xref: /illumos-gate/usr/src/uts/common/fs/nfs/nfs_vfsops.c (revision 80ab886d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  *	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
26  *	All rights reserved.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/cred.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/pathname.h>
38 #include <sys/sysmacros.h>
39 #include <sys/kmem.h>
40 #include <sys/mkdev.h>
41 #include <sys/mount.h>
42 #include <sys/mntent.h>
43 #include <sys/statvfs.h>
44 #include <sys/errno.h>
45 #include <sys/debug.h>
46 #include <sys/cmn_err.h>
47 #include <sys/utsname.h>
48 #include <sys/bootconf.h>
49 #include <sys/modctl.h>
50 #include <sys/acl.h>
51 #include <sys/flock.h>
52 #include <sys/policy.h>
53 #include <sys/zone.h>
54 #include <sys/class.h>
55 #include <sys/socket.h>
56 #include <sys/netconfig.h>
57 #include <sys/mntent.h>
58 #include <sys/tsol/label.h>
59 
60 #include <rpc/types.h>
61 #include <rpc/auth.h>
62 #include <rpc/clnt.h>
63 
64 #include <nfs/nfs.h>
65 #include <nfs/nfs_clnt.h>
66 #include <nfs/rnode.h>
67 #include <nfs/mount.h>
68 #include <nfs/nfs_acl.h>
69 
70 #include <fs/fs_subr.h>
71 
72 /*
73  * From rpcsec module (common/rpcsec).
74  */
75 extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t);
76 extern void sec_clnt_freeinfo(struct sec_data *);
77 
78 static int pathconf_get(struct mntinfo *, model_t, struct nfs_args *);
79 static void pathconf_rele(struct mntinfo *);
80 
81 /*
82  * The order and contents of this structure must be kept in sync with that of
83  * rfsreqcnt_v2_tmpl in nfs_stats.c
84  */
85 static char *rfsnames_v2[] = {
86 	"null", "getattr", "setattr", "unused", "lookup", "readlink", "read",
87 	"unused", "write", "create", "remove", "rename", "link", "symlink",
88 	"mkdir", "rmdir", "readdir", "fsstat"
89 };
90 
91 /*
92  * This table maps from NFS protocol number into call type.
93  * Zero means a "Lookup" type call
94  * One  means a "Read" type call
95  * Two  means a "Write" type call
96  * This is used to select a default time-out.
97  */
98 static uchar_t call_type_v2[] = {
99 	0, 0, 1, 0, 0, 0, 1,
100 	0, 2, 2, 2, 2, 2, 2,
101 	2, 2, 1, 0
102 };
103 
104 /*
105  * Similar table, but to determine which timer to use
106  * (only real reads and writes!)
107  */
108 static uchar_t timer_type_v2[] = {
109 	0, 0, 0, 0, 0, 0, 1,
110 	0, 2, 0, 0, 0, 0, 0,
111 	0, 0, 1, 0
112 };
113 
114 /*
115  * This table maps from NFS protocol number into a call type
116  * for the semisoft mount option.
117  * Zero means do not repeat operation.
118  * One  means repeat.
119  */
120 static uchar_t ss_call_type_v2[] = {
121 	0, 0, 1, 0, 0, 0, 0,
122 	0, 1, 1, 1, 1, 1, 1,
123 	1, 1, 0, 0
124 };
125 
126 /*
127  * nfs vfs operations.
128  */
129 static int	nfs_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *);
130 static int	nfs_unmount(vfs_t *, int, cred_t *);
131 static int	nfs_root(vfs_t *, vnode_t **);
132 static int	nfs_statvfs(vfs_t *, struct statvfs64 *);
133 static int	nfs_sync(vfs_t *, short, cred_t *);
134 static int	nfs_vget(vfs_t *, vnode_t **, fid_t *);
135 static int	nfs_mountroot(vfs_t *, whymountroot_t);
136 static void	nfs_freevfs(vfs_t *);
137 
138 static int	nfsrootvp(vnode_t **, vfs_t *, struct servinfo *,
139 		    int, cred_t *, zone_t *);
140 
141 /*
142  * Initialize the vfs structure
143  */
144 
145 int nfsfstyp;
146 vfsops_t *nfs_vfsops;
147 
148 /*
149  * Debug variable to check for rdma based
150  * transport startup and cleanup. Controlled
151  * through /etc/system. Off by default.
152  */
153 int rdma_debug = 0;
154 
155 int
156 nfsinit(int fstyp, char *name)
157 {
158 	static const fs_operation_def_t nfs_vfsops_template[] = {
159 		VFSNAME_MOUNT, nfs_mount,
160 		VFSNAME_UNMOUNT, nfs_unmount,
161 		VFSNAME_ROOT, nfs_root,
162 		VFSNAME_STATVFS, nfs_statvfs,
163 		VFSNAME_SYNC, (fs_generic_func_p) nfs_sync,
164 		VFSNAME_VGET, nfs_vget,
165 		VFSNAME_MOUNTROOT, nfs_mountroot,
166 		VFSNAME_FREEVFS, (fs_generic_func_p)nfs_freevfs,
167 		NULL, NULL
168 	};
169 	int error;
170 
171 	error = vfs_setfsops(fstyp, nfs_vfsops_template, &nfs_vfsops);
172 	if (error != 0) {
173 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
174 		    "nfsinit: bad vfs ops template");
175 		return (error);
176 	}
177 
178 	error = vn_make_ops(name, nfs_vnodeops_template, &nfs_vnodeops);
179 	if (error != 0) {
180 		(void) vfs_freevfsops_by_type(fstyp);
181 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
182 		    "nfsinit: bad vnode ops template");
183 		return (error);
184 	}
185 
186 
187 	nfsfstyp = fstyp;
188 
189 	return (0);
190 }
191 
192 void
193 nfsfini(void)
194 {
195 }
196 
197 /*
198  * nfs mount vfsop
199  * Set up mount info record and attach it to vfs struct.
200  */
201 static int
202 nfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
203 {
204 	char *data = uap->dataptr;
205 	int error;
206 	vnode_t *rtvp;			/* the server's root */
207 	mntinfo_t *mi;			/* mount info, pointed at by vfs */
208 	size_t hlen;			/* length of hostname */
209 	size_t nlen;			/* length of netname */
210 	char netname[SYS_NMLN];		/* server's netname */
211 	struct netbuf addr;		/* server's address */
212 	struct netbuf syncaddr;		/* AUTH_DES time sync addr */
213 	struct knetconfig *knconf;	/* transport knetconfig structure */
214 	struct knetconfig *rdma_knconf;	/* rdma transport structure */
215 	rnode_t *rp;
216 	struct servinfo *svp;		/* nfs server info */
217 	struct servinfo *svp_tail = NULL; /* previous nfs server info */
218 	struct servinfo *svp_head;	/* first nfs server info */
219 	struct servinfo *svp_2ndlast;	/* 2nd last in the server info list */
220 	struct sec_data *secdata;	/* security data */
221 	STRUCT_DECL(nfs_args, args);	/* nfs mount arguments */
222 	STRUCT_DECL(knetconfig, knconf_tmp);
223 	STRUCT_DECL(netbuf, addr_tmp);
224 	int flags, addr_type;
225 	char *p, *pf;
226 	zone_t *zone = nfs_zone();
227 	zone_t *mntzone = NULL;
228 
229 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
230 		return (error);
231 
232 	if (mvp->v_type != VDIR)
233 		return (ENOTDIR);
234 
235 	/*
236 	 * get arguments
237 	 *
238 	 * nfs_args is now versioned and is extensible, so
239 	 * uap->datalen might be different from sizeof (args)
240 	 * in a compatible situation.
241 	 */
242 more:
243 	STRUCT_INIT(args, get_udatamodel());
244 	bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE));
245 	if (copyin(data, STRUCT_BUF(args), MIN(uap->datalen,
246 	    STRUCT_SIZE(args))))
247 		return (EFAULT);
248 
249 	flags = STRUCT_FGET(args, flags);
250 
251 	if (uap->flags & MS_REMOUNT) {
252 		size_t n;
253 		char name[FSTYPSZ];
254 
255 		if (uap->flags & MS_SYSSPACE)
256 			error = copystr(uap->fstype, name, FSTYPSZ, &n);
257 		else
258 			error = copyinstr(uap->fstype, name, FSTYPSZ, &n);
259 
260 		if (error) {
261 			if (error == ENAMETOOLONG)
262 				return (EINVAL);
263 			return (error);
264 		}
265 
266 		/*
267 		 * This check is to ensure that the request is a
268 		 * genuine nfs remount request.
269 		 */
270 
271 		if (strncmp(name, "nfs", 3) != 0)
272 			return (EINVAL);
273 
274 		/*
275 		 * If the request changes the locking type, disallow the
276 		 * remount,
277 		 * because it's questionable whether we can transfer the
278 		 * locking state correctly.
279 		 *
280 		 * Remounts need to save the pathconf information.
281 		 * Part of the infamous static kludge.
282 		 */
283 
284 		if ((mi = VFTOMI(vfsp)) != NULL) {
285 			uint_t new_mi_llock;
286 			uint_t old_mi_llock;
287 
288 			new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0;
289 			old_mi_llock = (mi->mi_flags & MI_LLOCK) ? 1 : 0;
290 			if (old_mi_llock != new_mi_llock)
291 				return (EBUSY);
292 		}
293 		return (pathconf_get((struct mntinfo *)vfsp->vfs_data,
294 		    get_udatamodel(), STRUCT_BUF(args)));
295 	}
296 
297 	mutex_enter(&mvp->v_lock);
298 	if (!(uap->flags & MS_OVERLAY) &&
299 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
300 		mutex_exit(&mvp->v_lock);
301 		return (EBUSY);
302 	}
303 	mutex_exit(&mvp->v_lock);
304 
305 	/* make sure things are zeroed for errout: */
306 	rtvp = NULL;
307 	mi = NULL;
308 	addr.buf = NULL;
309 	syncaddr.buf = NULL;
310 	secdata = NULL;
311 
312 	/*
313 	 * A valid knetconfig structure is required.
314 	 */
315 	if (!(flags & NFSMNT_KNCONF))
316 		return (EINVAL);
317 
318 	/*
319 	 * Allocate a servinfo struct.
320 	 */
321 	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
322 	mutex_init(&svp->sv_lock, NULL, MUTEX_DEFAULT, NULL);
323 	if (svp_tail) {
324 		svp_2ndlast = svp_tail;
325 		svp_tail->sv_next = svp;
326 	} else {
327 		svp_head = svp;
328 		svp_2ndlast = svp;
329 	}
330 
331 	svp_tail = svp;
332 
333 	/*
334 	 * Allocate space for a knetconfig structure and
335 	 * its strings and copy in from user-land.
336 	 */
337 	knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP);
338 	svp->sv_knconf = knconf;
339 	STRUCT_INIT(knconf_tmp, get_udatamodel());
340 	if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp),
341 	    STRUCT_SIZE(knconf_tmp))) {
342 		sv_free(svp_head);
343 		return (EFAULT);
344 	}
345 
346 	knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics);
347 	knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly);
348 	knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto);
349 	if (get_udatamodel() != DATAMODEL_LP64) {
350 		knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev));
351 	} else {
352 		knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev);
353 	}
354 
355 	pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
356 	p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
357 	error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL);
358 	if (error) {
359 		kmem_free(pf, KNC_STRSIZE);
360 		kmem_free(p, KNC_STRSIZE);
361 		sv_free(svp_head);
362 		return (error);
363 	}
364 	error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL);
365 	if (error) {
366 		kmem_free(pf, KNC_STRSIZE);
367 		kmem_free(p, KNC_STRSIZE);
368 		sv_free(svp_head);
369 		return (error);
370 	}
371 	knconf->knc_protofmly = pf;
372 	knconf->knc_proto = p;
373 
374 	/*
375 	 * Get server address
376 	 */
377 	STRUCT_INIT(addr_tmp, get_udatamodel());
378 	if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp),
379 	    STRUCT_SIZE(addr_tmp))) {
380 		addr.buf = NULL;
381 		error = EFAULT;
382 	} else {
383 		char *userbufptr;
384 
385 		userbufptr = addr.buf = STRUCT_FGETP(addr_tmp, buf);
386 		addr.len = STRUCT_FGET(addr_tmp, len);
387 		addr.buf = kmem_alloc(addr.len, KM_SLEEP);
388 		addr.maxlen = addr.len;
389 		if (copyin(userbufptr, addr.buf, addr.len))
390 			error = EFAULT;
391 	}
392 	svp->sv_addr = addr;
393 	if (error)
394 		goto errout;
395 
396 	/*
397 	 * Get the root fhandle
398 	 */
399 	if (copyin(STRUCT_FGETP(args, fh), &(svp->sv_fhandle.fh_buf),
400 	    NFS_FHSIZE)) {
401 		error = EFAULT;
402 		goto errout;
403 	}
404 	svp->sv_fhandle.fh_len = NFS_FHSIZE;
405 
406 	/*
407 	 * Get server's hostname
408 	 */
409 	if (flags & NFSMNT_HOSTNAME) {
410 		error = copyinstr(STRUCT_FGETP(args, hostname),
411 		    netname, sizeof (netname), &hlen);
412 		if (error)
413 			goto errout;
414 	} else {
415 		char *p = "unknown-host";
416 		hlen = strlen(p) + 1;
417 		(void) strcpy(netname, p);
418 	}
419 	svp->sv_hostnamelen = hlen;
420 	svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
421 	(void) strcpy(svp->sv_hostname, netname);
422 
423 	/*
424 	 * RDMA MOUNT SUPPORT FOR NFS v2:
425 	 * Establish, is it possible to use RDMA, if so overload the
426 	 * knconf with rdma specific knconf and free the orignal.
427 	 */
428 	if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) {
429 		/*
430 		 * Determine the addr type for RDMA, IPv4 or v6.
431 		 */
432 		if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0)
433 			addr_type = AF_INET;
434 		else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0)
435 			addr_type = AF_INET6;
436 
437 		if (rdma_reachable(addr_type, &svp->sv_addr,
438 			&rdma_knconf) == 0) {
439 			/*
440 			 * If successful, hijack, the orignal knconf and
441 			 * replace with a new one, depending on the flags.
442 			 */
443 			svp->sv_origknconf = svp->sv_knconf;
444 			svp->sv_knconf = rdma_knconf;
445 			knconf = rdma_knconf;
446 		} else {
447 			if (flags & NFSMNT_TRYRDMA) {
448 #ifdef	DEBUG
449 				if (rdma_debug)
450 					zcmn_err(getzoneid(), CE_WARN,
451 					    "no RDMA onboard, revert\n");
452 #endif
453 			}
454 
455 			if (flags & NFSMNT_DORDMA) {
456 				/*
457 				 * If proto=rdma is specified and no RDMA
458 				 * path to this server is avialable then
459 				 * ditch this server.
460 				 * This is not included in the mountable
461 				 * server list or the replica list.
462 				 * Check if more servers are specified;
463 				 * Failover case, otherwise bail out of mount.
464 				 */
465 				if (STRUCT_FGET(args, nfs_args_ext) ==
466 				    NFS_ARGS_EXTB && STRUCT_FGETP(args,
467 					nfs_ext_u.nfs_extB.next) != NULL) {
468 					if (uap->flags & MS_RDONLY &&
469 					    !(flags & NFSMNT_SOFT)) {
470 						data = (char *)
471 						    STRUCT_FGETP(args,
472 						nfs_ext_u.nfs_extB.next);
473 						if (svp_head->sv_next == NULL) {
474 							svp_tail = NULL;
475 							svp_2ndlast = NULL;
476 							sv_free(svp_head);
477 							goto more;
478 						} else {
479 							svp_tail = svp_2ndlast;
480 							svp_2ndlast->sv_next =
481 							    NULL;
482 							sv_free(svp);
483 							goto more;
484 						}
485 					}
486 				} else {
487 					/*
488 					 * This is the last server specified
489 					 * in the nfs_args list passed down
490 					 * and its not rdma capable.
491 					 */
492 					if (svp_head->sv_next == NULL) {
493 						/*
494 						 * Is this the only one
495 						 */
496 						error = EINVAL;
497 #ifdef	DEBUG
498 						if (rdma_debug)
499 							zcmn_err(getzoneid(),
500 							    CE_WARN,
501 							    "No RDMA srv");
502 #endif
503 						goto errout;
504 					} else {
505 						/*
506 						 * There is list, since some
507 						 * servers specified before
508 						 * this passed all requirements
509 						 */
510 						svp_tail = svp_2ndlast;
511 						svp_2ndlast->sv_next = NULL;
512 						sv_free(svp);
513 						goto proceed;
514 					}
515 				}
516 			}
517 		}
518 	}
519 
520 	/*
521 	 * Get the extention data which has the new security data structure.
522 	 */
523 	if (flags & NFSMNT_NEWARGS) {
524 		switch (STRUCT_FGET(args, nfs_args_ext)) {
525 		case NFS_ARGS_EXTA:
526 		case NFS_ARGS_EXTB:
527 			/*
528 			 * Indicating the application is using the new
529 			 * sec_data structure to pass in the security
530 			 * data.
531 			 */
532 			if (STRUCT_FGETP(args,
533 			    nfs_ext_u.nfs_extA.secdata) == NULL) {
534 				error = EINVAL;
535 			} else {
536 				error = sec_clnt_loadinfo(
537 				    (struct sec_data *)STRUCT_FGETP(args,
538 					nfs_ext_u.nfs_extA.secdata),
539 				    &secdata, get_udatamodel());
540 			}
541 			break;
542 
543 		default:
544 			error = EINVAL;
545 			break;
546 		}
547 	} else if (flags & NFSMNT_SECURE) {
548 		/*
549 		 * Keep this for backward compatibility to support
550 		 * NFSMNT_SECURE/NFSMNT_RPCTIMESYNC flags.
551 		 */
552 		if (STRUCT_FGETP(args, syncaddr) == NULL) {
553 			error = EINVAL;
554 		} else {
555 			/*
556 			 * get time sync address.
557 			 */
558 			if (copyin(STRUCT_FGETP(args, syncaddr), &addr_tmp,
559 			    STRUCT_SIZE(addr_tmp))) {
560 				syncaddr.buf = NULL;
561 				error = EFAULT;
562 			} else {
563 				char *userbufptr;
564 
565 				userbufptr = syncaddr.buf =
566 				    STRUCT_FGETP(addr_tmp, buf);
567 				syncaddr.len =
568 				    STRUCT_FGET(addr_tmp, len);
569 				syncaddr.buf = kmem_alloc(syncaddr.len,
570 				    KM_SLEEP);
571 				syncaddr.maxlen = syncaddr.len;
572 
573 				if (copyin(userbufptr, syncaddr.buf,
574 				    syncaddr.len))
575 					error = EFAULT;
576 			}
577 
578 			/*
579 			 * get server's netname
580 			 */
581 			if (!error) {
582 				error = copyinstr(STRUCT_FGETP(args, netname),
583 				    netname, sizeof (netname), &nlen);
584 				netname[nlen] = '\0';
585 			}
586 
587 			if (error && syncaddr.buf != NULL) {
588 				kmem_free(syncaddr.buf, syncaddr.len);
589 				syncaddr.buf = NULL;
590 			}
591 		}
592 
593 		/*
594 		 * Move security related data to the sec_data structure.
595 		 */
596 		if (!error) {
597 			dh_k4_clntdata_t *data;
598 			char *pf, *p;
599 
600 			secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
601 			if (flags & NFSMNT_RPCTIMESYNC)
602 				secdata->flags |= AUTH_F_RPCTIMESYNC;
603 			data = kmem_alloc(sizeof (*data), KM_SLEEP);
604 			data->syncaddr = syncaddr;
605 
606 			/*
607 			 * duplicate the knconf information for the
608 			 * new opaque data.
609 			 */
610 			data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP);
611 			*data->knconf = *knconf;
612 			pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
613 			p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
614 			bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE);
615 			bcopy(knconf->knc_proto, pf, KNC_STRSIZE);
616 			data->knconf->knc_protofmly = pf;
617 			data->knconf->knc_proto = p;
618 
619 			/* move server netname to the sec_data structure */
620 			if (nlen != 0) {
621 				data->netname = kmem_alloc(nlen, KM_SLEEP);
622 				bcopy(netname, data->netname, nlen);
623 				data->netnamelen = (int)nlen;
624 			}
625 			secdata->secmod = secdata->rpcflavor = AUTH_DES;
626 			secdata->data = (caddr_t)data;
627 		}
628 	} else {
629 		secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
630 		secdata->secmod = secdata->rpcflavor = AUTH_UNIX;
631 		secdata->data = NULL;
632 	}
633 	svp->sv_secdata = secdata;
634 	if (error)
635 		goto errout;
636 
637 	/*
638 	 * See bug 1180236.
639 	 * If mount secure failed, we will fall back to AUTH_NONE
640 	 * and try again.  nfs3rootvp() will turn this back off.
641 	 *
642 	 * The NFS Version 2 mount uses GETATTR and STATFS procedures.
643 	 * The server does not care if these procedures have the proper
644 	 * authentication flavor, so if mount retries using AUTH_NONE
645 	 * that does not require a credential setup for root then the
646 	 * automounter would work without requiring root to be
647 	 * keylogged into AUTH_DES.
648 	 */
649 	if (secdata->rpcflavor != AUTH_UNIX &&
650 	    secdata->rpcflavor != AUTH_LOOPBACK)
651 		secdata->flags |= AUTH_F_TRYNONE;
652 
653 	/*
654 	 * Failover support:
655 	 *
656 	 * We may have a linked list of nfs_args structures,
657 	 * which means the user is looking for failover.  If
658 	 * the mount is either not "read-only" or "soft",
659 	 * we want to bail out with EINVAL.
660 	 */
661 	if (STRUCT_FGET(args, nfs_args_ext) == NFS_ARGS_EXTB &&
662 	    STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next) != NULL) {
663 		if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) {
664 			data = (char *)STRUCT_FGETP(args,
665 			    nfs_ext_u.nfs_extB.next);
666 			goto more;
667 		}
668 		error = EINVAL;
669 		goto errout;
670 	}
671 
672 	/*
673 	 * Determine the zone we're being mounted into.
674 	 */
675 	zone_hold(mntzone = zone);		/* start with this assumption */
676 	if (getzoneid() == GLOBAL_ZONEID) {
677 		zone_rele(mntzone);
678 		mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
679 		ASSERT(mntzone != NULL);
680 		if (mntzone != zone) {
681 			error = EBUSY;
682 			goto errout;
683 		}
684 	}
685 
686 	if (is_system_labeled()) {
687 		error = nfs_mount_label_policy(vfsp, &svp->sv_addr,
688 		    svp->sv_knconf, cr);
689 
690 		if (error > 0)
691 			goto errout;
692 
693 		if (error == -1) {
694 			/* change mount to read-only to prevent write-down */
695 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
696 		}
697 	}
698 
699 	/*
700 	 * Stop the mount from going any further if the zone is going away.
701 	 */
702 	if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) {
703 		error = EBUSY;
704 		goto errout;
705 	}
706 
707 	/*
708 	 * Get root vnode.
709 	 */
710 proceed:
711 	error = nfsrootvp(&rtvp, vfsp, svp_head, flags, cr, mntzone);
712 
713 	if (error)
714 		goto errout;
715 
716 	/*
717 	 * Set option fields in the mount info record
718 	 */
719 	mi = VTOMI(rtvp);
720 
721 	if (svp_head->sv_next)
722 		mi->mi_flags |= MI_LLOCK;
723 
724 	error = nfs_setopts(rtvp, get_udatamodel(), STRUCT_BUF(args));
725 	if (!error) {
726 		/* static pathconf kludge */
727 		error = pathconf_get(mi, get_udatamodel(), STRUCT_BUF(args));
728 	}
729 
730 errout:
731 	if (error) {
732 		if (rtvp != NULL) {
733 			rp = VTOR(rtvp);
734 			if (rp->r_flags & RHASHED)
735 				rp_rmhash(rp);
736 		}
737 		sv_free(svp_head);
738 		if (mi != NULL) {
739 			nfs_async_stop(vfsp);
740 			nfs_async_manager_stop(vfsp);
741 			if (mi->mi_io_kstats) {
742 				kstat_delete(mi->mi_io_kstats);
743 				mi->mi_io_kstats = NULL;
744 			}
745 			if (mi->mi_ro_kstats) {
746 				kstat_delete(mi->mi_ro_kstats);
747 				mi->mi_ro_kstats = NULL;
748 			}
749 			nfs_free_mi(mi);
750 		}
751 	}
752 
753 	if (rtvp != NULL)
754 		VN_RELE(rtvp);
755 
756 	if (mntzone != NULL)
757 		zone_rele(mntzone);
758 
759 	return (error);
760 }
761 
762 /*
763  * The pathconf information is kept on a linked list of kmem_alloc'ed
764  * structs. We search the list & add a new struct iff there is no other
765  * struct with the same information.
766  * See sys/pathconf.h for ``the rest of the story.''
767  */
768 static struct pathcnf *allpc = NULL;
769 
770 static int
771 pathconf_get(struct mntinfo *mi, model_t model, struct nfs_args *args)
772 {
773 	struct pathcnf *p;
774 	struct pathcnf pc;
775 	STRUCT_DECL(pathcnf, pc_tmp);
776 	STRUCT_HANDLE(nfs_args, ap);
777 	int i;
778 
779 #ifdef lint
780 	model = model;
781 #endif
782 
783 	STRUCT_INIT(pc_tmp, model);
784 	STRUCT_SET_HANDLE(ap, model, args);
785 
786 	if (mi->mi_pathconf != NULL) {
787 		pathconf_rele(mi);
788 		mi->mi_pathconf = NULL;
789 	}
790 	if ((STRUCT_FGET(ap, flags) & NFSMNT_POSIX) &&
791 	    STRUCT_FGETP(ap, pathconf) != NULL) {
792 		if (copyin(STRUCT_FGETP(ap, pathconf), STRUCT_BUF(pc_tmp),
793 		    STRUCT_SIZE(pc_tmp)))
794 			return (EFAULT);
795 		if (_PC_ISSET(_PC_ERROR, STRUCT_FGET(pc_tmp, pc_mask)))
796 			return (EINVAL);
797 
798 		pc.pc_link_max = STRUCT_FGET(pc_tmp, pc_link_max);
799 		pc.pc_max_canon = STRUCT_FGET(pc_tmp, pc_max_canon);
800 		pc.pc_max_input = STRUCT_FGET(pc_tmp, pc_max_input);
801 		pc.pc_name_max = STRUCT_FGET(pc_tmp, pc_name_max);
802 		pc.pc_path_max = STRUCT_FGET(pc_tmp, pc_path_max);
803 		pc.pc_pipe_buf = STRUCT_FGET(pc_tmp, pc_pipe_buf);
804 		pc.pc_vdisable = STRUCT_FGET(pc_tmp, pc_vdisable);
805 		pc.pc_xxx = STRUCT_FGET(pc_tmp, pc_xxx);
806 		for (i = 0; i < _PC_N; i++)
807 			pc.pc_mask[i] = STRUCT_FGET(pc_tmp, pc_mask[i]);
808 
809 		for (p = allpc; p != NULL; p = p->pc_next) {
810 			if (PCCMP(p, &pc) == 0)
811 				break;
812 		}
813 		if (p != NULL) {
814 			mi->mi_pathconf = p;
815 			p->pc_refcnt++;
816 		} else {
817 			p = kmem_alloc(sizeof (*p), KM_SLEEP);
818 			*p = pc;
819 			p->pc_next = allpc;
820 			p->pc_refcnt = 1;
821 			allpc = mi->mi_pathconf = p;
822 		}
823 	}
824 	return (0);
825 }
826 
827 /*
828  * release the static pathconf information
829  */
830 static void
831 pathconf_rele(struct mntinfo *mi)
832 {
833 	if (mi->mi_pathconf != NULL) {
834 		if (--mi->mi_pathconf->pc_refcnt == 0) {
835 			struct pathcnf *p;
836 			struct pathcnf *p2;
837 
838 			p2 = p = allpc;
839 			while (p != NULL && p != mi->mi_pathconf) {
840 				p2 = p;
841 				p = p->pc_next;
842 			}
843 			if (p == NULL) {
844 				panic("mi->pathconf");
845 				/*NOTREACHED*/
846 			}
847 			if (p == allpc)
848 				allpc = p->pc_next;
849 			else
850 				p2->pc_next = p->pc_next;
851 			kmem_free(p, sizeof (*p));
852 			mi->mi_pathconf = NULL;
853 		}
854 	}
855 }
856 
857 static int nfs_dynamic = 1;	/* global variable to enable dynamic retrans. */
858 static ushort_t nfs_max_threads = 8;	/* max number of active async threads */
859 static uint_t nfs_async_clusters = 1;	/* # of reqs from each async queue */
860 static uint_t nfs_cots_timeo = NFS_COTS_TIMEO;
861 
862 static int
863 nfsrootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo *svp,
864 	int flags, cred_t *cr, zone_t *zone)
865 {
866 	vnode_t *rtvp;
867 	mntinfo_t *mi;
868 	dev_t nfs_dev;
869 	struct vattr va;
870 	int error;
871 	rnode_t *rp;
872 	int i;
873 	struct nfs_stats *nfsstatsp;
874 	cred_t *lcr = NULL, *tcr = cr;
875 
876 	nfsstatsp = zone_getspecific(nfsstat_zone_key, nfs_zone());
877 	ASSERT(nfsstatsp != NULL);
878 
879 	/*
880 	 * Create a mount record and link it to the vfs struct.
881 	 */
882 	mi = kmem_zalloc(sizeof (*mi), KM_SLEEP);
883 	mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL);
884 	mutex_init(&mi->mi_remap_lock, NULL, MUTEX_DEFAULT, NULL);
885 	mi->mi_flags = MI_ACL | MI_EXTATTR;
886 	if (!(flags & NFSMNT_SOFT))
887 		mi->mi_flags |= MI_HARD;
888 	if ((flags & NFSMNT_SEMISOFT))
889 		mi->mi_flags |= MI_SEMISOFT;
890 	if ((flags & NFSMNT_NOPRINT))
891 		mi->mi_flags |= MI_NOPRINT;
892 	if (flags & NFSMNT_INT)
893 		mi->mi_flags |= MI_INT;
894 	mi->mi_retrans = NFS_RETRIES;
895 	if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD ||
896 	    svp->sv_knconf->knc_semantics == NC_TPI_COTS)
897 		mi->mi_timeo = nfs_cots_timeo;
898 	else
899 		mi->mi_timeo = NFS_TIMEO;
900 	mi->mi_prog = NFS_PROGRAM;
901 	mi->mi_vers = NFS_VERSION;
902 	mi->mi_rfsnames = rfsnames_v2;
903 	mi->mi_reqs = nfsstatsp->nfs_stats_v2.rfsreqcnt_ptr;
904 	mi->mi_call_type = call_type_v2;
905 	mi->mi_ss_call_type = ss_call_type_v2;
906 	mi->mi_timer_type = timer_type_v2;
907 	mi->mi_aclnames = aclnames_v2;
908 	mi->mi_aclreqs = nfsstatsp->nfs_stats_v2.aclreqcnt_ptr;
909 	mi->mi_acl_call_type = acl_call_type_v2;
910 	mi->mi_acl_ss_call_type = acl_ss_call_type_v2;
911 	mi->mi_acl_timer_type = acl_timer_type_v2;
912 	cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL);
913 	mi->mi_servers = svp;
914 	mi->mi_curr_serv = svp;
915 	mi->mi_acregmin = SEC2HR(ACREGMIN);
916 	mi->mi_acregmax = SEC2HR(ACREGMAX);
917 	mi->mi_acdirmin = SEC2HR(ACDIRMIN);
918 	mi->mi_acdirmax = SEC2HR(ACDIRMAX);
919 
920 	if (nfs_dynamic)
921 		mi->mi_flags |= MI_DYNAMIC;
922 
923 	if (flags & NFSMNT_DIRECTIO)
924 		mi->mi_flags |= MI_DIRECTIO;
925 
926 	/*
927 	 * Make a vfs struct for nfs.  We do this here instead of below
928 	 * because rtvp needs a vfs before we can do a getattr on it.
929 	 *
930 	 * Assign a unique device id to the mount
931 	 */
932 	mutex_enter(&nfs_minor_lock);
933 	do {
934 		nfs_minor = (nfs_minor + 1) & MAXMIN32;
935 		nfs_dev = makedevice(nfs_major, nfs_minor);
936 	} while (vfs_devismounted(nfs_dev));
937 	mutex_exit(&nfs_minor_lock);
938 
939 	vfsp->vfs_dev = nfs_dev;
940 	vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfsfstyp);
941 	vfsp->vfs_data = (caddr_t)mi;
942 	vfsp->vfs_fstype = nfsfstyp;
943 	vfsp->vfs_bsize = NFS_MAXDATA;
944 
945 	/*
946 	 * Initialize fields used to support async putpage operations.
947 	 */
948 	for (i = 0; i < NFS_ASYNC_TYPES; i++)
949 		mi->mi_async_clusters[i] = nfs_async_clusters;
950 	mi->mi_async_init_clusters = nfs_async_clusters;
951 	mi->mi_async_curr = &mi->mi_async_reqs[0];
952 	mi->mi_max_threads = nfs_max_threads;
953 	mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL);
954 	cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL);
955 	cv_init(&mi->mi_async_work_cv, NULL, CV_DEFAULT, NULL);
956 	cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL);
957 
958 	mi->mi_vfsp = vfsp;
959 	zone_hold(mi->mi_zone = zone);
960 	nfs_mi_zonelist_add(mi);
961 
962 	/*
963 	 * Make the root vnode, use it to get attributes,
964 	 * then remake it with the attributes.
965 	 */
966 	rtvp = makenfsnode((fhandle_t *)svp->sv_fhandle.fh_buf,
967 	    NULL, vfsp, gethrtime(), cr, NULL, NULL);
968 
969 	va.va_mask = AT_ALL;
970 
971 	/*
972 	 * If the uid is set then set the creds for secure mounts
973 	 * by proxy processes such as automountd.
974 	 */
975 	if (svp->sv_secdata->uid != 0 &&
976 	    svp->sv_secdata->rpcflavor == RPCSEC_GSS) {
977 		lcr = crdup(cr);
978 		(void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr));
979 		tcr = lcr;
980 	}
981 
982 	error = nfsgetattr(rtvp, &va, tcr);
983 	if (error)
984 		goto bad;
985 	rtvp->v_type = va.va_type;
986 
987 	/*
988 	 * Poll every server to get the filesystem stats; we're
989 	 * only interested in the server's transfer size, and we
990 	 * want the minimum.
991 	 *
992 	 * While we're looping, we'll turn off AUTH_F_TRYNONE,
993 	 * which is only for the mount operation.
994 	 */
995 
996 	mi->mi_tsize = MIN(NFS_MAXDATA, nfstsize());
997 	mi->mi_stsize = MIN(NFS_MAXDATA, nfstsize());
998 
999 	for (svp = mi->mi_servers; svp != NULL; svp = svp->sv_next) {
1000 		struct nfsstatfs fs;
1001 		int douprintf;
1002 
1003 		douprintf = 1;
1004 		mi->mi_curr_serv = svp;
1005 
1006 		error = rfs2call(mi, RFS_STATFS,
1007 			xdr_fhandle, (caddr_t)svp->sv_fhandle.fh_buf,
1008 			xdr_statfs, (caddr_t)&fs, tcr, &douprintf,
1009 			&fs.fs_status, 0, NULL);
1010 		if (error)
1011 			goto bad;
1012 		mi->mi_stsize = MIN(mi->mi_stsize, fs.fs_tsize);
1013 		svp->sv_secdata->flags &= ~AUTH_F_TRYNONE;
1014 	}
1015 	mi->mi_curr_serv = mi->mi_servers;
1016 	mi->mi_curread = mi->mi_tsize;
1017 	mi->mi_curwrite = mi->mi_stsize;
1018 
1019 	/*
1020 	 * Start the manager thread responsible for handling async worker
1021 	 * threads.
1022 	 */
1023 	VFS_HOLD(vfsp);	/* add reference for thread */
1024 	mi->mi_manager_thread = zthread_create(NULL, 0, nfs_async_manager,
1025 					vfsp, 0, minclsyspri);
1026 	ASSERT(mi->mi_manager_thread != NULL);
1027 
1028 	/*
1029 	 * Initialize kstats
1030 	 */
1031 	nfs_mnt_kstat_init(vfsp);
1032 
1033 	mi->mi_type = rtvp->v_type;
1034 
1035 	*rtvpp = rtvp;
1036 	if (lcr != NULL)
1037 		crfree(lcr);
1038 
1039 	return (0);
1040 bad:
1041 	/*
1042 	 * An error occurred somewhere, need to clean up...
1043 	 * We need to release our reference to the root vnode and
1044 	 * destroy the mntinfo struct that we just created.
1045 	 */
1046 	if (lcr != NULL)
1047 		crfree(lcr);
1048 	rp = VTOR(rtvp);
1049 	if (rp->r_flags & RHASHED)
1050 		rp_rmhash(rp);
1051 	VN_RELE(rtvp);
1052 	nfs_async_stop(vfsp);
1053 	nfs_async_manager_stop(vfsp);
1054 	if (mi->mi_io_kstats) {
1055 		kstat_delete(mi->mi_io_kstats);
1056 		mi->mi_io_kstats = NULL;
1057 	}
1058 	if (mi->mi_ro_kstats) {
1059 		kstat_delete(mi->mi_ro_kstats);
1060 		mi->mi_ro_kstats = NULL;
1061 	}
1062 	nfs_free_mi(mi);
1063 	*rtvpp = NULL;
1064 	return (error);
1065 }
1066 
1067 /*
1068  * vfs operations
1069  */
1070 static int
1071 nfs_unmount(vfs_t *vfsp, int flag, cred_t *cr)
1072 {
1073 	mntinfo_t *mi;
1074 	ushort_t omax;
1075 
1076 	if (secpolicy_fs_unmount(cr, vfsp) != 0)
1077 		return (EPERM);
1078 
1079 	mi = VFTOMI(vfsp);
1080 	if (flag & MS_FORCE) {
1081 		vfsp->vfs_flag |= VFS_UNMOUNTED;
1082 		/*
1083 		 * We need to stop the manager thread explicitly; the worker
1084 		 * threads can time out and exit on their own.
1085 		 */
1086 		nfs_async_manager_stop(vfsp);
1087 		destroy_rtable(vfsp, cr);
1088 		if (mi->mi_io_kstats) {
1089 			kstat_delete(mi->mi_io_kstats);
1090 			mi->mi_io_kstats = NULL;
1091 		}
1092 		if (mi->mi_ro_kstats) {
1093 			kstat_delete(mi->mi_ro_kstats);
1094 			mi->mi_ro_kstats = NULL;
1095 		}
1096 		return (0);
1097 	}
1098 	/*
1099 	 * Wait until all asynchronous putpage operations on
1100 	 * this file system are complete before flushing rnodes
1101 	 * from the cache.
1102 	 */
1103 	omax = mi->mi_max_threads;
1104 	if (nfs_async_stop_sig(vfsp)) {
1105 		return (EINTR);
1106 	}
1107 	rflush(vfsp, cr);
1108 	/*
1109 	 * If there are any active vnodes on this file system,
1110 	 * then the file system is busy and can't be umounted.
1111 	 */
1112 	if (check_rtable(vfsp)) {
1113 		mutex_enter(&mi->mi_async_lock);
1114 		mi->mi_max_threads = omax;
1115 		mutex_exit(&mi->mi_async_lock);
1116 		return (EBUSY);
1117 	}
1118 	/*
1119 	 * The unmount can't fail from now on; stop the manager thread.
1120 	 */
1121 	nfs_async_manager_stop(vfsp);
1122 	/*
1123 	 * Destroy all rnodes belonging to this file system from the
1124 	 * rnode hash queues and purge any resources allocated to
1125 	 * them.
1126 	 */
1127 	destroy_rtable(vfsp, cr);
1128 	if (mi->mi_io_kstats) {
1129 		kstat_delete(mi->mi_io_kstats);
1130 		mi->mi_io_kstats = NULL;
1131 	}
1132 	if (mi->mi_ro_kstats) {
1133 		kstat_delete(mi->mi_ro_kstats);
1134 		mi->mi_ro_kstats = NULL;
1135 	}
1136 	return (0);
1137 }
1138 
1139 /*
1140  * find root of nfs
1141  */
1142 static int
1143 nfs_root(vfs_t *vfsp, vnode_t **vpp)
1144 {
1145 	mntinfo_t *mi;
1146 	vnode_t *vp;
1147 	servinfo_t *svp;
1148 
1149 	mi = VFTOMI(vfsp);
1150 
1151 	if (nfs_zone() != mi->mi_zone)
1152 		return (EPERM);
1153 
1154 	svp = mi->mi_curr_serv;
1155 	if (svp && (svp->sv_flags & SV_ROOT_STALE)) {
1156 		mutex_enter(&svp->sv_lock);
1157 		svp->sv_flags &= ~SV_ROOT_STALE;
1158 		mutex_exit(&svp->sv_lock);
1159 		return (ENOENT);
1160 	}
1161 
1162 	vp = makenfsnode((fhandle_t *)mi->mi_curr_serv->sv_fhandle.fh_buf,
1163 	    NULL, vfsp, gethrtime(), CRED(), NULL, NULL);
1164 
1165 	if (VTOR(vp)->r_flags & RSTALE) {
1166 		VN_RELE(vp);
1167 		return (ENOENT);
1168 	}
1169 
1170 	ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type);
1171 
1172 	vp->v_type = mi->mi_type;
1173 
1174 	*vpp = vp;
1175 
1176 	return (0);
1177 }
1178 
1179 /*
1180  * Get file system statistics.
1181  */
1182 static int
1183 nfs_statvfs(vfs_t *vfsp, struct statvfs64 *sbp)
1184 {
1185 	int error;
1186 	mntinfo_t *mi;
1187 	struct nfsstatfs fs;
1188 	int douprintf;
1189 	failinfo_t fi;
1190 	vnode_t *vp;
1191 
1192 	error = nfs_root(vfsp, &vp);
1193 	if (error)
1194 		return (error);
1195 
1196 	mi = VFTOMI(vfsp);
1197 	douprintf = 1;
1198 	fi.vp = vp;
1199 	fi.fhp = NULL;		/* no need to update, filehandle not copied */
1200 	fi.copyproc = nfscopyfh;
1201 	fi.lookupproc = nfslookup;
1202 	fi.xattrdirproc = acl_getxattrdir2;
1203 
1204 	error = rfs2call(mi, RFS_STATFS,
1205 			xdr_fhandle, (caddr_t)VTOFH(vp),
1206 			xdr_statfs, (caddr_t)&fs, CRED(), &douprintf,
1207 			&fs.fs_status, 0, &fi);
1208 
1209 	if (!error) {
1210 		error = geterrno(fs.fs_status);
1211 		if (!error) {
1212 			mutex_enter(&mi->mi_lock);
1213 			if (mi->mi_stsize) {
1214 				mi->mi_stsize = MIN(mi->mi_stsize, fs.fs_tsize);
1215 			} else {
1216 				mi->mi_stsize = fs.fs_tsize;
1217 				mi->mi_curwrite = mi->mi_stsize;
1218 			}
1219 			mutex_exit(&mi->mi_lock);
1220 			sbp->f_bsize = fs.fs_bsize;
1221 			sbp->f_frsize = fs.fs_bsize;
1222 			sbp->f_blocks = (fsblkcnt64_t)fs.fs_blocks;
1223 			sbp->f_bfree = (fsblkcnt64_t)fs.fs_bfree;
1224 			/*
1225 			 * Some servers may return negative available
1226 			 * block counts.  They may do this because they
1227 			 * calculate the number of available blocks by
1228 			 * subtracting the number of used blocks from
1229 			 * the total number of blocks modified by the
1230 			 * minimum free value.  For example, if the
1231 			 * minumum free percentage is 10 and the file
1232 			 * system is greater than 90 percent full, then
1233 			 * 90 percent of the total blocks minus the
1234 			 * actual number of used blocks may be a
1235 			 * negative number.
1236 			 *
1237 			 * In this case, we need to sign extend the
1238 			 * negative number through the assignment from
1239 			 * the 32 bit bavail count to the 64 bit bavail
1240 			 * count.
1241 			 *
1242 			 * We need to be able to discern between there
1243 			 * just being a lot of available blocks on the
1244 			 * file system and the case described above.
1245 			 * We are making the assumption that it does
1246 			 * not make sense to have more available blocks
1247 			 * than there are free blocks.  So, if there
1248 			 * are, then we treat the number as if it were
1249 			 * a negative number and arrange to have it
1250 			 * sign extended when it is converted from 32
1251 			 * bits to 64 bits.
1252 			 */
1253 			if (fs.fs_bavail <= fs.fs_bfree)
1254 				sbp->f_bavail = (fsblkcnt64_t)fs.fs_bavail;
1255 			else {
1256 				sbp->f_bavail =
1257 					(fsblkcnt64_t)((long)fs.fs_bavail);
1258 			}
1259 			sbp->f_files = (fsfilcnt64_t)-1;
1260 			sbp->f_ffree = (fsfilcnt64_t)-1;
1261 			sbp->f_favail = (fsfilcnt64_t)-1;
1262 			sbp->f_fsid = (unsigned long)vfsp->vfs_fsid.val[0];
1263 			(void) strncpy(sbp->f_basetype,
1264 				vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ);
1265 			sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
1266 			sbp->f_namemax = (uint32_t)-1;
1267 		} else {
1268 			PURGE_STALE_FH(error, vp, CRED());
1269 		}
1270 	}
1271 
1272 	VN_RELE(vp);
1273 
1274 	return (error);
1275 }
1276 
1277 static kmutex_t nfs_syncbusy;
1278 
1279 /*
1280  * Flush dirty nfs files for file system vfsp.
1281  * If vfsp == NULL, all nfs files are flushed.
1282  */
1283 /* ARGSUSED */
1284 static int
1285 nfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
1286 {
1287 	/*
1288 	 * Cross-zone calls are OK here, since this translates to a
1289 	 * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone.
1290 	 */
1291 	if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs_syncbusy) != 0) {
1292 		rflush(vfsp, cr);
1293 		mutex_exit(&nfs_syncbusy);
1294 	}
1295 	return (0);
1296 }
1297 
1298 /* ARGSUSED */
1299 static int
1300 nfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1301 {
1302 	int error;
1303 	vnode_t *vp;
1304 	struct vattr va;
1305 	struct nfs_fid *nfsfidp = (struct nfs_fid *)fidp;
1306 	zoneid_t zoneid = VFTOMI(vfsp)->mi_zone->zone_id;
1307 
1308 	if (nfs_zone() != VFTOMI(vfsp)->mi_zone)
1309 		return (EPERM);
1310 	if (fidp->fid_len != (sizeof (*nfsfidp) - sizeof (short))) {
1311 #ifdef DEBUG
1312 		zcmn_err(zoneid, CE_WARN,
1313 		    "nfs_vget: bad fid len, %d/%d", fidp->fid_len,
1314 		    (int)(sizeof (*nfsfidp) - sizeof (short)));
1315 #endif
1316 		*vpp = NULL;
1317 		return (ESTALE);
1318 	}
1319 
1320 	vp = makenfsnode((fhandle_t *)(nfsfidp->nf_data), NULL, vfsp,
1321 	    gethrtime(), CRED(), NULL, NULL);
1322 
1323 	if (VTOR(vp)->r_flags & RSTALE) {
1324 		VN_RELE(vp);
1325 		*vpp = NULL;
1326 		return (ENOENT);
1327 	}
1328 
1329 	if (vp->v_type == VNON) {
1330 		va.va_mask = AT_ALL;
1331 		error = nfsgetattr(vp, &va, CRED());
1332 		if (error) {
1333 			VN_RELE(vp);
1334 			*vpp = NULL;
1335 			return (error);
1336 		}
1337 		vp->v_type = va.va_type;
1338 	}
1339 
1340 	*vpp = vp;
1341 
1342 	return (0);
1343 }
1344 
1345 /* ARGSUSED */
1346 static int
1347 nfs_mountroot(vfs_t *vfsp, whymountroot_t why)
1348 {
1349 	vnode_t *rtvp;
1350 	char root_hostname[SYS_NMLN+1];
1351 	struct servinfo *svp;
1352 	int error;
1353 	int vfsflags;
1354 	size_t size;
1355 	char *root_path;
1356 	struct pathname pn;
1357 	char *name;
1358 	cred_t *cr;
1359 	struct nfs_args args;		/* nfs mount arguments */
1360 	static char token[10];
1361 
1362 	bzero(&args, sizeof (args));
1363 
1364 	/* do this BEFORE getfile which causes xid stamps to be initialized */
1365 	clkset(-1L);		/* hack for now - until we get time svc? */
1366 
1367 	if (why == ROOT_REMOUNT) {
1368 		/*
1369 		 * Shouldn't happen.
1370 		 */
1371 		panic("nfs_mountroot: why == ROOT_REMOUNT");
1372 	}
1373 
1374 	if (why == ROOT_UNMOUNT) {
1375 		/*
1376 		 * Nothing to do for NFS.
1377 		 */
1378 		return (0);
1379 	}
1380 
1381 	/*
1382 	 * why == ROOT_INIT
1383 	 */
1384 
1385 	name = token;
1386 	*name = 0;
1387 	getfsname("root", name, sizeof (token));
1388 
1389 	pn_alloc(&pn);
1390 	root_path = pn.pn_path;
1391 
1392 	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
1393 	svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP);
1394 	svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
1395 	svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
1396 
1397 	/*
1398 	 * Get server address
1399 	 * Get the root fhandle
1400 	 * Get server's transport
1401 	 * Get server's hostname
1402 	 * Get options
1403 	 */
1404 	args.addr = &svp->sv_addr;
1405 	args.fh = (char *)&svp->sv_fhandle.fh_buf;
1406 	args.knconf = svp->sv_knconf;
1407 	args.hostname = root_hostname;
1408 	vfsflags = 0;
1409 	if (error = mount_root(*name ? name : "root", root_path, NFS_VERSION,
1410 	    &args, &vfsflags)) {
1411 		nfs_cmn_err(error, CE_WARN,
1412 		    "nfs_mountroot: mount_root failed: %m");
1413 		sv_free(svp);
1414 		pn_free(&pn);
1415 		return (error);
1416 	}
1417 	svp->sv_fhandle.fh_len = NFS_FHSIZE;
1418 	svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1);
1419 	svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
1420 	(void) strcpy(svp->sv_hostname, root_hostname);
1421 
1422 	/*
1423 	 * Force root partition to always be mounted with AUTH_UNIX for now
1424 	 */
1425 	svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP);
1426 	svp->sv_secdata->secmod = AUTH_UNIX;
1427 	svp->sv_secdata->rpcflavor = AUTH_UNIX;
1428 	svp->sv_secdata->data = NULL;
1429 
1430 	cr = crgetcred();
1431 	rtvp = NULL;
1432 
1433 	error = nfsrootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone);
1434 
1435 	crfree(cr);
1436 
1437 	if (error) {
1438 		pn_free(&pn);
1439 		goto errout;
1440 	}
1441 
1442 	error = nfs_setopts(rtvp, DATAMODEL_NATIVE, &args);
1443 	if (error) {
1444 		nfs_cmn_err(error, CE_WARN,
1445 		    "nfs_mountroot: invalid root mount options");
1446 		pn_free(&pn);
1447 		goto errout;
1448 	}
1449 
1450 	(void) vfs_lock_wait(vfsp);
1451 	vfs_add(NULL, vfsp, vfsflags);
1452 	vfs_unlock(vfsp);
1453 
1454 	size = strlen(svp->sv_hostname);
1455 	(void) strcpy(rootfs.bo_name, svp->sv_hostname);
1456 	rootfs.bo_name[size] = ':';
1457 	(void) strcpy(&rootfs.bo_name[size + 1], root_path);
1458 
1459 	pn_free(&pn);
1460 
1461 errout:
1462 	if (error) {
1463 		sv_free(svp);
1464 		nfs_async_stop(vfsp);
1465 		nfs_async_manager_stop(vfsp);
1466 	}
1467 
1468 	if (rtvp != NULL)
1469 		VN_RELE(rtvp);
1470 
1471 	return (error);
1472 }
1473 
1474 /*
1475  * Initialization routine for VFS routines.  Should only be called once
1476  */
1477 int
1478 nfs_vfsinit(void)
1479 {
1480 	mutex_init(&nfs_syncbusy, NULL, MUTEX_DEFAULT, NULL);
1481 	return (0);
1482 }
1483 
1484 void
1485 nfs_vfsfini(void)
1486 {
1487 	mutex_destroy(&nfs_syncbusy);
1488 }
1489 
1490 void
1491 nfs_freevfs(vfs_t *vfsp)
1492 {
1493 	mntinfo_t *mi;
1494 	servinfo_t *svp;
1495 
1496 	/* free up the resources */
1497 	mi = VFTOMI(vfsp);
1498 	pathconf_rele(mi);
1499 	svp = mi->mi_servers;
1500 	mi->mi_servers = mi->mi_curr_serv = NULL;
1501 	sv_free(svp);
1502 
1503 	/*
1504 	 * By this time we should have already deleted the
1505 	 * mi kstats in the unmount code. If they are still around
1506 	 * somethings wrong
1507 	 */
1508 	ASSERT(mi->mi_io_kstats == NULL);
1509 	nfs_free_mi(mi);
1510 }
1511