1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/t_lock.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/buf.h>
32 #include <sys/conf.h>
33 #include <sys/cred.h>
34 #include <sys/kmem.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/file.h>
43 #include <sys/open.h>
44 #include <sys/user.h>
45 #include <sys/termios.h>
46 #include <sys/stream.h>
47 #include <sys/strsubr.h>
48 #include <sys/strsun.h>
49 #include <sys/esunddi.h>
50 #include <sys/flock.h>
51 #include <sys/modctl.h>
52 #include <sys/cmn_err.h>
53 #include <sys/mkdev.h>
54 #include <sys/pathname.h>
55 #include <sys/ddi.h>
56 #include <sys/stat.h>
57 #include <sys/fs/snode.h>
58 #include <sys/fs/dv_node.h>
59 #include <sys/zone.h>
60 
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <netinet/in.h>
64 #include <sys/un.h>
65 #include <sys/ucred.h>
66 
67 #include <sys/tiuser.h>
68 #define	_SUN_TPI_VERSION	2
69 #include <sys/tihdr.h>
70 
71 #include <c2/audit.h>
72 
73 #include <fs/sockfs/nl7c.h>
74 #include <fs/sockfs/sockcommon.h>
75 #include <fs/sockfs/sockfilter_impl.h>
76 #include <fs/sockfs/socktpi.h>
77 #include <fs/sockfs/socktpi_impl.h>
78 #include <fs/sockfs/sodirect.h>
79 
80 /*
81  * Macros that operate on struct cmsghdr.
82  * The CMSG_VALID macro does not assume that the last option buffer is padded.
83  */
84 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
85 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
86 #define	CMSG_VALID(cmsg, start, end)					\
87 	(ISALIGNED_cmsghdr(cmsg) &&					\
88 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
89 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
90 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
91 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
92 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
93 
94 dev_t sockdev;	/* For fsid in getattr */
95 int sockfs_defer_nl7c_init = 0;
96 
97 struct socklist socklist;
98 
99 struct kmem_cache *socket_cache;
100 
101 /*
102  * sockconf_lock protects the socket configuration (socket types and
103  * socket filters) which is changed via the sockconfig system call.
104  */
105 krwlock_t sockconf_lock;
106 
107 static int sockfs_update(kstat_t *, int);
108 static int sockfs_snapshot(kstat_t *, void *, int);
109 extern smod_info_t *sotpi_smod_create(void);
110 
111 extern void sendfile_init();
112 
113 extern void nl7c_init(void);
114 
115 extern int modrootloaded;
116 
117 #define	ADRSTRLEN (2 * sizeof (void *) + 1)
118 /*
119  * kernel structure for passing the sockinfo data back up to the user.
120  * the strings array allows us to convert AF_UNIX addresses into strings
121  * with a common method regardless of which n-bit kernel we're running.
122  */
123 struct k_sockinfo {
124 	struct sockinfo	ks_si;
125 	char		ks_straddr[3][ADRSTRLEN];
126 };
127 
128 /*
129  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
130  * Returns with the vnode held.
131  */
132 int
133 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
134 {
135 	struct snode *csp;
136 	vnode_t *vp, *dvp;
137 	major_t maj;
138 	int error;
139 
140 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
141 
142 	/*
143 	 * Lookup the underlying filesystem vnode.
144 	 */
145 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
146 	if (error)
147 		return (error);
148 
149 	/* Check that it is the correct vnode */
150 	if (vp->v_type != VCHR) {
151 		VN_RELE(vp);
152 		return (ENOTSOCK);
153 	}
154 
155 	/*
156 	 * If devpath went through devfs, the device should already
157 	 * be configured. If devpath is a mknod file, however, we
158 	 * need to make sure the device is properly configured.
159 	 * To do this, we do something similar to spec_open()
160 	 * except that we resolve to the minor/leaf level since
161 	 * we need to return a vnode.
162 	 */
163 	csp = VTOS(VTOS(vp)->s_commonvp);
164 	if (!(csp->s_flag & SDIPSET)) {
165 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
166 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
167 		if (error == 0)
168 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
169 		VN_RELE(vp);
170 		kmem_free(pathname, MAXPATHLEN);
171 		if (error != 0)
172 			return (ENXIO);
173 		vp = dvp;	/* use the devfs vp */
174 	}
175 
176 	/* device is configured at this point */
177 	maj = getmajor(vp->v_rdev);
178 	if (!STREAMSTAB(maj)) {
179 		VN_RELE(vp);
180 		return (ENOSTR);
181 	}
182 
183 	*vpp = vp;
184 	return (0);
185 }
186 
187 /*
188  * Update the accessed, updated, or changed times in an sonode
189  * with the current time.
190  *
191  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
192  * attributes in a fstat call. (They return the current time and 0 for
193  * all timestamps, respectively.) We maintain the current timestamps
194  * here primarily so that should sockmod be popped the resulting
195  * file descriptor will behave like a stream w.r.t. the timestamps.
196  */
197 void
198 so_update_attrs(struct sonode *so, int flag)
199 {
200 	time_t now = gethrestime_sec();
201 
202 	if (SOCK_IS_NONSTR(so))
203 		return;
204 
205 	mutex_enter(&so->so_lock);
206 	so->so_flag |= flag;
207 	if (flag & SOACC)
208 		SOTOTPI(so)->sti_atime = now;
209 	if (flag & SOMOD)
210 		SOTOTPI(so)->sti_mtime = now;
211 	mutex_exit(&so->so_lock);
212 }
213 
214 extern so_create_func_t sock_comm_create_function;
215 extern so_destroy_func_t sock_comm_destroy_function;
216 /*
217  * Init function called when sockfs is loaded.
218  */
219 int
220 sockinit(int fstype, char *name)
221 {
222 	static const fs_operation_def_t sock_vfsops_template[] = {
223 		NULL, NULL
224 	};
225 	int error;
226 	major_t dev;
227 	char *err_str;
228 
229 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
230 	if (error != 0) {
231 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
232 		    "sockinit: bad vfs ops template");
233 		return (error);
234 	}
235 
236 	error = vn_make_ops(name, socket_vnodeops_template,
237 	    &socket_vnodeops);
238 	if (error != 0) {
239 		err_str = "sockinit: bad socket vnode ops template";
240 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
241 		socket_vnodeops = NULL;
242 		goto failure;
243 	}
244 
245 	socket_cache = kmem_cache_create("socket_cache",
246 	    sizeof (struct sonode), 0, sonode_constructor,
247 	    sonode_destructor, NULL, NULL, NULL, 0);
248 
249 	rw_init(&sockconf_lock, NULL, RW_DEFAULT, NULL);
250 
251 	error = socktpi_init();
252 	if (error != 0) {
253 		err_str = NULL;
254 		goto failure;
255 	}
256 
257 	error = sod_init();
258 	if (error != 0) {
259 		err_str = NULL;
260 		goto failure;
261 	}
262 
263 	/*
264 	 * Set up the default create and destroy functions
265 	 */
266 	sock_comm_create_function = socket_sonode_create;
267 	sock_comm_destroy_function = socket_sonode_destroy;
268 
269 	/*
270 	 * Build initial list mapping socket parameters to vnode.
271 	 */
272 	smod_init();
273 	smod_add(sotpi_smod_create());
274 
275 	sockparams_init();
276 
277 	/*
278 	 * If sockets are needed before init runs /sbin/soconfig
279 	 * it is possible to preload the sockparams list here using
280 	 * calls like:
281 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
282 	 */
283 
284 	/*
285 	 * Create a unique dev_t for use in so_fsid.
286 	 */
287 
288 	if ((dev = getudev()) == (major_t)-1)
289 		dev = 0;
290 	sockdev = makedevice(dev, 0);
291 
292 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
293 	sendfile_init();
294 	if (!modrootloaded) {
295 		sockfs_defer_nl7c_init = 1;
296 	} else {
297 		nl7c_init();
298 	}
299 
300 	/* Initialize socket filters */
301 	sof_init();
302 
303 	return (0);
304 
305 failure:
306 	(void) vfs_freevfsops_by_type(fstype);
307 	if (socket_vnodeops != NULL)
308 		vn_freevnodeops(socket_vnodeops);
309 	if (err_str != NULL)
310 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
311 	return (error);
312 }
313 
314 /*
315  * Caller must hold the mutex. Used to set SOLOCKED.
316  */
317 void
318 so_lock_single(struct sonode *so)
319 {
320 	ASSERT(MUTEX_HELD(&so->so_lock));
321 
322 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
323 		cv_wait_stop(&so->so_single_cv, &so->so_lock,
324 		    SO_LOCK_WAKEUP_TIME);
325 	}
326 	so->so_flag |= SOLOCKED;
327 }
328 
329 /*
330  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
331  * Used to clear SOLOCKED or SOASYNC_UNBIND.
332  */
333 void
334 so_unlock_single(struct sonode *so, int flag)
335 {
336 	ASSERT(MUTEX_HELD(&so->so_lock));
337 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
338 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
339 	ASSERT(so->so_flag & flag);
340 	/*
341 	 * Process the T_DISCON_IND on sti_discon_ind_mp.
342 	 *
343 	 * Call to so_drain_discon_ind will result in so_lock
344 	 * being dropped and re-acquired later.
345 	 */
346 	if (!SOCK_IS_NONSTR(so)) {
347 		sotpi_info_t *sti = SOTOTPI(so);
348 
349 		if (sti->sti_discon_ind_mp != NULL)
350 			so_drain_discon_ind(so);
351 	}
352 
353 	cv_signal(&so->so_single_cv);
354 	so->so_flag &= ~flag;
355 }
356 
357 /*
358  * Caller must hold the mutex. Used to set SOREADLOCKED.
359  * If the caller wants nonblocking behavior it should set fmode.
360  */
361 int
362 so_lock_read(struct sonode *so, int fmode)
363 {
364 	ASSERT(MUTEX_HELD(&so->so_lock));
365 
366 	while (so->so_flag & SOREADLOCKED) {
367 		if (fmode & (FNDELAY|FNONBLOCK))
368 			return (EWOULDBLOCK);
369 		cv_wait_stop(&so->so_read_cv, &so->so_lock,
370 		    SO_LOCK_WAKEUP_TIME);
371 	}
372 	so->so_flag |= SOREADLOCKED;
373 	return (0);
374 }
375 
376 /*
377  * Like so_lock_read above but allows signals.
378  */
379 int
380 so_lock_read_intr(struct sonode *so, int fmode)
381 {
382 	ASSERT(MUTEX_HELD(&so->so_lock));
383 
384 	while (so->so_flag & SOREADLOCKED) {
385 		if (fmode & (FNDELAY|FNONBLOCK))
386 			return (EWOULDBLOCK);
387 		if (!cv_wait_sig(&so->so_read_cv, &so->so_lock))
388 			return (EINTR);
389 	}
390 	so->so_flag |= SOREADLOCKED;
391 	return (0);
392 }
393 
394 /*
395  * Caller must hold the mutex. Used to clear SOREADLOCKED,
396  * set in so_lock_read() or so_lock_read_intr().
397  */
398 void
399 so_unlock_read(struct sonode *so)
400 {
401 	ASSERT(MUTEX_HELD(&so->so_lock));
402 	ASSERT(so->so_flag & SOREADLOCKED);
403 
404 	cv_signal(&so->so_read_cv);
405 	so->so_flag &= ~SOREADLOCKED;
406 }
407 
408 /*
409  * Verify that the specified offset falls within the mblk and
410  * that the resulting pointer is aligned.
411  * Returns NULL if not.
412  */
413 void *
414 sogetoff(mblk_t *mp, t_uscalar_t offset,
415     t_uscalar_t length, uint_t align_size)
416 {
417 	uintptr_t ptr1, ptr2;
418 
419 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
420 	ptr1 = (uintptr_t)mp->b_rptr + offset;
421 	ptr2 = (uintptr_t)ptr1 + length;
422 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
423 		eprintline(0);
424 		return (NULL);
425 	}
426 	if ((ptr1 & (align_size - 1)) != 0) {
427 		eprintline(0);
428 		return (NULL);
429 	}
430 	return ((void *)ptr1);
431 }
432 
433 /*
434  * Return the AF_UNIX underlying filesystem vnode matching a given name.
435  * Makes sure the sending and the destination sonodes are compatible.
436  * The vnode is returned held.
437  *
438  * The underlying filesystem VSOCK vnode has a v_stream pointer that
439  * references the actual stream head (hence indirectly the actual sonode).
440  */
441 static int
442 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
443     vnode_t **vpp)
444 {
445 	vnode_t		*vp;	/* Underlying filesystem vnode */
446 	vnode_t		*rvp;	/* real vnode */
447 	vnode_t		*svp;	/* sockfs vnode */
448 	struct sonode	*so2;
449 	int		error;
450 
451 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
452 	    soun->sun_path));
453 
454 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
455 	if (error) {
456 		eprintsoline(so, error);
457 		return (error);
458 	}
459 
460 	/*
461 	 * Traverse lofs mounts get the real vnode
462 	 */
463 	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
464 		VN_HOLD(rvp);		/* hold the real vnode */
465 		VN_RELE(vp);		/* release hold from lookup */
466 		vp = rvp;
467 	}
468 
469 	if (vp->v_type != VSOCK) {
470 		error = ENOTSOCK;
471 		eprintsoline(so, error);
472 		goto done2;
473 	}
474 
475 	if (checkaccess) {
476 		/*
477 		 * Check that we have permissions to access the destination
478 		 * vnode. This check is not done in BSD but it is required
479 		 * by X/Open.
480 		 */
481 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
482 			eprintsoline(so, error);
483 			goto done2;
484 		}
485 	}
486 
487 	/*
488 	 * Check if the remote socket has been closed.
489 	 *
490 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
491 	 * v_stream->sd_vnode.
492 	 */
493 	mutex_enter(&vp->v_lock);
494 	if (vp->v_stream == NULL) {
495 		mutex_exit(&vp->v_lock);
496 		if (so->so_type == SOCK_DGRAM)
497 			error = EDESTADDRREQ;
498 		else
499 			error = ECONNREFUSED;
500 
501 		eprintsoline(so, error);
502 		goto done2;
503 	}
504 	ASSERT(vp->v_stream->sd_vnode);
505 	svp = vp->v_stream->sd_vnode;
506 	/*
507 	 * holding v_lock on underlying filesystem vnode and acquiring
508 	 * it on sockfs vnode. Assumes that no code ever attempts to
509 	 * acquire these locks in the reverse order.
510 	 */
511 	VN_HOLD(svp);
512 	mutex_exit(&vp->v_lock);
513 
514 	if (svp->v_type != VSOCK) {
515 		error = ENOTSOCK;
516 		eprintsoline(so, error);
517 		goto done;
518 	}
519 
520 	so2 = VTOSO(svp);
521 
522 	if (so->so_type != so2->so_type) {
523 		error = EPROTOTYPE;
524 		eprintsoline(so, error);
525 		goto done;
526 	}
527 
528 	VN_RELE(svp);
529 	*vpp = vp;
530 	return (0);
531 
532 done:
533 	VN_RELE(svp);
534 done2:
535 	VN_RELE(vp);
536 	return (error);
537 }
538 
539 /*
540  * Verify peer address for connect and sendto/sendmsg.
541  * Since sendto/sendmsg would not get synchronous errors from the transport
542  * provider we have to do these ugly checks in the socket layer to
543  * preserve compatibility with SunOS 4.X.
544  */
545 int
546 so_addr_verify(struct sonode *so, const struct sockaddr *name,
547     socklen_t namelen)
548 {
549 	int		family;
550 
551 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
552 	    (void *)so, (void *)name, namelen));
553 
554 	ASSERT(name != NULL);
555 
556 	family = so->so_family;
557 	switch (family) {
558 	case AF_INET:
559 		if (name->sa_family != family) {
560 			eprintsoline(so, EAFNOSUPPORT);
561 			return (EAFNOSUPPORT);
562 		}
563 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
564 			eprintsoline(so, EINVAL);
565 			return (EINVAL);
566 		}
567 		break;
568 	case AF_INET6: {
569 #ifdef DEBUG
570 		struct sockaddr_in6 *sin6;
571 #endif /* DEBUG */
572 
573 		if (name->sa_family != family) {
574 			eprintsoline(so, EAFNOSUPPORT);
575 			return (EAFNOSUPPORT);
576 		}
577 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
578 			eprintsoline(so, EINVAL);
579 			return (EINVAL);
580 		}
581 #ifdef DEBUG
582 		/* Verify that apps don't forget to clear sin6_scope_id etc */
583 		sin6 = (struct sockaddr_in6 *)name;
584 		if (sin6->sin6_scope_id != 0 &&
585 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
586 			zcmn_err(getzoneid(), CE_WARN,
587 			    "connect/send* with uninitialized sin6_scope_id "
588 			    "(%d) on socket. Pid = %d\n",
589 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
590 		}
591 #endif /* DEBUG */
592 		break;
593 	}
594 	case AF_UNIX:
595 		if (SOTOTPI(so)->sti_faddr_noxlate) {
596 			return (0);
597 		}
598 		if (namelen < (socklen_t)sizeof (short)) {
599 			eprintsoline(so, ENOENT);
600 			return (ENOENT);
601 		}
602 		if (name->sa_family != family) {
603 			eprintsoline(so, EAFNOSUPPORT);
604 			return (EAFNOSUPPORT);
605 		}
606 		/* MAXPATHLEN + soun_family + nul termination */
607 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
608 			eprintsoline(so, ENAMETOOLONG);
609 			return (ENAMETOOLONG);
610 		}
611 
612 		break;
613 
614 	default:
615 		/*
616 		 * Default is don't do any length or sa_family check
617 		 * to allow non-sockaddr style addresses.
618 		 */
619 		break;
620 	}
621 
622 	return (0);
623 }
624 
625 
626 /*
627  * Translate an AF_UNIX sockaddr_un to the transport internal name.
628  * Assumes caller has called so_addr_verify first.  The translated
629  * (internal form) address is stored in sti->sti_ux_taddr.
630  */
631 /*ARGSUSED*/
632 int
633 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
634     socklen_t namelen, int checkaccess,
635     void **addrp, socklen_t *addrlenp)
636 {
637 	int			error;
638 	struct sockaddr_un	*soun;
639 	vnode_t			*vp;
640 	void			*addr;
641 	socklen_t		addrlen;
642 	sotpi_info_t		*sti = SOTOTPI(so);
643 
644 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
645 	    (void *)so, (void *)name, namelen, checkaccess));
646 
647 	ASSERT(name != NULL);
648 	ASSERT(so->so_family == AF_UNIX);
649 	ASSERT(!sti->sti_faddr_noxlate);
650 	ASSERT(namelen >= (socklen_t)sizeof (short));
651 	ASSERT(name->sa_family == AF_UNIX);
652 	soun = (struct sockaddr_un *)name;
653 	/*
654 	 * Lookup vnode for the specified path name and verify that
655 	 * it is a socket.
656 	 */
657 	error = so_ux_lookup(so, soun, checkaccess, &vp);
658 	if (error) {
659 		eprintsoline(so, error);
660 		return (error);
661 	}
662 	/*
663 	 * Use the address of the peer vnode as the address to send
664 	 * to. We release the peer vnode here. In case it has been
665 	 * closed by the time the T_CONN_REQ or T_UNITDATA_REQ reaches the
666 	 * transport the message will get an error or be dropped.
667 	 * Note that that soua_vp is never dereferenced; it's just a
668 	 * convenient value by which we can identify the peer.
669 	 */
670 	sti->sti_ux_taddr.soua_vp = vp;
671 	sti->sti_ux_taddr.soua_magic = SOU_MAGIC_EXPLICIT;
672 	addr = &sti->sti_ux_taddr;
673 	addrlen = (socklen_t)sizeof (sti->sti_ux_taddr);
674 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
675 	    addrlen, (void *)vp));
676 	VN_RELE(vp);
677 	*addrp = addr;
678 	*addrlenp = (socklen_t)addrlen;
679 	return (0);
680 }
681 
682 /*
683  * Esballoc free function for messages that contain SO_FILEP option.
684  * Decrement the reference count on the file pointers using closef.
685  */
686 void
687 fdbuf_free(struct fdbuf *fdbuf)
688 {
689 	int	i;
690 	struct file *fp;
691 
692 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
693 	for (i = 0; i < fdbuf->fd_numfd; i++) {
694 		/*
695 		 * We need pointer size alignment for fd_fds. On a LP64
696 		 * kernel, the required alignment is 8 bytes while
697 		 * the option headers and values are only 4 bytes
698 		 * aligned. So its safer to do a bcopy compared to
699 		 * assigning fdbuf->fd_fds[i] to fp.
700 		 */
701 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
702 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
703 		(void) closef(fp);
704 	}
705 	if (fdbuf->fd_ebuf != NULL)
706 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
707 	kmem_free(fdbuf, fdbuf->fd_size);
708 }
709 
710 /*
711  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
712  * Waits if memory is not available.
713  */
714 mblk_t *
715 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
716 {
717 	uchar_t	*buf;
718 	mblk_t	*mp;
719 
720 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
721 	buf = kmem_alloc(size, KM_SLEEP);
722 	fdbuf->fd_ebuf = (caddr_t)buf;
723 	fdbuf->fd_ebuflen = size;
724 	fdbuf->fd_frtn.free_func = fdbuf_free;
725 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
726 
727 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
728 	mp->b_datap->db_type = M_PROTO;
729 	return (mp);
730 }
731 
732 /*
733  * Extract file descriptors from a fdbuf.
734  * Return list in rights/rightslen.
735  */
736 /*ARGSUSED*/
737 static int
738 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
739 {
740 	int	i, fd;
741 	int	*rp;
742 	struct file *fp;
743 	int	numfd;
744 
745 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
746 	    fdbuf->fd_numfd, rightslen));
747 
748 	numfd = fdbuf->fd_numfd;
749 	ASSERT(rightslen == numfd * (int)sizeof (int));
750 
751 	/*
752 	 * Allocate a file descriptor and increment the f_count.
753 	 * The latter is needed since we always call fdbuf_free
754 	 * which performs a closef.
755 	 */
756 	rp = (int *)rights;
757 	for (i = 0; i < numfd; i++) {
758 		if ((fd = ufalloc(0)) == -1)
759 			goto cleanup;
760 		/*
761 		 * We need pointer size alignment for fd_fds. On a LP64
762 		 * kernel, the required alignment is 8 bytes while
763 		 * the option headers and values are only 4 bytes
764 		 * aligned. So its safer to do a bcopy compared to
765 		 * assigning fdbuf->fd_fds[i] to fp.
766 		 */
767 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
768 		mutex_enter(&fp->f_tlock);
769 		fp->f_count++;
770 		mutex_exit(&fp->f_tlock);
771 		setf(fd, fp);
772 		*rp++ = fd;
773 		if (AU_AUDITING())
774 			audit_fdrecv(fd, fp);
775 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
776 		    i, fd, (void *)fp, fp->f_count));
777 	}
778 	return (0);
779 
780 cleanup:
781 	/*
782 	 * Undo whatever partial work the loop above has done.
783 	 */
784 	{
785 		int j;
786 
787 		rp = (int *)rights;
788 		for (j = 0; j < i; j++) {
789 			dprint(0,
790 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
791 			(void) closeandsetf(*rp++, NULL);
792 		}
793 	}
794 
795 	return (EMFILE);
796 }
797 
798 /*
799  * Insert file descriptors into an fdbuf.
800  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
801  * by calling fdbuf_free().
802  */
803 int
804 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
805 {
806 	int		numfd, i;
807 	int		*fds;
808 	struct file	*fp;
809 	struct fdbuf	*fdbuf;
810 	int		fdbufsize;
811 
812 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
813 
814 	numfd = rightslen / (int)sizeof (int);
815 
816 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
817 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
818 	fdbuf->fd_size = fdbufsize;
819 	fdbuf->fd_numfd = 0;
820 	fdbuf->fd_ebuf = NULL;
821 	fdbuf->fd_ebuflen = 0;
822 	fds = (int *)rights;
823 	for (i = 0; i < numfd; i++) {
824 		if ((fp = getf(fds[i])) == NULL) {
825 			fdbuf_free(fdbuf);
826 			return (EBADF);
827 		}
828 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
829 		    i, fds[i], (void *)fp, fp->f_count));
830 		mutex_enter(&fp->f_tlock);
831 		fp->f_count++;
832 		mutex_exit(&fp->f_tlock);
833 		/*
834 		 * The maximum alignment for fdbuf (or any option header
835 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
836 		 * is not sufficient for pointers (fd_fds in this case). Since
837 		 * we just did a kmem_alloc (we get a double word alignment),
838 		 * we don't need to do anything on the send side (we loose
839 		 * the double word alignment because fdbuf goes after an
840 		 * option header (eg T_unitdata_req) which is only 4 byte
841 		 * aligned). We take care of this when we extract the file
842 		 * descriptor in fdbuf_extract or fdbuf_free.
843 		 */
844 		fdbuf->fd_fds[i] = fp;
845 		fdbuf->fd_numfd++;
846 		releasef(fds[i]);
847 		if (AU_AUDITING())
848 			audit_fdsend(fds[i], fp, 0);
849 	}
850 	*fdbufp = fdbuf;
851 	return (0);
852 }
853 
854 static int
855 fdbuf_optlen(int rightslen)
856 {
857 	int numfd;
858 
859 	numfd = rightslen / (int)sizeof (int);
860 
861 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
862 }
863 
864 static t_uscalar_t
865 fdbuf_cmsglen(int fdbuflen)
866 {
867 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
868 	    (int)sizeof (struct file *) * (int)sizeof (int));
869 }
870 
871 
872 /*
873  * Return non-zero if the mblk and fdbuf are consistent.
874  */
875 static int
876 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
877 {
878 	if (fdbuflen >= FDBUF_HDRSIZE &&
879 	    fdbuflen == fdbuf->fd_size) {
880 		frtn_t *frp = mp->b_datap->db_frtnp;
881 		/*
882 		 * Check that the SO_FILEP portion of the
883 		 * message has not been modified by
884 		 * the loopback transport. The sending sockfs generates
885 		 * a message that is esballoc'ed with the free function
886 		 * being fdbuf_free() and where free_arg contains the
887 		 * identical information as the SO_FILEP content.
888 		 *
889 		 * If any of these constraints are not satisfied we
890 		 * silently ignore the option.
891 		 */
892 		ASSERT(mp);
893 		if (frp != NULL &&
894 		    frp->free_func == fdbuf_free &&
895 		    frp->free_arg != NULL &&
896 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
897 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
898 			    (void *)fdbuf, fdbuflen));
899 			return (1);
900 		} else {
901 			zcmn_err(getzoneid(), CE_WARN,
902 			    "sockfs: mismatched fdbuf content (%p)",
903 			    (void *)mp);
904 			return (0);
905 		}
906 	} else {
907 		zcmn_err(getzoneid(), CE_WARN,
908 		    "sockfs: mismatched fdbuf len %d, %d\n",
909 		    fdbuflen, fdbuf->fd_size);
910 		return (0);
911 	}
912 }
913 
914 /*
915  * When the file descriptors returned by sorecvmsg can not be passed
916  * to the application this routine will cleanup the references on
917  * the files. Start at startoff bytes into the buffer.
918  */
919 static void
920 close_fds(void *fdbuf, int fdbuflen, int startoff)
921 {
922 	int *fds = (int *)fdbuf;
923 	int numfd = fdbuflen / (int)sizeof (int);
924 	int i;
925 
926 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
927 
928 	for (i = 0; i < numfd; i++) {
929 		if (startoff < 0)
930 			startoff = 0;
931 		if (startoff < (int)sizeof (int)) {
932 			/*
933 			 * This file descriptor is partially or fully after
934 			 * the offset
935 			 */
936 			dprint(0,
937 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
938 			(void) closeandsetf(fds[i], NULL);
939 		}
940 		startoff -= (int)sizeof (int);
941 	}
942 }
943 
944 /*
945  * Close all file descriptors contained in the control part starting at
946  * the startoffset.
947  */
948 void
949 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
950     int startoff)
951 {
952 	struct cmsghdr *cmsg;
953 
954 	if (control == NULL)
955 		return;
956 
957 	if (oldflg) {
958 		close_fds(control, controllen, startoff);
959 		return;
960 	}
961 	/* Scan control part for file descriptors. */
962 	for (cmsg = (struct cmsghdr *)control;
963 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
964 	    cmsg = CMSG_NEXT(cmsg)) {
965 		if (cmsg->cmsg_level == SOL_SOCKET &&
966 		    cmsg->cmsg_type == SCM_RIGHTS) {
967 			close_fds(CMSG_CONTENT(cmsg),
968 			    (int)CMSG_CONTENTLEN(cmsg),
969 			    startoff - (int)sizeof (struct cmsghdr));
970 		}
971 		startoff -= cmsg->cmsg_len;
972 	}
973 }
974 
975 /*
976  * Returns a pointer/length for the file descriptors contained
977  * in the control buffer. Returns with *fdlenp == -1 if there are no
978  * file descriptor options present. This is different than there being
979  * a zero-length file descriptor option.
980  * Fail if there are multiple SCM_RIGHT cmsgs.
981  */
982 int
983 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
984     void **fdsp, int *fdlenp)
985 {
986 	struct cmsghdr *cmsg;
987 	void *fds;
988 	int fdlen;
989 
990 	if (control == NULL) {
991 		*fdsp = NULL;
992 		*fdlenp = -1;
993 		return (0);
994 	}
995 
996 	if (oldflg) {
997 		*fdsp = control;
998 		if (controllen == 0)
999 			*fdlenp = -1;
1000 		else
1001 			*fdlenp = controllen;
1002 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
1003 		return (0);
1004 	}
1005 
1006 	fds = NULL;
1007 	fdlen = 0;
1008 
1009 	for (cmsg = (struct cmsghdr *)control;
1010 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1011 	    cmsg = CMSG_NEXT(cmsg)) {
1012 		if (cmsg->cmsg_level == SOL_SOCKET &&
1013 		    cmsg->cmsg_type == SCM_RIGHTS) {
1014 			if (fds != NULL)
1015 				return (EINVAL);
1016 			fds = CMSG_CONTENT(cmsg);
1017 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1018 			dprint(1, ("so_getfdopt: new %lu\n",
1019 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1020 		}
1021 	}
1022 	if (fds == NULL) {
1023 		dprint(1, ("so_getfdopt: NONE\n"));
1024 		*fdlenp = -1;
1025 	} else
1026 		*fdlenp = fdlen;
1027 	*fdsp = fds;
1028 	return (0);
1029 }
1030 
1031 /*
1032  * Return the length of the options including any file descriptor options.
1033  */
1034 t_uscalar_t
1035 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1036 {
1037 	struct cmsghdr *cmsg;
1038 	t_uscalar_t optlen = 0;
1039 	t_uscalar_t len;
1040 
1041 	if (control == NULL)
1042 		return (0);
1043 
1044 	if (oldflg)
1045 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1046 		    fdbuf_optlen(controllen)));
1047 
1048 	for (cmsg = (struct cmsghdr *)control;
1049 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1050 	    cmsg = CMSG_NEXT(cmsg)) {
1051 		if (cmsg->cmsg_level == SOL_SOCKET &&
1052 		    cmsg->cmsg_type == SCM_RIGHTS) {
1053 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1054 		} else {
1055 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1056 		}
1057 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1058 		    sizeof (struct T_opthdr));
1059 	}
1060 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1061 	    controllen, oldflg, optlen));
1062 	return (optlen);
1063 }
1064 
1065 /*
1066  * Copy options from control to the mblk. Skip any file descriptor options.
1067  */
1068 void
1069 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1070 {
1071 	struct T_opthdr toh;
1072 	struct cmsghdr *cmsg;
1073 
1074 	if (control == NULL)
1075 		return;
1076 
1077 	if (oldflg) {
1078 		/* No real options - caller has handled file descriptors */
1079 		return;
1080 	}
1081 	for (cmsg = (struct cmsghdr *)control;
1082 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1083 	    cmsg = CMSG_NEXT(cmsg)) {
1084 		/*
1085 		 * Note: The caller handles file descriptors prior
1086 		 * to calling this function.
1087 		 */
1088 		t_uscalar_t len;
1089 
1090 		if (cmsg->cmsg_level == SOL_SOCKET &&
1091 		    cmsg->cmsg_type == SCM_RIGHTS)
1092 			continue;
1093 
1094 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1095 		toh.level = cmsg->cmsg_level;
1096 		toh.name = cmsg->cmsg_type;
1097 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1098 		toh.status = 0;
1099 
1100 		soappendmsg(mp, &toh, sizeof (toh));
1101 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1102 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1103 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1104 	}
1105 }
1106 
1107 /*
1108  * Return the length of the control message derived from the options.
1109  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1110  * When oldflg is set only include SO_FILEP.
1111  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1112  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1113  * also be checked for any possible impacts.
1114  */
1115 t_uscalar_t
1116 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1117 {
1118 	t_uscalar_t cmsglen = 0;
1119 	struct T_opthdr *tohp;
1120 	t_uscalar_t len;
1121 	t_uscalar_t last_roundup = 0;
1122 
1123 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1124 
1125 	for (tohp = (struct T_opthdr *)opt;
1126 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1127 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1128 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1129 		    tohp->level, tohp->name, tohp->len));
1130 		if (tohp->level == SOL_SOCKET &&
1131 		    (tohp->name == SO_SRCADDR ||
1132 		    tohp->name == SO_UNIX_CLOSE)) {
1133 			continue;
1134 		}
1135 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1136 			struct fdbuf *fdbuf;
1137 			int fdbuflen;
1138 
1139 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1140 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1141 
1142 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1143 				continue;
1144 			if (oldflg) {
1145 				cmsglen += fdbuf_cmsglen(fdbuflen);
1146 				continue;
1147 			}
1148 			len = fdbuf_cmsglen(fdbuflen);
1149 		} else if (tohp->level == SOL_SOCKET &&
1150 		    tohp->name == SCM_TIMESTAMP) {
1151 			if (oldflg)
1152 				continue;
1153 
1154 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1155 				len = sizeof (struct timeval);
1156 			} else {
1157 				len = sizeof (struct timeval32);
1158 			}
1159 		} else {
1160 			if (oldflg)
1161 				continue;
1162 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1163 		}
1164 		/*
1165 		 * Exclude roundup for last option to not set
1166 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1167 		 */
1168 		last_roundup = (t_uscalar_t)
1169 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1170 		    (len + (int)sizeof (struct cmsghdr)));
1171 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1172 		    last_roundup;
1173 	}
1174 	cmsglen -= last_roundup;
1175 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1176 	    optlen, oldflg, cmsglen));
1177 	return (cmsglen);
1178 }
1179 
1180 /*
1181  * Copy options from options to the control. Convert SO_FILEP to
1182  * file descriptors.
1183  * Returns errno or zero.
1184  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1185  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1186  * also be checked for any possible impacts.
1187  */
1188 int
1189 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1190     void *control, t_uscalar_t controllen)
1191 {
1192 	struct T_opthdr *tohp;
1193 	struct cmsghdr *cmsg;
1194 	struct fdbuf *fdbuf;
1195 	int fdbuflen;
1196 	int error;
1197 #if defined(DEBUG) || defined(__lint)
1198 	struct cmsghdr *cend = (struct cmsghdr *)
1199 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1200 #endif
1201 	cmsg = (struct cmsghdr *)control;
1202 
1203 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1204 
1205 	for (tohp = (struct T_opthdr *)opt;
1206 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1207 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1208 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1209 		    tohp->level, tohp->name, tohp->len));
1210 
1211 		if (tohp->level == SOL_SOCKET &&
1212 		    (tohp->name == SO_SRCADDR ||
1213 		    tohp->name == SO_UNIX_CLOSE)) {
1214 			continue;
1215 		}
1216 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1217 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1218 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1219 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1220 
1221 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1222 				return (EPROTO);
1223 			if (oldflg) {
1224 				error = fdbuf_extract(fdbuf, control,
1225 				    (int)controllen);
1226 				if (error != 0)
1227 					return (error);
1228 				continue;
1229 			} else {
1230 				int fdlen;
1231 
1232 				fdlen = (int)fdbuf_cmsglen(
1233 				    (int)_TPI_TOPT_DATALEN(tohp));
1234 
1235 				cmsg->cmsg_level = tohp->level;
1236 				cmsg->cmsg_type = SCM_RIGHTS;
1237 				cmsg->cmsg_len = (socklen_t)(fdlen +
1238 				    sizeof (struct cmsghdr));
1239 
1240 				error = fdbuf_extract(fdbuf,
1241 				    CMSG_CONTENT(cmsg), fdlen);
1242 				if (error != 0)
1243 					return (error);
1244 			}
1245 		} else if (tohp->level == SOL_SOCKET &&
1246 		    tohp->name == SCM_TIMESTAMP) {
1247 			timestruc_t *timestamp;
1248 
1249 			if (oldflg)
1250 				continue;
1251 
1252 			cmsg->cmsg_level = tohp->level;
1253 			cmsg->cmsg_type = tohp->name;
1254 
1255 			timestamp =
1256 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1257 			    sizeof (intptr_t));
1258 
1259 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1260 				struct timeval tv;
1261 
1262 				cmsg->cmsg_len = sizeof (struct timeval) +
1263 				    sizeof (struct cmsghdr);
1264 				tv.tv_sec = timestamp->tv_sec;
1265 				tv.tv_usec = timestamp->tv_nsec /
1266 				    (NANOSEC / MICROSEC);
1267 				/*
1268 				 * on LP64 systems, the struct timeval in
1269 				 * the destination will not be 8-byte aligned,
1270 				 * so use bcopy to avoid alignment trouble
1271 				 */
1272 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1273 			} else {
1274 				struct timeval32 *time32;
1275 
1276 				cmsg->cmsg_len = sizeof (struct timeval32) +
1277 				    sizeof (struct cmsghdr);
1278 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1279 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1280 				time32->tv_usec =
1281 				    (int32_t)(timestamp->tv_nsec /
1282 				    (NANOSEC / MICROSEC));
1283 			}
1284 
1285 		} else {
1286 			if (oldflg)
1287 				continue;
1288 
1289 			cmsg->cmsg_level = tohp->level;
1290 			cmsg->cmsg_type = tohp->name;
1291 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1292 			    sizeof (struct cmsghdr));
1293 
1294 			/* copy content to control data part */
1295 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1296 			    CMSG_CONTENTLEN(cmsg));
1297 		}
1298 		/* move to next CMSG structure! */
1299 		cmsg = CMSG_NEXT(cmsg);
1300 	}
1301 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1302 	    control, controllen, (void *)cend, (void *)cmsg));
1303 	ASSERT(cmsg <= cend);
1304 	return (0);
1305 }
1306 
1307 /*
1308  * Extract the SO_SRCADDR option value if present.
1309  */
1310 void
1311 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1312     t_uscalar_t *srclenp)
1313 {
1314 	struct T_opthdr		*tohp;
1315 
1316 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1317 
1318 	ASSERT(srcp != NULL && srclenp != NULL);
1319 	*srcp = NULL;
1320 	*srclenp = 0;
1321 
1322 	for (tohp = (struct T_opthdr *)opt;
1323 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1324 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1325 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1326 		    tohp->level, tohp->name, tohp->len));
1327 		if (tohp->level == SOL_SOCKET &&
1328 		    tohp->name == SO_SRCADDR) {
1329 			*srcp = _TPI_TOPT_DATA(tohp);
1330 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1331 		}
1332 	}
1333 }
1334 
1335 /*
1336  * Verify if the SO_UNIX_CLOSE option is present.
1337  */
1338 int
1339 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1340 {
1341 	struct T_opthdr		*tohp;
1342 
1343 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1344 
1345 	for (tohp = (struct T_opthdr *)opt;
1346 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1347 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1348 		dprint(1,
1349 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1350 		    tohp->level, tohp->name, tohp->len));
1351 		if (tohp->level == SOL_SOCKET &&
1352 		    tohp->name == SO_UNIX_CLOSE)
1353 			return (1);
1354 	}
1355 	return (0);
1356 }
1357 
1358 /*
1359  * Allocate an M_PROTO message.
1360  *
1361  * If allocation fails the behavior depends on sleepflg:
1362  *	_ALLOC_NOSLEEP	fail immediately
1363  *	_ALLOC_INTR	sleep for memory until a signal is caught
1364  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1365  */
1366 mblk_t *
1367 soallocproto(size_t size, int sleepflg, cred_t *cr)
1368 {
1369 	mblk_t	*mp;
1370 
1371 	/* Round up size for reuse */
1372 	size = MAX(size, 64);
1373 	if (cr != NULL)
1374 		mp = allocb_cred(size, cr, curproc->p_pid);
1375 	else
1376 		mp = allocb(size, BPRI_MED);
1377 
1378 	if (mp == NULL) {
1379 		int error;	/* Dummy - error not returned to caller */
1380 
1381 		switch (sleepflg) {
1382 		case _ALLOC_SLEEP:
1383 			if (cr != NULL) {
1384 				mp = allocb_cred_wait(size, STR_NOSIG, &error,
1385 				    cr, curproc->p_pid);
1386 			} else {
1387 				mp = allocb_wait(size, BPRI_MED, STR_NOSIG,
1388 				    &error);
1389 			}
1390 			ASSERT(mp);
1391 			break;
1392 		case _ALLOC_INTR:
1393 			if (cr != NULL) {
1394 				mp = allocb_cred_wait(size, 0, &error, cr,
1395 				    curproc->p_pid);
1396 			} else {
1397 				mp = allocb_wait(size, BPRI_MED, 0, &error);
1398 			}
1399 			if (mp == NULL) {
1400 				/* Caught signal while sleeping for memory */
1401 				eprintline(ENOBUFS);
1402 				return (NULL);
1403 			}
1404 			break;
1405 		case _ALLOC_NOSLEEP:
1406 		default:
1407 			eprintline(ENOBUFS);
1408 			return (NULL);
1409 		}
1410 	}
1411 	DB_TYPE(mp) = M_PROTO;
1412 	return (mp);
1413 }
1414 
1415 /*
1416  * Allocate an M_PROTO message with a single component.
1417  * len is the length of buf. size is the amount to allocate.
1418  *
1419  * buf can be NULL with a non-zero len.
1420  * This results in a bzero'ed chunk being placed the message.
1421  */
1422 mblk_t *
1423 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg,
1424     cred_t *cr)
1425 {
1426 	mblk_t	*mp;
1427 
1428 	if (size == 0)
1429 		size = len;
1430 
1431 	ASSERT(size >= len);
1432 	/* Round up size for reuse */
1433 	size = MAX(size, 64);
1434 	mp = soallocproto(size, sleepflg, cr);
1435 	if (mp == NULL)
1436 		return (NULL);
1437 	mp->b_datap->db_type = M_PROTO;
1438 	if (len != 0) {
1439 		if (buf != NULL)
1440 			bcopy(buf, mp->b_wptr, len);
1441 		else
1442 			bzero(mp->b_wptr, len);
1443 		mp->b_wptr += len;
1444 	}
1445 	return (mp);
1446 }
1447 
1448 /*
1449  * Append buf/len to mp.
1450  * The caller has to ensure that there is enough room in the mblk.
1451  *
1452  * buf can be NULL with a non-zero len.
1453  * This results in a bzero'ed chunk being placed the message.
1454  */
1455 void
1456 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1457 {
1458 	ASSERT(mp);
1459 
1460 	if (len != 0) {
1461 		/* Assert for room left */
1462 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1463 		if (buf != NULL)
1464 			bcopy(buf, mp->b_wptr, len);
1465 		else
1466 			bzero(mp->b_wptr, len);
1467 	}
1468 	mp->b_wptr += len;
1469 }
1470 
1471 /*
1472  * Create a message using two kernel buffers.
1473  * If size is set that will determine the allocation size (e.g. for future
1474  * soappendmsg calls). If size is zero it is derived from the buffer
1475  * lengths.
1476  */
1477 mblk_t *
1478 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1479     ssize_t size, int sleepflg, cred_t *cr)
1480 {
1481 	mblk_t *mp;
1482 
1483 	if (size == 0)
1484 		size = len1 + len2;
1485 	ASSERT(size >= len1 + len2);
1486 
1487 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1488 	if (mp)
1489 		soappendmsg(mp, buf2, len2);
1490 	return (mp);
1491 }
1492 
1493 /*
1494  * Create a message using three kernel buffers.
1495  * If size is set that will determine the allocation size (for future
1496  * soappendmsg calls). If size is zero it is derived from the buffer
1497  * lengths.
1498  */
1499 mblk_t *
1500 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1501     const void *buf3, ssize_t len3, ssize_t size, int sleepflg, cred_t *cr)
1502 {
1503 	mblk_t *mp;
1504 
1505 	if (size == 0)
1506 		size = len1 + len2 +len3;
1507 	ASSERT(size >= len1 + len2 + len3);
1508 
1509 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1510 	if (mp != NULL) {
1511 		soappendmsg(mp, buf2, len2);
1512 		soappendmsg(mp, buf3, len3);
1513 	}
1514 	return (mp);
1515 }
1516 
1517 #ifdef DEBUG
1518 char *
1519 pr_state(uint_t state, uint_t mode)
1520 {
1521 	static char buf[1024];
1522 
1523 	buf[0] = 0;
1524 	if (state & SS_ISCONNECTED)
1525 		(void) strcat(buf, "ISCONNECTED ");
1526 	if (state & SS_ISCONNECTING)
1527 		(void) strcat(buf, "ISCONNECTING ");
1528 	if (state & SS_ISDISCONNECTING)
1529 		(void) strcat(buf, "ISDISCONNECTING ");
1530 	if (state & SS_CANTSENDMORE)
1531 		(void) strcat(buf, "CANTSENDMORE ");
1532 
1533 	if (state & SS_CANTRCVMORE)
1534 		(void) strcat(buf, "CANTRCVMORE ");
1535 	if (state & SS_ISBOUND)
1536 		(void) strcat(buf, "ISBOUND ");
1537 	if (state & SS_NDELAY)
1538 		(void) strcat(buf, "NDELAY ");
1539 	if (state & SS_NONBLOCK)
1540 		(void) strcat(buf, "NONBLOCK ");
1541 
1542 	if (state & SS_ASYNC)
1543 		(void) strcat(buf, "ASYNC ");
1544 	if (state & SS_ACCEPTCONN)
1545 		(void) strcat(buf, "ACCEPTCONN ");
1546 	if (state & SS_SAVEDEOR)
1547 		(void) strcat(buf, "SAVEDEOR ");
1548 
1549 	if (state & SS_RCVATMARK)
1550 		(void) strcat(buf, "RCVATMARK ");
1551 	if (state & SS_OOBPEND)
1552 		(void) strcat(buf, "OOBPEND ");
1553 	if (state & SS_HAVEOOBDATA)
1554 		(void) strcat(buf, "HAVEOOBDATA ");
1555 	if (state & SS_HADOOBDATA)
1556 		(void) strcat(buf, "HADOOBDATA ");
1557 
1558 	if (mode & SM_PRIV)
1559 		(void) strcat(buf, "PRIV ");
1560 	if (mode & SM_ATOMIC)
1561 		(void) strcat(buf, "ATOMIC ");
1562 	if (mode & SM_ADDR)
1563 		(void) strcat(buf, "ADDR ");
1564 	if (mode & SM_CONNREQUIRED)
1565 		(void) strcat(buf, "CONNREQUIRED ");
1566 
1567 	if (mode & SM_FDPASSING)
1568 		(void) strcat(buf, "FDPASSING ");
1569 	if (mode & SM_EXDATA)
1570 		(void) strcat(buf, "EXDATA ");
1571 	if (mode & SM_OPTDATA)
1572 		(void) strcat(buf, "OPTDATA ");
1573 	if (mode & SM_BYTESTREAM)
1574 		(void) strcat(buf, "BYTESTREAM ");
1575 	return (buf);
1576 }
1577 
1578 char *
1579 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1580 {
1581 	static char buf[1024];
1582 
1583 	if (addr == NULL || addrlen == 0) {
1584 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1585 		return (buf);
1586 	}
1587 	switch (family) {
1588 	case AF_INET: {
1589 		struct sockaddr_in sin;
1590 
1591 		bcopy(addr, &sin, sizeof (sin));
1592 
1593 		(void) sprintf(buf, "(len %d) %x/%d",
1594 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1595 		break;
1596 	}
1597 	case AF_INET6: {
1598 		struct sockaddr_in6 sin6;
1599 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1600 
1601 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1602 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1603 		    addrlen,
1604 		    ntohs(piece[0]), ntohs(piece[1]),
1605 		    ntohs(piece[2]), ntohs(piece[3]),
1606 		    ntohs(piece[4]), ntohs(piece[5]),
1607 		    ntohs(piece[6]), ntohs(piece[7]),
1608 		    ntohs(sin6.sin6_port));
1609 		break;
1610 	}
1611 	case AF_UNIX: {
1612 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1613 
1614 		(void) sprintf(buf, "(len %d) %s", addrlen,
1615 		    (soun == NULL) ? "(none)" : soun->sun_path);
1616 		break;
1617 	}
1618 	default:
1619 		(void) sprintf(buf, "(unknown af %d)", family);
1620 		break;
1621 	}
1622 	return (buf);
1623 }
1624 
1625 /* The logical equivalence operator (a if-and-only-if b) */
1626 #define	EQUIVALENT(a, b)	(((a) && (b)) || (!(a) && (!(b))))
1627 
1628 /*
1629  * Verify limitations and invariants on oob state.
1630  * Return 1 if OK, otherwise 0 so that it can be used as
1631  *	ASSERT(verify_oobstate(so));
1632  */
1633 int
1634 so_verify_oobstate(struct sonode *so)
1635 {
1636 	boolean_t havemark;
1637 
1638 	ASSERT(MUTEX_HELD(&so->so_lock));
1639 
1640 	/*
1641 	 * The possible state combinations are:
1642 	 *	0
1643 	 *	SS_OOBPEND
1644 	 *	SS_OOBPEND|SS_HAVEOOBDATA
1645 	 *	SS_OOBPEND|SS_HADOOBDATA
1646 	 *	SS_HADOOBDATA
1647 	 */
1648 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1649 	case 0:
1650 	case SS_OOBPEND:
1651 	case SS_OOBPEND|SS_HAVEOOBDATA:
1652 	case SS_OOBPEND|SS_HADOOBDATA:
1653 	case SS_HADOOBDATA:
1654 		break;
1655 	default:
1656 		printf("Bad oob state 1 (%p): state %s\n",
1657 		    (void *)so, pr_state(so->so_state, so->so_mode));
1658 		return (0);
1659 	}
1660 
1661 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1662 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1663 		printf("Bad oob state 2 (%p): state %s\n",
1664 		    (void *)so, pr_state(so->so_state, so->so_mode));
1665 		return (0);
1666 	}
1667 
1668 	/*
1669 	 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1670 	 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1671 	 */
1672 	havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1673 	    SOTOTPI(so)->sti_oobsigcnt > 0;
1674 
1675 	if (!EQUIVALENT(havemark || (so->so_state & SS_RCVATMARK),
1676 	    so->so_state & SS_OOBPEND)) {
1677 		printf("Bad oob state 3 (%p): state %s\n",
1678 		    (void *)so, pr_state(so->so_state, so->so_mode));
1679 		return (0);
1680 	}
1681 
1682 	/*
1683 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1684 	 */
1685 	if (!(so->so_options & SO_OOBINLINE) &&
1686 	    !EQUIVALENT(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1687 		printf("Bad oob state 4 (%p): state %s\n",
1688 		    (void *)so, pr_state(so->so_state, so->so_mode));
1689 		return (0);
1690 	}
1691 
1692 	if (!SOCK_IS_NONSTR(so) &&
1693 	    SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1694 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1695 		    (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1696 		    SOTOTPI(so)->sti_oobcnt,
1697 		    pr_state(so->so_state, so->so_mode));
1698 		return (0);
1699 	}
1700 
1701 	return (1);
1702 }
1703 #undef	EQUIVALENT
1704 #endif /* DEBUG */
1705 
1706 /* initialize sockfs zone specific kstat related items			*/
1707 void *
1708 sock_kstat_init(zoneid_t zoneid)
1709 {
1710 	kstat_t	*ksp;
1711 
1712 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1713 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1714 
1715 	if (ksp != NULL) {
1716 		ksp->ks_update = sockfs_update;
1717 		ksp->ks_snapshot = sockfs_snapshot;
1718 		ksp->ks_lock = &socklist.sl_lock;
1719 		ksp->ks_private = (void *)(uintptr_t)zoneid;
1720 		kstat_install(ksp);
1721 	}
1722 
1723 	return (ksp);
1724 }
1725 
1726 /* tear down sockfs zone specific kstat related items			*/
1727 /*ARGSUSED*/
1728 void
1729 sock_kstat_fini(zoneid_t zoneid, void *arg)
1730 {
1731 	kstat_t *ksp = (kstat_t *)arg;
1732 
1733 	if (ksp != NULL) {
1734 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1735 		kstat_delete(ksp);
1736 	}
1737 }
1738 
1739 /*
1740  * Zones:
1741  * Note that nactive is going to be different for each zone.
1742  * This means we require kstat to call sockfs_update and then sockfs_snapshot
1743  * for the same zone, or sockfs_snapshot will be taken into the wrong size
1744  * buffer. This is safe, but if the buffer is too small, user will not be
1745  * given details of all sockets. However, as this kstat has a ks_lock, kstat
1746  * driver will keep it locked between the update and the snapshot, so no
1747  * other process (zone) can currently get inbetween resulting in a wrong size
1748  * buffer allocation.
1749  */
1750 static int
1751 sockfs_update(kstat_t *ksp, int rw)
1752 {
1753 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
1754 	struct sonode	*so;		/* current sonode on socklist	*/
1755 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1756 
1757 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1758 
1759 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1760 		return (EACCES);
1761 	}
1762 
1763 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1764 		if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1765 			nactive++;
1766 		}
1767 	}
1768 	ksp->ks_ndata = nactive;
1769 	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
1770 
1771 	return (0);
1772 }
1773 
1774 static int
1775 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1776 {
1777 	int			ns;	/* # of sonodes we've copied	*/
1778 	struct sonode		*so;	/* current sonode on socklist	*/
1779 	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
1780 	t_uscalar_t		sn_len;	/* soa_len			*/
1781 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1782 	sotpi_info_t 		*sti;
1783 
1784 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1785 
1786 	ksp->ks_snaptime = gethrtime();
1787 
1788 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1789 		return (EACCES);
1790 	}
1791 
1792 	/*
1793 	 * for each sonode on the socklist, we massage the important
1794 	 * info into buf, in k_sockinfo format.
1795 	 */
1796 	pksi = (struct k_sockinfo *)buf;
1797 	ns = 0;
1798 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1799 		/* only stuff active sonodes and the same zone:		*/
1800 		if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1801 			continue;
1802 		}
1803 
1804 		/*
1805 		 * If the sonode was activated between the update and the
1806 		 * snapshot, we're done - as this is only a snapshot.
1807 		 */
1808 		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
1809 			break;
1810 		}
1811 
1812 		sti = SOTOTPI(so);
1813 		/* copy important info into buf:			*/
1814 		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
1815 		pksi->ks_si.si_family = so->so_family;
1816 		pksi->ks_si.si_type = so->so_type;
1817 		pksi->ks_si.si_flag = so->so_flag;
1818 		pksi->ks_si.si_state = so->so_state;
1819 		pksi->ks_si.si_serv_type = sti->sti_serv_type;
1820 		pksi->ks_si.si_ux_laddr_sou_magic =
1821 		    sti->sti_ux_laddr.soua_magic;
1822 		pksi->ks_si.si_ux_faddr_sou_magic =
1823 		    sti->sti_ux_faddr.soua_magic;
1824 		pksi->ks_si.si_laddr_soa_len = sti->sti_laddr.soa_len;
1825 		pksi->ks_si.si_faddr_soa_len = sti->sti_faddr.soa_len;
1826 		pksi->ks_si.si_szoneid = so->so_zoneid;
1827 		pksi->ks_si.si_faddr_noxlate = sti->sti_faddr_noxlate;
1828 
1829 		mutex_enter(&so->so_lock);
1830 
1831 		if (sti->sti_laddr_sa != NULL) {
1832 			ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1833 			sn_len = sti->sti_laddr_len;
1834 			ASSERT(sn_len <= sizeof (short) +
1835 			    sizeof (pksi->ks_si.si_laddr_sun_path));
1836 
1837 			pksi->ks_si.si_laddr_family =
1838 			    sti->sti_laddr_sa->sa_family;
1839 			if (sn_len != 0) {
1840 				/* AF_UNIX socket names are NULL terminated */
1841 				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
1842 				    sti->sti_laddr_sa->sa_data,
1843 				    sizeof (pksi->ks_si.si_laddr_sun_path));
1844 				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
1845 			}
1846 			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
1847 		}
1848 
1849 		if (sti->sti_faddr_sa != NULL) {
1850 			ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1851 			sn_len = sti->sti_faddr_len;
1852 			ASSERT(sn_len <= sizeof (short) +
1853 			    sizeof (pksi->ks_si.si_faddr_sun_path));
1854 
1855 			pksi->ks_si.si_faddr_family =
1856 			    sti->sti_faddr_sa->sa_family;
1857 			if (sn_len != 0) {
1858 				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
1859 				    sti->sti_faddr_sa->sa_data,
1860 				    sizeof (pksi->ks_si.si_faddr_sun_path));
1861 				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
1862 			}
1863 			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
1864 		}
1865 
1866 		mutex_exit(&so->so_lock);
1867 
1868 		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
1869 		(void) sprintf(pksi->ks_straddr[1], "%p",
1870 		    (void *)sti->sti_ux_laddr.soua_vp);
1871 		(void) sprintf(pksi->ks_straddr[2], "%p",
1872 		    (void *)sti->sti_ux_faddr.soua_vp);
1873 
1874 		ns++;
1875 		pksi++;
1876 	}
1877 
1878 	ksp->ks_ndata = ns;
1879 	return (0);
1880 }
1881 
1882 ssize_t
1883 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1884 {
1885 	struct uio auio;
1886 	struct iovec aiov[MSG_MAXIOVLEN];
1887 	register vnode_t *vp;
1888 	int ioflag, rwflag;
1889 	ssize_t cnt;
1890 	int error = 0;
1891 	int iovcnt = 0;
1892 	short fflag;
1893 
1894 	vp = fp->f_vnode;
1895 	fflag = fp->f_flag;
1896 
1897 	rwflag = 0;
1898 	aiov[0].iov_base = (caddr_t)buf;
1899 	aiov[0].iov_len = size;
1900 	iovcnt = 1;
1901 	cnt = (ssize_t)size;
1902 	(void) VOP_RWLOCK(vp, rwflag, NULL);
1903 
1904 	auio.uio_loffset = fileoff;
1905 	auio.uio_iov = aiov;
1906 	auio.uio_iovcnt = iovcnt;
1907 	auio.uio_resid = cnt;
1908 	auio.uio_segflg = UIO_SYSSPACE;
1909 	auio.uio_llimit = MAXOFFSET_T;
1910 	auio.uio_fmode = fflag;
1911 	auio.uio_extflg = UIO_COPY_CACHED;
1912 
1913 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1914 
1915 	/* If read sync is not asked for, filter sync flags */
1916 	if ((ioflag & FRSYNC) == 0)
1917 		ioflag &= ~(FSYNC|FDSYNC);
1918 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1919 	cnt -= auio.uio_resid;
1920 
1921 	VOP_RWUNLOCK(vp, rwflag, NULL);
1922 
1923 	if (error == EINTR && cnt != 0)
1924 		error = 0;
1925 out:
1926 	if (error != 0) {
1927 		*err = error;
1928 		return (0);
1929 	} else {
1930 		*err = 0;
1931 		return (cnt);
1932 	}
1933 }
1934 
1935 int
1936 so_copyin(const void *from, void *to, size_t size, int fromkernel)
1937 {
1938 	if (fromkernel) {
1939 		bcopy(from, to, size);
1940 		return (0);
1941 	}
1942 	return (xcopyin(from, to, size));
1943 }
1944 
1945 int
1946 so_copyout(const void *from, void *to, size_t size, int tokernel)
1947 {
1948 	if (tokernel) {
1949 		bcopy(from, to, size);
1950 		return (0);
1951 	}
1952 	return (xcopyout(from, to, size));
1953 }
1954