1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29 
30 /*
31  * Portions of this source code were derived from Berkeley 4.3 BSD
32  * under license from the Regents of the University of California.
33  */
34 
35 #pragma ident	"%Z%%M%	%I%	%E% SMI"
36 
37 #include <sys/types.h>
38 #include <sys/t_lock.h>
39 #include <sys/param.h>
40 #include <sys/time.h>
41 #include <sys/systm.h>
42 #include <sys/sysmacros.h>
43 #include <sys/resource.h>
44 #include <sys/signal.h>
45 #include <sys/cred.h>
46 #include <sys/user.h>
47 #include <sys/buf.h>
48 #include <sys/vfs.h>
49 #include <sys/vnode.h>
50 #include <sys/proc.h>
51 #include <sys/disp.h>
52 #include <sys/file.h>
53 #include <sys/fcntl.h>
54 #include <sys/flock.h>
55 #include <sys/kmem.h>
56 #include <sys/uio.h>
57 #include <sys/dnlc.h>
58 #include <sys/conf.h>
59 #include <sys/mman.h>
60 #include <sys/pathname.h>
61 #include <sys/debug.h>
62 #include <sys/vmsystm.h>
63 #include <sys/cmn_err.h>
64 #include <sys/vtrace.h>
65 #include <sys/filio.h>
66 #include <sys/atomic.h>
67 
68 #include <sys/fssnap_if.h>
69 #include <sys/fs/ufs_fs.h>
70 #include <sys/fs/ufs_lockfs.h>
71 #include <sys/fs/ufs_filio.h>
72 #include <sys/fs/ufs_inode.h>
73 #include <sys/fs/ufs_fsdir.h>
74 #include <sys/fs/ufs_quota.h>
75 #include <sys/fs/ufs_trans.h>
76 #include <sys/fs/ufs_panic.h>
77 #include <sys/dirent.h>		/* must be AFTER <sys/fs/fsdir.h>! */
78 #include <sys/errno.h>
79 
80 #include <sys/filio.h>		/* _FIOIO */
81 
82 #include <vm/hat.h>
83 #include <vm/page.h>
84 #include <vm/pvn.h>
85 #include <vm/as.h>
86 #include <vm/seg.h>
87 #include <vm/seg_map.h>
88 #include <vm/seg_vn.h>
89 #include <vm/seg_kmem.h>
90 #include <vm/rm.h>
91 #include <sys/swap.h>
92 #include <sys/epm.h>
93 
94 #include <fs/fs_subr.h>
95 
96 static void	*ufs_directio_zero_buf;
97 static int	ufs_directio_zero_len	= 8192;
98 
99 int	ufs_directio_enabled = 1;	/* feature is enabled */
100 
101 /*
102  * for kstats reader
103  */
104 struct ufs_directio_kstats {
105 	uint_t	logical_reads;
106 	uint_t	phys_reads;
107 	uint_t	hole_reads;
108 	uint_t	nread;
109 	uint_t	logical_writes;
110 	uint_t	phys_writes;
111 	uint_t	nwritten;
112 	uint_t	nflushes;
113 } ufs_directio_kstats;
114 
115 kstat_t	*ufs_directio_kstatsp;
116 
117 /*
118  * use kmem_cache_create for direct-physio buffers. This has shown
119  * a better cache distribution compared to buffers on the
120  * stack. It also avoids semaphore construction/deconstruction
121  * per request
122  */
123 struct directio_buf {
124 	struct directio_buf	*next;
125 	char		*addr;
126 	size_t		nbytes;
127 	struct buf	buf;
128 };
129 static struct kmem_cache *directio_buf_cache;
130 
131 
132 /* ARGSUSED */
133 static int
134 directio_buf_constructor(void *dbp, void *cdrarg, int kmflags)
135 {
136 	bioinit((struct buf *)&((struct directio_buf *)dbp)->buf);
137 	return (0);
138 }
139 
140 /* ARGSUSED */
141 static void
142 directio_buf_destructor(void *dbp, void *cdrarg)
143 {
144 	biofini((struct buf *)&((struct directio_buf *)dbp)->buf);
145 }
146 
147 void
148 directio_bufs_init(void)
149 {
150 	directio_buf_cache = kmem_cache_create("directio_buf_cache",
151 		sizeof (struct directio_buf), 0,
152 		directio_buf_constructor, directio_buf_destructor,
153 		NULL, NULL, NULL, 0);
154 }
155 
156 void
157 ufs_directio_init(void)
158 {
159 	/*
160 	 * kstats
161 	 */
162 	ufs_directio_kstatsp = kstat_create("ufs directio", 0,
163 			"UFS DirectIO Stats", "ufs directio",
164 			KSTAT_TYPE_RAW, sizeof (ufs_directio_kstats),
165 			KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE);
166 	if (ufs_directio_kstatsp) {
167 		ufs_directio_kstatsp->ks_data = (void *)&ufs_directio_kstats;
168 		kstat_install(ufs_directio_kstatsp);
169 	}
170 	/*
171 	 * kzero is broken so we have to use a private buf of zeroes
172 	 */
173 	ufs_directio_zero_buf = kmem_zalloc(ufs_directio_zero_len, KM_SLEEP);
174 	directio_bufs_init();
175 }
176 
177 /*
178  * Wait for the first direct IO operation to finish
179  */
180 static int
181 directio_wait_one(struct directio_buf *dbp, long *bytes_iop)
182 {
183 	buf_t	*bp;
184 	int	error;
185 
186 	/*
187 	 * Wait for IO to finish
188 	 */
189 	bp = &dbp->buf;
190 	error = biowait(bp);
191 
192 	/*
193 	 * bytes_io will be used to figure out a resid
194 	 * for the caller. The resid is approximated by reporting
195 	 * the bytes following the first failed IO as the residual.
196 	 *
197 	 * I am cautious about using b_resid because I
198 	 * am not sure how well the disk drivers maintain it.
199 	 */
200 	if (error)
201 		if (bp->b_resid)
202 			*bytes_iop = bp->b_bcount - bp->b_resid;
203 		else
204 			*bytes_iop = 0;
205 	else
206 		*bytes_iop += bp->b_bcount;
207 	/*
208 	 * Release direct IO resources
209 	 */
210 	bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_SHADOW);
211 	kmem_cache_free(directio_buf_cache, dbp);
212 	return (error);
213 }
214 
215 /*
216  * Wait for all of the direct IO operations to finish
217  */
218 
219 uint32_t	ufs_directio_drop_kpri = 0;	/* enable kpri hack */
220 
221 static int
222 directio_wait(struct directio_buf *tail, long *bytes_iop)
223 {
224 	int	error = 0, newerror;
225 	struct directio_buf	*dbp;
226 	uint_t	kpri_req_save;
227 
228 	/*
229 	 * The linked list of directio buf structures is maintained
230 	 * in reverse order (tail->last request->penultimate request->...)
231 	 */
232 	/*
233 	 * This is the k_pri_req hack. Large numbers of threads
234 	 * sleeping with kernel priority will cause scheduler thrashing
235 	 * on an MP machine. This can be seen running Oracle using
236 	 * directio to ufs files. Sleep at normal priority here to
237 	 * more closely mimic physio to a device partition. This
238 	 * workaround is disabled by default as a niced thread could
239 	 * be starved from running while holding i_rwlock and i_contents.
240 	 */
241 	if (ufs_directio_drop_kpri) {
242 		kpri_req_save = curthread->t_kpri_req;
243 		curthread->t_kpri_req = 0;
244 	}
245 	while ((dbp = tail) != NULL) {
246 		tail = dbp->next;
247 		newerror = directio_wait_one(dbp, bytes_iop);
248 		if (error == 0)
249 			error = newerror;
250 	}
251 	if (ufs_directio_drop_kpri)
252 		curthread->t_kpri_req = kpri_req_save;
253 	return (error);
254 }
255 /*
256  * Initiate direct IO request
257  */
258 static void
259 directio_start(struct ufsvfs *ufsvfsp, dev_t dev, size_t nbytes,
260 	offset_t offset, char *addr, enum seg_rw rw, struct proc *procp,
261 	struct directio_buf **tailp, page_t **pplist)
262 {
263 	buf_t *bp;
264 	struct directio_buf *dbp;
265 
266 	/*
267 	 * Allocate a directio buf header
268 	 *   Note - list is maintained in reverse order.
269 	 *   directio_wait_one() depends on this fact when
270 	 *   adjusting the ``bytes_io'' param. bytes_io
271 	 *   is used to compute a residual in the case of error.
272 	 */
273 	dbp = kmem_cache_alloc(directio_buf_cache, KM_SLEEP);
274 	dbp->next = *tailp;
275 	*tailp = dbp;
276 
277 	/*
278 	 * Initialize buf header
279 	 */
280 	dbp->addr = addr;
281 	dbp->nbytes = nbytes;
282 	bp = &dbp->buf;
283 	bp->b_edev = dev;
284 	bp->b_lblkno = btodt(offset);
285 	bp->b_bcount = nbytes;
286 	bp->b_un.b_addr = addr;
287 	bp->b_proc = procp;
288 
289 	/*
290 	 * Note that S_WRITE implies B_READ and vice versa: a read(2)
291 	 * will B_READ data from the filesystem and S_WRITE it into
292 	 * the user's buffer; a write(2) will S_READ data from the
293 	 * user's buffer and B_WRITE it to the filesystem.
294 	 */
295 	if (rw == S_WRITE) {
296 		bp->b_flags = B_BUSY | B_PHYS | B_READ;
297 		ufs_directio_kstats.phys_reads++;
298 		ufs_directio_kstats.nread += nbytes;
299 	} else {
300 		bp->b_flags = B_BUSY | B_PHYS | B_WRITE;
301 		ufs_directio_kstats.phys_writes++;
302 		ufs_directio_kstats.nwritten += nbytes;
303 	}
304 	bp->b_shadow = pplist;
305 	if (pplist != NULL)
306 		bp->b_flags |= B_SHADOW;
307 
308 	/*
309 	 * Issue I/O request.
310 	 */
311 	ufsvfsp->vfs_iotstamp = lbolt;
312 	if (ufsvfsp->vfs_snapshot)
313 		fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
314 	else
315 		(void) bdev_strategy(bp);
316 
317 	if (rw == S_WRITE)
318 		lwp_stat_update(LWP_STAT_OUBLK, 1);
319 	else
320 		lwp_stat_update(LWP_STAT_INBLK, 1);
321 
322 }
323 
324 uint32_t	ufs_shared_writes;	/* writes done w/ lock shared */
325 uint32_t	ufs_cur_writes;		/* # concurrent writes */
326 uint32_t	ufs_maxcur_writes;	/* high water concurrent writes */
327 uint32_t	ufs_posix_hits;		/* writes done /w lock excl. */
328 
329 /*
330  * Force POSIX syncronous data integrity on all writes for testing.
331  */
332 uint32_t	ufs_force_posix_sdi = 0;
333 
334 /*
335  * Direct Write
336  */
337 
338 int
339 ufs_directio_write(struct inode *ip, uio_t *arg_uio, int ioflag, int rewrite,
340 	cred_t *cr, int *statusp)
341 {
342 	long		resid, bytes_written;
343 	u_offset_t	size, uoff;
344 	uio_t		*uio = arg_uio;
345 	rlim64_t	limit = uio->uio_llimit;
346 	int		on, n, error, newerror, len, has_holes;
347 	daddr_t		bn;
348 	size_t		nbytes;
349 	struct fs	*fs;
350 	vnode_t		*vp;
351 	iovec_t		*iov;
352 	struct ufsvfs	*ufsvfsp = ip->i_ufsvfs;
353 	struct proc	*procp;
354 	struct as	*as;
355 	struct directio_buf	*tail;
356 	int		exclusive, ncur, bmap_peek;
357 	uio_t		copy_uio;
358 	iovec_t		copy_iov;
359 	char		*copy_base;
360 	long		copy_resid;
361 
362 	/*
363 	 * assume that directio isn't possible (normal case)
364 	 */
365 	*statusp = DIRECTIO_FAILURE;
366 
367 	/*
368 	 * Don't go direct
369 	 */
370 	if (ufs_directio_enabled == 0)
371 		return (0);
372 
373 	/*
374 	 * mapped file; nevermind
375 	 */
376 	if (ip->i_mapcnt)
377 		return (0);
378 
379 	/*
380 	 * CAN WE DO DIRECT IO?
381 	 */
382 	uoff = uio->uio_loffset;
383 	resid = uio->uio_resid;
384 
385 	/*
386 	 * beyond limit
387 	 */
388 	if (uoff + resid > limit)
389 		return (0);
390 
391 	/*
392 	 * must be sector aligned
393 	 */
394 	if ((uoff & (u_offset_t)(DEV_BSIZE - 1)) || (resid & (DEV_BSIZE - 1)))
395 		return (0);
396 
397 	/*
398 	 * SHOULD WE DO DIRECT IO?
399 	 */
400 	size = ip->i_size;
401 	has_holes = -1;
402 
403 	/*
404 	 * only on regular files; no metadata
405 	 */
406 	if (((ip->i_mode & IFMT) != IFREG) || ip->i_ufsvfs->vfs_qinod == ip)
407 		return (0);
408 
409 	/*
410 	 * Synchronous, allocating writes run very slow in Direct-Mode
411 	 * 	XXX - can be fixed with bmap_write changes for large writes!!!
412 	 *	XXX - can be fixed for updates to "almost-full" files
413 	 *	XXX - WARNING - system hangs if bmap_write() has to
414 	 * 			allocate lots of pages since pageout
415 	 * 			suspends on locked inode
416 	 */
417 	if (!rewrite && (ip->i_flag & ISYNC)) {
418 		if ((uoff + resid) > size)
419 			return (0);
420 		has_holes = bmap_has_holes(ip);
421 		if (has_holes)
422 			return (0);
423 	}
424 
425 	/*
426 	 * Each iovec must be short aligned and sector aligned.  If
427 	 * one is not, then kmem_alloc a new buffer and copy all of
428 	 * the smaller buffers into the new buffer.  This new
429 	 * buffer will be short aligned and sector aligned.
430 	 */
431 	iov = uio->uio_iov;
432 	nbytes = uio->uio_iovcnt;
433 	while (nbytes--) {
434 		if (((uint_t)iov->iov_len & (DEV_BSIZE - 1)) != 0 ||
435 		    (intptr_t)(iov->iov_base) & 1) {
436 			copy_resid = uio->uio_resid;
437 			copy_base = kmem_alloc(copy_resid, KM_NOSLEEP);
438 			if (copy_base == NULL)
439 				return (0);
440 			copy_iov.iov_base = copy_base;
441 			copy_iov.iov_len = copy_resid;
442 			copy_uio.uio_iov = &copy_iov;
443 			copy_uio.uio_iovcnt = 1;
444 			copy_uio.uio_segflg = UIO_SYSSPACE;
445 			copy_uio.uio_extflg = UIO_COPY_DEFAULT;
446 			copy_uio.uio_loffset = uio->uio_loffset;
447 			copy_uio.uio_resid = uio->uio_resid;
448 			copy_uio.uio_llimit = uio->uio_llimit;
449 			error = uiomove(copy_base, copy_resid, UIO_WRITE, uio);
450 			if (error) {
451 				kmem_free(copy_base, copy_resid);
452 				return (0);
453 			}
454 			uio = &copy_uio;
455 			break;
456 		}
457 		iov++;
458 	}
459 
460 	/*
461 	 * From here on down, all error exits must go to errout and
462 	 * not simply return a 0.
463 	 */
464 
465 	/*
466 	 * DIRECTIO
467 	 */
468 
469 	fs = ip->i_fs;
470 
471 	/*
472 	 * POSIX check. If attempting a concurrent re-write, make sure
473 	 * that this will be a single request to the driver to meet
474 	 * POSIX synchronous data integrity requirements.
475 	 */
476 	bmap_peek = 0;
477 	if (rewrite && ((ioflag & FDSYNC) || ufs_force_posix_sdi)) {
478 		int upgrade = 0;
479 
480 		/* check easy conditions first */
481 		if (uio->uio_iovcnt != 1 || resid > ufsvfsp->vfs_ioclustsz) {
482 			upgrade = 1;
483 		} else {
484 			/* now look for contiguous allocation */
485 			len = (ssize_t)blkroundup(fs, resid);
486 			error = bmap_read(ip, uoff, &bn, &len);
487 			if (error || bn == UFS_HOLE || len == 0)
488 				goto errout;
489 			/* save a call to bmap_read later */
490 			bmap_peek = 1;
491 			if (len < resid)
492 				upgrade = 1;
493 		}
494 		if (upgrade) {
495 			rw_exit(&ip->i_contents);
496 			rw_enter(&ip->i_contents, RW_WRITER);
497 			ufs_posix_hits++;
498 		}
499 	}
500 
501 
502 	/*
503 	 * allocate space
504 	 */
505 
506 	/*
507 	 * If attempting a re-write, there is no allocation to do.
508 	 * bmap_write would trip an ASSERT if i_contents is held shared.
509 	 */
510 	if (rewrite)
511 		goto skip_alloc;
512 
513 	do {
514 		on = (int)blkoff(fs, uoff);
515 		n = (int)MIN(fs->fs_bsize - on, resid);
516 		if ((uoff + n) > ip->i_size) {
517 			error = bmap_write(ip, uoff, (int)(on + n),
518 				    (int)(uoff & (offset_t)MAXBOFFSET) == 0,
519 			    cr);
520 			/* Caller is responsible for updating i_seq if needed */
521 			if (error)
522 				break;
523 			ip->i_size = uoff + n;
524 			ip->i_flag |= IATTCHG;
525 		} else if (n == MAXBSIZE) {
526 			error = bmap_write(ip, uoff, (int)(on + n), 1, cr);
527 			/* Caller is responsible for updating i_seq if needed */
528 		} else {
529 			if (has_holes < 0)
530 				has_holes = bmap_has_holes(ip);
531 			if (has_holes) {
532 				uint_t	blk_size;
533 				u_offset_t offset;
534 
535 				offset = uoff & (offset_t)fs->fs_bmask;
536 				blk_size = (int)blksize(fs, ip,
537 				    (daddr_t)lblkno(fs, offset));
538 				error = bmap_write(ip, uoff, blk_size, 0, cr);
539 				/*
540 				 * Caller is responsible for updating
541 				 * i_seq if needed
542 				 */
543 			} else
544 				error = 0;
545 		}
546 		if (error)
547 			break;
548 		uoff += n;
549 		resid -= n;
550 		/*
551 		 * if file has grown larger than 2GB, set flag
552 		 * in superblock if not already set
553 		 */
554 		if ((ip->i_size > MAXOFF32_T) &&
555 		    !(fs->fs_flags & FSLARGEFILES)) {
556 			ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
557 			mutex_enter(&ufsvfsp->vfs_lock);
558 			fs->fs_flags |= FSLARGEFILES;
559 			ufs_sbwrite(ufsvfsp);
560 			mutex_exit(&ufsvfsp->vfs_lock);
561 		}
562 	} while (resid);
563 
564 	if (error) {
565 		/*
566 		 * restore original state
567 		 */
568 		if (resid) {
569 			if (size == ip->i_size)
570 				goto errout;
571 			(void) ufs_itrunc(ip, size, 0, cr);
572 		}
573 		/*
574 		 * try non-directio path
575 		 */
576 		goto errout;
577 	}
578 skip_alloc:
579 
580 	/*
581 	 * get rid of cached pages
582 	 */
583 	vp = ITOV(ip);
584 	exclusive = rw_write_held(&ip->i_contents);
585 	if (vn_has_cached_data(vp)) {
586 		if (!exclusive) {
587 			/*
588 			 * Still holding i_rwlock, so no allocations
589 			 * can happen after dropping contents.
590 			 */
591 			rw_exit(&ip->i_contents);
592 			rw_enter(&ip->i_contents, RW_WRITER);
593 		}
594 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL, cr);
595 		if (vn_has_cached_data(vp))
596 			goto errout;
597 		if (!exclusive)
598 			rw_downgrade(&ip->i_contents);
599 		ufs_directio_kstats.nflushes++;
600 	}
601 
602 	/*
603 	 * Direct Writes
604 	 */
605 
606 	if (!exclusive) {
607 		ufs_shared_writes++;
608 		ncur = atomic_add_32_nv(&ufs_cur_writes, 1);
609 		if (ncur > ufs_maxcur_writes)
610 			ufs_maxcur_writes = ncur;
611 	}
612 
613 	/*
614 	 * proc and as are for VM operations in directio_start()
615 	 */
616 	if (uio->uio_segflg == UIO_USERSPACE) {
617 		procp = ttoproc(curthread);
618 		as = procp->p_as;
619 	} else {
620 		procp = NULL;
621 		as = &kas;
622 	}
623 	*statusp = DIRECTIO_SUCCESS;
624 	error = 0;
625 	newerror = 0;
626 	resid = uio->uio_resid;
627 	bytes_written = 0;
628 	ufs_directio_kstats.logical_writes++;
629 	while (error == 0 && newerror == 0 && resid && uio->uio_iovcnt) {
630 		size_t pglck_len, pglck_size;
631 		caddr_t pglck_base;
632 		page_t **pplist, **spplist;
633 
634 		tail = NULL;
635 
636 		/*
637 		 * Adjust number of bytes
638 		 */
639 		iov = uio->uio_iov;
640 		pglck_len = (size_t)MIN(iov->iov_len, resid);
641 		pglck_base = iov->iov_base;
642 		if (pglck_len == 0) {
643 			uio->uio_iov++;
644 			uio->uio_iovcnt--;
645 			continue;
646 		}
647 
648 		/*
649 		 * Try to Lock down the largest chunck of pages possible.
650 		 */
651 		pglck_len = (size_t)MIN(pglck_len,  ufsvfsp->vfs_ioclustsz);
652 		error = as_pagelock(as, &pplist, pglck_base, pglck_len, S_READ);
653 
654 		if (error)
655 			break;
656 
657 		pglck_size = pglck_len;
658 		while (pglck_len) {
659 
660 			nbytes = pglck_len;
661 			uoff = uio->uio_loffset;
662 
663 			if (!bmap_peek) {
664 
665 				/*
666 				 * Re-adjust number of bytes to contiguous
667 				 * range. May have already called bmap_read
668 				 * in the case of a concurrent rewrite.
669 				 */
670 				len = (ssize_t)blkroundup(fs, nbytes);
671 				error = bmap_read(ip, uoff, &bn, &len);
672 				if (error)
673 					break;
674 				if (bn == UFS_HOLE || len == 0)
675 					break;
676 			}
677 			nbytes = (size_t)MIN(nbytes, len);
678 			bmap_peek = 0;
679 
680 			/*
681 			 * Get the pagelist pointer for this offset to be
682 			 * passed to directio_start.
683 			 */
684 
685 			if (pplist != NULL)
686 				spplist = pplist +
687 				btop((uintptr_t)iov->iov_base -
688 					((uintptr_t)pglck_base & PAGEMASK));
689 			else
690 				spplist = NULL;
691 
692 			/*
693 			 * Kick off the direct write requests
694 			 */
695 			directio_start(ufsvfsp, ip->i_dev, nbytes, ldbtob(bn),
696 				iov->iov_base, S_READ, procp, &tail, spplist);
697 
698 			/*
699 			 * Adjust pointers and counters
700 			 */
701 			iov->iov_len -= nbytes;
702 			iov->iov_base += nbytes;
703 			uio->uio_loffset += nbytes;
704 			resid -= nbytes;
705 			pglck_len -= nbytes;
706 		}
707 
708 		/*
709 		 * Wait for outstanding requests
710 		 */
711 		newerror = directio_wait(tail, &bytes_written);
712 
713 		/*
714 		 * Release VM resources
715 		 */
716 		as_pageunlock(as, pplist, pglck_base, pglck_size, S_READ);
717 
718 	}
719 
720 	if (!exclusive) {
721 		atomic_add_32(&ufs_cur_writes, -1);
722 		/*
723 		 * If this write was done shared, readers may
724 		 * have pulled in unmodified pages. Get rid of
725 		 * these potentially stale pages.
726 		 */
727 		if (vn_has_cached_data(vp)) {
728 			rw_exit(&ip->i_contents);
729 			rw_enter(&ip->i_contents, RW_WRITER);
730 			(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0,
731 				B_INVAL, cr);
732 			ufs_directio_kstats.nflushes++;
733 			rw_downgrade(&ip->i_contents);
734 		}
735 	}
736 
737 	/*
738 	 * If error, adjust resid to begin at the first
739 	 * un-writable byte.
740 	 */
741 	if (error == 0)
742 		error = newerror;
743 	if (error)
744 		resid = uio->uio_resid - bytes_written;
745 	arg_uio->uio_resid = resid;
746 
747 	if (!rewrite) {
748 		ip->i_flag |= IUPD | ICHG;
749 		/* Caller will update i_seq */
750 		TRANS_INODE(ip->i_ufsvfs, ip);
751 	}
752 	/*
753 	 * If there is a residual; adjust the EOF if necessary
754 	 */
755 	if (resid) {
756 		if (size != ip->i_size) {
757 			if (uio->uio_loffset > size)
758 				size = uio->uio_loffset;
759 			(void) ufs_itrunc(ip, size, 0, cr);
760 		}
761 	}
762 
763 	if (uio == &copy_uio)
764 		kmem_free(copy_base, copy_resid);
765 
766 	return (error);
767 
768 errout:
769 	if (uio == &copy_uio)
770 		kmem_free(copy_base, copy_resid);
771 
772 	return (0);
773 }
774 /*
775  * Direct read of a hole
776  */
777 static int
778 directio_hole(struct uio *uio, size_t nbytes)
779 {
780 	int		error = 0, nzero;
781 	uio_t		phys_uio;
782 	iovec_t		phys_iov;
783 
784 	ufs_directio_kstats.hole_reads++;
785 	ufs_directio_kstats.nread += nbytes;
786 
787 	phys_iov.iov_base = uio->uio_iov->iov_base;
788 	phys_iov.iov_len = nbytes;
789 
790 	phys_uio.uio_iov = &phys_iov;
791 	phys_uio.uio_iovcnt = 1;
792 	phys_uio.uio_resid = phys_iov.iov_len;
793 	phys_uio.uio_segflg = uio->uio_segflg;
794 	phys_uio.uio_extflg = uio->uio_extflg;
795 	while (error == 0 && phys_uio.uio_resid) {
796 		nzero = (int)MIN(phys_iov.iov_len, ufs_directio_zero_len);
797 		error = uiomove(ufs_directio_zero_buf, nzero, UIO_READ,
798 				&phys_uio);
799 	}
800 	return (error);
801 }
802 
803 /*
804  * Direct Read
805  */
806 int
807 ufs_directio_read(struct inode *ip, uio_t *uio, cred_t *cr, int *statusp)
808 {
809 	ssize_t		resid, bytes_read;
810 	u_offset_t	size, uoff;
811 	int		error, newerror, len;
812 	size_t		nbytes;
813 	struct fs	*fs;
814 	vnode_t		*vp;
815 	daddr_t		bn;
816 	iovec_t		*iov;
817 	struct ufsvfs	*ufsvfsp = ip->i_ufsvfs;
818 	struct proc	*procp;
819 	struct as	*as;
820 	struct directio_buf	*tail;
821 
822 	/*
823 	 * assume that directio isn't possible (normal case)
824 	 */
825 	*statusp = DIRECTIO_FAILURE;
826 
827 	/*
828 	 * Don't go direct
829 	 */
830 	if (ufs_directio_enabled == 0)
831 		return (0);
832 
833 	/*
834 	 * mapped file; nevermind
835 	 */
836 	if (ip->i_mapcnt)
837 		return (0);
838 
839 	/*
840 	 * CAN WE DO DIRECT IO?
841 	 */
842 	/*
843 	 * must be sector aligned
844 	 */
845 	uoff = uio->uio_loffset;
846 	resid = uio->uio_resid;
847 	if ((uoff & (u_offset_t)(DEV_BSIZE - 1)) || (resid & (DEV_BSIZE - 1)))
848 		return (0);
849 	/*
850 	 * must be short aligned and sector aligned
851 	 */
852 	iov = uio->uio_iov;
853 	nbytes = uio->uio_iovcnt;
854 	while (nbytes--) {
855 		if (((size_t)iov->iov_len & (DEV_BSIZE - 1)) != 0)
856 			return (0);
857 		if ((intptr_t)(iov++->iov_base) & 1)
858 			return (0);
859 	}
860 
861 	/*
862 	 * DIRECTIO
863 	 */
864 	fs = ip->i_fs;
865 
866 	/*
867 	 * don't read past EOF
868 	 */
869 	size = ip->i_size;
870 
871 	/*
872 	 * The file offset is past EOF so bail out here; we don't want
873 	 * to update uio_resid and make it look like we read something.
874 	 * We say that direct I/O was a success to avoid having rdip()
875 	 * go through the same "read past EOF logic".
876 	 */
877 	if (uoff >= size) {
878 		*statusp = DIRECTIO_SUCCESS;
879 		return (0);
880 	}
881 
882 	/*
883 	 * The read would extend past EOF so make it smaller.
884 	 */
885 	if ((uoff + resid) > size) {
886 		resid = size - uoff;
887 		/*
888 		 * recheck sector alignment
889 		 */
890 		if (resid & (DEV_BSIZE - 1))
891 			return (0);
892 	}
893 
894 	/*
895 	 * At this point, we know there is some real work to do.
896 	 */
897 	ASSERT(resid);
898 
899 	/*
900 	 * get rid of cached pages
901 	 */
902 	vp = ITOV(ip);
903 	if (vn_has_cached_data(vp)) {
904 		rw_exit(&ip->i_contents);
905 		rw_enter(&ip->i_contents, RW_WRITER);
906 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL, cr);
907 		if (vn_has_cached_data(vp))
908 			return (0);
909 		rw_downgrade(&ip->i_contents);
910 		ufs_directio_kstats.nflushes++;
911 	}
912 	/*
913 	 * Direct Reads
914 	 */
915 
916 	/*
917 	 * proc and as are for VM operations in directio_start()
918 	 */
919 	if (uio->uio_segflg == UIO_USERSPACE) {
920 		procp = ttoproc(curthread);
921 		as = procp->p_as;
922 	} else {
923 		procp = NULL;
924 		as = &kas;
925 	}
926 
927 	*statusp = DIRECTIO_SUCCESS;
928 	error = 0;
929 	newerror = 0;
930 	bytes_read = 0;
931 	ufs_directio_kstats.logical_reads++;
932 	while (error == 0 && newerror == 0 && resid && uio->uio_iovcnt) {
933 		size_t pglck_len, pglck_size;
934 		caddr_t pglck_base;
935 		page_t **pplist, **spplist;
936 
937 		tail = NULL;
938 
939 		/*
940 		 * Adjust number of bytes
941 		 */
942 		iov = uio->uio_iov;
943 		pglck_len = (size_t)MIN(iov->iov_len, resid);
944 		pglck_base = iov->iov_base;
945 		if (pglck_len == 0) {
946 			uio->uio_iov++;
947 			uio->uio_iovcnt--;
948 			continue;
949 		}
950 
951 		/*
952 		 * Try to Lock down the largest chunck of pages possible.
953 		 */
954 		pglck_len = (size_t)MIN(pglck_len,  ufsvfsp->vfs_ioclustsz);
955 		error = as_pagelock(as, &pplist, pglck_base,
956 							pglck_len, S_WRITE);
957 
958 		if (error)
959 			break;
960 
961 		pglck_size = pglck_len;
962 		while (pglck_len) {
963 
964 			nbytes = pglck_len;
965 			uoff = uio->uio_loffset;
966 
967 			/*
968 			 * Re-adjust number of bytes to contiguous range
969 			 */
970 			len = (ssize_t)blkroundup(fs, nbytes);
971 			error = bmap_read(ip, uoff, &bn, &len);
972 			if (error)
973 				break;
974 
975 			if (bn == UFS_HOLE) {
976 				nbytes = (size_t)MIN(fs->fs_bsize -
977 						(long)blkoff(fs, uoff), nbytes);
978 				error = directio_hole(uio, nbytes);
979 				/*
980 				 * Hole reads are not added to the list
981 				 * processed by directio_wait() below so
982 				 * account for bytes read here.
983 				 */
984 				if (!error)
985 					bytes_read += nbytes;
986 			} else {
987 				nbytes = (size_t)MIN(nbytes, len);
988 
989 				/*
990 				 * Get the pagelist pointer for this offset
991 				 * to be passed to directio_start.
992 				 */
993 				if (pplist != NULL)
994 					spplist = pplist +
995 					btop((uintptr_t)iov->iov_base -
996 					((uintptr_t)pglck_base & PAGEMASK));
997 				else
998 					spplist = NULL;
999 
1000 				/*
1001 				 * Kick off the direct read requests
1002 				 */
1003 				directio_start(ufsvfsp, ip->i_dev, nbytes,
1004 						ldbtob(bn), iov->iov_base,
1005 						S_WRITE, procp, &tail, spplist);
1006 			}
1007 
1008 			if (error)
1009 				break;
1010 
1011 			/*
1012 			 * Adjust pointers and counters
1013 			 */
1014 			iov->iov_len -= nbytes;
1015 			iov->iov_base += nbytes;
1016 			uio->uio_loffset += nbytes;
1017 			resid -= nbytes;
1018 			pglck_len -= nbytes;
1019 		}
1020 
1021 		/*
1022 		 * Wait for outstanding requests
1023 		 */
1024 		newerror = directio_wait(tail, &bytes_read);
1025 		/*
1026 		 * Release VM resources
1027 		 */
1028 		as_pageunlock(as, pplist, pglck_base, pglck_size, S_WRITE);
1029 
1030 	}
1031 
1032 	/*
1033 	 * If error, adjust resid to begin at the first
1034 	 * un-read byte.
1035 	 */
1036 	if (error == 0)
1037 		error = newerror;
1038 	uio->uio_resid -= bytes_read;
1039 	return (error);
1040 }
1041