1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/t_lock.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/buf.h>
32 #include <sys/conf.h>
33 #include <sys/cred.h>
34 #include <sys/kmem.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/file.h>
43 #include <sys/open.h>
44 #include <sys/user.h>
45 #include <sys/uio.h>
46 #include <sys/termios.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/esunddi.h>
51 #include <sys/flock.h>
52 #include <sys/modctl.h>
53 #include <sys/cmn_err.h>
54 #include <sys/mkdev.h>
55 #include <sys/pathname.h>
56 #include <sys/ddi.h>
57 #include <sys/stat.h>
58 #include <sys/fs/snode.h>
59 #include <sys/fs/dv_node.h>
60 #include <sys/zone.h>
61 
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <netinet/in.h>
65 #include <sys/un.h>
66 
67 #include <sys/ucred.h>
68 
69 #include <sys/tiuser.h>
70 #define	_SUN_TPI_VERSION	2
71 #include <sys/tihdr.h>
72 
73 #include <c2/audit.h>
74 
75 #include <fs/sockfs/nl7c.h>
76 
77 /*
78  * Macros that operate on struct cmsghdr.
79  * The CMSG_VALID macro does not assume that the last option buffer is padded.
80  */
81 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
82 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
83 #define	CMSG_VALID(cmsg, start, end)					\
84 	(ISALIGNED_cmsghdr(cmsg) &&					\
85 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
86 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
87 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
88 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
89 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
90 
91 static struct kmem_cache *socktpi_cache, *socktpi_unix_cache;
92 struct kmem_cache *socktpi_sod_cache;
93 
94 dev_t sockdev;	/* For fsid in getattr */
95 
96 struct sockparams *sphead;
97 krwlock_t splist_lock;
98 
99 struct socklist socklist;
100 
101 static int sockfs_update(kstat_t *, int);
102 static int sockfs_snapshot(kstat_t *, void *, int);
103 
104 extern void sendfile_init();
105 
106 extern void nl7c_init(void);
107 
108 extern int sostr_init();
109 
110 #define	ADRSTRLEN (2 * sizeof (void *) + 1)
111 /*
112  * kernel structure for passing the sockinfo data back up to the user.
113  * the strings array allows us to convert AF_UNIX addresses into strings
114  * with a common method regardless of which n-bit kernel we're running.
115  */
116 struct k_sockinfo {
117 	struct sockinfo	ks_si;
118 	char		ks_straddr[3][ADRSTRLEN];
119 };
120 
121 /*
122  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
123  * Returns with the vnode held.
124  */
125 static int
126 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
127 {
128 	struct snode *csp;
129 	vnode_t *vp, *dvp;
130 	major_t maj;
131 	int error;
132 
133 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
134 	/*
135 	 * Lookup the underlying filesystem vnode.
136 	 */
137 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
138 	if (error)
139 		return (error);
140 
141 	/* Check that it is the correct vnode */
142 	if (vp->v_type != VCHR) {
143 		VN_RELE(vp);
144 		return (ENOTSOCK);
145 	}
146 
147 	/*
148 	 * If devpath went through devfs, the device should already
149 	 * be configured. If devpath is a mknod file, however, we
150 	 * need to make sure the device is properly configured.
151 	 * To do this, we do something similar to spec_open()
152 	 * except that we resolve to the minor/leaf level since
153 	 * we need to return a vnode.
154 	 */
155 	csp = VTOS(VTOS(vp)->s_commonvp);
156 	if (!(csp->s_flag & SDIPSET)) {
157 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
158 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
159 		if (error == 0)
160 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
161 		VN_RELE(vp);
162 		kmem_free(pathname, MAXPATHLEN);
163 		if (error != 0)
164 			return (ENXIO);
165 		vp = dvp;	/* use the devfs vp */
166 	}
167 
168 	/* device is configured at this point */
169 	maj = getmajor(vp->v_rdev);
170 	if (!STREAMSTAB(maj)) {
171 		VN_RELE(vp);
172 		return (ENOSTR);
173 	}
174 
175 	*vpp = vp;
176 	return (0);
177 }
178 
179 /*
180  * Add or delete (latter if devpath is NULL) an enter to the sockparams
181  * table. If devpathlen is zero the devpath with not be kmem_freed. Otherwise
182  * this routine assumes that the caller has kmem_alloced devpath/devpathlen
183  * for this routine to consume.
184  * The zero devpathlen could be used if the kernel wants to create entries
185  * itself by calling sockconfig(1,2,3, "/dev/tcp", 0);
186  */
187 int
188 soconfig(int domain, int type, int protocol,
189     char *devpath, int devpathlen)
190 {
191 	struct sockparams **spp;
192 	struct sockparams *sp;
193 	int error = 0;
194 
195 	dprint(0, ("soconfig(%d,%d,%d,%s,%d)\n",
196 	    domain, type, protocol, devpath, devpathlen));
197 
198 	/*
199 	 * Look for an existing match.
200 	 */
201 	rw_enter(&splist_lock, RW_WRITER);
202 	for (spp = &sphead; (sp = *spp) != NULL; spp = &sp->sp_next) {
203 		if (sp->sp_domain == domain &&
204 		    sp->sp_type == type &&
205 		    sp->sp_protocol == protocol) {
206 			break;
207 		}
208 	}
209 	if (devpath == NULL) {
210 		ASSERT(devpathlen == 0);
211 
212 		/* Delete existing entry */
213 		if (sp == NULL) {
214 			error = ENXIO;
215 			goto done;
216 		}
217 		/* Unlink and free existing entry */
218 		*spp = sp->sp_next;
219 		ASSERT(sp->sp_vnode);
220 		VN_RELE(sp->sp_vnode);
221 		if (sp->sp_devpathlen != 0)
222 			kmem_free(sp->sp_devpath, sp->sp_devpathlen);
223 		kmem_free(sp, sizeof (*sp));
224 	} else {
225 		vnode_t *vp;
226 
227 		/* Add new entry */
228 		if (sp != NULL) {
229 			error = EEXIST;
230 			goto done;
231 		}
232 
233 		error = sogetvp(devpath, &vp, UIO_SYSSPACE);
234 		if (error) {
235 			dprint(0, ("soconfig: vp %s failed with %d\n",
236 			    devpath, error));
237 			goto done;
238 		}
239 
240 		dprint(0, ("soconfig: %s => vp %p, dev 0x%lx\n",
241 		    devpath, (void *)vp, vp->v_rdev));
242 
243 		sp = kmem_alloc(sizeof (*sp), KM_SLEEP);
244 		sp->sp_domain = domain;
245 		sp->sp_type = type;
246 		sp->sp_protocol = protocol;
247 		sp->sp_devpath = devpath;
248 		sp->sp_devpathlen = devpathlen;
249 		sp->sp_vnode = vp;
250 		sp->sp_next = NULL;
251 		*spp = sp;
252 	}
253 done:
254 	rw_exit(&splist_lock);
255 	if (error) {
256 		if (devpath != NULL)
257 			kmem_free(devpath, devpathlen);
258 #ifdef SOCK_DEBUG
259 		eprintline(error);
260 #endif /* SOCK_DEBUG */
261 	}
262 	return (error);
263 }
264 
265 /*
266  * Lookup an entry in the sockparams list based on the triple.
267  * If no entry is found and devpath is not NULL translate devpath to a
268  * vnode. Note that devpath is a pointer to a user address!
269  * Returns with the vnode held.
270  *
271  * When this routine uses devpath it does not create an entry in the sockparams
272  * list since this routine can run on behalf of any user and one user
273  * should not be able to effect the transport used by another user.
274  *
275  * In order to return the correct error this routine has to do wildcard scans
276  * of the list. The errors are (in decreasing precedence):
277  *	EAFNOSUPPORT - address family not in list
278  *	EPROTONOSUPPORT - address family supported but not protocol.
279  *	EPROTOTYPE - address family and protocol supported but not socket type.
280  */
281 vnode_t *
282 solookup(int domain, int type, int protocol, char *devpath, int *errorp)
283 {
284 	struct sockparams *sp;
285 	int error;
286 	vnode_t *vp;
287 
288 	rw_enter(&splist_lock, RW_READER);
289 	for (sp = sphead; sp != NULL; sp = sp->sp_next) {
290 		if (sp->sp_domain == domain &&
291 		    sp->sp_type == type &&
292 		    sp->sp_protocol == protocol) {
293 			break;
294 		}
295 	}
296 	if (sp == NULL) {
297 		dprint(0, ("solookup(%d,%d,%d) not found\n",
298 		    domain, type, protocol));
299 		if (devpath == NULL) {
300 			/* Determine correct error code */
301 			int found = 0;
302 
303 			for (sp = sphead; sp != NULL; sp = sp->sp_next) {
304 				if (sp->sp_domain == domain && found < 1)
305 					found = 1;
306 				if (sp->sp_domain == domain &&
307 				    sp->sp_protocol == protocol && found < 2)
308 					found = 2;
309 			}
310 			rw_exit(&splist_lock);
311 			switch (found) {
312 			case 0:
313 				*errorp = EAFNOSUPPORT;
314 				break;
315 			case 1:
316 				*errorp = EPROTONOSUPPORT;
317 				break;
318 			case 2:
319 				*errorp = EPROTOTYPE;
320 				break;
321 			}
322 			return (NULL);
323 		}
324 		rw_exit(&splist_lock);
325 
326 		/*
327 		 * Return vp based on devpath.
328 		 * Do not enter into table to avoid random users
329 		 * modifying the sockparams list.
330 		 */
331 		error = sogetvp(devpath, &vp, UIO_USERSPACE);
332 		if (error) {
333 			dprint(0, ("solookup: vp %p failed with %d\n",
334 			    (void *)devpath, error));
335 			*errorp = EPROTONOSUPPORT;
336 			return (NULL);
337 		}
338 		dprint(0, ("solookup: %p => vp %p, dev 0x%lx\n",
339 		    (void *)devpath, (void *)vp, vp->v_rdev));
340 
341 		return (vp);
342 	}
343 	dprint(0, ("solookup(%d,%d,%d) vp %p devpath %s\n",
344 	    domain, type, protocol, (void *)sp->sp_vnode, sp->sp_devpath));
345 
346 	vp = sp->sp_vnode;
347 	VN_HOLD(vp);
348 	rw_exit(&splist_lock);
349 	return (vp);
350 }
351 
352 /*
353  * Return a socket vnode.
354  *
355  * Assumes that the caller is "passing" an VN_HOLD for accessvp i.e.
356  * when the socket is freed a VN_RELE will take place.
357  *
358  * Note that sockets assume that the driver will clone (either itself
359  * or by using the clone driver) i.e. a socket() call will always
360  * result in a new vnode being created.
361  */
362 struct vnode *
363 makesockvp(struct vnode *accessvp, int domain, int type, int protocol)
364 {
365 	kmem_cache_t *cp;
366 	struct sonode *so;
367 	struct vnode *vp;
368 	time_t now;
369 	dev_t dev;
370 
371 	cp = (domain == AF_UNIX) ? socktpi_unix_cache : socktpi_cache;
372 	so = kmem_cache_alloc(cp, KM_SLEEP);
373 	so->so_cache = cp;
374 	so->so_obj = so;
375 	vp = SOTOV(so);
376 	now = gethrestime_sec();
377 
378 	so->so_flag	= 0;
379 	ASSERT(so->so_accessvp == NULL);
380 	so->so_accessvp	= accessvp;
381 	dev = accessvp->v_rdev;
382 
383 	/*
384 	 * Record in so_flag that it is a clone.
385 	 */
386 	if (getmajor(dev) == clone_major) {
387 		so->so_flag |= SOCLONE;
388 	}
389 	so->so_dev = dev;
390 
391 	so->so_state	= 0;
392 	so->so_mode	= 0;
393 
394 	so->so_fsid	= sockdev;
395 	so->so_atime	= now;
396 	so->so_mtime	= now;
397 	so->so_ctime	= now;		/* Never modified */
398 	so->so_count	= 0;
399 
400 	so->so_family	= (short)domain;
401 	so->so_type	= (short)type;
402 	so->so_protocol	= (short)protocol;
403 	so->so_pushcnt	= 0;
404 
405 	so->so_options	= 0;
406 	so->so_linger.l_onoff	= 0;
407 	so->so_linger.l_linger = 0;
408 	so->so_sndbuf	= 0;
409 	so->so_rcvbuf	= 0;
410 	so->so_sndlowat	= 0;
411 	so->so_rcvlowat	= 0;
412 #ifdef notyet
413 	so->so_sndtimeo	= 0;
414 	so->so_rcvtimeo	= 0;
415 #endif /* notyet */
416 	so->so_error	= 0;
417 	so->so_delayed_error = 0;
418 
419 	ASSERT(so->so_oobmsg == NULL);
420 	so->so_oobcnt	= 0;
421 	so->so_oobsigcnt = 0;
422 	so->so_pgrp	= 0;
423 	so->so_provinfo = NULL;
424 
425 	ASSERT(so->so_laddr_sa == NULL && so->so_faddr_sa == NULL);
426 	so->so_laddr_len = so->so_faddr_len = 0;
427 	so->so_laddr_maxlen = so->so_faddr_maxlen = 0;
428 	so->so_eaddr_mp = NULL;
429 	so->so_priv = NULL;
430 
431 	so->so_peercred = NULL;
432 
433 	ASSERT(so->so_ack_mp == NULL);
434 	ASSERT(so->so_conn_ind_head == NULL);
435 	ASSERT(so->so_conn_ind_tail == NULL);
436 	ASSERT(so->so_ux_bound_vp == NULL);
437 	ASSERT(so->so_unbind_mp == NULL);
438 
439 	vn_reinit(vp);
440 	vp->v_vfsp	= rootvfs;
441 	vp->v_type	= VSOCK;
442 	vp->v_rdev	= so->so_dev;
443 	vn_exists(vp);
444 
445 	return (vp);
446 }
447 
448 void
449 sockfree(struct sonode *so)
450 {
451 	mblk_t *mp;
452 	vnode_t *vp;
453 
454 	ASSERT(so->so_count == 0);
455 	ASSERT(so->so_accessvp);
456 	ASSERT(so->so_discon_ind_mp == NULL);
457 
458 	vp = so->so_accessvp;
459 	VN_RELE(vp);
460 
461 	/*
462 	 * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely
463 	 * indirect them.  It also uses so_accessvp as a validity test.
464 	 */
465 	mutex_enter(&so->so_lock);
466 
467 	so->so_accessvp = NULL;
468 
469 	if (so->so_laddr_sa) {
470 		ASSERT((caddr_t)so->so_faddr_sa ==
471 		    (caddr_t)so->so_laddr_sa + so->so_laddr_maxlen);
472 		ASSERT(so->so_faddr_maxlen == so->so_laddr_maxlen);
473 		so->so_state &= ~(SS_LADDR_VALID | SS_FADDR_VALID);
474 		kmem_free(so->so_laddr_sa, so->so_laddr_maxlen * 2);
475 		so->so_laddr_sa = NULL;
476 		so->so_laddr_len = so->so_laddr_maxlen = 0;
477 		so->so_faddr_sa = NULL;
478 		so->so_faddr_len = so->so_faddr_maxlen = 0;
479 	}
480 
481 	mutex_exit(&so->so_lock);
482 
483 	if ((mp = so->so_eaddr_mp) != NULL) {
484 		freemsg(mp);
485 		so->so_eaddr_mp = NULL;
486 		so->so_delayed_error = 0;
487 	}
488 	if ((mp = so->so_ack_mp) != NULL) {
489 		freemsg(mp);
490 		so->so_ack_mp = NULL;
491 	}
492 	if ((mp = so->so_conn_ind_head) != NULL) {
493 		mblk_t *mp1;
494 
495 		while (mp) {
496 			mp1 = mp->b_next;
497 			mp->b_next = NULL;
498 			freemsg(mp);
499 			mp = mp1;
500 		}
501 		so->so_conn_ind_head = so->so_conn_ind_tail = NULL;
502 		so->so_state &= ~SS_HASCONNIND;
503 	}
504 #ifdef DEBUG
505 	mutex_enter(&so->so_lock);
506 	ASSERT(so_verify_oobstate(so));
507 	mutex_exit(&so->so_lock);
508 #endif /* DEBUG */
509 	if ((mp = so->so_oobmsg) != NULL) {
510 		freemsg(mp);
511 		so->so_oobmsg = NULL;
512 		so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA);
513 	}
514 
515 	if ((mp = so->so_nl7c_rcv_mp) != NULL) {
516 		so->so_nl7c_rcv_mp = NULL;
517 		freemsg(mp);
518 	}
519 	so->so_nl7c_rcv_rval = 0;
520 	if (so->so_nl7c_uri != NULL) {
521 		nl7c_urifree(so);
522 		/* urifree() cleared nl7c_uri */
523 	}
524 	if (so->so_nl7c_flags) {
525 		so->so_nl7c_flags = 0;
526 	}
527 
528 	if (so->so_direct != NULL) {
529 		sodirect_t *sodp = so->so_direct;
530 
531 		ASSERT(sodp->sod_uioafh == NULL);
532 
533 		so->so_direct = NULL;
534 		kmem_cache_free(socktpi_sod_cache, sodp);
535 	}
536 
537 	ASSERT(so->so_ux_bound_vp == NULL);
538 	if ((mp = so->so_unbind_mp) != NULL) {
539 		freemsg(mp);
540 		so->so_unbind_mp = NULL;
541 	}
542 	vn_invalid(SOTOV(so));
543 
544 	if (so->so_peercred != NULL)
545 		crfree(so->so_peercred);
546 
547 	kmem_cache_free(so->so_cache, so->so_obj);
548 }
549 
550 /*
551  * Update the accessed, updated, or changed times in an sonode
552  * with the current time.
553  *
554  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
555  * attributes in a fstat call. (They return the current time and 0 for
556  * all timestamps, respectively.) We maintain the current timestamps
557  * here primarily so that should sockmod be popped the resulting
558  * file descriptor will behave like a stream w.r.t. the timestamps.
559  */
560 void
561 so_update_attrs(struct sonode *so, int flag)
562 {
563 	time_t now = gethrestime_sec();
564 
565 	mutex_enter(&so->so_lock);
566 	so->so_flag |= flag;
567 	if (flag & SOACC)
568 		so->so_atime = now;
569 	if (flag & SOMOD)
570 		so->so_mtime = now;
571 	mutex_exit(&so->so_lock);
572 }
573 
574 /*ARGSUSED*/
575 static int
576 socktpi_constructor(void *buf, void *cdrarg, int kmflags)
577 {
578 	struct sonode *so = buf;
579 	struct vnode *vp;
580 
581 	vp = so->so_vnode = vn_alloc(kmflags);
582 	if (vp == NULL) {
583 		return (-1);
584 	}
585 	vn_setops(vp, socktpi_vnodeops);
586 	vp->v_data = so;
587 
588 	so->so_direct		= NULL;
589 
590 	so->so_nl7c_flags	= 0;
591 	so->so_nl7c_uri		= NULL;
592 	so->so_nl7c_rcv_mp	= NULL;
593 
594 	so->so_oobmsg		= NULL;
595 	so->so_ack_mp		= NULL;
596 	so->so_conn_ind_head	= NULL;
597 	so->so_conn_ind_tail	= NULL;
598 	so->so_discon_ind_mp	= NULL;
599 	so->so_ux_bound_vp	= NULL;
600 	so->so_unbind_mp	= NULL;
601 	so->so_accessvp		= NULL;
602 	so->so_laddr_sa		= NULL;
603 	so->so_faddr_sa		= NULL;
604 	so->so_ops		= &sotpi_sonodeops;
605 
606 	mutex_init(&so->so_lock, NULL, MUTEX_DEFAULT, NULL);
607 	mutex_init(&so->so_plumb_lock, NULL, MUTEX_DEFAULT, NULL);
608 	cv_init(&so->so_state_cv, NULL, CV_DEFAULT, NULL);
609 	cv_init(&so->so_ack_cv, NULL, CV_DEFAULT, NULL);
610 	cv_init(&so->so_connind_cv, NULL, CV_DEFAULT, NULL);
611 	cv_init(&so->so_want_cv, NULL, CV_DEFAULT, NULL);
612 
613 	return (0);
614 }
615 
616 /*ARGSUSED1*/
617 static void
618 socktpi_destructor(void *buf, void *cdrarg)
619 {
620 	struct sonode *so = buf;
621 	struct vnode *vp = SOTOV(so);
622 
623 	ASSERT(so->so_direct == NULL);
624 
625 	ASSERT(so->so_nl7c_flags == 0);
626 	ASSERT(so->so_nl7c_uri == NULL);
627 	ASSERT(so->so_nl7c_rcv_mp == NULL);
628 
629 	ASSERT(so->so_oobmsg == NULL);
630 	ASSERT(so->so_ack_mp == NULL);
631 	ASSERT(so->so_conn_ind_head == NULL);
632 	ASSERT(so->so_conn_ind_tail == NULL);
633 	ASSERT(so->so_discon_ind_mp == NULL);
634 	ASSERT(so->so_ux_bound_vp == NULL);
635 	ASSERT(so->so_unbind_mp == NULL);
636 	ASSERT(so->so_ops == &sotpi_sonodeops);
637 
638 	ASSERT(vn_matchops(vp, socktpi_vnodeops));
639 	ASSERT(vp->v_data == so);
640 
641 	vn_free(vp);
642 
643 	mutex_destroy(&so->so_lock);
644 	mutex_destroy(&so->so_plumb_lock);
645 	cv_destroy(&so->so_state_cv);
646 	cv_destroy(&so->so_ack_cv);
647 	cv_destroy(&so->so_connind_cv);
648 	cv_destroy(&so->so_want_cv);
649 }
650 
651 static int
652 socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags)
653 {
654 	int retval;
655 
656 	if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) {
657 		struct sonode *so = (struct sonode *)buf;
658 
659 		mutex_enter(&socklist.sl_lock);
660 
661 		so->so_next = socklist.sl_list;
662 		so->so_prev = NULL;
663 		if (so->so_next != NULL)
664 			so->so_next->so_prev = so;
665 		socklist.sl_list = so;
666 
667 		mutex_exit(&socklist.sl_lock);
668 
669 	}
670 	return (retval);
671 }
672 
673 static void
674 socktpi_unix_destructor(void *buf, void *cdrarg)
675 {
676 	struct sonode	*so	= (struct sonode *)buf;
677 
678 	mutex_enter(&socklist.sl_lock);
679 
680 	if (so->so_next != NULL)
681 		so->so_next->so_prev = so->so_prev;
682 	if (so->so_prev != NULL)
683 		so->so_prev->so_next = so->so_next;
684 	else
685 		socklist.sl_list = so->so_next;
686 
687 	mutex_exit(&socklist.sl_lock);
688 
689 	socktpi_destructor(buf, cdrarg);
690 }
691 
692 /*
693  * Init function called when sockfs is loaded.
694  */
695 int
696 sockinit(int fstype, char *name)
697 {
698 	static const fs_operation_def_t sock_vfsops_template[] = {
699 		NULL, NULL
700 	};
701 	int error;
702 	major_t dev;
703 	char *err_str;
704 
705 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
706 	if (error != 0) {
707 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
708 		    "sockinit: bad vfs ops template");
709 		return (error);
710 	}
711 
712 	error = vn_make_ops(name, socktpi_vnodeops_template, &socktpi_vnodeops);
713 	if (error != 0) {
714 		err_str = "sockinit: bad sock vnode ops template";
715 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
716 		socktpi_vnodeops = NULL;
717 		goto failure;
718 	}
719 
720 	error = sosctp_init();
721 	if (error != 0) {
722 		err_str = NULL;
723 		goto failure;
724 	}
725 
726 	error = sosdp_init();
727 	if (error != 0) {
728 		err_str = NULL;
729 		goto failure;
730 	}
731 
732 	error = sostr_init();
733 	if (error != 0) {
734 		err_str = NULL;
735 		goto failure;
736 	}
737 
738 	/*
739 	 * Create sonode caches.  We create a special one for AF_UNIX so
740 	 * that we can track them for netstat(1m).
741 	 */
742 	socktpi_cache = kmem_cache_create("socktpi_cache",
743 	    sizeof (struct sonode), 0, socktpi_constructor,
744 	    socktpi_destructor, NULL, NULL, NULL, 0);
745 
746 	socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache",
747 	    sizeof (struct sonode), 0, socktpi_unix_constructor,
748 	    socktpi_unix_destructor, NULL, NULL, NULL, 0);
749 
750 	/*
751 	 * Build initial list mapping socket parameters to vnode.
752 	 */
753 	rw_init(&splist_lock, NULL, RW_DEFAULT, NULL);
754 
755 	/*
756 	 * If sockets are needed before init runs /sbin/soconfig
757 	 * it is possible to preload the sockparams list here using
758 	 * calls like:
759 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
760 	 */
761 
762 	/*
763 	 * Create a unique dev_t for use in so_fsid.
764 	 */
765 
766 	if ((dev = getudev()) == (major_t)-1)
767 		dev = 0;
768 	sockdev = makedevice(dev, 0);
769 
770 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
771 	sendfile_init();
772 	nl7c_init();
773 
774 	return (0);
775 
776 failure:
777 	(void) vfs_freevfsops_by_type(fstype);
778 	if (socktpi_vnodeops != NULL)
779 		vn_freevnodeops(socktpi_vnodeops);
780 	if (err_str != NULL)
781 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
782 	return (error);
783 }
784 
785 /*
786  * Caller must hold the mutex. Used to set SOLOCKED.
787  */
788 void
789 so_lock_single(struct sonode *so)
790 {
791 	ASSERT(MUTEX_HELD(&so->so_lock));
792 
793 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
794 		so->so_flag |= SOWANT;
795 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
796 		    SO_LOCK_WAKEUP_TIME);
797 	}
798 	so->so_flag |= SOLOCKED;
799 }
800 
801 /*
802  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
803  * Used to clear SOLOCKED or SOASYNC_UNBIND.
804  */
805 void
806 so_unlock_single(struct sonode *so, int flag)
807 {
808 	ASSERT(MUTEX_HELD(&so->so_lock));
809 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
810 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
811 	ASSERT(so->so_flag & flag);
812 
813 	/*
814 	 * Process the T_DISCON_IND on so_discon_ind_mp.
815 	 *
816 	 * Call to so_drain_discon_ind will result in so_lock
817 	 * being dropped and re-acquired later.
818 	 */
819 	if (so->so_discon_ind_mp != NULL)
820 		so_drain_discon_ind(so);
821 
822 	if (so->so_flag & SOWANT)
823 		cv_broadcast(&so->so_want_cv);
824 	so->so_flag &= ~(SOWANT|flag);
825 }
826 
827 /*
828  * Caller must hold the mutex. Used to set SOREADLOCKED.
829  * If the caller wants nonblocking behavior it should set fmode.
830  */
831 int
832 so_lock_read(struct sonode *so, int fmode)
833 {
834 	ASSERT(MUTEX_HELD(&so->so_lock));
835 
836 	while (so->so_flag & SOREADLOCKED) {
837 		if (fmode & (FNDELAY|FNONBLOCK))
838 			return (EWOULDBLOCK);
839 		so->so_flag |= SOWANT;
840 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
841 		    SO_LOCK_WAKEUP_TIME);
842 	}
843 	so->so_flag |= SOREADLOCKED;
844 	return (0);
845 }
846 
847 /*
848  * Like so_lock_read above but allows signals.
849  */
850 int
851 so_lock_read_intr(struct sonode *so, int fmode)
852 {
853 	ASSERT(MUTEX_HELD(&so->so_lock));
854 
855 	while (so->so_flag & SOREADLOCKED) {
856 		if (fmode & (FNDELAY|FNONBLOCK))
857 			return (EWOULDBLOCK);
858 		so->so_flag |= SOWANT;
859 		if (!cv_wait_sig(&so->so_want_cv, &so->so_lock))
860 			return (EINTR);
861 	}
862 	so->so_flag |= SOREADLOCKED;
863 	return (0);
864 }
865 
866 /*
867  * Caller must hold the mutex. Used to clear SOREADLOCKED,
868  * set in so_lock_read() or so_lock_read_intr().
869  */
870 void
871 so_unlock_read(struct sonode *so)
872 {
873 	ASSERT(MUTEX_HELD(&so->so_lock));
874 	ASSERT(so->so_flag & SOREADLOCKED);
875 
876 	if (so->so_flag & SOWANT)
877 		cv_broadcast(&so->so_want_cv);
878 	so->so_flag &= ~(SOWANT|SOREADLOCKED);
879 }
880 
881 /*
882  * Verify that the specified offset falls within the mblk and
883  * that the resulting pointer is aligned.
884  * Returns NULL if not.
885  */
886 void *
887 sogetoff(mblk_t *mp, t_uscalar_t offset,
888     t_uscalar_t length, uint_t align_size)
889 {
890 	uintptr_t ptr1, ptr2;
891 
892 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
893 	ptr1 = (uintptr_t)mp->b_rptr + offset;
894 	ptr2 = (uintptr_t)ptr1 + length;
895 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
896 		eprintline(0);
897 		return (NULL);
898 	}
899 	if ((ptr1 & (align_size - 1)) != 0) {
900 		eprintline(0);
901 		return (NULL);
902 	}
903 	return ((void *)ptr1);
904 }
905 
906 /*
907  * Return the AF_UNIX underlying filesystem vnode matching a given name.
908  * Makes sure the sending and the destination sonodes are compatible.
909  * The vnode is returned held.
910  *
911  * The underlying filesystem VSOCK vnode has a v_stream pointer that
912  * references the actual stream head (hence indirectly the actual sonode).
913  */
914 static int
915 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
916 		vnode_t **vpp)
917 {
918 	vnode_t		*vp;	/* Underlying filesystem vnode */
919 	vnode_t		*rvp;	/* real vnode */
920 	vnode_t		*svp;	/* sockfs vnode */
921 	struct sonode	*so2;
922 	int		error;
923 
924 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
925 	    soun->sun_path));
926 
927 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
928 	if (error) {
929 		eprintsoline(so, error);
930 		return (error);
931 	}
932 
933 	/*
934 	 * Traverse lofs mounts get the real vnode
935 	 */
936 	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
937 		VN_HOLD(rvp);		/* hold the real vnode */
938 		VN_RELE(vp);		/* release hold from lookup */
939 		vp = rvp;
940 	}
941 
942 	if (vp->v_type != VSOCK) {
943 		error = ENOTSOCK;
944 		eprintsoline(so, error);
945 		goto done2;
946 	}
947 
948 	if (checkaccess) {
949 		/*
950 		 * Check that we have permissions to access the destination
951 		 * vnode. This check is not done in BSD but it is required
952 		 * by X/Open.
953 		 */
954 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
955 			eprintsoline(so, error);
956 			goto done2;
957 		}
958 	}
959 
960 	/*
961 	 * Check if the remote socket has been closed.
962 	 *
963 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
964 	 * v_stream->sd_vnode.
965 	 */
966 	mutex_enter(&vp->v_lock);
967 	if (vp->v_stream == NULL) {
968 		mutex_exit(&vp->v_lock);
969 		if (so->so_type == SOCK_DGRAM)
970 			error = EDESTADDRREQ;
971 		else
972 			error = ECONNREFUSED;
973 
974 		eprintsoline(so, error);
975 		goto done2;
976 	}
977 	ASSERT(vp->v_stream->sd_vnode);
978 	svp = vp->v_stream->sd_vnode;
979 	/*
980 	 * holding v_lock on underlying filesystem vnode and acquiring
981 	 * it on sockfs vnode. Assumes that no code ever attempts to
982 	 * acquire these locks in the reverse order.
983 	 */
984 	VN_HOLD(svp);
985 	mutex_exit(&vp->v_lock);
986 
987 	if (svp->v_type != VSOCK) {
988 		error = ENOTSOCK;
989 		eprintsoline(so, error);
990 		goto done;
991 	}
992 
993 	so2 = VTOSO(svp);
994 
995 	if (so->so_type != so2->so_type) {
996 		error = EPROTOTYPE;
997 		eprintsoline(so, error);
998 		goto done;
999 	}
1000 
1001 	VN_RELE(svp);
1002 	*vpp = vp;
1003 	return (0);
1004 
1005 done:
1006 	VN_RELE(svp);
1007 done2:
1008 	VN_RELE(vp);
1009 	return (error);
1010 }
1011 
1012 /*
1013  * Verify peer address for connect and sendto/sendmsg.
1014  * Since sendto/sendmsg would not get synchronous errors from the transport
1015  * provider we have to do these ugly checks in the socket layer to
1016  * preserve compatibility with SunOS 4.X.
1017  */
1018 int
1019 so_addr_verify(struct sonode *so, const struct sockaddr *name,
1020     socklen_t namelen)
1021 {
1022 	int		family;
1023 
1024 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
1025 	    (void *)so, (void *)name, namelen));
1026 
1027 	ASSERT(name != NULL);
1028 
1029 	family = so->so_family;
1030 	switch (family) {
1031 	case AF_INET:
1032 		if (name->sa_family != family) {
1033 			eprintsoline(so, EAFNOSUPPORT);
1034 			return (EAFNOSUPPORT);
1035 		}
1036 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
1037 			eprintsoline(so, EINVAL);
1038 			return (EINVAL);
1039 		}
1040 		break;
1041 	case AF_INET6: {
1042 #ifdef DEBUG
1043 		struct sockaddr_in6 *sin6;
1044 #endif /* DEBUG */
1045 
1046 		if (name->sa_family != family) {
1047 			eprintsoline(so, EAFNOSUPPORT);
1048 			return (EAFNOSUPPORT);
1049 		}
1050 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
1051 			eprintsoline(so, EINVAL);
1052 			return (EINVAL);
1053 		}
1054 #ifdef DEBUG
1055 		/* Verify that apps don't forget to clear sin6_scope_id etc */
1056 		sin6 = (struct sockaddr_in6 *)name;
1057 		if (sin6->sin6_scope_id != 0 &&
1058 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
1059 			zcmn_err(getzoneid(), CE_WARN,
1060 			    "connect/send* with uninitialized sin6_scope_id "
1061 			    "(%d) on socket. Pid = %d\n",
1062 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
1063 		}
1064 #endif /* DEBUG */
1065 		break;
1066 	}
1067 	case AF_UNIX:
1068 		if (so->so_state & SS_FADDR_NOXLATE) {
1069 			return (0);
1070 		}
1071 		if (namelen < (socklen_t)sizeof (short)) {
1072 			eprintsoline(so, ENOENT);
1073 			return (ENOENT);
1074 		}
1075 		if (name->sa_family != family) {
1076 			eprintsoline(so, EAFNOSUPPORT);
1077 			return (EAFNOSUPPORT);
1078 		}
1079 		/* MAXPATHLEN + soun_family + nul termination */
1080 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
1081 			eprintsoline(so, ENAMETOOLONG);
1082 			return (ENAMETOOLONG);
1083 		}
1084 
1085 		break;
1086 
1087 	default:
1088 		/*
1089 		 * Default is don't do any length or sa_family check
1090 		 * to allow non-sockaddr style addresses.
1091 		 */
1092 		break;
1093 	}
1094 
1095 	return (0);
1096 }
1097 
1098 
1099 /*
1100  * Translate an AF_UNIX sockaddr_un to the transport internal name.
1101  * Assumes caller has called so_addr_verify first.
1102  */
1103 /*ARGSUSED*/
1104 int
1105 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
1106     socklen_t namelen, int checkaccess,
1107     void **addrp, socklen_t *addrlenp)
1108 {
1109 	int			error;
1110 	struct sockaddr_un	*soun;
1111 	vnode_t			*vp;
1112 	void			*addr;
1113 	socklen_t		addrlen;
1114 
1115 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
1116 	    (void *)so, (void *)name, namelen, checkaccess));
1117 
1118 	ASSERT(name != NULL);
1119 	ASSERT(so->so_family == AF_UNIX);
1120 	ASSERT(!(so->so_state & SS_FADDR_NOXLATE));
1121 	ASSERT(namelen >= (socklen_t)sizeof (short));
1122 	ASSERT(name->sa_family == AF_UNIX);
1123 	soun = (struct sockaddr_un *)name;
1124 	/*
1125 	 * Lookup vnode for the specified path name and verify that
1126 	 * it is a socket.
1127 	 */
1128 	error = so_ux_lookup(so, soun, checkaccess, &vp);
1129 	if (error) {
1130 		eprintsoline(so, error);
1131 		return (error);
1132 	}
1133 	/*
1134 	 * Use the address of the peer vnode as the address to send
1135 	 * to. We release the peer vnode here. In case it has been
1136 	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
1137 	 * transport the message will get an error or be dropped.
1138 	 */
1139 	so->so_ux_faddr.soua_vp = vp;
1140 	so->so_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
1141 	addr = &so->so_ux_faddr;
1142 	addrlen = (socklen_t)sizeof (so->so_ux_faddr);
1143 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
1144 	    addrlen, (void *)vp));
1145 	VN_RELE(vp);
1146 	*addrp = addr;
1147 	*addrlenp = (socklen_t)addrlen;
1148 	return (0);
1149 }
1150 
1151 /*
1152  * Esballoc free function for messages that contain SO_FILEP option.
1153  * Decrement the reference count on the file pointers using closef.
1154  */
1155 void
1156 fdbuf_free(struct fdbuf *fdbuf)
1157 {
1158 	int	i;
1159 	struct file *fp;
1160 
1161 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
1162 	for (i = 0; i < fdbuf->fd_numfd; i++) {
1163 		/*
1164 		 * We need pointer size alignment for fd_fds. On a LP64
1165 		 * kernel, the required alignment is 8 bytes while
1166 		 * the option headers and values are only 4 bytes
1167 		 * aligned. So its safer to do a bcopy compared to
1168 		 * assigning fdbuf->fd_fds[i] to fp.
1169 		 */
1170 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
1171 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
1172 		(void) closef(fp);
1173 	}
1174 	if (fdbuf->fd_ebuf != NULL)
1175 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
1176 	kmem_free(fdbuf, fdbuf->fd_size);
1177 }
1178 
1179 /*
1180  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
1181  * Waits if memory is not available.
1182  */
1183 mblk_t *
1184 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
1185 {
1186 	uchar_t	*buf;
1187 	mblk_t	*mp;
1188 
1189 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
1190 	buf = kmem_alloc(size, KM_SLEEP);
1191 	fdbuf->fd_ebuf = (caddr_t)buf;
1192 	fdbuf->fd_ebuflen = size;
1193 	fdbuf->fd_frtn.free_func = fdbuf_free;
1194 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
1195 
1196 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
1197 	mp->b_datap->db_type = M_PROTO;
1198 	return (mp);
1199 }
1200 
1201 /*
1202  * Extract file descriptors from a fdbuf.
1203  * Return list in rights/rightslen.
1204  */
1205 /*ARGSUSED*/
1206 static int
1207 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
1208 {
1209 	int	i, fd;
1210 	int	*rp;
1211 	struct file *fp;
1212 	int	numfd;
1213 
1214 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
1215 	    fdbuf->fd_numfd, rightslen));
1216 
1217 	numfd = fdbuf->fd_numfd;
1218 	ASSERT(rightslen == numfd * (int)sizeof (int));
1219 
1220 	/*
1221 	 * Allocate a file descriptor and increment the f_count.
1222 	 * The latter is needed since we always call fdbuf_free
1223 	 * which performs a closef.
1224 	 */
1225 	rp = (int *)rights;
1226 	for (i = 0; i < numfd; i++) {
1227 		if ((fd = ufalloc(0)) == -1)
1228 			goto cleanup;
1229 		/*
1230 		 * We need pointer size alignment for fd_fds. On a LP64
1231 		 * kernel, the required alignment is 8 bytes while
1232 		 * the option headers and values are only 4 bytes
1233 		 * aligned. So its safer to do a bcopy compared to
1234 		 * assigning fdbuf->fd_fds[i] to fp.
1235 		 */
1236 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
1237 		mutex_enter(&fp->f_tlock);
1238 		fp->f_count++;
1239 		mutex_exit(&fp->f_tlock);
1240 		setf(fd, fp);
1241 		*rp++ = fd;
1242 		if (audit_active)
1243 			audit_fdrecv(fd, fp);
1244 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
1245 		    i, fd, (void *)fp, fp->f_count));
1246 	}
1247 	return (0);
1248 
1249 cleanup:
1250 	/*
1251 	 * Undo whatever partial work the loop above has done.
1252 	 */
1253 	{
1254 		int j;
1255 
1256 		rp = (int *)rights;
1257 		for (j = 0; j < i; j++) {
1258 			dprint(0,
1259 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
1260 			(void) closeandsetf(*rp++, NULL);
1261 		}
1262 	}
1263 
1264 	return (EMFILE);
1265 }
1266 
1267 /*
1268  * Insert file descriptors into an fdbuf.
1269  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
1270  * by calling fdbuf_free().
1271  */
1272 int
1273 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
1274 {
1275 	int		numfd, i;
1276 	int		*fds;
1277 	struct file	*fp;
1278 	struct fdbuf	*fdbuf;
1279 	int		fdbufsize;
1280 
1281 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
1282 
1283 	numfd = rightslen / (int)sizeof (int);
1284 
1285 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
1286 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
1287 	fdbuf->fd_size = fdbufsize;
1288 	fdbuf->fd_numfd = 0;
1289 	fdbuf->fd_ebuf = NULL;
1290 	fdbuf->fd_ebuflen = 0;
1291 	fds = (int *)rights;
1292 	for (i = 0; i < numfd; i++) {
1293 		if ((fp = getf(fds[i])) == NULL) {
1294 			fdbuf_free(fdbuf);
1295 			return (EBADF);
1296 		}
1297 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
1298 		    i, fds[i], (void *)fp, fp->f_count));
1299 		mutex_enter(&fp->f_tlock);
1300 		fp->f_count++;
1301 		mutex_exit(&fp->f_tlock);
1302 		/*
1303 		 * The maximum alignment for fdbuf (or any option header
1304 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
1305 		 * is not sufficient for pointers (fd_fds in this case). Since
1306 		 * we just did a kmem_alloc (we get a double word alignment),
1307 		 * we don't need to do anything on the send side (we loose
1308 		 * the double word alignment because fdbuf goes after an
1309 		 * option header (eg T_unitdata_req) which is only 4 byte
1310 		 * aligned). We take care of this when we extract the file
1311 		 * descriptor in fdbuf_extract or fdbuf_free.
1312 		 */
1313 		fdbuf->fd_fds[i] = fp;
1314 		fdbuf->fd_numfd++;
1315 		releasef(fds[i]);
1316 		if (audit_active)
1317 			audit_fdsend(fds[i], fp, 0);
1318 	}
1319 	*fdbufp = fdbuf;
1320 	return (0);
1321 }
1322 
1323 static int
1324 fdbuf_optlen(int rightslen)
1325 {
1326 	int numfd;
1327 
1328 	numfd = rightslen / (int)sizeof (int);
1329 
1330 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
1331 }
1332 
1333 static t_uscalar_t
1334 fdbuf_cmsglen(int fdbuflen)
1335 {
1336 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
1337 	    (int)sizeof (struct file *) * (int)sizeof (int));
1338 }
1339 
1340 
1341 /*
1342  * Return non-zero if the mblk and fdbuf are consistent.
1343  */
1344 static int
1345 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
1346 {
1347 	if (fdbuflen >= FDBUF_HDRSIZE &&
1348 	    fdbuflen == fdbuf->fd_size) {
1349 		frtn_t *frp = mp->b_datap->db_frtnp;
1350 		/*
1351 		 * Check that the SO_FILEP portion of the
1352 		 * message has not been modified by
1353 		 * the loopback transport. The sending sockfs generates
1354 		 * a message that is esballoc'ed with the free function
1355 		 * being fdbuf_free() and where free_arg contains the
1356 		 * identical information as the SO_FILEP content.
1357 		 *
1358 		 * If any of these constraints are not satisfied we
1359 		 * silently ignore the option.
1360 		 */
1361 		ASSERT(mp);
1362 		if (frp != NULL &&
1363 		    frp->free_func == fdbuf_free &&
1364 		    frp->free_arg != NULL &&
1365 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
1366 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
1367 			    (void *)fdbuf, fdbuflen));
1368 			return (1);
1369 		} else {
1370 			zcmn_err(getzoneid(), CE_WARN,
1371 			    "sockfs: mismatched fdbuf content (%p)",
1372 			    (void *)mp);
1373 			return (0);
1374 		}
1375 	} else {
1376 		zcmn_err(getzoneid(), CE_WARN,
1377 		    "sockfs: mismatched fdbuf len %d, %d\n",
1378 		    fdbuflen, fdbuf->fd_size);
1379 		return (0);
1380 	}
1381 }
1382 
1383 /*
1384  * When the file descriptors returned by sorecvmsg can not be passed
1385  * to the application this routine will cleanup the references on
1386  * the files. Start at startoff bytes into the buffer.
1387  */
1388 static void
1389 close_fds(void *fdbuf, int fdbuflen, int startoff)
1390 {
1391 	int *fds = (int *)fdbuf;
1392 	int numfd = fdbuflen / (int)sizeof (int);
1393 	int i;
1394 
1395 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
1396 
1397 	for (i = 0; i < numfd; i++) {
1398 		if (startoff < 0)
1399 			startoff = 0;
1400 		if (startoff < (int)sizeof (int)) {
1401 			/*
1402 			 * This file descriptor is partially or fully after
1403 			 * the offset
1404 			 */
1405 			dprint(0,
1406 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
1407 			(void) closeandsetf(fds[i], NULL);
1408 		}
1409 		startoff -= (int)sizeof (int);
1410 	}
1411 }
1412 
1413 /*
1414  * Close all file descriptors contained in the control part starting at
1415  * the startoffset.
1416  */
1417 void
1418 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
1419     int startoff)
1420 {
1421 	struct cmsghdr *cmsg;
1422 
1423 	if (control == NULL)
1424 		return;
1425 
1426 	if (oldflg) {
1427 		close_fds(control, controllen, startoff);
1428 		return;
1429 	}
1430 	/* Scan control part for file descriptors. */
1431 	for (cmsg = (struct cmsghdr *)control;
1432 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1433 	    cmsg = CMSG_NEXT(cmsg)) {
1434 		if (cmsg->cmsg_level == SOL_SOCKET &&
1435 		    cmsg->cmsg_type == SCM_RIGHTS) {
1436 			close_fds(CMSG_CONTENT(cmsg),
1437 			    (int)CMSG_CONTENTLEN(cmsg),
1438 			    startoff - (int)sizeof (struct cmsghdr));
1439 		}
1440 		startoff -= cmsg->cmsg_len;
1441 	}
1442 }
1443 
1444 /*
1445  * Returns a pointer/length for the file descriptors contained
1446  * in the control buffer. Returns with *fdlenp == -1 if there are no
1447  * file descriptor options present. This is different than there being
1448  * a zero-length file descriptor option.
1449  * Fail if there are multiple SCM_RIGHT cmsgs.
1450  */
1451 int
1452 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
1453     void **fdsp, int *fdlenp)
1454 {
1455 	struct cmsghdr *cmsg;
1456 	void *fds;
1457 	int fdlen;
1458 
1459 	if (control == NULL) {
1460 		*fdsp = NULL;
1461 		*fdlenp = -1;
1462 		return (0);
1463 	}
1464 
1465 	if (oldflg) {
1466 		*fdsp = control;
1467 		if (controllen == 0)
1468 			*fdlenp = -1;
1469 		else
1470 			*fdlenp = controllen;
1471 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
1472 		return (0);
1473 	}
1474 
1475 	fds = NULL;
1476 	fdlen = 0;
1477 
1478 	for (cmsg = (struct cmsghdr *)control;
1479 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1480 	    cmsg = CMSG_NEXT(cmsg)) {
1481 		if (cmsg->cmsg_level == SOL_SOCKET &&
1482 		    cmsg->cmsg_type == SCM_RIGHTS) {
1483 			if (fds != NULL)
1484 				return (EINVAL);
1485 			fds = CMSG_CONTENT(cmsg);
1486 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1487 			dprint(1, ("so_getfdopt: new %lu\n",
1488 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1489 		}
1490 	}
1491 	if (fds == NULL) {
1492 		dprint(1, ("so_getfdopt: NONE\n"));
1493 		*fdlenp = -1;
1494 	} else
1495 		*fdlenp = fdlen;
1496 	*fdsp = fds;
1497 	return (0);
1498 }
1499 
1500 /*
1501  * Return the length of the options including any file descriptor options.
1502  */
1503 t_uscalar_t
1504 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1505 {
1506 	struct cmsghdr *cmsg;
1507 	t_uscalar_t optlen = 0;
1508 	t_uscalar_t len;
1509 
1510 	if (control == NULL)
1511 		return (0);
1512 
1513 	if (oldflg)
1514 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1515 		    fdbuf_optlen(controllen)));
1516 
1517 	for (cmsg = (struct cmsghdr *)control;
1518 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1519 	    cmsg = CMSG_NEXT(cmsg)) {
1520 		if (cmsg->cmsg_level == SOL_SOCKET &&
1521 		    cmsg->cmsg_type == SCM_RIGHTS) {
1522 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1523 		} else {
1524 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1525 		}
1526 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1527 		    sizeof (struct T_opthdr));
1528 	}
1529 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1530 	    controllen, oldflg, optlen));
1531 	return (optlen);
1532 }
1533 
1534 /*
1535  * Copy options from control to the mblk. Skip any file descriptor options.
1536  */
1537 void
1538 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1539 {
1540 	struct T_opthdr toh;
1541 	struct cmsghdr *cmsg;
1542 
1543 	if (control == NULL)
1544 		return;
1545 
1546 	if (oldflg) {
1547 		/* No real options - caller has handled file descriptors */
1548 		return;
1549 	}
1550 	for (cmsg = (struct cmsghdr *)control;
1551 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1552 	    cmsg = CMSG_NEXT(cmsg)) {
1553 		/*
1554 		 * Note: The caller handles file descriptors prior
1555 		 * to calling this function.
1556 		 */
1557 		t_uscalar_t len;
1558 
1559 		if (cmsg->cmsg_level == SOL_SOCKET &&
1560 		    cmsg->cmsg_type == SCM_RIGHTS)
1561 			continue;
1562 
1563 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1564 		toh.level = cmsg->cmsg_level;
1565 		toh.name = cmsg->cmsg_type;
1566 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1567 		toh.status = 0;
1568 
1569 		soappendmsg(mp, &toh, sizeof (toh));
1570 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1571 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1572 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1573 	}
1574 }
1575 
1576 /*
1577  * Return the length of the control message derived from the options.
1578  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1579  * When oldflg is set only include SO_FILEP.
1580  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1581  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1582  * also be checked for any possible impacts.
1583  */
1584 t_uscalar_t
1585 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1586 {
1587 	t_uscalar_t cmsglen = 0;
1588 	struct T_opthdr *tohp;
1589 	t_uscalar_t len;
1590 	t_uscalar_t last_roundup = 0;
1591 
1592 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1593 
1594 	for (tohp = (struct T_opthdr *)opt;
1595 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1596 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1597 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1598 		    tohp->level, tohp->name, tohp->len));
1599 		if (tohp->level == SOL_SOCKET &&
1600 		    (tohp->name == SO_SRCADDR ||
1601 		    tohp->name == SO_UNIX_CLOSE)) {
1602 			continue;
1603 		}
1604 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1605 			struct fdbuf *fdbuf;
1606 			int fdbuflen;
1607 
1608 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1609 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1610 
1611 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1612 				continue;
1613 			if (oldflg) {
1614 				cmsglen += fdbuf_cmsglen(fdbuflen);
1615 				continue;
1616 			}
1617 			len = fdbuf_cmsglen(fdbuflen);
1618 		} else if (tohp->level == SOL_SOCKET &&
1619 		    tohp->name == SCM_TIMESTAMP) {
1620 			if (oldflg)
1621 				continue;
1622 
1623 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1624 				len = sizeof (struct timeval);
1625 			} else {
1626 				len = sizeof (struct timeval32);
1627 			}
1628 		} else {
1629 			if (oldflg)
1630 				continue;
1631 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1632 		}
1633 		/*
1634 		 * Exclude roundup for last option to not set
1635 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1636 		 */
1637 		last_roundup = (t_uscalar_t)
1638 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1639 		    (len + (int)sizeof (struct cmsghdr)));
1640 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1641 		    last_roundup;
1642 	}
1643 	cmsglen -= last_roundup;
1644 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1645 	    optlen, oldflg, cmsglen));
1646 	return (cmsglen);
1647 }
1648 
1649 /*
1650  * Copy options from options to the control. Convert SO_FILEP to
1651  * file descriptors.
1652  * Returns errno or zero.
1653  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1654  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1655  * also be checked for any possible impacts.
1656  */
1657 int
1658 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1659     void *control, t_uscalar_t controllen)
1660 {
1661 	struct T_opthdr *tohp;
1662 	struct cmsghdr *cmsg;
1663 	struct fdbuf *fdbuf;
1664 	int fdbuflen;
1665 	int error;
1666 #if defined(DEBUG) || defined(__lint)
1667 	struct cmsghdr *cend = (struct cmsghdr *)
1668 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1669 #endif
1670 	cmsg = (struct cmsghdr *)control;
1671 
1672 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1673 
1674 	for (tohp = (struct T_opthdr *)opt;
1675 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1676 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1677 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1678 		    tohp->level, tohp->name, tohp->len));
1679 
1680 		if (tohp->level == SOL_SOCKET &&
1681 		    (tohp->name == SO_SRCADDR ||
1682 		    tohp->name == SO_UNIX_CLOSE)) {
1683 			continue;
1684 		}
1685 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1686 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1687 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1688 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1689 
1690 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1691 				return (EPROTO);
1692 			if (oldflg) {
1693 				error = fdbuf_extract(fdbuf, control,
1694 				    (int)controllen);
1695 				if (error != 0)
1696 					return (error);
1697 				continue;
1698 			} else {
1699 				int fdlen;
1700 
1701 				fdlen = (int)fdbuf_cmsglen(
1702 				    (int)_TPI_TOPT_DATALEN(tohp));
1703 
1704 				cmsg->cmsg_level = tohp->level;
1705 				cmsg->cmsg_type = SCM_RIGHTS;
1706 				cmsg->cmsg_len = (socklen_t)(fdlen +
1707 				    sizeof (struct cmsghdr));
1708 
1709 				error = fdbuf_extract(fdbuf,
1710 				    CMSG_CONTENT(cmsg), fdlen);
1711 				if (error != 0)
1712 					return (error);
1713 			}
1714 		} else if (tohp->level == SOL_SOCKET &&
1715 		    tohp->name == SCM_TIMESTAMP) {
1716 			timestruc_t *timestamp;
1717 
1718 			if (oldflg)
1719 				continue;
1720 
1721 			cmsg->cmsg_level = tohp->level;
1722 			cmsg->cmsg_type = tohp->name;
1723 
1724 			timestamp =
1725 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1726 			    sizeof (intptr_t));
1727 
1728 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1729 				struct timeval tv;
1730 
1731 				cmsg->cmsg_len = sizeof (struct timeval) +
1732 				    sizeof (struct cmsghdr);
1733 				tv.tv_sec = timestamp->tv_sec;
1734 				tv.tv_usec = timestamp->tv_nsec /
1735 				    (NANOSEC / MICROSEC);
1736 				/*
1737 				 * on LP64 systems, the struct timeval in
1738 				 * the destination will not be 8-byte aligned,
1739 				 * so use bcopy to avoid alignment trouble
1740 				 */
1741 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1742 			} else {
1743 				struct timeval32 *time32;
1744 
1745 				cmsg->cmsg_len = sizeof (struct timeval32) +
1746 				    sizeof (struct cmsghdr);
1747 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1748 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1749 				time32->tv_usec =
1750 				    (int32_t)(timestamp->tv_nsec /
1751 				    (NANOSEC / MICROSEC));
1752 			}
1753 
1754 		} else {
1755 			if (oldflg)
1756 				continue;
1757 
1758 			cmsg->cmsg_level = tohp->level;
1759 			cmsg->cmsg_type = tohp->name;
1760 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1761 			    sizeof (struct cmsghdr));
1762 
1763 			/* copy content to control data part */
1764 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1765 			    CMSG_CONTENTLEN(cmsg));
1766 		}
1767 		/* move to next CMSG structure! */
1768 		cmsg = CMSG_NEXT(cmsg);
1769 	}
1770 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1771 	    control, controllen, (void *)cend, (void *)cmsg));
1772 	ASSERT(cmsg <= cend);
1773 	return (0);
1774 }
1775 
1776 /*
1777  * Extract the SO_SRCADDR option value if present.
1778  */
1779 void
1780 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1781     t_uscalar_t *srclenp)
1782 {
1783 	struct T_opthdr		*tohp;
1784 
1785 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1786 
1787 	ASSERT(srcp != NULL && srclenp != NULL);
1788 	*srcp = NULL;
1789 	*srclenp = 0;
1790 
1791 	for (tohp = (struct T_opthdr *)opt;
1792 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1793 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1794 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1795 		    tohp->level, tohp->name, tohp->len));
1796 		if (tohp->level == SOL_SOCKET &&
1797 		    tohp->name == SO_SRCADDR) {
1798 			*srcp = _TPI_TOPT_DATA(tohp);
1799 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1800 		}
1801 	}
1802 }
1803 
1804 /*
1805  * Verify if the SO_UNIX_CLOSE option is present.
1806  */
1807 int
1808 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1809 {
1810 	struct T_opthdr		*tohp;
1811 
1812 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1813 
1814 	for (tohp = (struct T_opthdr *)opt;
1815 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1816 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1817 		dprint(1,
1818 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1819 		    tohp->level, tohp->name, tohp->len));
1820 		if (tohp->level == SOL_SOCKET &&
1821 		    tohp->name == SO_UNIX_CLOSE)
1822 			return (1);
1823 	}
1824 	return (0);
1825 }
1826 
1827 /*
1828  * Allocate an M_PROTO message.
1829  *
1830  * If allocation fails the behavior depends on sleepflg:
1831  *	_ALLOC_NOSLEEP	fail immediately
1832  *	_ALLOC_INTR	sleep for memory until a signal is caught
1833  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1834  */
1835 mblk_t *
1836 soallocproto(size_t size, int sleepflg)
1837 {
1838 	mblk_t	*mp;
1839 
1840 	/* Round up size for reuse */
1841 	size = MAX(size, 64);
1842 	mp = allocb(size, BPRI_MED);
1843 	if (mp == NULL) {
1844 		int error;	/* Dummy - error not returned to caller */
1845 
1846 		switch (sleepflg) {
1847 		case _ALLOC_SLEEP:
1848 			mp = allocb_wait(size, BPRI_MED, STR_NOSIG, &error);
1849 			ASSERT(mp);
1850 			break;
1851 		case _ALLOC_INTR:
1852 			mp = allocb_wait(size, BPRI_MED, 0, &error);
1853 			if (mp == NULL) {
1854 				/* Caught signal while sleeping for memory */
1855 				eprintline(ENOBUFS);
1856 				return (NULL);
1857 			}
1858 			break;
1859 		case _ALLOC_NOSLEEP:
1860 		default:
1861 			eprintline(ENOBUFS);
1862 			return (NULL);
1863 		}
1864 	}
1865 	DB_TYPE(mp) = M_PROTO;
1866 	return (mp);
1867 }
1868 
1869 /*
1870  * Allocate an M_PROTO message with a single component.
1871  * len is the length of buf. size is the amount to allocate.
1872  *
1873  * buf can be NULL with a non-zero len.
1874  * This results in a bzero'ed chunk being placed the message.
1875  */
1876 mblk_t *
1877 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg)
1878 {
1879 	mblk_t	*mp;
1880 
1881 	if (size == 0)
1882 		size = len;
1883 
1884 	ASSERT(size >= len);
1885 	/* Round up size for reuse */
1886 	size = MAX(size, 64);
1887 	mp = soallocproto(size, sleepflg);
1888 	if (mp == NULL)
1889 		return (NULL);
1890 	mp->b_datap->db_type = M_PROTO;
1891 	if (len != 0) {
1892 		if (buf != NULL)
1893 			bcopy(buf, mp->b_wptr, len);
1894 		else
1895 			bzero(mp->b_wptr, len);
1896 		mp->b_wptr += len;
1897 	}
1898 	return (mp);
1899 }
1900 
1901 /*
1902  * Append buf/len to mp.
1903  * The caller has to ensure that there is enough room in the mblk.
1904  *
1905  * buf can be NULL with a non-zero len.
1906  * This results in a bzero'ed chunk being placed the message.
1907  */
1908 void
1909 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1910 {
1911 	ASSERT(mp);
1912 
1913 	if (len != 0) {
1914 		/* Assert for room left */
1915 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1916 		if (buf != NULL)
1917 			bcopy(buf, mp->b_wptr, len);
1918 		else
1919 			bzero(mp->b_wptr, len);
1920 	}
1921 	mp->b_wptr += len;
1922 }
1923 
1924 /*
1925  * Create a message using two kernel buffers.
1926  * If size is set that will determine the allocation size (e.g. for future
1927  * soappendmsg calls). If size is zero it is derived from the buffer
1928  * lengths.
1929  */
1930 mblk_t *
1931 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1932     ssize_t size, int sleepflg)
1933 {
1934 	mblk_t *mp;
1935 
1936 	if (size == 0)
1937 		size = len1 + len2;
1938 	ASSERT(size >= len1 + len2);
1939 
1940 	mp = soallocproto1(buf1, len1, size, sleepflg);
1941 	if (mp)
1942 		soappendmsg(mp, buf2, len2);
1943 	return (mp);
1944 }
1945 
1946 /*
1947  * Create a message using three kernel buffers.
1948  * If size is set that will determine the allocation size (for future
1949  * soappendmsg calls). If size is zero it is derived from the buffer
1950  * lengths.
1951  */
1952 mblk_t *
1953 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1954     const void *buf3, ssize_t len3, ssize_t size, int sleepflg)
1955 {
1956 	mblk_t *mp;
1957 
1958 	if (size == 0)
1959 		size = len1 + len2 +len3;
1960 	ASSERT(size >= len1 + len2 + len3);
1961 
1962 	mp = soallocproto1(buf1, len1, size, sleepflg);
1963 	if (mp != NULL) {
1964 		soappendmsg(mp, buf2, len2);
1965 		soappendmsg(mp, buf3, len3);
1966 	}
1967 	return (mp);
1968 }
1969 
1970 #ifdef DEBUG
1971 char *
1972 pr_state(uint_t state, uint_t mode)
1973 {
1974 	static char buf[1024];
1975 
1976 	buf[0] = 0;
1977 	if (state & SS_ISCONNECTED)
1978 		(void) strcat(buf, "ISCONNECTED ");
1979 	if (state & SS_ISCONNECTING)
1980 		(void) strcat(buf, "ISCONNECTING ");
1981 	if (state & SS_ISDISCONNECTING)
1982 		(void) strcat(buf, "ISDISCONNECTING ");
1983 	if (state & SS_CANTSENDMORE)
1984 		(void) strcat(buf, "CANTSENDMORE ");
1985 
1986 	if (state & SS_CANTRCVMORE)
1987 		(void) strcat(buf, "CANTRCVMORE ");
1988 	if (state & SS_ISBOUND)
1989 		(void) strcat(buf, "ISBOUND ");
1990 	if (state & SS_NDELAY)
1991 		(void) strcat(buf, "NDELAY ");
1992 	if (state & SS_NONBLOCK)
1993 		(void) strcat(buf, "NONBLOCK ");
1994 
1995 	if (state & SS_ASYNC)
1996 		(void) strcat(buf, "ASYNC ");
1997 	if (state & SS_ACCEPTCONN)
1998 		(void) strcat(buf, "ACCEPTCONN ");
1999 	if (state & SS_HASCONNIND)
2000 		(void) strcat(buf, "HASCONNIND ");
2001 	if (state & SS_SAVEDEOR)
2002 		(void) strcat(buf, "SAVEDEOR ");
2003 
2004 	if (state & SS_RCVATMARK)
2005 		(void) strcat(buf, "RCVATMARK ");
2006 	if (state & SS_OOBPEND)
2007 		(void) strcat(buf, "OOBPEND ");
2008 	if (state & SS_HAVEOOBDATA)
2009 		(void) strcat(buf, "HAVEOOBDATA ");
2010 	if (state & SS_HADOOBDATA)
2011 		(void) strcat(buf, "HADOOBDATA ");
2012 
2013 	if (state & SS_FADDR_NOXLATE)
2014 		(void) strcat(buf, "FADDR_NOXLATE ");
2015 
2016 	if (mode & SM_PRIV)
2017 		(void) strcat(buf, "PRIV ");
2018 	if (mode & SM_ATOMIC)
2019 		(void) strcat(buf, "ATOMIC ");
2020 	if (mode & SM_ADDR)
2021 		(void) strcat(buf, "ADDR ");
2022 	if (mode & SM_CONNREQUIRED)
2023 		(void) strcat(buf, "CONNREQUIRED ");
2024 
2025 	if (mode & SM_FDPASSING)
2026 		(void) strcat(buf, "FDPASSING ");
2027 	if (mode & SM_EXDATA)
2028 		(void) strcat(buf, "EXDATA ");
2029 	if (mode & SM_OPTDATA)
2030 		(void) strcat(buf, "OPTDATA ");
2031 	if (mode & SM_BYTESTREAM)
2032 		(void) strcat(buf, "BYTESTREAM ");
2033 	return (buf);
2034 }
2035 
2036 char *
2037 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
2038 {
2039 	static char buf[1024];
2040 
2041 	if (addr == NULL || addrlen == 0) {
2042 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
2043 		return (buf);
2044 	}
2045 	switch (family) {
2046 	case AF_INET: {
2047 		struct sockaddr_in sin;
2048 
2049 		bcopy(addr, &sin, sizeof (sin));
2050 
2051 		(void) sprintf(buf, "(len %d) %x/%d",
2052 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
2053 		break;
2054 	}
2055 	case AF_INET6: {
2056 		struct sockaddr_in6 sin6;
2057 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
2058 
2059 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
2060 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
2061 		    addrlen,
2062 		    ntohs(piece[0]), ntohs(piece[1]),
2063 		    ntohs(piece[2]), ntohs(piece[3]),
2064 		    ntohs(piece[4]), ntohs(piece[5]),
2065 		    ntohs(piece[6]), ntohs(piece[7]),
2066 		    ntohs(sin6.sin6_port));
2067 		break;
2068 	}
2069 	case AF_UNIX: {
2070 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
2071 
2072 		(void) sprintf(buf, "(len %d) %s", addrlen,
2073 		    (soun == NULL) ? "(none)" : soun->sun_path);
2074 		break;
2075 	}
2076 	default:
2077 		(void) sprintf(buf, "(unknown af %d)", family);
2078 		break;
2079 	}
2080 	return (buf);
2081 }
2082 
2083 /* The logical equivalence operator (a if-and-only-if b) */
2084 #define	EQUIV(a, b)	(((a) && (b)) || (!(a) && (!(b))))
2085 
2086 /*
2087  * Verify limitations and invariants on oob state.
2088  * Return 1 if OK, otherwise 0 so that it can be used as
2089  *	ASSERT(verify_oobstate(so));
2090  */
2091 int
2092 so_verify_oobstate(struct sonode *so)
2093 {
2094 	ASSERT(MUTEX_HELD(&so->so_lock));
2095 
2096 	/*
2097 	 * The possible state combinations are:
2098 	 *	0
2099 	 *	SS_OOBPEND
2100 	 *	SS_OOBPEND|SS_HAVEOOBDATA
2101 	 *	SS_OOBPEND|SS_HADOOBDATA
2102 	 *	SS_HADOOBDATA
2103 	 */
2104 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
2105 	case 0:
2106 	case SS_OOBPEND:
2107 	case SS_OOBPEND|SS_HAVEOOBDATA:
2108 	case SS_OOBPEND|SS_HADOOBDATA:
2109 	case SS_HADOOBDATA:
2110 		break;
2111 	default:
2112 		printf("Bad oob state 1 (%p): counts %d/%d state %s\n",
2113 		    (void *)so, so->so_oobsigcnt,
2114 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2115 		return (0);
2116 	}
2117 
2118 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
2119 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
2120 		printf("Bad oob state 2 (%p): counts %d/%d state %s\n",
2121 		    (void *)so, so->so_oobsigcnt,
2122 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2123 		return (0);
2124 	}
2125 
2126 	/*
2127 	 * (so_oobsigcnt != 0 or SS_RCVATMARK) iff SS_OOBPEND
2128 	 */
2129 	if (!EQUIV((so->so_oobsigcnt != 0) || (so->so_state & SS_RCVATMARK),
2130 	    so->so_state & SS_OOBPEND)) {
2131 		printf("Bad oob state 3 (%p): counts %d/%d state %s\n",
2132 		    (void *)so, so->so_oobsigcnt,
2133 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2134 		return (0);
2135 	}
2136 
2137 	/*
2138 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
2139 	 */
2140 	if (!(so->so_options & SO_OOBINLINE) &&
2141 	    !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
2142 		printf("Bad oob state 4 (%p): counts %d/%d state %s\n",
2143 		    (void *)so, so->so_oobsigcnt,
2144 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2145 		return (0);
2146 	}
2147 	if (so->so_oobsigcnt < so->so_oobcnt) {
2148 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
2149 		    (void *)so, so->so_oobsigcnt,
2150 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2151 		return (0);
2152 	}
2153 	return (1);
2154 }
2155 #undef	EQUIV
2156 
2157 #endif /* DEBUG */
2158 
2159 /* initialize sockfs zone specific kstat related items			*/
2160 void *
2161 sock_kstat_init(zoneid_t zoneid)
2162 {
2163 	kstat_t	*ksp;
2164 
2165 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
2166 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
2167 
2168 	if (ksp != NULL) {
2169 		ksp->ks_update = sockfs_update;
2170 		ksp->ks_snapshot = sockfs_snapshot;
2171 		ksp->ks_lock = &socklist.sl_lock;
2172 		ksp->ks_private = (void *)(uintptr_t)zoneid;
2173 		kstat_install(ksp);
2174 	}
2175 
2176 	return (ksp);
2177 }
2178 
2179 /* tear down sockfs zone specific kstat related items			*/
2180 /*ARGSUSED*/
2181 void
2182 sock_kstat_fini(zoneid_t zoneid, void *arg)
2183 {
2184 	kstat_t *ksp = (kstat_t *)arg;
2185 
2186 	if (ksp != NULL) {
2187 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
2188 		kstat_delete(ksp);
2189 	}
2190 }
2191 
2192 /*
2193  * Zones:
2194  * Note that nactive is going to be different for each zone.
2195  * This means we require kstat to call sockfs_update and then sockfs_snapshot
2196  * for the same zone, or sockfs_snapshot will be taken into the wrong size
2197  * buffer. This is safe, but if the buffer is too small, user will not be
2198  * given details of all sockets. However, as this kstat has a ks_lock, kstat
2199  * driver will keep it locked between the update and the snapshot, so no
2200  * other process (zone) can currently get inbetween resulting in a wrong size
2201  * buffer allocation.
2202  */
2203 static int
2204 sockfs_update(kstat_t *ksp, int rw)
2205 {
2206 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
2207 	struct sonode	*so;		/* current sonode on socklist	*/
2208 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
2209 
2210 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
2211 
2212 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
2213 		return (EACCES);
2214 	}
2215 
2216 	for (so = socklist.sl_list; so != NULL; so = so->so_next) {
2217 		if (so->so_accessvp != NULL && so->so_zoneid == myzoneid) {
2218 			nactive++;
2219 		}
2220 	}
2221 	ksp->ks_ndata = nactive;
2222 	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
2223 
2224 	return (0);
2225 }
2226 
2227 static int
2228 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
2229 {
2230 	int			ns;	/* # of sonodes we've copied	*/
2231 	struct sonode		*so;	/* current sonode on socklist	*/
2232 	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
2233 	t_uscalar_t		sn_len;	/* soa_len			*/
2234 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
2235 
2236 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
2237 
2238 	ksp->ks_snaptime = gethrtime();
2239 
2240 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
2241 		return (EACCES);
2242 	}
2243 
2244 	/*
2245 	 * for each sonode on the socklist, we massage the important
2246 	 * info into buf, in k_sockinfo format.
2247 	 */
2248 	pksi = (struct k_sockinfo *)buf;
2249 	for (ns = 0, so = socklist.sl_list; so != NULL; so = so->so_next) {
2250 		/* only stuff active sonodes and the same zone:		*/
2251 		if (so->so_accessvp == NULL || so->so_zoneid != myzoneid) {
2252 			continue;
2253 		}
2254 
2255 		/*
2256 		 * If the sonode was activated between the update and the
2257 		 * snapshot, we're done - as this is only a snapshot.
2258 		 */
2259 		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
2260 			break;
2261 		}
2262 
2263 		/* copy important info into buf:			*/
2264 		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
2265 		pksi->ks_si.si_family = so->so_family;
2266 		pksi->ks_si.si_type = so->so_type;
2267 		pksi->ks_si.si_flag = so->so_flag;
2268 		pksi->ks_si.si_state = so->so_state;
2269 		pksi->ks_si.si_serv_type = so->so_serv_type;
2270 		pksi->ks_si.si_ux_laddr_sou_magic = so->so_ux_laddr.soua_magic;
2271 		pksi->ks_si.si_ux_faddr_sou_magic = so->so_ux_faddr.soua_magic;
2272 		pksi->ks_si.si_laddr_soa_len = so->so_laddr.soa_len;
2273 		pksi->ks_si.si_faddr_soa_len = so->so_faddr.soa_len;
2274 		pksi->ks_si.si_szoneid = so->so_zoneid;
2275 
2276 		mutex_enter(&so->so_lock);
2277 
2278 		if (so->so_laddr_sa != NULL) {
2279 			ASSERT(so->so_laddr_sa->sa_data != NULL);
2280 			sn_len = so->so_laddr_len;
2281 			ASSERT(sn_len <= sizeof (short) +
2282 			    sizeof (pksi->ks_si.si_laddr_sun_path));
2283 
2284 			pksi->ks_si.si_laddr_family =
2285 			    so->so_laddr_sa->sa_family;
2286 			if (sn_len != 0) {
2287 				/* AF_UNIX socket names are NULL terminated */
2288 				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
2289 				    so->so_laddr_sa->sa_data,
2290 				    sizeof (pksi->ks_si.si_laddr_sun_path));
2291 				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
2292 			}
2293 			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
2294 		}
2295 
2296 		if (so->so_faddr_sa != NULL) {
2297 			ASSERT(so->so_faddr_sa->sa_data != NULL);
2298 			sn_len = so->so_faddr_len;
2299 			ASSERT(sn_len <= sizeof (short) +
2300 			    sizeof (pksi->ks_si.si_faddr_sun_path));
2301 
2302 			pksi->ks_si.si_faddr_family =
2303 			    so->so_faddr_sa->sa_family;
2304 			if (sn_len != 0) {
2305 				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
2306 				    so->so_faddr_sa->sa_data,
2307 				    sizeof (pksi->ks_si.si_faddr_sun_path));
2308 				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
2309 			}
2310 			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
2311 		}
2312 
2313 		mutex_exit(&so->so_lock);
2314 
2315 		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
2316 		(void) sprintf(pksi->ks_straddr[1], "%p",
2317 		    (void *)so->so_ux_laddr.soua_vp);
2318 		(void) sprintf(pksi->ks_straddr[2], "%p",
2319 		    (void *)so->so_ux_faddr.soua_vp);
2320 
2321 		ns++;
2322 		pksi++;
2323 	}
2324 
2325 	ksp->ks_ndata = ns;
2326 	return (0);
2327 }
2328 
2329 ssize_t
2330 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
2331 {
2332 	struct uio auio;
2333 	struct iovec aiov[MSG_MAXIOVLEN];
2334 	register vnode_t *vp;
2335 	int ioflag, rwflag;
2336 	ssize_t cnt;
2337 	int error = 0;
2338 	int iovcnt = 0;
2339 	short fflag;
2340 
2341 	vp = fp->f_vnode;
2342 	fflag = fp->f_flag;
2343 
2344 	rwflag = 0;
2345 	aiov[0].iov_base = (caddr_t)buf;
2346 	aiov[0].iov_len = size;
2347 	iovcnt = 1;
2348 	cnt = (ssize_t)size;
2349 	(void) VOP_RWLOCK(vp, rwflag, NULL);
2350 
2351 	auio.uio_loffset = fileoff;
2352 	auio.uio_iov = aiov;
2353 	auio.uio_iovcnt = iovcnt;
2354 	auio.uio_resid = cnt;
2355 	auio.uio_segflg = UIO_SYSSPACE;
2356 	auio.uio_llimit = MAXOFFSET_T;
2357 	auio.uio_fmode = fflag;
2358 	auio.uio_extflg = UIO_COPY_CACHED;
2359 
2360 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
2361 
2362 	/* If read sync is not asked for, filter sync flags */
2363 	if ((ioflag & FRSYNC) == 0)
2364 		ioflag &= ~(FSYNC|FDSYNC);
2365 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
2366 	cnt -= auio.uio_resid;
2367 
2368 	VOP_RWUNLOCK(vp, rwflag, NULL);
2369 
2370 	if (error == EINTR && cnt != 0)
2371 		error = 0;
2372 out:
2373 	if (error != 0) {
2374 		*err = error;
2375 		return (0);
2376 	} else {
2377 		*err = 0;
2378 		return (cnt);
2379 	}
2380 }
2381