xref: /illumos-gate/usr/src/uts/common/fs/ufs/ufs_inode.c (revision d362b749)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/uio.h>
47 #include <sys/bitmap.h>
48 #include <sys/signal.h>
49 #include <sys/cred.h>
50 #include <sys/user.h>
51 #include <sys/vfs.h>
52 #include <sys/stat.h>
53 #include <sys/vnode.h>
54 #include <sys/buf.h>
55 #include <sys/proc.h>
56 #include <sys/disp.h>
57 #include <sys/dnlc.h>
58 #include <sys/mode.h>
59 #include <sys/cmn_err.h>
60 #include <sys/kstat.h>
61 #include <sys/acl.h>
62 #include <sys/var.h>
63 #include <sys/fs/ufs_inode.h>
64 #include <sys/fs/ufs_fs.h>
65 #include <sys/fs/ufs_trans.h>
66 #include <sys/fs/ufs_acl.h>
67 #include <sys/fs/ufs_bio.h>
68 #include <sys/fs/ufs_quota.h>
69 #include <sys/fs/ufs_log.h>
70 #include <vm/hat.h>
71 #include <vm/as.h>
72 #include <vm/pvn.h>
73 #include <vm/seg.h>
74 #include <sys/swap.h>
75 #include <sys/cpuvar.h>
76 #include <sys/sysmacros.h>
77 #include <sys/errno.h>
78 #include <sys/kmem.h>
79 #include <sys/debug.h>
80 #include <fs/fs_subr.h>
81 #include <sys/policy.h>
82 
83 struct kmem_cache *inode_cache;		/* cache of free inodes */
84 
85 /* UFS Inode Cache Stats -- Not protected */
86 struct	instats ins = {
87 	{ "size",		KSTAT_DATA_ULONG },
88 	{ "maxsize",		KSTAT_DATA_ULONG },
89 	{ "hits",		KSTAT_DATA_ULONG },
90 	{ "misses",		KSTAT_DATA_ULONG },
91 	{ "kmem allocs",	KSTAT_DATA_ULONG },
92 	{ "kmem frees",		KSTAT_DATA_ULONG },
93 	{ "maxsize reached",	KSTAT_DATA_ULONG },
94 	{ "puts at frontlist",	KSTAT_DATA_ULONG },
95 	{ "puts at backlist",	KSTAT_DATA_ULONG },
96 	{ "queues to free",	KSTAT_DATA_ULONG },
97 	{ "scans",		KSTAT_DATA_ULONG },
98 	{ "thread idles",	KSTAT_DATA_ULONG },
99 	{ "lookup idles",	KSTAT_DATA_ULONG },
100 	{ "vget idles",		KSTAT_DATA_ULONG },
101 	{ "cache allocs",	KSTAT_DATA_ULONG },
102 	{ "cache frees",	KSTAT_DATA_ULONG },
103 	{ "pushes at close",	KSTAT_DATA_ULONG }
104 };
105 
106 /* kstat data */
107 static kstat_t		*ufs_inode_kstat = NULL;
108 
109 union ihead *ihead;	/* inode LRU cache, Chris Maltby */
110 kmutex_t *ih_lock;	/* protect inode cache hash table */
111 static int ino_hashlen = 4;	/* desired average hash chain length */
112 int inohsz;		/* number of buckets in the hash table */
113 
114 kmutex_t	ufs_scan_lock;	/* stop racing multiple ufs_scan_inodes() */
115 kmutex_t	ufs_iuniqtime_lock; /* protect iuniqtime */
116 kmutex_t	ufsvfs_mutex;
117 struct ufsvfs	*oldufsvfslist, *ufsvfslist;
118 
119 /*
120  * time to wait after ufsvfsp->vfs_iotstamp before declaring that no
121  * I/Os are going on.
122  */
123 clock_t	ufs_iowait;
124 
125 /*
126  * the threads that process idle inodes and free (deleted) inodes
127  * have high water marks that are set in ufsinit().
128  * These values but can be no less then the minimum shown below
129  */
130 int	ufs_idle_max;	/* # of allowable idle inodes */
131 ulong_t	ufs_inode_max;	/* hard limit of allowable idle inodes */
132 #define	UFS_IDLE_MAX	(16)	/* min # of allowable idle inodes */
133 
134 /*
135  * Tunables for ufs write throttling.
136  * These are validated in ufs_iinit() since improper settings
137  * can lead to filesystem hangs.
138  */
139 #define	UFS_HW_DEFAULT	(16 * 1024 * 1024)
140 #define	UFS_LW_DEFAULT	(8 * 1024 * 1024)
141 int	ufs_HW = UFS_HW_DEFAULT;
142 int	ufs_LW = UFS_LW_DEFAULT;
143 
144 static void ihinit(void);
145 extern int hash2ints(int, int);
146 
147 static int ufs_iget_internal(struct vfs *, ino_t, struct inode **,
148     struct cred *, int);
149 
150 /* ARGSUSED */
151 static int
152 ufs_inode_kstat_update(kstat_t *ksp, int rw)
153 {
154 	if (rw == KSTAT_WRITE)
155 		return (EACCES);
156 
157 	ins.in_malloc.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
158 	    "slab_alloc");
159 	ins.in_mfree.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
160 	    "slab_free");
161 	ins.in_kcalloc.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
162 	    "alloc");
163 	ins.in_kcfree.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
164 	    "free");
165 	ins.in_size.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
166 	    "buf_inuse");
167 	ins.in_maxreached.value.ul = (ulong_t)kmem_cache_stat(inode_cache,
168 	    "buf_max");
169 	ins.in_misses.value.ul = ins.in_kcalloc.value.ul;
170 
171 	return (0);
172 }
173 
174 void
175 ufs_iinit(void)
176 {
177 	/*
178 	 * Validate that ufs_HW > ufs_LW.
179 	 * The default values for these two tunables have been increased.
180 	 * There is now a range of values for ufs_HW that used to be
181 	 * legal on previous Solaris versions but no longer is now.
182 	 * Upgrading a machine which has an /etc/system setting for ufs_HW
183 	 * from that range can lead to filesystem hangs unless the values
184 	 * are checked here.
185 	 */
186 	if (ufs_HW <= ufs_LW) {
187 		cmn_err(CE_WARN,
188 		    "ufs_HW (%d) <= ufs_LW (%d). Check /etc/system.",
189 		    ufs_HW, ufs_LW);
190 		ufs_LW = UFS_LW_DEFAULT;
191 		ufs_HW = UFS_HW_DEFAULT;
192 		cmn_err(CE_CONT, "using defaults, ufs_HW = %d, ufs_LW = %d\n",
193 		    ufs_HW, ufs_LW);
194 	}
195 
196 	/*
197 	 * Adjust the tunable `ufs_ninode' to a reasonable value
198 	 */
199 	if (ufs_ninode <= 0)
200 		ufs_ninode = ncsize;
201 	if (ufs_inode_max == 0)
202 		ufs_inode_max =
203 		    (ulong_t)((kmem_maxavail() >> 2) / sizeof (struct inode));
204 	if (ufs_ninode > ufs_inode_max || (ufs_ninode == 0 && ncsize == 0)) {
205 		cmn_err(CE_NOTE, "setting ufs_ninode to max value of %ld",
206 		    ufs_inode_max);
207 		ufs_ninode = ufs_inode_max;
208 	}
209 	/*
210 	 * Wait till third call of ufs_update to declare that no I/Os are
211 	 * going on. This allows deferred access times to be flushed to disk.
212 	 */
213 	ufs_iowait = v.v_autoup * hz * 2;
214 
215 	/*
216 	 * idle thread runs when 25% of ufs_ninode entries are on the queue
217 	 */
218 	if (ufs_idle_max == 0)
219 		ufs_idle_max = ufs_ninode >> 2;
220 	if (ufs_idle_max < UFS_IDLE_MAX)
221 		ufs_idle_max = UFS_IDLE_MAX;
222 	if (ufs_idle_max > ufs_ninode)
223 		ufs_idle_max = ufs_ninode;
224 	/*
225 	 * This is really a misnomer, it is ufs_queue_init
226 	 */
227 	ufs_thread_init(&ufs_idle_q, ufs_idle_max);
228 	ufs_thread_start(&ufs_idle_q, ufs_thread_idle, NULL);
229 
230 	/*
231 	 * global hlock thread
232 	 */
233 	ufs_thread_init(&ufs_hlock, 1);
234 	ufs_thread_start(&ufs_hlock, ufs_thread_hlock, NULL);
235 
236 	ihinit();
237 	qtinit();
238 	ins.in_maxsize.value.ul = ufs_ninode;
239 	if ((ufs_inode_kstat = kstat_create("ufs", 0, "inode_cache", "ufs",
240 	    KSTAT_TYPE_NAMED, sizeof (ins) / sizeof (kstat_named_t),
241 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
242 		ufs_inode_kstat->ks_data = (void *)&ins;
243 		ufs_inode_kstat->ks_update = ufs_inode_kstat_update;
244 		kstat_install(ufs_inode_kstat);
245 	}
246 	ufsfx_init();		/* fix-on-panic initialization */
247 	si_cache_init();
248 	ufs_directio_init();
249 	lufs_init();
250 	mutex_init(&ufs_iuniqtime_lock, NULL, MUTEX_DEFAULT, NULL);
251 }
252 
253 /* ARGSUSED */
254 static int
255 ufs_inode_cache_constructor(void *buf, void *cdrarg, int kmflags)
256 {
257 	struct inode *ip = buf;
258 	struct vnode *vp;
259 
260 	rw_init(&ip->i_rwlock, NULL, RW_DEFAULT, NULL);
261 	rw_init(&ip->i_contents, NULL, RW_DEFAULT, NULL);
262 	mutex_init(&ip->i_tlock, NULL, MUTEX_DEFAULT, NULL);
263 	dnlc_dir_init(&ip->i_danchor);
264 
265 	cv_init(&ip->i_wrcv, NULL, CV_DRIVER, NULL);
266 
267 	vp = vn_alloc(KM_SLEEP);
268 	ip->i_vnode = vp;
269 
270 	vn_setops(vp, ufs_vnodeops);
271 	vp->v_data = (caddr_t)ip;
272 
273 	return (0);
274 }
275 
276 /* ARGSUSED */
277 static void
278 ufs_inode_cache_destructor(void *buf, void *cdrarg)
279 {
280 	struct inode *ip = buf;
281 	struct vnode *vp;
282 
283 	vp = ITOV(ip);
284 
285 	rw_destroy(&ip->i_rwlock);
286 	rw_destroy(&ip->i_contents);
287 
288 	mutex_destroy(&ip->i_tlock);
289 	if (vp->v_type == VDIR) {
290 		dnlc_dir_fini(&ip->i_danchor);
291 	}
292 
293 	cv_destroy(&ip->i_wrcv);
294 
295 	vn_free(vp);
296 }
297 
298 /*
299  * Initialize hash links for inodes
300  * and build inode free list.
301  */
302 void
303 ihinit(void)
304 {
305 	int i;
306 	union	ihead *ih = ihead;
307 
308 	mutex_init(&ufs_scan_lock, NULL, MUTEX_DEFAULT, NULL);
309 
310 	inohsz = 1 << highbit(ufs_ninode / ino_hashlen);
311 	ihead = kmem_zalloc(inohsz * sizeof (union ihead), KM_SLEEP);
312 	ih_lock = kmem_zalloc(inohsz * sizeof (kmutex_t), KM_SLEEP);
313 
314 	for (i = 0, ih = ihead; i < inohsz; i++,  ih++) {
315 		ih->ih_head[0] = ih;
316 		ih->ih_head[1] = ih;
317 		mutex_init(&ih_lock[i], NULL, MUTEX_DEFAULT, NULL);
318 	}
319 	inode_cache = kmem_cache_create("ufs_inode_cache",
320 	    sizeof (struct inode), 0, ufs_inode_cache_constructor,
321 	    ufs_inode_cache_destructor, ufs_inode_cache_reclaim,
322 	    NULL, NULL, 0);
323 }
324 
325 /*
326  * Free an inode structure
327  */
328 void
329 ufs_free_inode(struct inode *ip)
330 {
331 	vn_invalid(ITOV(ip));
332 	kmem_cache_free(inode_cache, ip);
333 }
334 
335 /*
336  * Allocate an inode structure
337  */
338 struct inode *
339 ufs_alloc_inode(ufsvfs_t *ufsvfsp, ino_t ino)
340 {
341 	struct inode *ip;
342 	vnode_t *vp;
343 
344 	ip = kmem_cache_alloc(inode_cache, KM_SLEEP);
345 	/*
346 	 * at this point we have a newly allocated inode
347 	 */
348 	ip->i_freef = ip;
349 	ip->i_freeb = ip;
350 	ip->i_flag = IREF;
351 	ip->i_seq = 0xFF;	/* Unique initial value */
352 	ip->i_dev = ufsvfsp->vfs_dev;
353 	ip->i_ufsvfs = ufsvfsp;
354 	ip->i_devvp = ufsvfsp->vfs_devvp;
355 	ip->i_number = ino;
356 	ip->i_diroff = 0;
357 	ip->i_nextr = 0;
358 	ip->i_map = NULL;
359 	ip->i_rdev = 0;
360 	ip->i_writes = 0;
361 	ip->i_mode = 0;
362 	ip->i_delaylen = 0;
363 	ip->i_delayoff = 0;
364 	ip->i_nextrio = 0;
365 	ip->i_ufs_acl = NULL;
366 	ip->i_cflags = 0;
367 	ip->i_mapcnt = 0;
368 	ip->i_dquot = NULL;
369 	ip->i_cachedir = CD_ENABLED;
370 	ip->i_writer = NULL;
371 
372 	/*
373 	 * the vnode for this inode was allocated by the constructor
374 	 */
375 	vp = ITOV(ip);
376 	vn_reinit(vp);
377 	if (ino == (ino_t)UFSROOTINO)
378 		vp->v_flag = VROOT;
379 	vp->v_vfsp = ufsvfsp->vfs_vfs;
380 	vn_exists(vp);
381 	return (ip);
382 }
383 
384 /*
385  * Look up an inode by device, inumber.  If it is in core (in the
386  * inode structure), honor the locking protocol.  If it is not in
387  * core, read it in from the specified device after freeing any pages.
388  * In all cases, a pointer to a VN_HELD inode structure is returned.
389  */
390 int
391 ufs_iget(struct vfs *vfsp, ino_t ino, struct inode **ipp, struct cred *cr)
392 {
393 	return (ufs_iget_internal(vfsp, ino, ipp, cr, 0));
394 }
395 
396 /*
397  * A version of ufs_iget which returns only allocated, linked inodes.
398  * This is appropriate for any callers who do not expect a free inode.
399  */
400 int
401 ufs_iget_alloced(struct vfs *vfsp, ino_t ino, struct inode **ipp,
402     struct cred *cr)
403 {
404 	return (ufs_iget_internal(vfsp, ino, ipp, cr, 1));
405 }
406 
407 /*
408  * Set vnode attributes based on v_type, this should be called whenever
409  * an inode's i_mode is changed.
410  */
411 void
412 ufs_reset_vnode(vnode_t *vp)
413 {
414 	/*
415 	 * an old DBE hack
416 	 */
417 	if ((VTOI(vp)->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
418 		vp->v_flag |= VSWAPLIKE;
419 	else
420 		vp->v_flag &= ~VSWAPLIKE;
421 
422 	/*
423 	 * if not swap like and it's just a regular file, we want
424 	 * to maintain the vnode's pages sorted by clean/modified
425 	 * for faster sync'ing to disk
426 	 */
427 	if (vp->v_type == VREG)
428 		vp->v_flag |= VMODSORT;
429 	else
430 		vp->v_flag &= ~VMODSORT;
431 
432 	/*
433 	 * Is this an attribute hidden dir?
434 	 */
435 	if ((VTOI(vp)->i_mode & IFMT) == IFATTRDIR)
436 		vp->v_flag |= V_XATTRDIR;
437 	else
438 		vp->v_flag &= ~V_XATTRDIR;
439 }
440 
441 /*
442  * Shared implementation of ufs_iget and ufs_iget_alloced.  The 'validate'
443  * flag is used to distinguish the two; when true, we validate that the inode
444  * being retrieved looks like a linked and allocated inode.
445  */
446 /* ARGSUSED */
447 static int
448 ufs_iget_internal(struct vfs *vfsp, ino_t ino, struct inode **ipp,
449     struct cred *cr, int validate)
450 {
451 	struct inode *ip, *sp;
452 	union ihead *ih;
453 	kmutex_t *ihm;
454 	struct buf *bp;
455 	struct dinode *dp;
456 	struct vnode *vp;
457 	extern vfs_t EIO_vfs;
458 	int error;
459 	int ftype;	/* XXX - Remove later on */
460 	dev_t vfs_dev;
461 	struct ufsvfs *ufsvfsp;
462 	struct fs *fs;
463 	int hno;
464 	daddr_t bno;
465 	ulong_t ioff;
466 
467 	CPU_STATS_ADD_K(sys, ufsiget, 1);
468 
469 	/*
470 	 * Lookup inode in cache.
471 	 */
472 	vfs_dev = vfsp->vfs_dev;
473 	hno = INOHASH(ino);
474 	ih = &ihead[hno];
475 	ihm = &ih_lock[hno];
476 
477 again:
478 	mutex_enter(ihm);
479 	for (ip = ih->ih_chain[0]; ip != (struct inode *)ih; ip = ip->i_forw) {
480 		if (ino != ip->i_number || vfs_dev != ip->i_dev ||
481 		    (ip->i_flag & ISTALE))
482 			continue;
483 
484 		/*
485 		 * Found the interesting inode; hold it and drop the cache lock
486 		 */
487 		vp = ITOV(ip);	/* for locknest */
488 		VN_HOLD(vp);
489 		mutex_exit(ihm);
490 		rw_enter(&ip->i_contents, RW_READER);
491 
492 		/*
493 		 * if necessary, remove from idle list
494 		 */
495 		if ((ip->i_flag & IREF) == 0) {
496 			if (ufs_rmidle(ip))
497 				VN_RELE(vp);
498 		}
499 
500 		/*
501 		 * Could the inode be read from disk?
502 		 */
503 		if (ip->i_flag & ISTALE) {
504 			rw_exit(&ip->i_contents);
505 			VN_RELE(vp);
506 			goto again;
507 		}
508 
509 		ins.in_hits.value.ul++;
510 		*ipp = ip;
511 
512 		/*
513 		 * Reset the vnode's attribute flags
514 		 */
515 		mutex_enter(&vp->v_lock);
516 		ufs_reset_vnode(vp);
517 		mutex_exit(&vp->v_lock);
518 
519 		rw_exit(&ip->i_contents);
520 
521 		return (0);
522 	}
523 	mutex_exit(ihm);
524 
525 	/*
526 	 * Inode was not in cache.
527 	 *
528 	 * Allocate a new entry
529 	 */
530 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
531 	fs = ufsvfsp->vfs_fs;
532 
533 	ip = ufs_alloc_inode(ufsvfsp, ino);
534 	vp = ITOV(ip);
535 
536 	bno = fsbtodb(fs, itod(fs, ino));
537 	ioff = (sizeof (struct dinode)) * (itoo(fs, ino));
538 	ip->i_doff = (offset_t)ioff + ldbtob(bno);
539 
540 	/*
541 	 * put a place holder in the cache (if not already there)
542 	 */
543 	mutex_enter(ihm);
544 	for (sp = ih->ih_chain[0]; sp != (struct inode *)ih; sp = sp->i_forw)
545 		if (ino == sp->i_number && vfs_dev == sp->i_dev &&
546 		    ((sp->i_flag & ISTALE) == 0)) {
547 			mutex_exit(ihm);
548 			ufs_free_inode(ip);
549 			goto again;
550 		}
551 	/*
552 	 * It would be nice to ASSERT(RW_READ_HELD(&ufsvfsp->vfs_dqrwlock))
553 	 * here, but if we do, then shadow inode allocations panic the
554 	 * system.  We don't have to hold vfs_dqrwlock for shadow inodes
555 	 * and the ufs_iget() parameters don't tell us what we are getting
556 	 * so we have no way of knowing this is a ufs_iget() call from
557 	 * a ufs_ialloc() call for a shadow inode.
558 	 */
559 	rw_enter(&ip->i_contents, RW_WRITER);
560 	insque(ip, ih);
561 	mutex_exit(ihm);
562 	/*
563 	 * read the dinode
564 	 */
565 	bp = UFS_BREAD(ufsvfsp, ip->i_dev, bno, (int)fs->fs_bsize);
566 
567 	/*
568 	 * Check I/O errors
569 	 */
570 	error = ((bp->b_flags & B_ERROR) ? geterror(bp) : 0);
571 	if (error) {
572 		brelse(bp);
573 		ip->i_flag |= ISTALE;	/* in case someone is looking it up */
574 		rw_exit(&ip->i_contents);
575 		vp->v_vfsp = &EIO_vfs;
576 		VN_RELE(vp);
577 		return (error);
578 	}
579 	/*
580 	 * initialize the inode's dinode
581 	 */
582 	dp = (struct dinode *)(ioff + bp->b_un.b_addr);
583 	ip->i_ic = dp->di_ic;			/* structure assignment */
584 	brelse(bp);
585 
586 	/*
587 	 * Maintain compatibility with Solaris 1.x UFS
588 	 */
589 	if (ip->i_suid != UID_LONG)
590 		ip->i_uid = ip->i_suid;
591 	if (ip->i_sgid != GID_LONG)
592 		ip->i_gid = ip->i_sgid;
593 
594 	ftype = ip->i_mode & IFMT;
595 	if (ftype == IFBLK || ftype == IFCHR) {
596 		dev_t dv;
597 		uint_t top16 = ip->i_ordev & 0xffff0000u;
598 
599 		if (top16 == 0 || top16 == 0xffff0000u)
600 			dv = expdev(ip->i_ordev);
601 		else
602 			dv = expldev(ip->i_ordev);
603 		vp->v_rdev = ip->i_rdev = dv;
604 	}
605 
606 	/*
607 	 * if our caller only expects allocated inodes, verify that
608 	 * this inode looks good; throw it out if it's bad.
609 	 */
610 	if (validate) {
611 		if ((ftype == 0) || (ip->i_nlink <= 0)) {
612 			ip->i_flag |= ISTALE;
613 			rw_exit(&ip->i_contents);
614 			vp->v_vfsp = &EIO_vfs;
615 			VN_RELE(vp);
616 			cmn_err(CE_NOTE,
617 			    "%s: unexpected free inode %d, run fsck(1M)%s",
618 			    fs->fs_fsmnt, (int)ino,
619 			    (TRANS_ISTRANS(ufsvfsp) ? " -o f" : ""));
620 			return (EIO);
621 		}
622 	}
623 
624 	/*
625 	 * finish initializing the vnode
626 	 */
627 	vp->v_type = IFTOVT((mode_t)ip->i_mode);
628 
629 	ufs_reset_vnode(vp);
630 
631 	/*
632 	 * read the shadow
633 	 */
634 	if (ftype != 0 && ip->i_shadow != 0) {
635 		if ((error = ufs_si_load(ip, cr)) != 0) {
636 			ip->i_flag |= ISTALE;
637 			ip->i_ufs_acl = NULL;
638 			rw_exit(&ip->i_contents);
639 			vp->v_vfsp = &EIO_vfs;
640 			VN_RELE(vp);
641 			return (error);
642 		}
643 	}
644 
645 	/*
646 	 * Only attach quota information if the inode has a type and if
647 	 * that type is not a shadow inode.
648 	 */
649 	if (ip->i_mode && ((ip->i_mode & IFMT) != IFSHAD) &&
650 	    ((ip->i_mode & IFMT) != IFATTRDIR)) {
651 		ip->i_dquot = getinoquota(ip);
652 	}
653 	TRANS_MATA_IGET(ufsvfsp, ip);
654 	*ipp = ip;
655 	rw_exit(&ip->i_contents);
656 
657 	return (0);
658 }
659 
660 /*
661  * Vnode is no longer referenced, write the inode out
662  * and if necessary, truncate and deallocate the file.
663  */
664 void
665 ufs_iinactive(struct inode *ip)
666 {
667 	int		front;
668 	struct inode	*iq;
669 	struct inode	*hip;
670 	struct ufs_q	*uq;
671 	struct vnode	*vp = ITOV(ip);
672 	struct ufsvfs   *ufsvfsp = ip->i_ufsvfs;
673 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
674 
675 	/*
676 	 * Because the vnode type might have been changed,
677 	 * the dnlc_dir_purge must be called unconditionally.
678 	 */
679 	dnlc_dir_purge(&ip->i_danchor);
680 
681 	/*
682 	 * Get exclusive access to inode data.
683 	 */
684 	rw_enter(&ip->i_contents, RW_WRITER);
685 	ASSERT(ip->i_flag & IREF);
686 
687 	/*
688 	 * Make sure no one reclaimed the inode before we put it on
689 	 * the freelist or destroy it. We keep our 'hold' on the vnode
690 	 * from vn_rele until we are ready to do something with the inode.
691 	 *
692 	 * Pageout may put a VN_HOLD/VN_RELE at anytime during this
693 	 * operation via an async putpage, so we must make sure
694 	 * we don't free/destroy the inode more than once. ufs_iget
695 	 * may also put a VN_HOLD on the inode before it grabs
696 	 * the i_contents lock. This is done so we don't free
697 	 * an inode that a thread is waiting on.
698 	 */
699 	mutex_enter(&vp->v_lock);
700 
701 	if (vp->v_count > 1) {
702 		vp->v_count--;  /* release our hold from vn_rele */
703 		mutex_exit(&vp->v_lock);
704 		rw_exit(&ip->i_contents);
705 		return;
706 	}
707 	mutex_exit(&vp->v_lock);
708 
709 	/*
710 	 * For umount case: if ufsvfs ptr is NULL, the inode is unhashed
711 	 * and clean.  It can be safely destroyed (cyf).
712 	 */
713 	if (ip->i_ufsvfs == NULL) {
714 		rw_exit(&ip->i_contents);
715 		ufs_si_del(ip);
716 		ASSERT((vp->v_type == VCHR) || !vn_has_cached_data(vp));
717 		ufs_free_inode(ip);
718 		return;
719 	}
720 
721 	/*
722 	 * queue idle inode to appropriate thread. Will check v_count == 1
723 	 * prior to putting this on the appropriate queue.
724 	 * Stale inodes will be unhashed and freed by the ufs idle thread
725 	 * in ufs_idle_free()
726 	 */
727 	front = 1;
728 	if ((ip->i_flag & ISTALE) == 0 && ip->i_fs->fs_ronly == 0 &&
729 	    ip->i_mode && ip->i_nlink <= 0) {
730 		/*
731 		 * Mark the i_flag to indicate that inode is being deleted.
732 		 * This flag will be cleared when the deletion is complete.
733 		 * This prevents nfs from sneaking in via ufs_vget() while
734 		 * the delete is in progress (bugid 1242481).
735 		 */
736 		ip->i_flag |= IDEL;
737 
738 		/*
739 		 * NOIDEL means that deletes are not allowed at this time;
740 		 * whoever resets NOIDEL will also send this inode back
741 		 * through ufs_iinactive.  IREF remains set.
742 		 */
743 		if (ULOCKFS_IS_NOIDEL(ITOUL(ip))) {
744 			mutex_enter(&vp->v_lock);
745 			vp->v_count--;
746 			mutex_exit(&vp->v_lock);
747 			rw_exit(&ip->i_contents);
748 			return;
749 		}
750 		if (!TRANS_ISTRANS(ip->i_ufsvfs)) {
751 			rw_exit(&ip->i_contents);
752 			ufs_delete(ip->i_ufsvfs, ip, 0);
753 			return;
754 		}
755 
756 		/* queue to delete thread; IREF remains set */
757 		ins.in_qfree.value.ul++;
758 		uq = &ip->i_ufsvfs->vfs_delete;
759 
760 		mutex_enter(&uq->uq_mutex);
761 
762 		/* add to q */
763 		if ((iq = uq->uq_ihead) != 0) {
764 			ip->i_freef = iq;
765 			ip->i_freeb = iq->i_freeb;
766 			iq->i_freeb->i_freef = ip;
767 			iq->i_freeb = ip;
768 			if (front)
769 				uq->uq_ihead = ip;
770 		} else {
771 			uq->uq_ihead = ip;
772 			ip->i_freef = ip;
773 			ip->i_freeb = ip;
774 		}
775 
776 		delq_info->delq_unreclaimed_files += 1;
777 		delq_info->delq_unreclaimed_blocks += ip->i_blocks;
778 	} else {
779 		/*
780 		 * queue to idle thread
781 		 *  Check the v_count == 1 again.
782 		 *
783 		 */
784 		mutex_enter(&vp->v_lock);
785 		if (vp->v_count > 1) {
786 			vp->v_count--;  /* release our hold from vn_rele */
787 			mutex_exit(&vp->v_lock);
788 			rw_exit(&ip->i_contents);
789 			return;
790 		}
791 		mutex_exit(&vp->v_lock);
792 		uq = &ufs_idle_q;
793 
794 		/*
795 		 * useful iff it has pages or is a fastsymlink; otherwise junk
796 		 */
797 		mutex_enter(&uq->uq_mutex);
798 
799 		/* clear IREF means `on idle list' */
800 		ip->i_flag &= ~(IREF | IDIRECTIO);
801 
802 		if (vn_has_cached_data(vp) || ip->i_flag & IFASTSYMLNK) {
803 			ins.in_frback.value.ul++;
804 			hip = (inode_t *)&ufs_useful_iq[IQHASH(ip)];
805 			ufs_nuseful_iq++;
806 		} else {
807 			ins.in_frfront.value.ul++;
808 			hip = (inode_t *)&ufs_junk_iq[IQHASH(ip)];
809 			ip->i_flag |= IJUNKIQ;
810 			ufs_njunk_iq++;
811 		}
812 		ip->i_freef = hip;
813 		ip->i_freeb = hip->i_freeb;
814 		hip->i_freeb->i_freef = ip;
815 		hip->i_freeb = ip;
816 	}
817 
818 	/* wakeup thread(s) if q is overfull */
819 	if (++uq->uq_ne == uq->uq_lowat)
820 		cv_broadcast(&uq->uq_cv);
821 
822 	/* all done, release the q and inode */
823 	mutex_exit(&uq->uq_mutex);
824 	rw_exit(&ip->i_contents);
825 }
826 
827 /*
828  * Check accessed and update flags on an inode structure.
829  * If any are on, update the inode with the (unique) current time.
830  * If waitfor is given, insure I/O order so wait for write to complete.
831  */
832 void
833 ufs_iupdat(struct inode *ip, int waitfor)
834 {
835 	struct buf	*bp;
836 	struct fs	*fp;
837 	struct dinode	*dp;
838 	struct ufsvfs	*ufsvfsp 	= ip->i_ufsvfs;
839 	int 		i;
840 	int		do_trans_times;
841 	ushort_t	flag;
842 	o_uid_t		suid;
843 	o_gid_t		sgid;
844 
845 	/*
846 	 * This function is now safe to be called with either the reader
847 	 * or writer i_contents lock.
848 	 */
849 	ASSERT(RW_LOCK_HELD(&ip->i_contents));
850 
851 	/*
852 	 * Return if file system has been forcibly umounted.
853 	 */
854 	if (ufsvfsp == NULL)
855 		return;
856 
857 	flag = ip->i_flag;	/* Atomic read */
858 	/*
859 	 * We better not update the disk inode from a stale inode.
860 	 */
861 	if (flag & ISTALE)
862 		return;
863 
864 	fp = ip->i_fs;
865 
866 	if ((flag & (IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG)) != 0) {
867 		if (fp->fs_ronly) {
868 			mutex_enter(&ip->i_tlock);
869 			ip->i_flag &= ~(IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG);
870 			mutex_exit(&ip->i_tlock);
871 			return;
872 		}
873 		/*
874 		 * fs is active while metadata is being written
875 		 */
876 		mutex_enter(&ufsvfsp->vfs_lock);
877 		ufs_notclean(ufsvfsp);
878 		/*
879 		 * get the dinode
880 		 */
881 		bp = UFS_BREAD(ufsvfsp, ip->i_dev,
882 		    (daddr_t)fsbtodb(fp, itod(fp, ip->i_number)),
883 		    (int)fp->fs_bsize);
884 		if (bp->b_flags & B_ERROR) {
885 			mutex_enter(&ip->i_tlock);
886 			ip->i_flag &=
887 			    ~(IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG);
888 			mutex_exit(&ip->i_tlock);
889 			brelse(bp);
890 			return;
891 		}
892 		/*
893 		 * munge inode fields
894 		 */
895 		mutex_enter(&ip->i_tlock);
896 		ITIMES_NOLOCK(ip);
897 		do_trans_times = ((ip->i_flag & (IMOD|IMODACC)) == IMODACC);
898 		ip->i_flag &= ~(IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG);
899 		mutex_exit(&ip->i_tlock);
900 
901 		/*
902 		 * For reads and concurrent re-writes, no deltas were
903 		 * entered for the access time changes - do it now.
904 		 */
905 		if (do_trans_times) {
906 			TRANS_INODE_TIMES(ufsvfsp, ip);
907 		}
908 
909 		/*
910 		 * For SunOS 5.0->5.4, these lines below read:
911 		 *
912 		 * suid = (ip->i_uid > MAXUID) ? UID_LONG : ip->i_uid;
913 		 * sgid = (ip->i_gid > MAXUID) ? GID_LONG : ip->i_gid;
914 		 *
915 		 * where MAXUID was set to 60002.  This was incorrect -
916 		 * the uids should have been constrained to what fitted into
917 		 * a 16-bit word.
918 		 *
919 		 * This means that files from 4.x filesystems that have an
920 		 * i_suid field larger than 60002 will have that field
921 		 * changed to 65535.
922 		 *
923 		 * Security note: 4.x UFS could never create a i_suid of
924 		 * UID_LONG since that would've corresponded to -1.
925 		 */
926 		suid = (ulong_t)ip->i_uid > (ulong_t)USHRT_MAX ?
927 		    UID_LONG : ip->i_uid;
928 		sgid = (ulong_t)ip->i_gid > (ulong_t)USHRT_MAX ?
929 		    GID_LONG : ip->i_gid;
930 
931 		if ((ip->i_suid != suid) || (ip->i_sgid != sgid)) {
932 			ip->i_suid = suid;
933 			ip->i_sgid = sgid;
934 			TRANS_INODE(ufsvfsp, ip);
935 		}
936 
937 		if ((ip->i_mode & IFMT) == IFBLK ||
938 		    (ip->i_mode & IFMT) == IFCHR) {
939 			dev_t d = ip->i_rdev;
940 			dev32_t dev32;
941 
942 			/*
943 			 * load first direct block only if special device
944 			 */
945 			if (!cmpldev(&dev32, d)) {
946 				/*
947 				 * We panic here because there's "no way"
948 				 * we should have been able to create a large
949 				 * inode with a large dev_t.  Earlier layers
950 				 * should've caught this.
951 				 */
952 				panic("ip %p: i_rdev too big", (void *)ip);
953 			}
954 
955 			if (dev32 & ~((O_MAXMAJ << L_BITSMINOR32) | O_MAXMIN)) {
956 				ip->i_ordev = dev32;	/* can't use old fmt. */
957 			} else {
958 				ip->i_ordev = cmpdev(d);
959 			}
960 		}
961 
962 		/*
963 		 * copy inode to dinode (zero fastsymlnk in dinode)
964 		 */
965 		dp = (struct dinode *)bp->b_un.b_addr + itoo(fp, ip->i_number);
966 		dp->di_ic = ip->i_ic;	/* structure assignment */
967 		if (flag & IFASTSYMLNK) {
968 			for (i = 1; i < NDADDR; i++)
969 				dp->di_db[i] = 0;
970 			for (i = 0; i < NIADDR; i++)
971 				dp->di_ib[i] = 0;
972 		}
973 		if (TRANS_ISTRANS(ufsvfsp)) {
974 			/*
975 			 * Pass only a sector size buffer containing
976 			 * the inode, otherwise when the buffer is copied
977 			 * into a cached roll buffer then too much memory
978 			 * gets consumed if 8KB inode buffers are passed.
979 			 */
980 			TRANS_LOG(ufsvfsp, (caddr_t)dp, ip->i_doff,
981 			    sizeof (struct dinode),
982 			    (caddr_t)P2ALIGN((uintptr_t)dp, DEV_BSIZE),
983 			    DEV_BSIZE);
984 
985 			brelse(bp);
986 		} else if (waitfor && (ip->i_ufsvfs->vfs_dio == 0)) {
987 			UFS_BRWRITE(ufsvfsp, bp);
988 
989 			/*
990 			 * Synchronous write has guaranteed that inode
991 			 * has been written on disk so clear the flag
992 			 */
993 			mutex_enter(&ip->i_tlock);
994 			ip->i_flag &= ~IBDWRITE;
995 			mutex_exit(&ip->i_tlock);
996 		} else {
997 			bdrwrite(bp);
998 
999 			/*
1000 			 * This write hasn't guaranteed that inode has been
1001 			 * written on the disk.
1002 			 * Since, all updat flags on inode are cleared, we must
1003 			 * remember the condition in case inode is to be updated
1004 			 * synchronously later (e.g.- fsync()/fdatasync())
1005 			 * and inode has not been modified yet.
1006 			 */
1007 			mutex_enter(&ip->i_tlock);
1008 			ip->i_flag |= IBDWRITE;
1009 			mutex_exit(&ip->i_tlock);
1010 		}
1011 	} else {
1012 		/*
1013 		 * In case previous inode update was done asynchronously
1014 		 * (IBDWRITE) and this inode update request wants guaranteed
1015 		 * (synchronous) disk update, flush the inode.
1016 		 */
1017 		if (waitfor && (flag & IBDWRITE)) {
1018 			blkflush(ip->i_dev,
1019 			    (daddr_t)fsbtodb(fp, itod(fp, ip->i_number)));
1020 			mutex_enter(&ip->i_tlock);
1021 			ip->i_flag &= ~IBDWRITE;
1022 			mutex_exit(&ip->i_tlock);
1023 		}
1024 	}
1025 }
1026 
1027 #define	SINGLE	0	/* index of single indirect block */
1028 #define	DOUBLE	1	/* index of double indirect block */
1029 #define	TRIPLE	2	/* index of triple indirect block */
1030 
1031 /*
1032  * Release blocks associated with the inode ip and
1033  * stored in the indirect block bn.  Blocks are free'd
1034  * in LIFO order up to (but not including) lastbn.  If
1035  * level is greater than SINGLE, the block is an indirect
1036  * block and recursive calls to indirtrunc must be used to
1037  * cleanse other indirect blocks.
1038  *
1039  * N.B.: triple indirect blocks are untested.
1040  */
1041 static long
1042 indirtrunc(struct inode *ip, daddr_t bn, daddr_t lastbn, int level, int flags)
1043 {
1044 	int i;
1045 	struct buf *bp, *copy;
1046 	daddr32_t *bap;
1047 	struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
1048 	struct fs *fs = ufsvfsp->vfs_fs;
1049 	daddr_t nb, last;
1050 	long factor;
1051 	int blocksreleased = 0, nblocks;
1052 
1053 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
1054 	/*
1055 	 * Calculate index in current block of last
1056 	 * block to be kept.  -1 indicates the entire
1057 	 * block so we need not calculate the index.
1058 	 */
1059 	factor = 1;
1060 	for (i = SINGLE; i < level; i++)
1061 		factor *= NINDIR(fs);
1062 	last = lastbn;
1063 	if (lastbn > 0)
1064 		last /= factor;
1065 	nblocks = btodb(fs->fs_bsize);
1066 	/*
1067 	 * Get buffer of block pointers, zero those
1068 	 * entries corresponding to blocks to be free'd,
1069 	 * and update on disk copy first.
1070 	 * *Unless* the root pointer has been synchronously
1071 	 * written to disk.  If nothing points to this
1072 	 * indirect block then don't bother zero'ing and
1073 	 * writing it.
1074 	 */
1075 	bp = UFS_BREAD(ufsvfsp,
1076 	    ip->i_dev, (daddr_t)fsbtodb(fs, bn), (int)fs->fs_bsize);
1077 	if (bp->b_flags & B_ERROR) {
1078 		brelse(bp);
1079 		return (0);
1080 	}
1081 	bap = bp->b_un.b_daddr;
1082 	if ((flags & I_CHEAP) == 0) {
1083 		uint_t	zb;
1084 
1085 		zb = (uint_t)((NINDIR(fs) - (last + 1)) * sizeof (daddr32_t));
1086 
1087 		if (zb) {
1088 			/*
1089 			 * push any data into the log before we zero it
1090 			 */
1091 			if (bp->b_flags & B_DELWRI)
1092 				TRANS_LOG(ufsvfsp, (caddr_t)bap,
1093 				    ldbtob(bp->b_blkno), bp->b_bcount,
1094 				    bp->b_un.b_addr, bp->b_bcount);
1095 			copy = ngeteblk(fs->fs_bsize);
1096 			bcopy((caddr_t)bap, (caddr_t)copy->b_un.b_daddr,
1097 			    (uint_t)fs->fs_bsize);
1098 			bzero((caddr_t)&bap[last + 1], zb);
1099 
1100 			TRANS_BUF(ufsvfsp,
1101 			    (caddr_t)&bap[last + 1] - (caddr_t)bap,
1102 			    zb, bp, DT_ABZERO);
1103 
1104 			UFS_BRWRITE(ufsvfsp, bp);
1105 			bp = copy, bap = bp->b_un.b_daddr;
1106 		}
1107 	} else {
1108 		/* make sure write retries are also cleared */
1109 		bp->b_flags &= ~(B_DELWRI | B_RETRYWRI);
1110 		bp->b_flags |= B_STALE | B_AGE;
1111 	}
1112 
1113 	/*
1114 	 * Recursively free totally unused blocks.
1115 	 */
1116 	flags |= I_CHEAP;
1117 	for (i = NINDIR(fs) - 1; i > last; i--) {
1118 		nb = bap[i];
1119 		if (nb == 0)
1120 			continue;
1121 		if (level > SINGLE) {
1122 			blocksreleased +=
1123 			    indirtrunc(ip, nb, (daddr_t)-1, level - 1, flags);
1124 			free(ip, nb, (off_t)fs->fs_bsize, flags | I_IBLK);
1125 		} else
1126 			free(ip, nb, (off_t)fs->fs_bsize, flags);
1127 		blocksreleased += nblocks;
1128 	}
1129 	flags &= ~I_CHEAP;
1130 
1131 	/*
1132 	 * Recursively free last partial block.
1133 	 */
1134 	if (level > SINGLE && lastbn >= 0) {
1135 		last = lastbn % factor;
1136 		nb = bap[i];
1137 		if (nb != 0)
1138 			blocksreleased +=
1139 			    indirtrunc(ip, nb, last, level - 1, flags);
1140 	}
1141 	brelse(bp);
1142 	return (blocksreleased);
1143 }
1144 
1145 /*
1146  * Truncate the inode ip to at most length size.
1147  * Free affected disk blocks -- the blocks of the
1148  * file are removed in reverse order.
1149  *
1150  * N.B.: triple indirect blocks are untested.
1151  */
1152 static int i_genrand = 1234;
1153 int
1154 ufs_itrunc(struct inode *oip, u_offset_t length, int flags, cred_t *cr)
1155 {
1156 	struct fs *fs = oip->i_fs;
1157 	struct ufsvfs *ufsvfsp = oip->i_ufsvfs;
1158 	struct inode *ip;
1159 	daddr_t lastblock;
1160 	off_t bsize;
1161 	int boff;
1162 	daddr_t bn, lastiblock[NIADDR];
1163 	int level;
1164 	long nblocks, blocksreleased = 0;
1165 	int i;
1166 	ushort_t mode;
1167 	struct inode tip;
1168 	int err;
1169 	u_offset_t maxoffset = (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) ?
1170 	    (UFS_MAXOFFSET_T) : (MAXOFF32_T);
1171 
1172 	/*
1173 	 * Shadow inodes do not need to hold the vfs_dqrwlock lock. Most
1174 	 * other uses need the reader lock. opendq() holds the writer lock.
1175 	 */
1176 	ASSERT((oip->i_mode & IFMT) == IFSHAD ||
1177 	    RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
1178 	ASSERT(RW_WRITE_HELD(&oip->i_contents));
1179 	/*
1180 	 * We only allow truncation of regular files and directories
1181 	 * to arbitrary lengths here.  In addition, we allow symbolic
1182 	 * links to be truncated only to zero length.  Other inode
1183 	 * types cannot have their length set here.  Disk blocks are
1184 	 * being dealt with - especially device inodes where
1185 	 * ip->i_ordev is actually being stored in ip->i_db[0]!
1186 	 */
1187 	TRANS_INODE(ufsvfsp, oip);
1188 	mode = oip->i_mode & IFMT;
1189 	if (flags & I_FREE) {
1190 		i_genrand *= 16843009;  /* turns into shift and adds */
1191 		i_genrand++;
1192 		oip->i_gen += ((i_genrand + lbolt) & 0xffff) + 1;
1193 		oip->i_flag |= ICHG |IUPD;
1194 		oip->i_seq++;
1195 		if (length == oip->i_size)
1196 			return (0);
1197 		flags |= I_CHEAP;
1198 	}
1199 	if (mode == IFIFO)
1200 		return (0);
1201 	if (mode != IFREG && mode != IFDIR && mode != IFATTRDIR &&
1202 	    !(mode == IFLNK && length == (offset_t)0) && mode != IFSHAD)
1203 		return (EINVAL);
1204 	if (length > maxoffset)
1205 		return (EFBIG);
1206 	if ((mode == IFDIR) || (mode == IFATTRDIR))
1207 		flags |= I_DIR;
1208 	if (mode == IFSHAD)
1209 		flags |= I_SHAD;
1210 	if (oip == ufsvfsp->vfs_qinod)
1211 		flags |= I_QUOTA;
1212 	if (length == oip->i_size) {
1213 		/* update ctime and mtime to please POSIX tests */
1214 		oip->i_flag |= ICHG |IUPD;
1215 		oip->i_seq++;
1216 		if (length == 0) {
1217 			/* nothing to cache so clear the flag */
1218 			oip->i_flag &= ~IFASTSYMLNK;
1219 		}
1220 		return (0);
1221 	}
1222 	/* wipe out fast symlink till next access */
1223 	if (oip->i_flag & IFASTSYMLNK) {
1224 		int j;
1225 
1226 		ASSERT(ITOV(oip)->v_type == VLNK);
1227 
1228 		oip->i_flag &= ~IFASTSYMLNK;
1229 
1230 		for (j = 1; j < NDADDR; j++)
1231 			oip->i_db[j] = 0;
1232 		for (j = 0; j < NIADDR; j++)
1233 			oip->i_ib[j] = 0;
1234 	}
1235 
1236 	boff = (int)blkoff(fs, length);
1237 
1238 	if (length > oip->i_size) {
1239 		/*
1240 		 * Trunc up case.  BMAPALLOC will insure that the right blocks
1241 		 * are allocated.  This includes extending the old frag to a
1242 		 * full block (if needed) in addition to doing any work
1243 		 * needed for allocating the last block.
1244 		 */
1245 		if (boff == 0)
1246 			err = BMAPALLOC(oip, length - 1, (int)fs->fs_bsize, cr);
1247 		else
1248 			err = BMAPALLOC(oip, length - 1, boff, cr);
1249 
1250 		if (err == 0) {
1251 			/*
1252 			 * Save old size and set inode's size now
1253 			 * so that we don't cause too much of the
1254 			 * file to be zero'd and pushed.
1255 			 */
1256 			u_offset_t osize = oip->i_size;
1257 			oip->i_size  = length;
1258 			/*
1259 			 * Make sure we zero out the remaining bytes of
1260 			 * the page in case a mmap scribbled on it. We
1261 			 * can't prevent a mmap from writing beyond EOF
1262 			 * on the last page of a file.
1263 			 *
1264 			 */
1265 			if ((boff = (int)blkoff(fs, osize)) != 0) {
1266 				bsize = (int)lblkno(fs, osize - 1) >= NDADDR ?
1267 				    fs->fs_bsize : fragroundup(fs, boff);
1268 				pvn_vpzero(ITOV(oip), osize,
1269 				    (size_t)(bsize - boff));
1270 			}
1271 			oip->i_flag |= ICHG|IATTCHG;
1272 			oip->i_seq++;
1273 			ITIMES_NOLOCK(oip);
1274 			/*
1275 			 * MAXOFF32_T is old 2GB size limit. If
1276 			 * this operation caused a large file to be
1277 			 * created, turn on the superblock flag
1278 			 * and update the superblock, if the flag
1279 			 * is not already on.
1280 			 */
1281 			if ((length > (u_offset_t)MAXOFF32_T) &&
1282 			    !(fs->fs_flags & FSLARGEFILES)) {
1283 				ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
1284 				mutex_enter(&ufsvfsp->vfs_lock);
1285 				fs->fs_flags |= FSLARGEFILES;
1286 				ufs_sbwrite(ufsvfsp);
1287 				mutex_exit(&ufsvfsp->vfs_lock);
1288 			}
1289 		}
1290 
1291 		return (err);
1292 	}
1293 
1294 	/*
1295 	 * Update the pages of the file.  If the file is not being
1296 	 * truncated to a block boundary, the contents of the
1297 	 * pages following the end of the file must be zero'ed
1298 	 * in case it ever become accessible again because
1299 	 * of subsequent file growth.
1300 	 */
1301 	if (boff == 0) {
1302 		(void) pvn_vplist_dirty(ITOV(oip), length, ufs_putapage,
1303 		    B_INVAL | B_TRUNC, CRED());
1304 	} else {
1305 		/*
1306 		 * Make sure that the last block is properly allocated.
1307 		 * We only really have to do this if the last block is
1308 		 * actually allocated since ufs_bmap will now handle the case
1309 		 * of an fragment which has no block allocated.  Just to
1310 		 * be sure, we do it now independent of current allocation.
1311 		 */
1312 		err = BMAPALLOC(oip, length - 1, boff, cr);
1313 		if (err)
1314 			return (err);
1315 
1316 		/*
1317 		 * BMAPALLOC will call bmap_write which defers i_seq
1318 		 * processing.  If the timestamps were changed, update
1319 		 * i_seq before rdip drops i_contents or syncs the inode.
1320 		 */
1321 		if (oip->i_flag & (ICHG|IUPD))
1322 			oip->i_seq++;
1323 
1324 		/*
1325 		 * BugId 4069932
1326 		 * Make sure that the relevant partial page appears in
1327 		 * the v_pages list, so that pvn_vpzero() will do its
1328 		 * job.  Since doing this correctly requires everything
1329 		 * in rdip() except for the uiomove(), it's easier and
1330 		 * safer to do the uiomove() rather than duplicate the
1331 		 * rest of rdip() here.
1332 		 *
1333 		 * To get here, we know that length indicates a byte
1334 		 * that is not the first byte of a block.  (length - 1)
1335 		 * is the last actual byte known to exist.  Deduction
1336 		 * shows it is in the same block as byte (length).
1337 		 * Thus, this rdip() invocation should always succeed
1338 		 * except in the face of i/o errors, and give us the
1339 		 * block we care about.
1340 		 *
1341 		 * rdip() makes the same locking assertions and
1342 		 * assumptions as we do.  We do not acquire any locks
1343 		 * before calling it, so we have not changed the locking
1344 		 * situation.  Finally, there do not appear to be any
1345 		 * paths whereby rdip() ends up invoking us again.
1346 		 * Thus, infinite recursion is avoided.
1347 		 */
1348 		{
1349 			uio_t uio;
1350 			iovec_t iov[1];
1351 			char buffer;
1352 
1353 			uio.uio_iov = iov;
1354 			uio.uio_iovcnt = 1;
1355 			uio.uio_loffset = length - 1;
1356 			uio.uio_resid = 1;
1357 			uio.uio_segflg = UIO_SYSSPACE;
1358 			uio.uio_extflg = UIO_COPY_CACHED;
1359 
1360 			iov[0].iov_base = &buffer;
1361 			iov[0].iov_len = 1;
1362 
1363 			err = rdip(oip, &uio, UIO_READ, NULL);
1364 			if (err)
1365 				return (err);
1366 		}
1367 
1368 		bsize = (int)lblkno(fs, length - 1) >= NDADDR ?
1369 		    fs->fs_bsize : fragroundup(fs, boff);
1370 		pvn_vpzero(ITOV(oip), length, (size_t)(bsize - boff));
1371 		/*
1372 		 * Ensure full fs block is marked as dirty.
1373 		 */
1374 		(void) pvn_vplist_dirty(ITOV(oip), length + (bsize - boff),
1375 		    ufs_putapage, B_INVAL | B_TRUNC, CRED());
1376 	}
1377 
1378 	/*
1379 	 * Calculate index into inode's block list of
1380 	 * last direct and indirect blocks (if any)
1381 	 * which we want to keep.  Lastblock is -1 when
1382 	 * the file is truncated to 0.
1383 	 */
1384 	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
1385 	lastiblock[SINGLE] = lastblock - NDADDR;
1386 	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
1387 	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
1388 	nblocks = btodb(fs->fs_bsize);
1389 
1390 	/*
1391 	 * Update file and block pointers
1392 	 * on disk before we start freeing blocks.
1393 	 * If we crash before free'ing blocks below,
1394 	 * the blocks will be returned to the free list.
1395 	 * lastiblock values are also normalized to -1
1396 	 * for calls to indirtrunc below.
1397 	 */
1398 	tip = *oip;			/* structure copy */
1399 	ip = &tip;
1400 
1401 	for (level = TRIPLE; level >= SINGLE; level--)
1402 		if (lastiblock[level] < 0) {
1403 			oip->i_ib[level] = 0;
1404 			lastiblock[level] = -1;
1405 		}
1406 	for (i = NDADDR - 1; i > lastblock; i--) {
1407 		oip->i_db[i] = 0;
1408 		flags |= I_CHEAP;
1409 	}
1410 	oip->i_size = length;
1411 	oip->i_flag |= ICHG|IUPD|IATTCHG;
1412 	oip->i_seq++;
1413 	if (!TRANS_ISTRANS(ufsvfsp))
1414 		ufs_iupdat(oip, I_SYNC);	/* do sync inode update */
1415 
1416 	/*
1417 	 * Indirect blocks first.
1418 	 */
1419 	for (level = TRIPLE; level >= SINGLE; level--) {
1420 		bn = ip->i_ib[level];
1421 		if (bn != 0) {
1422 			blocksreleased +=
1423 			    indirtrunc(ip, bn, lastiblock[level], level, flags);
1424 			if (lastiblock[level] < 0) {
1425 				ip->i_ib[level] = 0;
1426 				free(ip, bn, (off_t)fs->fs_bsize,
1427 				    flags | I_IBLK);
1428 				blocksreleased += nblocks;
1429 			}
1430 		}
1431 		if (lastiblock[level] >= 0)
1432 			goto done;
1433 	}
1434 
1435 	/*
1436 	 * All whole direct blocks or frags.
1437 	 */
1438 	for (i = NDADDR - 1; i > lastblock; i--) {
1439 		bn = ip->i_db[i];
1440 		if (bn == 0)
1441 			continue;
1442 		ip->i_db[i] = 0;
1443 		bsize = (off_t)blksize(fs, ip, i);
1444 		free(ip, bn, bsize, flags);
1445 		blocksreleased += btodb(bsize);
1446 	}
1447 	if (lastblock < 0)
1448 		goto done;
1449 
1450 	/*
1451 	 * Finally, look for a change in size of the
1452 	 * last direct block; release any frags.
1453 	 */
1454 	bn = ip->i_db[lastblock];
1455 	if (bn != 0) {
1456 		off_t oldspace, newspace;
1457 
1458 		/*
1459 		 * Calculate amount of space we're giving
1460 		 * back as old block size minus new block size.
1461 		 */
1462 		oldspace = blksize(fs, ip, lastblock);
1463 		UFS_SET_ISIZE(length, ip);
1464 		newspace = blksize(fs, ip, lastblock);
1465 		if (newspace == 0) {
1466 			err = ufs_fault(ITOV(ip), "ufs_itrunc: newspace == 0");
1467 			return (err);
1468 		}
1469 		if (oldspace - newspace > 0) {
1470 			/*
1471 			 * Block number of space to be free'd is
1472 			 * the old block # plus the number of frags
1473 			 * required for the storage we're keeping.
1474 			 */
1475 			bn += numfrags(fs, newspace);
1476 			free(ip, bn, oldspace - newspace, flags);
1477 			blocksreleased += btodb(oldspace - newspace);
1478 		}
1479 	}
1480 done:
1481 /* BEGIN PARANOIA */
1482 	for (level = SINGLE; level <= TRIPLE; level++)
1483 		if (ip->i_ib[level] != oip->i_ib[level]) {
1484 			err = ufs_fault(ITOV(ip), "ufs_itrunc: indirect block");
1485 			return (err);
1486 		}
1487 
1488 	for (i = 0; i < NDADDR; i++)
1489 		if (ip->i_db[i] != oip->i_db[i]) {
1490 			err = ufs_fault(ITOV(ip), "ufs_itrunc: direct block");
1491 			return (err);
1492 		}
1493 /* END PARANOIA */
1494 	oip->i_blocks -= blocksreleased;
1495 
1496 	if (oip->i_blocks < 0) {		/* sanity */
1497 		cmn_err(CE_NOTE,
1498 		    "ufs_itrunc: %s/%d new size = %lld, blocks = %d\n",
1499 		    fs->fs_fsmnt, (int)oip->i_number, oip->i_size,
1500 		    (int)oip->i_blocks);
1501 		oip->i_blocks = 0;
1502 	}
1503 	oip->i_flag |= ICHG|IATTCHG;
1504 	oip->i_seq++;
1505 	/* blocksreleased is >= zero, so this can not fail */
1506 	(void) chkdq(oip, -blocksreleased, 0, cr, (char **)NULL,
1507 	    (size_t *)NULL);
1508 	return (0);
1509 }
1510 
1511 /*
1512  * Check mode permission on inode.  Mode is READ, WRITE or EXEC.
1513  * In the case of WRITE, the read-only status of the file system
1514  * is checked.  Depending on the calling user, the appropriate
1515  * mode bits are selected; privileges to override missing permission
1516  * bits are checked through secpolicy_vnode_access().
1517  */
1518 int
1519 ufs_iaccess(void *vip, int mode, struct cred *cr)
1520 {
1521 	struct inode *ip = vip;
1522 	int shift = 0;
1523 
1524 	if (mode & IWRITE) {
1525 		/*
1526 		 * Disallow write attempts on read-only
1527 		 * file systems, unless the file is a block
1528 		 * or character device or a FIFO.
1529 		 */
1530 		if (ip->i_fs->fs_ronly != 0) {
1531 			if ((ip->i_mode & IFMT) != IFCHR &&
1532 			    (ip->i_mode & IFMT) != IFBLK &&
1533 			    (ip->i_mode & IFMT) != IFIFO) {
1534 				return (EROFS);
1535 			}
1536 		}
1537 	}
1538 	/*
1539 	 * If there is a shadow inode check for the presence of an acl,
1540 	 * if the acl is there use the ufs_acl_access routine to check
1541 	 * the acl
1542 	 */
1543 	if (ip->i_ufs_acl && ip->i_ufs_acl->aowner)
1544 		return (ufs_acl_access(ip, mode, cr));
1545 
1546 	/*
1547 	 * Access check is based on only
1548 	 * one of owner, group, public.
1549 	 * If not owner, then check group.
1550 	 * If not a member of the group, then
1551 	 * check public access.
1552 	 */
1553 	if (crgetuid(cr) != ip->i_uid) {
1554 		shift += 3;
1555 		if (!groupmember((uid_t)ip->i_gid, cr))
1556 			shift += 3;
1557 	}
1558 
1559 	mode &= ~(ip->i_mode << shift);
1560 
1561 	if (mode == 0)
1562 		return (0);
1563 
1564 	/* test missing privilege bits */
1565 	return (secpolicy_vnode_access(cr, ITOV(ip), ip->i_uid, mode));
1566 }
1567 
1568 /*
1569  * if necessary, remove an inode from the free list
1570  *	i_contents is held except at unmount
1571  *
1572  * Return 1 if the inode is taken off of the ufs_idle_q,
1573  * and the caller is expected to call VN_RELE.
1574  *
1575  * Return 0 otherwise.
1576  */
1577 int
1578 ufs_rmidle(struct inode *ip)
1579 {
1580 	int rval = 0;
1581 
1582 	mutex_enter(&ip->i_tlock);
1583 	if ((ip->i_flag & IREF) == 0) {
1584 		mutex_enter(&ufs_idle_q.uq_mutex);
1585 		ip->i_freef->i_freeb = ip->i_freeb;
1586 		ip->i_freeb->i_freef = ip->i_freef;
1587 		ip->i_freef = ip;
1588 		ip->i_freeb = ip;
1589 		ip->i_flag |= IREF;
1590 		ufs_idle_q.uq_ne--;
1591 		if (ip->i_flag & IJUNKIQ) {
1592 			ufs_njunk_iq--;
1593 			ip->i_flag &= ~IJUNKIQ;
1594 		} else {
1595 			ufs_nuseful_iq--;
1596 		}
1597 		mutex_exit(&ufs_idle_q.uq_mutex);
1598 		rval = 1;
1599 	}
1600 	mutex_exit(&ip->i_tlock);
1601 	return (rval);
1602 }
1603 
1604 /*
1605  * scan the hash of inodes and call func with the inode locked
1606  */
1607 int
1608 ufs_scan_inodes(int rwtry, int (*func)(struct inode *, void *), void *arg,
1609 		struct ufsvfs *ufsvfsp)
1610 {
1611 	struct inode		*ip;		/* current inode */
1612 	struct inode		*lip = NULL;	/* last/previous inode */
1613 	union ihead		*ih;		/* current hash chain */
1614 	int			error, i;
1615 	int			saverror = 0;
1616 	int			lip_held;	/* lip needs a VN_RELE() */
1617 
1618 	/*
1619 	 * If ufsvfsp is NULL, then our caller should be holding
1620 	 * ufs_scan_lock to avoid conflicts between ufs_unmount() and
1621 	 * ufs_update().  Otherwise, to avoid false-positives in
1622 	 * ufs_unmount()'s v_count-based EBUSY check, we only hold
1623 	 * those inodes that are in the file system our caller cares
1624 	 * about.
1625 	 *
1626 	 * We know that ip is a valid inode in the hash chain (and thus
1627 	 * we can trust i_ufsvfs) because the inode we chained from
1628 	 * (lip) is still in the hash chain.  This is true because either:
1629 	 *
1630 	 * 1. We did not drop the hash chain lock since the last
1631 	 *    iteration (because we were not interested in the last inode),
1632 	 * or
1633 	 * 2. We maintained a hold on the last inode while we
1634 	 *    we were processing it, so it could not be removed
1635 	 *    from the hash chain.
1636 	 *
1637 	 * The whole reason we're dropping and re-grabbing the chain
1638 	 * lock on every inode is so that we don't present a major
1639 	 * choke point on throughput, particularly when we've been
1640 	 * called on behalf of fsflush.
1641 	 */
1642 
1643 	for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1644 		mutex_enter(&ih_lock[i]);
1645 		for (ip = ih->ih_chain[0], lip_held = 0;
1646 		    ip != (struct inode *)ih;
1647 		    ip = lip->i_forw) {
1648 
1649 			ins.in_scan.value.ul++;
1650 
1651 			/*
1652 			 * Undo the previous iteration's VN_HOLD(), but
1653 			 * only if one was done.
1654 			 */
1655 			if (lip_held)
1656 				VN_RELE(ITOV(lip));
1657 
1658 			lip = ip;
1659 			if (ufsvfsp != NULL && ip->i_ufsvfs != ufsvfsp) {
1660 				/*
1661 				 * We're not processing all inodes, and
1662 				 * this inode is not in the filesystem of
1663 				 * interest, so skip it.  No need to do a
1664 				 * VN_HOLD() since we're not dropping the
1665 				 * hash chain lock until after we've
1666 				 * done the i_forw traversal above.
1667 				 */
1668 				lip_held = 0;
1669 				continue;
1670 			}
1671 			VN_HOLD(ITOV(ip));
1672 			lip_held = 1;
1673 			mutex_exit(&ih_lock[i]);
1674 
1675 			/*
1676 			 * Acquire the contents lock as writer to make
1677 			 * sure that the inode has been initialized in
1678 			 * the cache or removed from the idle list by
1679 			 * ufs_iget().  This works because ufs_iget()
1680 			 * acquires the contents lock before putting
1681 			 * the inode into the cache.  If we can lock
1682 			 * it, then he's done with it.
1683 			 */
1684 
1685 			if (rwtry) {
1686 				if (!rw_tryenter(&ip->i_contents, RW_WRITER)) {
1687 					mutex_enter(&ih_lock[i]);
1688 					continue;
1689 				}
1690 			} else {
1691 				rw_enter(&ip->i_contents, RW_WRITER);
1692 			}
1693 
1694 			rw_exit(&ip->i_contents);
1695 
1696 			/*
1697 			 * ISTALE means the inode couldn't be read
1698 			 *
1699 			 * We don't have to hold the i_contents lock
1700 			 * for this check for a couple of
1701 			 * reasons. First, if ISTALE is set then the
1702 			 * flag cannot be cleared until the inode is
1703 			 * removed from the cache and that cannot
1704 			 * happen until after we VN_RELE() it.
1705 			 * Second, if ISTALE is not set, then the
1706 			 * inode is in the cache and does not need to
1707 			 * be read from disk so ISTALE cannot be set
1708 			 * while we are not looking.
1709 			 */
1710 			if ((ip->i_flag & ISTALE) == 0) {
1711 				if ((error = (*func)(ip, arg)) != 0)
1712 					saverror = error;
1713 			}
1714 
1715 			mutex_enter(&ih_lock[i]);
1716 		}
1717 		if (lip_held)
1718 			VN_RELE(ITOV(lip));
1719 		mutex_exit(&ih_lock[i]);
1720 	}
1721 	return (saverror);
1722 }
1723 
1724 /*
1725  * Mark inode with the current time, plus a unique increment.
1726  *
1727  * Since we only keep 32-bit time on disk, if UFS is still alive
1728  * beyond 2038, filesystem times will simply stick at the last
1729  * possible second of 32-bit time. Not ideal, but probably better
1730  * than going into the remote past, or confusing applications with
1731  * negative time.
1732  */
1733 void
1734 ufs_imark(struct inode *ip)
1735 {
1736 	timestruc_t now;
1737 	int32_t usec, nsec;
1738 
1739 	/*
1740 	 * The update of i_seq may have been deferred, increase i_seq here
1741 	 * to make sure it is in sync with the timestamps.
1742 	 */
1743 	if (ip->i_flag & ISEQ) {
1744 		ASSERT(ip->i_flag & (IUPD|ICHG));
1745 		ip->i_seq++;
1746 		ip->i_flag &= ~ISEQ;
1747 	}
1748 
1749 	gethrestime(&now);
1750 
1751 	/*
1752 	 * Fast algorithm to convert nsec to usec -- see hrt2ts()
1753 	 * in common/os/timers.c for a full description.
1754 	 */
1755 	nsec = now.tv_nsec;
1756 	usec = nsec + (nsec >> 2);
1757 	usec = nsec + (usec >> 1);
1758 	usec = nsec + (usec >> 2);
1759 	usec = nsec + (usec >> 4);
1760 	usec = nsec - (usec >> 3);
1761 	usec = nsec + (usec >> 2);
1762 	usec = nsec + (usec >> 3);
1763 	usec = nsec + (usec >> 4);
1764 	usec = nsec + (usec >> 1);
1765 	usec = nsec + (usec >> 6);
1766 	usec = usec >> 10;
1767 
1768 	mutex_enter(&ufs_iuniqtime_lock);
1769 	if (now.tv_sec > (time_t)iuniqtime.tv_sec ||
1770 	    usec > iuniqtime.tv_usec) {
1771 		if (now.tv_sec < TIME32_MAX) {
1772 			iuniqtime.tv_sec = (time32_t)now.tv_sec;
1773 			iuniqtime.tv_usec = usec;
1774 		}
1775 	} else {
1776 		if (iuniqtime.tv_sec < TIME32_MAX) {
1777 			iuniqtime.tv_usec++;
1778 			/* Check for usec overflow */
1779 			if (iuniqtime.tv_usec >= MICROSEC) {
1780 				iuniqtime.tv_sec++;
1781 				iuniqtime.tv_usec = 0;
1782 			}
1783 		}
1784 	}
1785 
1786 	if ((ip->i_flag & IACC) && !(ip->i_ufsvfs->vfs_noatime)) {
1787 		ip->i_atime = iuniqtime;
1788 	}
1789 	if (ip->i_flag & IUPD) {
1790 		ip->i_mtime = iuniqtime;
1791 		ip->i_flag |= IMODTIME;
1792 	}
1793 	if (ip->i_flag & ICHG) {
1794 		ip->i_diroff = 0;
1795 		ip->i_ctime = iuniqtime;
1796 	}
1797 	mutex_exit(&ufs_iuniqtime_lock);
1798 }
1799 
1800 /*
1801  * Update timestamps in inode.
1802  */
1803 void
1804 ufs_itimes_nolock(struct inode *ip)
1805 {
1806 
1807 	/*
1808 	 * if noatime is set and the inode access time is the only field that
1809 	 * must be changed, exit immediately.
1810 	 */
1811 	if (((ip->i_flag & (IUPD|IACC|ICHG)) == IACC) &&
1812 	    (ip->i_ufsvfs->vfs_noatime)) {
1813 		return;
1814 	}
1815 
1816 	if (ip->i_flag & (IUPD|IACC|ICHG)) {
1817 		if (ip->i_flag & ICHG)
1818 			ip->i_flag |= IMOD;
1819 		else
1820 			ip->i_flag |= IMODACC;
1821 		ufs_imark(ip);
1822 		ip->i_flag &= ~(IACC|IUPD|ICHG);
1823 	}
1824 }
1825