1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  *  	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
28  *	All Rights Reserved
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/systm.h>
36 #include <sys/thread.h>
37 #include <sys/t_lock.h>
38 #include <sys/time.h>
39 #include <sys/vnode.h>
40 #include <sys/vfs.h>
41 #include <sys/errno.h>
42 #include <sys/buf.h>
43 #include <sys/stat.h>
44 #include <sys/cred.h>
45 #include <sys/kmem.h>
46 #include <sys/debug.h>
47 #include <sys/dnlc.h>
48 #include <sys/vmsystm.h>
49 #include <sys/flock.h>
50 #include <sys/share.h>
51 #include <sys/cmn_err.h>
52 #include <sys/tiuser.h>
53 #include <sys/sysmacros.h>
54 #include <sys/callb.h>
55 #include <sys/acl.h>
56 #include <sys/kstat.h>
57 #include <sys/signal.h>
58 #include <sys/disp.h>
59 #include <sys/atomic.h>
60 #include <sys/list.h>
61 #include <sys/sdt.h>
62 
63 #include <rpc/types.h>
64 #include <rpc/xdr.h>
65 #include <rpc/auth.h>
66 #include <rpc/clnt.h>
67 
68 #include <nfs/nfs.h>
69 #include <nfs/nfs_clnt.h>
70 #include <nfs/nfs_acl.h>
71 
72 #include <nfs/nfs4.h>
73 #include <nfs/rnode4.h>
74 #include <nfs/nfs4_clnt.h>
75 
76 #include <vm/hat.h>
77 #include <vm/as.h>
78 #include <vm/page.h>
79 #include <vm/pvn.h>
80 #include <vm/seg.h>
81 #include <vm/seg_map.h>
82 #include <vm/seg_vn.h>
83 
84 #include <sys/ddi.h>
85 
86 /*
87  * Arguments to page-flush thread.
88  */
89 typedef struct {
90 	vnode_t *vp;
91 	cred_t *cr;
92 } pgflush_t;
93 
94 #ifdef DEBUG
95 int nfs4_client_lease_debug;
96 int nfs4_sharedfh_debug;
97 int nfs4_fname_debug;
98 
99 /* temporary: panic if v_type is inconsistent with r_attr va_type */
100 int nfs4_vtype_debug;
101 
102 uint_t nfs4_tsd_key;
103 #endif
104 
105 static time_t	nfs4_client_resumed = 0;
106 static	callb_id_t cid = 0;
107 
108 static int	nfs4renew(nfs4_server_t *);
109 static void	nfs4_attrcache_va(vnode_t *, nfs4_ga_res_t *, int);
110 static void	nfs4_pgflush_thread(pgflush_t *);
111 static void	flush_pages(vnode_t *, cred_t *);
112 
113 static boolean_t nfs4_client_cpr_callb(void *, int);
114 
115 struct mi4_globals {
116 	kmutex_t	mig_lock;  /* lock protecting mig_list */
117 	list_t		mig_list;  /* list of NFS v4 mounts in zone */
118 	boolean_t	mig_destructor_called;
119 };
120 
121 static zone_key_t mi4_list_key;
122 
123 /*
124  * Attributes caching:
125  *
126  * Attributes are cached in the rnode in struct vattr form.
127  * There is a time associated with the cached attributes (r_time_attr_inval)
128  * which tells whether the attributes are valid. The time is initialized
129  * to the difference between current time and the modify time of the vnode
130  * when new attributes are cached. This allows the attributes for
131  * files that have changed recently to be timed out sooner than for files
132  * that have not changed for a long time. There are minimum and maximum
133  * timeout values that can be set per mount point.
134  */
135 
136 /*
137  * If a cache purge is in progress, wait for it to finish.
138  *
139  * The current thread must not be in the middle of an
140  * nfs4_start_op/nfs4_end_op region.  Otherwise, there could be a deadlock
141  * between this thread, a recovery thread, and the page flush thread.
142  */
143 int
144 nfs4_waitfor_purge_complete(vnode_t *vp)
145 {
146 	rnode4_t *rp;
147 	k_sigset_t smask;
148 
149 	rp = VTOR4(vp);
150 	if ((rp->r_serial != NULL && rp->r_serial != curthread) ||
151 	    ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread)) {
152 		mutex_enter(&rp->r_statelock);
153 		sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
154 		while ((rp->r_serial != NULL && rp->r_serial != curthread) ||
155 		    ((rp->r_flags & R4PGFLUSH) &&
156 		    rp->r_pgflush != curthread)) {
157 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
158 				sigunintr(&smask);
159 				mutex_exit(&rp->r_statelock);
160 				return (EINTR);
161 			}
162 		}
163 		sigunintr(&smask);
164 		mutex_exit(&rp->r_statelock);
165 	}
166 	return (0);
167 }
168 
169 /*
170  * Validate caches by checking cached attributes. If they have timed out,
171  * then get new attributes from the server.  As a side effect, cache
172  * invalidation is done if the attributes have changed.
173  *
174  * If the attributes have not timed out and if there is a cache
175  * invalidation being done by some other thread, then wait until that
176  * thread has completed the cache invalidation.
177  */
178 int
179 nfs4_validate_caches(vnode_t *vp, cred_t *cr)
180 {
181 	int error;
182 	nfs4_ga_res_t gar;
183 
184 	if (ATTRCACHE4_VALID(vp)) {
185 		error = nfs4_waitfor_purge_complete(vp);
186 		if (error)
187 			return (error);
188 		return (0);
189 	}
190 
191 	gar.n4g_va.va_mask = AT_ALL;
192 	return (nfs4_getattr_otw(vp, &gar, cr, 0));
193 }
194 
195 /*
196  * Fill in attribute from the cache.
197  * If valid, then return 0 to indicate that no error occurred,
198  * otherwise return 1 to indicate that an error occurred.
199  */
200 static int
201 nfs4_getattr_cache(vnode_t *vp, struct vattr *vap)
202 {
203 	rnode4_t *rp;
204 
205 	rp = VTOR4(vp);
206 	mutex_enter(&rp->r_statelock);
207 	mutex_enter(&rp->r_statev4_lock);
208 	if (ATTRCACHE4_VALID(vp)) {
209 		mutex_exit(&rp->r_statev4_lock);
210 		/*
211 		 * Cached attributes are valid
212 		 */
213 		*vap = rp->r_attr;
214 		mutex_exit(&rp->r_statelock);
215 		return (0);
216 	}
217 	mutex_exit(&rp->r_statev4_lock);
218 	mutex_exit(&rp->r_statelock);
219 	return (1);
220 }
221 
222 
223 /*
224  * If returned error is ESTALE flush all caches.  The nfs4_purge_caches()
225  * call is synchronous because all the pages were invalidated by the
226  * nfs4_invalidate_pages() call.
227  */
228 void
229 nfs4_purge_stale_fh(int errno, vnode_t *vp, cred_t *cr)
230 {
231 	struct rnode4 *rp = VTOR4(vp);
232 
233 	/* Ensure that the ..._end_op() call has been done */
234 	ASSERT(tsd_get(nfs4_tsd_key) == NULL);
235 
236 	if (errno != ESTALE)
237 		return;
238 
239 	mutex_enter(&rp->r_statelock);
240 	rp->r_flags |= R4STALE;
241 	if (!rp->r_error)
242 		rp->r_error = errno;
243 	mutex_exit(&rp->r_statelock);
244 	if (nfs4_has_pages(vp))
245 		nfs4_invalidate_pages(vp, (u_offset_t)0, cr);
246 	nfs4_purge_caches(vp, NFS4_PURGE_DNLC, cr, FALSE);
247 }
248 
249 /*
250  * Purge all of the various NFS `data' caches.  If "asyncpg" is TRUE, the
251  * page purge is done asynchronously.
252  */
253 void
254 nfs4_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr, int asyncpg)
255 {
256 	rnode4_t *rp;
257 	char *contents;
258 	vnode_t *xattr;
259 	int size;
260 	int pgflush;			/* are we the page flush thread? */
261 
262 	/*
263 	 * Purge the DNLC for any entries which refer to this file.
264 	 */
265 	if (vp->v_count > 1 &&
266 	    (vp->v_type == VDIR || purge_dnlc == NFS4_PURGE_DNLC))
267 		dnlc_purge_vp(vp);
268 
269 	/*
270 	 * Clear any readdir state bits and purge the readlink response cache.
271 	 */
272 	rp = VTOR4(vp);
273 	mutex_enter(&rp->r_statelock);
274 	rp->r_flags &= ~R4LOOKUP;
275 	contents = rp->r_symlink.contents;
276 	size = rp->r_symlink.size;
277 	rp->r_symlink.contents = NULL;
278 
279 	xattr = rp->r_xattr_dir;
280 	rp->r_xattr_dir = NULL;
281 
282 	/*
283 	 * Purge pathconf cache too.
284 	 */
285 	rp->r_pathconf.pc4_xattr_valid = 0;
286 	rp->r_pathconf.pc4_cache_valid = 0;
287 
288 	pgflush = (curthread == rp->r_pgflush);
289 	mutex_exit(&rp->r_statelock);
290 
291 	if (contents != NULL) {
292 
293 		kmem_free((void *)contents, size);
294 	}
295 
296 	if (xattr != NULL)
297 		VN_RELE(xattr);
298 
299 	/*
300 	 * Flush the page cache.  If the current thread is the page flush
301 	 * thread, don't initiate a new page flush.  There's no need for
302 	 * it, and doing it correctly is hard.
303 	 */
304 	if (nfs4_has_pages(vp) && !pgflush) {
305 		if (!asyncpg) {
306 			(void) nfs4_waitfor_purge_complete(vp);
307 			flush_pages(vp, cr);
308 		} else {
309 			pgflush_t *args;
310 
311 			/*
312 			 * We don't hold r_statelock while creating the
313 			 * thread, in case the call blocks.  So we use a
314 			 * flag to indicate that a page flush thread is
315 			 * active.
316 			 */
317 			mutex_enter(&rp->r_statelock);
318 			if (rp->r_flags & R4PGFLUSH) {
319 				mutex_exit(&rp->r_statelock);
320 			} else {
321 				rp->r_flags |= R4PGFLUSH;
322 				mutex_exit(&rp->r_statelock);
323 
324 				args = kmem_alloc(sizeof (pgflush_t),
325 						KM_SLEEP);
326 				args->vp = vp;
327 				VN_HOLD(args->vp);
328 				args->cr = cr;
329 				crhold(args->cr);
330 				(void) zthread_create(NULL, 0,
331 						nfs4_pgflush_thread, args, 0,
332 						minclsyspri);
333 			}
334 		}
335 	}
336 
337 	/*
338 	 * Flush the readdir response cache.
339 	 */
340 	nfs4_purge_rddir_cache(vp);
341 }
342 
343 /*
344  * Invalidate all pages for the given file, after writing back the dirty
345  * ones.
346  */
347 
348 static void
349 flush_pages(vnode_t *vp, cred_t *cr)
350 {
351 	int error;
352 	rnode4_t *rp = VTOR4(vp);
353 
354 	error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr);
355 	if (error == ENOSPC || error == EDQUOT) {
356 		mutex_enter(&rp->r_statelock);
357 		if (!rp->r_error)
358 			rp->r_error = error;
359 		mutex_exit(&rp->r_statelock);
360 	}
361 }
362 
363 /*
364  * Page flush thread.
365  */
366 
367 static void
368 nfs4_pgflush_thread(pgflush_t *args)
369 {
370 	rnode4_t *rp = VTOR4(args->vp);
371 
372 	/* remember which thread we are, so we don't deadlock ourselves */
373 	mutex_enter(&rp->r_statelock);
374 	ASSERT(rp->r_pgflush == NULL);
375 	rp->r_pgflush = curthread;
376 	mutex_exit(&rp->r_statelock);
377 
378 	flush_pages(args->vp, args->cr);
379 
380 	mutex_enter(&rp->r_statelock);
381 	rp->r_pgflush = NULL;
382 	rp->r_flags &= ~R4PGFLUSH;
383 	cv_broadcast(&rp->r_cv);
384 	mutex_exit(&rp->r_statelock);
385 
386 	VN_RELE(args->vp);
387 	crfree(args->cr);
388 	kmem_free(args, sizeof (pgflush_t));
389 	zthread_exit();
390 }
391 
392 /*
393  * Purge the readdir cache of all entries which are not currently
394  * being filled.
395  */
396 void
397 nfs4_purge_rddir_cache(vnode_t *vp)
398 {
399 	rnode4_t *rp;
400 
401 	rp = VTOR4(vp);
402 
403 	mutex_enter(&rp->r_statelock);
404 	rp->r_direof = NULL;
405 	rp->r_flags &= ~R4LOOKUP;
406 	rp->r_flags |= R4READDIRWATTR;
407 	rddir4_cache_purge(rp);
408 	mutex_exit(&rp->r_statelock);
409 }
410 
411 /*
412  * Set attributes cache for given vnode using virtual attributes.  There is
413  * no cache validation, but if the attributes are deemed to be stale, they
414  * are ignored.  This corresponds to nfs3_attrcache().
415  *
416  * Set the timeout value on the attribute cache and fill it
417  * with the passed in attributes.
418  */
419 void
420 nfs4_attrcache_noinval(vnode_t *vp, nfs4_ga_res_t *garp, hrtime_t t)
421 {
422 	rnode4_t *rp = VTOR4(vp);
423 
424 	mutex_enter(&rp->r_statelock);
425 	if (rp->r_time_attr_saved <= t)
426 		nfs4_attrcache_va(vp, garp, FALSE);
427 	mutex_exit(&rp->r_statelock);
428 }
429 
430 /*
431  * Use the passed in virtual attributes to check to see whether the
432  * data and metadata caches are valid, cache the new attributes, and
433  * then do the cache invalidation if required.
434  *
435  * The cache validation and caching of the new attributes is done
436  * atomically via the use of the mutex, r_statelock.  If required,
437  * the cache invalidation is done atomically w.r.t. the cache
438  * validation and caching of the attributes via the pseudo lock,
439  * r_serial.
440  *
441  * This routine is used to do cache validation and attributes caching
442  * for operations with a single set of post operation attributes.
443  */
444 
445 void
446 nfs4_attr_cache(vnode_t *vp, nfs4_ga_res_t *garp,
447 		hrtime_t t, cred_t *cr, int async,
448 		change_info4 *cinfo)
449 {
450 	rnode4_t *rp;
451 	int mtime_changed;
452 	int ctime_changed;
453 	vsecattr_t *vsp;
454 	int was_serial, set_time_cache_inval, recov;
455 	vattr_t *vap = &garp->n4g_va;
456 	mntinfo4_t *mi = VTOMI4(vp);
457 
458 	ASSERT(mi->mi_vfsp->vfs_dev == garp->n4g_va.va_fsid);
459 
460 	/* Is curthread the recovery thread? */
461 	mutex_enter(&mi->mi_lock);
462 	recov = (VTOMI4(vp)->mi_recovthread == curthread);
463 	mutex_exit(&mi->mi_lock);
464 
465 	rp = VTOR4(vp);
466 	mutex_enter(&rp->r_statelock);
467 	was_serial = (rp->r_serial == curthread);
468 	if (rp->r_serial && !was_serial) {
469 		klwp_t *lwp = ttolwp(curthread);
470 
471 		/*
472 		 * If we're the recovery thread, then purge current attrs
473 		 * and bail out to avoid potential deadlock between another
474 		 * thread caching attrs (r_serial thread), recov thread,
475 		 * and an async writer thread.
476 		 */
477 		if (recov) {
478 			PURGE_ATTRCACHE4_LOCKED(rp);
479 			mutex_exit(&rp->r_statelock);
480 			return;
481 		}
482 
483 		if (lwp != NULL)
484 			lwp->lwp_nostop++;
485 		while (rp->r_serial != NULL) {
486 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
487 				mutex_exit(&rp->r_statelock);
488 				if (lwp != NULL)
489 					lwp->lwp_nostop--;
490 				return;
491 			}
492 		}
493 		if (lwp != NULL)
494 			lwp->lwp_nostop--;
495 	}
496 
497 	/*
498 	 * If there is a page flush thread, the current thread needs to
499 	 * bail out, to prevent a possible deadlock between the current
500 	 * thread (which might be in a start_op/end_op region), the
501 	 * recovery thread, and the page flush thread.  Expire the
502 	 * attribute cache, so that any attributes the current thread was
503 	 * going to set are not lost.
504 	 */
505 	if ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread) {
506 		PURGE_ATTRCACHE4_LOCKED(rp);
507 		mutex_exit(&rp->r_statelock);
508 		return;
509 	}
510 
511 	if (rp->r_time_attr_saved > t) {
512 		/*
513 		 * Attributes have been cached since these attributes were
514 		 * made, so don't act on them.
515 		 */
516 		mutex_exit(&rp->r_statelock);
517 		return;
518 	}
519 	set_time_cache_inval = 0;
520 	if (cinfo) {
521 		/*
522 		 * Only directory modifying callers pass non-NULL cinfo.
523 		 */
524 		ASSERT(vp->v_type == VDIR);
525 		/*
526 		 * If the cache timeout either doesn't exist or hasn't expired,
527 		 * and dir didn't changed on server before dirmod op
528 		 * and dir didn't change after dirmod op but before getattr
529 		 * then there's a chance that the client's cached data for
530 		 * this object is current (not stale).  No immediate cache
531 		 * flush is required.
532 		 *
533 		 */
534 		if ((! rp->r_time_cache_inval || t < rp->r_time_cache_inval) &&
535 		    cinfo->before == rp->r_change &&
536 		    (garp->n4g_change_valid &&
537 		    cinfo->after == garp->n4g_change)) {
538 
539 			/*
540 			 * If atomic isn't set, then the before/after info
541 			 * cannot be blindly trusted.  For this case, we tell
542 			 * nfs4_attrcache_va to cache the attrs but also
543 			 * establish an absolute maximum cache timeout.  When
544 			 * the timeout is reached, caches will be flushed.
545 			 */
546 			if (! cinfo->atomic)
547 				set_time_cache_inval = 1;
548 
549 			mtime_changed = 0;
550 			ctime_changed = 0;
551 		} else {
552 
553 			/*
554 			 * We're not sure exactly what changed, but we know
555 			 * what to do.  flush all caches for dir.  remove the
556 			 * attr timeout.
557 			 *
558 			 * a) timeout expired.  flush all caches.
559 			 * b) r_change != cinfo.before.  flush all caches.
560 			 * c) r_change == cinfo.before, but cinfo.after !=
561 			 *    post-op getattr(change).  flush all caches.
562 			 * d) post-op getattr(change) not provided by server.
563 			 *    flush all caches.
564 			 */
565 			mtime_changed = 1;
566 			ctime_changed = 1;
567 			rp->r_time_cache_inval = 0;
568 		}
569 	} else {
570 		if (!(rp->r_flags & R4WRITEMODIFIED)) {
571 			if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
572 				mtime_changed = 1;
573 			else
574 				mtime_changed = 0;
575 			if (rp->r_attr.va_ctime.tv_sec !=
576 			    vap->va_ctime.tv_sec ||
577 			    rp->r_attr.va_ctime.tv_nsec !=
578 			    vap->va_ctime.tv_nsec)
579 				ctime_changed = 1;
580 			else
581 				ctime_changed = 0;
582 		} else {
583 			mtime_changed = 0;
584 			ctime_changed = 0;
585 		}
586 	}
587 
588 	nfs4_attrcache_va(vp, garp, set_time_cache_inval);
589 
590 	if (!mtime_changed && !ctime_changed) {
591 		mutex_exit(&rp->r_statelock);
592 		return;
593 	}
594 
595 	rp->r_serial = curthread;
596 
597 	mutex_exit(&rp->r_statelock);
598 
599 	/*
600 	 * If we're the recov thread, then force async nfs4_purge_caches
601 	 * to avoid potential deadlock.
602 	 */
603 	if (mtime_changed)
604 		nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, recov ? 1 : async);
605 
606 	if (ctime_changed) {
607 		(void) nfs4_access_purge_rp(rp);
608 		if (rp->r_secattr != NULL) {
609 			mutex_enter(&rp->r_statelock);
610 			vsp = rp->r_secattr;
611 			rp->r_secattr = NULL;
612 			mutex_exit(&rp->r_statelock);
613 			if (vsp != NULL)
614 				nfs4_acl_free_cache(vsp);
615 		}
616 	}
617 
618 	if (!was_serial) {
619 		mutex_enter(&rp->r_statelock);
620 		rp->r_serial = NULL;
621 		cv_broadcast(&rp->r_cv);
622 		mutex_exit(&rp->r_statelock);
623 	}
624 }
625 
626 /*
627  * Set attributes cache for given vnode using virtual attributes.
628  *
629  * Set the timeout value on the attribute cache and fill it
630  * with the passed in attributes.
631  *
632  * The caller must be holding r_statelock.
633  */
634 static void
635 nfs4_attrcache_va(vnode_t *vp, nfs4_ga_res_t *garp, int set_cache_timeout)
636 {
637 	rnode4_t *rp;
638 	mntinfo4_t *mi;
639 	hrtime_t delta;
640 	hrtime_t now;
641 	vattr_t *vap = &garp->n4g_va;
642 
643 	rp = VTOR4(vp);
644 
645 	ASSERT(MUTEX_HELD(&rp->r_statelock));
646 	ASSERT(vap->va_mask == AT_ALL);
647 
648 	/* Switch to master before checking v_flag */
649 	if (IS_SHADOW(vp, rp))
650 		vp = RTOV4(rp);
651 
652 	now = gethrtime();
653 
654 	mi = VTOMI4(vp);
655 
656 	/*
657 	 * Only establish a new cache timeout (if requested).  Never
658 	 * extend a timeout.  Never clear a timeout.  Clearing a timeout
659 	 * is done by nfs4_update_dircaches (ancestor in our call chain)
660 	 */
661 	if (set_cache_timeout && ! rp->r_time_cache_inval)
662 		rp->r_time_cache_inval = now + mi->mi_acdirmax;
663 
664 	/*
665 	 * Delta is the number of nanoseconds that we will
666 	 * cache the attributes of the file.  It is based on
667 	 * the number of nanoseconds since the last time that
668 	 * we detected a change.  The assumption is that files
669 	 * that changed recently are likely to change again.
670 	 * There is a minimum and a maximum for regular files
671 	 * and for directories which is enforced though.
672 	 *
673 	 * Using the time since last change was detected
674 	 * eliminates direct comparison or calculation
675 	 * using mixed client and server times.  NFS does
676 	 * not make any assumptions regarding the client
677 	 * and server clocks being synchronized.
678 	 */
679 	if (vap->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
680 	    vap->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
681 	    vap->va_size != rp->r_attr.va_size) {
682 		rp->r_time_attr_saved = now;
683 	}
684 
685 	if ((mi->mi_flags & MI4_NOAC) || (vp->v_flag & VNOCACHE))
686 		delta = 0;
687 	else {
688 		delta = now - rp->r_time_attr_saved;
689 		if (vp->v_type == VDIR) {
690 			if (delta < mi->mi_acdirmin)
691 				delta = mi->mi_acdirmin;
692 			else if (delta > mi->mi_acdirmax)
693 				delta = mi->mi_acdirmax;
694 		} else {
695 			if (delta < mi->mi_acregmin)
696 				delta = mi->mi_acregmin;
697 			else if (delta > mi->mi_acregmax)
698 				delta = mi->mi_acregmax;
699 		}
700 	}
701 	rp->r_time_attr_inval = now + delta;
702 
703 	rp->r_attr = *vap;
704 	if (garp->n4g_change_valid)
705 		rp->r_change = garp->n4g_change;
706 
707 	/*
708 	 * The attributes that were returned may be valid and can
709 	 * be used, but they may not be allowed to be cached.
710 	 * Reset the timers to cause immediate invalidation and
711 	 * clear r_change so no VERIFY operations will suceed
712 	 */
713 	if (garp->n4g_attrwhy == NFS4_GETATTR_NOCACHE_OK) {
714 		rp->r_time_attr_inval = now;
715 		rp->r_time_attr_saved = now;
716 		rp->r_change = 0;
717 	}
718 
719 	/*
720 	 * If mounted_on_fileid returned AND the object is a stub,
721 	 * then set object's va_nodeid to the mounted over fid
722 	 * returned by server.
723 	 *
724 	 * If mounted_on_fileid not provided/supported, then
725 	 * just set it to 0 for now.  Eventually it would be
726 	 * better to set it to a hashed version of FH.  This
727 	 * would probably be good enough to provide a unique
728 	 * fid/d_ino within a dir.
729 	 *
730 	 * We don't need to carry mounted_on_fileid in the
731 	 * rnode as long as the client never requests fileid
732 	 * without also requesting mounted_on_fileid.  For
733 	 * now, it stays.
734 	 */
735 	if (garp->n4g_mon_fid_valid) {
736 		rp->r_mntd_fid = garp->n4g_mon_fid;
737 
738 		if (rp->r_flags & R4SRVSTUB)
739 			rp->r_attr.va_nodeid = rp->r_mntd_fid;
740 	}
741 
742 	/*
743 	 * Check to see if there are valid pathconf bits to
744 	 * cache in the rnode.
745 	 */
746 	if (garp->n4g_ext_res) {
747 		if (garp->n4g_ext_res->n4g_pc4.pc4_cache_valid) {
748 			rp->r_pathconf = garp->n4g_ext_res->n4g_pc4;
749 		} else {
750 			if (garp->n4g_ext_res->n4g_pc4.pc4_xattr_valid) {
751 				rp->r_pathconf.pc4_xattr_valid = TRUE;
752 				rp->r_pathconf.pc4_xattr_exists =
753 				    garp->n4g_ext_res->n4g_pc4.pc4_xattr_exists;
754 			}
755 		}
756 	}
757 	/*
758 	 * Update the size of the file if there is no cached data or if
759 	 * the cached data is clean and there is no data being written
760 	 * out.
761 	 */
762 	if (rp->r_size != vap->va_size &&
763 	    (!vn_has_cached_data(vp) ||
764 	    (!(rp->r_flags & R4DIRTY) && rp->r_count == 0))) {
765 		rp->r_size = vap->va_size;
766 	}
767 	nfs_setswaplike(vp, vap);
768 	rp->r_flags &= ~R4WRITEMODIFIED;
769 }
770 
771 /*
772  * Get attributes over-the-wire and update attributes cache
773  * if no error occurred in the over-the-wire operation.
774  * Return 0 if successful, otherwise error.
775  */
776 int
777 nfs4_getattr_otw(vnode_t *vp, nfs4_ga_res_t *garp, cred_t *cr, int get_acl)
778 {
779 	mntinfo4_t *mi = VTOMI4(vp);
780 	hrtime_t t;
781 	nfs4_recov_state_t recov_state;
782 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
783 
784 	recov_state.rs_flags = 0;
785 	recov_state.rs_num_retry_despite_err = 0;
786 
787 	/* Save the original mount point security flavor */
788 	(void) save_mnt_secinfo(mi->mi_curr_serv);
789 
790 recov_retry:
791 	if ((e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR,
792 						&recov_state, NULL))) {
793 		(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
794 		return (e.error);
795 	}
796 
797 	t = gethrtime();
798 
799 	nfs4_getattr_otw_norecovery(vp, garp, &e, cr, get_acl);
800 
801 	if (nfs4_needs_recovery(&e, FALSE, vp->v_vfsp)) {
802 		if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
803 		    NULL, OP_GETATTR, NULL) == FALSE)  {
804 			nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR,
805 					&recov_state, 1);
806 			goto recov_retry;
807 		}
808 	}
809 
810 	nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 0);
811 
812 	if (!e.error) {
813 		if (e.stat == NFS4_OK) {
814 			nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
815 		} else {
816 			e.error = geterrno4(e.stat);
817 
818 			nfs4_purge_stale_fh(e.error, vp, cr);
819 		}
820 	}
821 
822 	/*
823 	 * If getattr a node that is a stub for a crossed
824 	 * mount point, keep the original secinfo flavor for
825 	 * the current file system, not the crossed one.
826 	 */
827 	(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
828 
829 	return (e.error);
830 }
831 
832 /*
833  * Generate a compound to get attributes over-the-wire.
834  */
835 void
836 nfs4_getattr_otw_norecovery(vnode_t *vp, nfs4_ga_res_t *garp,
837 		nfs4_error_t *ep, cred_t *cr, int get_acl)
838 {
839 	COMPOUND4args_clnt args;
840 	COMPOUND4res_clnt res;
841 	int doqueue;
842 	rnode4_t *rp = VTOR4(vp);
843 	nfs_argop4 argop[2];
844 
845 	args.ctag = TAG_GETATTR;
846 
847 	args.array_len = 2;
848 	args.array = argop;
849 
850 	/* putfh */
851 	argop[0].argop = OP_CPUTFH;
852 	argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
853 
854 	/* getattr */
855 	/*
856 	 * Unlike nfs version 2 and 3, where getattr returns all the
857 	 * attributes, nfs version 4 returns only the ones explicitely
858 	 * asked for. This creates problems, as some system functions
859 	 * (e.g. cache check) require certain attributes and if the
860 	 * cached node lacks some attributes such as uid/gid, it can
861 	 * affect system utilities (e.g. "ls") that rely on the information
862 	 * to be there. This can lead to anything from system crashes to
863 	 * corrupted information processed by user apps.
864 	 * So to ensure that all bases are covered, request at least
865 	 * the AT_ALL attribute mask.
866 	 */
867 	argop[1].argop = OP_GETATTR;
868 	argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
869 	if (get_acl)
870 		argop[1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK;
871 	argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
872 
873 	doqueue = 1;
874 
875 	rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, ep);
876 
877 	if (ep->error)
878 		return;
879 
880 	if (res.status != NFS4_OK) {
881 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
882 		return;
883 	}
884 
885 	*garp = res.array[1].nfs_resop4_u.opgetattr.ga_res;
886 
887 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
888 }
889 
890 /*
891  * Return either cached or remote attributes. If get remote attr
892  * use them to check and invalidate caches, then cache the new attributes.
893  */
894 int
895 nfs4getattr(vnode_t *vp, vattr_t *vap, cred_t *cr)
896 {
897 	int error;
898 	rnode4_t *rp;
899 	nfs4_ga_res_t gar;
900 
901 	ASSERT(nfs4_consistent_type(vp));
902 
903 	/*
904 	 * If we've got cached attributes, we're done, otherwise go
905 	 * to the server to get attributes, which will update the cache
906 	 * in the process.
907 	 */
908 	rp = VTOR4(vp);
909 	mutex_enter(&rp->r_statelock);
910 	mutex_enter(&rp->r_statev4_lock);
911 	if (ATTRCACHE4_VALID(vp)) {
912 		mutex_exit(&rp->r_statev4_lock);
913 		/*
914 		 * Cached attributes are valid
915 		 * Return the client's view of file size
916 		 */
917 		*vap = rp->r_attr;
918 		vap->va_size = rp->r_size;
919 		mutex_exit(&rp->r_statelock);
920 
921 		ASSERT(nfs4_consistent_type(vp));
922 
923 		return (0);
924 	}
925 	mutex_exit(&rp->r_statev4_lock);
926 	mutex_exit(&rp->r_statelock);
927 
928 	error = nfs4_getattr_otw(vp, &gar, cr, 0);
929 	if (!error)
930 		*vap = gar.n4g_va;
931 
932 	/* Return the client's view of file size */
933 	mutex_enter(&rp->r_statelock);
934 	vap->va_size = rp->r_size;
935 	mutex_exit(&rp->r_statelock);
936 
937 	ASSERT(nfs4_consistent_type(vp));
938 
939 	return (error);
940 }
941 
942 int
943 nfs4_attr_otw(vnode_t *vp, nfs4_tag_type_t tag_type,
944 		nfs4_ga_res_t *garp, bitmap4 reqbitmap, cred_t *cr)
945 {
946 	COMPOUND4args_clnt args;
947 	COMPOUND4res_clnt res;
948 	int doqueue;
949 	nfs_argop4 argop[2];
950 	mntinfo4_t *mi = VTOMI4(vp);
951 	bool_t needrecov = FALSE;
952 	nfs4_recov_state_t recov_state;
953 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
954 	nfs4_ga_ext_res_t *gerp;
955 
956 	recov_state.rs_flags = 0;
957 	recov_state.rs_num_retry_despite_err = 0;
958 
959 recov_retry:
960 	args.ctag = tag_type;
961 
962 	args.array_len = 2;
963 	args.array = argop;
964 
965 	e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, &recov_state, NULL);
966 	if (e.error)
967 		return (e.error);
968 
969 	/* putfh */
970 	argop[0].argop = OP_CPUTFH;
971 	argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
972 
973 	/* getattr */
974 	argop[1].argop = OP_GETATTR;
975 	argop[1].nfs_argop4_u.opgetattr.attr_request = reqbitmap;
976 	argop[1].nfs_argop4_u.opgetattr.mi = mi;
977 
978 	doqueue = 1;
979 
980 	NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
981 	    "nfs4_attr_otw: %s call, rp %s", needrecov ? "recov" : "first",
982 	    rnode4info(VTOR4(vp))));
983 
984 	rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
985 
986 	needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
987 	if (!needrecov && e.error) {
988 		nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
989 			    needrecov);
990 		return (e.error);
991 	}
992 
993 	if (needrecov) {
994 		bool_t abort;
995 
996 		NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
997 		    "nfs4_attr_otw: initiating recovery\n"));
998 
999 		abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
1000 			    NULL, OP_GETATTR, NULL);
1001 		nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1002 				needrecov);
1003 		if (!e.error) {
1004 			(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1005 			e.error = geterrno4(res.status);
1006 		}
1007 		if (abort == FALSE)
1008 			goto recov_retry;
1009 		return (e.error);
1010 	}
1011 
1012 	if (res.status) {
1013 		e.error = geterrno4(res.status);
1014 	} else {
1015 		gerp = garp->n4g_ext_res;
1016 		bcopy(&res.array[1].nfs_resop4_u.opgetattr.ga_res,
1017 			garp, sizeof (nfs4_ga_res_t));
1018 		garp->n4g_ext_res = gerp;
1019 		if (garp->n4g_ext_res &&
1020 		    res.array[1].nfs_resop4_u.opgetattr.ga_res.n4g_ext_res)
1021 			bcopy(res.array[1].nfs_resop4_u.opgetattr.
1022 				ga_res.n4g_ext_res,
1023 				garp->n4g_ext_res, sizeof (nfs4_ga_ext_res_t));
1024 	}
1025 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1026 	nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1027 		    needrecov);
1028 	return (e.error);
1029 }
1030 
1031 /*
1032  * Asynchronous I/O parameters.  nfs_async_threads is the high-water mark
1033  * for the demand-based allocation of async threads per-mount.  The
1034  * nfs_async_timeout is the amount of time a thread will live after it
1035  * becomes idle, unless new I/O requests are received before the thread
1036  * dies.  See nfs4_async_putpage and nfs4_async_start.
1037  */
1038 
1039 static void	nfs4_async_start(struct vfs *);
1040 
1041 static void
1042 free_async_args4(struct nfs4_async_reqs *args)
1043 {
1044 	rnode4_t *rp;
1045 
1046 	if (args->a_io != NFS4_INACTIVE) {
1047 		rp = VTOR4(args->a_vp);
1048 		mutex_enter(&rp->r_statelock);
1049 		rp->r_count--;
1050 		if (args->a_io == NFS4_PUTAPAGE ||
1051 		    args->a_io == NFS4_PAGEIO)
1052 			rp->r_awcount--;
1053 		cv_broadcast(&rp->r_cv);
1054 		mutex_exit(&rp->r_statelock);
1055 		VN_RELE(args->a_vp);
1056 	}
1057 	crfree(args->a_cred);
1058 	kmem_free(args, sizeof (*args));
1059 }
1060 
1061 /*
1062  * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1063  * pageout(), running in the global zone, have legitimate reasons to do
1064  * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts.  We avoid the problem by
1065  * use of a a per-mount "asynchronous requests manager thread" which is
1066  * signaled by the various asynchronous work routines when there is
1067  * asynchronous work to be done.  It is responsible for creating new
1068  * worker threads if necessary, and notifying existing worker threads
1069  * that there is work to be done.
1070  *
1071  * In other words, it will "take the specifications from the customers and
1072  * give them to the engineers."
1073  *
1074  * Worker threads die off of their own accord if they are no longer
1075  * needed.
1076  *
1077  * This thread is killed when the zone is going away or the filesystem
1078  * is being unmounted.
1079  */
1080 void
1081 nfs4_async_manager(vfs_t *vfsp)
1082 {
1083 	callb_cpr_t cprinfo;
1084 	mntinfo4_t *mi;
1085 	uint_t max_threads;
1086 
1087 	mi = VFTOMI4(vfsp);
1088 
1089 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1090 		    "nfs4_async_manager");
1091 
1092 	mutex_enter(&mi->mi_async_lock);
1093 	/*
1094 	 * We want to stash the max number of threads that this mount was
1095 	 * allowed so we can use it later when the variable is set to zero as
1096 	 * part of the zone/mount going away.
1097 	 *
1098 	 * We want to be able to create at least one thread to handle
1099 	 * asyncrhonous inactive calls.
1100 	 */
1101 	max_threads = MAX(mi->mi_max_threads, 1);
1102 	mutex_enter(&mi->mi_lock);
1103 	/*
1104 	 * We don't want to wait for mi_max_threads to go to zero, since that
1105 	 * happens as part of a failed unmount, but this thread should only
1106 	 * exit when the mount is really going away.
1107 	 *
1108 	 * Once MI4_ASYNC_MGR_STOP is set, no more async operations will be
1109 	 * attempted: the various _async_*() functions know to do things
1110 	 * inline if mi_max_threads == 0.  Henceforth we just drain out the
1111 	 * outstanding requests.
1112 	 *
1113 	 * Note that we still create zthreads even if we notice the zone is
1114 	 * shutting down (MI4_ASYNC_MGR_STOP is set); this may cause the zone
1115 	 * shutdown sequence to take slightly longer in some cases, but
1116 	 * doesn't violate the protocol, as all threads will exit as soon as
1117 	 * they're done processing the remaining requests.
1118 	 */
1119 	while (!(mi->mi_flags & MI4_ASYNC_MGR_STOP) ||
1120 	    mi->mi_async_req_count > 0) {
1121 		mutex_exit(&mi->mi_lock);
1122 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1123 		cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1124 		CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1125 		while (mi->mi_async_req_count > 0) {
1126 			/*
1127 			 * Paranoia: If the mount started out having
1128 			 * (mi->mi_max_threads == 0), and the value was
1129 			 * later changed (via a debugger or somesuch),
1130 			 * we could be confused since we will think we
1131 			 * can't create any threads, and the calling
1132 			 * code (which looks at the current value of
1133 			 * mi->mi_max_threads, now non-zero) thinks we
1134 			 * can.
1135 			 *
1136 			 * So, because we're paranoid, we create threads
1137 			 * up to the maximum of the original and the
1138 			 * current value. This means that future
1139 			 * (debugger-induced) alterations of
1140 			 * mi->mi_max_threads are ignored for our
1141 			 * purposes, but who told them they could change
1142 			 * random values on a live kernel anyhow?
1143 			 */
1144 			if (mi->mi_threads <
1145 			    MAX(mi->mi_max_threads, max_threads)) {
1146 				mi->mi_threads++;
1147 				mutex_exit(&mi->mi_async_lock);
1148 				MI4_HOLD(mi);
1149 				VFS_HOLD(vfsp);	/* hold for new thread */
1150 				(void) zthread_create(NULL, 0, nfs4_async_start,
1151 				    vfsp, 0, minclsyspri);
1152 				mutex_enter(&mi->mi_async_lock);
1153 			}
1154 			cv_signal(&mi->mi_async_work_cv);
1155 			ASSERT(mi->mi_async_req_count != 0);
1156 			mi->mi_async_req_count--;
1157 		}
1158 		mutex_enter(&mi->mi_lock);
1159 	}
1160 	mutex_exit(&mi->mi_lock);
1161 
1162 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1163 	    "nfs4_async_manager exiting for vfs %p\n", (void *)mi->mi_vfsp));
1164 	/*
1165 	 * Let everyone know we're done.
1166 	 */
1167 	mi->mi_manager_thread = NULL;
1168 	/*
1169 	 * Wake up the inactive thread.
1170 	 */
1171 	cv_broadcast(&mi->mi_inact_req_cv);
1172 	/*
1173 	 * Wake up anyone sitting in nfs4_async_manager_stop()
1174 	 */
1175 	cv_broadcast(&mi->mi_async_cv);
1176 	/*
1177 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1178 	 * since CALLB_CPR_EXIT is actually responsible for releasing
1179 	 * 'mi_async_lock'.
1180 	 */
1181 	CALLB_CPR_EXIT(&cprinfo);
1182 	VFS_RELE(vfsp);	/* release thread's hold */
1183 	MI4_RELE(mi);
1184 	zthread_exit();
1185 }
1186 
1187 /*
1188  * Signal (and wait for) the async manager thread to clean up and go away.
1189  */
1190 void
1191 nfs4_async_manager_stop(vfs_t *vfsp)
1192 {
1193 	mntinfo4_t *mi = VFTOMI4(vfsp);
1194 
1195 	mutex_enter(&mi->mi_async_lock);
1196 	mutex_enter(&mi->mi_lock);
1197 	mi->mi_flags |= MI4_ASYNC_MGR_STOP;
1198 	mutex_exit(&mi->mi_lock);
1199 	cv_broadcast(&mi->mi_async_reqs_cv);
1200 	/*
1201 	 * Wait for the async manager thread to die.
1202 	 */
1203 	while (mi->mi_manager_thread != NULL)
1204 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1205 	mutex_exit(&mi->mi_async_lock);
1206 }
1207 
1208 int
1209 nfs4_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1210 	struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1211 	u_offset_t, caddr_t, struct seg *, cred_t *))
1212 {
1213 	rnode4_t *rp;
1214 	mntinfo4_t *mi;
1215 	struct nfs4_async_reqs *args;
1216 
1217 	rp = VTOR4(vp);
1218 	ASSERT(rp->r_freef == NULL);
1219 
1220 	mi = VTOMI4(vp);
1221 
1222 	/*
1223 	 * If addr falls in a different segment, don't bother doing readahead.
1224 	 */
1225 	if (addr >= seg->s_base + seg->s_size)
1226 		return (-1);
1227 
1228 	/*
1229 	 * If we can't allocate a request structure, punt on the readahead.
1230 	 */
1231 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1232 		return (-1);
1233 
1234 	/*
1235 	 * If a lock operation is pending, don't initiate any new
1236 	 * readaheads.  Otherwise, bump r_count to indicate the new
1237 	 * asynchronous I/O.
1238 	 */
1239 	if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1240 		kmem_free(args, sizeof (*args));
1241 		return (-1);
1242 	}
1243 	mutex_enter(&rp->r_statelock);
1244 	rp->r_count++;
1245 	mutex_exit(&rp->r_statelock);
1246 	nfs_rw_exit(&rp->r_lkserlock);
1247 
1248 	args->a_next = NULL;
1249 #ifdef DEBUG
1250 	args->a_queuer = curthread;
1251 #endif
1252 	VN_HOLD(vp);
1253 	args->a_vp = vp;
1254 	ASSERT(cr != NULL);
1255 	crhold(cr);
1256 	args->a_cred = cr;
1257 	args->a_io = NFS4_READ_AHEAD;
1258 	args->a_nfs4_readahead = readahead;
1259 	args->a_nfs4_blkoff = blkoff;
1260 	args->a_nfs4_seg = seg;
1261 	args->a_nfs4_addr = addr;
1262 
1263 	mutex_enter(&mi->mi_async_lock);
1264 
1265 	/*
1266 	 * If asyncio has been disabled, don't bother readahead.
1267 	 */
1268 	if (mi->mi_max_threads == 0) {
1269 		mutex_exit(&mi->mi_async_lock);
1270 		goto noasync;
1271 	}
1272 
1273 	/*
1274 	 * Link request structure into the async list and
1275 	 * wakeup async thread to do the i/o.
1276 	 */
1277 	if (mi->mi_async_reqs[NFS4_READ_AHEAD] == NULL) {
1278 		mi->mi_async_reqs[NFS4_READ_AHEAD] = args;
1279 		mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1280 	} else {
1281 		mi->mi_async_tail[NFS4_READ_AHEAD]->a_next = args;
1282 		mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1283 	}
1284 
1285 	if (mi->mi_io_kstats) {
1286 		mutex_enter(&mi->mi_lock);
1287 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1288 		mutex_exit(&mi->mi_lock);
1289 	}
1290 
1291 	mi->mi_async_req_count++;
1292 	ASSERT(mi->mi_async_req_count != 0);
1293 	cv_signal(&mi->mi_async_reqs_cv);
1294 	mutex_exit(&mi->mi_async_lock);
1295 	return (0);
1296 
1297 noasync:
1298 	mutex_enter(&rp->r_statelock);
1299 	rp->r_count--;
1300 	cv_broadcast(&rp->r_cv);
1301 	mutex_exit(&rp->r_statelock);
1302 	VN_RELE(vp);
1303 	crfree(cr);
1304 	kmem_free(args, sizeof (*args));
1305 	return (-1);
1306 }
1307 
1308 /*
1309  * The async queues for each mounted file system are arranged as a
1310  * set of queues, one for each async i/o type.  Requests are taken
1311  * from the queues in a round-robin fashion.  A number of consecutive
1312  * requests are taken from each queue before moving on to the next
1313  * queue.  This functionality may allow the NFS Version 2 server to do
1314  * write clustering, even if the client is mixing writes and reads
1315  * because it will take multiple write requests from the queue
1316  * before processing any of the other async i/o types.
1317  *
1318  * XXX The nfs4_async_start thread is unsafe in the light of the present
1319  * model defined by cpr to suspend the system. Specifically over the
1320  * wire calls are cpr-unsafe. The thread should be reevaluated in
1321  * case of future updates to the cpr model.
1322  */
1323 static void
1324 nfs4_async_start(struct vfs *vfsp)
1325 {
1326 	struct nfs4_async_reqs *args;
1327 	mntinfo4_t *mi = VFTOMI4(vfsp);
1328 	clock_t time_left = 1;
1329 	callb_cpr_t cprinfo;
1330 	int i;
1331 	extern int nfs_async_timeout;
1332 
1333 	/*
1334 	 * Dynamic initialization of nfs_async_timeout to allow nfs to be
1335 	 * built in an implementation independent manner.
1336 	 */
1337 	if (nfs_async_timeout == -1)
1338 		nfs_async_timeout = NFS_ASYNC_TIMEOUT;
1339 
1340 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
1341 
1342 	mutex_enter(&mi->mi_async_lock);
1343 	for (;;) {
1344 		/*
1345 		 * Find the next queue containing an entry.  We start
1346 		 * at the current queue pointer and then round robin
1347 		 * through all of them until we either find a non-empty
1348 		 * queue or have looked through all of them.
1349 		 */
1350 		for (i = 0; i < NFS4_ASYNC_TYPES; i++) {
1351 			args = *mi->mi_async_curr;
1352 			if (args != NULL)
1353 				break;
1354 			mi->mi_async_curr++;
1355 			if (mi->mi_async_curr ==
1356 			    &mi->mi_async_reqs[NFS4_ASYNC_TYPES])
1357 				mi->mi_async_curr = &mi->mi_async_reqs[0];
1358 		}
1359 		/*
1360 		 * If we didn't find a entry, then block until woken up
1361 		 * again and then look through the queues again.
1362 		 */
1363 		if (args == NULL) {
1364 			/*
1365 			 * Exiting is considered to be safe for CPR as well
1366 			 */
1367 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1368 
1369 			/*
1370 			 * Wakeup thread waiting to unmount the file
1371 			 * system only if all async threads are inactive.
1372 			 *
1373 			 * If we've timed-out and there's nothing to do,
1374 			 * then get rid of this thread.
1375 			 */
1376 			if (mi->mi_max_threads == 0 || time_left <= 0) {
1377 				if (--mi->mi_threads == 0)
1378 					cv_signal(&mi->mi_async_cv);
1379 				CALLB_CPR_EXIT(&cprinfo);
1380 				VFS_RELE(vfsp);	/* release thread's hold */
1381 				MI4_RELE(mi);
1382 				zthread_exit();
1383 				/* NOTREACHED */
1384 			}
1385 			time_left = cv_timedwait(&mi->mi_async_work_cv,
1386 			    &mi->mi_async_lock, nfs_async_timeout + lbolt);
1387 
1388 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1389 
1390 			continue;
1391 		} else {
1392 			time_left = 1;
1393 		}
1394 
1395 		/*
1396 		 * Remove the request from the async queue and then
1397 		 * update the current async request queue pointer.  If
1398 		 * the current queue is empty or we have removed enough
1399 		 * consecutive entries from it, then reset the counter
1400 		 * for this queue and then move the current pointer to
1401 		 * the next queue.
1402 		 */
1403 		*mi->mi_async_curr = args->a_next;
1404 		if (*mi->mi_async_curr == NULL ||
1405 		    --mi->mi_async_clusters[args->a_io] == 0) {
1406 			mi->mi_async_clusters[args->a_io] =
1407 						mi->mi_async_init_clusters;
1408 			mi->mi_async_curr++;
1409 			if (mi->mi_async_curr ==
1410 			    &mi->mi_async_reqs[NFS4_ASYNC_TYPES])
1411 				mi->mi_async_curr = &mi->mi_async_reqs[0];
1412 		}
1413 
1414 		if (args->a_io != NFS4_INACTIVE && mi->mi_io_kstats) {
1415 			mutex_enter(&mi->mi_lock);
1416 			kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1417 			mutex_exit(&mi->mi_lock);
1418 		}
1419 
1420 		mutex_exit(&mi->mi_async_lock);
1421 
1422 		/*
1423 		 * Obtain arguments from the async request structure.
1424 		 */
1425 		if (args->a_io == NFS4_READ_AHEAD && mi->mi_max_threads > 0) {
1426 			(*args->a_nfs4_readahead)(args->a_vp,
1427 					args->a_nfs4_blkoff,
1428 					args->a_nfs4_addr, args->a_nfs4_seg,
1429 					args->a_cred);
1430 		} else if (args->a_io == NFS4_PUTAPAGE) {
1431 			(void) (*args->a_nfs4_putapage)(args->a_vp,
1432 					args->a_nfs4_pp, args->a_nfs4_off,
1433 					args->a_nfs4_len, args->a_nfs4_flags,
1434 					args->a_cred);
1435 		} else if (args->a_io == NFS4_PAGEIO) {
1436 			(void) (*args->a_nfs4_pageio)(args->a_vp,
1437 					args->a_nfs4_pp, args->a_nfs4_off,
1438 					args->a_nfs4_len, args->a_nfs4_flags,
1439 					args->a_cred);
1440 		} else if (args->a_io == NFS4_READDIR) {
1441 			(void) ((*args->a_nfs4_readdir)(args->a_vp,
1442 					args->a_nfs4_rdc, args->a_cred));
1443 		} else if (args->a_io == NFS4_COMMIT) {
1444 			(*args->a_nfs4_commit)(args->a_vp, args->a_nfs4_plist,
1445 					args->a_nfs4_offset, args->a_nfs4_count,
1446 					args->a_cred);
1447 		} else if (args->a_io == NFS4_INACTIVE) {
1448 			nfs4_inactive_otw(args->a_vp, args->a_cred);
1449 		}
1450 
1451 		/*
1452 		 * Now, release the vnode and free the credentials
1453 		 * structure.
1454 		 */
1455 		free_async_args4(args);
1456 		/*
1457 		 * Reacquire the mutex because it will be needed above.
1458 		 */
1459 		mutex_enter(&mi->mi_async_lock);
1460 	}
1461 }
1462 
1463 /*
1464  * nfs4_inactive_thread - look for vnodes that need over-the-wire calls as
1465  * part of VOP_INACTIVE.
1466  */
1467 
1468 void
1469 nfs4_inactive_thread(mntinfo4_t *mi)
1470 {
1471 	struct nfs4_async_reqs *args;
1472 	callb_cpr_t cprinfo;
1473 	vfs_t *vfsp = mi->mi_vfsp;
1474 
1475 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1476 		    "nfs4_inactive_thread");
1477 
1478 	for (;;) {
1479 		mutex_enter(&mi->mi_async_lock);
1480 		args = mi->mi_async_reqs[NFS4_INACTIVE];
1481 		if (args == NULL) {
1482 			mutex_enter(&mi->mi_lock);
1483 			/*
1484 			 * We don't want to exit until the async manager is done
1485 			 * with its work; hence the check for mi_manager_thread
1486 			 * being NULL.
1487 			 *
1488 			 * The async manager thread will cv_broadcast() on
1489 			 * mi_inact_req_cv when it's done, at which point we'll
1490 			 * wake up and exit.
1491 			 */
1492 			if (mi->mi_manager_thread == NULL)
1493 				goto die;
1494 			mi->mi_flags |= MI4_INACTIVE_IDLE;
1495 			mutex_exit(&mi->mi_lock);
1496 			cv_signal(&mi->mi_async_cv);
1497 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1498 			cv_wait(&mi->mi_inact_req_cv, &mi->mi_async_lock);
1499 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1500 			mutex_exit(&mi->mi_async_lock);
1501 		} else {
1502 			mutex_enter(&mi->mi_lock);
1503 			mi->mi_flags &= ~MI4_INACTIVE_IDLE;
1504 			mutex_exit(&mi->mi_lock);
1505 			mi->mi_async_reqs[NFS4_INACTIVE] = args->a_next;
1506 			mutex_exit(&mi->mi_async_lock);
1507 			nfs4_inactive_otw(args->a_vp, args->a_cred);
1508 			crfree(args->a_cred);
1509 			kmem_free(args, sizeof (*args));
1510 		}
1511 	}
1512 die:
1513 	mutex_exit(&mi->mi_lock);
1514 	mi->mi_inactive_thread = NULL;
1515 	cv_signal(&mi->mi_async_cv);
1516 
1517 	/*
1518 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock) since
1519 	 * CALLB_CPR_EXIT is actually responsible for releasing 'mi_async_lock'.
1520 	 */
1521 	CALLB_CPR_EXIT(&cprinfo);
1522 
1523 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1524 	    "nfs4_inactive_thread exiting for vfs %p\n", (void *)vfsp));
1525 
1526 	MI4_RELE(mi);
1527 	zthread_exit();
1528 	/* NOTREACHED */
1529 }
1530 
1531 /*
1532  * nfs_async_stop:
1533  * Wait for all outstanding putpage operations and the inactive thread to
1534  * complete; nfs4_async_stop_sig() without interruptibility.
1535  */
1536 void
1537 nfs4_async_stop(struct vfs *vfsp)
1538 {
1539 	mntinfo4_t *mi = VFTOMI4(vfsp);
1540 
1541 	/*
1542 	 * Wait for all outstanding async operations to complete and for
1543 	 * worker threads to exit.
1544 	 */
1545 	mutex_enter(&mi->mi_async_lock);
1546 	mi->mi_max_threads = 0;
1547 	cv_broadcast(&mi->mi_async_work_cv);
1548 	while (mi->mi_threads != 0)
1549 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1550 
1551 	/*
1552 	 * Wait for the inactive thread to finish doing what it's doing.  It
1553 	 * won't exit until the last reference to the vfs_t goes away.
1554 	 */
1555 	if (mi->mi_inactive_thread != NULL) {
1556 		mutex_enter(&mi->mi_lock);
1557 		while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1558 		    (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1559 			mutex_exit(&mi->mi_lock);
1560 			cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1561 			mutex_enter(&mi->mi_lock);
1562 		}
1563 		mutex_exit(&mi->mi_lock);
1564 	}
1565 	mutex_exit(&mi->mi_async_lock);
1566 }
1567 
1568 /*
1569  * nfs_async_stop_sig:
1570  * Wait for all outstanding putpage operations and the inactive thread to
1571  * complete. If a signal is delivered we will abort and return non-zero;
1572  * otherwise return 0. Since this routine is called from nfs4_unmount, we
1573  * need to make it interruptable.
1574  */
1575 int
1576 nfs4_async_stop_sig(struct vfs *vfsp)
1577 {
1578 	mntinfo4_t *mi = VFTOMI4(vfsp);
1579 	ushort_t omax;
1580 	bool_t intr = FALSE;
1581 
1582 	/*
1583 	 * Wait for all outstanding putpage operations to complete and for
1584 	 * worker threads to exit.
1585 	 */
1586 	mutex_enter(&mi->mi_async_lock);
1587 	omax = mi->mi_max_threads;
1588 	mi->mi_max_threads = 0;
1589 	cv_broadcast(&mi->mi_async_work_cv);
1590 	while (mi->mi_threads != 0) {
1591 		if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) {
1592 			intr = TRUE;
1593 			goto interrupted;
1594 		}
1595 	}
1596 
1597 	/*
1598 	 * Wait for the inactive thread to finish doing what it's doing.  It
1599 	 * won't exit until the a last reference to the vfs_t goes away.
1600 	 */
1601 	if (mi->mi_inactive_thread != NULL) {
1602 		mutex_enter(&mi->mi_lock);
1603 		while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1604 		    (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1605 			mutex_exit(&mi->mi_lock);
1606 			if (!cv_wait_sig(&mi->mi_async_cv,
1607 			    &mi->mi_async_lock)) {
1608 				intr = TRUE;
1609 				goto interrupted;
1610 			}
1611 			mutex_enter(&mi->mi_lock);
1612 		}
1613 		mutex_exit(&mi->mi_lock);
1614 	}
1615 interrupted:
1616 	if (intr)
1617 		mi->mi_max_threads = omax;
1618 	mutex_exit(&mi->mi_async_lock);
1619 
1620 	return (intr);
1621 }
1622 
1623 int
1624 nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1625 	int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1626 	u_offset_t, size_t, int, cred_t *))
1627 {
1628 	rnode4_t *rp;
1629 	mntinfo4_t *mi;
1630 	struct nfs4_async_reqs *args;
1631 
1632 	ASSERT(flags & B_ASYNC);
1633 	ASSERT(vp->v_vfsp != NULL);
1634 
1635 	rp = VTOR4(vp);
1636 	ASSERT(rp->r_count > 0);
1637 
1638 	mi = VTOMI4(vp);
1639 
1640 	/*
1641 	 * If we can't allocate a request structure, do the putpage
1642 	 * operation synchronously in this thread's context.
1643 	 */
1644 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1645 		goto noasync;
1646 
1647 	args->a_next = NULL;
1648 #ifdef DEBUG
1649 	args->a_queuer = curthread;
1650 #endif
1651 	VN_HOLD(vp);
1652 	args->a_vp = vp;
1653 	ASSERT(cr != NULL);
1654 	crhold(cr);
1655 	args->a_cred = cr;
1656 	args->a_io = NFS4_PUTAPAGE;
1657 	args->a_nfs4_putapage = putapage;
1658 	args->a_nfs4_pp = pp;
1659 	args->a_nfs4_off = off;
1660 	args->a_nfs4_len = (uint_t)len;
1661 	args->a_nfs4_flags = flags;
1662 
1663 	mutex_enter(&mi->mi_async_lock);
1664 
1665 	/*
1666 	 * If asyncio has been disabled, then make a synchronous request.
1667 	 * This check is done a second time in case async io was diabled
1668 	 * while this thread was blocked waiting for memory pressure to
1669 	 * reduce or for the queue to drain.
1670 	 */
1671 	if (mi->mi_max_threads == 0) {
1672 		mutex_exit(&mi->mi_async_lock);
1673 
1674 		VN_RELE(vp);
1675 		crfree(cr);
1676 		kmem_free(args, sizeof (*args));
1677 		goto noasync;
1678 	}
1679 
1680 	/*
1681 	 * Link request structure into the async list and
1682 	 * wakeup async thread to do the i/o.
1683 	 */
1684 	if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) {
1685 		mi->mi_async_reqs[NFS4_PUTAPAGE] = args;
1686 		mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1687 	} else {
1688 		mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args;
1689 		mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1690 	}
1691 
1692 	mutex_enter(&rp->r_statelock);
1693 	rp->r_count++;
1694 	rp->r_awcount++;
1695 	mutex_exit(&rp->r_statelock);
1696 
1697 	if (mi->mi_io_kstats) {
1698 		mutex_enter(&mi->mi_lock);
1699 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1700 		mutex_exit(&mi->mi_lock);
1701 	}
1702 
1703 	mi->mi_async_req_count++;
1704 	ASSERT(mi->mi_async_req_count != 0);
1705 	cv_signal(&mi->mi_async_reqs_cv);
1706 	mutex_exit(&mi->mi_async_lock);
1707 	return (0);
1708 
1709 noasync:
1710 
1711 	if (curproc == proc_pageout || curproc == proc_fsflush ||
1712 	    nfs_zone() == mi->mi_zone) {
1713 		/*
1714 		 * If we get here in the context of the pageout/fsflush,
1715 		 * or we have run out of memory or we're attempting to
1716 		 * unmount we refuse to do a sync write, because this may
1717 		 * hang pageout/fsflush and the machine. In this case,
1718 		 * we just re-mark the page as dirty and punt on the page.
1719 		 *
1720 		 * Make sure B_FORCE isn't set.  We can re-mark the
1721 		 * pages as dirty and unlock the pages in one swoop by
1722 		 * passing in B_ERROR to pvn_write_done().  However,
1723 		 * we should make sure B_FORCE isn't set - we don't
1724 		 * want the page tossed before it gets written out.
1725 		 */
1726 		if (flags & B_FORCE)
1727 			flags &= ~(B_INVAL | B_FORCE);
1728 		pvn_write_done(pp, flags | B_ERROR);
1729 		return (0);
1730 	}
1731 
1732 	/*
1733 	 * We'll get here only if (nfs_zone() != mi->mi_zone)
1734 	 * which means that this was a cross-zone sync putpage.
1735 	 *
1736 	 * We pass in B_ERROR to pvn_write_done() to re-mark the pages
1737 	 * as dirty and unlock them.
1738 	 *
1739 	 * We don't want to clear B_FORCE here as the caller presumably
1740 	 * knows what they're doing if they set it.
1741 	 */
1742 	pvn_write_done(pp, flags | B_ERROR);
1743 	return (EPERM);
1744 }
1745 
1746 int
1747 nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1748 	int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1749 	size_t, int, cred_t *))
1750 {
1751 	rnode4_t *rp;
1752 	mntinfo4_t *mi;
1753 	struct nfs4_async_reqs *args;
1754 
1755 	ASSERT(flags & B_ASYNC);
1756 	ASSERT(vp->v_vfsp != NULL);
1757 
1758 	rp = VTOR4(vp);
1759 	ASSERT(rp->r_count > 0);
1760 
1761 	mi = VTOMI4(vp);
1762 
1763 	/*
1764 	 * If we can't allocate a request structure, do the pageio
1765 	 * request synchronously in this thread's context.
1766 	 */
1767 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1768 		goto noasync;
1769 
1770 	args->a_next = NULL;
1771 #ifdef DEBUG
1772 	args->a_queuer = curthread;
1773 #endif
1774 	VN_HOLD(vp);
1775 	args->a_vp = vp;
1776 	ASSERT(cr != NULL);
1777 	crhold(cr);
1778 	args->a_cred = cr;
1779 	args->a_io = NFS4_PAGEIO;
1780 	args->a_nfs4_pageio = pageio;
1781 	args->a_nfs4_pp = pp;
1782 	args->a_nfs4_off = io_off;
1783 	args->a_nfs4_len = (uint_t)io_len;
1784 	args->a_nfs4_flags = flags;
1785 
1786 	mutex_enter(&mi->mi_async_lock);
1787 
1788 	/*
1789 	 * If asyncio has been disabled, then make a synchronous request.
1790 	 * This check is done a second time in case async io was diabled
1791 	 * while this thread was blocked waiting for memory pressure to
1792 	 * reduce or for the queue to drain.
1793 	 */
1794 	if (mi->mi_max_threads == 0) {
1795 		mutex_exit(&mi->mi_async_lock);
1796 
1797 		VN_RELE(vp);
1798 		crfree(cr);
1799 		kmem_free(args, sizeof (*args));
1800 		goto noasync;
1801 	}
1802 
1803 	/*
1804 	 * Link request structure into the async list and
1805 	 * wakeup async thread to do the i/o.
1806 	 */
1807 	if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) {
1808 		mi->mi_async_reqs[NFS4_PAGEIO] = args;
1809 		mi->mi_async_tail[NFS4_PAGEIO] = args;
1810 	} else {
1811 		mi->mi_async_tail[NFS4_PAGEIO]->a_next = args;
1812 		mi->mi_async_tail[NFS4_PAGEIO] = args;
1813 	}
1814 
1815 	mutex_enter(&rp->r_statelock);
1816 	rp->r_count++;
1817 	rp->r_awcount++;
1818 	mutex_exit(&rp->r_statelock);
1819 
1820 	if (mi->mi_io_kstats) {
1821 		mutex_enter(&mi->mi_lock);
1822 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1823 		mutex_exit(&mi->mi_lock);
1824 	}
1825 
1826 	mi->mi_async_req_count++;
1827 	ASSERT(mi->mi_async_req_count != 0);
1828 	cv_signal(&mi->mi_async_reqs_cv);
1829 	mutex_exit(&mi->mi_async_lock);
1830 	return (0);
1831 
1832 noasync:
1833 	/*
1834 	 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1835 	 * the page list), for writes we do it synchronously, except for
1836 	 * proc_pageout/proc_fsflush as described below.
1837 	 */
1838 	if (flags & B_READ) {
1839 		pvn_read_done(pp, flags | B_ERROR);
1840 		return (0);
1841 	}
1842 
1843 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1844 		/*
1845 		 * If we get here in the context of the pageout/fsflush,
1846 		 * we refuse to do a sync write, because this may hang
1847 		 * pageout/fsflush (and the machine). In this case, we just
1848 		 * re-mark the page as dirty and punt on the page.
1849 		 *
1850 		 * Make sure B_FORCE isn't set.  We can re-mark the
1851 		 * pages as dirty and unlock the pages in one swoop by
1852 		 * passing in B_ERROR to pvn_write_done().  However,
1853 		 * we should make sure B_FORCE isn't set - we don't
1854 		 * want the page tossed before it gets written out.
1855 		 */
1856 		if (flags & B_FORCE)
1857 			flags &= ~(B_INVAL | B_FORCE);
1858 		pvn_write_done(pp, flags | B_ERROR);
1859 		return (0);
1860 	}
1861 
1862 	if (nfs_zone() != mi->mi_zone) {
1863 		/*
1864 		 * So this was a cross-zone sync pageio.  We pass in B_ERROR
1865 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1866 		 * them.
1867 		 *
1868 		 * We don't want to clear B_FORCE here as the caller presumably
1869 		 * knows what they're doing if they set it.
1870 		 */
1871 		pvn_write_done(pp, flags | B_ERROR);
1872 		return (EPERM);
1873 	}
1874 	return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1875 }
1876 
1877 void
1878 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr,
1879 	int (*readdir)(vnode_t *, rddir4_cache *, cred_t *))
1880 {
1881 	rnode4_t *rp;
1882 	mntinfo4_t *mi;
1883 	struct nfs4_async_reqs *args;
1884 
1885 	rp = VTOR4(vp);
1886 	ASSERT(rp->r_freef == NULL);
1887 
1888 	mi = VTOMI4(vp);
1889 
1890 	/*
1891 	 * If we can't allocate a request structure, skip the readdir.
1892 	 */
1893 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1894 		goto noasync;
1895 
1896 	args->a_next = NULL;
1897 #ifdef DEBUG
1898 	args->a_queuer = curthread;
1899 #endif
1900 	VN_HOLD(vp);
1901 	args->a_vp = vp;
1902 	ASSERT(cr != NULL);
1903 	crhold(cr);
1904 	args->a_cred = cr;
1905 	args->a_io = NFS4_READDIR;
1906 	args->a_nfs4_readdir = readdir;
1907 	args->a_nfs4_rdc = rdc;
1908 
1909 	mutex_enter(&mi->mi_async_lock);
1910 
1911 	/*
1912 	 * If asyncio has been disabled, then skip this request
1913 	 */
1914 	if (mi->mi_max_threads == 0) {
1915 		mutex_exit(&mi->mi_async_lock);
1916 
1917 		VN_RELE(vp);
1918 		crfree(cr);
1919 		kmem_free(args, sizeof (*args));
1920 		goto noasync;
1921 	}
1922 
1923 	/*
1924 	 * Link request structure into the async list and
1925 	 * wakeup async thread to do the i/o.
1926 	 */
1927 	if (mi->mi_async_reqs[NFS4_READDIR] == NULL) {
1928 		mi->mi_async_reqs[NFS4_READDIR] = args;
1929 		mi->mi_async_tail[NFS4_READDIR] = args;
1930 	} else {
1931 		mi->mi_async_tail[NFS4_READDIR]->a_next = args;
1932 		mi->mi_async_tail[NFS4_READDIR] = args;
1933 	}
1934 
1935 	mutex_enter(&rp->r_statelock);
1936 	rp->r_count++;
1937 	mutex_exit(&rp->r_statelock);
1938 
1939 	if (mi->mi_io_kstats) {
1940 		mutex_enter(&mi->mi_lock);
1941 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1942 		mutex_exit(&mi->mi_lock);
1943 	}
1944 
1945 	mi->mi_async_req_count++;
1946 	ASSERT(mi->mi_async_req_count != 0);
1947 	cv_signal(&mi->mi_async_reqs_cv);
1948 	mutex_exit(&mi->mi_async_lock);
1949 	return;
1950 
1951 noasync:
1952 	mutex_enter(&rp->r_statelock);
1953 	rdc->entries = NULL;
1954 	/*
1955 	 * Indicate that no one is trying to fill this entry and
1956 	 * it still needs to be filled.
1957 	 */
1958 	rdc->flags &= ~RDDIR;
1959 	rdc->flags |= RDDIRREQ;
1960 	rddir4_cache_rele(rp, rdc);
1961 	mutex_exit(&rp->r_statelock);
1962 }
1963 
1964 void
1965 nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
1966 	cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
1967 	cred_t *))
1968 {
1969 	rnode4_t *rp;
1970 	mntinfo4_t *mi;
1971 	struct nfs4_async_reqs *args;
1972 	page_t *pp;
1973 
1974 	rp = VTOR4(vp);
1975 	mi = VTOMI4(vp);
1976 
1977 	/*
1978 	 * If we can't allocate a request structure, do the commit
1979 	 * operation synchronously in this thread's context.
1980 	 */
1981 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1982 		goto noasync;
1983 
1984 	args->a_next = NULL;
1985 #ifdef DEBUG
1986 	args->a_queuer = curthread;
1987 #endif
1988 	VN_HOLD(vp);
1989 	args->a_vp = vp;
1990 	ASSERT(cr != NULL);
1991 	crhold(cr);
1992 	args->a_cred = cr;
1993 	args->a_io = NFS4_COMMIT;
1994 	args->a_nfs4_commit = commit;
1995 	args->a_nfs4_plist = plist;
1996 	args->a_nfs4_offset = offset;
1997 	args->a_nfs4_count = count;
1998 
1999 	mutex_enter(&mi->mi_async_lock);
2000 
2001 	/*
2002 	 * If asyncio has been disabled, then make a synchronous request.
2003 	 * This check is done a second time in case async io was diabled
2004 	 * while this thread was blocked waiting for memory pressure to
2005 	 * reduce or for the queue to drain.
2006 	 */
2007 	if (mi->mi_max_threads == 0) {
2008 		mutex_exit(&mi->mi_async_lock);
2009 
2010 		VN_RELE(vp);
2011 		crfree(cr);
2012 		kmem_free(args, sizeof (*args));
2013 		goto noasync;
2014 	}
2015 
2016 	/*
2017 	 * Link request structure into the async list and
2018 	 * wakeup async thread to do the i/o.
2019 	 */
2020 	if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) {
2021 		mi->mi_async_reqs[NFS4_COMMIT] = args;
2022 		mi->mi_async_tail[NFS4_COMMIT] = args;
2023 	} else {
2024 		mi->mi_async_tail[NFS4_COMMIT]->a_next = args;
2025 		mi->mi_async_tail[NFS4_COMMIT] = args;
2026 	}
2027 
2028 	mutex_enter(&rp->r_statelock);
2029 	rp->r_count++;
2030 	mutex_exit(&rp->r_statelock);
2031 
2032 	if (mi->mi_io_kstats) {
2033 		mutex_enter(&mi->mi_lock);
2034 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2035 		mutex_exit(&mi->mi_lock);
2036 	}
2037 
2038 	mi->mi_async_req_count++;
2039 	ASSERT(mi->mi_async_req_count != 0);
2040 	cv_signal(&mi->mi_async_reqs_cv);
2041 	mutex_exit(&mi->mi_async_lock);
2042 	return;
2043 
2044 noasync:
2045 	if (curproc == proc_pageout || curproc == proc_fsflush ||
2046 	    nfs_zone() != mi->mi_zone) {
2047 		while (plist != NULL) {
2048 			pp = plist;
2049 			page_sub(&plist, pp);
2050 			pp->p_fsdata = C_COMMIT;
2051 			page_unlock(pp);
2052 		}
2053 		return;
2054 	}
2055 	(*commit)(vp, plist, offset, count, cr);
2056 }
2057 
2058 /*
2059  * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread.  The
2060  * reference to the vnode is handed over to the thread; the caller should
2061  * no longer refer to the vnode.
2062  *
2063  * Unlike most of the async routines, this handoff is needed for
2064  * correctness reasons, not just performance.  So doing operations in the
2065  * context of the current thread is not an option.
2066  */
2067 void
2068 nfs4_async_inactive(vnode_t *vp, cred_t *cr)
2069 {
2070 	mntinfo4_t *mi;
2071 	struct nfs4_async_reqs *args;
2072 	boolean_t signal_inactive_thread = B_FALSE;
2073 
2074 	mi = VTOMI4(vp);
2075 
2076 	args = kmem_alloc(sizeof (*args), KM_SLEEP);
2077 	args->a_next = NULL;
2078 #ifdef DEBUG
2079 	args->a_queuer = curthread;
2080 #endif
2081 	args->a_vp = vp;
2082 	ASSERT(cr != NULL);
2083 	crhold(cr);
2084 	args->a_cred = cr;
2085 	args->a_io = NFS4_INACTIVE;
2086 
2087 	/*
2088 	 * Note that we don't check mi->mi_max_threads here, since we
2089 	 * *need* to get rid of this vnode regardless of whether someone
2090 	 * set nfs4_max_threads to zero in /etc/system.
2091 	 *
2092 	 * The manager thread knows about this and is willing to create
2093 	 * at least one thread to accomodate us.
2094 	 */
2095 	mutex_enter(&mi->mi_async_lock);
2096 	if (mi->mi_inactive_thread == NULL) {
2097 		rnode4_t *rp;
2098 		vnode_t *unldvp = NULL;
2099 		char *unlname;
2100 		cred_t *unlcred;
2101 
2102 		mutex_exit(&mi->mi_async_lock);
2103 		/*
2104 		 * We just need to free up the memory associated with the
2105 		 * vnode, which can be safely done from within the current
2106 		 * context.
2107 		 */
2108 		crfree(cr);	/* drop our reference */
2109 		kmem_free(args, sizeof (*args));
2110 		rp = VTOR4(vp);
2111 		mutex_enter(&rp->r_statelock);
2112 		if (rp->r_unldvp != NULL) {
2113 			unldvp = rp->r_unldvp;
2114 			rp->r_unldvp = NULL;
2115 			unlname = rp->r_unlname;
2116 			rp->r_unlname = NULL;
2117 			unlcred = rp->r_unlcred;
2118 			rp->r_unlcred = NULL;
2119 		}
2120 		mutex_exit(&rp->r_statelock);
2121 		/*
2122 		 * No need to explicitly throw away any cached pages.  The
2123 		 * eventual r4inactive() will attempt a synchronous
2124 		 * VOP_PUTPAGE() which will immediately fail since the request
2125 		 * is coming from the wrong zone, and then will proceed to call
2126 		 * nfs4_invalidate_pages() which will clean things up for us.
2127 		 *
2128 		 * Throw away the delegation here so rp4_addfree()'s attempt to
2129 		 * return any existing delegations becomes a no-op.
2130 		 */
2131 		if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
2132 			(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
2133 				FALSE);
2134 			(void) nfs4delegreturn(rp, NFS4_DR_DISCARD);
2135 			nfs_rw_exit(&mi->mi_recovlock);
2136 		}
2137 		nfs4_clear_open_streams(rp);
2138 
2139 		rp4_addfree(rp, cr);
2140 		if (unldvp != NULL) {
2141 			kmem_free(unlname, MAXNAMELEN);
2142 			VN_RELE(unldvp);
2143 			crfree(unlcred);
2144 		}
2145 		return;
2146 	}
2147 
2148 	if (mi->mi_manager_thread == NULL) {
2149 		/*
2150 		 * We want to talk to the inactive thread.
2151 		 */
2152 		signal_inactive_thread = B_TRUE;
2153 	}
2154 
2155 	/*
2156 	 * Enqueue the vnode and wake up either the special thread (empty
2157 	 * list) or an async thread.
2158 	 */
2159 	if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) {
2160 		mi->mi_async_reqs[NFS4_INACTIVE] = args;
2161 		mi->mi_async_tail[NFS4_INACTIVE] = args;
2162 		signal_inactive_thread = B_TRUE;
2163 	} else {
2164 		mi->mi_async_tail[NFS4_INACTIVE]->a_next = args;
2165 		mi->mi_async_tail[NFS4_INACTIVE] = args;
2166 	}
2167 	if (signal_inactive_thread) {
2168 		cv_signal(&mi->mi_inact_req_cv);
2169 	} else  {
2170 		mi->mi_async_req_count++;
2171 		ASSERT(mi->mi_async_req_count != 0);
2172 		cv_signal(&mi->mi_async_reqs_cv);
2173 	}
2174 
2175 	mutex_exit(&mi->mi_async_lock);
2176 }
2177 
2178 int
2179 writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2180 {
2181 	int pagecreate;
2182 	int n;
2183 	int saved_n;
2184 	caddr_t saved_base;
2185 	u_offset_t offset;
2186 	int error;
2187 	int sm_error;
2188 
2189 	ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2190 	ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2191 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2192 
2193 	/*
2194 	 * Move bytes in at most PAGESIZE chunks. We must avoid
2195 	 * spanning pages in uiomove() because page faults may cause
2196 	 * the cache to be invalidated out from under us. The r_size is not
2197 	 * updated until after the uiomove. If we push the last page of a
2198 	 * file before r_size is correct, we will lose the data written past
2199 	 * the current (and invalid) r_size.
2200 	 */
2201 	do {
2202 		offset = uio->uio_loffset;
2203 		pagecreate = 0;
2204 
2205 		/*
2206 		 * n is the number of bytes required to satisfy the request
2207 		 *   or the number of bytes to fill out the page.
2208 		 */
2209 		n = (int)MIN((PAGESIZE - ((uintptr_t)base & PAGEOFFSET)),
2210 		    tcount);
2211 
2212 		/*
2213 		 * Check to see if we can skip reading in the page
2214 		 * and just allocate the memory.  We can do this
2215 		 * if we are going to rewrite the entire mapping
2216 		 * or if we are going to write to or beyond the current
2217 		 * end of file from the beginning of the mapping.
2218 		 *
2219 		 * The read of r_size is now protected by r_statelock.
2220 		 */
2221 		mutex_enter(&rp->r_statelock);
2222 		/*
2223 		 * When pgcreated is nonzero the caller has already done
2224 		 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2225 		 * segkpm this means we already have at least one page
2226 		 * created and mapped at base.
2227 		 */
2228 		pagecreate = pgcreated ||
2229 			(((uintptr_t)base & PAGEOFFSET) == 0 &&
2230 			(n == PAGESIZE || ((offset + n) >= rp->r_size)));
2231 
2232 		mutex_exit(&rp->r_statelock);
2233 
2234 		if (pagecreate) {
2235 			/*
2236 			 * The last argument tells segmap_pagecreate() to
2237 			 * always lock the page, as opposed to sometimes
2238 			 * returning with the page locked. This way we avoid a
2239 			 * fault on the ensuing uiomove(), but also
2240 			 * more importantly (to fix bug 1094402) we can
2241 			 * call segmap_fault() to unlock the page in all
2242 			 * cases. An alternative would be to modify
2243 			 * segmap_pagecreate() to tell us when it is
2244 			 * locking a page, but that's a fairly major
2245 			 * interface change.
2246 			 */
2247 			if (pgcreated == 0)
2248 				(void) segmap_pagecreate(segkmap, base,
2249 							(uint_t)n, 1);
2250 			saved_base = base;
2251 			saved_n = n;
2252 		}
2253 
2254 		/*
2255 		 * The number of bytes of data in the last page can not
2256 		 * be accurately be determined while page is being
2257 		 * uiomove'd to and the size of the file being updated.
2258 		 * Thus, inform threads which need to know accurately
2259 		 * how much data is in the last page of the file.  They
2260 		 * will not do the i/o immediately, but will arrange for
2261 		 * the i/o to happen later when this modify operation
2262 		 * will have finished.
2263 		 */
2264 		ASSERT(!(rp->r_flags & R4MODINPROGRESS));
2265 		mutex_enter(&rp->r_statelock);
2266 		rp->r_flags |= R4MODINPROGRESS;
2267 		rp->r_modaddr = (offset & MAXBMASK);
2268 		mutex_exit(&rp->r_statelock);
2269 
2270 		error = uiomove(base, n, UIO_WRITE, uio);
2271 
2272 		/*
2273 		 * r_size is the maximum number of
2274 		 * bytes known to be in the file.
2275 		 * Make sure it is at least as high as the
2276 		 * first unwritten byte pointed to by uio_loffset.
2277 		 */
2278 		mutex_enter(&rp->r_statelock);
2279 		if (rp->r_size < uio->uio_loffset)
2280 			rp->r_size = uio->uio_loffset;
2281 		rp->r_flags &= ~R4MODINPROGRESS;
2282 		rp->r_flags |= R4DIRTY;
2283 		mutex_exit(&rp->r_statelock);
2284 
2285 		/* n = # of bytes written */
2286 		n = (int)(uio->uio_loffset - offset);
2287 		base += n;
2288 		tcount -= n;
2289 		/*
2290 		 * If we created pages w/o initializing them completely,
2291 		 * we need to zero the part that wasn't set up.
2292 		 * This happens on a most EOF write cases and if
2293 		 * we had some sort of error during the uiomove.
2294 		 */
2295 		if (pagecreate) {
2296 			if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2297 				(void) kzero(base, PAGESIZE - n);
2298 
2299 			if (pgcreated) {
2300 				/*
2301 				 * Caller is responsible for this page,
2302 				 * it was not created in this loop.
2303 				 */
2304 				pgcreated = 0;
2305 			} else {
2306 				/*
2307 				 * For bug 1094402: segmap_pagecreate locks
2308 				 * page. Unlock it. This also unlocks the
2309 				 * pages allocated by page_create_va() in
2310 				 * segmap_pagecreate().
2311 				 */
2312 				sm_error = segmap_fault(kas.a_hat, segkmap,
2313 						saved_base, saved_n,
2314 						F_SOFTUNLOCK, S_WRITE);
2315 				if (error == 0)
2316 					error = sm_error;
2317 			}
2318 		}
2319 	} while (tcount > 0 && error == 0);
2320 
2321 	return (error);
2322 }
2323 
2324 int
2325 nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2326 {
2327 	rnode4_t *rp;
2328 	page_t *pp;
2329 	u_offset_t eoff;
2330 	u_offset_t io_off;
2331 	size_t io_len;
2332 	int error;
2333 	int rdirty;
2334 	int err;
2335 
2336 	rp = VTOR4(vp);
2337 	ASSERT(rp->r_count > 0);
2338 
2339 	if (!nfs4_has_pages(vp))
2340 		return (0);
2341 
2342 	ASSERT(vp->v_type != VCHR);
2343 
2344 	/*
2345 	 * If R4OUTOFSPACE is set, then all writes turn into B_INVAL
2346 	 * writes.  B_FORCE is set to force the VM system to actually
2347 	 * invalidate the pages, even if the i/o failed.  The pages
2348 	 * need to get invalidated because they can't be written out
2349 	 * because there isn't any space left on either the server's
2350 	 * file system or in the user's disk quota.  The B_FREE bit
2351 	 * is cleared to avoid confusion as to whether this is a
2352 	 * request to place the page on the freelist or to destroy
2353 	 * it.
2354 	 */
2355 	if ((rp->r_flags & R4OUTOFSPACE) ||
2356 	    (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2357 		flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2358 
2359 	if (len == 0) {
2360 		/*
2361 		 * If doing a full file synchronous operation, then clear
2362 		 * the R4DIRTY bit.  If a page gets dirtied while the flush
2363 		 * is happening, then R4DIRTY will get set again.  The
2364 		 * R4DIRTY bit must get cleared before the flush so that
2365 		 * we don't lose this information.
2366 		 */
2367 		if (off == (u_offset_t)0 &&
2368 		    !(flags & B_ASYNC) &&
2369 		    (rp->r_flags & R4DIRTY)) {
2370 			mutex_enter(&rp->r_statelock);
2371 			rdirty = (rp->r_flags & R4DIRTY);
2372 			rp->r_flags &= ~R4DIRTY;
2373 			mutex_exit(&rp->r_statelock);
2374 		} else
2375 			rdirty = 0;
2376 
2377 		/*
2378 		 * Search the entire vp list for pages >= off, and flush
2379 		 * the dirty pages.
2380 		 */
2381 		error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2382 					flags, cr);
2383 
2384 		/*
2385 		 * If an error occured and the file was marked as dirty
2386 		 * before and we aren't forcibly invalidating pages, then
2387 		 * reset the R4DIRTY flag.
2388 		 */
2389 		if (error && rdirty &&
2390 		    (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2391 			mutex_enter(&rp->r_statelock);
2392 			rp->r_flags |= R4DIRTY;
2393 			mutex_exit(&rp->r_statelock);
2394 		}
2395 	} else {
2396 		/*
2397 		 * Do a range from [off...off + len) looking for pages
2398 		 * to deal with.
2399 		 */
2400 		error = 0;
2401 		io_len = 0;
2402 		eoff = off + len;
2403 		mutex_enter(&rp->r_statelock);
2404 		for (io_off = off; io_off < eoff && io_off < rp->r_size;
2405 		    io_off += io_len) {
2406 			mutex_exit(&rp->r_statelock);
2407 			/*
2408 			 * If we are not invalidating, synchronously
2409 			 * freeing or writing pages use the routine
2410 			 * page_lookup_nowait() to prevent reclaiming
2411 			 * them from the free list.
2412 			 */
2413 			if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2414 				pp = page_lookup(vp, io_off,
2415 				    (flags & (B_INVAL | B_FREE)) ?
2416 				    SE_EXCL : SE_SHARED);
2417 			} else {
2418 				pp = page_lookup_nowait(vp, io_off,
2419 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2420 			}
2421 
2422 			if (pp == NULL || !pvn_getdirty(pp, flags))
2423 				io_len = PAGESIZE;
2424 			else {
2425 				err = (*rp->r_putapage)(vp, pp, &io_off,
2426 				    &io_len, flags, cr);
2427 				if (!error)
2428 					error = err;
2429 				/*
2430 				 * "io_off" and "io_len" are returned as
2431 				 * the range of pages we actually wrote.
2432 				 * This allows us to skip ahead more quickly
2433 				 * since several pages may've been dealt
2434 				 * with by this iteration of the loop.
2435 				 */
2436 			}
2437 			mutex_enter(&rp->r_statelock);
2438 		}
2439 		mutex_exit(&rp->r_statelock);
2440 	}
2441 
2442 	return (error);
2443 }
2444 
2445 void
2446 nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2447 {
2448 	rnode4_t *rp;
2449 
2450 	rp = VTOR4(vp);
2451 	if (IS_SHADOW(vp, rp))
2452 		vp = RTOV4(rp);
2453 	mutex_enter(&rp->r_statelock);
2454 	while (rp->r_flags & R4TRUNCATE)
2455 		cv_wait(&rp->r_cv, &rp->r_statelock);
2456 	rp->r_flags |= R4TRUNCATE;
2457 	if (off == (u_offset_t)0) {
2458 		rp->r_flags &= ~R4DIRTY;
2459 		if (!(rp->r_flags & R4STALE))
2460 			rp->r_error = 0;
2461 	}
2462 	rp->r_truncaddr = off;
2463 	mutex_exit(&rp->r_statelock);
2464 	(void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2465 		B_INVAL | B_TRUNC, cr);
2466 	mutex_enter(&rp->r_statelock);
2467 	rp->r_flags &= ~R4TRUNCATE;
2468 	cv_broadcast(&rp->r_cv);
2469 	mutex_exit(&rp->r_statelock);
2470 }
2471 
2472 static int
2473 nfs4_mnt_kstat_update(kstat_t *ksp, int rw)
2474 {
2475 	mntinfo4_t *mi;
2476 	struct mntinfo_kstat *mik;
2477 	vfs_t *vfsp;
2478 
2479 	/* this is a read-only kstat. Bail out on a write */
2480 	if (rw == KSTAT_WRITE)
2481 		return (EACCES);
2482 
2483 
2484 	/*
2485 	 * We don't want to wait here as kstat_chain_lock could be held by
2486 	 * dounmount(). dounmount() takes vfs_reflock before the chain lock
2487 	 * and thus could lead to a deadlock.
2488 	 */
2489 	vfsp = (struct vfs *)ksp->ks_private;
2490 
2491 	mi = VFTOMI4(vfsp);
2492 	mik = (struct mntinfo_kstat *)ksp->ks_data;
2493 
2494 	(void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
2495 
2496 	mik->mik_vers = (uint32_t)mi->mi_vers;
2497 	mik->mik_flags = mi->mi_flags;
2498 	/*
2499 	 * The sv_secdata holds the flavor the client specifies.
2500 	 * If the client uses default and a security negotiation
2501 	 * occurs, sv_currsec will point to the current flavor
2502 	 * selected from the server flavor list.
2503 	 * sv_currsec is NULL if no security negotiation takes place.
2504 	 */
2505 	mik->mik_secmod = mi->mi_curr_serv->sv_currsec ?
2506 			mi->mi_curr_serv->sv_currsec->secmod :
2507 			mi->mi_curr_serv->sv_secdata->secmod;
2508 	mik->mik_curread = (uint32_t)mi->mi_curread;
2509 	mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
2510 	mik->mik_retrans = mi->mi_retrans;
2511 	mik->mik_timeo = mi->mi_timeo;
2512 	mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
2513 	mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
2514 	mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
2515 	mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
2516 	mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
2517 	mik->mik_failover = (uint32_t)mi->mi_failover;
2518 	mik->mik_remap = (uint32_t)mi->mi_remap;
2519 
2520 	(void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
2521 
2522 	return (0);
2523 }
2524 
2525 void
2526 nfs4_mnt_kstat_init(struct vfs *vfsp)
2527 {
2528 	mntinfo4_t *mi = VFTOMI4(vfsp);
2529 
2530 	/*
2531 	 * PSARC 2001/697 Contract Private Interface
2532 	 * All nfs kstats are under SunMC contract
2533 	 * Please refer to the PSARC listed above and contact
2534 	 * SunMC before making any changes!
2535 	 *
2536 	 * Changes must be reviewed by Solaris File Sharing
2537 	 * Changes must be communicated to contract-2001-697@sun.com
2538 	 *
2539 	 */
2540 
2541 	mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
2542 	    NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
2543 	if (mi->mi_io_kstats) {
2544 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2545 			kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
2546 		mi->mi_io_kstats->ks_lock = &mi->mi_lock;
2547 		kstat_install(mi->mi_io_kstats);
2548 	}
2549 
2550 	if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
2551 	    getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
2552 	    sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
2553 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2554 			kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
2555 		mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update;
2556 		mi->mi_ro_kstats->ks_private = (void *)vfsp;
2557 		kstat_install(mi->mi_ro_kstats);
2558 	}
2559 
2560 	nfs4_mnt_recov_kstat_init(vfsp);
2561 }
2562 
2563 void
2564 nfs4_write_error(vnode_t *vp, int error, cred_t *cr)
2565 {
2566 	mntinfo4_t *mi;
2567 
2568 	mi = VTOMI4(vp);
2569 	/*
2570 	 * In case of forced unmount, do not print any messages
2571 	 * since it can flood the console with error messages.
2572 	 */
2573 	if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)
2574 		return;
2575 
2576 	/*
2577 	 * If the mount point is dead, not recoverable, do not
2578 	 * print error messages that can flood the console.
2579 	 */
2580 	if (mi->mi_flags & MI4_RECOV_FAIL)
2581 		return;
2582 
2583 	/*
2584 	 * No use in flooding the console with ENOSPC
2585 	 * messages from the same file system.
2586 	 */
2587 	if ((error != ENOSPC && error != EDQUOT) ||
2588 	    lbolt - mi->mi_printftime > 0) {
2589 		zoneid_t zoneid = mi->mi_zone->zone_id;
2590 
2591 #ifdef DEBUG
2592 		nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2593 		    mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL);
2594 #else
2595 		nfs_perror(error, "NFS write error on host %s: %m.\n",
2596 		    VTOR4(vp)->r_server->sv_hostname, NULL);
2597 #endif
2598 		if (error == ENOSPC || error == EDQUOT) {
2599 			zcmn_err(zoneid, CE_CONT,
2600 			    "^File: userid=%d, groupid=%d\n",
2601 			    crgetuid(cr), crgetgid(cr));
2602 			if (crgetuid(curthread->t_cred) != crgetuid(cr) ||
2603 			    crgetgid(curthread->t_cred) != crgetgid(cr)) {
2604 				zcmn_err(zoneid, CE_CONT,
2605 				    "^User: userid=%d, groupid=%d\n",
2606 				    crgetuid(curthread->t_cred),
2607 				    crgetgid(curthread->t_cred));
2608 			}
2609 			mi->mi_printftime = lbolt +
2610 			    nfs_write_error_interval * hz;
2611 		}
2612 		sfh4_printfhandle(VTOR4(vp)->r_fh);
2613 #ifdef DEBUG
2614 		if (error == EACCES) {
2615 			zcmn_err(zoneid, CE_CONT,
2616 			    "nfs_bio: cred is%s kcred\n",
2617 			    cr == kcred ? "" : " not");
2618 		}
2619 #endif
2620 	}
2621 }
2622 
2623 /*
2624  * Return non-zero if the given file can be safely memory mapped.  Locks
2625  * are safe if whole-file (length and offset are both zero).
2626  */
2627 
2628 #define	SAFE_LOCK(flk)	((flk).l_start == 0 && (flk).l_len == 0)
2629 
2630 static int
2631 nfs4_safemap(const vnode_t *vp)
2632 {
2633 	locklist_t	*llp, *next_llp;
2634 	int		safe = 1;
2635 	rnode4_t	*rp = VTOR4(vp);
2636 
2637 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2638 
2639 	NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: "
2640 		"vp = %p", (void *)vp));
2641 
2642 	/*
2643 	 * Review all the locks for the vnode, both ones that have been
2644 	 * acquired and ones that are pending.  We assume that
2645 	 * flk_active_locks_for_vp() has merged any locks that can be
2646 	 * merged (so that if a process has the entire file locked, it is
2647 	 * represented as a single lock).
2648 	 *
2649 	 * Note that we can't bail out of the loop if we find a non-safe
2650 	 * lock, because we have to free all the elements in the llp list.
2651 	 * We might be able to speed up this code slightly by not looking
2652 	 * at each lock's l_start and l_len fields once we've found a
2653 	 * non-safe lock.
2654 	 */
2655 
2656 	llp = flk_active_locks_for_vp(vp);
2657 	while (llp) {
2658 		NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2659 		    "nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")",
2660 		    llp->ll_flock.l_start, llp->ll_flock.l_len));
2661 		if (!SAFE_LOCK(llp->ll_flock)) {
2662 			safe = 0;
2663 			NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2664 			    "nfs4_safemap: unsafe active lock (%" PRId64
2665 			    ", %" PRId64 ")", llp->ll_flock.l_start,
2666 			    llp->ll_flock.l_len));
2667 		}
2668 		next_llp = llp->ll_next;
2669 		VN_RELE(llp->ll_vp);
2670 		kmem_free(llp, sizeof (*llp));
2671 		llp = next_llp;
2672 	}
2673 
2674 	NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s",
2675 		safe ? "safe" : "unsafe"));
2676 	return (safe);
2677 }
2678 
2679 /*
2680  * Return whether there is a lost LOCK or LOCKU queued up for the given
2681  * file that would make an mmap request unsafe.  cf. nfs4_safemap().
2682  */
2683 
2684 bool_t
2685 nfs4_map_lost_lock_conflict(vnode_t *vp)
2686 {
2687 	bool_t conflict = FALSE;
2688 	nfs4_lost_rqst_t *lrp;
2689 	mntinfo4_t *mi = VTOMI4(vp);
2690 
2691 	mutex_enter(&mi->mi_lock);
2692 	for (lrp = list_head(&mi->mi_lost_state); lrp != NULL;
2693 	    lrp = list_next(&mi->mi_lost_state, lrp)) {
2694 		if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU)
2695 			continue;
2696 		ASSERT(lrp->lr_vp != NULL);
2697 		if (!VOP_CMP(lrp->lr_vp, vp))
2698 			continue;	/* different file */
2699 		if (!SAFE_LOCK(*lrp->lr_flk)) {
2700 			conflict = TRUE;
2701 			break;
2702 		}
2703 	}
2704 
2705 	mutex_exit(&mi->mi_lock);
2706 	return (conflict);
2707 }
2708 
2709 /*
2710  * nfs_lockcompletion:
2711  *
2712  * If the vnode has a lock that makes it unsafe to cache the file, mark it
2713  * as non cachable (set VNOCACHE bit).
2714  */
2715 
2716 void
2717 nfs4_lockcompletion(vnode_t *vp, int cmd)
2718 {
2719 	rnode4_t *rp = VTOR4(vp);
2720 
2721 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2722 	ASSERT(!IS_SHADOW(vp, rp));
2723 
2724 	if (cmd == F_SETLK || cmd == F_SETLKW) {
2725 
2726 		if (!nfs4_safemap(vp)) {
2727 			mutex_enter(&vp->v_lock);
2728 			vp->v_flag |= VNOCACHE;
2729 			mutex_exit(&vp->v_lock);
2730 		} else {
2731 			mutex_enter(&vp->v_lock);
2732 			vp->v_flag &= ~VNOCACHE;
2733 			mutex_exit(&vp->v_lock);
2734 		}
2735 	}
2736 	/*
2737 	 * The cached attributes of the file are stale after acquiring
2738 	 * the lock on the file. They were updated when the file was
2739 	 * opened, but not updated when the lock was acquired. Therefore the
2740 	 * cached attributes are invalidated after the lock is obtained.
2741 	 */
2742 	PURGE_ATTRCACHE4(vp);
2743 }
2744 
2745 /* ARGSUSED */
2746 static void *
2747 nfs4_mi_init(zoneid_t zoneid)
2748 {
2749 	struct mi4_globals *mig;
2750 
2751 	mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2752 	mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2753 	list_create(&mig->mig_list, sizeof (mntinfo4_t),
2754 	    offsetof(mntinfo4_t, mi_zone_node));
2755 	mig->mig_destructor_called = B_FALSE;
2756 	return (mig);
2757 }
2758 
2759 /*
2760  * Callback routine to tell all NFSv4 mounts in the zone to start tearing down
2761  * state and killing off threads.
2762  */
2763 /* ARGSUSED */
2764 static void
2765 nfs4_mi_shutdown(zoneid_t zoneid, void *data)
2766 {
2767 	struct mi4_globals *mig = data;
2768 	mntinfo4_t *mi;
2769 	nfs4_server_t *np;
2770 
2771 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2772 	    "nfs4_mi_shutdown zone %d\n", zoneid));
2773 	ASSERT(mig != NULL);
2774 	for (;;) {
2775 		mutex_enter(&mig->mig_lock);
2776 		mi = list_head(&mig->mig_list);
2777 		if (mi == NULL) {
2778 			mutex_exit(&mig->mig_lock);
2779 			break;
2780 		}
2781 
2782 		NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2783 		    "nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp));
2784 		/*
2785 		 * purge the DNLC for this filesystem
2786 		 */
2787 		(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2788 		/*
2789 		 * Tell existing async worker threads to exit.
2790 		 */
2791 		mutex_enter(&mi->mi_async_lock);
2792 		mi->mi_max_threads = 0;
2793 		cv_broadcast(&mi->mi_async_work_cv);
2794 		/*
2795 		 * Set the appropriate flags, signal and wait for both the
2796 		 * async manager and the inactive thread to exit when they're
2797 		 * done with their current work.
2798 		 */
2799 		mutex_enter(&mi->mi_lock);
2800 		mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD);
2801 		mutex_exit(&mi->mi_lock);
2802 		mutex_exit(&mi->mi_async_lock);
2803 		if (mi->mi_manager_thread) {
2804 			nfs4_async_manager_stop(mi->mi_vfsp);
2805 		}
2806 		if (mi->mi_inactive_thread) {
2807 			mutex_enter(&mi->mi_async_lock);
2808 			cv_signal(&mi->mi_inact_req_cv);
2809 			/*
2810 			 * Wait for the inactive thread to exit.
2811 			 */
2812 			while (mi->mi_inactive_thread != NULL) {
2813 				cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2814 			}
2815 			mutex_exit(&mi->mi_async_lock);
2816 		}
2817 		/*
2818 		 * Wait for the recovery thread to complete, that is, it will
2819 		 * signal when it is done using the "mi" structure and about
2820 		 * to exit
2821 		 */
2822 		mutex_enter(&mi->mi_lock);
2823 		while (mi->mi_in_recovery > 0)
2824 			cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
2825 		mutex_exit(&mi->mi_lock);
2826 		/*
2827 		 * We're done when every mi has been done or the list is empty.
2828 		 * This one is done, remove it from the list.
2829 		 */
2830 		list_remove(&mig->mig_list, mi);
2831 		mutex_exit(&mig->mig_lock);
2832 		zone_rele(mi->mi_zone);
2833 		/*
2834 		 * Release hold on vfs and mi done to prevent race with zone
2835 		 * shutdown. This releases the hold in nfs4_mi_zonelist_add.
2836 		 */
2837 		VFS_RELE(mi->mi_vfsp);
2838 		MI4_RELE(mi);
2839 	}
2840 	/*
2841 	 * Tell each renew thread in the zone to exit
2842 	 */
2843 	mutex_enter(&nfs4_server_lst_lock);
2844 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
2845 		mutex_enter(&np->s_lock);
2846 		if (np->zoneid == zoneid) {
2847 			/*
2848 			 * We add another hold onto the nfs4_server_t
2849 			 * because this will make sure tha the nfs4_server_t
2850 			 * stays around until nfs4_callback_fini_zone destroys
2851 			 * the zone. This way, the renew thread can
2852 			 * unconditionally release its holds on the
2853 			 * nfs4_server_t.
2854 			 */
2855 			np->s_refcnt++;
2856 			nfs4_mark_srv_dead(np);
2857 		}
2858 		mutex_exit(&np->s_lock);
2859 	}
2860 	mutex_exit(&nfs4_server_lst_lock);
2861 }
2862 
2863 static void
2864 nfs4_mi_free_globals(struct mi4_globals *mig)
2865 {
2866 	list_destroy(&mig->mig_list);	/* makes sure the list is empty */
2867 	mutex_destroy(&mig->mig_lock);
2868 	kmem_free(mig, sizeof (*mig));
2869 }
2870 
2871 /* ARGSUSED */
2872 static void
2873 nfs4_mi_destroy(zoneid_t zoneid, void *data)
2874 {
2875 	struct mi4_globals *mig = data;
2876 
2877 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2878 	    "nfs4_mi_destroy zone %d\n", zoneid));
2879 	ASSERT(mig != NULL);
2880 	mutex_enter(&mig->mig_lock);
2881 	if (list_head(&mig->mig_list) != NULL) {
2882 		/* Still waiting for VFS_FREEVFS() */
2883 		mig->mig_destructor_called = B_TRUE;
2884 		mutex_exit(&mig->mig_lock);
2885 		return;
2886 	}
2887 	nfs4_mi_free_globals(mig);
2888 }
2889 
2890 /*
2891  * Add an NFS mount to the per-zone list of NFS mounts.
2892  */
2893 void
2894 nfs4_mi_zonelist_add(mntinfo4_t *mi)
2895 {
2896 	struct mi4_globals *mig;
2897 
2898 	mig = zone_getspecific(mi4_list_key, mi->mi_zone);
2899 	mutex_enter(&mig->mig_lock);
2900 	list_insert_head(&mig->mig_list, mi);
2901 	/*
2902 	 * hold added to eliminate race with zone shutdown -this will be
2903 	 * released in mi_shutdown
2904 	 */
2905 	MI4_HOLD(mi);
2906 	VFS_HOLD(mi->mi_vfsp);
2907 	mutex_exit(&mig->mig_lock);
2908 }
2909 
2910 /*
2911  * Remove an NFS mount from the per-zone list of NFS mounts.
2912  */
2913 int
2914 nfs4_mi_zonelist_remove(mntinfo4_t *mi)
2915 {
2916 	struct mi4_globals *mig;
2917 	int ret = 0;
2918 
2919 	mig = zone_getspecific(mi4_list_key, mi->mi_zone);
2920 	mutex_enter(&mig->mig_lock);
2921 	mutex_enter(&mi->mi_lock);
2922 	/* if this mi is marked dead, then the zone already released it */
2923 	if (!(mi->mi_flags & MI4_DEAD)) {
2924 		list_remove(&mig->mig_list, mi);
2925 
2926 		/* release the holds put on in zonelist_add(). */
2927 		VFS_RELE(mi->mi_vfsp);
2928 		MI4_RELE(mi);
2929 		ret = 1;
2930 	}
2931 	mutex_exit(&mi->mi_lock);
2932 
2933 	/*
2934 	 * We can be called asynchronously by VFS_FREEVFS() after the zone
2935 	 * shutdown/destroy callbacks have executed; if so, clean up the zone's
2936 	 * mi globals.
2937 	 */
2938 	if (list_head(&mig->mig_list) == NULL &&
2939 	    mig->mig_destructor_called == B_TRUE) {
2940 		nfs4_mi_free_globals(mig);
2941 		return (ret);
2942 	}
2943 	mutex_exit(&mig->mig_lock);
2944 	return (ret);
2945 }
2946 
2947 void
2948 nfs_free_mi4(mntinfo4_t *mi)
2949 {
2950 	nfs4_open_owner_t	*foop;
2951 	nfs4_oo_hash_bucket_t   *bucketp;
2952 	nfs4_debug_msg_t	*msgp;
2953 	int i;
2954 	servinfo4_t 		*svp;
2955 
2956 	mutex_enter(&mi->mi_lock);
2957 	ASSERT(mi->mi_recovthread == NULL);
2958 	ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP);
2959 	mutex_exit(&mi->mi_lock);
2960 	mutex_enter(&mi->mi_async_lock);
2961 	ASSERT(mi->mi_threads == 0);
2962 	ASSERT(mi->mi_manager_thread == NULL);
2963 	mutex_exit(&mi->mi_async_lock);
2964 	svp = mi->mi_servers;
2965 	sv4_free(svp);
2966 	if (mi->mi_io_kstats) {
2967 		kstat_delete(mi->mi_io_kstats);
2968 		mi->mi_io_kstats = NULL;
2969 	}
2970 	if (mi->mi_ro_kstats) {
2971 		kstat_delete(mi->mi_ro_kstats);
2972 		mi->mi_ro_kstats = NULL;
2973 	}
2974 	if (mi->mi_recov_ksp) {
2975 		kstat_delete(mi->mi_recov_ksp);
2976 		mi->mi_recov_ksp = NULL;
2977 	}
2978 	mutex_enter(&mi->mi_msg_list_lock);
2979 	while (msgp = list_head(&mi->mi_msg_list)) {
2980 		list_remove(&mi->mi_msg_list, msgp);
2981 		nfs4_free_msg(msgp);
2982 	}
2983 	mutex_exit(&mi->mi_msg_list_lock);
2984 	list_destroy(&mi->mi_msg_list);
2985 	if (mi->mi_rootfh != NULL)
2986 		sfh4_rele(&mi->mi_rootfh);
2987 	if (mi->mi_srvparentfh != NULL)
2988 		sfh4_rele(&mi->mi_srvparentfh);
2989 	mutex_destroy(&mi->mi_lock);
2990 	mutex_destroy(&mi->mi_async_lock);
2991 	mutex_destroy(&mi->mi_msg_list_lock);
2992 	nfs_rw_destroy(&mi->mi_recovlock);
2993 	nfs_rw_destroy(&mi->mi_rename_lock);
2994 	nfs_rw_destroy(&mi->mi_fh_lock);
2995 	cv_destroy(&mi->mi_failover_cv);
2996 	cv_destroy(&mi->mi_async_reqs_cv);
2997 	cv_destroy(&mi->mi_async_work_cv);
2998 	cv_destroy(&mi->mi_async_cv);
2999 	cv_destroy(&mi->mi_inact_req_cv);
3000 	/*
3001 	 * Destroy the oo hash lists and mutexes for the cred hash table.
3002 	 */
3003 	for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
3004 		bucketp = &(mi->mi_oo_list[i]);
3005 		/* Destroy any remaining open owners on the list */
3006 		foop = list_head(&bucketp->b_oo_hash_list);
3007 		while (foop != NULL) {
3008 			list_remove(&bucketp->b_oo_hash_list, foop);
3009 			nfs4_destroy_open_owner(foop);
3010 			foop = list_head(&bucketp->b_oo_hash_list);
3011 		}
3012 		list_destroy(&bucketp->b_oo_hash_list);
3013 		mutex_destroy(&bucketp->b_lock);
3014 	}
3015 	/*
3016 	 * Empty and destroy the freed open owner list.
3017 	 */
3018 	foop = list_head(&mi->mi_foo_list);
3019 	while (foop != NULL) {
3020 		list_remove(&mi->mi_foo_list, foop);
3021 		nfs4_destroy_open_owner(foop);
3022 		foop = list_head(&mi->mi_foo_list);
3023 	}
3024 	list_destroy(&mi->mi_foo_list);
3025 	list_destroy(&mi->mi_bseqid_list);
3026 	list_destroy(&mi->mi_lost_state);
3027 	avl_destroy(&mi->mi_filehandles);
3028 	fn_rele(&mi->mi_fname);
3029 	kmem_free(mi, sizeof (*mi));
3030 }
3031 void
3032 mi_hold(mntinfo4_t *mi)
3033 {
3034 	atomic_add_32(&mi->mi_count, 1);
3035 	ASSERT(mi->mi_count != 0);
3036 }
3037 
3038 void
3039 mi_rele(mntinfo4_t *mi)
3040 {
3041 	ASSERT(mi->mi_count != 0);
3042 	if (atomic_add_32_nv(&mi->mi_count, -1) == 0) {
3043 		nfs_free_mi4(mi);
3044 	}
3045 }
3046 
3047 vnode_t    nfs4_xattr_notsupp_vnode;
3048 
3049 void
3050 nfs4_clnt_init(void)
3051 {
3052 	nfs4_vnops_init();
3053 	(void) nfs4_rnode_init();
3054 	(void) nfs4_shadow_init();
3055 	(void) nfs4_acache_init();
3056 	(void) nfs4_subr_init();
3057 	nfs4_acl_init();
3058 	nfs_idmap_init();
3059 	nfs4_callback_init();
3060 	nfs4_secinfo_init();
3061 #ifdef	DEBUG
3062 	tsd_create(&nfs4_tsd_key, NULL);
3063 #endif
3064 
3065 	/*
3066 	 * Add a CPR callback so that we can update client
3067 	 * lease after a suspend and resume.
3068 	 */
3069 	cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4");
3070 
3071 	zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown,
3072 	    nfs4_mi_destroy);
3073 
3074 	/*
3075 	 * Initialise the reference count of the notsupp xattr cache vnode to 1
3076 	 * so that it never goes away (VOP_INACTIVE isn't called on it).
3077 	 */
3078 	nfs4_xattr_notsupp_vnode.v_count = 1;
3079 }
3080 
3081 void
3082 nfs4_clnt_fini(void)
3083 {
3084 	(void) zone_key_delete(mi4_list_key);
3085 	nfs4_vnops_fini();
3086 	(void) nfs4_rnode_fini();
3087 	(void) nfs4_shadow_fini();
3088 	(void) nfs4_acache_fini();
3089 	(void) nfs4_subr_fini();
3090 	nfs_idmap_fini();
3091 	nfs4_callback_fini();
3092 	nfs4_secinfo_fini();
3093 #ifdef	DEBUG
3094 	tsd_destroy(&nfs4_tsd_key);
3095 #endif
3096 	if (cid)
3097 		(void) callb_delete(cid);
3098 }
3099 
3100 /*ARGSUSED*/
3101 static boolean_t
3102 nfs4_client_cpr_callb(void *arg, int code)
3103 {
3104 	/*
3105 	 * We get called for Suspend and Resume events.
3106 	 * For the suspend case we simply don't care!
3107 	 */
3108 	if (code == CB_CODE_CPR_CHKPT) {
3109 		return (B_TRUE);
3110 	}
3111 
3112 	/*
3113 	 * When we get to here we are in the process of
3114 	 * resuming the system from a previous suspend.
3115 	 */
3116 	nfs4_client_resumed = gethrestime_sec();
3117 	return (B_TRUE);
3118 }
3119 
3120 void
3121 nfs4_renew_lease_thread(nfs4_server_t *sp)
3122 {
3123 	int	error = 0;
3124 	time_t	tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs;
3125 	clock_t	tick_delay = 0;
3126 	clock_t time_left = 0;
3127 	callb_cpr_t cpr_info;
3128 	kmutex_t cpr_lock;
3129 
3130 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3131 		"nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp));
3132 	mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
3133 	CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease");
3134 
3135 	mutex_enter(&sp->s_lock);
3136 	/* sp->s_lease_time is set via a GETATTR */
3137 	sp->last_renewal_time = gethrestime_sec();
3138 	sp->lease_valid = NFS4_LEASE_UNINITIALIZED;
3139 	ASSERT(sp->s_refcnt >= 1);
3140 
3141 	for (;;) {
3142 		if (!sp->state_ref_count ||
3143 			sp->lease_valid != NFS4_LEASE_VALID) {
3144 
3145 			kip_secs = MAX((sp->s_lease_time >> 1) -
3146 				(3 * sp->propagation_delay.tv_sec), 1);
3147 
3148 			tick_delay = SEC_TO_TICK(kip_secs);
3149 
3150 			NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3151 				"nfs4_renew_lease_thread: no renew : thread "
3152 				"wait %ld secs", kip_secs));
3153 
3154 			NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3155 				"nfs4_renew_lease_thread: no renew : "
3156 				"state_ref_count %d, lease_valid %d",
3157 				sp->state_ref_count, sp->lease_valid));
3158 
3159 			mutex_enter(&cpr_lock);
3160 			CALLB_CPR_SAFE_BEGIN(&cpr_info);
3161 			mutex_exit(&cpr_lock);
3162 			time_left = cv_timedwait(&sp->cv_thread_exit,
3163 				&sp->s_lock, tick_delay + lbolt);
3164 			mutex_enter(&cpr_lock);
3165 			CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3166 			mutex_exit(&cpr_lock);
3167 
3168 			NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3169 				"nfs4_renew_lease_thread: no renew: "
3170 				"time left %ld", time_left));
3171 
3172 			if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3173 				goto die;
3174 			continue;
3175 		}
3176 
3177 		tmp_last_renewal_time = sp->last_renewal_time;
3178 
3179 		tmp_time = gethrestime_sec() - sp->last_renewal_time +
3180 			(3 * sp->propagation_delay.tv_sec);
3181 
3182 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3183 			"nfs4_renew_lease_thread: tmp_time %ld, "
3184 			"sp->last_renewal_time %ld", tmp_time,
3185 			sp->last_renewal_time));
3186 
3187 		kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1);
3188 
3189 		tick_delay = SEC_TO_TICK(kip_secs);
3190 
3191 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3192 			"nfs4_renew_lease_thread: valid lease: sleep for %ld "
3193 			"secs", kip_secs));
3194 
3195 		mutex_enter(&cpr_lock);
3196 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
3197 		mutex_exit(&cpr_lock);
3198 		time_left = cv_timedwait(&sp->cv_thread_exit, &sp->s_lock,
3199 			tick_delay + lbolt);
3200 		mutex_enter(&cpr_lock);
3201 		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3202 		mutex_exit(&cpr_lock);
3203 
3204 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3205 			"nfs4_renew_lease_thread: valid lease: time left %ld :"
3206 			"sp last_renewal_time %ld, nfs4_client_resumed %ld, "
3207 			"tmp_last_renewal_time %ld", time_left,
3208 			sp->last_renewal_time, nfs4_client_resumed,
3209 			tmp_last_renewal_time));
3210 
3211 		if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3212 			goto die;
3213 
3214 		if (tmp_last_renewal_time == sp->last_renewal_time ||
3215 			(nfs4_client_resumed != 0 &&
3216 			nfs4_client_resumed > sp->last_renewal_time)) {
3217 			/*
3218 			 * Issue RENEW op since we haven't renewed the lease
3219 			 * since we slept.
3220 			 */
3221 			tmp_now_time = gethrestime_sec();
3222 			error = nfs4renew(sp);
3223 			/*
3224 			 * Need to re-acquire sp's lock, nfs4renew()
3225 			 * relinqueshes it.
3226 			 */
3227 			mutex_enter(&sp->s_lock);
3228 
3229 			/*
3230 			 * See if someone changed s_thread_exit while we gave
3231 			 * up s_lock.
3232 			 */
3233 			if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3234 				goto die;
3235 
3236 			if (!error) {
3237 				/*
3238 				 * check to see if we implicitly renewed while
3239 				 * we waited for a reply for our RENEW call.
3240 				 */
3241 				if (tmp_last_renewal_time ==
3242 					sp->last_renewal_time) {
3243 					/* no implicit renew came */
3244 					sp->last_renewal_time = tmp_now_time;
3245 				} else {
3246 					NFS4_DEBUG(nfs4_client_lease_debug,
3247 						(CE_NOTE, "renew_thread: did "
3248 						"implicit renewal before reply "
3249 						"from server for RENEW"));
3250 				}
3251 			} else {
3252 				/* figure out error */
3253 				NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3254 					"renew_thread: nfs4renew returned error"
3255 					" %d", error));
3256 			}
3257 
3258 		}
3259 	}
3260 
3261 die:
3262 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3263 		"nfs4_renew_lease_thread: thread exiting"));
3264 
3265 	while (sp->s_otw_call_count != 0) {
3266 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3267 			"nfs4_renew_lease_thread: waiting for outstanding "
3268 			"otw calls to finish for sp 0x%p, current "
3269 			"s_otw_call_count %d", (void *)sp,
3270 			sp->s_otw_call_count));
3271 		mutex_enter(&cpr_lock);
3272 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
3273 		mutex_exit(&cpr_lock);
3274 		cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
3275 		mutex_enter(&cpr_lock);
3276 		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3277 		mutex_exit(&cpr_lock);
3278 	}
3279 	mutex_exit(&sp->s_lock);
3280 
3281 	nfs4_server_rele(sp);		/* free the thread's reference */
3282 	nfs4_server_rele(sp);		/* free the list's reference */
3283 	sp = NULL;
3284 
3285 done:
3286 	mutex_enter(&cpr_lock);
3287 	CALLB_CPR_EXIT(&cpr_info);	/* drops cpr_lock */
3288 	mutex_destroy(&cpr_lock);
3289 
3290 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3291 		"nfs4_renew_lease_thread: renew thread exit officially"));
3292 
3293 	zthread_exit();
3294 	/* NOT REACHED */
3295 }
3296 
3297 /*
3298  * Send out a RENEW op to the server.
3299  * Assumes sp is locked down.
3300  */
3301 static int
3302 nfs4renew(nfs4_server_t *sp)
3303 {
3304 	COMPOUND4args_clnt args;
3305 	COMPOUND4res_clnt res;
3306 	nfs_argop4 argop[1];
3307 	int doqueue = 1;
3308 	int rpc_error;
3309 	cred_t *cr;
3310 	mntinfo4_t *mi;
3311 	timespec_t prop_time, after_time;
3312 	int needrecov = FALSE;
3313 	nfs4_recov_state_t recov_state;
3314 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3315 
3316 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew"));
3317 
3318 	recov_state.rs_flags = 0;
3319 	recov_state.rs_num_retry_despite_err = 0;
3320 
3321 recov_retry:
3322 	mi = sp->mntinfo4_list;
3323 	VFS_HOLD(mi->mi_vfsp);
3324 	mutex_exit(&sp->s_lock);
3325 	ASSERT(mi != NULL);
3326 
3327 	e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
3328 	if (e.error) {
3329 		VFS_RELE(mi->mi_vfsp);
3330 		return (e.error);
3331 	}
3332 
3333 	/* Check to see if we're dealing with a marked-dead sp */
3334 	mutex_enter(&sp->s_lock);
3335 	if (sp->s_thread_exit == NFS4_THREAD_EXIT) {
3336 		mutex_exit(&sp->s_lock);
3337 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3338 		VFS_RELE(mi->mi_vfsp);
3339 		return (0);
3340 	}
3341 
3342 	/* Make sure mi hasn't changed on us */
3343 	if (mi != sp->mntinfo4_list) {
3344 		/* Must drop sp's lock to avoid a recursive mutex enter */
3345 		mutex_exit(&sp->s_lock);
3346 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3347 		VFS_RELE(mi->mi_vfsp);
3348 		mutex_enter(&sp->s_lock);
3349 		goto recov_retry;
3350 	}
3351 	mutex_exit(&sp->s_lock);
3352 
3353 	args.ctag = TAG_RENEW;
3354 
3355 	args.array_len = 1;
3356 	args.array = argop;
3357 
3358 	argop[0].argop = OP_RENEW;
3359 
3360 	mutex_enter(&sp->s_lock);
3361 	argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid;
3362 	cr = sp->s_cred;
3363 	crhold(cr);
3364 	mutex_exit(&sp->s_lock);
3365 
3366 	ASSERT(cr != NULL);
3367 
3368 	/* used to figure out RTT for sp */
3369 	gethrestime(&prop_time);
3370 
3371 	NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3372 	    "nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first",
3373 	    (void*)sp));
3374 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ",
3375 		prop_time.tv_sec, prop_time.tv_nsec));
3376 
3377 	DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp,
3378 			mntinfo4_t *, mi);
3379 
3380 	rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3381 	crfree(cr);
3382 
3383 	DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp,
3384 			mntinfo4_t *, mi);
3385 
3386 	gethrestime(&after_time);
3387 
3388 	mutex_enter(&sp->s_lock);
3389 	sp->propagation_delay.tv_sec =
3390 		MAX(1, after_time.tv_sec - prop_time.tv_sec);
3391 	mutex_exit(&sp->s_lock);
3392 
3393 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ",
3394 		after_time.tv_sec, after_time.tv_nsec));
3395 
3396 	if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) {
3397 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3398 		nfs4_delegreturn_all(sp);
3399 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3400 		VFS_RELE(mi->mi_vfsp);
3401 		/*
3402 		 * If the server returns CB_PATH_DOWN, it has renewed
3403 		 * the lease and informed us that the callback path is
3404 		 * down.  Since the lease is renewed, just return 0 and
3405 		 * let the renew thread proceed as normal.
3406 		 */
3407 		return (0);
3408 	}
3409 
3410 	needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3411 	if (!needrecov && e.error) {
3412 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3413 		VFS_RELE(mi->mi_vfsp);
3414 		return (e.error);
3415 	}
3416 
3417 	rpc_error = e.error;
3418 
3419 	if (needrecov) {
3420 		NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3421 		    "nfs4renew: initiating recovery\n"));
3422 
3423 		if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
3424 		    OP_RENEW, NULL) == FALSE) {
3425 			nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3426 			VFS_RELE(mi->mi_vfsp);
3427 			if (!e.error)
3428 				(void) xdr_free(xdr_COMPOUND4res_clnt,
3429 								(caddr_t)&res);
3430 			mutex_enter(&sp->s_lock);
3431 			goto recov_retry;
3432 		}
3433 		/* fall through for res.status case */
3434 	}
3435 
3436 	if (res.status) {
3437 		if (res.status == NFS4ERR_LEASE_MOVED) {
3438 			/*EMPTY*/
3439 			/*
3440 			 * XXX need to try every mntinfo4 in sp->mntinfo4_list
3441 			 * to renew the lease on that server
3442 			 */
3443 		}
3444 		e.error = geterrno4(res.status);
3445 	}
3446 
3447 	if (!rpc_error)
3448 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3449 
3450 	nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3451 
3452 	VFS_RELE(mi->mi_vfsp);
3453 
3454 	return (e.error);
3455 }
3456 
3457 void
3458 nfs4_inc_state_ref_count(mntinfo4_t *mi)
3459 {
3460 	nfs4_server_t	*sp;
3461 
3462 	/* this locks down sp if it is found */
3463 	sp = find_nfs4_server(mi);
3464 
3465 	if (sp != NULL) {
3466 		nfs4_inc_state_ref_count_nolock(sp, mi);
3467 		mutex_exit(&sp->s_lock);
3468 		nfs4_server_rele(sp);
3469 	}
3470 }
3471 
3472 /*
3473  * Bump the number of OPEN files (ie: those with state) so we know if this
3474  * nfs4_server has any state to maintain a lease for or not.
3475  *
3476  * Also, marks the nfs4_server's lease valid if it hasn't been done so already.
3477  */
3478 void
3479 nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3480 {
3481 	ASSERT(mutex_owned(&sp->s_lock));
3482 
3483 	sp->state_ref_count++;
3484 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3485 		"nfs4_inc_state_ref_count: state_ref_count now %d",
3486 		sp->state_ref_count));
3487 
3488 	if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED)
3489 		sp->lease_valid = NFS4_LEASE_VALID;
3490 
3491 	/*
3492 	 * If this call caused the lease to be marked valid and/or
3493 	 * took the state_ref_count from 0 to 1, then start the time
3494 	 * on lease renewal.
3495 	 */
3496 	if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1)
3497 		sp->last_renewal_time = gethrestime_sec();
3498 
3499 	/* update the number of open files for mi */
3500 	mi->mi_open_files++;
3501 }
3502 
3503 void
3504 nfs4_dec_state_ref_count(mntinfo4_t *mi)
3505 {
3506 	nfs4_server_t	*sp;
3507 
3508 	/* this locks down sp if it is found */
3509 	sp = find_nfs4_server_all(mi, 1);
3510 
3511 	if (sp != NULL) {
3512 		nfs4_dec_state_ref_count_nolock(sp, mi);
3513 		mutex_exit(&sp->s_lock);
3514 		nfs4_server_rele(sp);
3515 	}
3516 }
3517 
3518 /*
3519  * Decrement the number of OPEN files (ie: those with state) so we know if
3520  * this nfs4_server has any state to maintain a lease for or not.
3521  */
3522 void
3523 nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3524 {
3525 	ASSERT(mutex_owned(&sp->s_lock));
3526 	ASSERT(sp->state_ref_count != 0);
3527 	sp->state_ref_count--;
3528 
3529 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3530 		"nfs4_dec_state_ref_count: state ref count now %d",
3531 		sp->state_ref_count));
3532 
3533 	mi->mi_open_files--;
3534 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3535 		"nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x",
3536 		mi->mi_open_files, mi->mi_flags));
3537 
3538 	/* We don't have to hold the mi_lock to test mi_flags */
3539 	if (mi->mi_open_files == 0 &&
3540 	    (mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) {
3541 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3542 			"nfs4_dec_state_ref_count: remove mntinfo4 %p since "
3543 			"we have closed the last open file", (void*)mi));
3544 		nfs4_remove_mi_from_server(mi, sp);
3545 	}
3546 }
3547 
3548 bool_t
3549 inlease(nfs4_server_t *sp)
3550 {
3551 	bool_t result;
3552 
3553 	ASSERT(mutex_owned(&sp->s_lock));
3554 
3555 	if (sp->lease_valid == NFS4_LEASE_VALID &&
3556 	    gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time)
3557 		result = TRUE;
3558 	else
3559 		result = FALSE;
3560 
3561 	return (result);
3562 }
3563 
3564 
3565 /*
3566  * Return non-zero if the given nfs4_server_t is going through recovery.
3567  */
3568 
3569 int
3570 nfs4_server_in_recovery(nfs4_server_t *sp)
3571 {
3572 	return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER));
3573 }
3574 
3575 /*
3576  * Compare two shared filehandle objects.  Returns -1, 0, or +1, if the
3577  * first is less than, equal to, or greater than the second.
3578  */
3579 
3580 int
3581 sfh4cmp(const void *p1, const void *p2)
3582 {
3583 	const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1;
3584 	const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2;
3585 
3586 	return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh));
3587 }
3588 
3589 /*
3590  * Create a table for shared filehandle objects.
3591  */
3592 
3593 void
3594 sfh4_createtab(avl_tree_t *tab)
3595 {
3596 	avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t),
3597 		offsetof(nfs4_sharedfh_t, sfh_tree));
3598 }
3599 
3600 /*
3601  * Return a shared filehandle object for the given filehandle.  The caller
3602  * is responsible for eventually calling sfh4_rele().
3603  */
3604 
3605 nfs4_sharedfh_t *
3606 sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key)
3607 {
3608 	nfs4_sharedfh_t *sfh, *nsfh;
3609 	avl_index_t where;
3610 	nfs4_sharedfh_t skey;
3611 
3612 	if (!key) {
3613 		skey.sfh_fh = *fh;
3614 		key = &skey;
3615 	}
3616 
3617 	nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP);
3618 	nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len;
3619 	/*
3620 	 * We allocate the largest possible filehandle size because it's
3621 	 * not that big, and it saves us from possibly having to resize the
3622 	 * buffer later.
3623 	 */
3624 	nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP);
3625 	bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len);
3626 	mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL);
3627 	nsfh->sfh_refcnt = 1;
3628 	nsfh->sfh_flags = SFH4_IN_TREE;
3629 	nsfh->sfh_mi = mi;
3630 	NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)",
3631 			(void *)nsfh));
3632 
3633 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3634 	sfh = avl_find(&mi->mi_filehandles, key, &where);
3635 	if (sfh != NULL) {
3636 		mutex_enter(&sfh->sfh_lock);
3637 		sfh->sfh_refcnt++;
3638 		mutex_exit(&sfh->sfh_lock);
3639 		nfs_rw_exit(&mi->mi_fh_lock);
3640 		/* free our speculative allocs */
3641 		kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3642 		kmem_free(nsfh, sizeof (nfs4_sharedfh_t));
3643 		return (sfh);
3644 	}
3645 
3646 	avl_insert(&mi->mi_filehandles, nsfh, where);
3647 	nfs_rw_exit(&mi->mi_fh_lock);
3648 
3649 	return (nsfh);
3650 }
3651 
3652 /*
3653  * Return a shared filehandle object for the given filehandle.  The caller
3654  * is responsible for eventually calling sfh4_rele().
3655  */
3656 
3657 nfs4_sharedfh_t *
3658 sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi)
3659 {
3660 	nfs4_sharedfh_t *sfh;
3661 	nfs4_sharedfh_t key;
3662 
3663 	ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE);
3664 
3665 #ifdef DEBUG
3666 	if (nfs4_sharedfh_debug) {
3667 		nfs4_fhandle_t fhandle;
3668 
3669 		fhandle.fh_len = fh->nfs_fh4_len;
3670 		bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len);
3671 		zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:");
3672 		nfs4_printfhandle(&fhandle);
3673 	}
3674 #endif
3675 
3676 	/*
3677 	 * If there's already an object for the given filehandle, bump the
3678 	 * reference count and return it.  Otherwise, create a new object
3679 	 * and add it to the AVL tree.
3680 	 */
3681 
3682 	key.sfh_fh = *fh;
3683 
3684 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3685 	sfh = avl_find(&mi->mi_filehandles, &key, NULL);
3686 	if (sfh != NULL) {
3687 		mutex_enter(&sfh->sfh_lock);
3688 		sfh->sfh_refcnt++;
3689 		NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3690 			"sfh4_get: found existing %p, new refcnt=%d",
3691 			(void *)sfh, sfh->sfh_refcnt));
3692 		mutex_exit(&sfh->sfh_lock);
3693 		nfs_rw_exit(&mi->mi_fh_lock);
3694 		return (sfh);
3695 	}
3696 	nfs_rw_exit(&mi->mi_fh_lock);
3697 
3698 	return (sfh4_put(fh, mi, &key));
3699 }
3700 
3701 /*
3702  * Get a reference to the given shared filehandle object.
3703  */
3704 
3705 void
3706 sfh4_hold(nfs4_sharedfh_t *sfh)
3707 {
3708 	ASSERT(sfh->sfh_refcnt > 0);
3709 
3710 	mutex_enter(&sfh->sfh_lock);
3711 	sfh->sfh_refcnt++;
3712 	NFS4_DEBUG(nfs4_sharedfh_debug,
3713 		(CE_NOTE, "sfh4_hold %p, new refcnt=%d",
3714 		(void *)sfh, sfh->sfh_refcnt));
3715 	mutex_exit(&sfh->sfh_lock);
3716 }
3717 
3718 /*
3719  * Release a reference to the given shared filehandle object and null out
3720  * the given pointer.
3721  */
3722 
3723 void
3724 sfh4_rele(nfs4_sharedfh_t **sfhpp)
3725 {
3726 	mntinfo4_t *mi;
3727 	nfs4_sharedfh_t *sfh = *sfhpp;
3728 
3729 	ASSERT(sfh->sfh_refcnt > 0);
3730 
3731 	mutex_enter(&sfh->sfh_lock);
3732 	if (sfh->sfh_refcnt > 1) {
3733 		sfh->sfh_refcnt--;
3734 		NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3735 		    "sfh4_rele %p, new refcnt=%d",
3736 		    (void *)sfh, sfh->sfh_refcnt));
3737 		mutex_exit(&sfh->sfh_lock);
3738 		goto finish;
3739 	}
3740 	mutex_exit(&sfh->sfh_lock);
3741 
3742 	/*
3743 	 * Possibly the last reference, so get the lock for the table in
3744 	 * case it's time to remove the object from the table.
3745 	 */
3746 	mi = sfh->sfh_mi;
3747 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3748 	mutex_enter(&sfh->sfh_lock);
3749 	sfh->sfh_refcnt--;
3750 	if (sfh->sfh_refcnt > 0) {
3751 		NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3752 		    "sfh4_rele %p, new refcnt=%d",
3753 		    (void *)sfh, sfh->sfh_refcnt));
3754 		mutex_exit(&sfh->sfh_lock);
3755 		nfs_rw_exit(&mi->mi_fh_lock);
3756 		goto finish;
3757 	}
3758 
3759 	NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3760 		"sfh4_rele %p, last ref", (void *)sfh));
3761 	if (sfh->sfh_flags & SFH4_IN_TREE) {
3762 		avl_remove(&mi->mi_filehandles, sfh);
3763 		sfh->sfh_flags &= ~SFH4_IN_TREE;
3764 	}
3765 	mutex_exit(&sfh->sfh_lock);
3766 	nfs_rw_exit(&mi->mi_fh_lock);
3767 	mutex_destroy(&sfh->sfh_lock);
3768 	kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3769 	kmem_free(sfh, sizeof (nfs4_sharedfh_t));
3770 
3771 finish:
3772 	*sfhpp = NULL;
3773 }
3774 
3775 /*
3776  * Update the filehandle for the given shared filehandle object.
3777  */
3778 
3779 int nfs4_warn_dupfh = 0;	/* if set, always warn about dup fhs below */
3780 
3781 void
3782 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh)
3783 {
3784 	mntinfo4_t *mi = sfh->sfh_mi;
3785 	nfs4_sharedfh_t *dupsfh;
3786 	avl_index_t where;
3787 	nfs4_sharedfh_t key;
3788 
3789 #ifdef DEBUG
3790 	mutex_enter(&sfh->sfh_lock);
3791 	ASSERT(sfh->sfh_refcnt > 0);
3792 	mutex_exit(&sfh->sfh_lock);
3793 #endif
3794 	ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE);
3795 
3796 	/*
3797 	 * The basic plan is to remove the shared filehandle object from
3798 	 * the table, update it to have the new filehandle, then reinsert
3799 	 * it.
3800 	 */
3801 
3802 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3803 	mutex_enter(&sfh->sfh_lock);
3804 	if (sfh->sfh_flags & SFH4_IN_TREE) {
3805 		avl_remove(&mi->mi_filehandles, sfh);
3806 		sfh->sfh_flags &= ~SFH4_IN_TREE;
3807 	}
3808 	mutex_exit(&sfh->sfh_lock);
3809 	sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len;
3810 	bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val,
3811 	    sfh->sfh_fh.nfs_fh4_len);
3812 
3813 	/*
3814 	 * XXX If there is already a shared filehandle object with the new
3815 	 * filehandle, we're in trouble, because the rnode code assumes
3816 	 * that there is only one shared filehandle object for a given
3817 	 * filehandle.  So issue a warning (for read-write mounts only)
3818 	 * and don't try to re-insert the given object into the table.
3819 	 * Hopefully the given object will quickly go away and everyone
3820 	 * will use the new object.
3821 	 */
3822 	key.sfh_fh = *newfh;
3823 	dupsfh = avl_find(&mi->mi_filehandles, &key, &where);
3824 	if (dupsfh != NULL) {
3825 		if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) {
3826 			zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: "
3827 			    "duplicate filehandle detected");
3828 			sfh4_printfhandle(dupsfh);
3829 		}
3830 	} else {
3831 		avl_insert(&mi->mi_filehandles, sfh, where);
3832 		mutex_enter(&sfh->sfh_lock);
3833 		sfh->sfh_flags |= SFH4_IN_TREE;
3834 		mutex_exit(&sfh->sfh_lock);
3835 	}
3836 	nfs_rw_exit(&mi->mi_fh_lock);
3837 }
3838 
3839 /*
3840  * Copy out the current filehandle for the given shared filehandle object.
3841  */
3842 
3843 void
3844 sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp)
3845 {
3846 	mntinfo4_t *mi = sfh->sfh_mi;
3847 
3848 	ASSERT(sfh->sfh_refcnt > 0);
3849 
3850 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3851 	fhp->fh_len = sfh->sfh_fh.nfs_fh4_len;
3852 	ASSERT(fhp->fh_len <= NFS4_FHSIZE);
3853 	bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len);
3854 	nfs_rw_exit(&mi->mi_fh_lock);
3855 }
3856 
3857 /*
3858  * Print out the filehandle for the given shared filehandle object.
3859  */
3860 
3861 void
3862 sfh4_printfhandle(const nfs4_sharedfh_t *sfh)
3863 {
3864 	nfs4_fhandle_t fhandle;
3865 
3866 	sfh4_copyval(sfh, &fhandle);
3867 	nfs4_printfhandle(&fhandle);
3868 }
3869 
3870 /*
3871  * Compare 2 fnames.  Returns -1 if the first is "less" than the second, 0
3872  * if they're the same, +1 if the first is "greater" than the second.  The
3873  * caller (or whoever's calling the AVL package) is responsible for
3874  * handling locking issues.
3875  */
3876 
3877 static int
3878 fncmp(const void *p1, const void *p2)
3879 {
3880 	const nfs4_fname_t *f1 = p1;
3881 	const nfs4_fname_t *f2 = p2;
3882 	int res;
3883 
3884 	res = strcmp(f1->fn_name, f2->fn_name);
3885 	/*
3886 	 * The AVL package wants +/-1, not arbitrary positive or negative
3887 	 * integers.
3888 	 */
3889 	if (res > 0)
3890 		res = 1;
3891 	else if (res < 0)
3892 		res = -1;
3893 	return (res);
3894 }
3895 
3896 /*
3897  * Get or create an fname with the given name, as a child of the given
3898  * fname.  The caller is responsible for eventually releasing the reference
3899  * (fn_rele()).  parent may be NULL.
3900  */
3901 
3902 nfs4_fname_t *
3903 fn_get(nfs4_fname_t *parent, char *name)
3904 {
3905 	nfs4_fname_t key;
3906 	nfs4_fname_t *fnp;
3907 	avl_index_t where;
3908 
3909 	key.fn_name = name;
3910 
3911 	/*
3912 	 * If there's already an fname registered with the given name, bump
3913 	 * its reference count and return it.  Otherwise, create a new one
3914 	 * and add it to the parent's AVL tree.
3915 	 */
3916 
3917 	if (parent != NULL) {
3918 		mutex_enter(&parent->fn_lock);
3919 		fnp = avl_find(&parent->fn_children, &key, &where);
3920 		if (fnp != NULL) {
3921 			fn_hold(fnp);
3922 			mutex_exit(&parent->fn_lock);
3923 			return (fnp);
3924 		}
3925 	}
3926 
3927 	fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP);
3928 	mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL);
3929 	fnp->fn_parent = parent;
3930 	if (parent != NULL)
3931 		fn_hold(parent);
3932 	fnp->fn_len = strlen(name);
3933 	ASSERT(fnp->fn_len < MAXNAMELEN);
3934 	fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP);
3935 	(void) strcpy(fnp->fn_name, name);
3936 	fnp->fn_refcnt = 1;
3937 	avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t),
3938 	    offsetof(nfs4_fname_t, fn_tree));
3939 	NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
3940 		"fn_get %p:%s, a new nfs4_fname_t!",
3941 		(void *)fnp, fnp->fn_name));
3942 	if (parent != NULL) {
3943 		avl_insert(&parent->fn_children, fnp, where);
3944 		mutex_exit(&parent->fn_lock);
3945 	}
3946 
3947 	return (fnp);
3948 }
3949 
3950 void
3951 fn_hold(nfs4_fname_t *fnp)
3952 {
3953 	atomic_add_32(&fnp->fn_refcnt, 1);
3954 	NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
3955 		"fn_hold %p:%s, new refcnt=%d",
3956 		(void *)fnp, fnp->fn_name, fnp->fn_refcnt));
3957 }
3958 
3959 /*
3960  * Decrement the reference count of the given fname, and destroy it if its
3961  * reference count goes to zero.  Nulls out the given pointer.
3962  */
3963 
3964 void
3965 fn_rele(nfs4_fname_t **fnpp)
3966 {
3967 	nfs4_fname_t *parent;
3968 	uint32_t newref;
3969 	nfs4_fname_t *fnp;
3970 
3971 recur:
3972 	fnp = *fnpp;
3973 	*fnpp = NULL;
3974 
3975 	mutex_enter(&fnp->fn_lock);
3976 	parent = fnp->fn_parent;
3977 	if (parent != NULL)
3978 		mutex_enter(&parent->fn_lock);	/* prevent new references */
3979 	newref = atomic_add_32_nv(&fnp->fn_refcnt, -1);
3980 	if (newref > 0) {
3981 		NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
3982 			"fn_rele %p:%s, new refcnt=%d",
3983 			(void *)fnp, fnp->fn_name, fnp->fn_refcnt));
3984 		if (parent != NULL)
3985 			mutex_exit(&parent->fn_lock);
3986 		mutex_exit(&fnp->fn_lock);
3987 		return;
3988 	}
3989 
3990 	NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
3991 		"fn_rele %p:%s, last reference, deleting...",
3992 		(void *)fnp, fnp->fn_name));
3993 	if (parent != NULL) {
3994 		avl_remove(&parent->fn_children, fnp);
3995 		mutex_exit(&parent->fn_lock);
3996 	}
3997 	kmem_free(fnp->fn_name, fnp->fn_len + 1);
3998 	mutex_destroy(&fnp->fn_lock);
3999 	avl_destroy(&fnp->fn_children);
4000 	kmem_free(fnp, sizeof (nfs4_fname_t));
4001 	/*
4002 	 * Recursivly fn_rele the parent.
4003 	 * Use goto instead of a recursive call to avoid stack overflow.
4004 	 */
4005 	if (parent != NULL) {
4006 		fnpp = &parent;
4007 		goto recur;
4008 	}
4009 }
4010 
4011 /*
4012  * Returns the single component name of the given fname, in a MAXNAMELEN
4013  * string buffer, which the caller is responsible for freeing.  Note that
4014  * the name may become invalid as a result of fn_move().
4015  */
4016 
4017 char *
4018 fn_name(nfs4_fname_t *fnp)
4019 {
4020 	char *name;
4021 
4022 	ASSERT(fnp->fn_len < MAXNAMELEN);
4023 	name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
4024 	mutex_enter(&fnp->fn_lock);
4025 	(void) strcpy(name, fnp->fn_name);
4026 	mutex_exit(&fnp->fn_lock);
4027 
4028 	return (name);
4029 }
4030 
4031 
4032 /*
4033  * fn_path_realloc
4034  *
4035  * This function, used only by fn_path, constructs
4036  * a new string which looks like "prepend" + "/" + "current".
4037  * by allocating a new string and freeing the old one.
4038  */
4039 static void
4040 fn_path_realloc(char **curses, char *prepend)
4041 {
4042 	int len, curlen = 0;
4043 	char *news;
4044 
4045 	if (*curses == NULL) {
4046 		/*
4047 		 * Prime the pump, allocate just the
4048 		 * space for prepend and return that.
4049 		 */
4050 		len = strlen(prepend) + 1;
4051 		news = kmem_alloc(len, KM_SLEEP);
4052 		(void) strncpy(news, prepend, len);
4053 	} else {
4054 		/*
4055 		 * Allocate the space  for a new string
4056 		 * +1 +1 is for the "/" and the NULL
4057 		 * byte at the end of it all.
4058 		 */
4059 		curlen = strlen(*curses);
4060 		len = curlen + strlen(prepend) + 1 + 1;
4061 		news = kmem_alloc(len, KM_SLEEP);
4062 		(void) strncpy(news, prepend, len);
4063 		(void) strcat(news, "/");
4064 		(void) strcat(news, *curses);
4065 		kmem_free(*curses, curlen + 1);
4066 	}
4067 	*curses = news;
4068 }
4069 
4070 /*
4071  * Returns the path name (starting from the fs root) for the given fname.
4072  * The caller is responsible for freeing.  Note that the path may be or
4073  * become invalid as a result of fn_move().
4074  */
4075 
4076 char *
4077 fn_path(nfs4_fname_t *fnp)
4078 {
4079 	char *path;
4080 	nfs4_fname_t *nextfnp;
4081 
4082 	if (fnp == NULL)
4083 		return (NULL);
4084 
4085 	path = NULL;
4086 
4087 	/* walk up the tree constructing the pathname.  */
4088 
4089 	fn_hold(fnp);			/* adjust for later rele */
4090 	do {
4091 		mutex_enter(&fnp->fn_lock);
4092 		/*
4093 		 * Add fn_name in front of the current path
4094 		 */
4095 		fn_path_realloc(&path, fnp->fn_name);
4096 		nextfnp = fnp->fn_parent;
4097 		if (nextfnp != NULL)
4098 			fn_hold(nextfnp);
4099 		mutex_exit(&fnp->fn_lock);
4100 		fn_rele(&fnp);
4101 		fnp = nextfnp;
4102 	} while (fnp != NULL);
4103 
4104 	return (path);
4105 }
4106 
4107 /*
4108  * Return a reference to the parent of the given fname, which the caller is
4109  * responsible for eventually releasing.
4110  */
4111 
4112 nfs4_fname_t *
4113 fn_parent(nfs4_fname_t *fnp)
4114 {
4115 	nfs4_fname_t *parent;
4116 
4117 	mutex_enter(&fnp->fn_lock);
4118 	parent = fnp->fn_parent;
4119 	if (parent != NULL)
4120 		fn_hold(parent);
4121 	mutex_exit(&fnp->fn_lock);
4122 
4123 	return (parent);
4124 }
4125 
4126 /*
4127  * Update fnp so that its parent is newparent and its name is newname.
4128  */
4129 
4130 void
4131 fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname)
4132 {
4133 	nfs4_fname_t *parent, *tmpfnp;
4134 	ssize_t newlen;
4135 	nfs4_fname_t key;
4136 	avl_index_t where;
4137 
4138 	/*
4139 	 * This assert exists to catch the client trying to rename
4140 	 * a dir to be a child of itself.  This happened at a recent
4141 	 * bakeoff against a 3rd party (broken) server which allowed
4142 	 * the rename to succeed.  If it trips it means that:
4143 	 *	a) the code in nfs4rename that detects this case is broken
4144 	 *	b) the server is broken (since it allowed the bogus rename)
4145 	 *
4146 	 * For non-DEBUG kernels, prepare for a recursive mutex_enter
4147 	 * panic below from:  mutex_enter(&newparent->fn_lock);
4148 	 */
4149 	ASSERT(fnp != newparent);
4150 
4151 	/*
4152 	 * Remove fnp from its current parent, change its name, then add it
4153 	 * to newparent.
4154 	 */
4155 	mutex_enter(&fnp->fn_lock);
4156 	parent = fnp->fn_parent;
4157 	mutex_enter(&parent->fn_lock);
4158 	avl_remove(&parent->fn_children, fnp);
4159 	mutex_exit(&parent->fn_lock);
4160 	fn_rele(&fnp->fn_parent);
4161 
4162 	newlen = strlen(newname);
4163 	if (newlen != fnp->fn_len) {
4164 		ASSERT(newlen < MAXNAMELEN);
4165 		kmem_free(fnp->fn_name, fnp->fn_len + 1);
4166 		fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP);
4167 		fnp->fn_len = newlen;
4168 	}
4169 	(void) strcpy(fnp->fn_name, newname);
4170 
4171 again:
4172 	mutex_enter(&newparent->fn_lock);
4173 	key.fn_name = fnp->fn_name;
4174 	tmpfnp = avl_find(&newparent->fn_children, &key, &where);
4175 	if (tmpfnp != NULL) {
4176 		/*
4177 		 * This could be due to a file that was unlinked while
4178 		 * open, or perhaps the rnode is in the free list.  Remove
4179 		 * it from newparent and let it go away on its own.  The
4180 		 * contorted code is to deal with lock order issues and
4181 		 * race conditions.
4182 		 */
4183 		fn_hold(tmpfnp);
4184 		mutex_exit(&newparent->fn_lock);
4185 		mutex_enter(&tmpfnp->fn_lock);
4186 		if (tmpfnp->fn_parent == newparent) {
4187 			mutex_enter(&newparent->fn_lock);
4188 			avl_remove(&newparent->fn_children, tmpfnp);
4189 			mutex_exit(&newparent->fn_lock);
4190 			fn_rele(&tmpfnp->fn_parent);
4191 		}
4192 		mutex_exit(&tmpfnp->fn_lock);
4193 		fn_rele(&tmpfnp);
4194 		goto again;
4195 	}
4196 	fnp->fn_parent = newparent;
4197 	fn_hold(newparent);
4198 	avl_insert(&newparent->fn_children, fnp, where);
4199 	mutex_exit(&newparent->fn_lock);
4200 	mutex_exit(&fnp->fn_lock);
4201 }
4202 
4203 #ifdef DEBUG
4204 /*
4205  * Return non-zero if the type information makes sense for the given vnode.
4206  * Otherwise panic.
4207  */
4208 int
4209 nfs4_consistent_type(vnode_t *vp)
4210 {
4211 	rnode4_t *rp = VTOR4(vp);
4212 
4213 	if (nfs4_vtype_debug && vp->v_type != VNON &&
4214 	    rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) {
4215 		cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, "
4216 			"rnode attr type=%d", (void *)vp, vp->v_type,
4217 			rp->r_attr.va_type);
4218 	}
4219 
4220 	return (1);
4221 }
4222 #endif /* DEBUG */
4223