1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/types.h> 26 #include <sys/param.h> 27 #include <sys/sysmacros.h> 28 #include <sys/kmem.h> 29 #include <sys/time.h> 30 #include <sys/pathname.h> 31 #include <sys/vfs.h> 32 #include <sys/vfs_opreg.h> 33 #include <sys/vnode.h> 34 #include <sys/stat.h> 35 #include <sys/uio.h> 36 #include <sys/stat.h> 37 #include <sys/errno.h> 38 #include <sys/cmn_err.h> 39 #include <sys/cred.h> 40 #include <sys/statvfs.h> 41 #include <sys/mount.h> 42 #include <sys/debug.h> 43 #include <sys/systm.h> 44 #include <sys/mntent.h> 45 #include <fs/fs_subr.h> 46 #include <vm/page.h> 47 #include <vm/anon.h> 48 #include <sys/model.h> 49 #include <sys/policy.h> 50 51 #include <sys/fs/swapnode.h> 52 #include <sys/fs/tmp.h> 53 #include <sys/fs/tmpnode.h> 54 55 static int tmpfsfstype; 56 57 /* 58 * tmpfs vfs operations. 59 */ 60 static int tmpfsinit(int, char *); 61 static int tmp_mount(struct vfs *, struct vnode *, 62 struct mounta *, struct cred *); 63 static int tmp_unmount(struct vfs *, int, struct cred *); 64 static int tmp_root(struct vfs *, struct vnode **); 65 static int tmp_statvfs(struct vfs *, struct statvfs64 *); 66 static int tmp_vget(struct vfs *, struct vnode **, struct fid *); 67 68 /* 69 * Loadable module wrapper 70 */ 71 #include <sys/modctl.h> 72 73 static mntopts_t tmpfs_proto_opttbl; 74 75 static vfsdef_t vfw = { 76 VFSDEF_VERSION, 77 "tmpfs", 78 tmpfsinit, 79 VSW_HASPROTO|VSW_STATS|VSW_ZMOUNT, 80 &tmpfs_proto_opttbl 81 }; 82 83 /* 84 * in-kernel mnttab options 85 */ 86 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 87 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 88 89 static mntopt_t tmpfs_options[] = { 90 /* Option name Cancel Opt Arg Flags Data */ 91 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, NULL}, 92 { MNTOPT_NOXATTR, noxattr_cancel, NULL, NULL, NULL}, 93 { "size", NULL, "0", MO_HASVALUE, NULL} 94 }; 95 96 97 static mntopts_t tmpfs_proto_opttbl = { 98 sizeof (tmpfs_options) / sizeof (mntopt_t), 99 tmpfs_options 100 }; 101 102 /* 103 * Module linkage information 104 */ 105 static struct modlfs modlfs = { 106 &mod_fsops, "filesystem for tmpfs", &vfw 107 }; 108 109 static struct modlinkage modlinkage = { 110 MODREV_1, &modlfs, NULL 111 }; 112 113 int 114 _init() 115 { 116 return (mod_install(&modlinkage)); 117 } 118 119 int 120 _fini() 121 { 122 int error; 123 124 error = mod_remove(&modlinkage); 125 if (error) 126 return (error); 127 /* 128 * Tear down the operations vectors 129 */ 130 (void) vfs_freevfsops_by_type(tmpfsfstype); 131 vn_freevnodeops(tmp_vnodeops); 132 return (0); 133 } 134 135 int 136 _info(struct modinfo *modinfop) 137 { 138 return (mod_info(&modlinkage, modinfop)); 139 } 140 141 /* 142 * The following are patchable variables limiting the amount of system 143 * resources tmpfs can use. 144 * 145 * tmpfs_maxkmem limits the amount of kernel kmem_alloc memory 146 * tmpfs can use for it's data structures (e.g. tmpnodes, directory entries) 147 * It is not determined by setting a hard limit but rather as a percentage of 148 * physical memory which is determined when tmpfs is first used in the system. 149 * 150 * tmpfs_minfree is the minimum amount of swap space that tmpfs leaves for 151 * the rest of the system. In other words, if the amount of free swap space 152 * in the system (i.e. anoninfo.ani_free) drops below tmpfs_minfree, tmpfs 153 * anon allocations will fail. 154 * 155 * There is also a per mount limit on the amount of swap space 156 * (tmount.tm_anonmax) settable via a mount option. 157 */ 158 size_t tmpfs_maxkmem = 0; 159 size_t tmpfs_minfree = 0; 160 size_t tmp_kmemspace; /* bytes of kernel heap used by all tmpfs */ 161 162 static major_t tmpfs_major; 163 static minor_t tmpfs_minor; 164 static kmutex_t tmpfs_minor_lock; 165 166 /* 167 * initialize global tmpfs locks and such 168 * called when loading tmpfs module 169 */ 170 static int 171 tmpfsinit(int fstype, char *name) 172 { 173 static const fs_operation_def_t tmp_vfsops_template[] = { 174 VFSNAME_MOUNT, { .vfs_mount = tmp_mount }, 175 VFSNAME_UNMOUNT, { .vfs_unmount = tmp_unmount }, 176 VFSNAME_ROOT, { .vfs_root = tmp_root }, 177 VFSNAME_STATVFS, { .vfs_statvfs = tmp_statvfs }, 178 VFSNAME_VGET, { .vfs_vget = tmp_vget }, 179 NULL, NULL 180 }; 181 int error; 182 extern void tmpfs_hash_init(); 183 184 tmpfs_hash_init(); 185 tmpfsfstype = fstype; 186 ASSERT(tmpfsfstype != 0); 187 188 error = vfs_setfsops(fstype, tmp_vfsops_template, NULL); 189 if (error != 0) { 190 cmn_err(CE_WARN, "tmpfsinit: bad vfs ops template"); 191 return (error); 192 } 193 194 error = vn_make_ops(name, tmp_vnodeops_template, &tmp_vnodeops); 195 if (error != 0) { 196 (void) vfs_freevfsops_by_type(fstype); 197 cmn_err(CE_WARN, "tmpfsinit: bad vnode ops template"); 198 return (error); 199 } 200 201 /* 202 * tmpfs_minfree doesn't need to be some function of configured 203 * swap space since it really is an absolute limit of swap space 204 * which still allows other processes to execute. 205 */ 206 if (tmpfs_minfree == 0) { 207 /* 208 * Set if not patched 209 */ 210 tmpfs_minfree = btopr(TMPMINFREE); 211 } 212 213 /* 214 * The maximum amount of space tmpfs can allocate is 215 * TMPMAXPROCKMEM percent of kernel memory 216 */ 217 if (tmpfs_maxkmem == 0) 218 tmpfs_maxkmem = MAX(PAGESIZE, kmem_maxavail() / TMPMAXFRACKMEM); 219 220 if ((tmpfs_major = getudev()) == (major_t)-1) { 221 cmn_err(CE_WARN, "tmpfsinit: Can't get unique device number."); 222 tmpfs_major = 0; 223 } 224 mutex_init(&tmpfs_minor_lock, NULL, MUTEX_DEFAULT, NULL); 225 return (0); 226 } 227 228 static int 229 tmp_mount( 230 struct vfs *vfsp, 231 struct vnode *mvp, 232 struct mounta *uap, 233 struct cred *cr) 234 { 235 struct tmount *tm = NULL; 236 struct tmpnode *tp; 237 struct pathname dpn; 238 int error; 239 pgcnt_t anonmax; 240 struct vattr rattr; 241 int got_attrs; 242 243 char *sizestr; 244 245 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 246 return (error); 247 248 if (mvp->v_type != VDIR) 249 return (ENOTDIR); 250 251 mutex_enter(&mvp->v_lock); 252 if ((uap->flags & MS_OVERLAY) == 0 && 253 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 254 mutex_exit(&mvp->v_lock); 255 return (EBUSY); 256 } 257 mutex_exit(&mvp->v_lock); 258 259 /* 260 * Having the resource be anything but "swap" doesn't make sense. 261 */ 262 vfs_setresource(vfsp, "swap"); 263 264 /* 265 * now look for options we understand... 266 */ 267 268 /* tmpfs doesn't support read-only mounts */ 269 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 270 error = EINVAL; 271 goto out; 272 } 273 274 /* 275 * tm_anonmax is set according to the mount arguments 276 * if any. Otherwise, it is set to a maximum value. 277 */ 278 if (vfs_optionisset(vfsp, "size", &sizestr)) { 279 if ((error = tmp_convnum(sizestr, &anonmax)) != 0) 280 goto out; 281 } else { 282 anonmax = ULONG_MAX; 283 } 284 285 if (error = pn_get(uap->dir, 286 (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE, &dpn)) 287 goto out; 288 289 if ((tm = tmp_memalloc(sizeof (struct tmount), 0)) == NULL) { 290 pn_free(&dpn); 291 error = ENOMEM; 292 goto out; 293 } 294 295 /* 296 * find an available minor device number for this mount 297 */ 298 mutex_enter(&tmpfs_minor_lock); 299 do { 300 tmpfs_minor = (tmpfs_minor + 1) & L_MAXMIN32; 301 tm->tm_dev = makedevice(tmpfs_major, tmpfs_minor); 302 } while (vfs_devismounted(tm->tm_dev)); 303 mutex_exit(&tmpfs_minor_lock); 304 305 /* 306 * Set but don't bother entering the mutex 307 * (tmount not on mount list yet) 308 */ 309 mutex_init(&tm->tm_contents, NULL, MUTEX_DEFAULT, NULL); 310 mutex_init(&tm->tm_renamelck, NULL, MUTEX_DEFAULT, NULL); 311 312 tm->tm_vfsp = vfsp; 313 tm->tm_anonmax = anonmax; 314 315 vfsp->vfs_data = (caddr_t)tm; 316 vfsp->vfs_fstype = tmpfsfstype; 317 vfsp->vfs_dev = tm->tm_dev; 318 vfsp->vfs_bsize = PAGESIZE; 319 vfsp->vfs_flag |= VFS_NOTRUNC; 320 vfs_make_fsid(&vfsp->vfs_fsid, tm->tm_dev, tmpfsfstype); 321 tm->tm_mntpath = tmp_memalloc(dpn.pn_pathlen + 1, TMP_MUSTHAVE); 322 (void) strcpy(tm->tm_mntpath, dpn.pn_path); 323 324 /* 325 * allocate and initialize root tmpnode structure 326 */ 327 bzero(&rattr, sizeof (struct vattr)); 328 rattr.va_mode = (mode_t)(S_IFDIR | 0777); /* XXX modes */ 329 rattr.va_type = VDIR; 330 rattr.va_rdev = 0; 331 tp = tmp_memalloc(sizeof (struct tmpnode), TMP_MUSTHAVE); 332 tmpnode_init(tm, tp, &rattr, cr); 333 334 /* 335 * Get the mode, uid, and gid from the underlying mount point. 336 */ 337 rattr.va_mask = AT_MODE|AT_UID|AT_GID; /* Hint to getattr */ 338 got_attrs = VOP_GETATTR(mvp, &rattr, 0, cr, NULL); 339 340 rw_enter(&tp->tn_rwlock, RW_WRITER); 341 TNTOV(tp)->v_flag |= VROOT; 342 343 /* 344 * If the getattr succeeded, use its results. Otherwise allow 345 * the previously set hardwired defaults to prevail. 346 */ 347 if (got_attrs == 0) { 348 tp->tn_mode = rattr.va_mode; 349 tp->tn_uid = rattr.va_uid; 350 tp->tn_gid = rattr.va_gid; 351 } 352 353 /* 354 * initialize linked list of tmpnodes so that the back pointer of 355 * the root tmpnode always points to the last one on the list 356 * and the forward pointer of the last node is null 357 */ 358 tp->tn_back = tp; 359 tp->tn_forw = NULL; 360 tp->tn_nlink = 0; 361 tm->tm_rootnode = tp; 362 363 tdirinit(tp, tp); 364 365 rw_exit(&tp->tn_rwlock); 366 367 pn_free(&dpn); 368 error = 0; 369 370 out: 371 if (error == 0) 372 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS); 373 374 return (error); 375 } 376 377 static int 378 tmp_unmount(struct vfs *vfsp, int flag, struct cred *cr) 379 { 380 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 381 struct tmpnode *tnp, *cancel; 382 struct vnode *vp; 383 int error; 384 385 if ((error = secpolicy_fs_unmount(cr, vfsp)) != 0) 386 return (error); 387 388 /* 389 * forced unmount is not supported by this file system 390 * and thus, ENOTSUP, is being returned. 391 */ 392 if (flag & MS_FORCE) 393 return (ENOTSUP); 394 395 mutex_enter(&tm->tm_contents); 396 397 /* 398 * If there are no open files, only the root node should have 399 * a reference count. 400 * With tm_contents held, nothing can be added or removed. 401 * There may be some dirty pages. To prevent fsflush from 402 * disrupting the unmount, put a hold on each node while scanning. 403 * If we find a previously referenced node, undo the holds we have 404 * placed and fail EBUSY. 405 */ 406 tnp = tm->tm_rootnode; 407 if (TNTOV(tnp)->v_count > 1) { 408 mutex_exit(&tm->tm_contents); 409 return (EBUSY); 410 } 411 412 for (tnp = tnp->tn_forw; tnp; tnp = tnp->tn_forw) { 413 if ((vp = TNTOV(tnp))->v_count > 0) { 414 cancel = tm->tm_rootnode->tn_forw; 415 while (cancel != tnp) { 416 vp = TNTOV(cancel); 417 ASSERT(vp->v_count > 0); 418 VN_RELE(vp); 419 cancel = cancel->tn_forw; 420 } 421 mutex_exit(&tm->tm_contents); 422 return (EBUSY); 423 } 424 VN_HOLD(vp); 425 } 426 427 /* 428 * We can drop the mutex now because no one can find this mount 429 */ 430 mutex_exit(&tm->tm_contents); 431 432 /* 433 * Free all kmemalloc'd and anonalloc'd memory associated with 434 * this filesystem. To do this, we go through the file list twice, 435 * once to remove all the directory entries, and then to remove 436 * all the files. We do this because there is useful code in 437 * tmpnode_free which assumes that the directory entry has been 438 * removed before the file. 439 */ 440 /* 441 * Remove all directory entries 442 */ 443 for (tnp = tm->tm_rootnode; tnp; tnp = tnp->tn_forw) { 444 rw_enter(&tnp->tn_rwlock, RW_WRITER); 445 if (tnp->tn_type == VDIR) 446 tdirtrunc(tnp); 447 if (tnp->tn_vnode->v_flag & V_XATTRDIR) { 448 /* 449 * Account for implicit attrdir reference. 450 */ 451 ASSERT(tnp->tn_nlink > 0); 452 DECR_COUNT(&tnp->tn_nlink, &tnp->tn_tlock); 453 } 454 rw_exit(&tnp->tn_rwlock); 455 } 456 457 ASSERT(tm->tm_rootnode); 458 459 /* 460 * All links are gone, v_count is keeping nodes in place. 461 * VN_RELE should make the node disappear, unless somebody 462 * is holding pages against it. Nap and retry until it disappears. 463 * 464 * We re-acquire the lock to prevent others who have a HOLD on 465 * a tmpnode via its pages or anon slots from blowing it away 466 * (in tmp_inactive) while we're trying to get to it here. Once 467 * we have a HOLD on it we know it'll stick around. 468 * 469 */ 470 mutex_enter(&tm->tm_contents); 471 /* 472 * Remove all the files (except the rootnode) backwards. 473 */ 474 while ((tnp = tm->tm_rootnode->tn_back) != tm->tm_rootnode) { 475 mutex_exit(&tm->tm_contents); 476 /* 477 * Inhibit tmp_inactive from touching attribute directory 478 * as all nodes will be released here. 479 * Note we handled the link count in pass 2 above. 480 */ 481 rw_enter(&tnp->tn_rwlock, RW_WRITER); 482 tnp->tn_xattrdp = NULL; 483 rw_exit(&tnp->tn_rwlock); 484 vp = TNTOV(tnp); 485 VN_RELE(vp); 486 mutex_enter(&tm->tm_contents); 487 /* 488 * It's still there after the RELE. Someone else like pageout 489 * has a hold on it so wait a bit and then try again - we know 490 * they'll give it up soon. 491 */ 492 if (tnp == tm->tm_rootnode->tn_back) { 493 VN_HOLD(vp); 494 mutex_exit(&tm->tm_contents); 495 delay(hz / 4); 496 mutex_enter(&tm->tm_contents); 497 } 498 } 499 mutex_exit(&tm->tm_contents); 500 501 tm->tm_rootnode->tn_xattrdp = NULL; 502 VN_RELE(TNTOV(tm->tm_rootnode)); 503 504 ASSERT(tm->tm_mntpath); 505 506 tmp_memfree(tm->tm_mntpath, strlen(tm->tm_mntpath) + 1); 507 508 ASSERT(tm->tm_anonmem == 0); 509 510 mutex_destroy(&tm->tm_contents); 511 mutex_destroy(&tm->tm_renamelck); 512 tmp_memfree(tm, sizeof (struct tmount)); 513 514 return (0); 515 } 516 517 /* 518 * return root tmpnode for given vnode 519 */ 520 static int 521 tmp_root(struct vfs *vfsp, struct vnode **vpp) 522 { 523 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 524 struct tmpnode *tp = tm->tm_rootnode; 525 struct vnode *vp; 526 527 ASSERT(tp); 528 529 vp = TNTOV(tp); 530 VN_HOLD(vp); 531 *vpp = vp; 532 return (0); 533 } 534 535 static int 536 tmp_statvfs(struct vfs *vfsp, struct statvfs64 *sbp) 537 { 538 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 539 ulong_t blocks; 540 dev32_t d32; 541 zoneid_t eff_zid; 542 struct zone *zp; 543 544 /* 545 * The file system may have been mounted by the global zone on 546 * behalf of the non-global zone. In that case, the tmount zone_id 547 * will be the global zone. We still want to show the swap cap inside 548 * the zone in this case, even though the file system was mounted by 549 * the global zone. 550 */ 551 if (curproc->p_zone->zone_id != GLOBAL_ZONEUNIQID) 552 zp = curproc->p_zone; 553 else 554 zp = tm->tm_vfsp->vfs_zone; 555 556 if (zp == NULL) 557 eff_zid = GLOBAL_ZONEUNIQID; 558 else 559 eff_zid = zp->zone_id; 560 561 sbp->f_bsize = PAGESIZE; 562 sbp->f_frsize = PAGESIZE; 563 564 /* 565 * Find the amount of available physical and memory swap 566 */ 567 mutex_enter(&anoninfo_lock); 568 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 569 blocks = (ulong_t)CURRENT_TOTAL_AVAILABLE_SWAP; 570 mutex_exit(&anoninfo_lock); 571 572 /* 573 * If tm_anonmax for this mount is less than the available swap space 574 * (minus the amount tmpfs can't use), use that instead 575 */ 576 if (blocks > tmpfs_minfree) 577 sbp->f_bfree = MIN(blocks - tmpfs_minfree, 578 tm->tm_anonmax - tm->tm_anonmem); 579 else 580 sbp->f_bfree = 0; 581 582 sbp->f_bavail = sbp->f_bfree; 583 584 /* 585 * Total number of blocks is what's available plus what's been used 586 */ 587 sbp->f_blocks = (fsblkcnt64_t)(sbp->f_bfree + tm->tm_anonmem); 588 589 if (eff_zid != GLOBAL_ZONEUNIQID && 590 zp->zone_max_swap_ctl != UINT64_MAX) { 591 /* 592 * If the fs is used by a non-global zone with a swap cap, 593 * then report the capped size. 594 */ 595 rctl_qty_t cap, used; 596 pgcnt_t pgcap, pgused; 597 598 mutex_enter(&zp->zone_mem_lock); 599 cap = zp->zone_max_swap_ctl; 600 used = zp->zone_max_swap; 601 mutex_exit(&zp->zone_mem_lock); 602 603 pgcap = btop(cap); 604 pgused = btop(used); 605 606 sbp->f_bfree = MIN(pgcap - pgused, sbp->f_bfree); 607 sbp->f_bavail = sbp->f_bfree; 608 sbp->f_blocks = MIN(pgcap, sbp->f_blocks); 609 } 610 611 /* 612 * The maximum number of files available is approximately the number 613 * of tmpnodes we can allocate from the remaining kernel memory 614 * available to tmpfs. This is fairly inaccurate since it doesn't 615 * take into account the names stored in the directory entries. 616 */ 617 if (tmpfs_maxkmem > tmp_kmemspace) 618 sbp->f_ffree = (tmpfs_maxkmem - tmp_kmemspace) / 619 (sizeof (struct tmpnode) + sizeof (struct tdirent)); 620 else 621 sbp->f_ffree = 0; 622 623 sbp->f_files = tmpfs_maxkmem / 624 (sizeof (struct tmpnode) + sizeof (struct tdirent)); 625 sbp->f_favail = (fsfilcnt64_t)(sbp->f_ffree); 626 (void) cmpldev(&d32, vfsp->vfs_dev); 627 sbp->f_fsid = d32; 628 (void) strcpy(sbp->f_basetype, vfssw[tmpfsfstype].vsw_name); 629 (void) strncpy(sbp->f_fstr, tm->tm_mntpath, sizeof (sbp->f_fstr)); 630 /* 631 * ensure null termination 632 */ 633 sbp->f_fstr[sizeof (sbp->f_fstr) - 1] = '\0'; 634 sbp->f_flag = vf_to_stf(vfsp->vfs_flag); 635 sbp->f_namemax = MAXNAMELEN - 1; 636 return (0); 637 } 638 639 static int 640 tmp_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp) 641 { 642 struct tfid *tfid; 643 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 644 struct tmpnode *tp = NULL; 645 646 tfid = (struct tfid *)fidp; 647 *vpp = NULL; 648 649 mutex_enter(&tm->tm_contents); 650 for (tp = tm->tm_rootnode; tp; tp = tp->tn_forw) { 651 mutex_enter(&tp->tn_tlock); 652 if (tp->tn_nodeid == tfid->tfid_ino) { 653 /* 654 * If the gen numbers don't match we know the 655 * file won't be found since only one tmpnode 656 * can have this number at a time. 657 */ 658 if (tp->tn_gen != tfid->tfid_gen || tp->tn_nlink == 0) { 659 mutex_exit(&tp->tn_tlock); 660 mutex_exit(&tm->tm_contents); 661 return (0); 662 } 663 *vpp = (struct vnode *)TNTOV(tp); 664 665 VN_HOLD(*vpp); 666 667 if ((tp->tn_mode & S_ISVTX) && 668 !(tp->tn_mode & (S_IXUSR | S_IFDIR))) { 669 mutex_enter(&(*vpp)->v_lock); 670 (*vpp)->v_flag |= VISSWAP; 671 mutex_exit(&(*vpp)->v_lock); 672 } 673 mutex_exit(&tp->tn_tlock); 674 mutex_exit(&tm->tm_contents); 675 return (0); 676 } 677 mutex_exit(&tp->tn_tlock); 678 } 679 mutex_exit(&tm->tm_contents); 680 return (0); 681 } 682