofpv_prargs * dof->dofh_secsize);
7600 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7601 	    provider->dofpv_proffs * dof->dofh_secsize);
7602 
7603 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7604 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
7605 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
7606 	enoff = NULL;
7607 
7608 	/*
7609 	 * See dtrace_helper_provider_validate().
7610 	 */
7611 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
7612 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
7613 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7614 		    provider->dofpv_prenoffs * dof->dofh_secsize);
7615 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
7616 	}
7617 
7618 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
7619 
7620 	/*
7621 	 * Create the provider.
7622 	 */
7623 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7624 
7625 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
7626 		return;
7627 
7628 	meta->dtm_count++;
7629 
7630 	/*
7631 	 * Create the probes.
7632 	 */
7633 	for (i = 0; i < nprobes; i++) {
7634 		probe = (dof_probe_t *)(uintptr_t)(daddr +
7635 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
7636 
7637 		dhpb.dthpb_mod = dhp->dofhp_mod;
7638 		dhpb.dthpb_func = strtab + probe->dofpr_func;
7639 		dhpb.dthpb_name = strtab + probe->dofpr_name;
7640 		dhpb.dthpb_base = probe->dofpr_addr;
7641 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
7642 		dhpb.dthpb_noffs = probe->dofpr_noffs;
7643 		if (enoff != NULL) {
7644 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
7645 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
7646 		} else {
7647 			dhpb.dthpb_enoffs = NULL;
7648 			dhpb.dthpb_nenoffs = 0;
7649 		}
7650 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
7651 		dhpb.dthpb_nargc = probe->dofpr_nargc;
7652 		dhpb.dthpb_xargc = probe->dofpr_xargc;
7653 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
7654 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
7655 
7656 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
7657 	}
7658 }
7659 
7660 static void
7661 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
7662 {
7663 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7664 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7665 	int i;
7666 
7667 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7668 
7669 	for (i = 0; i < dof->dofh_secnum; i++) {
7670 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7671 		    dof->dofh_secoff + i * dof->dofh_secsize);
7672 
7673 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7674 			continue;
7675 
7676 		dtrace_helper_provide_one(dhp, sec, pid);
7677 	}
7678 
7679 	/*
7680 	 * We may have just created probes, so we must now rematch against
7681 	 * any retained enablings.  Note that this call will acquire both
7682 	 * cpu_lock and dtrace_lock; the fact that we are holding
7683 	 * dtrace_meta_lock now is what defines the ordering with respect to
7684 	 * these three locks.
7685 	 */
7686 	dtrace_enabling_matchall();
7687 }
7688 
7689 static void
7690 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7691 {
7692 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7693 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7694 	dof_sec_t *str_sec;
7695 	dof_provider_t *provider;
7696 	char *strtab;
7697 	dtrace_helper_provdesc_t dhpv;
7698 	dtrace_meta_t *meta = dtrace_meta_pid;
7699 	dtrace_mops_t *mops = &meta->dtm_mops;
7700 
7701 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7702 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7703 	    provider->dofpv_strtab * dof->dofh_secsize);
7704 
7705 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7706 
7707 	/*
7708 	 * Create the provider.
7709 	 */
7710 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7711 
7712 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
7713 
7714 	meta->dtm_count--;
7715 }
7716 
7717 static void
7718 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
7719 {
7720 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7721 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7722 	int i;
7723 
7724 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7725 
7726 	for (i = 0; i < dof->dofh_secnum; i++) {
7727 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7728 		    dof->dofh_secoff + i * dof->dofh_secsize);
7729 
7730 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7731 			continue;
7732 
7733 		dtrace_helper_provider_remove_one(dhp, sec, pid);
7734 	}
7735 }
7736 
7737 /*
7738  * DTrace Meta Provider-to-Framework API Functions
7739  *
7740  * These functions implement the Meta Provider-to-Framework API, as described
7741  * in <sys/dtrace.h>.
7742  */
7743 int
7744 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
7745     dtrace_meta_provider_id_t *idp)
7746 {
7747 	dtrace_meta_t *meta;
7748 	dtrace_helpers_t *help, *next;
7749 	int i;
7750 
7751 	*idp = DTRACE_METAPROVNONE;
7752 
7753 	/*
7754 	 * We strictly don't need the name, but we hold onto it for
7755 	 * debuggability. All hail error queues!
7756 	 */
7757 	if (name == NULL) {
7758 		cmn_err(CE_WARN, "failed to register meta-provider: "
7759 		    "invalid name");
7760 		return (EINVAL);
7761 	}
7762 
7763 	if (mops == NULL ||
7764 	    mops->dtms_create_probe == NULL ||
7765 	    mops->dtms_provide_pid == NULL ||
7766 	    mops->dtms_remove_pid == NULL) {
7767 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7768 		    "invalid ops", name);
7769 		return (EINVAL);
7770 	}
7771 
7772 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
7773 	meta->dtm_mops = *mops;
7774 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7775 	(void) strcpy(meta->dtm_name, name);
7776 	meta->dtm_arg = arg;
7777 
7778 	mutex_enter(&dtrace_meta_lock);
7779 	mutex_enter(&dtrace_lock);
7780 
7781 	if (dtrace_meta_pid != NULL) {
7782 		mutex_exit(&dtrace_lock);
7783 		mutex_exit(&dtrace_meta_lock);
7784 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7785 		    "user-land meta-provider exists", name);
7786 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
7787 		kmem_free(meta, sizeof (dtrace_meta_t));
7788 		return (EINVAL);
7789 	}
7790 
7791 	dtrace_meta_pid = meta;
7792 	*idp = (dtrace_meta_provider_id_t)meta;
7793 
7794 	/*
7795 	 * If there are providers and probes ready to go, pass them
7796 	 * off to the new meta provider now.
7797 	 */
7798 
7799 	help = dtrace_deferred_pid;
7800 	dtrace_deferred_pid = NULL;
7801 
7802 	mutex_exit(&dtrace_lock);
7803 
7804 	while (help != NULL) {
7805 		for (i = 0; i < help->dthps_nprovs; i++) {
7806 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
7807 			    help->dthps_pid);
7808 		}
7809 
7810 		next = help->dthps_next;
7811 		help->dthps_next = NULL;
7812 		help->dthps_prev = NULL;
7813 		help->dthps_deferred = 0;
7814 		help = next;
7815 	}
7816 
7817 	mutex_exit(&dtrace_meta_lock);
7818 
7819 	return (0);
7820 }
7821 
7822 int
7823 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
7824 {
7825 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
7826 
7827 	mutex_enter(&dtrace_meta_lock);
7828 	mutex_enter(&dtrace_lock);
7829 
7830 	if (old == dtrace_meta_pid) {
7831 		pp = &dtrace_meta_pid;
7832 	} else {
7833 		panic("attempt to unregister non-existent "
7834 		    "dtrace meta-provider %p\n", (void *)old);
7835 	}
7836 
7837 	if (old->dtm_count != 0) {
7838 		mutex_exit(&dtrace_lock);
7839 		mutex_exit(&dtrace_meta_lock);
7840 		return (EBUSY);
7841 	}
7842 
7843 	*pp = NULL;
7844 
7845 	mutex_exit(&dtrace_lock);
7846 	mutex_exit(&dtrace_meta_lock);
7847 
7848 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
7849 	kmem_free(old, sizeof (dtrace_meta_t));
7850 
7851 	return (0);
7852 }
7853 
7854 
7855 /*
7856  * DTrace DIF Object Functions
7857  */
7858 static int
7859 dtrace_difo_err(uint_t pc, const char *format, ...)
7860 {
7861 	if (dtrace_err_verbose) {
7862 		va_list alist;
7863 
7864 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
7865 		va_start(alist, format);
7866 		(void) vuprintf(format, alist);
7867 		va_end(alist);
7868 	}
7869 
7870 #ifdef DTRACE_ERRDEBUG
7871 	dtrace_errdebug(format);
7872 #endif
7873 	return (1);
7874 }
7875 
7876 /*
7877  * Validate a DTrace DIF object by checking the IR instructions.  The following
7878  * rules are currently enforced by dtrace_difo_validate():
7879  *
7880  * 1. Each instruction must have a valid opcode
7881  * 2. Each register, string, variable, or subroutine reference must be valid
7882  * 3. No instruction can modify register %r0 (must be zero)
7883  * 4. All instruction reserved bits must be set to zero
7884  * 5. The last instruction must be a "ret" instruction
7885  * 6. All branch targets must reference a valid instruction _after_ the branch
7886  */
7887 static int
7888 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
7889     cred_t *cr)
7890 {
7891 	int err = 0, i;
7892 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7893 	int kcheckload;
7894 	uint_t pc;
7895 
7896 	kcheckload = cr == NULL ||
7897 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
7898 
7899 	dp->dtdo_destructive = 0;
7900 
7901 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
7902 		dif_instr_t instr = dp->dtdo_buf[pc];
7903 
7904 		uint_t r1 = DIF_INSTR_R1(instr);
7905 		uint_t r2 = DIF_INSTR_R2(instr);
7906 		uint_t rd = DIF_INSTR_RD(instr);
7907 		uint_t rs = DIF_INSTR_RS(instr);
7908 		uint_t label = DIF_INSTR_LABEL(instr);
7909 		uint_t v = DIF_INSTR_VAR(instr);
7910 		uint_t subr = DIF_INSTR_SUBR(instr);
7911 		uint_t type = DIF_INSTR_TYPE(instr);
7912 		uint_t op = DIF_INSTR_OP(instr);
7913 
7914 		switch (op) {
7915 		case DIF_OP_OR:
7916 		case DIF_OP_XOR:
7917 		case DIF_OP_AND:
7918 		case DIF_OP_SLL:
7919 		case DIF_OP_SRL:
7920 		case DIF_OP_SRA:
7921 		case DIF_OP_SUB:
7922 		case DIF_OP_ADD:
7923 		case DIF_OP_MUL:
7924 		case DIF_OP_SDIV:
7925 		case DIF_OP_UDIV:
7926 		case DIF_OP_SREM:
7927 		case DIF_OP_UREM:
7928 		case DIF_OP_COPYS:
7929 			if (r1 >= nregs)
7930 				err += efunc(pc, "invalid register %u\n", r1);
7931 			if (r2 >= nregs)
7932 				err += efunc(pc, "invalid register %u\n", r2);
7933 			if (rd >= nregs)
7934 				err += efunc(pc, "invalid register %u\n", rd);
7935 			if (rd == 0)
7936 				err += efunc(pc, "cannot write to %r0\n");
7937 			break;
7938 		case DIF_OP_NOT:
7939 		case DIF_OP_MOV:
7940 		case DIF_OP_ALLOCS:
7941 			if (r1 >= nregs)
7942 				err += efunc(pc, "invalid register %u\n", r1);
7943 			if (r2 != 0)
7944 				err += efunc(pc, "non-zero reserved bits\n");
7945 			if (rd >= nregs)
7946 				err += efunc(pc, "invalid register %u\n", rd);
7947 			if (rd == 0)
7948 				err += efunc(pc, "cannot write to %r0\n");
7949 			break;
7950 		case DIF_OP_LDSB:
7951 		case DIF_OP_LDSH:
7952 		case DIF_OP_LDSW:
7953 		case DIF_OP_LDUB:
7954 		case DIF_OP_LDUH:
7955 		case DIF_OP_LDUW:
7956 		case DIF_OP_LDX:
7957 			if (r1 >= nregs)
7958 				err += efunc(pc, "invalid register %u\n", r1);
7959 			if (r2 != 0)
7960 				err += efunc(pc, "non-zero reserved bits\n");
7961 			if (rd >= nregs)
7962 				err += efunc(pc, "invalid register %u\n", rd);
7963 			if (rd == 0)
7964 				err += efunc(pc, "cannot write to %r0\n");
7965 			if (kcheckload)
7966 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
7967 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
7968 			break;
7969 		case DIF_OP_RLDSB:
7970 		case DIF_OP_RLDSH:
7971 		case DIF_OP_RLDSW:
7972 		case DIF_OP_RLDUB:
7973 		case DIF_OP_RLDUH:
7974 		case DIF_OP_RLDUW:
7975 		case DIF_OP_RLDX:
7976 			if (r1 >= nregs)
7977 				err += efunc(pc, "invalid register %u\n", r1);
7978 			if (r2 != 0)
7979 				err += efunc(pc, "non-zero reserved bits\n");
7980 			if (rd >= nregs)
7981 				err += efunc(pc, "invalid register %u\n", rd);
7982 			if (rd == 0)
7983 				err += efunc(pc, "cannot write to %r0\n");
7984 			break;
7985 		case DIF_OP_ULDSB:
7986 		case DIF_OP_ULDSH:
7987 		case DIF_OP_ULDSW:
7988 		case DIF_OP_ULDUB:
7989 		case DIF_OP_ULDUH:
7990 		case DIF_OP_ULDUW:
7991 		case DIF_OP_ULDX:
7992 			if (r1 >= nregs)
7993 				err += efunc(pc, "invalid register %u\n", r1);
7994 			if (r2 != 0)
7995 				err += efunc(pc, "non-zero reserved bits\n");
7996 			if (rd >= nregs)
7997 				err += efunc(pc, "invalid register %u\n", rd);
7998 			if (rd == 0)
7999 				err += efunc(pc, "cannot write to %r0\n");
8000 			break;
8001 		case DIF_OP_STB:
8002 		case DIF_OP_STH:
8003 		case DIF_OP_STW:
8004 		case DIF_OP_STX:
8005 			if (r1 >= nregs)
8006 				err += efunc(pc, "invalid register %u\n", r1);
8007 			if (r2 != 0)
8008 				err += efunc(pc, "non-zero reserved bits\n");
8009 			if (rd >= nregs)
8010 				err += efunc(pc, "invalid register %u\n", rd);
8011 			if (rd == 0)
8012 				err += efunc(pc, "cannot write to 0 address\n");
8013 			break;
8014 		case DIF_OP_CMP:
8015 		case DIF_OP_SCMP:
8016 			if (r1 >= nregs)
8017 				err += efunc(pc, "invalid register %u\n", r1);
8018 			if (r2 >= nregs)
8019 				err += efunc(pc, "invalid register %u\n", r2);
8020 			if (rd != 0)
8021 				err += efunc(pc, "non-zero reserved bits\n");
8022 			break;
8023 		case DIF_OP_TST:
8024 			if (r1 >= nregs)
8025 				err += efunc(pc, "invalid register %u\n", r1);
8026 			if (r2 != 0 || rd != 0)
8027 				err += efunc(pc, "non-zero reserved bits\n");
8028 			break;
8029 		case DIF_OP_BA:
8030 		case DIF_OP_BE:
8031 		case DIF_OP_BNE:
8032 		case DIF_OP_BG:
8033 		case DIF_OP_BGU:
8034 		case DIF_OP_BGE:
8035 		case DIF_OP_BGEU:
8036 		case DIF_OP_BL:
8037 		case DIF_OP_BLU:
8038 		case DIF_OP_BLE:
8039 		case DIF_OP_BLEU:
8040 			if (label >= dp->dtdo_len) {
8041 				err += efunc(pc, "invalid branch target %u\n",
8042 				    label);
8043 			}
8044 			if (label <= pc) {
8045 				err += efunc(pc, "backward branch to %u\n",
8046 				    label);
8047 			}
8048 			break;
8049 		case DIF_OP_RET:
8050 			if (r1 != 0 || r2 != 0)
8051 				err += efunc(pc, "non-zero reserved bits\n");
8052 			if (rd >= nregs)
8053 				err += efunc(pc, "invalid register %u\n", rd);
8054 			break;
8055 		case DIF_OP_NOP:
8056 		case DIF_OP_POPTS:
8057 		case DIF_OP_FLUSHTS:
8058 			if (r1 != 0 || r2 != 0 || rd != 0)
8059 				err += efunc(pc, "non-zero reserved bits\n");
8060 			break;
8061 		case DIF_OP_SETX:
8062 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8063 				err += efunc(pc, "invalid integer ref %u\n",
8064 				    DIF_INSTR_INTEGER(instr));
8065 			}
8066 			if (rd >= nregs)
8067 				err += efunc(pc, "invalid register %u\n", rd);
8068 			if (rd == 0)
8069 				err += efunc(pc, "cannot write to %r0\n");
8070 			break;
8071 		case DIF_OP_SETS:
8072 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8073 				err += efunc(pc, "invalid string ref %u\n",
8074 				    DIF_INSTR_STRING(instr));
8075 			}
8076 			if (rd >= nregs)
8077 				err += efunc(pc, "invalid register %u\n", rd);
8078 			if (rd == 0)
8079 				err += efunc(pc, "cannot write to %r0\n");
8080 			break;
8081 		case DIF_OP_LDGA:
8082 		case DIF_OP_LDTA:
8083 			if (r1 > DIF_VAR_ARRAY_MAX)
8084 				err += efunc(pc, "invalid array %u\n", r1);
8085 			if (r2 >= nregs)
8086 				err += efunc(pc, "invalid register %u\n", r2);
8087 			if (rd >= nregs)
8088 				err += efunc(pc, "invalid register %u\n", rd);
8089 			if (rd == 0)
8090 				err += efunc(pc, "cannot write to %r0\n");
8091 			break;
8092 		case DIF_OP_LDGS:
8093 		case DIF_OP_LDTS:
8094 		case DIF_OP_LDLS:
8095 		case DIF_OP_LDGAA:
8096 		case DIF_OP_LDTAA:
8097 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8098 				err += efunc(pc, "invalid variable %u\n", v);
8099 			if (rd >= nregs)
8100 				err += efunc(pc, "invalid register %u\n", rd);
8101 			if (rd == 0)
8102 				err += efunc(pc, "cannot write to %r0\n");
8103 			break;
8104 		case DIF_OP_STGS:
8105 		case DIF_OP_STTS:
8106 		case DIF_OP_STLS:
8107 		case DIF_OP_STGAA:
8108 		case DIF_OP_STTAA:
8109 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8110 				err += efunc(pc, "invalid variable %u\n", v);
8111 			if (rs >= nregs)
8112 				err += efunc(pc, "invalid register %u\n", rd);
8113 			break;
8114 		case DIF_OP_CALL:
8115 			if (subr > DIF_SUBR_MAX)
8116 				err += efunc(pc, "invalid subr %u\n", subr);
8117 			if (rd >= nregs)
8118 				err += efunc(pc, "invalid register %u\n", rd);
8119 			if (rd == 0)
8120 				err += efunc(pc, "cannot write to %r0\n");
8121 
8122 			if (subr == DIF_SUBR_COPYOUT ||
8123 			    subr == DIF_SUBR_COPYOUTSTR) {
8124 				dp->dtdo_destructive = 1;
8125 			}
8126 			break;
8127 		case DIF_OP_PUSHTR:
8128 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8129 				err += efunc(pc, "invalid ref type %u\n", type);
8130 			if (r2 >= nregs)
8131 				err += efunc(pc, "invalid register %u\n", r2);
8132 			if (rs >= nregs)
8133 				err += efunc(pc, "invalid register %u\n", rs);
8134 			break;
8135 		case DIF_OP_PUSHTV:
8136 			if (type != DIF_TYPE_CTF)
8137 				err += efunc(pc, "invalid val type %u\n", type);
8138 			if (r2 >= nregs)
8139 				err += efunc(pc, "invalid register %u\n", r2);
8140 			if (rs >= nregs)
8141 				err += efunc(pc, "invalid register %u\n", rs);
8142 			break;
8143 		default:
8144 			err += efunc(pc, "invalid opcode %u\n",
8145 			    DIF_INSTR_OP(instr));
8146 		}
8147 	}
8148 
8149 	if (dp->dtdo_len != 0 &&
8150 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8151 		err += efunc(dp->dtdo_len - 1,
8152 		    "expected 'ret' as last DIF instruction\n");
8153 	}
8154 
8155 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8156 		/*
8157 		 * If we're not returning by reference, the size must be either
8158 		 * 0 or the size of one of the base types.
8159 		 */
8160 		switch (dp->dtdo_rtype.dtdt_size) {
8161 		case 0:
8162 		case sizeof (uint8_t):
8163 		case sizeof (uint16_t):
8164 		case sizeof (uint32_t):
8165 		case sizeof (uint64_t):
8166 			break;
8167 
8168 		default:
8169 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
8170 		}
8171 	}
8172 
8173 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8174 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8175 		dtrace_diftype_t *vt, *et;
8176 		uint_t id, ndx;
8177 
8178 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8179 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8180 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8181 			err += efunc(i, "unrecognized variable scope %d\n",
8182 			    v->dtdv_scope);
8183 			break;
8184 		}
8185 
8186 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8187 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8188 			err += efunc(i, "unrecognized variable type %d\n",
8189 			    v->dtdv_kind);
8190 			break;
8191 		}
8192 
8193 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8194 			err += efunc(i, "%d exceeds variable id limit\n", id);
8195 			break;
8196 		}
8197 
8198 		if (id < DIF_VAR_OTHER_UBASE)
8199 			continue;
8200 
8201 		/*
8202 		 * For user-defined variables, we need to check that this
8203 		 * definition is identical to any previous definition that we
8204 		 * encountered.
8205 		 */
8206 		ndx = id - DIF_VAR_OTHER_UBASE;
8207 
8208 		switch (v->dtdv_scope) {
8209 		case DIFV_SCOPE_GLOBAL:
8210 			if (ndx < vstate->dtvs_nglobals) {
8211 				dtrace_statvar_t *svar;
8212 
8213 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8214 					existing = &svar->dtsv_var;
8215 			}
8216 
8217 			break;
8218 
8219 		case DIFV_SCOPE_THREAD:
8220 			if (ndx < vstate->dtvs_ntlocals)
8221 				existing = &vstate->dtvs_tlocals[ndx];
8222 			break;
8223 
8224 		case DIFV_SCOPE_LOCAL:
8225 			if (ndx < vstate->dtvs_nlocals) {
8226 				dtrace_statvar_t *svar;
8227 
8228 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8229 					existing = &svar->dtsv_var;
8230 			}
8231 
8232 			break;
8233 		}
8234 
8235 		vt = &v->dtdv_type;
8236 
8237 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8238 			if (vt->dtdt_size == 0) {
8239 				err += efunc(i, "zero-sized variable\n");
8240 				break;
8241 			}
8242 
8243 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8244 			    vt->dtdt_size > dtrace_global_maxsize) {
8245 				err += efunc(i, "oversized by-ref global\n");
8246 				break;
8247 			}
8248 		}
8249 
8250 		if (existing == NULL || existing->dtdv_id == 0)
8251 			continue;
8252 
8253 		ASSERT(existing->dtdv_id == v->dtdv_id);
8254 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8255 
8256 		if (existing->dtdv_kind != v->dtdv_kind)
8257 			err += efunc(i, "%d changed variable kind\n", id);
8258 
8259 		et = &existing->dtdv_type;
8260 
8261 		if (vt->dtdt_flags != et->dtdt_flags) {
8262 			err += efunc(i, "%d changed variable type flags\n", id);
8263 			break;
8264 		}
8265 
8266 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8267 			err += efunc(i, "%d changed variable type size\n", id);
8268 			break;
8269 		}
8270 	}
8271 
8272 	return (err);
8273 }
8274 
8275 /*
8276  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8277  * are much more constrained than normal DIFOs.  Specifically, they may
8278  * not:
8279  *
8280  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8281  *    miscellaneous string routines
8282  * 2. Access DTrace variables other than the args[] array, and the
8283  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8284  * 3. Have thread-local variables.
8285  * 4. Have dynamic variables.
8286  */
8287 static int
8288 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8289 {
8290 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8291 	int err = 0;
8292 	uint_t pc;
8293 
8294 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8295 		dif_instr_t instr = dp->dtdo_buf[pc];
8296 
8297 		uint_t v = DIF_INSTR_VAR(instr);
8298 		uint_t subr = DIF_INSTR_SUBR(instr);
8299 		uint_t op = DIF_INSTR_OP(instr);
8300 
8301 		switch (op) {
8302 		case DIF_OP_OR:
8303 		case DIF_OP_XOR:
8304 		case DIF_OP_AND:
8305 		case DIF_OP_SLL:
8306 		case DIF_OP_SRL:
8307 		case DIF_OP_SRA:
8308 		case DIF_OP_SUB:
8309 		case DIF_OP_ADD:
8310 		case DIF_OP_MUL:
8311 		case DIF_OP_SDIV:
8312 		case DIF_OP_UDIV:
8313 		case DIF_OP_SREM:
8314 		case DIF_OP_UREM:
8315 		case DIF_OP_COPYS:
8316 		case DIF_OP_NOT:
8317 		case DIF_OP_MOV:
8318 		case DIF_OP_RLDSB:
8319 		case DIF_OP_RLDSH:
8320 		case DIF_OP_RLDSW:
8321 		case DIF_OP_RLDUB:
8322 		case DIF_OP_RLDUH:
8323 		case DIF_OP_RLDUW:
8324 		case DIF_OP_RLDX:
8325 		case DIF_OP_ULDSB:
8326 		case DIF_OP_ULDSH:
8327 		case DIF_OP_ULDSW:
8328 		case DIF_OP_ULDUB:
8329 		case DIF_OP_ULDUH:
8330 		case DIF_OP_ULDUW:
8331 		case DIF_OP_ULDX:
8332 		case DIF_OP_STB:
8333 		case DIF_OP_STH:
8334 		case DIF_OP_STW:
8335 		case DIF_OP_STX:
8336 		case DIF_OP_ALLOCS:
8337 		case DIF_OP_CMP:
8338 		case DIF_OP_SCMP:
8339 		case DIF_OP_TST:
8340 		case DIF_OP_BA:
8341 		case DIF_OP_BE:
8342 		case DIF_OP_BNE:
8343 		case DIF_OP_BG:
8344 		case DIF_OP_BGU:
8345 		case DIF_OP_BGE:
8346 		case DIF_OP_BGEU:
8347 		case DIF_OP_BL:
8348 		case DIF_OP_BLU:
8349 		case DIF_OP_BLE:
8350 		case DIF_OP_BLEU:
8351 		case DIF_OP_RET:
8352 		case DIF_OP_NOP:
8353 		case DIF_OP_POPTS:
8354 		case DIF_OP_FLUSHTS:
8355 		case DIF_OP_SETX:
8356 		case DIF_OP_SETS:
8357 		case DIF_OP_LDGA:
8358 		case DIF_OP_LDLS:
8359 		case DIF_OP_STGS:
8360 		case DIF_OP_STLS:
8361 		case DIF_OP_PUSHTR:
8362 		case DIF_OP_PUSHTV:
8363 			break;
8364 
8365 		case DIF_OP_LDGS:
8366 			if (v >= DIF_VAR_OTHER_UBASE)
8367 				break;
8368 
8369 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8370 				break;
8371 
8372 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8373 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8374 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8375 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8376 				break;
8377 
8378 			err += efunc(pc, "illegal variable %u\n", v);
8379 			break;
8380 
8381 		case DIF_OP_LDTA:
8382 		case DIF_OP_LDTS:
8383 		case DIF_OP_LDGAA:
8384 		case DIF_OP_LDTAA:
8385 			err += efunc(pc, "illegal dynamic variable load\n");
8386 			break;
8387 
8388 		case DIF_OP_STTS:
8389 		case DIF_OP_STGAA:
8390 		case DIF_OP_STTAA:
8391 			err += efunc(pc, "illegal dynamic variable store\n");
8392 			break;
8393 
8394 		case DIF_OP_CALL:
8395 			if (subr == DIF_SUBR_ALLOCA ||
8396 			    subr == DIF_SUBR_BCOPY ||
8397 			    subr == DIF_SUBR_COPYIN ||
8398 			    subr == DIF_SUBR_COPYINTO ||
8399 			    subr == DIF_SUBR_COPYINSTR ||
8400 			    subr == DIF_SUBR_INDEX ||
8401 			    subr == DIF_SUBR_INET_NTOA ||
8402 			    subr == DIF_SUBR_INET_NTOA6 ||
8403 			    subr == DIF_SUBR_INET_NTOP ||
8404 			    subr == DIF_SUBR_LLTOSTR ||
8405 			    subr == DIF_SUBR_RINDEX ||
8406 			    subr == DIF_SUBR_STRCHR ||
8407 			    subr == DIF_SUBR_STRJOIN ||
8408 			    subr == DIF_SUBR_STRRCHR ||
8409 			    subr == DIF_SUBR_STRSTR ||
8410 			    subr == DIF_SUBR_HTONS ||
8411 			    subr == DIF_SUBR_HTONL ||
8412 			    subr == DIF_SUBR_HTONLL ||
8413 			    subr == DIF_SUBR_NTOHS ||
8414 			    subr == DIF_SUBR_NTOHL ||
8415 			    subr == DIF_SUBR_NTOHLL)
8416 				break;
8417 
8418 			err += efunc(pc, "invalid subr %u\n", subr);
8419 			break;
8420 
8421 		default:
8422 			err += efunc(pc, "invalid opcode %u\n",
8423 			    DIF_INSTR_OP(instr));
8424 		}
8425 	}
8426 
8427 	return (err);
8428 }
8429 
8430 /*
8431  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8432  * basis; 0 if not.
8433  */
8434 static int
8435 dtrace_difo_cacheable(dtrace_difo_t *dp)
8436 {
8437 	int i;
8438 
8439 	if (dp == NULL)
8440 		return (0);
8441 
8442 	for (i = 0; i < dp->dtdo_varlen; i++) {
8443 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8444 
8445 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8446 			continue;
8447 
8448 		switch (v->dtdv_id) {
8449 		case DIF_VAR_CURTHREAD:
8450 		case DIF_VAR_PID:
8451 		case DIF_VAR_TID:
8452 		case DIF_VAR_EXECNAME:
8453 		case DIF_VAR_ZONENAME:
8454 			break;
8455 
8456 		default:
8457 			return (0);
8458 		}
8459 	}
8460 
8461 	/*
8462 	 * This DIF object may be cacheable.  Now we need to look for any
8463 	 * array loading instructions, any memory loading instructions, or
8464 	 * any stores to thread-local variables.
8465 	 */
8466 	for (i = 0; i < dp->dtdo_len; i++) {
8467 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8468 
8469 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8470 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8471 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8472 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8473 			return (0);
8474 	}
8475 
8476 	return (1);
8477 }
8478 
8479 static void
8480 dtrace_difo_hold(dtrace_difo_t *dp)
8481 {
8482 	int i;
8483 
8484 	ASSERT(MUTEX_HELD(&dtrace_lock));
8485 
8486 	dp->dtdo_refcnt++;
8487 	ASSERT(dp->dtdo_refcnt != 0);
8488 
8489 	/*
8490 	 * We need to check this DIF object for references to the variable
8491 	 * DIF_VAR_VTIMESTAMP.
8492 	 */
8493 	for (i = 0; i < dp->dtdo_varlen; i++) {
8494 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8495 
8496 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8497 			continue;
8498 
8499 		if (dtrace_vtime_references++ == 0)
8500 			dtrace_vtime_enable();
8501 	}
8502 }
8503 
8504 /*
8505  * This routine calculates the dynamic variable chunksize for a given DIF
8506  * object.  The calculation is not fool-proof, and can probably be tricked by
8507  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8508  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8509  * if a dynamic variable size exceeds the chunksize.
8510  */
8511 static void
8512 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8513 {
8514 	uint64_t sval;
8515 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8516 	const dif_instr_t *text = dp->dtdo_buf;
8517 	uint_t pc, srd = 0;
8518 	uint_t ttop = 0;
8519 	size_t size, ksize;
8520 	uint_t id, i;
8521 
8522 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8523 		dif_instr_t instr = text[pc];
8524 		uint_t op = DIF_INSTR_OP(instr);
8525 		uint_t rd = DIF_INSTR_RD(instr);
8526 		uint_t r1 = DIF_INSTR_R1(instr);
8527 		uint_t nkeys = 0;
8528 		uchar_t scope;
8529 
8530 		dtrace_key_t *key = tupregs;
8531 
8532 		switch (op) {
8533 		case DIF_OP_SETX:
8534 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8535 			srd = rd;
8536 			continue;
8537 
8538 		case DIF_OP_STTS:
8539 			key = &tupregs[DIF_DTR_NREGS];
8540 			key[0].dttk_size = 0;
8541 			key[1].dttk_size = 0;
8542 			nkeys = 2;
8543 			scope = DIFV_SCOPE_THREAD;
8544 			break;
8545 
8546 		case DIF_OP_STGAA:
8547 		case DIF_OP_STTAA:
8548 			nkeys = ttop;
8549 
8550 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
8551 				key[nkeys++].dttk_size = 0;
8552 
8553 			key[nkeys++].dttk_size = 0;
8554 
8555 			if (op == DIF_OP_STTAA) {
8556 				scope = DIFV_SCOPE_THREAD;
8557 			} else {
8558 				scope = DIFV_SCOPE_GLOBAL;
8559 			}
8560 
8561 			break;
8562 
8563 		case DIF_OP_PUSHTR:
8564 			if (ttop == DIF_DTR_NREGS)
8565 				return;
8566 
8567 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
8568 				/*
8569 				 * If the register for the size of the "pushtr"
8570 				 * is %r0 (or the value is 0) and the type is
8571 				 * a string, we'll use the system-wide default
8572 				 * string size.
8573 				 */
8574 				tupregs[ttop++].dttk_size =
8575 				    dtrace_strsize_default;
8576 			} else {
8577 				if (srd == 0)
8578 					return;
8579 
8580 				tupregs[ttop++].dttk_size = sval;
8581 			}
8582 
8583 			break;
8584 
8585 		case DIF_OP_PUSHTV:
8586 			if (ttop == DIF_DTR_NREGS)
8587 				return;
8588 
8589 			tupregs[ttop++].dttk_size = 0;
8590 			break;
8591 
8592 		case DIF_OP_FLUSHTS:
8593 			ttop = 0;
8594 			break;
8595 
8596 		case DIF_OP_POPTS:
8597 			if (ttop != 0)
8598 				ttop--;
8599 			break;
8600 		}
8601 
8602 		sval = 0;
8603 		srd = 0;
8604 
8605 		if (nkeys == 0)
8606 			continue;
8607 
8608 		/*
8609 		 * We have a dynamic variable allocation; calculate its size.
8610 		 */
8611 		for (ksize = 0, i = 0; i < nkeys; i++)
8612 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
8613 
8614 		size = sizeof (dtrace_dynvar_t);
8615 		size += sizeof (dtrace_key_t) * (nkeys - 1);
8616 		size += ksize;
8617 
8618 		/*
8619 		 * Now we need to determine the size of the stored data.
8620 		 */
8621 		id = DIF_INSTR_VAR(instr);
8622 
8623 		for (i = 0; i < dp->dtdo_varlen; i++) {
8624 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
8625 
8626 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
8627 				size += v->dtdv_type.dtdt_size;
8628 				break;
8629 			}
8630 		}
8631 
8632 		if (i == dp->dtdo_varlen)
8633 			return;
8634 
8635 		/*
8636 		 * We have the size.  If this is larger than the chunk size
8637 		 * for our dynamic variable state, reset the chunk size.
8638 		 */
8639 		size = P2ROUNDUP(size, sizeof (uint64_t));
8640 
8641 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
8642 			vstate->dtvs_dynvars.dtds_chunksize = size;
8643 	}
8644 }
8645 
8646 static void
8647 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8648 {
8649 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
8650 	uint_t id;
8651 
8652 	ASSERT(MUTEX_HELD(&dtrace_lock));
8653 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
8654 
8655 	for (i = 0; i < dp->dtdo_varlen; i++) {
8656 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8657 		dtrace_statvar_t *svar, ***svarp;
8658 		size_t dsize = 0;
8659 		uint8_t scope = v->dtdv_scope;
8660 		int *np;
8661 
8662 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8663 			continue;
8664 
8665 		id -= DIF_VAR_OTHER_UBASE;
8666 
8667 		switch (scope) {
8668 		case DIFV_SCOPE_THREAD:
8669 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
8670 				dtrace_difv_t *tlocals;
8671 
8672 				if ((ntlocals = (otlocals << 1)) == 0)
8673 					ntlocals = 1;
8674 
8675 				osz = otlocals * sizeof (dtrace_difv_t);
8676 				nsz = ntlocals * sizeof (dtrace_difv_t);
8677 
8678 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
8679 
8680 				if (osz != 0) {
8681 					bcopy(vstate->dtvs_tlocals,
8682 					    tlocals, osz);
8683 					kmem_free(vstate->dtvs_tlocals, osz);
8684 				}
8685 
8686 				vstate->dtvs_tlocals = tlocals;
8687 				vstate->dtvs_ntlocals = ntlocals;
8688 			}
8689 
8690 			vstate->dtvs_tlocals[id] = *v;
8691 			continue;
8692 
8693 		case DIFV_SCOPE_LOCAL:
8694 			np = &vstate->dtvs_nlocals;
8695 			svarp = &vstate->dtvs_locals;
8696 
8697 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8698 				dsize = NCPU * (v->dtdv_type.dtdt_size +
8699 				    sizeof (uint64_t));
8700 			else
8701 				dsize = NCPU * sizeof (uint64_t);
8702 
8703 			break;
8704 
8705 		case DIFV_SCOPE_GLOBAL:
8706 			np = &vstate->dtvs_nglobals;
8707 			svarp = &vstate->dtvs_globals;
8708 
8709 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8710 				dsize = v->dtdv_type.dtdt_size +
8711 				    sizeof (uint64_t);
8712 
8713 			break;
8714 
8715 		default:
8716 			ASSERT(0);
8717 		}
8718 
8719 		while (id >= (oldsvars = *np)) {
8720 			dtrace_statvar_t **statics;
8721 			int newsvars, oldsize, newsize;
8722 
8723 			if ((newsvars = (oldsvars << 1)) == 0)
8724 				newsvars = 1;
8725 
8726 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
8727 			newsize = newsvars * sizeof (dtrace_statvar_t *);
8728 
8729 			statics = kmem_zalloc(newsize, KM_SLEEP);
8730 
8731 			if (oldsize != 0) {
8732 				bcopy(*svarp, statics, oldsize);
8733 				kmem_free(*svarp, oldsize);
8734 			}
8735 
8736 			*svarp = statics;
8737 			*np = newsvars;
8738 		}
8739 
8740 		if ((svar = (*svarp)[id]) == NULL) {
8741 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
8742 			svar->dtsv_var = *v;
8743 
8744 			if ((svar->dtsv_size = dsize) != 0) {
8745 				svar->dtsv_data = (uint64_t)(uintptr_t)
8746 				    kmem_zalloc(dsize, KM_SLEEP);
8747 			}
8748 
8749 			(*svarp)[id] = svar;
8750 		}
8751 
8752 		svar->dtsv_refcnt++;
8753 	}
8754 
8755 	dtrace_difo_chunksize(dp, vstate);
8756 	dtrace_difo_hold(dp);
8757 }
8758 
8759 static dtrace_difo_t *
8760 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8761 {
8762 	dtrace_difo_t *new;
8763 	size_t sz;
8764 
8765 	ASSERT(dp->dtdo_buf != NULL);
8766 	ASSERT(dp->dtdo_refcnt != 0);
8767 
8768 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
8769 
8770 	ASSERT(dp->dtdo_buf != NULL);
8771 	sz = dp->dtdo_len * sizeof (dif_instr_t);
8772 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
8773 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
8774 	new->dtdo_len = dp->dtdo_len;
8775 
8776 	if (dp->dtdo_strtab != NULL) {
8777 		ASSERT(dp->dtdo_strlen != 0);
8778 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
8779 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
8780 		new->dtdo_strlen = dp->dtdo_strlen;
8781 	}
8782 
8783 	if (dp->dtdo_inttab != NULL) {
8784 		ASSERT(dp->dtdo_intlen != 0);
8785 		sz = dp->dtdo_intlen * sizeof (uint64_t);
8786 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
8787 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
8788 		new->dtdo_intlen = dp->dtdo_intlen;
8789 	}
8790 
8791 	if (dp->dtdo_vartab != NULL) {
8792 		ASSERT(dp->dtdo_varlen != 0);
8793 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
8794 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
8795 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
8796 		new->dtdo_varlen = dp->dtdo_varlen;
8797 	}
8798 
8799 	dtrace_difo_init(new, vstate);
8800 	return (new);
8801 }
8802 
8803 static void
8804 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8805 {
8806 	int i;
8807 
8808 	ASSERT(dp->dtdo_refcnt == 0);
8809 
8810 	for (i = 0; i < dp->dtdo_varlen; i++) {
8811 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8812 		dtrace_statvar_t *svar, **svarp;
8813 		uint_t id;
8814 		uint8_t scope = v->dtdv_scope;
8815 		int *np;
8816 
8817 		switch (scope) {
8818 		case DIFV_SCOPE_THREAD:
8819 			continue;
8820 
8821 		case DIFV_SCOPE_LOCAL:
8822 			np = &vstate->dtvs_nlocals;
8823 			svarp = vstate->dtvs_locals;
8824 			break;
8825 
8826 		case DIFV_SCOPE_GLOBAL:
8827 			np = &vstate->dtvs_nglobals;
8828 			svarp = vstate->dtvs_globals;
8829 			break;
8830 
8831 		default:
8832 			ASSERT(0);
8833 		}
8834 
8835 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8836 			continue;
8837 
8838 		id -= DIF_VAR_OTHER_UBASE;
8839 		ASSERT(id < *np);
8840 
8841 		svar = svarp[id];
8842 		ASSERT(svar != NULL);
8843 		ASSERT(svar->dtsv_refcnt > 0);
8844 
8845 		if (--svar->dtsv_refcnt > 0)
8846 			continue;
8847 
8848 		if (svar->dtsv_size != 0) {
8849 			ASSERT(svar->dtsv_data != NULL);
8850 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
8851 			    svar->dtsv_size);
8852 		}
8853 
8854 		kmem_free(svar, sizeof (dtrace_statvar_t));
8855 		svarp[id] = NULL;
8856 	}
8857 
8858 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
8859 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
8860 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
8861 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
8862 
8863 	kmem_free(dp, sizeof (dtrace_difo_t));
8864 }
8865 
8866 static void
8867 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8868 {
8869 	int i;
8870 
8871 	ASSERT(MUTEX_HELD(&dtrace_lock));
8872 	ASSERT(dp->dtdo_refcnt != 0);
8873 
8874 	for (i = 0; i < dp->dtdo_varlen; i++) {
8875 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8876 
8877 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8878 			continue;
8879 
8880 		ASSERT(dtrace_vtime_references > 0);
8881 		if (--dtrace_vtime_references == 0)
8882 			dtrace_vtime_disable();
8883 	}
8884 
8885 	if (--dp->dtdo_refcnt == 0)
8886 		dtrace_difo_destroy(dp, vstate);
8887 }
8888 
8889 /*
8890  * DTrace Format Functions
8891  */
8892 static uint16_t
8893 dtrace_format_add(dtrace_state_t *state, char *str)
8894 {
8895 	char *fmt, **new;
8896 	uint16_t ndx, len = strlen(str) + 1;
8897 
8898 	fmt = kmem_zalloc(len, KM_SLEEP);
8899 	bcopy(str, fmt, len);
8900 
8901 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
8902 		if (state->dts_formats[ndx] == NULL) {
8903 			state->dts_formats[ndx] = fmt;
8904 			return (ndx + 1);
8905 		}
8906 	}
8907 
8908 	if (state->dts_nformats == USHRT_MAX) {
8909 		/*
8910 		 * This is only likely if a denial-of-service attack is being
8911 		 * attempted.  As such, it's okay to fail silently here.
8912 		 */
8913 		kmem_free(fmt, len);
8914 		return (0);
8915 	}
8916 
8917 	/*
8918 	 * For simplicity, we always resize the formats array to be exactly the
8919 	 * number of formats.
8920 	 */
8921 	ndx = state->dts_nformats++;
8922 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
8923 
8924 	if (state->dts_formats != NULL) {
8925 		ASSERT(ndx != 0);
8926 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
8927 		kmem_free(state->dts_formats, ndx * sizeof (char *));
8928 	}
8929 
8930 	state->dts_formats = new;
8931 	state->dts_formats[ndx] = fmt;
8932 
8933 	return (ndx + 1);
8934 }
8935 
8936 static void
8937 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
8938 {
8939 	char *fmt;
8940 
8941 	ASSERT(state->dts_formats != NULL);
8942 	ASSERT(format <= state->dts_nformats);
8943 	ASSERT(state->dts_formats[format - 1] != NULL);
8944 
8945 	fmt = state->dts_formats[format - 1];
8946 	kmem_free(fmt, strlen(fmt) + 1);
8947 	state->dts_formats[format - 1] = NULL;
8948 }
8949 
8950 static void
8951 dtrace_format_destroy(dtrace_state_t *state)
8952 {
8953 	int i;
8954 
8955 	if (state->dts_nformats == 0) {
8956 		ASSERT(state->dts_formats == NULL);
8957 		return;
8958 	}
8959 
8960 	ASSERT(state->dts_formats != NULL);
8961 
8962 	for (i = 0; i < state->dts_nformats; i++) {
8963 		char *fmt = state->dts_formats[i];
8964 
8965 		if (fmt == NULL)
8966 			continue;
8967 
8968 		kmem_free(fmt, strlen(fmt) + 1);
8969 	}
8970 
8971 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
8972 	state->dts_nformats = 0;
8973 	state->dts_formats = NULL;
8974 }
8975 
8976 /*
8977  * DTrace Predicate Functions
8978  */
8979 static dtrace_predicate_t *
8980 dtrace_predicate_create(dtrace_difo_t *dp)
8981 {
8982 	dtrace_predicate_t *pred;
8983 
8984 	ASSERT(MUTEX_HELD(&dtrace_lock));
8985 	ASSERT(dp->dtdo_refcnt != 0);
8986 
8987 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
8988 	pred->dtp_difo = dp;
8989 	pred->dtp_refcnt = 1;
8990 
8991 	if (!dtrace_difo_cacheable(dp))
8992 		return (pred);
8993 
8994 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
8995 		/*
8996 		 * This is only theoretically possible -- we have had 2^32
8997 		 * cacheable predicates on this machine.  We cannot allow any
8998 		 * more predicates to become cacheable:  as unlikely as it is,
8999 		 * there may be a thread caching a (now stale) predicate cache
9000 		 * ID. (N.B.: the temptation is being successfully resisted to
9001 		 * have this cmn_err() "Holy shit -- we executed this code!")
9002 		 */
9003 		return (pred);
9004 	}
9005 
9006 	pred->dtp_cacheid = dtrace_predcache_id++;
9007 
9008 	return (pred);
9009 }
9010 
9011 static void
9012 dtrace_predicate_hold(dtrace_predicate_t *pred)
9013 {
9014 	ASSERT(MUTEX_HELD(&dtrace_lock));
9015 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9016 	ASSERT(pred->dtp_refcnt > 0);
9017 
9018 	pred->dtp_refcnt++;
9019 }
9020 
9021 static void
9022 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9023 {
9024 	dtrace_difo_t *dp = pred->dtp_difo;
9025 
9026 	ASSERT(MUTEX_HELD(&dtrace_lock));
9027 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9028 	ASSERT(pred->dtp_refcnt > 0);
9029 
9030 	if (--pred->dtp_refcnt == 0) {
9031 		dtrace_difo_release(pred->dtp_difo, vstate);
9032 		kmem_free(pred, sizeof (dtrace_predicate_t));
9033 	}
9034 }
9035 
9036 /*
9037  * DTrace Action Description Functions
9038  */
9039 static dtrace_actdesc_t *
9040 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9041     uint64_t uarg, uint64_t arg)
9042 {
9043 	dtrace_actdesc_t *act;
9044 
9045 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9046 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9047 
9048 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9049 	act->dtad_kind = kind;
9050 	act->dtad_ntuple = ntuple;
9051 	act->dtad_uarg = uarg;
9052 	act->dtad_arg = arg;
9053 	act->dtad_refcnt = 1;
9054 
9055 	return (act);
9056 }
9057 
9058 static void
9059 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9060 {
9061 	ASSERT(act->dtad_refcnt >= 1);
9062 	act->dtad_refcnt++;
9063 }
9064 
9065 static void
9066 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9067 {
9068 	dtrace_actkind_t kind = act->dtad_kind;
9069 	dtrace_difo_t *dp;
9070 
9071 	ASSERT(act->dtad_refcnt >= 1);
9072 
9073 	if (--act->dtad_refcnt != 0)
9074 		return;
9075 
9076 	if ((dp = act->dtad_difo) != NULL)
9077 		dtrace_difo_release(dp, vstate);
9078 
9079 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9080 		char *str = (char *)(uintptr_t)act->dtad_arg;
9081 
9082 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9083 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9084 
9085 		if (str != NULL)
9086 			kmem_free(str, strlen(str) + 1);
9087 	}
9088 
9089 	kmem_free(act, sizeof (dtrace_actdesc_t));
9090 }
9091 
9092 /*
9093  * DTrace ECB Functions
9094  */
9095 static dtrace_ecb_t *
9096 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9097 {
9098 	dtrace_ecb_t *ecb;
9099 	dtrace_epid_t epid;
9100 
9101 	ASSERT(MUTEX_HELD(&dtrace_lock));
9102 
9103 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9104 	ecb->dte_predicate = NULL;
9105 	ecb->dte_probe = probe;
9106 
9107 	/*
9108 	 * The default size is the size of the default action: recording
9109 	 * the epid.
9110 	 */
9111 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9112 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9113 
9114 	epid = state->dts_epid++;
9115 
9116 	if (epid - 1 >= state->dts_necbs) {
9117 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9118 		int necbs = state->dts_necbs << 1;
9119 
9120 		ASSERT(epid == state->dts_necbs + 1);
9121 
9122 		if (necbs == 0) {
9123 			ASSERT(oecbs == NULL);
9124 			necbs = 1;
9125 		}
9126 
9127 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9128 
9129 		if (oecbs != NULL)
9130 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9131 
9132 		dtrace_membar_producer();
9133 		state->dts_ecbs = ecbs;
9134 
9135 		if (oecbs != NULL) {
9136 			/*
9137 			 * If this state is active, we must dtrace_sync()
9138 			 * before we can free the old dts_ecbs array:  we're
9139 			 * coming in hot, and there may be active ring
9140 			 * buffer processing (which indexes into the dts_ecbs
9141 			 * array) on another CPU.
9142 			 */
9143 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9144 				dtrace_sync();
9145 
9146 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9147 		}
9148 
9149 		dtrace_membar_producer();
9150 		state->dts_necbs = necbs;
9151 	}
9152 
9153 	ecb->dte_state = state;
9154 
9155 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9156 	dtrace_membar_producer();
9157 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9158 
9159 	return (ecb);
9160 }
9161 
9162 static int
9163 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9164 {
9165 	dtrace_probe_t *probe = ecb->dte_probe;
9166 
9167 	ASSERT(MUTEX_HELD(&cpu_lock));
9168 	ASSERT(MUTEX_HELD(&dtrace_lock));
9169 	ASSERT(ecb->dte_next == NULL);
9170 
9171 	if (probe == NULL) {
9172 		/*
9173 		 * This is the NULL probe -- there's nothing to do.
9174 		 */
9175 		return (0);
9176 	}
9177 
9178 	if (probe->dtpr_ecb == NULL) {
9179 		dtrace_provider_t *prov = probe->dtpr_provider;
9180 
9181 		/*
9182 		 * We're the first ECB on this probe.
9183 		 */
9184 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9185 
9186 		if (ecb->dte_predicate != NULL)
9187 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9188 
9189 		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9190 		    probe->dtpr_id, probe->dtpr_arg));
9191 	} else {
9192 		/*
9193 		 * This probe is already active.  Swing the last pointer to
9194 		 * point to the new ECB, and issue a dtrace_sync() to assure
9195 		 * that all CPUs have seen the change.
9196 		 */
9197 		ASSERT(probe->dtpr_ecb_last != NULL);
9198 		probe->dtpr_ecb_last->dte_next = ecb;
9199 		probe->dtpr_ecb_last = ecb;
9200 		probe->dtpr_predcache = 0;
9201 
9202 		dtrace_sync();
9203 		return (0);
9204 	}
9205 }
9206 
9207 static void
9208 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9209 {
9210 	uint32_t maxalign = sizeof (dtrace_epid_t);
9211 	uint32_t align = sizeof (uint8_t), offs, diff;
9212 	dtrace_action_t *act;
9213 	int wastuple = 0;
9214 	uint32_t aggbase = UINT32_MAX;
9215 	dtrace_state_t *state = ecb->dte_state;
9216 
9217 	/*
9218 	 * If we record anything, we always record the epid.  (And we always
9219 	 * record it first.)
9220 	 */
9221 	offs = sizeof (dtrace_epid_t);
9222 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9223 
9224 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9225 		dtrace_recdesc_t *rec = &act->dta_rec;
9226 
9227 		if ((align = rec->dtrd_alignment) > maxalign)
9228 			maxalign = align;
9229 
9230 		if (!wastuple && act->dta_intuple) {
9231 			/*
9232 			 * This is the first record in a tuple.  Align the
9233 			 * offset to be at offset 4 in an 8-byte aligned
9234 			 * block.
9235 			 */
9236 			diff = offs + sizeof (dtrace_aggid_t);
9237 
9238 			if (diff = (diff & (sizeof (uint64_t) - 1)))
9239 				offs += sizeof (uint64_t) - diff;
9240 
9241 			aggbase = offs - sizeof (dtrace_aggid_t);
9242 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9243 		}
9244 
9245 		/*LINTED*/
9246 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9247 			/*
9248 			 * The current offset is not properly aligned; align it.
9249 			 */
9250 			offs += align - diff;
9251 		}
9252 
9253 		rec->dtrd_offset = offs;
9254 
9255 		if (offs + rec->dtrd_size > ecb->dte_needed) {
9256 			ecb->dte_needed = offs + rec->dtrd_size;
9257 
9258 			if (ecb->dte_needed > state->dts_needed)
9259 				state->dts_needed = ecb->dte_needed;
9260 		}
9261 
9262 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9263 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9264 			dtrace_action_t *first = agg->dtag_first, *prev;
9265 
9266 			ASSERT(rec->dtrd_size != 0 && first != NULL);
9267 			ASSERT(wastuple);
9268 			ASSERT(aggbase != UINT32_MAX);
9269 
9270 			agg->dtag_base = aggbase;
9271 
9272 			while ((prev = first->dta_prev) != NULL &&
9273 			    DTRACEACT_ISAGG(prev->dta_kind)) {
9274 				agg = (dtrace_aggregation_t *)prev;
9275 				first = agg->dtag_first;
9276 			}
9277 
9278 			if (prev != NULL) {
9279 				offs = prev->dta_rec.dtrd_offset +
9280 				    prev->dta_rec.dtrd_size;
9281 			} else {
9282 				offs = sizeof (dtrace_epid_t);
9283 			}
9284 			wastuple = 0;
9285 		} else {
9286 			if (!act->dta_intuple)
9287 				ecb->dte_size = offs + rec->dtrd_size;
9288 
9289 			offs += rec->dtrd_size;
9290 		}
9291 
9292 		wastuple = act->dta_intuple;
9293 	}
9294 
9295 	if ((act = ecb->dte_action) != NULL &&
9296 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9297 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9298 		/*
9299 		 * If the size is still sizeof (dtrace_epid_t), then all
9300 		 * actions store no data; set the size to 0.
9301 		 */
9302 		ecb->dte_alignment = maxalign;
9303 		ecb->dte_size = 0;
9304 
9305 		/*
9306 		 * If the needed space is still sizeof (dtrace_epid_t), then
9307 		 * all actions need no additional space; set the needed
9308 		 * size to 0.
9309 		 */
9310 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9311 			ecb->dte_needed = 0;
9312 
9313 		return;
9314 	}
9315 
9316 	/*
9317 	 * Set our alignment, and make sure that the dte_size and dte_needed
9318 	 * are aligned to the size of an EPID.
9319 	 */
9320 	ecb->dte_alignment = maxalign;
9321 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9322 	    ~(sizeof (dtrace_epid_t) - 1);
9323 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9324 	    ~(sizeof (dtrace_epid_t) - 1);
9325 	ASSERT(ecb->dte_size <= ecb->dte_needed);
9326 }
9327 
9328 static dtrace_action_t *
9329 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9330 {
9331 	dtrace_aggregation_t *agg;
9332 	size_t size = sizeof (uint64_t);
9333 	int ntuple = desc->dtad_ntuple;
9334 	dtrace_action_t *act;
9335 	dtrace_recdesc_t *frec;
9336 	dtrace_aggid_t aggid;
9337 	dtrace_state_t *state = ecb->dte_state;
9338 
9339 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9340 	agg->dtag_ecb = ecb;
9341 
9342 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9343 
9344 	switch (desc->dtad_kind) {
9345 	case DTRACEAGG_MIN:
9346 		agg->dtag_initial = INT64_MAX;
9347 		agg->dtag_aggregate = dtrace_aggregate_min;
9348 		break;
9349 
9350 	case DTRACEAGG_MAX:
9351 		agg->dtag_initial = INT64_MIN;
9352 		agg->dtag_aggregate = dtrace_aggregate_max;
9353 		break;
9354 
9355 	case DTRACEAGG_COUNT:
9356 		agg->dtag_aggregate = dtrace_aggregate_count;
9357 		break;
9358 
9359 	case DTRACEAGG_QUANTIZE:
9360 		agg->dtag_aggregate = dtrace_aggregate_quantize;
9361 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9362 		    sizeof (uint64_t);
9363 		break;
9364 
9365 	case DTRACEAGG_LQUANTIZE: {
9366 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9367 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9368 
9369 		agg->dtag_initial = desc->dtad_arg;
9370 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9371 
9372 		if (step == 0 || levels == 0)
9373 			goto err;
9374 
9375 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9376 		break;
9377 	}
9378 
9379 	case DTRACEAGG_AVG:
9380 		agg->dtag_aggregate = dtrace_aggregate_avg;
9381 		size = sizeof (uint64_t) * 2;
9382 		break;
9383 
9384 	case DTRACEAGG_STDDEV:
9385 		agg->dtag_aggregate = dtrace_aggregate_stddev;
9386 		size = sizeof (uint64_t) * 4;
9387 		break;
9388 
9389 	case DTRACEAGG_SUM:
9390 		agg->dtag_aggregate = dtrace_aggregate_sum;
9391 		break;
9392 
9393 	default:
9394 		goto err;
9395 	}
9396 
9397 	agg->dtag_action.dta_rec.dtrd_size = size;
9398 
9399 	if (ntuple == 0)
9400 		goto err;
9401 
9402 	/*
9403 	 * We must make sure that we have enough actions for the n-tuple.
9404 	 */
9405 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9406 		if (DTRACEACT_ISAGG(act->dta_kind))
9407 			break;
9408 
9409 		if (--ntuple == 0) {
9410 			/*
9411 			 * This is the action with which our n-tuple begins.
9412 			 */
9413 			agg->dtag_first = act;
9414 			goto success;
9415 		}
9416 	}
9417 
9418 	/*
9419 	 * This n-tuple is short by ntuple elements.  Return failure.
9420 	 */
9421 	ASSERT(ntuple != 0);
9422 err:
9423 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9424 	return (NULL);
9425 
9426 success:
9427 	/*
9428 	 * If the last action in the tuple has a size of zero, it's actually
9429 	 * an expression argument for the aggregating action.
9430 	 */
9431 	ASSERT(ecb->dte_action_last != NULL);
9432 	act = ecb->dte_action_last;
9433 
9434 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9435 		ASSERT(act->dta_difo != NULL);
9436 
9437 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9438 			agg->dtag_hasarg = 1;
9439 	}
9440 
9441 	/*
9442 	 * We need to allocate an id for this aggregation.
9443 	 */
9444 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9445 	    VM_BESTFIT | VM_SLEEP);
9446 
9447 	if (aggid - 1 >= state->dts_naggregations) {
9448 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9449 		dtrace_aggregation_t **aggs;
9450 		int naggs = state->dts_naggregations << 1;
9451 		int onaggs = state->dts_naggregations;
9452 
9453 		ASSERT(aggid == state->dts_naggregations + 1);
9454 
9455 		if (naggs == 0) {
9456 			ASSERT(oaggs == NULL);
9457 			naggs = 1;
9458 		}
9459 
9460 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9461 
9462 		if (oaggs != NULL) {
9463 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9464 			kmem_free(oaggs, onaggs * sizeof (*aggs));
9465 		}
9466 
9467 		state->dts_aggregations = aggs;
9468 		state->dts_naggregations = naggs;
9469 	}
9470 
9471 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9472 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9473 
9474 	frec = &agg->dtag_first->dta_rec;
9475 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9476 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9477 
9478 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9479 		ASSERT(!act->dta_intuple);
9480 		act->dta_intuple = 1;
9481 	}
9482 
9483 	return (&agg->dtag_action);
9484 }
9485 
9486 static void
9487 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9488 {
9489 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9490 	dtrace_state_t *state = ecb->dte_state;
9491 	dtrace_aggid_t aggid = agg->dtag_id;
9492 
9493 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9494 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9495 
9496 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9497 	state->dts_aggregations[aggid - 1] = NULL;
9498 
9499 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9500 }
9501 
9502 static int
9503 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9504 {
9505 	dtrace_action_t *action, *last;
9506 	dtrace_difo_t *dp = desc->dtad_difo;
9507 	uint32_t size = 0, align = sizeof (uint8_t), mask;
9508 	uint16_t format = 0;
9509 	dtrace_recdesc_t *rec;
9510 	dtrace_state_t *state = ecb->dte_state;
9511 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9512 	uint64_t arg = desc->dtad_arg;
9513 
9514 	ASSERT(MUTEX_HELD(&dtrace_lock));
9515 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9516 
9517 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9518 		/*
9519 		 * If this is an aggregating action, there must be neither
9520 		 * a speculate nor a commit on the action chain.
9521 		 */
9522 		dtrace_action_t *act;
9523 
9524 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9525 			if (act->dta_kind == DTRACEACT_COMMIT)
9526 				return (EINVAL);
9527 
9528 			if (act->dta_kind == DTRACEACT_SPECULATE)
9529 				return (EINVAL);
9530 		}
9531 
9532 		action = dtrace_ecb_aggregation_create(ecb, desc);
9533 
9534 		if (action == NULL)
9535 			return (EINVAL);
9536 	} else {
9537 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9538 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9539 		    dp != NULL && dp->dtdo_destructive)) {
9540 			state->dts_destructive = 1;
9541 		}
9542 
9543 		switch (desc->dtad_kind) {
9544 		case DTRACEACT_PRINTF:
9545 		case DTRACEACT_PRINTA:
9546 		case DTRACEACT_SYSTEM:
9547 		case DTRACEACT_FREOPEN:
9548 			/*
9549 			 * We know that our arg is a string -- turn it into a
9550 			 * format.
9551 			 */
9552 			if (arg == NULL) {
9553 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
9554 				format = 0;
9555 			} else {
9556 				ASSERT(arg != NULL);
9557 				ASSERT(arg > KERNELBASE);
9558 				format = dtrace_format_add(state,
9559 				    (char *)(uintptr_t)arg);
9560 			}
9561 
9562 			/*FALLTHROUGH*/
9563 		case DTRACEACT_LIBACT:
9564 		case DTRACEACT_DIFEXPR:
9565 			if (dp == NULL)
9566 				return (EINVAL);
9567 
9568 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
9569 				break;
9570 
9571 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
9572 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9573 					return (EINVAL);
9574 
9575 				size = opt[DTRACEOPT_STRSIZE];
9576 			}
9577 
9578 			break;
9579 
9580 		case DTRACEACT_STACK:
9581 			if ((nframes = arg) == 0) {
9582 				nframes = opt[DTRACEOPT_STACKFRAMES];
9583 				ASSERT(nframes > 0);
9584 				arg = nframes;
9585 			}
9586 
9587 			size = nframes * sizeof (pc_t);
9588 			break;
9589 
9590 		case DTRACEACT_JSTACK:
9591 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
9592 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
9593 
9594 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
9595 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
9596 
9597 			arg = DTRACE_USTACK_ARG(nframes, strsize);
9598 
9599 			/*FALLTHROUGH*/
9600 		case DTRACEACT_USTACK:
9601 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
9602 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
9603 				strsize = DTRACE_USTACK_STRSIZE(arg);
9604 				nframes = opt[DTRACEOPT_USTACKFRAMES];
9605 				ASSERT(nframes > 0);
9606 				arg = DTRACE_USTACK_ARG(nframes, strsize);
9607 			}
9608 
9609 			/*
9610 			 * Save a slot for the pid.
9611 			 */
9612 			size = (nframes + 1) * sizeof (uint64_t);
9613 			size += DTRACE_USTACK_STRSIZE(arg);
9614 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
9615 
9616 			break;
9617 
9618 		case DTRACEACT_SYM:
9619 		case DTRACEACT_MOD:
9620 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
9621 			    sizeof (uint64_t)) ||
9622 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9623 				return (EINVAL);
9624 			break;
9625 
9626 		case DTRACEACT_USYM:
9627 		case DTRACEACT_UMOD:
9628 		case DTRACEACT_UADDR:
9629 			if (dp == NULL ||
9630 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
9631 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9632 				return (EINVAL);
9633 
9634 			/*
9635 			 * We have a slot for the pid, plus a slot for the
9636 			 * argument.  To keep things simple (aligned with
9637 			 * bitness-neutral sizing), we store each as a 64-bit
9638 			 * quantity.
9639 			 */
9640 			size = 2 * sizeof (uint64_t);
9641 			break;
9642 
9643 		case DTRACEACT_STOP:
9644 		case DTRACEACT_BREAKPOINT:
9645 		case DTRACEACT_PANIC:
9646 			break;
9647 
9648 		case DTRACEACT_CHILL:
9649 		case DTRACEACT_DISCARD:
9650 		case DTRACEACT_RAISE:
9651 			if (dp == NULL)
9652 				return (EINVAL);
9653 			break;
9654 
9655 		case DTRACEACT_EXIT:
9656 			if (dp == NULL ||
9657 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
9658 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9659 				return (EINVAL);
9660 			break;
9661 
9662 		case DTRACEACT_SPECULATE:
9663 			if (ecb->dte_size > sizeof (dtrace_epid_t))
9664 				return (EINVAL);
9665 
9666 			if (dp == NULL)
9667 				return (EINVAL);
9668 
9669 			state->dts_speculates = 1;
9670 			break;
9671 
9672 		case DTRACEACT_COMMIT: {
9673 			dtrace_action_t *act = ecb->dte_action;
9674 
9675 			for (; act != NULL; act = act->dta_next) {
9676 				if (act->dta_kind == DTRACEACT_COMMIT)
9677 					return (EINVAL);
9678 			}
9679 
9680 			if (dp == NULL)
9681 				return (EINVAL);
9682 			break;
9683 		}
9684 
9685 		default:
9686 			return (EINVAL);
9687 		}
9688 
9689 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
9690 			/*
9691 			 * If this is a data-storing action or a speculate,
9692 			 * we must be sure that there isn't a commit on the
9693 			 * action chain.
9694 			 */
9695 			dtrace_action_t *act = ecb->dte_action;
9696 
9697 			for (; act != NULL; act = act->dta_next) {
9698 				if (act->dta_kind == DTRACEACT_COMMIT)
9699 					return (EINVAL);
9700 			}
9701 		}
9702 
9703 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
9704 		action->dta_rec.dtrd_size = size;
9705 	}
9706 
9707 	action->dta_refcnt = 1;
9708 	rec = &action->dta_rec;
9709 	size = rec->dtrd_size;
9710 
9711 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
9712 		if (!(size & mask)) {
9713 			align = mask + 1;
9714 			break;
9715 		}
9716 	}
9717 
9718 	action->dta_kind = desc->dtad_kind;
9719 
9720 	if ((action->dta_difo = dp) != NULL)
9721 		dtrace_difo_hold(dp);
9722 
9723 	rec->dtrd_action = action->dta_kind;
9724 	rec->dtrd_arg = arg;
9725 	rec->dtrd_uarg = desc->dtad_uarg;
9726 	rec->dtrd_alignment = (uint16_t)align;
9727 	rec->dtrd_format = format;
9728 
9729 	if ((last = ecb->dte_action_last) != NULL) {
9730 		ASSERT(ecb->dte_action != NULL);
9731 		action->dta_prev = last;
9732 		last->dta_next = action;
9733 	} else {
9734 		ASSERT(ecb->dte_action == NULL);
9735 		ecb->dte_action = action;
9736 	}
9737 
9738 	ecb->dte_action_last = action;
9739 
9740 	return (0);
9741 }
9742 
9743 static void
9744 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
9745 {
9746 	dtrace_action_t *act = ecb->dte_action, *next;
9747 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
9748 	dtrace_difo_t *dp;
9749 	uint16_t format;
9750 
9751 	if (act != NULL && act->dta_refcnt > 1) {
9752 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
9753 		act->dta_refcnt--;
9754 	} else {
9755 		for (; act != NULL; act = next) {
9756 			next = act->dta_next;
9757 			ASSERT(next != NULL || act == ecb->dte_action_last);
9758 			ASSERT(act->dta_refcnt == 1);
9759 
9760 			if ((format = act->dta_rec.dtrd_format) != 0)
9761 				dtrace_format_remove(ecb->dte_state, format);
9762 
9763 			if ((dp = act->dta_difo) != NULL)
9764 				dtrace_difo_release(dp, vstate);
9765 
9766 			if (DTRACEACT_ISAGG(act->dta_kind)) {
9767 				dtrace_ecb_aggregation_destroy(ecb, act);
9768 			} else {
9769 				kmem_free(act, sizeof (dtrace_action_t));
9770 			}
9771 		}
9772 	}
9773 
9774 	ecb->dte_action = NULL;
9775 	ecb->dte_action_last = NULL;
9776 	ecb->dte_size = sizeof (dtrace_epid_t);
9777 }
9778 
9779 static void
9780 dtrace_ecb_disable(dtrace_ecb_t *ecb)
9781 {
9782 	/*
9783 	 * We disable the ECB by removing it from its probe.
9784 	 */
9785 	dtrace_ecb_t *pecb, *prev = NULL;
9786 	dtrace_probe_t *probe = ecb->dte_probe;
9787 
9788 	ASSERT(MUTEX_HELD(&dtrace_lock));
9789 
9790 	if (probe == NULL) {
9791 		/*
9792 		 * This is the NULL probe; there is nothing to disable.
9793 		 */
9794 		return;
9795 	}
9796 
9797 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
9798 		if (pecb == ecb)
9799 			break;
9800 		prev = pecb;
9801 	}
9802 
9803 	ASSERT(pecb != NULL);
9804 
9805 	if (prev == NULL) {
9806 		probe->dtpr_ecb = ecb->dte_next;
9807 	} else {
9808 		prev->dte_next = ecb->dte_next;
9809 	}
9810 
9811 	if (ecb == probe->dtpr_ecb_last) {
9812 		ASSERT(ecb->dte_next == NULL);
9813 		probe->dtpr_ecb_last = prev;
9814 	}
9815 
9816 	/*
9817 	 * The ECB has been disconnected from the probe; now sync to assure
9818 	 * that all CPUs have seen the change before returning.
9819 	 */
9820 	dtrace_sync();
9821 
9822 	if (probe->dtpr_ecb == NULL) {
9823 		/*
9824 		 * That was the last ECB on the probe; clear the predicate
9825 		 * cache ID for the probe, disable it and sync one more time
9826 		 * to assure that we'll never hit it again.
9827 		 */
9828 		dtrace_provider_t *prov = probe->dtpr_provider;
9829 
9830 		ASSERT(ecb->dte_next == NULL);
9831 		ASSERT(probe->dtpr_ecb_last == NULL);
9832 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
9833 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
9834 		    probe->dtpr_id, probe->dtpr_arg);
9835 		dtrace_sync();
9836 	} else {
9837 		/*
9838 		 * There is at least one ECB remaining on the probe.  If there
9839 		 * is _exactly_ one, set the probe's predicate cache ID to be
9840 		 * the predicate cache ID of the remaining ECB.
9841 		 */
9842 		ASSERT(probe->dtpr_ecb_last != NULL);
9843 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
9844 
9845 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
9846 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
9847 
9848 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
9849 
9850 			if (p != NULL)
9851 				probe->dtpr_predcache = p->dtp_cacheid;
9852 		}
9853 
9854 		ecb->dte_next = NULL;
9855 	}
9856 }
9857 
9858 static void
9859 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
9860 {
9861 	dtrace_state_t *state = ecb->dte_state;
9862 	dtrace_vstate_t *vstate = &state->dts_vstate;
9863 	dtrace_predicate_t *pred;
9864 	dtrace_epid_t epid = ecb->dte_epid;
9865 
9866 	ASSERT(MUTEX_HELD(&dtrace_lock));
9867 	ASSERT(ecb->dte_next == NULL);
9868 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
9869 
9870 	if ((pred = ecb->dte_predicate) != NULL)
9871 		dtrace_predicate_release(pred, vstate);
9872 
9873 	dtrace_ecb_action_remove(ecb);
9874 
9875 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
9876 	state->dts_ecbs[epid - 1] = NULL;
9877 
9878 	kmem_free(ecb, sizeof (dtrace_ecb_t));
9879 }
9880 
9881 static dtrace_ecb_t *
9882 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
9883     dtrace_enabling_t *enab)
9884 {
9885 	dtrace_ecb_t *ecb;
9886 	dtrace_predicate_t *pred;
9887 	dtrace_actdesc_t *act;
9888 	dtrace_provider_t *prov;
9889 	dtrace_ecbdesc_t *desc = enab->dten_current;
9890 
9891 	ASSERT(MUTEX_HELD(&dtrace_lock));
9892 	ASSERT(state != NULL);
9893 
9894 	ecb = dtrace_ecb_add(state, probe);
9895 	ecb->dte_uarg = desc->dted_uarg;
9896 
9897 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
9898 		dtrace_predicate_hold(pred);
9899 		ecb->dte_predicate = pred;
9900 	}
9901 
9902 	if (probe != NULL) {
9903 		/*
9904 		 * If the provider shows more leg than the consumer is old
9905 		 * enough to see, we need to enable the appropriate implicit
9906 		 * predicate bits to prevent the ecb from activating at
9907 		 * revealing times.
9908 		 *
9909 		 * Providers specifying DTRACE_PRIV_USER at register time
9910 		 * are stating that they need the /proc-style privilege
9911 		 * model to be enforced, and this is what DTRACE_COND_OWNER
9912 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
9913 		 */
9914 		prov = probe->dtpr_provider;
9915 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
9916 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9917 			ecb->dte_cond |= DTRACE_COND_OWNER;
9918 
9919 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
9920 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9921 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
9922 
9923 		/*
9924 		 * If the provider shows us kernel innards and the user
9925 		 * is lacking sufficient privilege, enable the
9926 		 * DTRACE_COND_USERMODE implicit predicate.
9927 		 */
9928 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
9929 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
9930 			ecb->dte_cond |= DTRACE_COND_USERMODE;
9931 	}
9932 
9933 	if (dtrace_ecb_create_cache != NULL) {
9934 		/*
9935 		 * If we have a cached ecb, we'll use its action list instead
9936 		 * of creating our own (saving both time and space).
9937 		 */
9938 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
9939 		dtrace_action_t *act = cached->dte_action;
9940 
9941 		if (act != NULL) {
9942 			ASSERT(act->dta_refcnt > 0);
9943 			act->dta_refcnt++;
9944 			ecb->dte_action = act;
9945 			ecb->dte_action_last = cached->dte_action_last;
9946 			ecb->dte_needed = cached->dte_needed;
9947 			ecb->dte_size = cached->dte_size;
9948 			ecb->dte_alignment = cached->dte_alignment;
9949 		}
9950 
9951 		return (ecb);
9952 	}
9953 
9954 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
9955 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
9956 			dtrace_ecb_destroy(ecb);
9957 			return (NULL);
9958 		}
9959 	}
9960 
9961 	dtrace_ecb_resize(ecb);
9962 
9963 	return (dtrace_ecb_create_cache = ecb);
9964 }
9965 
9966 static int
9967 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
9968 {
9969 	dtrace_ecb_t *ecb;
9970 	dtrace_enabling_t *enab = arg;
9971 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
9972 
9973 	ASSERT(state != NULL);
9974 
9975 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
9976 		/*
9977 		 * This probe was created in a generation for which this
9978 		 * enabling has previously created ECBs; we don't want to
9979 		 * enable it again, so just kick out.
9980 		 */
9981 		return (DTRACE_MATCH_NEXT);
9982 	}
9983 
9984 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
9985 		return (DTRACE_MATCH_DONE);
9986 
9987 	if (dtrace_ecb_enable(ecb) < 0)
9988 		return (DTRACE_MATCH_FAIL);
9989 
9990 	return (DTRACE_MATCH_NEXT);
9991 }
9992 
9993 static dtrace_ecb_t *
9994 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
9995 {
9996 	dtrace_ecb_t *ecb;
9997 
9998 	ASSERT(MUTEX_HELD(&dtrace_lock));
9999 
10000 	if (id == 0 || id > state->dts_necbs)
10001 		return (NULL);
10002 
10003 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10004 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10005 
10006 	return (state->dts_ecbs[id - 1]);
10007 }
10008 
10009 static dtrace_aggregation_t *
10010 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10011 {
10012 	dtrace_aggregation_t *agg;
10013 
10014 	ASSERT(MUTEX_HELD(&dtrace_lock));
10015 
10016 	if (id == 0 || id > state->dts_naggregations)
10017 		return (NULL);
10018 
10019 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10020 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10021 	    agg->dtag_id == id);
10022 
10023 	return (state->dts_aggregations[id - 1]);
10024 }
10025 
10026 /*
10027  * DTrace Buffer Functions
10028  *
10029  * The following functions manipulate DTrace buffers.  Most of these functions
10030  * are called in the context of establishing or processing consumer state;
10031  * exceptions are explicitly noted.
10032  */
10033 
10034 /*
10035  * Note:  called from cross call context.  This function switches the two
10036  * buffers on a given CPU.  The atomicity of this operation is assured by
10037  * disabling interrupts while the actual switch takes place; the disabling of
10038  * interrupts serializes the execution with any execution of dtrace_probe() on
10039  * the same CPU.
10040  */
10041 static void
10042 dtrace_buffer_switch(dtrace_buffer_t *buf)
10043 {
10044 	caddr_t tomax = buf->dtb_tomax;
10045 	caddr_t xamot = buf->dtb_xamot;
10046 	dtrace_icookie_t cookie;
10047 
10048 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10049 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10050 
10051 	cookie = dtrace_interrupt_disable();
10052 	buf->dtb_tomax = xamot;
10053 	buf->dtb_xamot = tomax;
10054 	buf->dtb_xamot_drops = buf->dtb_drops;
10055 	buf->dtb_xamot_offset = buf->dtb_offset;
10056 	buf->dtb_xamot_errors = buf->dtb_errors;
10057 	buf->dtb_xamot_flags = buf->dtb_flags;
10058 	buf->dtb_offset = 0;
10059 	buf->dtb_drops = 0;
10060 	buf->dtb_errors = 0;
10061 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10062 	dtrace_interrupt_enable(cookie);
10063 }
10064 
10065 /*
10066  * Note:  called from cross call context.  This function activates a buffer
10067  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10068  * is guaranteed by the disabling of interrupts.
10069  */
10070 static void
10071 dtrace_buffer_activate(dtrace_state_t *state)
10072 {
10073 	dtrace_buffer_t *buf;
10074 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10075 
10076 	buf = &state->dts_buffer[CPU->cpu_id];
10077 
10078 	if (buf->dtb_tomax != NULL) {
10079 		/*
10080 		 * We might like to assert that the buffer is marked inactive,
10081 		 * but this isn't necessarily true:  the buffer for the CPU
10082 		 * that processes the BEGIN probe has its buffer activated
10083 		 * manually.  In this case, we take the (harmless) action
10084 		 * re-clearing the bit INACTIVE bit.
10085 		 */
10086 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10087 	}
10088 
10089 	dtrace_interrupt_enable(cookie);
10090 }
10091 
10092 static int
10093 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10094     processorid_t cpu)
10095 {
10096 	cpu_t *cp;
10097 	dtrace_buffer_t *buf;
10098 
10099 	ASSERT(MUTEX_HELD(&cpu_lock));
10100 	ASSERT(MUTEX_HELD(&dtrace_lock));
10101 
10102 	if (size > dtrace_nonroot_maxsize &&
10103 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10104 		return (EFBIG);
10105 
10106 	cp = cpu_list;
10107 
10108 	do {
10109 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10110 			continue;
10111 
10112 		buf = &bufs[cp->cpu_id];
10113 
10114 		/*
10115 		 * If there is already a buffer allocated for this CPU, it
10116 		 * is only possible that this is a DR event.  In this case,
10117 		 * the buffer size must match our specified size.
10118 		 */
10119 		if (buf->dtb_tomax != NULL) {
10120 			ASSERT(buf->dtb_size == size);
10121 			continue;
10122 		}
10123 
10124 		ASSERT(buf->dtb_xamot == NULL);
10125 
10126 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10127 			goto err;
10128 
10129 		buf->dtb_size = size;
10130 		buf->dtb_flags = flags;
10131 		buf->dtb_offset = 0;
10132 		buf->dtb_drops = 0;
10133 
10134 		if (flags & DTRACEBUF_NOSWITCH)
10135 			continue;
10136 
10137 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10138 			goto err;
10139 	} while ((cp = cp->cpu_next) != cpu_list);
10140 
10141 	return (0);
10142 
10143 err:
10144 	cp = cpu_list;
10145 
10146 	do {
10147 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10148 			continue;
10149 
10150 		buf = &bufs[cp->cpu_id];
10151 
10152 		if (buf->dtb_xamot != NULL) {
10153 			ASSERT(buf->dtb_tomax != NULL);
10154 			ASSERT(buf->dtb_size == size);
10155 			kmem_free(buf->dtb_xamot, size);
10156 		}
10157 
10158 		if (buf->dtb_tomax != NULL) {
10159 			ASSERT(buf->dtb_size == size);
10160 			kmem_free(buf->dtb_tomax, size);
10161 		}
10162 
10163 		buf->dtb_tomax = NULL;
10164 		buf->dtb_xamot = NULL;
10165 		buf->dtb_size = 0;
10166 	} while ((cp = cp->cpu_next) != cpu_list);
10167 
10168 	return (ENOMEM);
10169 }
10170 
10171 /*
10172  * Note:  called from probe context.  This function just increments the drop
10173  * count on a buffer.  It has been made a function to allow for the
10174  * possibility of understanding the source of mysterious drop counts.  (A
10175  * problem for which one may be particularly disappointed that DTrace cannot
10176  * be used to understand DTrace.)
10177  */
10178 static void
10179 dtrace_buffer_drop(dtrace_buffer_t *buf)
10180 {
10181 	buf->dtb_drops++;
10182 }
10183 
10184 /*
10185  * Note:  called from probe context.  This function is called to reserve space
10186  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10187  * mstate.  Returns the new offset in the buffer, or a negative value if an
10188  * error has occurred.
10189  */
10190 static intptr_t
10191 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10192     dtrace_state_t *state, dtrace_mstate_t *mstate)
10193 {
10194 	intptr_t offs = buf->dtb_offset, soffs;
10195 	intptr_t woffs;
10196 	caddr_t tomax;
10197 	size_t total;
10198 
10199 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10200 		return (-1);
10201 
10202 	if ((tomax = buf->dtb_tomax) == NULL) {
10203 		dtrace_buffer_drop(buf);
10204 		return (-1);
10205 	}
10206 
10207 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10208 		while (offs & (align - 1)) {
10209 			/*
10210 			 * Assert that our alignment is off by a number which
10211 			 * is itself sizeof (uint32_t) aligned.
10212 			 */
10213 			ASSERT(!((align - (offs & (align - 1))) &
10214 			    (sizeof (uint32_t) - 1)));
10215 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10216 			offs += sizeof (uint32_t);
10217 		}
10218 
10219 		if ((soffs = offs + needed) > buf->dtb_size) {
10220 			dtrace_buffer_drop(buf);
10221 			return (-1);
10222 		}
10223 
10224 		if (mstate == NULL)
10225 			return (offs);
10226 
10227 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10228 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10229 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10230 
10231 		return (offs);
10232 	}
10233 
10234 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10235 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10236 		    (buf->dtb_flags & DTRACEBUF_FULL))
10237 			return (-1);
10238 		goto out;
10239 	}
10240 
10241 	total = needed + (offs & (align - 1));
10242 
10243 	/*
10244 	 * For a ring buffer, life is quite a bit more complicated.  Before
10245 	 * we can store any padding, we need to adjust our wrapping offset.
10246 	 * (If we've never before wrapped or we're not about to, no adjustment
10247 	 * is required.)
10248 	 */
10249 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10250 	    offs + total > buf->dtb_size) {
10251 		woffs = buf->dtb_xamot_offset;
10252 
10253 		if (offs + total > buf->dtb_size) {
10254 			/*
10255 			 * We can't fit in the end of the buffer.  First, a
10256 			 * sanity check that we can fit in the buffer at all.
10257 			 */
10258 			if (total > buf->dtb_size) {
10259 				dtrace_buffer_drop(buf);
10260 				return (-1);
10261 			}
10262 
10263 			/*
10264 			 * We're going to be storing at the top of the buffer,
10265 			 * so now we need to deal with the wrapped offset.  We
10266 			 * only reset our wrapped offset to 0 if it is
10267 			 * currently greater than the current offset.  If it
10268 			 * is less than the current offset, it is because a
10269 			 * previous allocation induced a wrap -- but the
10270 			 * allocation didn't subsequently take the space due
10271 			 * to an error or false predicate evaluation.  In this
10272 			 * case, we'll just leave the wrapped offset alone: if
10273 			 * the wrapped offset hasn't been advanced far enough
10274 			 * for this allocation, it will be adjusted in the
10275 			 * lower loop.
10276 			 */
10277 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10278 				if (woffs >= offs)
10279 					woffs = 0;
10280 			} else {
10281 				woffs = 0;
10282 			}
10283 
10284 			/*
10285 			 * Now we know that we're going to be storing to the
10286 			 * top of the buffer and that there is room for us
10287 			 * there.  We need to clear the buffer from the current
10288 			 * offset to the end (there may be old gunk there).
10289 			 */
10290 			while (offs < buf->dtb_size)
10291 				tomax[offs++] = 0;
10292 
10293 			/*
10294 			 * We need to set our offset to zero.  And because we
10295 			 * are wrapping, we need to set the bit indicating as
10296 			 * much.  We can also adjust our needed space back
10297 			 * down to the space required by the ECB -- we know
10298 			 * that the top of the buffer is aligned.
10299 			 */
10300 			offs = 0;
10301 			total = needed;
10302 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10303 		} else {
10304 			/*
10305 			 * There is room for us in the buffer, so we simply
10306 			 * need to check the wrapped offset.
10307 			 */
10308 			if (woffs < offs) {
10309 				/*
10310 				 * The wrapped offset is less than the offset.
10311 				 * This can happen if we allocated buffer space
10312 				 * that induced a wrap, but then we didn't
10313 				 * subsequently take the space due to an error
10314 				 * or false predicate evaluation.  This is
10315 				 * okay; we know that _this_ allocation isn't
10316 				 * going to induce a wrap.  We still can't
10317 				 * reset the wrapped offset to be zero,
10318 				 * however: the space may have been trashed in
10319 				 * the previous failed probe attempt.  But at
10320 				 * least the wrapped offset doesn't need to
10321 				 * be adjusted at all...
10322 				 */
10323 				goto out;
10324 			}
10325 		}
10326 
10327 		while (offs + total > woffs) {
10328 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10329 			size_t size;
10330 
10331 			if (epid == DTRACE_EPIDNONE) {
10332 				size = sizeof (uint32_t);
10333 			} else {
10334 				ASSERT(epid <= state->dts_necbs);
10335 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10336 
10337 				size = state->dts_ecbs[epid - 1]->dte_size;
10338 			}
10339 
10340 			ASSERT(woffs + size <= buf->dtb_size);
10341 			ASSERT(size != 0);
10342 
10343 			if (woffs + size == buf->dtb_size) {
10344 				/*
10345 				 * We've reached the end of the buffer; we want
10346 				 * to set the wrapped offset to 0 and break
10347 				 * out.  However, if the offs is 0, then we're
10348 				 * in a strange edge-condition:  the amount of
10349 				 * space that we want to reserve plus the size
10350 				 * of the record that we're overwriting is
10351 				 * greater than the size of the buffer.  This
10352 				 * is problematic because if we reserve the
10353 				 * space but subsequently don't consume it (due
10354 				 * to a failed predicate or error) the wrapped
10355 				 * offset will be 0 -- yet the EPID at offset 0
10356 				 * will not be committed.  This situation is
10357 				 * relatively easy to deal with:  if we're in
10358 				 * this case, the buffer is indistinguishable
10359 				 * from one that hasn't wrapped; we need only
10360 				 * finish the job by clearing the wrapped bit,
10361 				 * explicitly setting the offset to be 0, and
10362 				 * zero'ing out the old data in the buffer.
10363 				 */
10364 				if (offs == 0) {
10365 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10366 					buf->dtb_offset = 0;
10367 					woffs = total;
10368 
10369 					while (woffs < buf->dtb_size)
10370 						tomax[woffs++] = 0;
10371 				}
10372 
10373 				woffs = 0;
10374 				break;
10375 			}
10376 
10377 			woffs += size;
10378 		}
10379 
10380 		/*
10381 		 * We have a wrapped offset.  It may be that the wrapped offset
10382 		 * has become zero -- that's okay.
10383 		 */
10384 		buf->dtb_xamot_offset = woffs;
10385 	}
10386 
10387 out:
10388 	/*
10389 	 * Now we can plow the buffer with any necessary padding.
10390 	 */
10391 	while (offs & (align - 1)) {
10392 		/*
10393 		 * Assert that our alignment is off by a number which
10394 		 * is itself sizeof (uint32_t) aligned.
10395 		 */
10396 		ASSERT(!((align - (offs & (align - 1))) &
10397 		    (sizeof (uint32_t) - 1)));
10398 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10399 		offs += sizeof (uint32_t);
10400 	}
10401 
10402 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10403 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10404 			buf->dtb_flags |= DTRACEBUF_FULL;
10405 			return (-1);
10406 		}
10407 	}
10408 
10409 	if (mstate == NULL)
10410 		return (offs);
10411 
10412 	/*
10413 	 * For ring buffers and fill buffers, the scratch space is always
10414 	 * the inactive buffer.
10415 	 */
10416 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10417 	mstate->dtms_scratch_size = buf->dtb_size;
10418 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10419 
10420 	return (offs);
10421 }
10422 
10423 static void
10424 dtrace_buffer_polish(dtrace_buffer_t *buf)
10425 {
10426 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10427 	ASSERT(MUTEX_HELD(&dtrace_lock));
10428 
10429 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10430 		return;
10431 
10432 	/*
10433 	 * We need to polish the ring buffer.  There are three cases:
10434 	 *
10435 	 * - The first (and presumably most common) is that there is no gap
10436 	 *   between the buffer offset and the wrapped offset.  In this case,
10437 	 *   there is nothing in the buffer that isn't valid data; we can
10438 	 *   mark the buffer as polished and return.
10439 	 *
10440 	 * - The second (less common than the first but still more common
10441 	 *   than the third) is that there is a gap between the buffer offset
10442 	 *   and the wrapped offset, and the wrapped offset is larger than the
10443 	 *   buffer offset.  This can happen because of an alignment issue, or
10444 	 *   can happen because of a call to dtrace_buffer_reserve() that
10445 	 *   didn't subsequently consume the buffer space.  In this case,
10446 	 *   we need to zero the data from the buffer offset to the wrapped
10447 	 *   offset.
10448 	 *
10449 	 * - The third (and least common) is that there is a gap between the
10450 	 *   buffer offset and the wrapped offset, but the wrapped offset is
10451 	 *   _less_ than the buffer offset.  This can only happen because a
10452 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
10453 	 *   was not subsequently consumed.  In this case, we need to zero the
10454 	 *   space from the offset to the end of the buffer _and_ from the
10455 	 *   top of the buffer to the wrapped offset.
10456 	 */
10457 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
10458 		bzero(buf->dtb_tomax + buf->dtb_offset,
10459 		    buf->dtb_xamot_offset - buf->dtb_offset);
10460 	}
10461 
10462 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
10463 		bzero(buf->dtb_tomax + buf->dtb_offset,
10464 		    buf->dtb_size - buf->dtb_offset);
10465 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10466 	}
10467 }
10468 
10469 static void
10470 dtrace_buffer_free(dtrace_buffer_t *bufs)
10471 {
10472 	int i;
10473 
10474 	for (i = 0; i < NCPU; i++) {
10475 		dtrace_buffer_t *buf = &bufs[i];
10476 
10477 		if (buf->dtb_tomax == NULL) {
10478 			ASSERT(buf->dtb_xamot == NULL);
10479 			ASSERT(buf->dtb_size == 0);
10480 			continue;
10481 		}
10482 
10483 		if (buf->dtb_xamot != NULL) {
10484 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10485 			kmem_free(buf->dtb_xamot, buf->dtb_size);
10486 		}
10487 
10488 		kmem_free(buf->dtb_tomax, buf->dtb_size);
10489 		buf->dtb_size = 0;
10490 		buf->dtb_tomax = NULL;
10491 		buf->dtb_xamot = NULL;
10492 	}
10493 }
10494 
10495 /*
10496  * DTrace Enabling Functions
10497  */
10498 static dtrace_enabling_t *
10499 dtrace_enabling_create(dtrace_vstate_t *vstate)
10500 {
10501 	dtrace_enabling_t *enab;
10502 
10503 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
10504 	enab->dten_vstate = vstate;
10505 
10506 	return (enab);
10507 }
10508 
10509 static void
10510 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
10511 {
10512 	dtrace_ecbdesc_t **ndesc;
10513 	size_t osize, nsize;
10514 
10515 	/*
10516 	 * We can't add to enablings after we've enabled them, or after we've
10517 	 * retained them.
10518 	 */
10519 	ASSERT(enab->dten_probegen == 0);
10520 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10521 
10522 	if (enab->dten_ndesc < enab->dten_maxdesc) {
10523 		enab->dten_desc[enab->dten_ndesc++] = ecb;
10524 		return;
10525 	}
10526 
10527 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10528 
10529 	if (enab->dten_maxdesc == 0) {
10530 		enab->dten_maxdesc = 1;
10531 	} else {
10532 		enab->dten_maxdesc <<= 1;
10533 	}
10534 
10535 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
10536 
10537 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10538 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
10539 	bcopy(enab->dten_desc, ndesc, osize);
10540 	kmem_free(enab->dten_desc, osize);
10541 
10542 	enab->dten_desc = ndesc;
10543 	enab->dten_desc[enab->dten_ndesc++] = ecb;
10544 }
10545 
10546 static void
10547 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
10548     dtrace_probedesc_t *pd)
10549 {
10550 	dtrace_ecbdesc_t *new;
10551 	dtrace_predicate_t *pred;
10552 	dtrace_actdesc_t *act;
10553 
10554 	/*
10555 	 * We're going to create a new ECB description that matches the
10556 	 * specified ECB in every way, but has the specified probe description.
10557 	 */
10558 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10559 
10560 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
10561 		dtrace_predicate_hold(pred);
10562 
10563 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
10564 		dtrace_actdesc_hold(act);
10565 
10566 	new->dted_action = ecb->dted_action;
10567 	new->dted_pred = ecb->dted_pred;
10568 	new->dted_probe = *pd;
10569 	new->dted_uarg = ecb->dted_uarg;
10570 
10571 	dtrace_enabling_add(enab, new);
10572 }
10573 
10574 static void
10575 dtrace_enabling_dump(dtrace_enabling_t *enab)
10576 {
10577 	int i;
10578 
10579 	for (i = 0; i < enab->dten_ndesc; i++) {
10580 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
10581 
10582 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
10583 		    desc->dtpd_provider, desc->dtpd_mod,
10584 		    desc->dtpd_func, desc->dtpd_name);
10585 	}
10586 }
10587 
10588 static void
10589 dtrace_enabling_destroy(dtrace_enabling_t *enab)
10590 {
10591 	int i;
10592 	dtrace_ecbdesc_t *ep;
10593 	dtrace_vstate_t *vstate = enab->dten_vstate;
10594 
10595 	ASSERT(MUTEX_HELD(&dtrace_lock));
10596 
10597 	for (i = 0; i < enab->dten_ndesc; i++) {
10598 		dtrace_actdesc_t *act, *next;
10599 		dtrace_predicate_t *pred;
10600 
10601 		ep = enab->dten_desc[i];
10602 
10603 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
10604 			dtrace_predicate_release(pred, vstate);
10605 
10606 		for (act = ep->dted_action; act != NULL; act = next) {
10607 			next = act->dtad_next;
10608 			dtrace_actdesc_release(act, vstate);
10609 		}
10610 
10611 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10612 	}
10613 
10614 	kmem_free(enab->dten_desc,
10615 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
10616 
10617 	/*
10618 	 * If this was a retained enabling, decrement the dts_nretained count
10619 	 * and take it off of the dtrace_retained list.
10620 	 */
10621 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
10622 	    dtrace_retained == enab) {
10623 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10624 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
10625 		enab->dten_vstate->dtvs_state->dts_nretained--;
10626 		dtrace_retained_gen++;
10627 	}
10628 
10629 	if (enab->dten_prev == NULL) {
10630 		if (dtrace_retained == enab) {
10631 			dtrace_retained = enab->dten_next;
10632 
10633 			if (dtrace_retained != NULL)
10634 				dtrace_retained->dten_prev = NULL;
10635 		}
10636 	} else {
10637 		ASSERT(enab != dtrace_retained);
10638 		ASSERT(dtrace_retained != NULL);
10639 		enab->dten_prev->dten_next = enab->dten_next;
10640 	}
10641 
10642 	if (enab->dten_next != NULL) {
10643 		ASSERT(dtrace_retained != NULL);
10644 		enab->dten_next->dten_prev = enab->dten_prev;
10645 	}
10646 
10647 	kmem_free(enab, sizeof (dtrace_enabling_t));
10648 }
10649 
10650 static int
10651 dtrace_enabling_retain(dtrace_enabling_t *enab)
10652 {
10653 	dtrace_state_t *state;
10654 
10655 	ASSERT(MUTEX_HELD(&dtrace_lock));
10656 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10657 	ASSERT(enab->dten_vstate != NULL);
10658 
10659 	state = enab->dten_vstate->dtvs_state;
10660 	ASSERT(state != NULL);
10661 
10662 	/*
10663 	 * We only allow each state to retain dtrace_retain_max enablings.
10664 	 */
10665 	if (state->dts_nretained >= dtrace_retain_max)
10666 		return (ENOSPC);
10667 
10668 	state->dts_nretained++;
10669 	dtrace_retained_gen++;
10670 
10671 	if (dtrace_retained == NULL) {
10672 		dtrace_retained = enab;
10673 		return (0);
10674 	}
10675 
10676 	enab->dten_next = dtrace_retained;
10677 	dtrace_retained->dten_prev = enab;
10678 	dtrace_retained = enab;
10679 
10680 	return (0);
10681 }
10682 
10683 static int
10684 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
10685     dtrace_probedesc_t *create)
10686 {
10687 	dtrace_enabling_t *new, *enab;
10688 	int found = 0, err = ENOENT;
10689 
10690 	ASSERT(MUTEX_HELD(&dtrace_lock));
10691 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
10692 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
10693 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
10694 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
10695 
10696 	new = dtrace_enabling_create(&state->dts_vstate);
10697 
10698 	/*
10699 	 * Iterate over all retained enablings, looking for enablings that
10700 	 * match the specified state.
10701 	 */
10702 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10703 		int i;
10704 
10705 		/*
10706 		 * dtvs_state can only be NULL for helper enablings -- and
10707 		 * helper enablings can't be retained.
10708 		 */
10709 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10710 
10711 		if (enab->dten_vstate->dtvs_state != state)
10712 			continue;
10713 
10714 		/*
10715 		 * Now iterate over each probe description; we're looking for
10716 		 * an exact match to the specified probe description.
10717 		 */
10718 		for (i = 0; i < enab->dten_ndesc; i++) {
10719 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10720 			dtrace_probedesc_t *pd = &ep->dted_probe;
10721 
10722 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
10723 				continue;
10724 
10725 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
10726 				continue;
10727 
10728 			if (strcmp(pd->dtpd_func, match->dtpd_func))
10729 				continue;
10730 
10731 			if (strcmp(pd->dtpd_name, match->dtpd_name))
10732 				continue;
10733 
10734 			/*
10735 			 * We have a winning probe!  Add it to our growing
10736 			 * enabling.
10737 			 */
10738 			found = 1;
10739 			dtrace_enabling_addlike(new, ep, create);
10740 		}
10741 	}
10742 
10743 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
10744 		dtrace_enabling_destroy(new);
10745 		return (err);
10746 	}
10747 
10748 	return (0);
10749 }
10750 
10751 static void
10752 dtrace_enabling_retract(dtrace_state_t *state)
10753 {
10754 	dtrace_enabling_t *enab, *next;
10755 
10756 	ASSERT(MUTEX_HELD(&dtrace_lock));
10757 
10758 	/*
10759 	 * Iterate over all retained enablings, destroy the enablings retained
10760 	 * for the specified state.
10761 	 */
10762 	for (enab = dtrace_retained; enab != NULL; enab = next) {
10763 		next = enab->dten_next;
10764 
10765 		/*
10766 		 * dtvs_state can only be NULL for helper enablings -- and
10767 		 * helper enablings can't be retained.
10768 		 */
10769 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10770 
10771 		if (enab->dten_vstate->dtvs_state == state) {
10772 			ASSERT(state->dts_nretained > 0);
10773 			dtrace_enabling_destroy(enab);
10774 		}
10775 	}
10776 
10777 	ASSERT(state->dts_nretained == 0);
10778 }
10779 
10780 static int
10781 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
10782 {
10783 	int i = 0;
10784 	int total_matched = 0, matched = 0;
10785 
10786 	ASSERT(MUTEX_HELD(&cpu_lock));
10787 	ASSERT(MUTEX_HELD(&dtrace_lock));
10788 
10789 	for (i = 0; i < enab->dten_ndesc; i++) {
10790 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10791 
10792 		enab->dten_current = ep;
10793 		enab->dten_error = 0;
10794 
10795 		/*
10796 		 * If a provider failed to enable a probe then get out and
10797 		 * let the consumer know we failed.
10798 		 */
10799 		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
10800 			return (EBUSY);
10801 
10802 		total_matched += matched;
10803 
10804 		if (enab->dten_error != 0) {
10805 			/*
10806 			 * If we get an error half-way through enabling the
10807 			 * probes, we kick out -- perhaps with some number of
10808 			 * them enabled.  Leaving enabled probes enabled may
10809 			 * be slightly confusing for user-level, but we expect
10810 			 * that no one will attempt to actually drive on in
10811 			 * the face of such errors.  If this is an anonymous
10812 			 * enabling (indicated with a NULL nmatched pointer),
10813 			 * we cmn_err() a message.  We aren't expecting to
10814 			 * get such an error -- such as it can exist at all,
10815 			 * it would be a result of corrupted DOF in the driver
10816 			 * properties.
10817 			 */
10818 			if (nmatched == NULL) {
10819 				cmn_err(CE_WARN, "dtrace_enabling_match() "
10820 				    "error on %p: %d", (void *)ep,
10821 				    enab->dten_error);
10822 			}
10823 
10824 			return (enab->dten_error);
10825 		}
10826 	}
10827 
10828 	enab->dten_probegen = dtrace_probegen;
10829 	if (nmatched != NULL)
10830 		*nmatched = total_matched;
10831 
10832 	return (0);
10833 }
10834 
10835 static void
10836 dtrace_enabling_matchall(void)
10837 {
10838 	dtrace_enabling_t *enab;
10839 
10840 	mutex_enter(&cpu_lock);
10841 	mutex_enter(&dtrace_lock);
10842 
10843 	/*
10844 	 * Iterate over all retained enablings to see if any probes match
10845 	 * against them.  We only perform this operation on enablings for which
10846 	 * we have sufficient permissions by virtue of being in the global zone
10847 	 * or in the same zone as the DTrace client.  Because we can be called
10848 	 * after dtrace_detach() has been called, we cannot assert that there
10849 	 * are retained enablings.  We can safely load from dtrace_retained,
10850 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
10851 	 * block pending our completion.
10852 	 */
10853 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10854 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
10855 
10856 		if (INGLOBALZONE(curproc) ||
10857 		    cr != NULL && getzoneid() == crgetzoneid(cr))
10858 			(void) dtrace_enabling_match(enab, NULL);
10859 	}
10860 
10861 	mutex_exit(&dtrace_lock);
10862 	mutex_exit(&cpu_lock);
10863 }
10864 
10865 /*
10866  * If an enabling is to be enabled without having matched probes (that is, if
10867  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
10868  * enabling must be _primed_ by creating an ECB for every ECB description.
10869  * This must be done to assure that we know the number of speculations, the
10870  * number of aggregations, the minimum buffer size needed, etc. before we
10871  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
10872  * enabling any probes, we create ECBs for every ECB decription, but with a
10873  * NULL probe -- which is exactly what this function does.
10874  */
10875 static void
10876 dtrace_enabling_prime(dtrace_state_t *state)
10877 {
10878 	dtrace_enabling_t *enab;
10879 	int i;
10880 
10881 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10882 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10883 
10884 		if (enab->dten_vstate->dtvs_state != state)
10885 			continue;
10886 
10887 		/*
10888 		 * We don't want to prime an enabling more than once, lest
10889 		 * we allow a malicious user to induce resource exhaustion.
10890 		 * (The ECBs that result from priming an enabling aren't
10891 		 * leaked -- but they also aren't deallocated until the
10892 		 * consumer state is destroyed.)
10893 		 */
10894 		if (enab->dten_primed)
10895 			continue;
10896 
10897 		for (i = 0; i < enab->dten_ndesc; i++) {
10898 			enab->dten_current = enab->dten_desc[i];
10899 			(void) dtrace_probe_enable(NULL, enab);
10900 		}
10901 
10902 		enab->dten_primed = 1;
10903 	}
10904 }
10905 
10906 /*
10907  * Called to indicate that probes should be provided due to retained
10908  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
10909  * must take an initial lap through the enabling calling the dtps_provide()
10910  * entry point explicitly to allow for autocreated probes.
10911  */
10912 static void
10913 dtrace_enabling_provide(dtrace_provider_t *prv)
10914 {
10915 	int i, all = 0;
10916 	dtrace_probedesc_t desc;
10917 	dtrace_genid_t gen;
10918 
10919 	ASSERT(MUTEX_HELD(&dtrace_lock));
10920 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
10921 
10922 	if (prv == NULL) {
10923 		all = 1;
10924 		prv = dtrace_provider;
10925 	}
10926 
10927 	do {
10928 		dtrace_enabling_t *enab;
10929 		void *parg = prv->dtpv_arg;
10930 
10931 retry:
10932 		gen = dtrace_retained_gen;
10933 		for (enab = dtrace_retained; enab != NULL;
10934 		    enab = enab->dten_next) {
10935 			for (i = 0; i < enab->dten_ndesc; i++) {
10936 				desc = enab->dten_desc[i]->dted_probe;
10937 				mutex_exit(&dtrace_lock);
10938 				prv->dtpv_pops.dtps_provide(parg, &desc);
10939 				mutex_enter(&dtrace_lock);
10940 				/*
10941 				 * Process the retained enablings again if
10942 				 * they have changed while we weren't holding
10943 				 * dtrace_lock.
10944 				 */
10945 				if (gen != dtrace_retained_gen)
10946 					goto retry;
10947 			}
10948 		}
10949 	} while (all && (prv = prv->dtpv_next) != NULL);
10950 
10951 	mutex_exit(&dtrace_lock);
10952 	dtrace_probe_provide(NULL, all ? NULL : prv);
10953 	mutex_enter(&dtrace_lock);
10954 }
10955 
10956 /*
10957  * DTrace DOF Functions
10958  */
10959 /*ARGSUSED*/
10960 static void
10961 dtrace_dof_error(dof_hdr_t *dof, const char *str)
10962 {
10963 	if (dtrace_err_verbose)
10964 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
10965 
10966 #ifdef DTRACE_ERRDEBUG
10967 	dtrace_errdebug(str);
10968 #endif
10969 }
10970 
10971 /*
10972  * Create DOF out of a currently enabled state.  Right now, we only create
10973  * DOF containing the run-time options -- but this could be expanded to create
10974  * complete DOF representing the enabled state.
10975  */
10976 static dof_hdr_t *
10977 dtrace_dof_create(dtrace_state_t *state)
10978 {
10979 	dof_hdr_t *dof;
10980 	dof_sec_t *sec;
10981 	dof_optdesc_t *opt;
10982 	int i, len = sizeof (dof_hdr_t) +
10983 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
10984 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10985 
10986 	ASSERT(MUTEX_HELD(&dtrace_lock));
10987 
10988 	dof = kmem_zalloc(len, KM_SLEEP);
10989 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
10990 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
10991 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
10992 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
10993 
10994 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
10995 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
10996 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
10997 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
10998 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
10999 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11000 
11001 	dof->dofh_flags = 0;
11002 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11003 	dof->dofh_secsize = sizeof (dof_sec_t);
11004 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11005 	dof->dofh_secoff = sizeof (dof_hdr_t);
11006 	dof->dofh_loadsz = len;
11007 	dof->dofh_filesz = len;
11008 	dof->dofh_pad = 0;
11009 
11010 	/*
11011 	 * Fill in the option section header...
11012 	 */
11013 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11014 	sec->dofs_type = DOF_SECT_OPTDESC;
11015 	sec->dofs_align = sizeof (uint64_t);
11016 	sec->dofs_flags = DOF_SECF_LOAD;
11017 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11018 
11019 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11020 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11021 
11022 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11023 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11024 
11025 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11026 		opt[i].dofo_option = i;
11027 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11028 		opt[i].dofo_value = state->dts_options[i];
11029 	}
11030 
11031 	return (dof);
11032 }
11033 
11034 static dof_hdr_t *
11035 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11036 {
11037 	dof_hdr_t hdr, *dof;
11038 
11039 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11040 
11041 	/*
11042 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11043 	 */
11044 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11045 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11046 		*errp = EFAULT;
11047 		return (NULL);
11048 	}
11049 
11050 	/*
11051 	 * Now we'll allocate the entire DOF and copy it in -- provided
11052 	 * that the length isn't outrageous.
11053 	 */
11054 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11055 		dtrace_dof_error(&hdr, "load size exceeds maximum");
11056 		*errp = E2BIG;
11057 		return (NULL);
11058 	}
11059 
11060 	if (hdr.dofh_loadsz < sizeof (hdr)) {
11061 		dtrace_dof_error(&hdr, "invalid load size");
11062 		*errp = EINVAL;
11063 		return (NULL);
11064 	}
11065 
11066 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11067 
11068 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11069 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
11070 		kmem_free(dof, hdr.dofh_loadsz);
11071 		*errp = EFAULT;
11072 		return (NULL);
11073 	}
11074 
11075 	return (dof);
11076 }
11077 
11078 static dof_hdr_t *
11079 dtrace_dof_property(const char *name)
11080 {
11081 	uchar_t *buf;
11082 	uint64_t loadsz;
11083 	unsigned int len, i;
11084 	dof_hdr_t *dof;
11085 
11086 	/*
11087 	 * Unfortunately, array of values in .conf files are always (and
11088 	 * only) interpreted to be integer arrays.  We must read our DOF
11089 	 * as an integer array, and then squeeze it into a byte array.
11090 	 */
11091 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11092 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11093 		return (NULL);
11094 
11095 	for (i = 0; i < len; i++)
11096 		buf[i] = (uchar_t)(((int *)buf)[i]);
11097 
11098 	if (len < sizeof (dof_hdr_t)) {
11099 		ddi_prop_free(buf);
11100 		dtrace_dof_error(NULL, "truncated header");
11101 		return (NULL);
11102 	}
11103 
11104 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11105 		ddi_prop_free(buf);
11106 		dtrace_dof_error(NULL, "truncated DOF");
11107 		return (NULL);
11108 	}
11109 
11110 	if (loadsz >= dtrace_dof_maxsize) {
11111 		ddi_prop_free(buf);
11112 		dtrace_dof_error(NULL, "oversized DOF");
11113 		return (NULL);
11114 	}
11115 
11116 	dof = kmem_alloc(loadsz, KM_SLEEP);
11117 	bcopy(buf, dof, loadsz);
11118 	ddi_prop_free(buf);
11119 
11120 	return (dof);
11121 }
11122 
11123 static void
11124 dtrace_dof_destroy(dof_hdr_t *dof)
11125 {
11126 	kmem_free(dof, dof->dofh_loadsz);
11127 }
11128 
11129 /*
11130  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11131  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11132  * a type other than DOF_SECT_NONE is specified, the header is checked against
11133  * this type and NULL is returned if the types do not match.
11134  */
11135 static dof_sec_t *
11136 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11137 {
11138 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11139 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11140 
11141 	if (i >= dof->dofh_secnum) {
11142 		dtrace_dof_error(dof, "referenced section index is invalid");
11143 		return (NULL);
11144 	}
11145 
11146 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11147 		dtrace_dof_error(dof, "referenced section is not loadable");
11148 		return (NULL);
11149 	}
11150 
11151 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11152 		dtrace_dof_error(dof, "referenced section is the wrong type");
11153 		return (NULL);
11154 	}
11155 
11156 	return (sec);
11157 }
11158 
11159 static dtrace_probedesc_t *
11160 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11161 {
11162 	dof_probedesc_t *probe;
11163 	dof_sec_t *strtab;
11164 	uintptr_t daddr = (uintptr_t)dof;
11165 	uintptr_t str;
11166 	size_t size;
11167 
11168 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11169 		dtrace_dof_error(dof, "invalid probe section");
11170 		return (NULL);
11171 	}
11172 
11173 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11174 		dtrace_dof_error(dof, "bad alignment in probe description");
11175 		return (NULL);
11176 	}
11177 
11178 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11179 		dtrace_dof_error(dof, "truncated probe description");
11180 		return (NULL);
11181 	}
11182 
11183 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11184 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11185 
11186 	if (strtab == NULL)
11187 		return (NULL);
11188 
11189 	str = daddr + strtab->dofs_offset;
11190 	size = strtab->dofs_size;
11191 
11192 	if (probe->dofp_provider >= strtab->dofs_size) {
11193 		dtrace_dof_error(dof, "corrupt probe provider");
11194 		return (NULL);
11195 	}
11196 
11197 	(void) strncpy(desc->dtpd_provider,
11198 	    (char *)(str + probe->dofp_provider),
11199 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11200 
11201 	if (probe->dofp_mod >= strtab->dofs_size) {
11202 		dtrace_dof_error(dof, "corrupt probe module");
11203 		return (NULL);
11204 	}
11205 
11206 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11207 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11208 
11209 	if (probe->dofp_func >= strtab->dofs_size) {
11210 		dtrace_dof_error(dof, "corrupt probe function");
11211 		return (NULL);
11212 	}
11213 
11214 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11215 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11216 
11217 	if (probe->dofp_name >= strtab->dofs_size) {
11218 		dtrace_dof_error(dof, "corrupt probe name");
11219 		return (NULL);
11220 	}
11221 
11222 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11223 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11224 
11225 	return (desc);
11226 }
11227 
11228 static dtrace_difo_t *
11229 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11230     cred_t *cr)
11231 {
11232 	dtrace_difo_t *dp;
11233 	size_t ttl = 0;
11234 	dof_difohdr_t *dofd;
11235 	uintptr_t daddr = (uintptr_t)dof;
11236 	size_t max = dtrace_difo_maxsize;
11237 	int i, l, n;
11238 
11239 	static const struct {
11240 		int section;
11241 		int bufoffs;
11242 		int lenoffs;
11243 		int entsize;
11244 		int align;
11245 		const char *msg;
11246 	} difo[] = {
11247 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11248 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11249 		sizeof (dif_instr_t), "multiple DIF sections" },
11250 
11251 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11252 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11253 		sizeof (uint64_t), "multiple integer tables" },
11254 
11255 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11256 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11257 		sizeof (char), "multiple string tables" },
11258 
11259 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11260 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11261 		sizeof (uint_t), "multiple variable tables" },
11262 
11263 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
11264 	};
11265 
11266 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11267 		dtrace_dof_error(dof, "invalid DIFO header section");
11268 		return (NULL);
11269 	}
11270 
11271 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11272 		dtrace_dof_error(dof, "bad alignment in DIFO header");
11273 		return (NULL);
11274 	}
11275 
11276 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11277 	    sec->dofs_size % sizeof (dof_secidx_t)) {
11278 		dtrace_dof_error(dof, "bad size in DIFO header");
11279 		return (NULL);
11280 	}
11281 
11282 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11283 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11284 
11285 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11286 	dp->dtdo_rtype = dofd->dofd_rtype;
11287 
11288 	for (l = 0; l < n; l++) {
11289 		dof_sec_t *subsec;
11290 		void **bufp;
11291 		uint32_t *lenp;
11292 
11293 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11294 		    dofd->dofd_links[l])) == NULL)
11295 			goto err; /* invalid section link */
11296 
11297 		if (ttl + subsec->dofs_size > max) {
11298 			dtrace_dof_error(dof, "exceeds maximum size");
11299 			goto err;
11300 		}
11301 
11302 		ttl += subsec->dofs_size;
11303 
11304 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11305 			if (subsec->dofs_type != difo[i].section)
11306 				continue;
11307 
11308 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11309 				dtrace_dof_error(dof, "section not loaded");
11310 				goto err;
11311 			}
11312 
11313 			if (subsec->dofs_align != difo[i].align) {
11314 				dtrace_dof_error(dof, "bad alignment");
11315 				goto err;
11316 			}
11317 
11318 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11319 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11320 
11321 			if (*bufp != NULL) {
11322 				dtrace_dof_error(dof, difo[i].msg);
11323 				goto err;
11324 			}
11325 
11326 			if (difo[i].entsize != subsec->dofs_entsize) {
11327 				dtrace_dof_error(dof, "entry size mismatch");
11328 				goto err;
11329 			}
11330 
11331 			if (subsec->dofs_entsize != 0 &&
11332 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11333 				dtrace_dof_error(dof, "corrupt entry size");
11334 				goto err;
11335 			}
11336 
11337 			*lenp = subsec->dofs_size;
11338 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11339 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11340 			    *bufp, subsec->dofs_size);
11341 
11342 			if (subsec->dofs_entsize != 0)
11343 				*lenp /= subsec->dofs_entsize;
11344 
11345 			break;
11346 		}
11347 
11348 		/*
11349 		 * If we encounter a loadable DIFO sub-section that is not
11350 		 * known to us, assume this is a broken program and fail.
11351 		 */
11352 		if (difo[i].section == DOF_SECT_NONE &&
11353 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11354 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11355 			goto err;
11356 		}
11357 	}
11358 
11359 	if (dp->dtdo_buf == NULL) {
11360 		/*
11361 		 * We can't have a DIF object without DIF text.
11362 		 */
11363 		dtrace_dof_error(dof, "missing DIF text");
11364 		goto err;
11365 	}
11366 
11367 	/*
11368 	 * Before we validate the DIF object, run through the variable table
11369 	 * looking for the strings -- if any of their size are under, we'll set
11370 	 * their size to be the system-wide default string size.  Note that
11371 	 * this should _not_ happen if the "strsize" option has been set --
11372 	 * in this case, the compiler should have set the size to reflect the
11373 	 * setting of the option.
11374 	 */
11375 	for (i = 0; i < dp->dtdo_varlen; i++) {
11376 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
11377 		dtrace_diftype_t *t = &v->dtdv_type;
11378 
11379 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11380 			continue;
11381 
11382 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11383 			t->dtdt_size = dtrace_strsize_default;
11384 	}
11385 
11386 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11387 		goto err;
11388 
11389 	dtrace_difo_init(dp, vstate);
11390 	return (dp);
11391 
11392 err:
11393 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
11394 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11395 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
11396 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
11397 
11398 	kmem_free(dp, sizeof (dtrace_difo_t));
11399 	return (NULL);
11400 }
11401 
11402 static dtrace_predicate_t *
11403 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11404     cred_t *cr)
11405 {
11406 	dtrace_difo_t *dp;
11407 
11408 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
11409 		return (NULL);
11410 
11411 	return (dtrace_predicate_create(dp));
11412 }
11413 
11414 static dtrace_actdesc_t *
11415 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11416     cred_t *cr)
11417 {
11418 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
11419 	dof_actdesc_t *desc;
11420 	dof_sec_t *difosec;
11421 	size_t offs;
11422 	uintptr_t daddr = (uintptr_t)dof;
11423 	uint64_t arg;
11424 	dtrace_actkind_t kind;
11425 
11426 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
11427 		dtrace_dof_error(dof, "invalid action section");
11428 		return (NULL);
11429 	}
11430 
11431 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
11432 		dtrace_dof_error(dof, "truncated action description");
11433 		return (NULL);
11434 	}
11435 
11436 	if (sec->dofs_align != sizeof (uint64_t)) {
11437 		dtrace_dof_error(dof, "bad alignment in action description");
11438 		return (NULL);
11439 	}
11440 
11441 	if (sec->dofs_size < sec->dofs_entsize) {
11442 		dtrace_dof_error(dof, "section entry size exceeds total size");
11443 		return (NULL);
11444 	}
11445 
11446 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
11447 		dtrace_dof_error(dof, "bad entry size in action description");
11448 		return (NULL);
11449 	}
11450 
11451 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
11452 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
11453 		return (NULL);
11454 	}
11455 
11456 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
11457 		desc = (dof_actdesc_t *)(daddr +
11458 		    (uintptr_t)sec->dofs_offset + offs);
11459 		kind = (dtrace_actkind_t)desc->dofa_kind;
11460 
11461 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
11462 		    (kind != DTRACEACT_PRINTA ||
11463 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
11464 			dof_sec_t *strtab;
11465 			char *str, *fmt;
11466 			uint64_t i;
11467 
11468 			/*
11469 			 * printf()-like actions must have a format string.
11470 			 */
11471 			if ((strtab = dtrace_dof_sect(dof,
11472 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
11473 				goto err;
11474 
11475 			str = (char *)((uintptr_t)dof +
11476 			    (uintptr_t)strtab->dofs_offset);
11477 
11478 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
11479 				if (str[i] == '\0')
11480 					break;
11481 			}
11482 
11483 			if (i >= strtab->dofs_size) {
11484 				dtrace_dof_error(dof, "bogus format string");
11485 				goto err;
11486 			}
11487 
11488 			if (i == desc->dofa_arg) {
11489 				dtrace_dof_error(dof, "empty format string");
11490 				goto err;
11491 			}
11492 
11493 			i -= desc->dofa_arg;
11494 			fmt = kmem_alloc(i + 1, KM_SLEEP);
11495 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
11496 			arg = (uint64_t)(uintptr_t)fmt;
11497 		} else {
11498 			if (kind == DTRACEACT_PRINTA) {
11499 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
11500 				arg = 0;
11501 			} else {
11502 				arg = desc->dofa_arg;
11503 			}
11504 		}
11505 
11506 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
11507 		    desc->dofa_uarg, arg);
11508 
11509 		if (last != NULL) {
11510 			last->dtad_next = act;
11511 		} else {
11512 			first = act;
11513 		}
11514 
11515 		last = act;
11516 
11517 		if (desc->dofa_difo == DOF_SECIDX_NONE)
11518 			continue;
11519 
11520 		if ((difosec = dtrace_dof_sect(dof,
11521 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
11522 			goto err;
11523 
11524 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
11525 
11526 		if (act->dtad_difo == NULL)
11527 			goto err;
11528 	}
11529 
11530 	ASSERT(first != NULL);
11531 	return (first);
11532 
11533 err:
11534 	for (act = first; act != NULL; act = next) {
11535 		next = act->dtad_next;
11536 		dtrace_actdesc_release(act, vstate);
11537 	}
11538 
11539 	return (NULL);
11540 }
11541 
11542 static dtrace_ecbdesc_t *
11543 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11544     cred_t *cr)
11545 {
11546 	dtrace_ecbdesc_t *ep;
11547 	dof_ecbdesc_t *ecb;
11548 	dtrace_probedesc_t *desc;
11549 	dtrace_predicate_t *pred = NULL;
11550 
11551 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
11552 		dtrace_dof_error(dof, "truncated ECB description");
11553 		return (NULL);
11554 	}
11555 
11556 	if (sec->dofs_align != sizeof (uint64_t)) {
11557 		dtrace_dof_error(dof, "bad alignment in ECB description");
11558 		return (NULL);
11559 	}
11560 
11561 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
11562 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
11563 
11564 	if (sec == NULL)
11565 		return (NULL);
11566 
11567 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11568 	ep->dted_uarg = ecb->dofe_uarg;
11569 	desc = &ep->dted_probe;
11570 
11571 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
11572 		goto err;
11573 
11574 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
11575 		if ((sec = dtrace_dof_sect(dof,
11576 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
11577 			goto err;
11578 
11579 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
11580 			goto err;
11581 
11582 		ep->dted_pred.dtpdd_predicate = pred;
11583 	}
11584 
11585 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
11586 		if ((sec = dtrace_dof_sect(dof,
11587 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
11588 			goto err;
11589 
11590 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
11591 
11592 		if (ep->dted_action == NULL)
11593 			goto err;
11594 	}
11595 
11596 	return (ep);
11597 
11598 err:
11599 	if (pred != NULL)
11600 		dtrace_predicate_release(pred, vstate);
11601 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11602 	return (NULL);
11603 }
11604 
11605 /*
11606  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
11607  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
11608  * site of any user SETX relocations to account for load object base address.
11609  * In the future, if we need other relocations, this function can be extended.
11610  */
11611 static int
11612 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
11613 {
11614 	uintptr_t daddr = (uintptr_t)dof;
11615 	dof_relohdr_t *dofr =
11616 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11617 	dof_sec_t *ss, *rs, *ts;
11618 	dof_relodesc_t *r;
11619 	uint_t i, n;
11620 
11621 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
11622 	    sec->dofs_align != sizeof (dof_secidx_t)) {
11623 		dtrace_dof_error(dof, "invalid relocation header");
11624 		return (-1);
11625 	}
11626 
11627 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
11628 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
11629 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
11630 
11631 	if (ss == NULL || rs == NULL || ts == NULL)
11632 		return (-1); /* dtrace_dof_error() has been called already */
11633 
11634 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
11635 	    rs->dofs_align != sizeof (uint64_t)) {
11636 		dtrace_dof_error(dof, "invalid relocation section");
11637 		return (-1);
11638 	}
11639 
11640 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
11641 	n = rs->dofs_size / rs->dofs_entsize;
11642 
11643 	for (i = 0; i < n; i++) {
11644 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
11645 
11646 		switch (r->dofr_type) {
11647 		case DOF_RELO_NONE:
11648 			break;
11649 		case DOF_RELO_SETX:
11650 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
11651 			    sizeof (uint64_t) > ts->dofs_size) {
11652 				dtrace_dof_error(dof, "bad relocation offset");
11653 				return (-1);
11654 			}
11655 
11656 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
11657 				dtrace_dof_error(dof, "misaligned setx relo");
11658 				return (-1);
11659 			}
11660 
11661 			*(uint64_t *)taddr += ubase;
11662 			break;
11663 		default:
11664 			dtrace_dof_error(dof, "invalid relocation type");
11665 			return (-1);
11666 		}
11667 
11668 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
11669 	}
11670 
11671 	return (0);
11672 }
11673 
11674 /*
11675  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
11676  * header:  it should be at the front of a memory region that is at least
11677  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
11678  * size.  It need not be validated in any other way.
11679  */
11680 static int
11681 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
11682     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
11683 {
11684 	uint64_t len = dof->dofh_loadsz, seclen;
11685 	uintptr_t daddr = (uintptr_t)dof;
11686 	dtrace_ecbdesc_t *ep;
11687 	dtrace_enabling_t *enab;
11688 	uint_t i;
11689 
11690 	ASSERT(MUTEX_HELD(&dtrace_lock));
11691 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
11692 
11693 	/*
11694 	 * Check the DOF header identification bytes.  In addition to checking
11695 	 * valid settings, we also verify that unused bits/bytes are zeroed so
11696 	 * we can use them later without fear of regressing existing binaries.
11697 	 */
11698 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
11699 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
11700 		dtrace_dof_error(dof, "DOF magic string mismatch");
11701 		return (-1);
11702 	}
11703 
11704 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
11705 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
11706 		dtrace_dof_error(dof, "DOF has invalid data model");
11707 		return (-1);
11708 	}
11709 
11710 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
11711 		dtrace_dof_error(dof, "DOF encoding mismatch");
11712 		return (-1);
11713 	}
11714 
11715 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
11716 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
11717 		dtrace_dof_error(dof, "DOF version mismatch");
11718 		return (-1);
11719 	}
11720 
11721 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
11722 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
11723 		return (-1);
11724 	}
11725 
11726 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
11727 		dtrace_dof_error(dof, "DOF uses too many integer registers");
11728 		return (-1);
11729 	}
11730 
11731 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
11732 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
11733 		return (-1);
11734 	}
11735 
11736 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
11737 		if (dof->dofh_ident[i] != 0) {
11738 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
11739 			return (-1);
11740 		}
11741 	}
11742 
11743 	if (dof->dofh_flags & ~DOF_FL_VALID) {
11744 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
11745 		return (-1);
11746 	}
11747 
11748 	if (dof->dofh_secsize == 0) {
11749 		dtrace_dof_error(dof, "zero section header size");
11750 		return (-1);
11751 	}
11752 
11753 	/*
11754 	 * Check that the section headers don't exceed the amount of DOF
11755 	 * data.  Note that we cast the section size and number of sections
11756 	 * to uint64_t's to prevent possible overflow in the multiplication.
11757 	 */
11758 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
11759 
11760 	if (dof->dofh_secoff > len || seclen > len ||
11761 	    dof->dofh_secoff + seclen > len) {
11762 		dtrace_dof_error(dof, "truncated section headers");
11763 		return (-1);
11764 	}
11765 
11766 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
11767 		dtrace_dof_error(dof, "misaligned section headers");
11768 		return (-1);
11769 	}
11770 
11771 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
11772 		dtrace_dof_error(dof, "misaligned section size");
11773 		return (-1);
11774 	}
11775 
11776 	/*
11777 	 * Take an initial pass through the section headers to be sure that
11778 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
11779 	 * set, do not permit sections relating to providers, probes, or args.
11780 	 */
11781 	for (i = 0; i < dof->dofh_secnum; i++) {
11782 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11783 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11784 
11785 		if (noprobes) {
11786 			switch (sec->dofs_type) {
11787 			case DOF_SECT_PROVIDER:
11788 			case DOF_SECT_PROBES:
11789 			case DOF_SECT_PRARGS:
11790 			case DOF_SECT_PROFFS:
11791 				dtrace_dof_error(dof, "illegal sections "
11792 				    "for enabling");
11793 				return (-1);
11794 			}
11795 		}
11796 
11797 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
11798 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
11799 			dtrace_dof_error(dof, "loadable section with load "
11800 			    "flag unset");
11801 			return (-1);
11802 		}
11803 
11804 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11805 			continue; /* just ignore non-loadable sections */
11806 
11807 		if (sec->dofs_align & (sec->dofs_align - 1)) {
11808 			dtrace_dof_error(dof, "bad section alignment");
11809 			return (-1);
11810 		}
11811 
11812 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
11813 			dtrace_dof_error(dof, "misaligned section");
11814 			return (-1);
11815 		}
11816 
11817 		if (sec->dofs_offset > len || sec->dofs_size > len ||
11818 		    sec->dofs_offset + sec->dofs_size > len) {
11819 			dtrace_dof_error(dof, "corrupt section header");
11820 			return (-1);
11821 		}
11822 
11823 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
11824 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
11825 			dtrace_dof_error(dof, "non-terminating string table");
11826 			return (-1);
11827 		}
11828 	}
11829 
11830 	/*
11831 	 * Take a second pass through the sections and locate and perform any
11832 	 * relocations that are present.  We do this after the first pass to
11833 	 * be sure that all sections have had their headers validated.
11834 	 */
11835 	for (i = 0; i < dof->dofh_secnum; i++) {
11836 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11837 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11838 
11839 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11840 			continue; /* skip sections that are not loadable */
11841 
11842 		switch (sec->dofs_type) {
11843 		case DOF_SECT_URELHDR:
11844 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
11845 				return (-1);
11846 			break;
11847 		}
11848 	}
11849 
11850 	if ((enab = *enabp) == NULL)
11851 		enab = *enabp = dtrace_enabling_create(vstate);
11852 
11853 	for (i = 0; i < dof->dofh_secnum; i++) {
11854 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11855 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11856 
11857 		if (sec->dofs_type != DOF_SECT_ECBDESC)
11858 			continue;
11859 
11860 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
11861 			dtrace_enabling_destroy(enab);
11862 			*enabp = NULL;
11863 			return (-1);
11864 		}
11865 
11866 		dtrace_enabling_add(enab, ep);
11867 	}
11868 
11869 	return (0);
11870 }
11871 
11872 /*
11873  * Process DOF for any options.  This routine assumes that the DOF has been
11874  * at least processed by dtrace_dof_slurp().
11875  */
11876 static int
11877 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
11878 {
11879 	int i, rval;
11880 	uint32_t entsize;
11881 	size_t offs;
11882 	dof_optdesc_t *desc;
11883 
11884 	for (i = 0; i < dof->dofh_secnum; i++) {
11885 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
11886 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11887 
11888 		if (sec->dofs_type != DOF_SECT_OPTDESC)
11889 			continue;
11890 
11891 		if (sec->dofs_align != sizeof (uint64_t)) {
11892 			dtrace_dof_error(dof, "bad alignment in "
11893 			    "option description");
11894 			return (EINVAL);
11895 		}
11896 
11897 		if ((entsize = sec->dofs_entsize) == 0) {
11898 			dtrace_dof_error(dof, "zeroed option entry size");
11899 			return (EINVAL);
11900 		}
11901 
11902 		if (entsize < sizeof (dof_optdesc_t)) {
11903 			dtrace_dof_error(dof, "bad option entry size");
11904 			return (EINVAL);
11905 		}
11906 
11907 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
11908 			desc = (dof_optdesc_t *)((uintptr_t)dof +
11909 			    (uintptr_t)sec->dofs_offset + offs);
11910 
11911 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
11912 				dtrace_dof_error(dof, "non-zero option string");
11913 				return (EINVAL);
11914 			}
11915 
11916 			if (desc->dofo_value == DTRACEOPT_UNSET) {
11917 				dtrace_dof_error(dof, "unset option");
11918 				return (EINVAL);
11919 			}
11920 
11921 			if ((rval = dtrace_state_option(state,
11922 			    desc->dofo_option, desc->dofo_value)) != 0) {
11923 				dtrace_dof_error(dof, "rejected option");
11924 				return (rval);
11925 			}
11926 		}
11927 	}
11928 
11929 	return (0);
11930 }
11931 
11932 /*
11933  * DTrace Consumer State Functions
11934  */
11935 int
11936 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
11937 {
11938 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
11939 	void *base;
11940 	uintptr_t limit;
11941 	dtrace_dynvar_t *dvar, *next, *start;
11942 	int i;
11943 
11944 	ASSERT(MUTEX_HELD(&dtrace_lock));
11945 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
11946 
11947 	bzero(dstate, sizeof (dtrace_dstate_t));
11948 
11949 	if ((dstate->dtds_chunksize = chunksize) == 0)
11950 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
11951 
11952 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
11953 		size = min;
11954 
11955 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
11956 		return (ENOMEM);
11957 
11958 	dstate->dtds_size = size;
11959 	dstate->dtds_base = base;
11960 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
11961 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
11962 
11963 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
11964 
11965 	if (hashsize != 1 && (hashsize & 1))
11966 		hashsize--;
11967 
11968 	dstate->dtds_hashsize = hashsize;
11969 	dstate->dtds_hash = dstate->dtds_base;
11970 
11971 	/*
11972 	 * Set all of our hash buckets to point to the single sink, and (if
11973 	 * it hasn't already been set), set the sink's hash value to be the
11974 	 * sink sentinel value.  The sink is needed for dynamic variable
11975 	 * lookups to know that they have iterated over an entire, valid hash
11976 	 * chain.
11977 	 */
11978 	for (i = 0; i < hashsize; i++)
11979 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
11980 
11981 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
11982 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
11983 
11984 	/*
11985 	 * Determine number of active CPUs.  Divide free list evenly among
11986 	 * active CPUs.
11987 	 */
11988 	start = (dtrace_dynvar_t *)
11989 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
11990 	limit = (uintptr_t)base + size;
11991 
11992 	maxper = (limit - (uintptr_t)start) / NCPU;
11993 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
11994 
11995 	for (i = 0; i < NCPU; i++) {
11996 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
11997 
11998 		/*
11999 		 * If we don't even have enough chunks to make it once through
12000 		 * NCPUs, we're just going to allocate everything to the first
12001 		 * CPU.  And if we're on the last CPU, we're going to allocate
12002 		 * whatever is left over.  In either case, we set the limit to
12003 		 * be the limit of the dynamic variable space.
12004 		 */
12005 		if (maxper == 0 || i == NCPU - 1) {
12006 			limit = (uintptr_t)base + size;
12007 			start = NULL;
12008 		} else {
12009 			limit = (uintptr_t)start + maxper;
12010 			start = (dtrace_dynvar_t *)limit;
12011 		}
12012 
12013 		ASSERT(limit <= (uintptr_t)base + size);
12014 
12015 		for (;;) {
12016 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12017 			    dstate->dtds_chunksize);
12018 
12019 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12020 				break;
12021 
12022 			dvar->dtdv_next = next;
12023 			dvar = next;
12024 		}
12025 
12026 		if (maxper == 0)
12027 			break;
12028 	}
12029 
12030 	return (0);
12031 }
12032 
12033 void
12034 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12035 {
12036 	ASSERT(MUTEX_HELD(&cpu_lock));
12037 
12038 	if (dstate->dtds_base == NULL)
12039 		return;
12040 
12041 	kmem_free(dstate->dtds_base, dstate->dtds_size);
12042 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12043 }
12044 
12045 static void
12046 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12047 {
12048 	/*
12049 	 * Logical XOR, where are you?
12050 	 */
12051 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12052 
12053 	if (vstate->dtvs_nglobals > 0) {
12054 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12055 		    sizeof (dtrace_statvar_t *));
12056 	}
12057 
12058 	if (vstate->dtvs_ntlocals > 0) {
12059 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12060 		    sizeof (dtrace_difv_t));
12061 	}
12062 
12063 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12064 
12065 	if (vstate->dtvs_nlocals > 0) {
12066 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12067 		    sizeof (dtrace_statvar_t *));
12068 	}
12069 }
12070 
12071 static void
12072 dtrace_state_clean(dtrace_state_t *state)
12073 {
12074 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12075 		return;
12076 
12077 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12078 	dtrace_speculation_clean(state);
12079 }
12080 
12081 static void
12082 dtrace_state_deadman(dtrace_state_t *state)
12083 {
12084 	hrtime_t now;
12085 
12086 	dtrace_sync();
12087 
12088 	now = dtrace_gethrtime();
12089 
12090 	if (state != dtrace_anon.dta_state &&
12091 	    now - state->dts_laststatus >= dtrace_deadman_user)
12092 		return;
12093 
12094 	/*
12095 	 * We must be sure that dts_alive never appears to be less than the
12096 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12097 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12098 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12099 	 * the new value.  This assures that dts_alive never appears to be
12100 	 * less than its true value, regardless of the order in which the
12101 	 * stores to the underlying storage are issued.
12102 	 */
12103 	state->dts_alive = INT64_MAX;
12104 	dtrace_membar_producer();
12105 	state->dts_alive = now;
12106 }
12107 
12108 dtrace_state_t *
12109 dtrace_state_create(dev_t *devp, cred_t *cr)
12110 {
12111 	minor_t minor;
12112 	major_t major;
12113 	char c[30];
12114 	dtrace_state_t *state;
12115 	dtrace_optval_t *opt;
12116 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12117 
12118 	ASSERT(MUTEX_HELD(&dtrace_lock));
12119 	ASSERT(MUTEX_HELD(&cpu_lock));
12120 
12121 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12122 	    VM_BESTFIT | VM_SLEEP);
12123 
12124 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12125 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12126 		return (NULL);
12127 	}
12128 
12129 	state = ddi_get_soft_state(dtrace_softstate, minor);
12130 	state->dts_epid = DTRACE_EPIDNONE + 1;
12131 
12132 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12133 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12134 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12135 
12136 	if (devp != NULL) {
12137 		major = getemajor(*devp);
12138 	} else {
12139 		major = ddi_driver_major(dtrace_devi);
12140 	}
12141 
12142 	state->dts_dev = makedevice(major, minor);
12143 
12144 	if (devp != NULL)
12145 		*devp = state->dts_dev;
12146 
12147 	/*
12148 	 * We allocate NCPU buffers.  On the one hand, this can be quite
12149 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12150 	 * other hand, it saves an additional memory reference in the probe
12151 	 * path.
12152 	 */
12153 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12154 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12155 	state->dts_cleaner = CYCLIC_NONE;
12156 	state->dts_deadman = CYCLIC_NONE;
12157 	state->dts_vstate.dtvs_state = state;
12158 
12159 	for (i = 0; i < DTRACEOPT_MAX; i++)
12160 		state->dts_options[i] = DTRACEOPT_UNSET;
12161 
12162 	/*
12163 	 * Set the default options.
12164 	 */
12165 	opt = state->dts_options;
12166 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12167 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12168 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12169 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12170 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12171 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12172 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12173 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12174 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12175 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12176 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12177 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12178 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12179 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12180 
12181 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12182 
12183 	/*
12184 	 * Depending on the user credentials, we set flag bits which alter probe
12185 	 * visibility or the amount of destructiveness allowed.  In the case of
12186 	 * actual anonymous tracing, or the possession of all privileges, all of
12187 	 * the normal checks are bypassed.
12188 	 */
12189 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12190 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12191 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12192 	} else {
12193 		/*
12194 		 * Set up the credentials for this instantiation.  We take a
12195 		 * hold on the credential to prevent it from disappearing on
12196 		 * us; this in turn prevents the zone_t referenced by this
12197 		 * credential from disappearing.  This means that we can
12198 		 * examine the credential and the zone from probe context.
12199 		 */
12200 		crhold(cr);
12201 		state->dts_cred.dcr_cred = cr;
12202 
12203 		/*
12204 		 * CRA_PROC means "we have *some* privilege for dtrace" and
12205 		 * unlocks the use of variables like pid, zonename, etc.
12206 		 */
12207 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12208 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12209 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12210 		}
12211 
12212 		/*
12213 		 * dtrace_user allows use of syscall and profile providers.
12214 		 * If the user also has proc_owner and/or proc_zone, we
12215 		 * extend the scope to include additional visibility and
12216 		 * destructive power.
12217 		 */
12218 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12219 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12220 				state->dts_cred.dcr_visible |=
12221 				    DTRACE_CRV_ALLPROC;
12222 
12223 				state->dts_cred.dcr_action |=
12224 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12225 			}
12226 
12227 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12228 				state->dts_cred.dcr_visible |=
12229 				    DTRACE_CRV_ALLZONE;
12230 
12231 				state->dts_cred.dcr_action |=
12232 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12233 			}
12234 
12235 			/*
12236 			 * If we have all privs in whatever zone this is,
12237 			 * we can do destructive things to processes which
12238 			 * have altered credentials.
12239 			 */
12240 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12241 			    cr->cr_zone->zone_privset)) {
12242 				state->dts_cred.dcr_action |=
12243 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12244 			}
12245 		}
12246 
12247 		/*
12248 		 * Holding the dtrace_kernel privilege also implies that
12249 		 * the user has the dtrace_user privilege from a visibility
12250 		 * perspective.  But without further privileges, some
12251 		 * destructive actions are not available.
12252 		 */
12253 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12254 			/*
12255 			 * Make all probes in all zones visible.  However,
12256 			 * this doesn't mean that all actions become available
12257 			 * to all zones.
12258 			 */
12259 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12260 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12261 
12262 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12263 			    DTRACE_CRA_PROC;
12264 			/*
12265 			 * Holding proc_owner means that destructive actions
12266 			 * for *this* zone are allowed.
12267 			 */
12268 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12269 				state->dts_cred.dcr_action |=
12270 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12271 
12272 			/*
12273 			 * Holding proc_zone means that destructive actions
12274 			 * for this user/group ID in all zones is allowed.
12275 			 */
12276 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12277 				state->dts_cred.dcr_action |=
12278 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12279 
12280 			/*
12281 			 * If we have all privs in whatever zone this is,
12282 			 * we can do destructive things to processes which
12283 			 * have altered credentials.
12284 			 */
12285 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12286 			    cr->cr_zone->zone_privset)) {
12287 				state->dts_cred.dcr_action |=
12288 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12289 			}
12290 		}
12291 
12292 		/*
12293 		 * Holding the dtrace_proc privilege gives control over fasttrap
12294 		 * and pid providers.  We need to grant wider destructive
12295 		 * privileges in the event that the user has proc_owner and/or
12296 		 * proc_zone.
12297 		 */
12298 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12299 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12300 				state->dts_cred.dcr_action |=
12301 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12302 
12303 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12304 				state->dts_cred.dcr_action |=
12305 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12306 		}
12307 	}
12308 
12309 	return (state);
12310 }
12311 
12312 static int
12313 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12314 {
12315 	dtrace_optval_t *opt = state->dts_options, size;
12316 	processorid_t cpu;
12317 	int flags = 0, rval;
12318 
12319 	ASSERT(MUTEX_HELD(&dtrace_lock));
12320 	ASSERT(MUTEX_HELD(&cpu_lock));
12321 	ASSERT(which < DTRACEOPT_MAX);
12322 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12323 	    (state == dtrace_anon.dta_state &&
12324 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12325 
12326 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12327 		return (0);
12328 
12329 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12330 		cpu = opt[DTRACEOPT_CPU];
12331 
12332 	if (which == DTRACEOPT_SPECSIZE)
12333 		flags |= DTRACEBUF_NOSWITCH;
12334 
12335 	if (which == DTRACEOPT_BUFSIZE) {
12336 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12337 			flags |= DTRACEBUF_RING;
12338 
12339 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12340 			flags |= DTRACEBUF_FILL;
12341 
12342 		if (state != dtrace_anon.dta_state ||
12343 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12344 			flags |= DTRACEBUF_INACTIVE;
12345 	}
12346 
12347 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
12348 		/*
12349 		 * The size must be 8-byte aligned.  If the size is not 8-byte
12350 		 * aligned, drop it down by the difference.
12351 		 */
12352 		if (size & (sizeof (uint64_t) - 1))
12353 			size -= size & (sizeof (uint64_t) - 1);
12354 
12355 		if (size < state->dts_reserve) {
12356 			/*
12357 			 * Buffers always must be large enough to accommodate
12358 			 * their prereserved space.  We return E2BIG instead
12359 			 * of ENOMEM in this case to allow for user-level
12360 			 * software to differentiate the cases.
12361 			 */
12362 			return (E2BIG);
12363 		}
12364 
12365 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
12366 
12367 		if (rval != ENOMEM) {
12368 			opt[which] = size;
12369 			return (rval);
12370 		}
12371 
12372 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12373 			return (rval);
12374 	}
12375 
12376 	return (ENOMEM);
12377 }
12378 
12379 static int
12380 dtrace_state_buffers(dtrace_state_t *state)
12381 {
12382 	dtrace_speculation_t *spec = state->dts_speculations;
12383 	int rval, i;
12384 
12385 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
12386 	    DTRACEOPT_BUFSIZE)) != 0)
12387 		return (rval);
12388 
12389 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
12390 	    DTRACEOPT_AGGSIZE)) != 0)
12391 		return (rval);
12392 
12393 	for (i = 0; i < state->dts_nspeculations; i++) {
12394 		if ((rval = dtrace_state_buffer(state,
12395 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
12396 			return (rval);
12397 	}
12398 
12399 	return (0);
12400 }
12401 
12402 static void
12403 dtrace_state_prereserve(dtrace_state_t *state)
12404 {
12405 	dtrace_ecb_t *ecb;
12406 	dtrace_probe_t *probe;
12407 
12408 	state->dts_reserve = 0;
12409 
12410 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
12411 		return;
12412 
12413 	/*
12414 	 * If our buffer policy is a "fill" buffer policy, we need to set the
12415 	 * prereserved space to be the space required by the END probes.
12416 	 */
12417 	probe = dtrace_probes[dtrace_probeid_end - 1];
12418 	ASSERT(probe != NULL);
12419 
12420 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
12421 		if (ecb->dte_state != state)
12422 			continue;
12423 
12424 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
12425 	}
12426 }
12427 
12428 static int
12429 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
12430 {
12431 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
12432 	dtrace_speculation_t *spec;
12433 	dtrace_buffer_t *buf;
12434 	cyc_handler_t hdlr;
12435 	cyc_time_t when;
12436 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12437 	dtrace_icookie_t cookie;
12438 
12439 	mutex_enter(&cpu_lock);
12440 	mutex_enter(&dtrace_lock);
12441 
12442 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
12443 		rval = EBUSY;
12444 		goto out;
12445 	}
12446 
12447 	/*
12448 	 * Before we can perform any checks, we must prime all of the
12449 	 * retained enablings that correspond to this state.
12450 	 */
12451 	dtrace_enabling_prime(state);
12452 
12453 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
12454 		rval = EACCES;
12455 		goto out;
12456 	}
12457 
12458 	dtrace_state_prereserve(state);
12459 
12460 	/*
12461 	 * Now we want to do is try to allocate our speculations.
12462 	 * We do not automatically resize the number of speculations; if
12463 	 * this fails, we will fail the operation.
12464 	 */
12465 	nspec = opt[DTRACEOPT_NSPEC];
12466 	ASSERT(nspec != DTRACEOPT_UNSET);
12467 
12468 	if (nspec > INT_MAX) {
12469 		rval = ENOMEM;
12470 		goto out;
12471 	}
12472 
12473 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
12474 
12475 	if (spec == NULL) {
12476 		rval = ENOMEM;
12477 		goto out;
12478 	}
12479 
12480 	state->dts_speculations = spec;
12481 	state->dts_nspeculations = (int)nspec;
12482 
12483 	for (i = 0; i < nspec; i++) {
12484 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
12485 			rval = ENOMEM;
12486 			goto err;
12487 		}
12488 
12489 		spec[i].dtsp_buffer = buf;
12490 	}
12491 
12492 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
12493 		if (dtrace_anon.dta_state == NULL) {
12494 			rval = ENOENT;
12495 			goto out;
12496 		}
12497 
12498 		if (state->dts_necbs != 0) {
12499 			rval = EALREADY;
12500 			goto out;
12501 		}
12502 
12503 		state->dts_anon = dtrace_anon_grab();
12504 		ASSERT(state->dts_anon != NULL);
12505 		state = state->dts_anon;
12506 
12507 		/*
12508 		 * We want "grabanon" to be set in the grabbed state, so we'll
12509 		 * copy that option value from the grabbing state into the
12510 		 * grabbed state.
12511 		 */
12512 		state->dts_options[DTRACEOPT_GRABANON] =
12513 		    opt[DTRACEOPT_GRABANON];
12514 
12515 		*cpu = dtrace_anon.dta_beganon;
12516 
12517 		/*
12518 		 * If the anonymous state is active (as it almost certainly
12519 		 * is if the anonymous enabling ultimately matched anything),
12520 		 * we don't allow any further option processing -- but we
12521 		 * don't return failure.
12522 		 */
12523 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12524 			goto out;
12525 	}
12526 
12527 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
12528 	    opt[DTRACEOPT_AGGSIZE] != 0) {
12529 		if (state->dts_aggregations == NULL) {
12530 			/*
12531 			 * We're not going to create an aggregation buffer
12532 			 * because we don't have any ECBs that contain
12533 			 * aggregations -- set this option to 0.
12534 			 */
12535 			opt[DTRACEOPT_AGGSIZE] = 0;
12536 		} else {
12537 			/*
12538 			 * If we have an aggregation buffer, we must also have
12539 			 * a buffer to use as scratch.
12540 			 */
12541 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
12542 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
12543 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
12544 			}
12545 		}
12546 	}
12547 
12548 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
12549 	    opt[DTRACEOPT_SPECSIZE] != 0) {
12550 		if (!state->dts_speculates) {
12551 			/*
12552 			 * We're not going to create speculation buffers
12553 			 * because we don't have any ECBs that actually
12554 			 * speculate -- set the speculation size to 0.
12555 			 */
12556 			opt[DTRACEOPT_SPECSIZE] = 0;
12557 		}
12558 	}
12559 
12560 	/*
12561 	 * The bare minimum size for any buffer that we're actually going to
12562 	 * do anything to is sizeof (uint64_t).
12563 	 */
12564 	sz = sizeof (uint64_t);
12565 
12566 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
12567 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
12568 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
12569 		/*
12570 		 * A buffer size has been explicitly set to 0 (or to a size
12571 		 * that will be adjusted to 0) and we need the space -- we
12572 		 * need to return failure.  We return ENOSPC to differentiate
12573 		 * it from failing to allocate a buffer due to failure to meet
12574 		 * the reserve (for which we return E2BIG).
12575 		 */
12576 		rval = ENOSPC;
12577 		goto out;
12578 	}
12579 
12580 	if ((rval = dtrace_state_buffers(state)) != 0)
12581 		goto err;
12582 
12583 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
12584 		sz = dtrace_dstate_defsize;
12585 
12586 	do {
12587 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
12588 
12589 		if (rval == 0)
12590 			break;
12591 
12592 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12593 			goto err;
12594 	} while (sz >>= 1);
12595 
12596 	opt[DTRACEOPT_DYNVARSIZE] = sz;
12597 
12598 	if (rval != 0)
12599 		goto err;
12600 
12601 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
12602 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
12603 
12604 	if (opt[DTRACEOPT_CLEANRATE] == 0)
12605 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12606 
12607 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
12608 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
12609 
12610 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
12611 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12612 
12613 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
12614 	hdlr.cyh_arg = state;
12615 	hdlr.cyh_level = CY_LOW_LEVEL;
12616 
12617 	when.cyt_when = 0;
12618 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
12619 
12620 	state->dts_cleaner = cyclic_add(&hdlr, &when);
12621 
12622 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
12623 	hdlr.cyh_arg = state;
12624 	hdlr.cyh_level = CY_LOW_LEVEL;
12625 
12626 	when.cyt_when = 0;
12627 	when.cyt_interval = dtrace_deadman_interval;
12628 
12629 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
12630 	state->dts_deadman = cyclic_add(&hdlr, &when);
12631 
12632 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
12633 
12634 	/*
12635 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
12636 	 * interrupts here both to record the CPU on which we fired the BEGIN
12637 	 * probe (the data from this CPU will be processed first at user
12638 	 * level) and to manually activate the buffer for this CPU.
12639 	 */
12640 	cookie = dtrace_interrupt_disable();
12641 	*cpu = CPU->cpu_id;
12642 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
12643 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12644 
12645 	dtrace_probe(dtrace_probeid_begin,
12646 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12647 	dtrace_interrupt_enable(cookie);
12648 	/*
12649 	 * We may have had an exit action from a BEGIN probe; only change our
12650 	 * state to ACTIVE if we're still in WARMUP.
12651 	 */
12652 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
12653 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
12654 
12655 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
12656 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
12657 
12658 	/*
12659 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
12660 	 * want each CPU to transition its principal buffer out of the
12661 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
12662 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
12663 	 * atomically transition from processing none of a state's ECBs to
12664 	 * processing all of them.
12665 	 */
12666 	dtrace_xcall(DTRACE_CPUALL,
12667 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
12668 	goto out;
12669 
12670 err:
12671 	dtrace_buffer_free(state->dts_buffer);
12672 	dtrace_buffer_free(state->dts_aggbuffer);
12673 
12674 	if ((nspec = state->dts_nspeculations) == 0) {
12675 		ASSERT(state->dts_speculations == NULL);
12676 		goto out;
12677 	}
12678 
12679 	spec = state->dts_speculations;
12680 	ASSERT(spec != NULL);
12681 
12682 	for (i = 0; i < state->dts_nspeculations; i++) {
12683 		if ((buf = spec[i].dtsp_buffer) == NULL)
12684 			break;
12685 
12686 		dtrace_buffer_free(buf);
12687 		kmem_free(buf, bufsize);
12688 	}
12689 
12690 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12691 	state->dts_nspeculations = 0;
12692 	state->dts_speculations = NULL;
12693 
12694 out:
12695 	mutex_exit(&dtrace_lock);
12696 	mutex_exit(&cpu_lock);
12697 
12698 	return (rval);
12699 }
12700 
12701 static int
12702 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
12703 {
12704 	dtrace_icookie_t cookie;
12705 
12706 	ASSERT(MUTEX_HELD(&dtrace_lock));
12707 
12708 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
12709 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
12710 		return (EINVAL);
12711 
12712 	/*
12713 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
12714 	 * to be sure that every CPU has seen it.  See below for the details
12715 	 * on why this is done.
12716 	 */
12717 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
12718 	dtrace_sync();
12719 
12720 	/*
12721 	 * By this point, it is impossible for any CPU to be still processing
12722 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
12723 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
12724 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
12725 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
12726 	 * iff we're in the END probe.
12727 	 */
12728 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
12729 	dtrace_sync();
12730 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
12731 
12732 	/*
12733 	 * Finally, we can release the reserve and call the END probe.  We
12734 	 * disable interrupts across calling the END probe to allow us to
12735 	 * return the CPU on which we actually called the END probe.  This
12736 	 * allows user-land to be sure that this CPU's principal buffer is
12737 	 * processed last.
12738 	 */
12739 	state->dts_reserve = 0;
12740 
12741 	cookie = dtrace_interrupt_disable();
12742 	*cpu = CPU->cpu_id;
12743 	dtrace_probe(dtrace_probeid_end,
12744 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12745 	dtrace_interrupt_enable(cookie);
12746 
12747 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
12748 	dtrace_sync();
12749 
12750 	return (0);
12751 }
12752 
12753 static int
12754 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
12755     dtrace_optval_t val)
12756 {
12757 	ASSERT(MUTEX_HELD(&dtrace_lock));
12758 
12759 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12760 		return (EBUSY);
12761 
12762 	if (option >= DTRACEOPT_MAX)
12763 		return (EINVAL);
12764 
12765 	if (option != DTRACEOPT_CPU && val < 0)
12766 		return (EINVAL);
12767 
12768 	switch (option) {
12769 	case DTRACEOPT_DESTRUCTIVE:
12770 		if (dtrace_destructive_disallow)
12771 			return (EACCES);
12772 
12773 		state->dts_cred.dcr_destructive = 1;
12774 		break;
12775 
12776 	case DTRACEOPT_BUFSIZE:
12777 	case DTRACEOPT_DYNVARSIZE:
12778 	case DTRACEOPT_AGGSIZE:
12779 	case DTRACEOPT_SPECSIZE:
12780 	case DTRACEOPT_STRSIZE:
12781 		if (val < 0)
12782 			return (EINVAL);
12783 
12784 		if (val >= LONG_MAX) {
12785 			/*
12786 			 * If this is an otherwise negative value, set it to
12787 			 * the highest multiple of 128m less than LONG_MAX.
12788 			 * Technically, we're adjusting the size without
12789 			 * regard to the buffer resizing policy, but in fact,
12790 			 * this has no effect -- if we set the buffer size to
12791 			 * ~LONG_MAX and the buffer policy is ultimately set to
12792 			 * be "manual", the buffer allocation is guaranteed to
12793 			 * fail, if only because the allocation requires two
12794 			 * buffers.  (We set the the size to the highest
12795 			 * multiple of 128m because it ensures that the size
12796 			 * will remain a multiple of a megabyte when
12797 			 * repeatedly halved -- all the way down to 15m.)
12798 			 */
12799 			val = LONG_MAX - (1 << 27) + 1;
12800 		}
12801 	}
12802 
12803 	state->dts_options[option] = val;
12804 
12805 	return (0);
12806 }
12807 
12808 static void
12809 dtrace_state_destroy(dtrace_state_t *state)
12810 {
12811 	dtrace_ecb_t *ecb;
12812 	dtrace_vstate_t *vstate = &state->dts_vstate;
12813 	minor_t minor = getminor(state->dts_dev);
12814 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12815 	dtrace_speculation_t *spec = state->dts_speculations;
12816 	int nspec = state->dts_nspeculations;
12817 	uint32_t match;
12818 
12819 	ASSERT(MUTEX_HELD(&dtrace_lock));
12820 	ASSERT(MUTEX_HELD(&cpu_lock));
12821 
12822 	/*
12823 	 * First, retract any retained enablings for this state.
12824 	 */
12825 	dtrace_enabling_retract(state);
12826 	ASSERT(state->dts_nretained == 0);
12827 
12828 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
12829 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
12830 		/*
12831 		 * We have managed to come into dtrace_state_destroy() on a
12832 		 * hot enabling -- almost certainly because of a disorderly
12833 		 * shutdown of a consumer.  (That is, a consumer that is
12834 		 * exiting without having called dtrace_stop().) In this case,
12835 		 * we're going to set our activity to be KILLED, and then
12836 		 * issue a sync to be sure that everyone is out of probe
12837 		 * context before we start blowing away ECBs.
12838 		 */
12839 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
12840 		dtrace_sync();
12841 	}
12842 
12843 	/*
12844 	 * Release the credential hold we took in dtrace_state_create().
12845 	 */
12846 	if (state->dts_cred.dcr_cred != NULL)
12847 		crfree(state->dts_cred.dcr_cred);
12848 
12849 	/*
12850 	 * Now we can safely disable and destroy any enabled probes.  Because
12851 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
12852 	 * (especially if they're all enabled), we take two passes through the
12853 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
12854 	 * in the second we disable whatever is left over.
12855 	 */
12856 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
12857 		for (i = 0; i < state->dts_necbs; i++) {
12858 			if ((ecb = state->dts_ecbs[i]) == NULL)
12859 				continue;
12860 
12861 			if (match && ecb->dte_probe != NULL) {
12862 				dtrace_probe_t *probe = ecb->dte_probe;
12863 				dtrace_provider_t *prov = probe->dtpr_provider;
12864 
12865 				if (!(prov->dtpv_priv.dtpp_flags & match))
12866 					continue;
12867 			}
12868 
12869 			dtrace_ecb_disable(ecb);
12870 			dtrace_ecb_destroy(ecb);
12871 		}
12872 
12873 		if (!match)
12874 			break;
12875 	}
12876 
12877 	/*
12878 	 * Before we free the buffers, perform one more sync to assure that
12879 	 * every CPU is out of probe context.
12880 	 */
12881 	dtrace_sync();
12882 
12883 	dtrace_buffer_free(state->dts_buffer);
12884 	dtrace_buffer_free(state->dts_aggbuffer);
12885 
12886 	for (i = 0; i < nspec; i++)
12887 		dtrace_buffer_free(spec[i].dtsp_buffer);
12888 
12889 	if (state->dts_cleaner != CYCLIC_NONE)
12890 		cyclic_remove(state->dts_cleaner);
12891 
12892 	if (state->dts_deadman != CYCLIC_NONE)
12893 		cyclic_remove(state->dts_deadman);
12894 
12895 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
12896 	dtrace_vstate_fini(vstate);
12897 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
12898 
12899 	if (state->dts_aggregations != NULL) {
12900 #ifdef DEBUG
12901 		for (i = 0; i < state->dts_naggregations; i++)
12902 			ASSERT(state->dts_aggregations[i] == NULL);
12903 #endif
12904 		ASSERT(state->dts_naggregations > 0);
12905 		kmem_free(state->dts_aggregations,
12906 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
12907 	}
12908 
12909 	kmem_free(state->dts_buffer, bufsize);
12910 	kmem_free(state->dts_aggbuffer, bufsize);
12911 
12912 	for (i = 0; i < nspec; i++)
12913 		kmem_free(spec[i].dtsp_buffer, bufsize);
12914 
12915 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12916 
12917 	dtrace_format_destroy(state);
12918 
12919 	vmem_destroy(state->dts_aggid_arena);
12920 	ddi_soft_state_free(dtrace_softstate, minor);
12921 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12922 }
12923 
12924 /*
12925  * DTrace Anonymous Enabling Functions
12926  */
12927 static dtrace_state_t *
12928 dtrace_anon_grab(void)
12929 {
12930 	dtrace_state_t *state;
12931 
12932 	ASSERT(MUTEX_HELD(&dtrace_lock));
12933 
12934 	if ((state = dtrace_anon.dta_state) == NULL) {
12935 		ASSERT(dtrace_anon.dta_enabling == NULL);
12936 		return (NULL);
12937 	}
12938 
12939 	ASSERT(dtrace_anon.dta_enabling != NULL);
12940 	ASSERT(dtrace_retained != NULL);
12941 
12942 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
12943 	dtrace_anon.dta_enabling = NULL;
12944 	dtrace_anon.dta_state = NULL;
12945 
12946 	return (state);
12947 }
12948 
12949 static void
12950 dtrace_anon_property(void)
12951 {
12952 	int i, rv;
12953 	dtrace_state_t *state;
12954 	dof_hdr_t *dof;
12955 	char c[32];		/* enough for "dof-data-" + digits */
12956 
12957 	ASSERT(MUTEX_HELD(&dtrace_lock));
12958 	ASSERT(MUTEX_HELD(&cpu_lock));
12959 
12960 	for (i = 0; ; i++) {
12961 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
12962 
12963 		dtrace_err_verbose = 1;
12964 
12965 		if ((dof = dtrace_dof_property(c)) == NULL) {
12966 			dtrace_err_verbose = 0;
12967 			break;
12968 		}
12969 
12970 		/*
12971 		 * We want to create anonymous state, so we need to transition
12972 		 * the kernel debugger to indicate that DTrace is active.  If
12973 		 * this fails (e.g. because the debugger has modified text in
12974 		 * some way), we won't continue with the processing.
12975 		 */
12976 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
12977 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
12978 			    "enabling ignored.");
12979 			dtrace_dof_destroy(dof);
12980 			break;
12981 		}
12982 
12983 		/*
12984 		 * If we haven't allocated an anonymous state, we'll do so now.
12985 		 */
12986 		if ((state = dtrace_anon.dta_state) == NULL) {
12987 			state = dtrace_state_create(NULL, NULL);
12988 			dtrace_anon.dta_state = state;
12989 
12990 			if (state == NULL) {
12991 				/*
12992 				 * This basically shouldn't happen:  the only
12993 				 * failure mode from dtrace_state_create() is a
12994 				 * failure of ddi_soft_state_zalloc() that
12995 				 * itself should never happen.  Still, the
12996 				 * interface allows for a failure mode, and
12997 				 * we want to fail as gracefully as possible:
12998 				 * we'll emit an error message and cease
12999 				 * processing anonymous state in this case.
13000 				 */
13001 				cmn_err(CE_WARN, "failed to create "
13002 				    "anonymous state");
13003 				dtrace_dof_destroy(dof);
13004 				break;
13005 			}
13006 		}
13007 
13008 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13009 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13010 
13011 		if (rv == 0)
13012 			rv = dtrace_dof_options(dof, state);
13013 
13014 		dtrace_err_verbose = 0;
13015 		dtrace_dof_destroy(dof);
13016 
13017 		if (rv != 0) {
13018 			/*
13019 			 * This is malformed DOF; chuck any anonymous state
13020 			 * that we created.
13021 			 */
13022 			ASSERT(dtrace_anon.dta_enabling == NULL);
13023 			dtrace_state_destroy(state);
13024 			dtrace_anon.dta_state = NULL;
13025 			break;
13026 		}
13027 
13028 		ASSERT(dtrace_anon.dta_enabling != NULL);
13029 	}
13030 
13031 	if (dtrace_anon.dta_enabling != NULL) {
13032 		int rval;
13033 
13034 		/*
13035 		 * dtrace_enabling_retain() can only fail because we are
13036 		 * trying to retain more enablings than are allowed -- but
13037 		 * we only have one anonymous enabling, and we are guaranteed
13038 		 * to be allowed at least one retained enabling; we assert
13039 		 * that dtrace_enabling_retain() returns success.
13040 		 */
13041 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13042 		ASSERT(rval == 0);
13043 
13044 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13045 	}
13046 }
13047 
13048 /*
13049  * DTrace Helper Functions
13050  */
13051 static void
13052 dtrace_helper_trace(dtrace_helper_action_t *helper,
13053     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13054 {
13055 	uint32_t size, next, nnext, i;
13056 	dtrace_helptrace_t *ent;
13057 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13058 
13059 	if (!dtrace_helptrace_enabled)
13060 		return;
13061 
13062 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13063 
13064 	/*
13065 	 * What would a tracing framework be without its own tracing
13066 	 * framework?  (Well, a hell of a lot simpler, for starters...)
13067 	 */
13068 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13069 	    sizeof (uint64_t) - sizeof (uint64_t);
13070 
13071 	/*
13072 	 * Iterate until we can allocate a slot in the trace buffer.
13073 	 */
13074 	do {
13075 		next = dtrace_helptrace_next;
13076 
13077 		if (next + size < dtrace_helptrace_bufsize) {
13078 			nnext = next + size;
13079 		} else {
13080 			nnext = size;
13081 		}
13082 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13083 
13084 	/*
13085 	 * We have our slot; fill it in.
13086 	 */
13087 	if (nnext == size)
13088 		next = 0;
13089 
13090 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13091 	ent->dtht_helper = helper;
13092 	ent->dtht_where = where;
13093 	ent->dtht_nlocals = vstate->dtvs_nlocals;
13094 
13095 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13096 	    mstate->dtms_fltoffs : -1;
13097 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13098 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13099 
13100 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13101 		dtrace_statvar_t *svar;
13102 
13103 		if ((svar = vstate->dtvs_locals[i]) == NULL)
13104 			continue;
13105 
13106 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13107 		ent->dtht_locals[i] =
13108 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13109 	}
13110 }
13111 
13112 static uint64_t
13113 dtrace_helper(int which, dtrace_mstate_t *mstate,
13114     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13115 {
13116 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13117 	uint64_t sarg0 = mstate->dtms_arg[0];
13118 	uint64_t sarg1 = mstate->dtms_arg[1];
13119 	uint64_t rval;
13120 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13121 	dtrace_helper_action_t *helper;
13122 	dtrace_vstate_t *vstate;
13123 	dtrace_difo_t *pred;
13124 	int i, trace = dtrace_helptrace_enabled;
13125 
13126 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13127 
13128 	if (helpers == NULL)
13129 		return (0);
13130 
13131 	if ((helper = helpers->dthps_actions[which]) == NULL)
13132 		return (0);
13133 
13134 	vstate = &helpers->dthps_vstate;
13135 	mstate->dtms_arg[0] = arg0;
13136 	mstate->dtms_arg[1] = arg1;
13137 
13138 	/*
13139 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13140 	 * we'll call the corresponding actions.  Note that the below calls
13141 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13142 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13143 	 * the stored DIF offset with its own (which is the desired behavior).
13144 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13145 	 * from machine state; this is okay, too.
13146 	 */
13147 	for (; helper != NULL; helper = helper->dtha_next) {
13148 		if ((pred = helper->dtha_predicate) != NULL) {
13149 			if (trace)
13150 				dtrace_helper_trace(helper, mstate, vstate, 0);
13151 
13152 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13153 				goto next;
13154 
13155 			if (*flags & CPU_DTRACE_FAULT)
13156 				goto err;
13157 		}
13158 
13159 		for (i = 0; i < helper->dtha_nactions; i++) {
13160 			if (trace)
13161 				dtrace_helper_trace(helper,
13162 				    mstate, vstate, i + 1);
13163 
13164 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13165 			    mstate, vstate, state);
13166 
13167 			if (*flags & CPU_DTRACE_FAULT)
13168 				goto err;
13169 		}
13170 
13171 next:
13172 		if (trace)
13173 			dtrace_helper_trace(helper, mstate, vstate,
13174 			    DTRACE_HELPTRACE_NEXT);
13175 	}
13176 
13177 	if (trace)
13178 		dtrace_helper_trace(helper, mstate, vstate,
13179 		    DTRACE_HELPTRACE_DONE);
13180 
13181 	/*
13182 	 * Restore the arg0 that we saved upon entry.
13183 	 */
13184 	mstate->dtms_arg[0] = sarg0;
13185 	mstate->dtms_arg[1] = sarg1;
13186 
13187 	return (rval);
13188 
13189 err:
13190 	if (trace)
13191 		dtrace_helper_trace(helper, mstate, vstate,
13192 		    DTRACE_HELPTRACE_ERR);
13193 
13194 	/*
13195 	 * Restore the arg0 that we saved upon entry.
13196 	 */
13197 	mstate->dtms_arg[0] = sarg0;
13198 	mstate->dtms_arg[1] = sarg1;
13199 
13200 	return (NULL);
13201 }
13202 
13203 static void
13204 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13205     dtrace_vstate_t *vstate)
13206 {
13207 	int i;
13208 
13209 	if (helper->dtha_predicate != NULL)
13210 		dtrace_difo_release(helper->dtha_predicate, vstate);
13211 
13212 	for (i = 0; i < helper->dtha_nactions; i++) {
13213 		ASSERT(helper->dtha_actions[i] != NULL);
13214 		dtrace_difo_release(helper->dtha_actions[i], vstate);
13215 	}
13216 
13217 	kmem_free(helper->dtha_actions,
13218 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13219 	kmem_free(helper, sizeof (dtrace_helper_action_t));
13220 }
13221 
13222 static int
13223 dtrace_helper_destroygen(int gen)
13224 {
13225 	proc_t *p = curproc;
13226 	dtrace_helpers_t *help = p->p_dtrace_helpers;
13227 	dtrace_vstate_t *vstate;
13228 	int i;
13229 
13230 	ASSERT(MUTEX_HELD(&dtrace_lock));
13231 
13232 	if (help == NULL || gen > help->dthps_generation)
13233 		return (EINVAL);
13234 
13235 	vstate = &help->dthps_vstate;
13236 
13237 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13238 		dtrace_helper_action_t *last = NULL, *h, *next;
13239 
13240 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13241 			next = h->dtha_next;
13242 
13243 			if (h->dtha_generation == gen) {
13244 				if (last != NULL) {
13245 					last->dtha_next = next;
13246 				} else {
13247 					help->dthps_actions[i] = next;
13248 				}
13249 
13250 				dtrace_helper_action_destroy(h, vstate);
13251 			} else {
13252 				last = h;
13253 			}
13254 		}
13255 	}
13256 
13257 	/*
13258 	 * Interate until we've cleared out all helper providers with the
13259 	 * given generation number.
13260 	 */
13261 	for (;;) {
13262 		dtrace_helper_provider_t *prov;
13263 
13264 		/*
13265 		 * Look for a helper provider with the right generation. We
13266 		 * have to start back at the beginning of the list each time
13267 		 * because we drop dtrace_lock. It's unlikely that we'll make
13268 		 * more than two passes.
13269 		 */
13270 		for (i = 0; i < help->dthps_nprovs; i++) {
13271 			prov = help->dthps_provs[i];
13272 
13273 			if (prov->dthp_generation == gen)
13274 				break;
13275 		}
13276 
13277 		/*
13278 		 * If there were no matches, we're done.
13279 		 */
13280 		if (i == help->dthps_nprovs)
13281 			break;
13282 
13283 		/*
13284 		 * Move the last helper provider into this slot.
13285 		 */
13286 		help->dthps_nprovs--;
13287 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13288 		help->dthps_provs[help->dthps_nprovs] = NULL;
13289 
13290 		mutex_exit(&dtrace_lock);
13291 
13292 		/*
13293 		 * If we have a meta provider, remove this helper provider.
13294 		 */
13295 		mutex_enter(&dtrace_meta_lock);
13296 		if (dtrace_meta_pid != NULL) {
13297 			ASSERT(dtrace_deferred_pid == NULL);
13298 			dtrace_helper_provider_remove(&prov->dthp_prov,
13299 			    p->p_pid);
13300 		}
13301 		mutex_exit(&dtrace_meta_lock);
13302 
13303 		dtrace_helper_provider_destroy(prov);
13304 
13305 		mutex_enter(&dtrace_lock);
13306 	}
13307 
13308 	return (0);
13309 }
13310 
13311 static int
13312 dtrace_helper_validate(dtrace_helper_action_t *helper)
13313 {
13314 	int err = 0, i;
13315 	dtrace_difo_t *dp;
13316 
13317 	if ((dp = helper->dtha_predicate) != NULL)
13318 		err += dtrace_difo_validate_helper(dp);
13319 
13320 	for (i = 0; i < helper->dtha_nactions; i++)
13321 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13322 
13323 	return (err == 0);
13324 }
13325 
13326 static int
13327 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
13328 {
13329 	dtrace_helpers_t *help;
13330 	dtrace_helper_action_t *helper, *last;
13331 	dtrace_actdesc_t *act;
13332 	dtrace_vstate_t *vstate;
13333 	dtrace_predicate_t *pred;
13334 	int count = 0, nactions = 0, i;
13335 
13336 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13337 		return (EINVAL);
13338 
13339 	help = curproc->p_dtrace_helpers;
13340 	last = help->dthps_actions[which];
13341 	vstate = &help->dthps_vstate;
13342 
13343 	for (count = 0; last != NULL; last = last->dtha_next) {
13344 		count++;
13345 		if (last->dtha_next == NULL)
13346 			break;
13347 	}
13348 
13349 	/*
13350 	 * If we already have dtrace_helper_actions_max helper actions for this
13351 	 * helper action type, we'll refuse to add a new one.
13352 	 */
13353 	if (count >= dtrace_helper_actions_max)
13354 		return (ENOSPC);
13355 
13356 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13357 	helper->dtha_generation = help->dthps_generation;
13358 
13359 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
13360 		ASSERT(pred->dtp_difo != NULL);
13361 		dtrace_difo_hold(pred->dtp_difo);
13362 		helper->dtha_predicate = pred->dtp_difo;
13363 	}
13364 
13365 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
13366 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
13367 			goto err;
13368 
13369 		if (act->dtad_difo == NULL)
13370 			goto err;
13371 
13372 		nactions++;
13373 	}
13374 
13375 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
13376 	    (helper->dtha_nactions = nactions), KM_SLEEP);
13377 
13378 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
13379 		dtrace_difo_hold(act->dtad_difo);
13380 		helper->dtha_actions[i++] = act->dtad_difo;
13381 	}
13382 
13383 	if (!dtrace_helper_validate(helper))
13384 		goto err;
13385 
13386 	if (last == NULL) {
13387 		help->dthps_actions[which] = helper;
13388 	} else {
13389 		last->dtha_next = helper;
13390 	}
13391 
13392 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
13393 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
13394 		dtrace_helptrace_next = 0;
13395 	}
13396 
13397 	return (0);
13398 err:
13399 	dtrace_helper_action_destroy(helper, vstate);
13400 	return (EINVAL);
13401 }
13402 
13403 static void
13404 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
13405     dof_helper_t *dofhp)
13406 {
13407 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
13408 
13409 	mutex_enter(&dtrace_meta_lock);
13410 	mutex_enter(&dtrace_lock);
13411 
13412 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
13413 		/*
13414 		 * If the dtrace module is loaded but not attached, or if
13415 		 * there aren't isn't a meta provider registered to deal with
13416 		 * these provider descriptions, we need to postpone creating
13417 		 * the actual providers until later.
13418 		 */
13419 
13420 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
13421 		    dtrace_deferred_pid != help) {
13422 			help->dthps_deferred = 1;
13423 			help->dthps_pid = p->p_pid;
13424 			help->dthps_next = dtrace_deferred_pid;
13425 			help->dthps_prev = NULL;
13426 			if (dtrace_deferred_pid != NULL)
13427 				dtrace_deferred_pid->dthps_prev = help;
13428 			dtrace_deferred_pid = help;
13429 		}
13430 
13431 		mutex_exit(&dtrace_lock);
13432 
13433 	} else if (dofhp != NULL) {
13434 		/*
13435 		 * If the dtrace module is loaded and we have a particular
13436 		 * helper provider description, pass that off to the
13437 		 * meta provider.
13438 		 */
13439 
13440 		mutex_exit(&dtrace_lock);
13441 
13442 		dtrace_helper_provide(dofhp, p->p_pid);
13443 
13444 	} else {
13445 		/*
13446 		 * Otherwise, just pass all the helper provider descriptions
13447 		 * off to the meta provider.
13448 		 */
13449 
13450 		int i;
13451 		mutex_exit(&dtrace_lock);
13452 
13453 		for (i = 0; i < help->dthps_nprovs; i++) {
13454 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
13455 			    p->p_pid);
13456 		}
13457 	}
13458 
13459 	mutex_exit(&dtrace_meta_lock);
13460 }
13461 
13462 static int
13463 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
13464 {
13465 	dtrace_helpers_t *help;
13466 	dtrace_helper_provider_t *hprov, **tmp_provs;
13467 	uint_t tmp_maxprovs, i;
13468 
13469 	ASSERT(MUTEX_HELD(&dtrace_lock));
13470 
13471 	help = curproc->p_dtrace_helpers;
13472 	ASSERT(help != NULL);
13473 
13474 	/*
13475 	 * If we already have dtrace_helper_providers_max helper providers,
13476 	 * we're refuse to add a new one.
13477 	 */
13478 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
13479 		return (ENOSPC);
13480 
13481 	/*
13482 	 * Check to make sure this isn't a duplicate.
13483 	 */
13484 	for (i = 0; i < help->dthps_nprovs; i++) {
13485 		if (dofhp->dofhp_addr ==
13486 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
13487 			return (EALREADY);
13488 	}
13489 
13490 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
13491 	hprov->dthp_prov = *dofhp;
13492 	hprov->dthp_ref = 1;
13493 	hprov->dthp_generation = gen;
13494 
13495 	/*
13496 	 * Allocate a bigger table for helper providers if it's already full.
13497 	 */
13498 	if (help->dthps_maxprovs == help->dthps_nprovs) {
13499 		tmp_maxprovs = help->dthps_maxprovs;
13500 		tmp_provs = help->dthps_provs;
13501 
13502 		if (help->dthps_maxprovs == 0)
13503 			help->dthps_maxprovs = 2;
13504 		else
13505 			help->dthps_maxprovs *= 2;
13506 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
13507 			help->dthps_maxprovs = dtrace_helper_providers_max;
13508 
13509 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
13510 
13511 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
13512 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13513 
13514 		if (tmp_provs != NULL) {
13515 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
13516 			    sizeof (dtrace_helper_provider_t *));
13517 			kmem_free(tmp_provs, tmp_maxprovs *
13518 			    sizeof (dtrace_helper_provider_t *));
13519 		}
13520 	}
13521 
13522 	help->dthps_provs[help->dthps_nprovs] = hprov;
13523 	help->dthps_nprovs++;
13524 
13525 	return (0);
13526 }
13527 
13528 static void
13529 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
13530 {
13531 	mutex_enter(&dtrace_lock);
13532 
13533 	if (--hprov->dthp_ref == 0) {
13534 		dof_hdr_t *dof;
13535 		mutex_exit(&dtrace_lock);
13536 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
13537 		dtrace_dof_destroy(dof);
13538 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
13539 	} else {
13540 		mutex_exit(&dtrace_lock);
13541 	}
13542 }
13543 
13544 static int
13545 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
13546 {
13547 	uintptr_t daddr = (uintptr_t)dof;
13548 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
13549 	dof_provider_t *provider;
13550 	dof_probe_t *probe;
13551 	uint8_t *arg;
13552 	char *strtab, *typestr;
13553 	dof_stridx_t typeidx;
13554 	size_t typesz;
13555 	uint_t nprobes, j, k;
13556 
13557 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
13558 
13559 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
13560 		dtrace_dof_error(dof, "misaligned section offset");
13561 		return (-1);
13562 	}
13563 
13564 	/*
13565 	 * The section needs to be large enough to contain the DOF provider
13566 	 * structure appropriate for the given version.
13567 	 */
13568 	if (sec->dofs_size <
13569 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
13570 	    offsetof(dof_provider_t, dofpv_prenoffs) :
13571 	    sizeof (dof_provider_t))) {
13572 		dtrace_dof_error(dof, "provider section too small");
13573 		return (-1);
13574 	}
13575 
13576 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
13577 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
13578 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
13579 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
13580 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
13581 
13582 	if (str_sec == NULL || prb_sec == NULL ||
13583 	    arg_sec == NULL || off_sec == NULL)
13584 		return (-1);
13585 
13586 	enoff_sec = NULL;
13587 
13588 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13589 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
13590 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
13591 	    provider->dofpv_prenoffs)) == NULL)
13592 		return (-1);
13593 
13594 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
13595 
13596 	if (provider->dofpv_name >= str_sec->dofs_size ||
13597 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
13598 		dtrace_dof_error(dof, "invalid provider name");
13599 		return (-1);
13600 	}
13601 
13602 	if (prb_sec->dofs_entsize == 0 ||
13603 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
13604 		dtrace_dof_error(dof, "invalid entry size");
13605 		return (-1);
13606 	}
13607 
13608 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
13609 		dtrace_dof_error(dof, "misaligned entry size");
13610 		return (-1);
13611 	}
13612 
13613 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
13614 		dtrace_dof_error(dof, "invalid entry size");
13615 		return (-1);
13616 	}
13617 
13618 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
13619 		dtrace_dof_error(dof, "misaligned section offset");
13620 		return (-1);
13621 	}
13622 
13623 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
13624 		dtrace_dof_error(dof, "invalid entry size");
13625 		return (-1);
13626 	}
13627 
13628 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
13629 
13630 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
13631 
13632 	/*
13633 	 * Take a pass through the probes to check for errors.
13634 	 */
13635 	for (j = 0; j < nprobes; j++) {
13636 		probe = (dof_probe_t *)(uintptr_t)(daddr +
13637 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
13638 
13639 		if (probe->dofpr_func >= str_sec->dofs_size) {
13640 			dtrace_dof_error(dof, "invalid function name");
13641 			return (-1);
13642 		}
13643 
13644 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
13645 			dtrace_dof_error(dof, "function name too long");
13646 			return (-1);
13647 		}
13648 
13649 		if (probe->dofpr_name >= str_sec->dofs_size ||
13650 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
13651 			dtrace_dof_error(dof, "invalid probe name");
13652 			return (-1);
13653 		}
13654 
13655 		/*
13656 		 * The offset count must not wrap the index, and the offsets
13657 		 * must also not overflow the section's data.
13658 		 */
13659 		if (probe->dofpr_offidx + probe->dofpr_noffs <
13660 		    probe->dofpr_offidx ||
13661 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
13662 		    off_sec->dofs_entsize > off_sec->dofs_size) {
13663 			dtrace_dof_error(dof, "invalid probe offset");
13664 			return (-1);
13665 		}
13666 
13667 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
13668 			/*
13669 			 * If there's no is-enabled offset section, make sure
13670 			 * there aren't any is-enabled offsets. Otherwise
13671 			 * perform the same checks as for probe offsets
13672 			 * (immediately above).
13673 			 */
13674 			if (enoff_sec == NULL) {
13675 				if (probe->dofpr_enoffidx != 0 ||
13676 				    probe->dofpr_nenoffs != 0) {
13677 					dtrace_dof_error(dof, "is-enabled "
13678 					    "offsets with null section");
13679 					return (-1);
13680 				}
13681 			} else if (probe->dofpr_enoffidx +
13682 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
13683 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
13684 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
13685 				dtrace_dof_error(dof, "invalid is-enabled "
13686 				    "offset");
13687 				return (-1);
13688 			}
13689 
13690 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
13691 				dtrace_dof_error(dof, "zero probe and "
13692 				    "is-enabled offsets");
13693 				return (-1);
13694 			}
13695 		} else if (probe->dofpr_noffs == 0) {
13696 			dtrace_dof_error(dof, "zero probe offsets");
13697 			return (-1);
13698 		}
13699 
13700 		if (probe->dofpr_argidx + probe->dofpr_xargc <
13701 		    probe->dofpr_argidx ||
13702 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
13703 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
13704 			dtrace_dof_error(dof, "invalid args");
13705 			return (-1);
13706 		}
13707 
13708 		typeidx = probe->dofpr_nargv;
13709 		typestr = strtab + probe->dofpr_nargv;
13710 		for (k = 0; k < probe->dofpr_nargc; k++) {
13711 			if (typeidx >= str_sec->dofs_size) {
13712 				dtrace_dof_error(dof, "bad "
13713 				    "native argument type");
13714 				return (-1);
13715 			}
13716 
13717 			typesz = strlen(typestr) + 1;
13718 			if (typesz > DTRACE_ARGTYPELEN) {
13719 				dtrace_dof_error(dof, "native "
13720 				    "argument type too long");
13721 				return (-1);
13722 			}
13723 			typeidx += typesz;
13724 			typestr += typesz;
13725 		}
13726 
13727 		typeidx = probe->dofpr_xargv;
13728 		typestr = strtab + probe->dofpr_xargv;
13729 		for (k = 0; k < probe->dofpr_xargc; k++) {
13730 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
13731 				dtrace_dof_error(dof, "bad "
13732 				    "native argument index");
13733 				return (-1);
13734 			}
13735 
13736 			if (typeidx >= str_sec->dofs_size) {
13737 				dtrace_dof_error(dof, "bad "
13738 				    "translated argument type");
13739 				return (-1);
13740 			}
13741 
13742 			typesz = strlen(typestr) + 1;
13743 			if (typesz > DTRACE_ARGTYPELEN) {
13744 				dtrace_dof_error(dof, "translated argument "
13745 				    "type too long");
13746 				return (-1);
13747 			}
13748 
13749 			typeidx += typesz;
13750 			typestr += typesz;
13751 		}
13752 	}
13753 
13754 	return (0);
13755 }
13756 
13757 static int
13758 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
13759 {
13760 	dtrace_helpers_t *help;
13761 	dtrace_vstate_t *vstate;
13762 	dtrace_enabling_t *enab = NULL;
13763 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
13764 	uintptr_t daddr = (uintptr_t)dof;
13765 
13766 	ASSERT(MUTEX_HELD(&dtrace_lock));
13767 
13768 	if ((help = curproc->p_dtrace_helpers) == NULL)
13769 		help = dtrace_helpers_create(curproc);
13770 
13771 	vstate = &help->dthps_vstate;
13772 
13773 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
13774 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
13775 		dtrace_dof_destroy(dof);
13776 		return (rv);
13777 	}
13778 
13779 	/*
13780 	 * Look for helper providers and validate their descriptions.
13781 	 */
13782 	if (dhp != NULL) {
13783 		for (i = 0; i < dof->dofh_secnum; i++) {
13784 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
13785 			    dof->dofh_secoff + i * dof->dofh_secsize);
13786 
13787 			if (sec->dofs_type != DOF_SECT_PROVIDER)
13788 				continue;
13789 
13790 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
13791 				dtrace_enabling_destroy(enab);
13792 				dtrace_dof_destroy(dof);
13793 				return (-1);
13794 			}
13795 
13796 			nprovs++;
13797 		}
13798 	}
13799 
13800 	/*
13801 	 * Now we need to walk through the ECB descriptions in the enabling.
13802 	 */
13803 	for (i = 0; i < enab->dten_ndesc; i++) {
13804 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
13805 		dtrace_probedesc_t *desc = &ep->dted_probe;
13806 
13807 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
13808 			continue;
13809 
13810 		if (strcmp(desc->dtpd_mod, "helper") != 0)
13811 			continue;
13812 
13813 		if (strcmp(desc->dtpd_func, "ustack") != 0)
13814 			continue;
13815 
13816 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
13817 		    ep)) != 0) {
13818 			/*
13819 			 * Adding this helper action failed -- we are now going
13820 			 * to rip out the entire generation and return failure.
13821 			 */
13822 			(void) dtrace_helper_destroygen(help->dthps_generation);
13823 			dtrace_enabling_destroy(enab);
13824 			dtrace_dof_destroy(dof);
13825 			return (-1);
13826 		}
13827 
13828 		nhelpers++;
13829 	}
13830 
13831 	if (nhelpers < enab->dten_ndesc)
13832 		dtrace_dof_error(dof, "unmatched helpers");
13833 
13834 	gen = help->dthps_generation++;
13835 	dtrace_enabling_destroy(enab);
13836 
13837 	if (dhp != NULL && nprovs > 0) {
13838 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
13839 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
13840 			mutex_exit(&dtrace_lock);
13841 			dtrace_helper_provider_register(curproc, help, dhp);
13842 			mutex_enter(&dtrace_lock);
13843 
13844 			destroy = 0;
13845 		}
13846 	}
13847 
13848 	if (destroy)
13849 		dtrace_dof_destroy(dof);
13850 
13851 	return (gen);
13852 }
13853 
13854 static dtrace_helpers_t *
13855 dtrace_helpers_create(proc_t *p)
13856 {
13857 	dtrace_helpers_t *help;
13858 
13859 	ASSERT(MUTEX_HELD(&dtrace_lock));
13860 	ASSERT(p->p_dtrace_helpers == NULL);
13861 
13862 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
13863 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
13864 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
13865 
13866 	p->p_dtrace_helpers = help;
13867 	dtrace_helpers++;
13868 
13869 	return (help);
13870 }
13871 
13872 static void
13873 dtrace_helpers_destroy(void)
13874 {
13875 	dtrace_helpers_t *help;
13876 	dtrace_vstate_t *vstate;
13877 	proc_t *p = curproc;
13878 	int i;
13879 
13880 	mutex_enter(&dtrace_lock);
13881 
13882 	ASSERT(p->p_dtrace_helpers != NULL);
13883 	ASSERT(dtrace_helpers > 0);
13884 
13885 	help = p->p_dtrace_helpers;
13886 	vstate = &help->dthps_vstate;
13887 
13888 	/*
13889 	 * We're now going to lose the help from this process.
13890 	 */
13891 	p->p_dtrace_helpers = NULL;
13892 	dtrace_sync();
13893 
13894 	/*
13895 	 * Destory the helper actions.
13896 	 */
13897 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13898 		dtrace_helper_action_t *h, *next;
13899 
13900 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13901 			next = h->dtha_next;
13902 			dtrace_helper_action_destroy(h, vstate);
13903 			h = next;
13904 		}
13905 	}
13906 
13907 	mutex_exit(&dtrace_lock);
13908 
13909 	/*
13910 	 * Destroy the helper providers.
13911 	 */
13912 	if (help->dthps_maxprovs > 0) {
13913 		mutex_enter(&dtrace_meta_lock);
13914 		if (dtrace_meta_pid != NULL) {
13915 			ASSERT(dtrace_deferred_pid == NULL);
13916 
13917 			for (i = 0; i < help->dthps_nprovs; i++) {
13918 				dtrace_helper_provider_remove(
13919 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
13920 			}
13921 		} else {
13922 			mutex_enter(&dtrace_lock);
13923 			ASSERT(help->dthps_deferred == 0 ||
13924 			    help->dthps_next != NULL ||
13925 			    help->dthps_prev != NULL ||
13926 			    help == dtrace_deferred_pid);
13927 
13928 			/*
13929 			 * Remove the helper from the deferred list.
13930 			 */
13931 			if (help->dthps_next != NULL)
13932 				help->dthps_next->dthps_prev = help->dthps_prev;
13933 			if (help->dthps_prev != NULL)
13934 				help->dthps_prev->dthps_next = help->dthps_next;
13935 			if (dtrace_deferred_pid == help) {
13936 				dtrace_deferred_pid = help->dthps_next;
13937 				ASSERT(help->dthps_prev == NULL);
13938 			}
13939 
13940 			mutex_exit(&dtrace_lock);
13941 		}
13942 
13943 		mutex_exit(&dtrace_meta_lock);
13944 
13945 		for (i = 0; i < help->dthps_nprovs; i++) {
13946 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
13947 		}
13948 
13949 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
13950 		    sizeof (dtrace_helper_provider_t *));
13951 	}
13952 
13953 	mutex_enter(&dtrace_lock);
13954 
13955 	dtrace_vstate_fini(&help->dthps_vstate);
13956 	kmem_free(help->dthps_actions,
13957 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
13958 	kmem_free(help, sizeof (dtrace_helpers_t));
13959 
13960 	--dtrace_helpers;
13961 	mutex_exit(&dtrace_lock);
13962 }
13963 
13964 static void
13965 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
13966 {
13967 	dtrace_helpers_t *help, *newhelp;
13968 	dtrace_helper_action_t *helper, *new, *last;
13969 	dtrace_difo_t *dp;
13970 	dtrace_vstate_t *vstate;
13971 	int i, j, sz, hasprovs = 0;
13972 
13973 	mutex_enter(&dtrace_lock);
13974 	ASSERT(from->p_dtrace_helpers != NULL);
13975 	ASSERT(dtrace_helpers > 0);
13976 
13977 	help = from->p_dtrace_helpers;
13978 	newhelp = dtrace_helpers_create(to);
13979 	ASSERT(to->p_dtrace_helpers != NULL);
13980 
13981 	newhelp->dthps_generation = help->dthps_generation;
13982 	vstate = &newhelp->dthps_vstate;
13983 
13984 	/*
13985 	 * Duplicate the helper actions.
13986 	 */
13987 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13988 		if ((helper = help->dthps_actions[i]) == NULL)
13989 			continue;
13990 
13991 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
13992 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
13993 			    KM_SLEEP);
13994 			new->dtha_generation = helper->dtha_generation;
13995 
13996 			if ((dp = helper->dtha_predicate) != NULL) {
13997 				dp = dtrace_difo_duplicate(dp, vstate);
13998 				new->dtha_predicate = dp;
13999 			}
14000 
14001 			new->dtha_nactions = helper->dtha_nactions;
14002 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14003 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14004 
14005 			for (j = 0; j < new->dtha_nactions; j++) {
14006 				dtrace_difo_t *dp = helper->dtha_actions[j];
14007 
14008 				ASSERT(dp != NULL);
14009 				dp = dtrace_difo_duplicate(dp, vstate);
14010 				new->dtha_actions[j] = dp;
14011 			}
14012 
14013 			if (last != NULL) {
14014 				last->dtha_next = new;
14015 			} else {
14016 				newhelp->dthps_actions[i] = new;
14017 			}
14018 
14019 			last = new;
14020 		}
14021 	}
14022 
14023 	/*
14024 	 * Duplicate the helper providers and register them with the
14025 	 * DTrace framework.
14026 	 */
14027 	if (help->dthps_nprovs > 0) {
14028 		newhelp->dthps_nprovs = help->dthps_nprovs;
14029 		newhelp->dthps_maxprovs = help->dthps_nprovs;
14030 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14031 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14032 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14033 			newhelp->dthps_provs[i] = help->dthps_provs[i];
14034 			newhelp->dthps_provs[i]->dthp_ref++;
14035 		}
14036 
14037 		hasprovs = 1;
14038 	}
14039 
14040 	mutex_exit(&dtrace_lock);
14041 
14042 	if (hasprovs)
14043 		dtrace_helper_provider_register(to, newhelp, NULL);
14044 }
14045 
14046 /*
14047  * DTrace Hook Functions
14048  */
14049 static void
14050 dtrace_module_loaded(struct modctl *ctl)
14051 {
14052 	dtrace_provider_t *prv;
14053 
14054 	mutex_enter(&dtrace_provider_lock);
14055 	mutex_enter(&mod_lock);
14056 
14057 	ASSERT(ctl->mod_busy);
14058 
14059 	/*
14060 	 * We're going to call each providers per-module provide operation
14061 	 * specifying only this module.
14062 	 */
14063 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14064 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14065 
14066 	mutex_exit(&mod_lock);
14067 	mutex_exit(&dtrace_provider_lock);
14068 
14069 	/*
14070 	 * If we have any retained enablings, we need to match against them.
14071 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14072 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14073 	 * module.  (In particular, this happens when loading scheduling
14074 	 * classes.)  So if we have any retained enablings, we need to dispatch
14075 	 * our task queue to do the match for us.
14076 	 */
14077 	mutex_enter(&dtrace_lock);
14078 
14079 	if (dtrace_retained == NULL) {
14080 		mutex_exit(&dtrace_lock);
14081 		return;
14082 	}
14083 
14084 	(void) taskq_dispatch(dtrace_taskq,
14085 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14086 
14087 	mutex_exit(&dtrace_lock);
14088 
14089 	/*
14090 	 * And now, for a little heuristic sleaze:  in general, we want to
14091 	 * match modules as soon as they load.  However, we cannot guarantee
14092 	 * this, because it would lead us to the lock ordering violation
14093 	 * outlined above.  The common case, of course, is that cpu_lock is
14094 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14095 	 * long enough for the task queue to do its work.  If it's not, it's
14096 	 * not a serious problem -- it just means that the module that we
14097 	 * just loaded may not be immediately instrumentable.
14098 	 */
14099 	delay(1);
14100 }
14101 
14102 static void
14103 dtrace_module_unloaded(struct modctl *ctl)
14104 {
14105 	dtrace_probe_t template, *probe, *first, *next;
14106 	dtrace_provider_t *prov;
14107 
14108 	template.dtpr_mod = ctl->mod_modname;
14109 
14110 	mutex_enter(&dtrace_provider_lock);
14111 	mutex_enter(&mod_lock);
14112 	mutex_enter(&dtrace_lock);
14113 
14114 	if (dtrace_bymod == NULL) {
14115 		/*
14116 		 * The DTrace module is loaded (obviously) but not attached;
14117 		 * we don't have any work to do.
14118 		 */
14119 		mutex_exit(&dtrace_provider_lock);
14120 		mutex_exit(&mod_lock);
14121 		mutex_exit(&dtrace_lock);
14122 		return;
14123 	}
14124 
14125 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14126 	    probe != NULL; probe = probe->dtpr_nextmod) {
14127 		if (probe->dtpr_ecb != NULL) {
14128 			mutex_exit(&dtrace_provider_lock);
14129 			mutex_exit(&mod_lock);
14130 			mutex_exit(&dtrace_lock);
14131 
14132 			/*
14133 			 * This shouldn't _actually_ be possible -- we're
14134 			 * unloading a module that has an enabled probe in it.
14135 			 * (It's normally up to the provider to make sure that
14136 			 * this can't happen.)  However, because dtps_enable()
14137 			 * doesn't have a failure mode, there can be an
14138 			 * enable/unload race.  Upshot:  we don't want to
14139 			 * assert, but we're not going to disable the
14140 			 * probe, either.
14141 			 */
14142 			if (dtrace_err_verbose) {
14143 				cmn_err(CE_WARN, "unloaded module '%s' had "
14144 				    "enabled probes", ctl->mod_modname);
14145 			}
14146 
14147 			return;
14148 		}
14149 	}
14150 
14151 	probe = first;
14152 
14153 	for (first = NULL; probe != NULL; probe = next) {
14154 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14155 
14156 		dtrace_probes[probe->dtpr_id - 1] = NULL;
14157 
14158 		next = probe->dtpr_nextmod;
14159 		dtrace_hash_remove(dtrace_bymod, probe);
14160 		dtrace_hash_remove(dtrace_byfunc, probe);
14161 		dtrace_hash_remove(dtrace_byname, probe);
14162 
14163 		if (first == NULL) {
14164 			first = probe;
14165 			probe->dtpr_nextmod = NULL;
14166 		} else {
14167 			probe->dtpr_nextmod = first;
14168 			first = probe;
14169 		}
14170 	}
14171 
14172 	/*
14173 	 * We've removed all of the module's probes from the hash chains and
14174 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14175 	 * everyone has cleared out from any probe array processing.
14176 	 */
14177 	dtrace_sync();
14178 
14179 	for (probe = first; probe != NULL; probe = first) {
14180 		first = probe->dtpr_nextmod;
14181 		prov = probe->dtpr_provider;
14182 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14183 		    probe->dtpr_arg);
14184 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14185 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14186 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14187 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14188 		kmem_free(probe, sizeof (dtrace_probe_t));
14189 	}
14190 
14191 	mutex_exit(&dtrace_lock);
14192 	mutex_exit(&mod_lock);
14193 	mutex_exit(&dtrace_provider_lock);
14194 }
14195 
14196 void
14197 dtrace_suspend(void)
14198 {
14199 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14200 }
14201 
14202 void
14203 dtrace_resume(void)
14204 {
14205 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14206 }
14207 
14208 static int
14209 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14210 {
14211 	ASSERT(MUTEX_HELD(&cpu_lock));
14212 	mutex_enter(&dtrace_lock);
14213 
14214 	switch (what) {
14215 	case CPU_CONFIG: {
14216 		dtrace_state_t *state;
14217 		dtrace_optval_t *opt, rs, c;
14218 
14219 		/*
14220 		 * For now, we only allocate a new buffer for anonymous state.
14221 		 */
14222 		if ((state = dtrace_anon.dta_state) == NULL)
14223 			break;
14224 
14225 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14226 			break;
14227 
14228 		opt = state->dts_options;
14229 		c = opt[DTRACEOPT_CPU];
14230 
14231 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14232 			break;
14233 
14234 		/*
14235 		 * Regardless of what the actual policy is, we're going to
14236 		 * temporarily set our resize policy to be manual.  We're
14237 		 * also going to temporarily set our CPU option to denote
14238 		 * the newly configured CPU.
14239 		 */
14240 		rs = opt[DTRACEOPT_BUFRESIZE];
14241 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14242 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14243 
14244 		(void) dtrace_state_buffers(state);
14245 
14246 		opt[DTRACEOPT_BUFRESIZE] = rs;
14247 		opt[DTRACEOPT_CPU] = c;
14248 
14249 		break;
14250 	}
14251 
14252 	case CPU_UNCONFIG:
14253 		/*
14254 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
14255 		 * buffer will be freed when the consumer exits.)
14256 		 */
14257 		break;
14258 
14259 	default:
14260 		break;
14261 	}
14262 
14263 	mutex_exit(&dtrace_lock);
14264 	return (0);
14265 }
14266 
14267 static void
14268 dtrace_cpu_setup_initial(processorid_t cpu)
14269 {
14270 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14271 }
14272 
14273 static void
14274 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14275 {
14276 	if (dtrace_toxranges >= dtrace_toxranges_max) {
14277 		int osize, nsize;
14278 		dtrace_toxrange_t *range;
14279 
14280 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14281 
14282 		if (osize == 0) {
14283 			ASSERT(dtrace_toxrange == NULL);
14284 			ASSERT(dtrace_toxranges_max == 0);
14285 			dtrace_toxranges_max = 1;
14286 		} else {
14287 			dtrace_toxranges_max <<= 1;
14288 		}
14289 
14290 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14291 		range = kmem_zalloc(nsize, KM_SLEEP);
14292 
14293 		if (dtrace_toxrange != NULL) {
14294 			ASSERT(osize != 0);
14295 			bcopy(dtrace_toxrange, range, osize);
14296 			kmem_free(dtrace_toxrange, osize);
14297 		}
14298 
14299 		dtrace_toxrange = range;
14300 	}
14301 
14302 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
14303 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
14304 
14305 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14306 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14307 	dtrace_toxranges++;
14308 }
14309 
14310 /*
14311  * DTrace Driver Cookbook Functions
14312  */
14313 /*ARGSUSED*/
14314 static int
14315 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14316 {
14317 	dtrace_provider_id_t id;
14318 	dtrace_state_t *state = NULL;
14319 	dtrace_enabling_t *enab;
14320 
14321 	mutex_enter(&cpu_lock);
14322 	mutex_enter(&dtrace_provider_lock);
14323 	mutex_enter(&dtrace_lock);
14324 
14325 	if (ddi_soft_state_init(&dtrace_softstate,
14326 	    sizeof (dtrace_state_t), 0) != 0) {
14327 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
14328 		mutex_exit(&cpu_lock);
14329 		mutex_exit(&dtrace_provider_lock);
14330 		mutex_exit(&dtrace_lock);
14331 		return (DDI_FAILURE);
14332 	}
14333 
14334 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
14335 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
14336 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
14337 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
14338 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
14339 		ddi_remove_minor_node(devi, NULL);
14340 		ddi_soft_state_fini(&dtrace_softstate);
14341 		mutex_exit(&cpu_lock);
14342 		mutex_exit(&dtrace_provider_lock);
14343 		mutex_exit(&dtrace_lock);
14344 		return (DDI_FAILURE);
14345 	}
14346 
14347 	ddi_report_dev(devi);
14348 	dtrace_devi = devi;
14349 
14350 	dtrace_modload = dtrace_module_loaded;
14351 	dtrace_modunload = dtrace_module_unloaded;
14352 	dtrace_cpu_init = dtrace_cpu_setup_initial;
14353 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
14354 	dtrace_helpers_fork = dtrace_helpers_duplicate;
14355 	dtrace_cpustart_init = dtrace_suspend;
14356 	dtrace_cpustart_fini = dtrace_resume;
14357 	dtrace_debugger_init = dtrace_suspend;
14358 	dtrace_debugger_fini = dtrace_resume;
14359 
14360 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14361 
14362 	ASSERT(MUTEX_HELD(&cpu_lock));
14363 
14364 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
14365 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14366 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
14367 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
14368 	    VM_SLEEP | VMC_IDENTIFIER);
14369 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
14370 	    1, INT_MAX, 0);
14371 
14372 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
14373 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
14374 	    NULL, NULL, NULL, NULL, NULL, 0);
14375 
14376 	ASSERT(MUTEX_HELD(&cpu_lock));
14377 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
14378 	    offsetof(dtrace_probe_t, dtpr_nextmod),
14379 	    offsetof(dtrace_probe_t, dtpr_prevmod));
14380 
14381 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
14382 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
14383 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
14384 
14385 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
14386 	    offsetof(dtrace_probe_t, dtpr_nextname),
14387 	    offsetof(dtrace_probe_t, dtpr_prevname));
14388 
14389 	if (dtrace_retain_max < 1) {
14390 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
14391 		    "setting to 1", dtrace_retain_max);
14392 		dtrace_retain_max = 1;
14393 	}
14394 
14395 	/*
14396 	 * Now discover our toxic ranges.
14397 	 */
14398 	dtrace_toxic_ranges(dtrace_toxrange_add);
14399 
14400 	/*
14401 	 * Before we register ourselves as a provider to our own framework,
14402 	 * we would like to assert that dtrace_provider is NULL -- but that's
14403 	 * not true if we were loaded as a dependency of a DTrace provider.
14404 	 * Once we've registered, we can assert that dtrace_provider is our
14405 	 * pseudo provider.
14406 	 */
14407 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
14408 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
14409 
14410 	ASSERT(dtrace_provider != NULL);
14411 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
14412 
14413 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
14414 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
14415 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
14416 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
14417 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
14418 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
14419 
14420 	dtrace_anon_property();
14421 	mutex_exit(&cpu_lock);
14422 
14423 	/*
14424 	 * If DTrace helper tracing is enabled, we need to allocate the
14425 	 * trace buffer and initialize the values.
14426 	 */
14427 	if (dtrace_helptrace_enabled) {
14428 		ASSERT(dtrace_helptrace_buffer == NULL);
14429 		dtrace_helptrace_buffer =
14430 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
14431 		dtrace_helptrace_next = 0;
14432 	}
14433 
14434 	/*
14435 	 * If there are already providers, we must ask them to provide their
14436 	 * probes, and then match any anonymous enabling against them.  Note
14437 	 * that there should be no other retained enablings at this time:
14438 	 * the only retained enablings at this time should be the anonymous
14439 	 * enabling.
14440 	 */
14441 	if (dtrace_anon.dta_enabling != NULL) {
14442 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
14443 
14444 		dtrace_enabling_provide(NULL);
14445 		state = dtrace_anon.dta_state;
14446 
14447 		/*
14448 		 * We couldn't hold cpu_lock across the above call to
14449 		 * dtrace_enabling_provide(), but we must hold it to actually
14450 		 * enable the probes.  We have to drop all of our locks, pick
14451 		 * up cpu_lock, and regain our locks before matching the
14452 		 * retained anonymous enabling.
14453 		 */
14454 		mutex_exit(&dtrace_lock);
14455 		mutex_exit(&dtrace_provider_lock);
14456 
14457 		mutex_enter(&cpu_lock);
14458 		mutex_enter(&dtrace_provider_lock);
14459 		mutex_enter(&dtrace_lock);
14460 
14461 		if ((enab = dtrace_anon.dta_enabling) != NULL)
14462 			(void) dtrace_enabling_match(enab, NULL);
14463 
14464 		mutex_exit(&cpu_lock);
14465 	}
14466 
14467 	mutex_exit(&dtrace_lock);
14468 	mutex_exit(&dtrace_provider_lock);
14469 
14470 	if (state != NULL) {
14471 		/*
14472 		 * If we created any anonymous state, set it going now.
14473 		 */
14474 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
14475 	}
14476 
14477 	return (DDI_SUCCESS);
14478 }
14479 
14480 /*ARGSUSED*/
14481 static int
14482 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
14483 {
14484 	dtrace_state_t *state;
14485 	uint32_t priv;
14486 	uid_t uid;
14487 	zoneid_t zoneid;
14488 
14489 	if (getminor(*devp) == DTRACEMNRN_HELPER)
14490 		return (0);
14491 
14492 	/*
14493 	 * If this wasn't an open with the "helper" minor, then it must be
14494 	 * the "dtrace" minor.
14495 	 */
14496 	if (getminor(*devp) != DTRACEMNRN_DTRACE)
14497 		return (ENXIO);
14498 
14499 	/*
14500 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
14501 	 * caller lacks sufficient permission to do anything with DTrace.
14502 	 */
14503 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
14504 	if (priv == DTRACE_PRIV_NONE)
14505 		return (EACCES);
14506 
14507 	/*
14508 	 * Ask all providers to provide all their probes.
14509 	 */
14510 	mutex_enter(&dtrace_provider_lock);
14511 	dtrace_probe_provide(NULL, NULL);
14512 	mutex_exit(&dtrace_provider_lock);
14513 
14514 	mutex_enter(&cpu_lock);
14515 	mutex_enter(&dtrace_lock);
14516 	dtrace_opens++;
14517 	dtrace_membar_producer();
14518 
14519 	/*
14520 	 * If the kernel debugger is active (that is, if the kernel debugger
14521 	 * modified text in some way), we won't allow the open.
14522 	 */
14523 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14524 		dtrace_opens--;
14525 		mutex_exit(&cpu_lock);
14526 		mutex_exit(&dtrace_lock);
14527 		return (EBUSY);
14528 	}
14529 
14530 	state = dtrace_state_create(devp, cred_p);
14531 	mutex_exit(&cpu_lock);
14532 
14533 	if (state == NULL) {
14534 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
14535 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14536 		mutex_exit(&dtrace_lock);
14537 		return (EAGAIN);
14538 	}
14539 
14540 	mutex_exit(&dtrace_lock);
14541 
14542 	return (0);
14543 }
14544 
14545 /*ARGSUSED*/
14546 static int
14547 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
14548 {
14549 	minor_t minor = getminor(dev);
14550 	dtrace_state_t *state;
14551 
14552 	if (minor == DTRACEMNRN_HELPER)
14553 		return (0);
14554 
14555 	state = ddi_get_soft_state(dtrace_softstate, minor);
14556 
14557 	mutex_enter(&cpu_lock);
14558 	mutex_enter(&dtrace_lock);
14559 
14560 	if (state->dts_anon) {
14561 		/*
14562 		 * There is anonymous state. Destroy that first.
14563 		 */
14564 		ASSERT(dtrace_anon.dta_state == NULL);
14565 		dtrace_state_destroy(state->dts_anon);
14566 	}
14567 
14568 	dtrace_state_destroy(state);
14569 	ASSERT(dtrace_opens > 0);
14570 
14571 	/*
14572 	 * Only relinquish control of the kernel debugger interface when there
14573 	 * are no consumers and no anonymous enablings.
14574 	 */
14575 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
14576 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14577 
14578 	mutex_exit(&dtrace_lock);
14579 	mutex_exit(&cpu_lock);
14580 
14581 	return (0);
14582 }
14583 
14584 /*ARGSUSED*/
14585 static int
14586 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
14587 {
14588 	int rval;
14589 	dof_helper_t help, *dhp = NULL;
14590 
14591 	switch (cmd) {
14592 	case DTRACEHIOC_ADDDOF:
14593 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
14594 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
14595 			return (EFAULT);
14596 		}
14597 
14598 		dhp = &help;
14599 		arg = (intptr_t)help.dofhp_dof;
14600 		/*FALLTHROUGH*/
14601 
14602 	case DTRACEHIOC_ADD: {
14603 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
14604 
14605 		if (dof == NULL)
14606 			return (rval);
14607 
14608 		mutex_enter(&dtrace_lock);
14609 
14610 		/*
14611 		 * dtrace_helper_slurp() takes responsibility for the dof --
14612 		 * it may free it now or it may save it and free it later.
14613 		 */
14614 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
14615 			*rv = rval;
14616 			rval = 0;
14617 		} else {
14618 			rval = EINVAL;
14619 		}
14620 
14621 		mutex_exit(&dtrace_lock);
14622 		return (rval);
14623 	}
14624 
14625 	case DTRACEHIOC_REMOVE: {
14626 		mutex_enter(&dtrace_lock);
14627 		rval = dtrace_helper_destroygen(arg);
14628 		mutex_exit(&dtrace_lock);
14629 
14630 		return (rval);
14631 	}
14632 
14633 	default:
14634 		break;
14635 	}
14636 
14637 	return (ENOTTY);
14638 }
14639 
14640 /*ARGSUSED*/
14641 static int
14642 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
14643 {
14644 	minor_t minor = getminor(dev);
14645 	dtrace_state_t *state;
14646 	int rval;
14647 
14648 	if (minor == DTRACEMNRN_HELPER)
14649 		return (dtrace_ioctl_helper(cmd, arg, rv));
14650 
14651 	state = ddi_get_soft_state(dtrace_softstate, minor);
14652 
14653 	if (state->dts_anon) {
14654 		ASSERT(dtrace_anon.dta_state == NULL);
14655 		state = state->dts_anon;
14656 	}
14657 
14658 	switch (cmd) {
14659 	case DTRACEIOC_PROVIDER: {
14660 		dtrace_providerdesc_t pvd;
14661 		dtrace_provider_t *pvp;
14662 
14663 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
14664 			return (EFAULT);
14665 
14666 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
14667 		mutex_enter(&dtrace_provider_lock);
14668 
14669 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
14670 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
14671 				break;
14672 		}
14673 
14674 		mutex_exit(&dtrace_provider_lock);
14675 
14676 		if (pvp == NULL)
14677 			return (ESRCH);
14678 
14679 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
14680 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
14681 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
14682 			return (EFAULT);
14683 
14684 		return (0);
14685 	}
14686 
14687 	case DTRACEIOC_EPROBE: {
14688 		dtrace_eprobedesc_t epdesc;
14689 		dtrace_ecb_t *ecb;
14690 		dtrace_action_t *act;
14691 		void *buf;
14692 		size_t size;
14693 		uintptr_t dest;
14694 		int nrecs;
14695 
14696 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
14697 			return (EFAULT);
14698 
14699 		mutex_enter(&dtrace_lock);
14700 
14701 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
14702 			mutex_exit(&dtrace_lock);
14703 			return (EINVAL);
14704 		}
14705 
14706 		if (ecb->dte_probe == NULL) {
14707 			mutex_exit(&dtrace_lock);
14708 			return (EINVAL);
14709 		}
14710 
14711 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
14712 		epdesc.dtepd_uarg = ecb->dte_uarg;
14713 		epdesc.dtepd_size = ecb->dte_size;
14714 
14715 		nrecs = epdesc.dtepd_nrecs;
14716 		epdesc.dtepd_nrecs = 0;
14717 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14718 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14719 				continue;
14720 
14721 			epdesc.dtepd_nrecs++;
14722 		}
14723 
14724 		/*
14725 		 * Now that we have the size, we need to allocate a temporary
14726 		 * buffer in which to store the complete description.  We need
14727 		 * the temporary buffer to be able to drop dtrace_lock()
14728 		 * across the copyout(), below.
14729 		 */
14730 		size = sizeof (dtrace_eprobedesc_t) +
14731 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
14732 
14733 		buf = kmem_alloc(size, KM_SLEEP);
14734 		dest = (uintptr_t)buf;
14735 
14736 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
14737 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
14738 
14739 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14740 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14741 				continue;
14742 
14743 			if (nrecs-- == 0)
14744 				break;
14745 
14746 			bcopy(&act->dta_rec, (void *)dest,
14747 			    sizeof (dtrace_recdesc_t));
14748 			dest += sizeof (dtrace_recdesc_t);
14749 		}
14750 
14751 		mutex_exit(&dtrace_lock);
14752 
14753 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14754 			kmem_free(buf, size);
14755 			return (EFAULT);
14756 		}
14757 
14758 		kmem_free(buf, size);
14759 		return (0);
14760 	}
14761 
14762 	case DTRACEIOC_AGGDESC: {
14763 		dtrace_aggdesc_t aggdesc;
14764 		dtrace_action_t *act;
14765 		dtrace_aggregation_t *agg;
14766 		int nrecs;
14767 		uint32_t offs;
14768 		dtrace_recdesc_t *lrec;
14769 		void *buf;
14770 		size_t size;
14771 		uintptr_t dest;
14772 
14773 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
14774 			return (EFAULT);
14775 
14776 		mutex_enter(&dtrace_lock);
14777 
14778 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
14779 			mutex_exit(&dtrace_lock);
14780 			return (EINVAL);
14781 		}
14782 
14783 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
14784 
14785 		nrecs = aggdesc.dtagd_nrecs;
14786 		aggdesc.dtagd_nrecs = 0;
14787 
14788 		offs = agg->dtag_base;
14789 		lrec = &agg->dtag_action.dta_rec;
14790 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
14791 
14792 		for (act = agg->dtag_first; ; act = act->dta_next) {
14793 			ASSERT(act->dta_intuple ||
14794 			    DTRACEACT_ISAGG(act->dta_kind));
14795 
14796 			/*
14797 			 * If this action has a record size of zero, it
14798 			 * denotes an argument to the aggregating action.
14799 			 * Because the presence of this record doesn't (or
14800 			 * shouldn't) affect the way the data is interpreted,
14801 			 * we don't copy it out to save user-level the
14802 			 * confusion of dealing with a zero-length record.
14803 			 */
14804 			if (act->dta_rec.dtrd_size == 0) {
14805 				ASSERT(agg->dtag_hasarg);
14806 				continue;
14807 			}
14808 
14809 			aggdesc.dtagd_nrecs++;
14810 
14811 			if (act == &agg->dtag_action)
14812 				break;
14813 		}
14814 
14815 		/*
14816 		 * Now that we have the size, we need to allocate a temporary
14817 		 * buffer in which to store the complete description.  We need
14818 		 * the temporary buffer to be able to drop dtrace_lock()
14819 		 * across the copyout(), below.
14820 		 */
14821 		size = sizeof (dtrace_aggdesc_t) +
14822 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
14823 
14824 		buf = kmem_alloc(size, KM_SLEEP);
14825 		dest = (uintptr_t)buf;
14826 
14827 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
14828 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
14829 
14830 		for (act = agg->dtag_first; ; act = act->dta_next) {
14831 			dtrace_recdesc_t rec = act->dta_rec;
14832 
14833 			/*
14834 			 * See the comment in the above loop for why we pass
14835 			 * over zero-length records.
14836 			 */
14837 			if (rec.dtrd_size == 0) {
14838 				ASSERT(agg->dtag_hasarg);
14839 				continue;
14840 			}
14841 
14842 			if (nrecs-- == 0)
14843 				break;
14844 
14845 			rec.dtrd_offset -= offs;
14846 			bcopy(&rec, (void *)dest, sizeof (rec));
14847 			dest += sizeof (dtrace_recdesc_t);
14848 
14849 			if (act == &agg->dtag_action)
14850 				break;
14851 		}
14852 
14853 		mutex_exit(&dtrace_lock);
14854 
14855 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14856 			kmem_free(buf, size);
14857 			return (EFAULT);
14858 		}
14859 
14860 		kmem_free(buf, size);
14861 		return (0);
14862 	}
14863 
14864 	case DTRACEIOC_ENABLE: {
14865 		dof_hdr_t *dof;
14866 		dtrace_enabling_t *enab = NULL;
14867 		dtrace_vstate_t *vstate;
14868 		int err = 0;
14869 
14870 		*rv = 0;
14871 
14872 		/*
14873 		 * If a NULL argument has been passed, we take this as our
14874 		 * cue to reevaluate our enablings.
14875 		 */
14876 		if (arg == NULL) {
14877 			dtrace_enabling_matchall();
14878 
14879 			return (0);
14880 		}
14881 
14882 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
14883 			return (rval);
14884 
14885 		mutex_enter(&cpu_lock);
14886 		mutex_enter(&dtrace_lock);
14887 		vstate = &state->dts_vstate;
14888 
14889 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14890 			mutex_exit(&dtrace_lock);
14891 			mutex_exit(&cpu_lock);
14892 			dtrace_dof_destroy(dof);
14893 			return (EBUSY);
14894 		}
14895 
14896 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
14897 			mutex_exit(&dtrace_lock);
14898 			mutex_exit(&cpu_lock);
14899 			dtrace_dof_destroy(dof);
14900 			return (EINVAL);
14901 		}
14902 
14903 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
14904 			dtrace_enabling_destroy(enab);
14905 			mutex_exit(&dtrace_lock);
14906 			mutex_exit(&cpu_lock);
14907 			dtrace_dof_destroy(dof);
14908 			return (rval);
14909 		}
14910 
14911 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
14912 			err = dtrace_enabling_retain(enab);
14913 		} else {
14914 			dtrace_enabling_destroy(enab);
14915 		}
14916 
14917 		mutex_exit(&cpu_lock);
14918 		mutex_exit(&dtrace_lock);
14919 		dtrace_dof_destroy(dof);
14920 
14921 		return (err);
14922 	}
14923 
14924 	case DTRACEIOC_REPLICATE: {
14925 		dtrace_repldesc_t desc;
14926 		dtrace_probedesc_t *match = &desc.dtrpd_match;
14927 		dtrace_probedesc_t *create = &desc.dtrpd_create;
14928 		int err;
14929 
14930 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14931 			return (EFAULT);
14932 
14933 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14934 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14935 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14936 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14937 
14938 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14939 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14940 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14941 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14942 
14943 		mutex_enter(&dtrace_lock);
14944 		err = dtrace_enabling_replicate(state, match, create);
14945 		mutex_exit(&dtrace_lock);
14946 
14947 		return (err);
14948 	}
14949 
14950 	case DTRACEIOC_PROBEMATCH:
14951 	case DTRACEIOC_PROBES: {
14952 		dtrace_probe_t *probe = NULL;
14953 		dtrace_probedesc_t desc;
14954 		dtrace_probekey_t pkey;
14955 		dtrace_id_t i;
14956 		int m = 0;
14957 		uint32_t priv;
14958 		uid_t uid;
14959 		zoneid_t zoneid;
14960 
14961 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14962 			return (EFAULT);
14963 
14964 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14965 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14966 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14967 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14968 
14969 		/*
14970 		 * Before we attempt to match this probe, we want to give
14971 		 * all providers the opportunity to provide it.
14972 		 */
14973 		if (desc.dtpd_id == DTRACE_IDNONE) {
14974 			mutex_enter(&dtrace_provider_lock);
14975 			dtrace_probe_provide(&desc, NULL);
14976 			mutex_exit(&dtrace_provider_lock);
14977 			desc.dtpd_id++;
14978 		}
14979 
14980 		if (cmd == DTRACEIOC_PROBEMATCH)  {
14981 			dtrace_probekey(&desc, &pkey);
14982 			pkey.dtpk_id = DTRACE_IDNONE;
14983 		}
14984 
14985 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
14986 
14987 		mutex_enter(&dtrace_lock);
14988 
14989 		if (cmd == DTRACEIOC_PROBEMATCH) {
14990 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14991 				if ((probe = dtrace_probes[i - 1]) != NULL &&
14992 				    (m = dtrace_match_probe(probe, &pkey,
14993 				    priv, uid, zoneid)) != 0)
14994 					break;
14995 			}
14996 
14997 			if (m < 0) {
14998 				mutex_exit(&dtrace_lock);
14999 				return (EINVAL);
15000 			}
15001 
15002 		} else {
15003 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15004 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15005 				    dtrace_match_priv(probe, priv, uid, zoneid))
15006 					break;
15007 			}
15008 		}
15009 
15010 		if (probe == NULL) {
15011 			mutex_exit(&dtrace_lock);
15012 			return (ESRCH);
15013 		}
15014 
15015 		dtrace_probe_description(probe, &desc);
15016 		mutex_exit(&dtrace_lock);
15017 
15018 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15019 			return (EFAULT);
15020 
15021 		return (0);
15022 	}
15023 
15024 	case DTRACEIOC_PROBEARG: {
15025 		dtrace_argdesc_t desc;
15026 		dtrace_probe_t *probe;
15027 		dtrace_provider_t *prov;
15028 
15029 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15030 			return (EFAULT);
15031 
15032 		if (desc.dtargd_id == DTRACE_IDNONE)
15033 			return (EINVAL);
15034 
15035 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15036 			return (EINVAL);
15037 
15038 		mutex_enter(&dtrace_provider_lock);
15039 		mutex_enter(&mod_lock);
15040 		mutex_enter(&dtrace_lock);
15041 
15042 		if (desc.dtargd_id > dtrace_nprobes) {
15043 			mutex_exit(&dtrace_lock);
15044 			mutex_exit(&mod_lock);
15045 			mutex_exit(&dtrace_provider_lock);
15046 			return (EINVAL);
15047 		}
15048 
15049 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15050 			mutex_exit(&dtrace_lock);
15051 			mutex_exit(&mod_lock);
15052 			mutex_exit(&dtrace_provider_lock);
15053 			return (EINVAL);
15054 		}
15055 
15056 		mutex_exit(&dtrace_lock);
15057 
15058 		prov = probe->dtpr_provider;
15059 
15060 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15061 			/*
15062 			 * There isn't any typed information for this probe.
15063 			 * Set the argument number to DTRACE_ARGNONE.
15064 			 */
15065 			desc.dtargd_ndx = DTRACE_ARGNONE;
15066 		} else {
15067 			desc.dtargd_native[0] = '\0';
15068 			desc.dtargd_xlate[0] = '\0';
15069 			desc.dtargd_mapping = desc.dtargd_ndx;
15070 
15071 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15072 			    probe->dtpr_id, probe->dtpr_arg, &desc);
15073 		}
15074 
15075 		mutex_exit(&mod_lock);
15076 		mutex_exit(&dtrace_provider_lock);
15077 
15078 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15079 			return (EFAULT);
15080 
15081 		return (0);
15082 	}
15083 
15084 	case DTRACEIOC_GO: {
15085 		processorid_t cpuid;
15086 		rval = dtrace_state_go(state, &cpuid);
15087 
15088 		if (rval != 0)
15089 			return (rval);
15090 
15091 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15092 			return (EFAULT);
15093 
15094 		return (0);
15095 	}
15096 
15097 	case DTRACEIOC_STOP: {
15098 		processorid_t cpuid;
15099 
15100 		mutex_enter(&dtrace_lock);
15101 		rval = dtrace_state_stop(state, &cpuid);
15102 		mutex_exit(&dtrace_lock);
15103 
15104 		if (rval != 0)
15105 			return (rval);
15106 
15107 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15108 			return (EFAULT);
15109 
15110 		return (0);
15111 	}
15112 
15113 	case DTRACEIOC_DOFGET: {
15114 		dof_hdr_t hdr, *dof;
15115 		uint64_t len;
15116 
15117 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15118 			return (EFAULT);
15119 
15120 		mutex_enter(&dtrace_lock);
15121 		dof = dtrace_dof_create(state);
15122 		mutex_exit(&dtrace_lock);
15123 
15124 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15125 		rval = copyout(dof, (void *)arg, len);
15126 		dtrace_dof_destroy(dof);
15127 
15128 		return (rval == 0 ? 0 : EFAULT);
15129 	}
15130 
15131 	case DTRACEIOC_AGGSNAP:
15132 	case DTRACEIOC_BUFSNAP: {
15133 		dtrace_bufdesc_t desc;
15134 		caddr_t cached;
15135 		dtrace_buffer_t *buf;
15136 
15137 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15138 			return (EFAULT);
15139 
15140 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15141 			return (EINVAL);
15142 
15143 		mutex_enter(&dtrace_lock);
15144 
15145 		if (cmd == DTRACEIOC_BUFSNAP) {
15146 			buf = &state->dts_buffer[desc.dtbd_cpu];
15147 		} else {
15148 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15149 		}
15150 
15151 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15152 			size_t sz = buf->dtb_offset;
15153 
15154 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15155 				mutex_exit(&dtrace_lock);
15156 				return (EBUSY);
15157 			}
15158 
15159 			/*
15160 			 * If this buffer has already been consumed, we're
15161 			 * going to indicate that there's nothing left here
15162 			 * to consume.
15163 			 */
15164 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15165 				mutex_exit(&dtrace_lock);
15166 
15167 				desc.dtbd_size = 0;
15168 				desc.dtbd_drops = 0;
15169 				desc.dtbd_errors = 0;
15170 				desc.dtbd_oldest = 0;
15171 				sz = sizeof (desc);
15172 
15173 				if (copyout(&desc, (void *)arg, sz) != 0)
15174 					return (EFAULT);
15175 
15176 				return (0);
15177 			}
15178 
15179 			/*
15180 			 * If this is a ring buffer that has wrapped, we want
15181 			 * to copy the whole thing out.
15182 			 */
15183 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15184 				dtrace_buffer_polish(buf);
15185 				sz = buf->dtb_size;
15186 			}
15187 
15188 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15189 				mutex_exit(&dtrace_lock);
15190 				return (EFAULT);
15191 			}
15192 
15193 			desc.dtbd_size = sz;
15194 			desc.dtbd_drops = buf->dtb_drops;
15195 			desc.dtbd_errors = buf->dtb_errors;
15196 			desc.dtbd_oldest = buf->dtb_xamot_offset;
15197 
15198 			mutex_exit(&dtrace_lock);
15199 
15200 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15201 				return (EFAULT);
15202 
15203 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
15204 
15205 			return (0);
15206 		}
15207 
15208 		if (buf->dtb_tomax == NULL) {
15209 			ASSERT(buf->dtb_xamot == NULL);
15210 			mutex_exit(&dtrace_lock);
15211 			return (ENOENT);
15212 		}
15213 
15214 		cached = buf->dtb_tomax;
15215 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15216 
15217 		dtrace_xcall(desc.dtbd_cpu,
15218 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
15219 
15220 		state->dts_errors += buf->dtb_xamot_errors;
15221 
15222 		/*
15223 		 * If the buffers did not actually switch, then the cross call
15224 		 * did not take place -- presumably because the given CPU is
15225 		 * not in the ready set.  If this is the case, we'll return
15226 		 * ENOENT.
15227 		 */
15228 		if (buf->dtb_tomax == cached) {
15229 			ASSERT(buf->dtb_xamot != cached);
15230 			mutex_exit(&dtrace_lock);
15231 			return (ENOENT);
15232 		}
15233 
15234 		ASSERT(cached == buf->dtb_xamot);
15235 
15236 		/*
15237 		 * We have our snapshot; now copy it out.
15238 		 */
15239 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
15240 		    buf->dtb_xamot_offset) != 0) {
15241 			mutex_exit(&dtrace_lock);
15242 			return (EFAULT);
15243 		}
15244 
15245 		desc.dtbd_size = buf->dtb_xamot_offset;
15246 		desc.dtbd_drops = buf->dtb_xamot_drops;
15247 		desc.dtbd_errors = buf->dtb_xamot_errors;
15248 		desc.dtbd_oldest = 0;
15249 
15250 		mutex_exit(&dtrace_lock);
15251 
15252 		/*
15253 		 * Finally, copy out the buffer description.
15254 		 */
15255 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15256 			return (EFAULT);
15257 
15258 		return (0);
15259 	}
15260 
15261 	case DTRACEIOC_CONF: {
15262 		dtrace_conf_t conf;
15263 
15264 		bzero(&conf, sizeof (conf));
15265 		conf.dtc_difversion = DIF_VERSION;
15266 		conf.dtc_difintregs = DIF_DIR_NREGS;
15267 		conf.dtc_diftupregs = DIF_DTR_NREGS;
15268 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
15269 
15270 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
15271 			return (EFAULT);
15272 
15273 		return (0);
15274 	}
15275 
15276 	case DTRACEIOC_STATUS: {
15277 		dtrace_status_t stat;
15278 		dtrace_dstate_t *dstate;
15279 		int i, j;
15280 		uint64_t nerrs;
15281 
15282 		/*
15283 		 * See the comment in dtrace_state_deadman() for the reason
15284 		 * for setting dts_laststatus to INT64_MAX before setting
15285 		 * it to the correct value.
15286 		 */
15287 		state->dts_laststatus = INT64_MAX;
15288 		dtrace_membar_producer();
15289 		state->dts_laststatus = dtrace_gethrtime();
15290 
15291 		bzero(&stat, sizeof (stat));
15292 
15293 		mutex_enter(&dtrace_lock);
15294 
15295 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
15296 			mutex_exit(&dtrace_lock);
15297 			return (ENOENT);
15298 		}
15299 
15300 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
15301 			stat.dtst_exiting = 1;
15302 
15303 		nerrs = state->dts_errors;
15304 		dstate = &state->dts_vstate.dtvs_dynvars;
15305 
15306 		for (i = 0; i < NCPU; i++) {
15307 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
15308 
15309 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
15310 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
15311 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
15312 
15313 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
15314 				stat.dtst_filled++;
15315 
15316 			nerrs += state->dts_buffer[i].dtb_errors;
15317 
15318 			for (j = 0; j < state->dts_nspeculations; j++) {
15319 				dtrace_speculation_t *spec;
15320 				dtrace_buffer_t *buf;
15321 
15322 				spec = &state->dts_speculations[j];
15323 				buf = &spec->dtsp_buffer[i];
15324 				stat.dtst_specdrops += buf->dtb_xamot_drops;
15325 			}
15326 		}
15327 
15328 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
15329 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
15330 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
15331 		stat.dtst_dblerrors = state->dts_dblerrors;
15332 		stat.dtst_killed =
15333 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
15334 		stat.dtst_errors = nerrs;
15335 
15336 		mutex_exit(&dtrace_lock);
15337 
15338 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
15339 			return (EFAULT);
15340 
15341 		return (0);
15342 	}
15343 
15344 	case DTRACEIOC_FORMAT: {
15345 		dtrace_fmtdesc_t fmt;
15346 		char *str;
15347 		int len;
15348 
15349 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
15350 			return (EFAULT);
15351 
15352 		mutex_enter(&dtrace_lock);
15353 
15354 		if (fmt.dtfd_format == 0 ||
15355 		    fmt.dtfd_format > state->dts_nformats) {
15356 			mutex_exit(&dtrace_lock);
15357 			return (EINVAL);
15358 		}
15359 
15360 		/*
15361 		 * Format strings are allocated contiguously and they are
15362 		 * never freed; if a format index is less than the number
15363 		 * of formats, we can assert that the format map is non-NULL
15364 		 * and that the format for the specified index is non-NULL.
15365 		 */
15366 		ASSERT(state->dts_formats != NULL);
15367 		str = state->dts_formats[fmt.dtfd_format - 1];
15368 		ASSERT(str != NULL);
15369 
15370 		len = strlen(str) + 1;
15371 
15372 		if (len > fmt.dtfd_length) {
15373 			fmt.dtfd_length = len;
15374 
15375 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
15376 				mutex_exit(&dtrace_lock);
15377 				return (EINVAL);
15378 			}
15379 		} else {
15380 			if (copyout(str, fmt.dtfd_string, len) != 0) {
15381 				mutex_exit(&dtrace_lock);
15382 				return (EINVAL);
15383 			}
15384 		}
15385 
15386 		mutex_exit(&dtrace_lock);
15387 		return (0);
15388 	}
15389 
15390 	default:
15391 		break;
15392 	}
15393 
15394 	return (ENOTTY);
15395 }
15396 
15397 /*ARGSUSED*/
15398 static int
15399 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
15400 {
15401 	dtrace_state_t *state;
15402 
15403 	switch (cmd) {
15404 	case DDI_DETACH:
15405 		break;
15406 
15407 	case DDI_SUSPEND:
15408 		return (DDI_SUCCESS);
15409 
15410 	default:
15411 		return (DDI_FAILURE);
15412 	}
15413 
15414 	mutex_enter(&cpu_lock);
15415 	mutex_enter(&dtrace_provider_lock);
15416 	mutex_enter(&dtrace_lock);
15417 
15418 	ASSERT(dtrace_opens == 0);
15419 
15420 	if (dtrace_helpers > 0) {
15421 		mutex_exit(&dtrace_provider_lock);
15422 		mutex_exit(&dtrace_lock);
15423 		mutex_exit(&cpu_lock);
15424 		return (DDI_FAILURE);
15425 	}
15426 
15427 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
15428 		mutex_exit(&dtrace_provider_lock);
15429 		mutex_exit(&dtrace_lock);
15430 		mutex_exit(&cpu_lock);
15431 		return (DDI_FAILURE);
15432 	}
15433 
15434 	dtrace_provider = NULL;
15435 
15436 	if ((state = dtrace_anon_grab()) != NULL) {
15437 		/*
15438 		 * If there were ECBs on this state, the provider should
15439 		 * have not been allowed to detach; assert that there is
15440 		 * none.
15441 		 */
15442 		ASSERT(state->dts_necbs == 0);
15443 		dtrace_state_destroy(state);
15444 
15445 		/*
15446 		 * If we're being detached with anonymous state, we need to
15447 		 * indicate to the kernel debugger that DTrace is now inactive.
15448 		 */
15449 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15450 	}
15451 
15452 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
15453 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15454 	dtrace_cpu_init = NULL;
15455 	dtrace_helpers_cleanup = NULL;
15456 	dtrace_helpers_fork = NULL;
15457 	dtrace_cpustart_init = NULL;
15458 	dtrace_cpustart_fini = NULL;
15459 	dtrace_debugger_init = NULL;
15460 	dtrace_debugger_fini = NULL;
15461 	dtrace_modload = NULL;
15462 	dtrace_modunload = NULL;
15463 
15464 	mutex_exit(&cpu_lock);
15465 
15466 	if (dtrace_helptrace_enabled) {
15467 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
15468 		dtrace_helptrace_buffer = NULL;
15469 	}
15470 
15471 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
15472 	dtrace_probes = NULL;
15473 	dtrace_nprobes = 0;
15474 
15475 	dtrace_hash_destroy(dtrace_bymod);
15476 	dtrace_hash_destroy(dtrace_byfunc);
15477 	dtrace_hash_destroy(dtrace_byname);
15478 	dtrace_bymod = NULL;
15479 	dtrace_byfunc = NULL;
15480 	dtrace_byname = NULL;
15481 
15482 	kmem_cache_destroy(dtrace_state_cache);
15483 	vmem_destroy(dtrace_minor);
15484 	vmem_destroy(dtrace_arena);
15485 
15486 	if (dtrace_toxrange != NULL) {
15487 		kmem_free(dtrace_toxrange,
15488 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
15489 		dtrace_toxrange = NULL;
15490 		dtrace_toxranges = 0;
15491 		dtrace_toxranges_max = 0;
15492 	}
15493 
15494 	ddi_remove_minor_node(dtrace_devi, NULL);
15495 	dtrace_devi = NULL;
15496 
15497 	ddi_soft_state_fini(&dtrace_softstate);
15498 
15499 	ASSERT(dtrace_vtime_references == 0);
15500 	ASSERT(dtrace_opens == 0);
15501 	ASSERT(dtrace_retained == NULL);
15502 
15503 	mutex_exit(&dtrace_lock);
15504 	mutex_exit(&dtrace_provider_lock);
15505 
15506 	/*
15507 	 * We don't destroy the task queue until after we have dropped our
15508 	 * locks (taskq_destroy() may block on running tasks).  To prevent
15509 	 * attempting to do work after we have effectively detached but before
15510 	 * the task queue has been destroyed, all tasks dispatched via the
15511 	 * task queue must check that DTrace is still attached before
15512 	 * performing any operation.
15513 	 */
15514 	taskq_destroy(dtrace_taskq);
15515 	dtrace_taskq = NULL;
15516 
15517 	return (DDI_SUCCESS);
15518 }
15519 
15520 /*ARGSUSED*/
15521 static int
15522 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
15523 {
15524 	int error;
15525 
15526 	switch (infocmd) {
15527 	case DDI_INFO_DEVT2DEVINFO:
15528 		*result = (void *)dtrace_devi;
15529 		error = DDI_SUCCESS;
15530 		break;
15531 	case DDI_INFO_DEVT2INSTANCE:
15532 		*result = (void *)0;
15533 		error = DDI_SUCCESS;
15534 		break;
15535 	default:
15536 		error = DDI_FAILURE;
15537 	}
15538 	return (error);
15539 }
15540 
15541 static struct cb_ops dtrace_cb_ops = {
15542 	dtrace_open,		/* open */
15543 	dtrace_close,		/* close */
15544 	nulldev,		/* strategy */
15545 	nulldev,		/* print */
15546 	nodev,			/* dump */
15547 	nodev,			/* read */
15548 	nodev,			/* write */
15549 	dtrace_ioctl,		/* ioctl */
15550 	nodev,			/* devmap */
15551 	nodev,			/* mmap */
15552 	nodev,			/* segmap */
15553 	nochpoll,		/* poll */
15554 	ddi_prop_op,		/* cb_prop_op */
15555 	0,			/* streamtab  */
15556 	D_NEW | D_MP		/* Driver compatibility flag */
15557 };
15558 
15559 static struct dev_ops dtrace_ops = {
15560 	DEVO_REV,		/* devo_rev */
15561 	0,			/* refcnt */
15562 	dtrace_info,		/* get_dev_info */
15563 	nulldev,		/* identify */
15564 	nulldev,		/* probe */
15565 	dtrace_attach,		/* attach */
15566 	dtrace_detach,		/* detach */
15567 	nodev,			/* reset */
15568 	&dtrace_cb_ops,		/* driver operations */
15569 	NULL,			/* bus operations */
15570 	nodev,			/* dev power */
15571 	ddi_quiesce_not_needed,		/* quiesce */
15572 };
15573 
15574 static struct modldrv modldrv = {
15575 	&mod_driverops,		/* module type (this is a pseudo driver) */
15576 	"Dynamic Tracing",	/* name of module */
15577 	&dtrace_ops,		/* driver ops */
15578 };
15579 
15580 static struct modlinkage modlinkage = {
15581 	MODREV_1,
15582 	(void *)&modldrv,
15583 	NULL
15584 };
15585 
15586 int
15587 _init(void)
15588 {
15589 	return (mod_install(&modlinkage));
15590 }
15591 
15592 int
15593 _info(struct modinfo *modinfop)
15594 {
15595 	return (mod_info(&modlinkage, modinfop));
15596 }
15597 
15598 int
15599 _fini(void)
15600 {
15601 	return (mod_remove(&modlinkage));
15602 }
15603