1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/t_lock.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/buf.h>
32 #include <sys/conf.h>
33 #include <sys/cred.h>
34 #include <sys/kmem.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/file.h>
43 #include <sys/open.h>
44 #include <sys/user.h>
45 #include <sys/termios.h>
46 #include <sys/stream.h>
47 #include <sys/strsubr.h>
48 #include <sys/strsun.h>
49 #include <sys/esunddi.h>
50 #include <sys/flock.h>
51 #include <sys/modctl.h>
52 #include <sys/cmn_err.h>
53 #include <sys/mkdev.h>
54 #include <sys/pathname.h>
55 #include <sys/ddi.h>
56 #include <sys/stat.h>
57 #include <sys/fs/snode.h>
58 #include <sys/fs/dv_node.h>
59 #include <sys/zone.h>
60 
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <netinet/in.h>
64 #include <sys/un.h>
65 #include <sys/ucred.h>
66 
67 #include <sys/tiuser.h>
68 #define	_SUN_TPI_VERSION	2
69 #include <sys/tihdr.h>
70 
71 #include <c2/audit.h>
72 
73 #include <fs/sockfs/nl7c.h>
74 #include <fs/sockfs/sockcommon.h>
75 #include <fs/sockfs/socktpi.h>
76 #include <fs/sockfs/socktpi_impl.h>
77 #include <fs/sockfs/sodirect.h>
78 
79 /*
80  * Macros that operate on struct cmsghdr.
81  * The CMSG_VALID macro does not assume that the last option buffer is padded.
82  */
83 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
84 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
85 #define	CMSG_VALID(cmsg, start, end)					\
86 	(ISALIGNED_cmsghdr(cmsg) &&					\
87 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
88 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
89 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
90 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
91 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
92 
93 dev_t sockdev;	/* For fsid in getattr */
94 int sockfs_defer_nl7c_init = 0;
95 
96 struct socklist socklist;
97 
98 struct kmem_cache *socket_cache;
99 
100 static int sockfs_update(kstat_t *, int);
101 static int sockfs_snapshot(kstat_t *, void *, int);
102 extern smod_info_t *sotpi_smod_create(void);
103 
104 extern void sendfile_init();
105 
106 extern void nl7c_init(void);
107 
108 extern int modrootloaded;
109 
110 #define	ADRSTRLEN (2 * sizeof (void *) + 1)
111 /*
112  * kernel structure for passing the sockinfo data back up to the user.
113  * the strings array allows us to convert AF_UNIX addresses into strings
114  * with a common method regardless of which n-bit kernel we're running.
115  */
116 struct k_sockinfo {
117 	struct sockinfo	ks_si;
118 	char		ks_straddr[3][ADRSTRLEN];
119 };
120 
121 /*
122  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
123  * Returns with the vnode held.
124  */
125 int
126 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
127 {
128 	struct snode *csp;
129 	vnode_t *vp, *dvp;
130 	major_t maj;
131 	int error;
132 
133 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
134 
135 	/*
136 	 * Lookup the underlying filesystem vnode.
137 	 */
138 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
139 	if (error)
140 		return (error);
141 
142 	/* Check that it is the correct vnode */
143 	if (vp->v_type != VCHR) {
144 		VN_RELE(vp);
145 		return (ENOTSOCK);
146 	}
147 
148 	/*
149 	 * If devpath went through devfs, the device should already
150 	 * be configured. If devpath is a mknod file, however, we
151 	 * need to make sure the device is properly configured.
152 	 * To do this, we do something similar to spec_open()
153 	 * except that we resolve to the minor/leaf level since
154 	 * we need to return a vnode.
155 	 */
156 	csp = VTOS(VTOS(vp)->s_commonvp);
157 	if (!(csp->s_flag & SDIPSET)) {
158 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
159 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
160 		if (error == 0)
161 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
162 		VN_RELE(vp);
163 		kmem_free(pathname, MAXPATHLEN);
164 		if (error != 0)
165 			return (ENXIO);
166 		vp = dvp;	/* use the devfs vp */
167 	}
168 
169 	/* device is configured at this point */
170 	maj = getmajor(vp->v_rdev);
171 	if (!STREAMSTAB(maj)) {
172 		VN_RELE(vp);
173 		return (ENOSTR);
174 	}
175 
176 	*vpp = vp;
177 	return (0);
178 }
179 
180 /*
181  * Update the accessed, updated, or changed times in an sonode
182  * with the current time.
183  *
184  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
185  * attributes in a fstat call. (They return the current time and 0 for
186  * all timestamps, respectively.) We maintain the current timestamps
187  * here primarily so that should sockmod be popped the resulting
188  * file descriptor will behave like a stream w.r.t. the timestamps.
189  */
190 void
191 so_update_attrs(struct sonode *so, int flag)
192 {
193 	time_t now = gethrestime_sec();
194 
195 	if (SOCK_IS_NONSTR(so))
196 		return;
197 
198 	mutex_enter(&so->so_lock);
199 	so->so_flag |= flag;
200 	if (flag & SOACC)
201 		SOTOTPI(so)->sti_atime = now;
202 	if (flag & SOMOD)
203 		SOTOTPI(so)->sti_mtime = now;
204 	mutex_exit(&so->so_lock);
205 }
206 
207 extern so_create_func_t sock_comm_create_function;
208 extern so_destroy_func_t sock_comm_destroy_function;
209 /*
210  * Init function called when sockfs is loaded.
211  */
212 int
213 sockinit(int fstype, char *name)
214 {
215 	static const fs_operation_def_t sock_vfsops_template[] = {
216 		NULL, NULL
217 	};
218 	int error;
219 	major_t dev;
220 	char *err_str;
221 
222 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
223 	if (error != 0) {
224 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
225 		    "sockinit: bad vfs ops template");
226 		return (error);
227 	}
228 
229 	error = vn_make_ops(name, socket_vnodeops_template,
230 	    &socket_vnodeops);
231 	if (error != 0) {
232 		err_str = "sockinit: bad socket vnode ops template";
233 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
234 		socket_vnodeops = NULL;
235 		goto failure;
236 	}
237 
238 	socket_cache = kmem_cache_create("socket_cache",
239 	    sizeof (struct sonode), 0, sonode_constructor,
240 	    sonode_destructor, NULL, NULL, NULL, 0);
241 
242 	error = socktpi_init();
243 	if (error != 0) {
244 		err_str = NULL;
245 		goto failure;
246 	}
247 
248 	error = sod_init();
249 	if (error != 0) {
250 		err_str = NULL;
251 		goto failure;
252 	}
253 
254 	/*
255 	 * Set up the default create and destroy functions
256 	 */
257 	sock_comm_create_function = socket_sonode_create;
258 	sock_comm_destroy_function = socket_sonode_destroy;
259 
260 	/*
261 	 * Build initial list mapping socket parameters to vnode.
262 	 */
263 	smod_init();
264 	smod_add(sotpi_smod_create());
265 
266 	sockparams_init();
267 
268 	/*
269 	 * If sockets are needed before init runs /sbin/soconfig
270 	 * it is possible to preload the sockparams list here using
271 	 * calls like:
272 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
273 	 */
274 
275 	/*
276 	 * Create a unique dev_t for use in so_fsid.
277 	 */
278 
279 	if ((dev = getudev()) == (major_t)-1)
280 		dev = 0;
281 	sockdev = makedevice(dev, 0);
282 
283 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
284 	sendfile_init();
285 	if (!modrootloaded) {
286 		sockfs_defer_nl7c_init = 1;
287 	} else {
288 		nl7c_init();
289 	}
290 
291 	return (0);
292 
293 failure:
294 	(void) vfs_freevfsops_by_type(fstype);
295 	if (socket_vnodeops != NULL)
296 		vn_freevnodeops(socket_vnodeops);
297 	if (err_str != NULL)
298 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
299 	return (error);
300 }
301 
302 /*
303  * Caller must hold the mutex. Used to set SOLOCKED.
304  */
305 void
306 so_lock_single(struct sonode *so)
307 {
308 	ASSERT(MUTEX_HELD(&so->so_lock));
309 
310 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
311 		cv_wait_stop(&so->so_single_cv, &so->so_lock,
312 		    SO_LOCK_WAKEUP_TIME);
313 	}
314 	so->so_flag |= SOLOCKED;
315 }
316 
317 /*
318  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
319  * Used to clear SOLOCKED or SOASYNC_UNBIND.
320  */
321 void
322 so_unlock_single(struct sonode *so, int flag)
323 {
324 	ASSERT(MUTEX_HELD(&so->so_lock));
325 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
326 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
327 	ASSERT(so->so_flag & flag);
328 	/*
329 	 * Process the T_DISCON_IND on sti_discon_ind_mp.
330 	 *
331 	 * Call to so_drain_discon_ind will result in so_lock
332 	 * being dropped and re-acquired later.
333 	 */
334 	if (!SOCK_IS_NONSTR(so)) {
335 		sotpi_info_t *sti = SOTOTPI(so);
336 
337 		if (sti->sti_discon_ind_mp != NULL)
338 			so_drain_discon_ind(so);
339 	}
340 
341 	cv_signal(&so->so_single_cv);
342 	so->so_flag &= ~flag;
343 }
344 
345 /*
346  * Caller must hold the mutex. Used to set SOREADLOCKED.
347  * If the caller wants nonblocking behavior it should set fmode.
348  */
349 int
350 so_lock_read(struct sonode *so, int fmode)
351 {
352 	ASSERT(MUTEX_HELD(&so->so_lock));
353 
354 	while (so->so_flag & SOREADLOCKED) {
355 		if (fmode & (FNDELAY|FNONBLOCK))
356 			return (EWOULDBLOCK);
357 		cv_wait_stop(&so->so_read_cv, &so->so_lock,
358 		    SO_LOCK_WAKEUP_TIME);
359 	}
360 	so->so_flag |= SOREADLOCKED;
361 	return (0);
362 }
363 
364 /*
365  * Like so_lock_read above but allows signals.
366  */
367 int
368 so_lock_read_intr(struct sonode *so, int fmode)
369 {
370 	ASSERT(MUTEX_HELD(&so->so_lock));
371 
372 	while (so->so_flag & SOREADLOCKED) {
373 		if (fmode & (FNDELAY|FNONBLOCK))
374 			return (EWOULDBLOCK);
375 		if (!cv_wait_sig(&so->so_read_cv, &so->so_lock))
376 			return (EINTR);
377 	}
378 	so->so_flag |= SOREADLOCKED;
379 	return (0);
380 }
381 
382 /*
383  * Caller must hold the mutex. Used to clear SOREADLOCKED,
384  * set in so_lock_read() or so_lock_read_intr().
385  */
386 void
387 so_unlock_read(struct sonode *so)
388 {
389 	ASSERT(MUTEX_HELD(&so->so_lock));
390 	ASSERT(so->so_flag & SOREADLOCKED);
391 
392 	cv_signal(&so->so_read_cv);
393 	so->so_flag &= ~SOREADLOCKED;
394 }
395 
396 /*
397  * Verify that the specified offset falls within the mblk and
398  * that the resulting pointer is aligned.
399  * Returns NULL if not.
400  */
401 void *
402 sogetoff(mblk_t *mp, t_uscalar_t offset,
403     t_uscalar_t length, uint_t align_size)
404 {
405 	uintptr_t ptr1, ptr2;
406 
407 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
408 	ptr1 = (uintptr_t)mp->b_rptr + offset;
409 	ptr2 = (uintptr_t)ptr1 + length;
410 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
411 		eprintline(0);
412 		return (NULL);
413 	}
414 	if ((ptr1 & (align_size - 1)) != 0) {
415 		eprintline(0);
416 		return (NULL);
417 	}
418 	return ((void *)ptr1);
419 }
420 
421 /*
422  * Return the AF_UNIX underlying filesystem vnode matching a given name.
423  * Makes sure the sending and the destination sonodes are compatible.
424  * The vnode is returned held.
425  *
426  * The underlying filesystem VSOCK vnode has a v_stream pointer that
427  * references the actual stream head (hence indirectly the actual sonode).
428  */
429 static int
430 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
431 		vnode_t **vpp)
432 {
433 	vnode_t		*vp;	/* Underlying filesystem vnode */
434 	vnode_t		*rvp;	/* real vnode */
435 	vnode_t		*svp;	/* sockfs vnode */
436 	struct sonode	*so2;
437 	int		error;
438 
439 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
440 	    soun->sun_path));
441 
442 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
443 	if (error) {
444 		eprintsoline(so, error);
445 		return (error);
446 	}
447 
448 	/*
449 	 * Traverse lofs mounts get the real vnode
450 	 */
451 	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
452 		VN_HOLD(rvp);		/* hold the real vnode */
453 		VN_RELE(vp);		/* release hold from lookup */
454 		vp = rvp;
455 	}
456 
457 	if (vp->v_type != VSOCK) {
458 		error = ENOTSOCK;
459 		eprintsoline(so, error);
460 		goto done2;
461 	}
462 
463 	if (checkaccess) {
464 		/*
465 		 * Check that we have permissions to access the destination
466 		 * vnode. This check is not done in BSD but it is required
467 		 * by X/Open.
468 		 */
469 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
470 			eprintsoline(so, error);
471 			goto done2;
472 		}
473 	}
474 
475 	/*
476 	 * Check if the remote socket has been closed.
477 	 *
478 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
479 	 * v_stream->sd_vnode.
480 	 */
481 	mutex_enter(&vp->v_lock);
482 	if (vp->v_stream == NULL) {
483 		mutex_exit(&vp->v_lock);
484 		if (so->so_type == SOCK_DGRAM)
485 			error = EDESTADDRREQ;
486 		else
487 			error = ECONNREFUSED;
488 
489 		eprintsoline(so, error);
490 		goto done2;
491 	}
492 	ASSERT(vp->v_stream->sd_vnode);
493 	svp = vp->v_stream->sd_vnode;
494 	/*
495 	 * holding v_lock on underlying filesystem vnode and acquiring
496 	 * it on sockfs vnode. Assumes that no code ever attempts to
497 	 * acquire these locks in the reverse order.
498 	 */
499 	VN_HOLD(svp);
500 	mutex_exit(&vp->v_lock);
501 
502 	if (svp->v_type != VSOCK) {
503 		error = ENOTSOCK;
504 		eprintsoline(so, error);
505 		goto done;
506 	}
507 
508 	so2 = VTOSO(svp);
509 
510 	if (so->so_type != so2->so_type) {
511 		error = EPROTOTYPE;
512 		eprintsoline(so, error);
513 		goto done;
514 	}
515 
516 	VN_RELE(svp);
517 	*vpp = vp;
518 	return (0);
519 
520 done:
521 	VN_RELE(svp);
522 done2:
523 	VN_RELE(vp);
524 	return (error);
525 }
526 
527 /*
528  * Verify peer address for connect and sendto/sendmsg.
529  * Since sendto/sendmsg would not get synchronous errors from the transport
530  * provider we have to do these ugly checks in the socket layer to
531  * preserve compatibility with SunOS 4.X.
532  */
533 int
534 so_addr_verify(struct sonode *so, const struct sockaddr *name,
535     socklen_t namelen)
536 {
537 	int		family;
538 
539 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
540 	    (void *)so, (void *)name, namelen));
541 
542 	ASSERT(name != NULL);
543 
544 	family = so->so_family;
545 	switch (family) {
546 	case AF_INET:
547 		if (name->sa_family != family) {
548 			eprintsoline(so, EAFNOSUPPORT);
549 			return (EAFNOSUPPORT);
550 		}
551 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
552 			eprintsoline(so, EINVAL);
553 			return (EINVAL);
554 		}
555 		break;
556 	case AF_INET6: {
557 #ifdef DEBUG
558 		struct sockaddr_in6 *sin6;
559 #endif /* DEBUG */
560 
561 		if (name->sa_family != family) {
562 			eprintsoline(so, EAFNOSUPPORT);
563 			return (EAFNOSUPPORT);
564 		}
565 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
566 			eprintsoline(so, EINVAL);
567 			return (EINVAL);
568 		}
569 #ifdef DEBUG
570 		/* Verify that apps don't forget to clear sin6_scope_id etc */
571 		sin6 = (struct sockaddr_in6 *)name;
572 		if (sin6->sin6_scope_id != 0 &&
573 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
574 			zcmn_err(getzoneid(), CE_WARN,
575 			    "connect/send* with uninitialized sin6_scope_id "
576 			    "(%d) on socket. Pid = %d\n",
577 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
578 		}
579 #endif /* DEBUG */
580 		break;
581 	}
582 	case AF_UNIX:
583 		if (SOTOTPI(so)->sti_faddr_noxlate) {
584 			return (0);
585 		}
586 		if (namelen < (socklen_t)sizeof (short)) {
587 			eprintsoline(so, ENOENT);
588 			return (ENOENT);
589 		}
590 		if (name->sa_family != family) {
591 			eprintsoline(so, EAFNOSUPPORT);
592 			return (EAFNOSUPPORT);
593 		}
594 		/* MAXPATHLEN + soun_family + nul termination */
595 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
596 			eprintsoline(so, ENAMETOOLONG);
597 			return (ENAMETOOLONG);
598 		}
599 
600 		break;
601 
602 	default:
603 		/*
604 		 * Default is don't do any length or sa_family check
605 		 * to allow non-sockaddr style addresses.
606 		 */
607 		break;
608 	}
609 
610 	return (0);
611 }
612 
613 
614 /*
615  * Translate an AF_UNIX sockaddr_un to the transport internal name.
616  * Assumes caller has called so_addr_verify first.
617  */
618 /*ARGSUSED*/
619 int
620 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
621     socklen_t namelen, int checkaccess,
622     void **addrp, socklen_t *addrlenp)
623 {
624 	int			error;
625 	struct sockaddr_un	*soun;
626 	vnode_t			*vp;
627 	void			*addr;
628 	socklen_t		addrlen;
629 	sotpi_info_t		*sti = SOTOTPI(so);
630 
631 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
632 	    (void *)so, (void *)name, namelen, checkaccess));
633 
634 	ASSERT(name != NULL);
635 	ASSERT(so->so_family == AF_UNIX);
636 	ASSERT(!sti->sti_faddr_noxlate);
637 	ASSERT(namelen >= (socklen_t)sizeof (short));
638 	ASSERT(name->sa_family == AF_UNIX);
639 	soun = (struct sockaddr_un *)name;
640 	/*
641 	 * Lookup vnode for the specified path name and verify that
642 	 * it is a socket.
643 	 */
644 	error = so_ux_lookup(so, soun, checkaccess, &vp);
645 	if (error) {
646 		eprintsoline(so, error);
647 		return (error);
648 	}
649 	/*
650 	 * Use the address of the peer vnode as the address to send
651 	 * to. We release the peer vnode here. In case it has been
652 	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
653 	 * transport the message will get an error or be dropped.
654 	 */
655 	sti->sti_ux_faddr.soua_vp = vp;
656 	sti->sti_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
657 	addr = &sti->sti_ux_faddr;
658 	addrlen = (socklen_t)sizeof (sti->sti_ux_faddr);
659 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
660 	    addrlen, (void *)vp));
661 	VN_RELE(vp);
662 	*addrp = addr;
663 	*addrlenp = (socklen_t)addrlen;
664 	return (0);
665 }
666 
667 /*
668  * Esballoc free function for messages that contain SO_FILEP option.
669  * Decrement the reference count on the file pointers using closef.
670  */
671 void
672 fdbuf_free(struct fdbuf *fdbuf)
673 {
674 	int	i;
675 	struct file *fp;
676 
677 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
678 	for (i = 0; i < fdbuf->fd_numfd; i++) {
679 		/*
680 		 * We need pointer size alignment for fd_fds. On a LP64
681 		 * kernel, the required alignment is 8 bytes while
682 		 * the option headers and values are only 4 bytes
683 		 * aligned. So its safer to do a bcopy compared to
684 		 * assigning fdbuf->fd_fds[i] to fp.
685 		 */
686 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
687 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
688 		(void) closef(fp);
689 	}
690 	if (fdbuf->fd_ebuf != NULL)
691 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
692 	kmem_free(fdbuf, fdbuf->fd_size);
693 }
694 
695 /*
696  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
697  * Waits if memory is not available.
698  */
699 mblk_t *
700 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
701 {
702 	uchar_t	*buf;
703 	mblk_t	*mp;
704 
705 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
706 	buf = kmem_alloc(size, KM_SLEEP);
707 	fdbuf->fd_ebuf = (caddr_t)buf;
708 	fdbuf->fd_ebuflen = size;
709 	fdbuf->fd_frtn.free_func = fdbuf_free;
710 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
711 
712 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
713 	mp->b_datap->db_type = M_PROTO;
714 	return (mp);
715 }
716 
717 /*
718  * Extract file descriptors from a fdbuf.
719  * Return list in rights/rightslen.
720  */
721 /*ARGSUSED*/
722 static int
723 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
724 {
725 	int	i, fd;
726 	int	*rp;
727 	struct file *fp;
728 	int	numfd;
729 
730 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
731 	    fdbuf->fd_numfd, rightslen));
732 
733 	numfd = fdbuf->fd_numfd;
734 	ASSERT(rightslen == numfd * (int)sizeof (int));
735 
736 	/*
737 	 * Allocate a file descriptor and increment the f_count.
738 	 * The latter is needed since we always call fdbuf_free
739 	 * which performs a closef.
740 	 */
741 	rp = (int *)rights;
742 	for (i = 0; i < numfd; i++) {
743 		if ((fd = ufalloc(0)) == -1)
744 			goto cleanup;
745 		/*
746 		 * We need pointer size alignment for fd_fds. On a LP64
747 		 * kernel, the required alignment is 8 bytes while
748 		 * the option headers and values are only 4 bytes
749 		 * aligned. So its safer to do a bcopy compared to
750 		 * assigning fdbuf->fd_fds[i] to fp.
751 		 */
752 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
753 		mutex_enter(&fp->f_tlock);
754 		fp->f_count++;
755 		mutex_exit(&fp->f_tlock);
756 		setf(fd, fp);
757 		*rp++ = fd;
758 		if (AU_AUDITING())
759 			audit_fdrecv(fd, fp);
760 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
761 		    i, fd, (void *)fp, fp->f_count));
762 	}
763 	return (0);
764 
765 cleanup:
766 	/*
767 	 * Undo whatever partial work the loop above has done.
768 	 */
769 	{
770 		int j;
771 
772 		rp = (int *)rights;
773 		for (j = 0; j < i; j++) {
774 			dprint(0,
775 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
776 			(void) closeandsetf(*rp++, NULL);
777 		}
778 	}
779 
780 	return (EMFILE);
781 }
782 
783 /*
784  * Insert file descriptors into an fdbuf.
785  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
786  * by calling fdbuf_free().
787  */
788 int
789 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
790 {
791 	int		numfd, i;
792 	int		*fds;
793 	struct file	*fp;
794 	struct fdbuf	*fdbuf;
795 	int		fdbufsize;
796 
797 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
798 
799 	numfd = rightslen / (int)sizeof (int);
800 
801 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
802 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
803 	fdbuf->fd_size = fdbufsize;
804 	fdbuf->fd_numfd = 0;
805 	fdbuf->fd_ebuf = NULL;
806 	fdbuf->fd_ebuflen = 0;
807 	fds = (int *)rights;
808 	for (i = 0; i < numfd; i++) {
809 		if ((fp = getf(fds[i])) == NULL) {
810 			fdbuf_free(fdbuf);
811 			return (EBADF);
812 		}
813 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
814 		    i, fds[i], (void *)fp, fp->f_count));
815 		mutex_enter(&fp->f_tlock);
816 		fp->f_count++;
817 		mutex_exit(&fp->f_tlock);
818 		/*
819 		 * The maximum alignment for fdbuf (or any option header
820 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
821 		 * is not sufficient for pointers (fd_fds in this case). Since
822 		 * we just did a kmem_alloc (we get a double word alignment),
823 		 * we don't need to do anything on the send side (we loose
824 		 * the double word alignment because fdbuf goes after an
825 		 * option header (eg T_unitdata_req) which is only 4 byte
826 		 * aligned). We take care of this when we extract the file
827 		 * descriptor in fdbuf_extract or fdbuf_free.
828 		 */
829 		fdbuf->fd_fds[i] = fp;
830 		fdbuf->fd_numfd++;
831 		releasef(fds[i]);
832 		if (AU_AUDITING())
833 			audit_fdsend(fds[i], fp, 0);
834 	}
835 	*fdbufp = fdbuf;
836 	return (0);
837 }
838 
839 static int
840 fdbuf_optlen(int rightslen)
841 {
842 	int numfd;
843 
844 	numfd = rightslen / (int)sizeof (int);
845 
846 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
847 }
848 
849 static t_uscalar_t
850 fdbuf_cmsglen(int fdbuflen)
851 {
852 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
853 	    (int)sizeof (struct file *) * (int)sizeof (int));
854 }
855 
856 
857 /*
858  * Return non-zero if the mblk and fdbuf are consistent.
859  */
860 static int
861 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
862 {
863 	if (fdbuflen >= FDBUF_HDRSIZE &&
864 	    fdbuflen == fdbuf->fd_size) {
865 		frtn_t *frp = mp->b_datap->db_frtnp;
866 		/*
867 		 * Check that the SO_FILEP portion of the
868 		 * message has not been modified by
869 		 * the loopback transport. The sending sockfs generates
870 		 * a message that is esballoc'ed with the free function
871 		 * being fdbuf_free() and where free_arg contains the
872 		 * identical information as the SO_FILEP content.
873 		 *
874 		 * If any of these constraints are not satisfied we
875 		 * silently ignore the option.
876 		 */
877 		ASSERT(mp);
878 		if (frp != NULL &&
879 		    frp->free_func == fdbuf_free &&
880 		    frp->free_arg != NULL &&
881 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
882 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
883 			    (void *)fdbuf, fdbuflen));
884 			return (1);
885 		} else {
886 			zcmn_err(getzoneid(), CE_WARN,
887 			    "sockfs: mismatched fdbuf content (%p)",
888 			    (void *)mp);
889 			return (0);
890 		}
891 	} else {
892 		zcmn_err(getzoneid(), CE_WARN,
893 		    "sockfs: mismatched fdbuf len %d, %d\n",
894 		    fdbuflen, fdbuf->fd_size);
895 		return (0);
896 	}
897 }
898 
899 /*
900  * When the file descriptors returned by sorecvmsg can not be passed
901  * to the application this routine will cleanup the references on
902  * the files. Start at startoff bytes into the buffer.
903  */
904 static void
905 close_fds(void *fdbuf, int fdbuflen, int startoff)
906 {
907 	int *fds = (int *)fdbuf;
908 	int numfd = fdbuflen / (int)sizeof (int);
909 	int i;
910 
911 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
912 
913 	for (i = 0; i < numfd; i++) {
914 		if (startoff < 0)
915 			startoff = 0;
916 		if (startoff < (int)sizeof (int)) {
917 			/*
918 			 * This file descriptor is partially or fully after
919 			 * the offset
920 			 */
921 			dprint(0,
922 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
923 			(void) closeandsetf(fds[i], NULL);
924 		}
925 		startoff -= (int)sizeof (int);
926 	}
927 }
928 
929 /*
930  * Close all file descriptors contained in the control part starting at
931  * the startoffset.
932  */
933 void
934 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
935     int startoff)
936 {
937 	struct cmsghdr *cmsg;
938 
939 	if (control == NULL)
940 		return;
941 
942 	if (oldflg) {
943 		close_fds(control, controllen, startoff);
944 		return;
945 	}
946 	/* Scan control part for file descriptors. */
947 	for (cmsg = (struct cmsghdr *)control;
948 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
949 	    cmsg = CMSG_NEXT(cmsg)) {
950 		if (cmsg->cmsg_level == SOL_SOCKET &&
951 		    cmsg->cmsg_type == SCM_RIGHTS) {
952 			close_fds(CMSG_CONTENT(cmsg),
953 			    (int)CMSG_CONTENTLEN(cmsg),
954 			    startoff - (int)sizeof (struct cmsghdr));
955 		}
956 		startoff -= cmsg->cmsg_len;
957 	}
958 }
959 
960 /*
961  * Returns a pointer/length for the file descriptors contained
962  * in the control buffer. Returns with *fdlenp == -1 if there are no
963  * file descriptor options present. This is different than there being
964  * a zero-length file descriptor option.
965  * Fail if there are multiple SCM_RIGHT cmsgs.
966  */
967 int
968 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
969     void **fdsp, int *fdlenp)
970 {
971 	struct cmsghdr *cmsg;
972 	void *fds;
973 	int fdlen;
974 
975 	if (control == NULL) {
976 		*fdsp = NULL;
977 		*fdlenp = -1;
978 		return (0);
979 	}
980 
981 	if (oldflg) {
982 		*fdsp = control;
983 		if (controllen == 0)
984 			*fdlenp = -1;
985 		else
986 			*fdlenp = controllen;
987 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
988 		return (0);
989 	}
990 
991 	fds = NULL;
992 	fdlen = 0;
993 
994 	for (cmsg = (struct cmsghdr *)control;
995 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
996 	    cmsg = CMSG_NEXT(cmsg)) {
997 		if (cmsg->cmsg_level == SOL_SOCKET &&
998 		    cmsg->cmsg_type == SCM_RIGHTS) {
999 			if (fds != NULL)
1000 				return (EINVAL);
1001 			fds = CMSG_CONTENT(cmsg);
1002 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1003 			dprint(1, ("so_getfdopt: new %lu\n",
1004 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1005 		}
1006 	}
1007 	if (fds == NULL) {
1008 		dprint(1, ("so_getfdopt: NONE\n"));
1009 		*fdlenp = -1;
1010 	} else
1011 		*fdlenp = fdlen;
1012 	*fdsp = fds;
1013 	return (0);
1014 }
1015 
1016 /*
1017  * Return the length of the options including any file descriptor options.
1018  */
1019 t_uscalar_t
1020 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1021 {
1022 	struct cmsghdr *cmsg;
1023 	t_uscalar_t optlen = 0;
1024 	t_uscalar_t len;
1025 
1026 	if (control == NULL)
1027 		return (0);
1028 
1029 	if (oldflg)
1030 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1031 		    fdbuf_optlen(controllen)));
1032 
1033 	for (cmsg = (struct cmsghdr *)control;
1034 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1035 	    cmsg = CMSG_NEXT(cmsg)) {
1036 		if (cmsg->cmsg_level == SOL_SOCKET &&
1037 		    cmsg->cmsg_type == SCM_RIGHTS) {
1038 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1039 		} else {
1040 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1041 		}
1042 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1043 		    sizeof (struct T_opthdr));
1044 	}
1045 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1046 	    controllen, oldflg, optlen));
1047 	return (optlen);
1048 }
1049 
1050 /*
1051  * Copy options from control to the mblk. Skip any file descriptor options.
1052  */
1053 void
1054 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1055 {
1056 	struct T_opthdr toh;
1057 	struct cmsghdr *cmsg;
1058 
1059 	if (control == NULL)
1060 		return;
1061 
1062 	if (oldflg) {
1063 		/* No real options - caller has handled file descriptors */
1064 		return;
1065 	}
1066 	for (cmsg = (struct cmsghdr *)control;
1067 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1068 	    cmsg = CMSG_NEXT(cmsg)) {
1069 		/*
1070 		 * Note: The caller handles file descriptors prior
1071 		 * to calling this function.
1072 		 */
1073 		t_uscalar_t len;
1074 
1075 		if (cmsg->cmsg_level == SOL_SOCKET &&
1076 		    cmsg->cmsg_type == SCM_RIGHTS)
1077 			continue;
1078 
1079 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1080 		toh.level = cmsg->cmsg_level;
1081 		toh.name = cmsg->cmsg_type;
1082 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1083 		toh.status = 0;
1084 
1085 		soappendmsg(mp, &toh, sizeof (toh));
1086 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1087 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1088 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1089 	}
1090 }
1091 
1092 /*
1093  * Return the length of the control message derived from the options.
1094  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1095  * When oldflg is set only include SO_FILEP.
1096  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1097  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1098  * also be checked for any possible impacts.
1099  */
1100 t_uscalar_t
1101 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1102 {
1103 	t_uscalar_t cmsglen = 0;
1104 	struct T_opthdr *tohp;
1105 	t_uscalar_t len;
1106 	t_uscalar_t last_roundup = 0;
1107 
1108 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1109 
1110 	for (tohp = (struct T_opthdr *)opt;
1111 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1112 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1113 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1114 		    tohp->level, tohp->name, tohp->len));
1115 		if (tohp->level == SOL_SOCKET &&
1116 		    (tohp->name == SO_SRCADDR ||
1117 		    tohp->name == SO_UNIX_CLOSE)) {
1118 			continue;
1119 		}
1120 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1121 			struct fdbuf *fdbuf;
1122 			int fdbuflen;
1123 
1124 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1125 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1126 
1127 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1128 				continue;
1129 			if (oldflg) {
1130 				cmsglen += fdbuf_cmsglen(fdbuflen);
1131 				continue;
1132 			}
1133 			len = fdbuf_cmsglen(fdbuflen);
1134 		} else if (tohp->level == SOL_SOCKET &&
1135 		    tohp->name == SCM_TIMESTAMP) {
1136 			if (oldflg)
1137 				continue;
1138 
1139 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1140 				len = sizeof (struct timeval);
1141 			} else {
1142 				len = sizeof (struct timeval32);
1143 			}
1144 		} else {
1145 			if (oldflg)
1146 				continue;
1147 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1148 		}
1149 		/*
1150 		 * Exclude roundup for last option to not set
1151 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1152 		 */
1153 		last_roundup = (t_uscalar_t)
1154 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1155 		    (len + (int)sizeof (struct cmsghdr)));
1156 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1157 		    last_roundup;
1158 	}
1159 	cmsglen -= last_roundup;
1160 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1161 	    optlen, oldflg, cmsglen));
1162 	return (cmsglen);
1163 }
1164 
1165 /*
1166  * Copy options from options to the control. Convert SO_FILEP to
1167  * file descriptors.
1168  * Returns errno or zero.
1169  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1170  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1171  * also be checked for any possible impacts.
1172  */
1173 int
1174 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1175     void *control, t_uscalar_t controllen)
1176 {
1177 	struct T_opthdr *tohp;
1178 	struct cmsghdr *cmsg;
1179 	struct fdbuf *fdbuf;
1180 	int fdbuflen;
1181 	int error;
1182 #if defined(DEBUG) || defined(__lint)
1183 	struct cmsghdr *cend = (struct cmsghdr *)
1184 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1185 #endif
1186 	cmsg = (struct cmsghdr *)control;
1187 
1188 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1189 
1190 	for (tohp = (struct T_opthdr *)opt;
1191 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1192 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1193 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1194 		    tohp->level, tohp->name, tohp->len));
1195 
1196 		if (tohp->level == SOL_SOCKET &&
1197 		    (tohp->name == SO_SRCADDR ||
1198 		    tohp->name == SO_UNIX_CLOSE)) {
1199 			continue;
1200 		}
1201 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1202 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1203 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1204 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1205 
1206 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1207 				return (EPROTO);
1208 			if (oldflg) {
1209 				error = fdbuf_extract(fdbuf, control,
1210 				    (int)controllen);
1211 				if (error != 0)
1212 					return (error);
1213 				continue;
1214 			} else {
1215 				int fdlen;
1216 
1217 				fdlen = (int)fdbuf_cmsglen(
1218 				    (int)_TPI_TOPT_DATALEN(tohp));
1219 
1220 				cmsg->cmsg_level = tohp->level;
1221 				cmsg->cmsg_type = SCM_RIGHTS;
1222 				cmsg->cmsg_len = (socklen_t)(fdlen +
1223 				    sizeof (struct cmsghdr));
1224 
1225 				error = fdbuf_extract(fdbuf,
1226 				    CMSG_CONTENT(cmsg), fdlen);
1227 				if (error != 0)
1228 					return (error);
1229 			}
1230 		} else if (tohp->level == SOL_SOCKET &&
1231 		    tohp->name == SCM_TIMESTAMP) {
1232 			timestruc_t *timestamp;
1233 
1234 			if (oldflg)
1235 				continue;
1236 
1237 			cmsg->cmsg_level = tohp->level;
1238 			cmsg->cmsg_type = tohp->name;
1239 
1240 			timestamp =
1241 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1242 			    sizeof (intptr_t));
1243 
1244 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1245 				struct timeval tv;
1246 
1247 				cmsg->cmsg_len = sizeof (struct timeval) +
1248 				    sizeof (struct cmsghdr);
1249 				tv.tv_sec = timestamp->tv_sec;
1250 				tv.tv_usec = timestamp->tv_nsec /
1251 				    (NANOSEC / MICROSEC);
1252 				/*
1253 				 * on LP64 systems, the struct timeval in
1254 				 * the destination will not be 8-byte aligned,
1255 				 * so use bcopy to avoid alignment trouble
1256 				 */
1257 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1258 			} else {
1259 				struct timeval32 *time32;
1260 
1261 				cmsg->cmsg_len = sizeof (struct timeval32) +
1262 				    sizeof (struct cmsghdr);
1263 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1264 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1265 				time32->tv_usec =
1266 				    (int32_t)(timestamp->tv_nsec /
1267 				    (NANOSEC / MICROSEC));
1268 			}
1269 
1270 		} else {
1271 			if (oldflg)
1272 				continue;
1273 
1274 			cmsg->cmsg_level = tohp->level;
1275 			cmsg->cmsg_type = tohp->name;
1276 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1277 			    sizeof (struct cmsghdr));
1278 
1279 			/* copy content to control data part */
1280 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1281 			    CMSG_CONTENTLEN(cmsg));
1282 		}
1283 		/* move to next CMSG structure! */
1284 		cmsg = CMSG_NEXT(cmsg);
1285 	}
1286 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1287 	    control, controllen, (void *)cend, (void *)cmsg));
1288 	ASSERT(cmsg <= cend);
1289 	return (0);
1290 }
1291 
1292 /*
1293  * Extract the SO_SRCADDR option value if present.
1294  */
1295 void
1296 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1297     t_uscalar_t *srclenp)
1298 {
1299 	struct T_opthdr		*tohp;
1300 
1301 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1302 
1303 	ASSERT(srcp != NULL && srclenp != NULL);
1304 	*srcp = NULL;
1305 	*srclenp = 0;
1306 
1307 	for (tohp = (struct T_opthdr *)opt;
1308 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1309 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1310 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1311 		    tohp->level, tohp->name, tohp->len));
1312 		if (tohp->level == SOL_SOCKET &&
1313 		    tohp->name == SO_SRCADDR) {
1314 			*srcp = _TPI_TOPT_DATA(tohp);
1315 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1316 		}
1317 	}
1318 }
1319 
1320 /*
1321  * Verify if the SO_UNIX_CLOSE option is present.
1322  */
1323 int
1324 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1325 {
1326 	struct T_opthdr		*tohp;
1327 
1328 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1329 
1330 	for (tohp = (struct T_opthdr *)opt;
1331 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1332 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1333 		dprint(1,
1334 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1335 		    tohp->level, tohp->name, tohp->len));
1336 		if (tohp->level == SOL_SOCKET &&
1337 		    tohp->name == SO_UNIX_CLOSE)
1338 			return (1);
1339 	}
1340 	return (0);
1341 }
1342 
1343 /*
1344  * Allocate an M_PROTO message.
1345  *
1346  * If allocation fails the behavior depends on sleepflg:
1347  *	_ALLOC_NOSLEEP	fail immediately
1348  *	_ALLOC_INTR	sleep for memory until a signal is caught
1349  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1350  */
1351 mblk_t *
1352 soallocproto(size_t size, int sleepflg, cred_t *cr)
1353 {
1354 	mblk_t	*mp;
1355 
1356 	/* Round up size for reuse */
1357 	size = MAX(size, 64);
1358 	if (cr != NULL)
1359 		mp = allocb_cred(size, cr, curproc->p_pid);
1360 	else
1361 		mp = allocb(size, BPRI_MED);
1362 
1363 	if (mp == NULL) {
1364 		int error;	/* Dummy - error not returned to caller */
1365 
1366 		switch (sleepflg) {
1367 		case _ALLOC_SLEEP:
1368 			if (cr != NULL) {
1369 				mp = allocb_cred_wait(size, STR_NOSIG, &error,
1370 				    cr, curproc->p_pid);
1371 			} else {
1372 				mp = allocb_wait(size, BPRI_MED, STR_NOSIG,
1373 				    &error);
1374 			}
1375 			ASSERT(mp);
1376 			break;
1377 		case _ALLOC_INTR:
1378 			if (cr != NULL) {
1379 				mp = allocb_cred_wait(size, 0, &error, cr,
1380 				    curproc->p_pid);
1381 			} else {
1382 				mp = allocb_wait(size, BPRI_MED, 0, &error);
1383 			}
1384 			if (mp == NULL) {
1385 				/* Caught signal while sleeping for memory */
1386 				eprintline(ENOBUFS);
1387 				return (NULL);
1388 			}
1389 			break;
1390 		case _ALLOC_NOSLEEP:
1391 		default:
1392 			eprintline(ENOBUFS);
1393 			return (NULL);
1394 		}
1395 	}
1396 	DB_TYPE(mp) = M_PROTO;
1397 	return (mp);
1398 }
1399 
1400 /*
1401  * Allocate an M_PROTO message with a single component.
1402  * len is the length of buf. size is the amount to allocate.
1403  *
1404  * buf can be NULL with a non-zero len.
1405  * This results in a bzero'ed chunk being placed the message.
1406  */
1407 mblk_t *
1408 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg,
1409     cred_t *cr)
1410 {
1411 	mblk_t	*mp;
1412 
1413 	if (size == 0)
1414 		size = len;
1415 
1416 	ASSERT(size >= len);
1417 	/* Round up size for reuse */
1418 	size = MAX(size, 64);
1419 	mp = soallocproto(size, sleepflg, cr);
1420 	if (mp == NULL)
1421 		return (NULL);
1422 	mp->b_datap->db_type = M_PROTO;
1423 	if (len != 0) {
1424 		if (buf != NULL)
1425 			bcopy(buf, mp->b_wptr, len);
1426 		else
1427 			bzero(mp->b_wptr, len);
1428 		mp->b_wptr += len;
1429 	}
1430 	return (mp);
1431 }
1432 
1433 /*
1434  * Append buf/len to mp.
1435  * The caller has to ensure that there is enough room in the mblk.
1436  *
1437  * buf can be NULL with a non-zero len.
1438  * This results in a bzero'ed chunk being placed the message.
1439  */
1440 void
1441 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1442 {
1443 	ASSERT(mp);
1444 
1445 	if (len != 0) {
1446 		/* Assert for room left */
1447 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1448 		if (buf != NULL)
1449 			bcopy(buf, mp->b_wptr, len);
1450 		else
1451 			bzero(mp->b_wptr, len);
1452 	}
1453 	mp->b_wptr += len;
1454 }
1455 
1456 /*
1457  * Create a message using two kernel buffers.
1458  * If size is set that will determine the allocation size (e.g. for future
1459  * soappendmsg calls). If size is zero it is derived from the buffer
1460  * lengths.
1461  */
1462 mblk_t *
1463 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1464     ssize_t size, int sleepflg, cred_t *cr)
1465 {
1466 	mblk_t *mp;
1467 
1468 	if (size == 0)
1469 		size = len1 + len2;
1470 	ASSERT(size >= len1 + len2);
1471 
1472 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1473 	if (mp)
1474 		soappendmsg(mp, buf2, len2);
1475 	return (mp);
1476 }
1477 
1478 /*
1479  * Create a message using three kernel buffers.
1480  * If size is set that will determine the allocation size (for future
1481  * soappendmsg calls). If size is zero it is derived from the buffer
1482  * lengths.
1483  */
1484 mblk_t *
1485 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1486     const void *buf3, ssize_t len3, ssize_t size, int sleepflg, cred_t *cr)
1487 {
1488 	mblk_t *mp;
1489 
1490 	if (size == 0)
1491 		size = len1 + len2 +len3;
1492 	ASSERT(size >= len1 + len2 + len3);
1493 
1494 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1495 	if (mp != NULL) {
1496 		soappendmsg(mp, buf2, len2);
1497 		soappendmsg(mp, buf3, len3);
1498 	}
1499 	return (mp);
1500 }
1501 
1502 #ifdef DEBUG
1503 char *
1504 pr_state(uint_t state, uint_t mode)
1505 {
1506 	static char buf[1024];
1507 
1508 	buf[0] = 0;
1509 	if (state & SS_ISCONNECTED)
1510 		(void) strcat(buf, "ISCONNECTED ");
1511 	if (state & SS_ISCONNECTING)
1512 		(void) strcat(buf, "ISCONNECTING ");
1513 	if (state & SS_ISDISCONNECTING)
1514 		(void) strcat(buf, "ISDISCONNECTING ");
1515 	if (state & SS_CANTSENDMORE)
1516 		(void) strcat(buf, "CANTSENDMORE ");
1517 
1518 	if (state & SS_CANTRCVMORE)
1519 		(void) strcat(buf, "CANTRCVMORE ");
1520 	if (state & SS_ISBOUND)
1521 		(void) strcat(buf, "ISBOUND ");
1522 	if (state & SS_NDELAY)
1523 		(void) strcat(buf, "NDELAY ");
1524 	if (state & SS_NONBLOCK)
1525 		(void) strcat(buf, "NONBLOCK ");
1526 
1527 	if (state & SS_ASYNC)
1528 		(void) strcat(buf, "ASYNC ");
1529 	if (state & SS_ACCEPTCONN)
1530 		(void) strcat(buf, "ACCEPTCONN ");
1531 	if (state & SS_SAVEDEOR)
1532 		(void) strcat(buf, "SAVEDEOR ");
1533 
1534 	if (state & SS_RCVATMARK)
1535 		(void) strcat(buf, "RCVATMARK ");
1536 	if (state & SS_OOBPEND)
1537 		(void) strcat(buf, "OOBPEND ");
1538 	if (state & SS_HAVEOOBDATA)
1539 		(void) strcat(buf, "HAVEOOBDATA ");
1540 	if (state & SS_HADOOBDATA)
1541 		(void) strcat(buf, "HADOOBDATA ");
1542 
1543 	if (mode & SM_PRIV)
1544 		(void) strcat(buf, "PRIV ");
1545 	if (mode & SM_ATOMIC)
1546 		(void) strcat(buf, "ATOMIC ");
1547 	if (mode & SM_ADDR)
1548 		(void) strcat(buf, "ADDR ");
1549 	if (mode & SM_CONNREQUIRED)
1550 		(void) strcat(buf, "CONNREQUIRED ");
1551 
1552 	if (mode & SM_FDPASSING)
1553 		(void) strcat(buf, "FDPASSING ");
1554 	if (mode & SM_EXDATA)
1555 		(void) strcat(buf, "EXDATA ");
1556 	if (mode & SM_OPTDATA)
1557 		(void) strcat(buf, "OPTDATA ");
1558 	if (mode & SM_BYTESTREAM)
1559 		(void) strcat(buf, "BYTESTREAM ");
1560 	return (buf);
1561 }
1562 
1563 char *
1564 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1565 {
1566 	static char buf[1024];
1567 
1568 	if (addr == NULL || addrlen == 0) {
1569 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1570 		return (buf);
1571 	}
1572 	switch (family) {
1573 	case AF_INET: {
1574 		struct sockaddr_in sin;
1575 
1576 		bcopy(addr, &sin, sizeof (sin));
1577 
1578 		(void) sprintf(buf, "(len %d) %x/%d",
1579 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1580 		break;
1581 	}
1582 	case AF_INET6: {
1583 		struct sockaddr_in6 sin6;
1584 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1585 
1586 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1587 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1588 		    addrlen,
1589 		    ntohs(piece[0]), ntohs(piece[1]),
1590 		    ntohs(piece[2]), ntohs(piece[3]),
1591 		    ntohs(piece[4]), ntohs(piece[5]),
1592 		    ntohs(piece[6]), ntohs(piece[7]),
1593 		    ntohs(sin6.sin6_port));
1594 		break;
1595 	}
1596 	case AF_UNIX: {
1597 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1598 
1599 		(void) sprintf(buf, "(len %d) %s", addrlen,
1600 		    (soun == NULL) ? "(none)" : soun->sun_path);
1601 		break;
1602 	}
1603 	default:
1604 		(void) sprintf(buf, "(unknown af %d)", family);
1605 		break;
1606 	}
1607 	return (buf);
1608 }
1609 
1610 /* The logical equivalence operator (a if-and-only-if b) */
1611 #define	EQUIVALENT(a, b)	(((a) && (b)) || (!(a) && (!(b))))
1612 
1613 /*
1614  * Verify limitations and invariants on oob state.
1615  * Return 1 if OK, otherwise 0 so that it can be used as
1616  *	ASSERT(verify_oobstate(so));
1617  */
1618 int
1619 so_verify_oobstate(struct sonode *so)
1620 {
1621 	boolean_t havemark;
1622 
1623 	ASSERT(MUTEX_HELD(&so->so_lock));
1624 
1625 	/*
1626 	 * The possible state combinations are:
1627 	 *	0
1628 	 *	SS_OOBPEND
1629 	 *	SS_OOBPEND|SS_HAVEOOBDATA
1630 	 *	SS_OOBPEND|SS_HADOOBDATA
1631 	 *	SS_HADOOBDATA
1632 	 */
1633 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1634 	case 0:
1635 	case SS_OOBPEND:
1636 	case SS_OOBPEND|SS_HAVEOOBDATA:
1637 	case SS_OOBPEND|SS_HADOOBDATA:
1638 	case SS_HADOOBDATA:
1639 		break;
1640 	default:
1641 		printf("Bad oob state 1 (%p): state %s\n",
1642 		    (void *)so, pr_state(so->so_state, so->so_mode));
1643 		return (0);
1644 	}
1645 
1646 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1647 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1648 		printf("Bad oob state 2 (%p): state %s\n",
1649 		    (void *)so, pr_state(so->so_state, so->so_mode));
1650 		return (0);
1651 	}
1652 
1653 	/*
1654 	 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1655 	 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1656 	 */
1657 	havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1658 	    SOTOTPI(so)->sti_oobsigcnt > 0;
1659 
1660 	if (!EQUIVALENT(havemark || (so->so_state & SS_RCVATMARK),
1661 	    so->so_state & SS_OOBPEND)) {
1662 		printf("Bad oob state 3 (%p): state %s\n",
1663 		    (void *)so, pr_state(so->so_state, so->so_mode));
1664 		return (0);
1665 	}
1666 
1667 	/*
1668 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1669 	 */
1670 	if (!(so->so_options & SO_OOBINLINE) &&
1671 	    !EQUIVALENT(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1672 		printf("Bad oob state 4 (%p): state %s\n",
1673 		    (void *)so, pr_state(so->so_state, so->so_mode));
1674 		return (0);
1675 	}
1676 
1677 	if (!SOCK_IS_NONSTR(so) &&
1678 	    SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1679 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1680 		    (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1681 		    SOTOTPI(so)->sti_oobcnt,
1682 		    pr_state(so->so_state, so->so_mode));
1683 		return (0);
1684 	}
1685 
1686 	return (1);
1687 }
1688 #undef	EQUIVALENT
1689 #endif /* DEBUG */
1690 
1691 /* initialize sockfs zone specific kstat related items			*/
1692 void *
1693 sock_kstat_init(zoneid_t zoneid)
1694 {
1695 	kstat_t	*ksp;
1696 
1697 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1698 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1699 
1700 	if (ksp != NULL) {
1701 		ksp->ks_update = sockfs_update;
1702 		ksp->ks_snapshot = sockfs_snapshot;
1703 		ksp->ks_lock = &socklist.sl_lock;
1704 		ksp->ks_private = (void *)(uintptr_t)zoneid;
1705 		kstat_install(ksp);
1706 	}
1707 
1708 	return (ksp);
1709 }
1710 
1711 /* tear down sockfs zone specific kstat related items			*/
1712 /*ARGSUSED*/
1713 void
1714 sock_kstat_fini(zoneid_t zoneid, void *arg)
1715 {
1716 	kstat_t *ksp = (kstat_t *)arg;
1717 
1718 	if (ksp != NULL) {
1719 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1720 		kstat_delete(ksp);
1721 	}
1722 }
1723 
1724 /*
1725  * Zones:
1726  * Note that nactive is going to be different for each zone.
1727  * This means we require kstat to call sockfs_update and then sockfs_snapshot
1728  * for the same zone, or sockfs_snapshot will be taken into the wrong size
1729  * buffer. This is safe, but if the buffer is too small, user will not be
1730  * given details of all sockets. However, as this kstat has a ks_lock, kstat
1731  * driver will keep it locked between the update and the snapshot, so no
1732  * other process (zone) can currently get inbetween resulting in a wrong size
1733  * buffer allocation.
1734  */
1735 static int
1736 sockfs_update(kstat_t *ksp, int rw)
1737 {
1738 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
1739 	struct sonode	*so;		/* current sonode on socklist	*/
1740 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1741 
1742 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1743 
1744 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1745 		return (EACCES);
1746 	}
1747 
1748 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1749 		if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1750 			nactive++;
1751 		}
1752 	}
1753 	ksp->ks_ndata = nactive;
1754 	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
1755 
1756 	return (0);
1757 }
1758 
1759 static int
1760 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1761 {
1762 	int			ns;	/* # of sonodes we've copied	*/
1763 	struct sonode		*so;	/* current sonode on socklist	*/
1764 	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
1765 	t_uscalar_t		sn_len;	/* soa_len			*/
1766 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1767 	sotpi_info_t 		*sti;
1768 
1769 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1770 
1771 	ksp->ks_snaptime = gethrtime();
1772 
1773 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1774 		return (EACCES);
1775 	}
1776 
1777 	/*
1778 	 * for each sonode on the socklist, we massage the important
1779 	 * info into buf, in k_sockinfo format.
1780 	 */
1781 	pksi = (struct k_sockinfo *)buf;
1782 	ns = 0;
1783 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1784 		/* only stuff active sonodes and the same zone:		*/
1785 		if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1786 			continue;
1787 		}
1788 
1789 		/*
1790 		 * If the sonode was activated between the update and the
1791 		 * snapshot, we're done - as this is only a snapshot.
1792 		 */
1793 		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
1794 			break;
1795 		}
1796 
1797 		sti = SOTOTPI(so);
1798 		/* copy important info into buf:			*/
1799 		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
1800 		pksi->ks_si.si_family = so->so_family;
1801 		pksi->ks_si.si_type = so->so_type;
1802 		pksi->ks_si.si_flag = so->so_flag;
1803 		pksi->ks_si.si_state = so->so_state;
1804 		pksi->ks_si.si_serv_type = sti->sti_serv_type;
1805 		pksi->ks_si.si_ux_laddr_sou_magic =
1806 		    sti->sti_ux_laddr.soua_magic;
1807 		pksi->ks_si.si_ux_faddr_sou_magic =
1808 		    sti->sti_ux_faddr.soua_magic;
1809 		pksi->ks_si.si_laddr_soa_len = sti->sti_laddr.soa_len;
1810 		pksi->ks_si.si_faddr_soa_len = sti->sti_faddr.soa_len;
1811 		pksi->ks_si.si_szoneid = so->so_zoneid;
1812 		pksi->ks_si.si_faddr_noxlate = sti->sti_faddr_noxlate;
1813 
1814 		mutex_enter(&so->so_lock);
1815 
1816 		if (sti->sti_laddr_sa != NULL) {
1817 			ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1818 			sn_len = sti->sti_laddr_len;
1819 			ASSERT(sn_len <= sizeof (short) +
1820 			    sizeof (pksi->ks_si.si_laddr_sun_path));
1821 
1822 			pksi->ks_si.si_laddr_family =
1823 			    sti->sti_laddr_sa->sa_family;
1824 			if (sn_len != 0) {
1825 				/* AF_UNIX socket names are NULL terminated */
1826 				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
1827 				    sti->sti_laddr_sa->sa_data,
1828 				    sizeof (pksi->ks_si.si_laddr_sun_path));
1829 				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
1830 			}
1831 			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
1832 		}
1833 
1834 		if (sti->sti_faddr_sa != NULL) {
1835 			ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1836 			sn_len = sti->sti_faddr_len;
1837 			ASSERT(sn_len <= sizeof (short) +
1838 			    sizeof (pksi->ks_si.si_faddr_sun_path));
1839 
1840 			pksi->ks_si.si_faddr_family =
1841 			    sti->sti_faddr_sa->sa_family;
1842 			if (sn_len != 0) {
1843 				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
1844 				    sti->sti_faddr_sa->sa_data,
1845 				    sizeof (pksi->ks_si.si_faddr_sun_path));
1846 				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
1847 			}
1848 			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
1849 		}
1850 
1851 		mutex_exit(&so->so_lock);
1852 
1853 		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
1854 		(void) sprintf(pksi->ks_straddr[1], "%p",
1855 		    (void *)sti->sti_ux_laddr.soua_vp);
1856 		(void) sprintf(pksi->ks_straddr[2], "%p",
1857 		    (void *)sti->sti_ux_faddr.soua_vp);
1858 
1859 		ns++;
1860 		pksi++;
1861 	}
1862 
1863 	ksp->ks_ndata = ns;
1864 	return (0);
1865 }
1866 
1867 ssize_t
1868 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1869 {
1870 	struct uio auio;
1871 	struct iovec aiov[MSG_MAXIOVLEN];
1872 	register vnode_t *vp;
1873 	int ioflag, rwflag;
1874 	ssize_t cnt;
1875 	int error = 0;
1876 	int iovcnt = 0;
1877 	short fflag;
1878 
1879 	vp = fp->f_vnode;
1880 	fflag = fp->f_flag;
1881 
1882 	rwflag = 0;
1883 	aiov[0].iov_base = (caddr_t)buf;
1884 	aiov[0].iov_len = size;
1885 	iovcnt = 1;
1886 	cnt = (ssize_t)size;
1887 	(void) VOP_RWLOCK(vp, rwflag, NULL);
1888 
1889 	auio.uio_loffset = fileoff;
1890 	auio.uio_iov = aiov;
1891 	auio.uio_iovcnt = iovcnt;
1892 	auio.uio_resid = cnt;
1893 	auio.uio_segflg = UIO_SYSSPACE;
1894 	auio.uio_llimit = MAXOFFSET_T;
1895 	auio.uio_fmode = fflag;
1896 	auio.uio_extflg = UIO_COPY_CACHED;
1897 
1898 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1899 
1900 	/* If read sync is not asked for, filter sync flags */
1901 	if ((ioflag & FRSYNC) == 0)
1902 		ioflag &= ~(FSYNC|FDSYNC);
1903 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1904 	cnt -= auio.uio_resid;
1905 
1906 	VOP_RWUNLOCK(vp, rwflag, NULL);
1907 
1908 	if (error == EINTR && cnt != 0)
1909 		error = 0;
1910 out:
1911 	if (error != 0) {
1912 		*err = error;
1913 		return (0);
1914 	} else {
1915 		*err = 0;
1916 		return (cnt);
1917 	}
1918 }
1919 
1920 int
1921 so_copyin(const void *from, void *to, size_t size, int fromkernel)
1922 {
1923 	if (fromkernel) {
1924 		bcopy(from, to, size);
1925 		return (0);
1926 	}
1927 	return (xcopyin(from, to, size));
1928 }
1929 
1930 int
1931 so_copyout(const void *from, void *to, size_t size, int tokernel)
1932 {
1933 	if (tokernel) {
1934 		bcopy(from, to, size);
1935 		return (0);
1936 	}
1937 	return (xcopyout(from, to, size));
1938 }
1939