xref: /illumos-gate/usr/src/uts/common/fs/ufs/ufs_vfsops.c (revision 4bc0a2ef)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 
41 #pragma ident	"%Z%%M%	%I%	%E% SMI"
42 
43 #include <sys/types.h>
44 #include <sys/t_lock.h>
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitmap.h>
48 #include <sys/sysmacros.h>
49 #include <sys/kmem.h>
50 #include <sys/signal.h>
51 #include <sys/user.h>
52 #include <sys/proc.h>
53 #include <sys/disp.h>
54 #include <sys/buf.h>
55 #include <sys/pathname.h>
56 #include <sys/vfs.h>
57 #include <sys/vnode.h>
58 #include <sys/file.h>
59 #include <sys/atomic.h>
60 #include <sys/uio.h>
61 #include <sys/dkio.h>
62 #include <sys/cred.h>
63 #include <sys/conf.h>
64 #include <sys/dnlc.h>
65 #include <sys/kstat.h>
66 #include <sys/acl.h>
67 #include <sys/fs/ufs_fsdir.h>
68 #include <sys/fs/ufs_fs.h>
69 #include <sys/fs/ufs_inode.h>
70 #include <sys/fs/ufs_mount.h>
71 #include <sys/fs/ufs_acl.h>
72 #include <sys/fs/ufs_panic.h>
73 #include <sys/fs/ufs_bio.h>
74 #include <sys/fs/ufs_quota.h>
75 #include <sys/fs/ufs_log.h>
76 #undef NFS
77 #include <sys/statvfs.h>
78 #include <sys/mount.h>
79 #include <sys/mntent.h>
80 #include <sys/swap.h>
81 #include <sys/errno.h>
82 #include <sys/debug.h>
83 #include "fs/fs_subr.h"
84 #include <sys/cmn_err.h>
85 #include <sys/dnlc.h>
86 #include <sys/fssnap_if.h>
87 #include <sys/sunddi.h>
88 #include <sys/bootconf.h>
89 #include <sys/policy.h>
90 #include <sys/zone.h>
91 
92 /*
93  * This is the loadable module wrapper.
94  */
95 #include <sys/modctl.h>
96 
97 int			ufsfstype;
98 vfsops_t		*ufs_vfsops;
99 static int		ufsinit(int, char *);
100 static int		mountfs();
101 extern int		highbit();
102 extern struct instats	ins;
103 extern struct vnode *common_specvp(struct vnode *vp);
104 extern vfs_t		EIO_vfs;
105 
106 struct  dquot *dquot, *dquotNDQUOT;
107 
108 /*
109  * Cylinder group summary information handling tunable.
110  * This defines when these deltas get logged.
111  * If the number of cylinders in the file system is over the
112  * tunable then we log csum updates. Otherwise the updates are only
113  * done for performance on unmount. After a panic they can be
114  * quickly constructed during mounting. See ufs_construct_si()
115  * called from ufs_getsummaryinfo().
116  *
117  * This performance feature can of course be disabled by setting
118  * ufs_ncg_log to 0, and fully enabled by setting it to 0xffffffff.
119  */
120 #define	UFS_LOG_NCG_DEFAULT 10000
121 uint32_t ufs_ncg_log = UFS_LOG_NCG_DEFAULT;
122 
123 /*
124  * ufs_clean_root indicates whether the root fs went down cleanly
125  */
126 static int ufs_clean_root = 0;
127 
128 /*
129  * UFS Mount options table
130  */
131 static char *intr_cancel[] = { MNTOPT_NOINTR, NULL };
132 static char *nointr_cancel[] = { MNTOPT_INTR, NULL };
133 static char *forcedirectio_cancel[] = { MNTOPT_NOFORCEDIRECTIO, NULL };
134 static char *noforcedirectio_cancel[] = { MNTOPT_FORCEDIRECTIO, NULL };
135 static char *largefiles_cancel[] = { MNTOPT_NOLARGEFILES, NULL };
136 static char *nolargefiles_cancel[] = { MNTOPT_LARGEFILES, NULL };
137 static char *logging_cancel[] = { MNTOPT_NOLOGGING, NULL };
138 static char *nologging_cancel[] = { MNTOPT_LOGGING, NULL };
139 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
140 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
141 static char *quota_cancel[] = { MNTOPT_NOQUOTA, NULL };
142 static char *noquota_cancel[] = { MNTOPT_QUOTA, NULL };
143 static char *dfratime_cancel[] = { MNTOPT_NODFRATIME, NULL };
144 static char *nodfratime_cancel[] = { MNTOPT_DFRATIME, NULL };
145 
146 static mntopt_t mntopts[] = {
147 /*
148  *	option name		cancel option	default arg	flags
149  *		ufs arg flag
150  */
151 	{ MNTOPT_INTR,		intr_cancel,	NULL,		MO_DEFAULT,
152 		(void *)0 },
153 	{ MNTOPT_NOINTR,	nointr_cancel,	NULL,		0,
154 		(void *)UFSMNT_NOINTR },
155 	{ MNTOPT_SYNCDIR,	NULL,		NULL,		0,
156 		(void *)UFSMNT_SYNCDIR },
157 	{ MNTOPT_FORCEDIRECTIO,	forcedirectio_cancel, NULL,	0,
158 		(void *)UFSMNT_FORCEDIRECTIO },
159 	{ MNTOPT_NOFORCEDIRECTIO, noforcedirectio_cancel, NULL, 0,
160 		(void *)UFSMNT_NOFORCEDIRECTIO },
161 	{ MNTOPT_NOSETSEC,	NULL,		NULL,		0,
162 		(void *)UFSMNT_NOSETSEC },
163 	{ MNTOPT_LARGEFILES,	largefiles_cancel, NULL,	MO_DEFAULT,
164 		(void *)UFSMNT_LARGEFILES },
165 	{ MNTOPT_NOLARGEFILES,	nolargefiles_cancel, NULL,	0,
166 		(void *)0 },
167 	{ MNTOPT_LOGGING,	logging_cancel, NULL,		MO_TAG,
168 		(void *)UFSMNT_LOGGING },
169 	{ MNTOPT_NOLOGGING,	nologging_cancel, NULL,
170 		MO_NODISPLAY|MO_DEFAULT|MO_TAG, (void *)0 },
171 	{ MNTOPT_QUOTA,		quota_cancel, NULL,		MO_IGNORE,
172 		(void *)0 },
173 	{ MNTOPT_NOQUOTA,	noquota_cancel,	NULL,
174 		MO_NODISPLAY|MO_DEFAULT, (void *)0 },
175 	{ MNTOPT_GLOBAL,	NULL,		NULL,		0,
176 		(void *)0 },
177 	{ MNTOPT_XATTR,	xattr_cancel,		NULL,		MO_DEFAULT,
178 		(void *)0 },
179 	{ MNTOPT_NOXATTR,	noxattr_cancel,		NULL,		0,
180 		(void *)0 },
181 	{ MNTOPT_NOATIME,	NULL,		NULL,		0,
182 		(void *)UFSMNT_NOATIME },
183 	{ MNTOPT_DFRATIME,	dfratime_cancel, NULL,		0,
184 		(void *)0 },
185 	{ MNTOPT_NODFRATIME,	nodfratime_cancel, NULL,
186 		MO_NODISPLAY|MO_DEFAULT, (void *)UFSMNT_NODFRATIME },
187 	{ MNTOPT_ONERROR,	NULL,		UFSMNT_ONERROR_PANIC_STR,
188 		MO_DEFAULT|MO_HASVALUE,	(void *)0 },
189 };
190 
191 static mntopts_t ufs_mntopts = {
192 	sizeof (mntopts) / sizeof (mntopt_t),
193 	mntopts
194 };
195 
196 static vfsdef_t vfw = {
197 	VFSDEF_VERSION,
198 	"ufs",
199 	ufsinit,
200 	VSW_HASPROTO|VSW_CANREMOUNT,
201 	&ufs_mntopts
202 };
203 
204 /*
205  * Module linkage information for the kernel.
206  */
207 extern struct mod_ops mod_fsops;
208 
209 static struct modlfs modlfs = {
210 	&mod_fsops, "filesystem for ufs", &vfw
211 };
212 
213 static struct modlinkage modlinkage = {
214 	MODREV_1, (void *)&modlfs, NULL
215 };
216 
217 /*
218  * An attempt has been made to make this module unloadable.  In order to
219  * test it, we need a system in which the root fs is NOT ufs.  THIS HAS NOT
220  * BEEN DONE
221  */
222 
223 extern kstat_t *ufs_inode_kstat;
224 extern uint_t ufs_lockfs_key;
225 extern void ufs_lockfs_tsd_destructor(void *);
226 extern uint_t bypass_snapshot_throttle_key;
227 
228 int
229 _init(void)
230 {
231 	/*
232 	 * Create an index into the per thread array so that any thread doing
233 	 * VOP will have a lockfs mark on it.
234 	 */
235 	tsd_create(&ufs_lockfs_key, ufs_lockfs_tsd_destructor);
236 	tsd_create(&bypass_snapshot_throttle_key, NULL);
237 	return (mod_install(&modlinkage));
238 }
239 
240 int
241 _fini(void)
242 {
243 	return (EBUSY);
244 }
245 
246 int
247 _info(struct modinfo *modinfop)
248 {
249 	return (mod_info(&modlinkage, modinfop));
250 }
251 
252 extern struct vnode *makespecvp(dev_t dev, vtype_t type);
253 
254 extern kmutex_t	ufs_scan_lock;
255 
256 static int mountfs(struct vfs *, enum whymountroot, struct vnode *, char *,
257 		struct cred *, int, void *, int);
258 
259 
260 static int
261 ufs_mount(struct vfs *vfsp, struct vnode *mvp, struct mounta *uap,
262 	struct cred *cr)
263 
264 {
265 	char *data = uap->dataptr;
266 	int datalen = uap->datalen;
267 	dev_t dev;
268 	struct vnode *bvp;
269 	struct pathname dpn;
270 	int error;
271 	enum whymountroot why = ROOT_INIT;
272 	struct ufs_args args;
273 	int oflag, aflag;
274 	int fromspace = (uap->flags & MS_SYSSPACE) ?
275 	    UIO_SYSSPACE : UIO_USERSPACE;
276 
277 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
278 		return (error);
279 
280 	if (mvp->v_type != VDIR)
281 		return (ENOTDIR);
282 
283 	mutex_enter(&mvp->v_lock);
284 	if ((uap->flags & MS_REMOUNT) == 0 &&
285 	    (uap->flags & MS_OVERLAY) == 0 &&
286 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
287 		mutex_exit(&mvp->v_lock);
288 		return (EBUSY);
289 	}
290 	mutex_exit(&mvp->v_lock);
291 
292 	/*
293 	 * Get arguments
294 	 */
295 	bzero(&args, sizeof (args));
296 	if ((uap->flags & MS_DATA) && data != NULL && datalen != 0) {
297 		int copy_result = 0;
298 
299 		if (datalen > sizeof (args))
300 			return (EINVAL);
301 		if (uap->flags & MS_SYSSPACE)
302 			bcopy(data, &args, datalen);
303 		else
304 			copy_result = copyin(data, &args, datalen);
305 		if (copy_result)
306 			return (EFAULT);
307 		datalen = sizeof (struct ufs_args);
308 	} else {
309 		datalen = 0;
310 	}
311 	/*
312 	 * Read in the mount point pathname
313 	 * (so we can record the directory the file system was last mounted on).
314 	 */
315 	if (error = pn_get(uap->dir, fromspace, &dpn))
316 		return (error);
317 
318 	/*
319 	 * Resolve path name of special file being mounted.
320 	 */
321 	if (error = lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp)) {
322 		pn_free(&dpn);
323 		return (error);
324 	}
325 	if (bvp->v_type != VBLK) {
326 		VN_RELE(bvp);
327 		pn_free(&dpn);
328 		return (ENOTBLK);
329 	}
330 	dev = bvp->v_rdev;
331 	if (getmajor(dev) >= devcnt) {
332 		pn_free(&dpn);
333 		VN_RELE(bvp);
334 		return (ENXIO);
335 	}
336 	if (uap->flags & MS_REMOUNT)
337 		why = ROOT_REMOUNT;
338 
339 	/*
340 	 * In SunCluster, requests to a global device are satisfied by
341 	 * a local device. We substitute the global pxfs node with a
342 	 * local spec node here.
343 	 */
344 	if (IS_PXFSVP(bvp)) {
345 		VN_RELE(bvp);
346 		bvp = makespecvp(dev, VBLK);
347 	}
348 
349 	/*
350 	 * Open block device mounted on.  We need this to
351 	 * check whether the caller has sufficient rights to
352 	 * access the device in question.
353 	 * When bio is fixed for vnodes this can all be vnode
354 	 * operations.
355 	 */
356 	if ((vfsp->vfs_flag & VFS_RDONLY) != 0 ||
357 	    (uap->flags & MS_RDONLY) != 0) {
358 		oflag = FREAD;
359 		aflag = VREAD;
360 	} else {
361 		oflag = FREAD | FWRITE;
362 		aflag = VREAD | VWRITE;
363 	}
364 	if ((error = VOP_ACCESS(bvp, aflag, 0, cr)) != 0 ||
365 	    (error = secpolicy_spec_open(cr, bvp, oflag)) != 0) {
366 		pn_free(&dpn);
367 		VN_RELE(bvp);
368 		return (error);
369 	}
370 
371 	/*
372 	 * Ensure that this device isn't already mounted or in progress on a
373 	 * mount unless this is a REMOUNT request or we are told to suppress
374 	 * mount checks. Global mounts require special handling.
375 	 */
376 	if ((uap->flags & MS_NOCHECK) == 0) {
377 		if ((uap->flags & MS_GLOBAL) == 0 &&
378 		    vfs_devmounting(dev, vfsp)) {
379 			pn_free(&dpn);
380 			VN_RELE(bvp);
381 			return (EBUSY);
382 		}
383 		if (vfs_devismounted(dev)) {
384 			if ((uap->flags & MS_REMOUNT) == 0) {
385 				pn_free(&dpn);
386 				VN_RELE(bvp);
387 				return (EBUSY);
388 			}
389 		}
390 	}
391 
392 	/*
393 	 * If the device is a tape, mount it read only
394 	 */
395 	if (devopsp[getmajor(dev)]->devo_cb_ops->cb_flag & D_TAPE) {
396 		vfsp->vfs_flag |= VFS_RDONLY;
397 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
398 	}
399 	if (uap->flags & MS_RDONLY)
400 		vfsp->vfs_flag |= VFS_RDONLY;
401 
402 	/*
403 	 * Mount the filesystem, free the device vnode on error.
404 	 */
405 	error = mountfs(vfsp, why, bvp, dpn.pn_path, cr, 0, &args, datalen);
406 	pn_free(&dpn);
407 	if (error) {
408 		VN_RELE(bvp);
409 	}
410 	return (error);
411 }
412 /*
413  * Mount root file system.
414  * "why" is ROOT_INIT on initial call ROOT_REMOUNT if called to
415  * remount the root file system, and ROOT_UNMOUNT if called to
416  * unmount the root (e.g., as part of a system shutdown).
417  *
418  * XXX - this may be partially machine-dependent; it, along with the VFS_SWAPVP
419  * operation, goes along with auto-configuration.  A mechanism should be
420  * provided by which machine-INdependent code in the kernel can say "get me the
421  * right root file system" and "get me the right initial swap area", and have
422  * that done in what may well be a machine-dependent fashion.
423  * Unfortunately, it is also file-system-type dependent (NFS gets it via
424  * bootparams calls, UFS gets it from various and sundry machine-dependent
425  * mechanisms, as SPECFS does for swap).
426  */
427 static int
428 ufs_mountroot(struct vfs *vfsp, enum whymountroot why)
429 {
430 	struct fs *fsp;
431 	int error;
432 	static int ufsrootdone = 0;
433 	dev_t rootdev;
434 	struct vnode *vp;
435 	struct vnode *devvp = 0;
436 	int ovflags;
437 	int doclkset;
438 	ufsvfs_t *ufsvfsp;
439 
440 	if (why == ROOT_INIT) {
441 		if (ufsrootdone++)
442 			return (EBUSY);
443 		rootdev = getrootdev();
444 		if (rootdev == (dev_t)NODEV)
445 			return (ENODEV);
446 		vfsp->vfs_dev = rootdev;
447 		vfsp->vfs_flag |= VFS_RDONLY;
448 	} else if (why == ROOT_REMOUNT) {
449 		vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
450 		(void) dnlc_purge_vfsp(vfsp, 0);
451 		vp = common_specvp(vp);
452 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL, CRED());
453 		(void) bfinval(vfsp->vfs_dev, 0);
454 		fsp = getfs(vfsp);
455 
456 		ovflags = vfsp->vfs_flag;
457 		vfsp->vfs_flag &= ~VFS_RDONLY;
458 		vfsp->vfs_flag |= VFS_REMOUNT;
459 		rootdev = vfsp->vfs_dev;
460 	} else if (why == ROOT_UNMOUNT) {
461 		if (vfs_lock(vfsp) == 0) {
462 			(void) ufs_flush(vfsp);
463 			/*
464 			 * Mark the log as fully rolled
465 			 */
466 			ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
467 			fsp = ufsvfsp->vfs_fs;
468 			if (TRANS_ISTRANS(ufsvfsp) &&
469 			    !TRANS_ISERROR(ufsvfsp) &&
470 			    (fsp->fs_rolled == FS_NEED_ROLL)) {
471 				ml_unit_t *ul = ufsvfsp->vfs_log;
472 
473 				error = ufs_putsummaryinfo(ul->un_dev,
474 				    ufsvfsp, fsp);
475 				if (error == 0) {
476 					fsp->fs_rolled = FS_ALL_ROLLED;
477 					UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
478 				}
479 			}
480 			vfs_unlock(vfsp);
481 		} else {
482 			ufs_update(0);
483 		}
484 
485 		vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
486 		(void) VOP_CLOSE(vp, FREAD|FWRITE, 1,
487 			(offset_t)0, CRED());
488 		return (0);
489 	}
490 	error = vfs_lock(vfsp);
491 	if (error)
492 		return (error);
493 
494 	devvp = makespecvp(rootdev, VBLK);
495 
496 	/* If RO media, don't call clkset() (see below) */
497 	doclkset = 1;
498 	if (why == ROOT_INIT) {
499 		error = VOP_OPEN(&devvp, FREAD|FWRITE, CRED());
500 		if (error == 0) {
501 			(void) VOP_CLOSE(devvp, FREAD|FWRITE, 1,
502 				(offset_t)0, CRED());
503 		} else {
504 			doclkset = 0;
505 		}
506 	}
507 
508 	error = mountfs(vfsp, why, devvp, "/", CRED(), 1, NULL, 0);
509 	/*
510 	 * XXX - assumes root device is not indirect, because we don't set
511 	 * rootvp.  Is rootvp used for anything?  If so, make another arg
512 	 * to mountfs.
513 	 */
514 	if (error) {
515 		vfs_unlock(vfsp);
516 		if (why == ROOT_REMOUNT)
517 			vfsp->vfs_flag = ovflags;
518 		if (rootvp) {
519 			VN_RELE(rootvp);
520 			rootvp = (struct vnode *)0;
521 		}
522 		VN_RELE(devvp);
523 		return (error);
524 	}
525 	if (why == ROOT_INIT)
526 		vfs_add((struct vnode *)0, vfsp,
527 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
528 	vfs_unlock(vfsp);
529 	fsp = getfs(vfsp);
530 	clkset(doclkset ? fsp->fs_time : -1);
531 	ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
532 	if (ufsvfsp->vfs_log) {
533 		vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0);
534 	}
535 	return (0);
536 }
537 
538 static int
539 remountfs(struct vfs *vfsp, dev_t dev, void *raw_argsp, int args_len)
540 {
541 	struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
542 	struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs;
543 	struct buf *bp = ufsvfsp->vfs_bufp;
544 	struct fs *fsp = (struct fs *)bp->b_un.b_addr;
545 	struct fs *fspt;
546 	struct buf *tpt = 0;
547 	int error = 0;
548 	int flags = 0;
549 
550 	if (args_len == sizeof (struct ufs_args) && raw_argsp)
551 		flags = ((struct ufs_args *)raw_argsp)->flags;
552 
553 	/* cannot remount to RDONLY */
554 	if (vfsp->vfs_flag & VFS_RDONLY)
555 		return (EINVAL);
556 
557 	/* whoops, wrong dev */
558 	if (vfsp->vfs_dev != dev)
559 		return (EINVAL);
560 
561 	/*
562 	 * synchronize w/ufs ioctls
563 	 */
564 	mutex_enter(&ulp->ul_lock);
565 	atomic_add_long(&ufs_quiesce_pend, 1);
566 
567 	/*
568 	 * reset options
569 	 */
570 	ufsvfsp->vfs_nointr  = flags & UFSMNT_NOINTR;
571 	ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
572 	ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
573 	ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
574 	if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
575 		ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
576 	else	/* dfratime, default behavior */
577 		ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
578 	if (flags & UFSMNT_FORCEDIRECTIO)
579 		ufsvfsp->vfs_forcedirectio = 1;
580 	else	/* default is no direct I/O */
581 		ufsvfsp->vfs_forcedirectio = 0;
582 	ufsvfsp->vfs_iotstamp = lbolt;
583 
584 	/*
585 	 * set largefiles flag in ufsvfs equal to the
586 	 * value passed in by the mount command. If
587 	 * it is "nolargefiles", and the flag is set
588 	 * in the superblock, the mount fails.
589 	 */
590 	if (!(flags & UFSMNT_LARGEFILES)) {  /* "nolargefiles" */
591 		if (fsp->fs_flags & FSLARGEFILES) {
592 			error = EFBIG;
593 			goto remounterr;
594 		}
595 		ufsvfsp->vfs_lfflags &= ~UFS_LARGEFILES;
596 	} else	/* "largefiles" */
597 		ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
598 	/*
599 	 * read/write to read/write; all done
600 	 */
601 	if (fsp->fs_ronly == 0)
602 		goto remounterr;
603 
604 	/*
605 	 * fix-on-panic assumes RO->RW remount implies system-critical fs
606 	 * if it is shortly after boot; so, don't attempt to lock and fix
607 	 * (unless the user explicitly asked for another action on error)
608 	 * XXX UFSMNT_ONERROR_RDONLY rather than UFSMNT_ONERROR_PANIC
609 	 */
610 #define	BOOT_TIME_LIMIT	(180*hz)
611 	if (!(flags & UFSMNT_ONERROR_FLGMASK) && lbolt < BOOT_TIME_LIMIT) {
612 		cmn_err(CE_WARN, "%s is required to be mounted onerror=%s",
613 			ufsvfsp->vfs_fs->fs_fsmnt, UFSMNT_ONERROR_PANIC_STR);
614 		flags |= UFSMNT_ONERROR_PANIC;
615 	}
616 
617 	if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
618 		goto remounterr;
619 
620 	/*
621 	 * Lock the file system and flush stuff from memory
622 	 */
623 	error = ufs_quiesce(ulp);
624 	if (error)
625 		goto remounterr;
626 
627 	/*
628 	 * We don't need to call the expensive ufs_flush when going from
629 	 * read only to read/write, except if the root fs didn't come
630 	 * down cleanly.
631 	 */
632 	if ((ufsvfsp->vfs_devvp == rootvp) && !ufs_clean_root) {
633 		error = ufs_flush(vfsp);
634 		if (error) {
635 			goto remounterr;
636 		}
637 	}
638 
639 	tpt = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, SBLOCK, SBSIZE);
640 	if (tpt->b_flags & B_ERROR) {
641 		error = EIO;
642 		goto remounterr;
643 	}
644 	fspt = (struct fs *)tpt->b_un.b_addr;
645 	if (((fspt->fs_magic != FS_MAGIC) &&
646 	    (fspt->fs_magic != MTB_UFS_MAGIC)) ||
647 	    (fspt->fs_magic == FS_MAGIC &&
648 		(fspt->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
649 		fspt->fs_version != UFS_VERSION_MIN)) ||
650 	    (fspt->fs_magic == MTB_UFS_MAGIC &&
651 		(fspt->fs_version > MTB_UFS_VERSION_1 ||
652 		fspt->fs_version < MTB_UFS_VERSION_MIN)) ||
653 	    fspt->fs_bsize > MAXBSIZE || fspt->fs_frag > MAXFRAG ||
654 	    fspt->fs_bsize < sizeof (struct fs) || fspt->fs_bsize < PAGESIZE) {
655 		tpt->b_flags |= B_STALE | B_AGE;
656 		error = EINVAL;
657 		goto remounterr;
658 	}
659 
660 	if (ufsvfsp->vfs_log && (ufsvfsp->vfs_log->un_flags & LDL_NOROLL)) {
661 		ufsvfsp->vfs_log->un_flags &= ~LDL_NOROLL;
662 		logmap_start_roll(ufsvfsp->vfs_log);
663 	}
664 
665 	if (TRANS_ISERROR(ufsvfsp))
666 		goto remounterr;
667 	TRANS_DOMATAMAP(ufsvfsp);
668 
669 	if ((fspt->fs_state + fspt->fs_time == FSOKAY) &&
670 	    fspt->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp)) {
671 		ufsvfsp->vfs_log = NULL;
672 		ufsvfsp->vfs_domatamap = 0;
673 		error = ENOSPC;
674 		goto remounterr;
675 	}
676 
677 	if (fspt->fs_state + fspt->fs_time == FSOKAY &&
678 	    (fspt->fs_clean == FSCLEAN ||
679 	    fspt->fs_clean == FSSTABLE ||
680 	    fspt->fs_clean == FSLOG)) {
681 
682 		/*
683 		 * Ensure that ufs_getsummaryinfo doesn't reconstruct
684 		 * the summary info.
685 		 */
686 		error = ufs_getsummaryinfo(vfsp->vfs_dev, ufsvfsp, fspt);
687 		if (error)
688 			goto remounterr;
689 
690 		/* preserve mount name */
691 		(void) strncpy(fspt->fs_fsmnt, fsp->fs_fsmnt, MAXMNTLEN);
692 		/* free the old cg space */
693 		kmem_free(fsp->fs_u.fs_csp, fsp->fs_cssize);
694 		/* switch in the new superblock */
695 		fspt->fs_rolled = FS_NEED_ROLL;
696 		bcopy(tpt->b_un.b_addr, bp->b_un.b_addr, fspt->fs_sbsize);
697 
698 		fsp->fs_clean = FSSTABLE;
699 	} /* superblock updated in memory */
700 	tpt->b_flags |= B_STALE | B_AGE;
701 	brelse(tpt);
702 	tpt = 0;
703 
704 	if (fsp->fs_clean != FSSTABLE) {
705 		error = ENOSPC;
706 		goto remounterr;
707 	}
708 
709 
710 	if (TRANS_ISTRANS(ufsvfsp)) {
711 		fsp->fs_clean = FSLOG;
712 		ufsvfsp->vfs_dio = 0;
713 	} else
714 		if (ufsvfsp->vfs_dio)
715 			fsp->fs_clean = FSSUSPEND;
716 
717 	TRANS_MATA_MOUNT(ufsvfsp);
718 
719 	fsp->fs_fmod = 0;
720 	fsp->fs_ronly = 0;
721 
722 	atomic_add_long(&ufs_quiesce_pend, -1);
723 	cv_broadcast(&ulp->ul_cv);
724 	mutex_exit(&ulp->ul_lock);
725 
726 	if (TRANS_ISTRANS(ufsvfsp)) {
727 
728 		/*
729 		 * start the delete thread
730 		 */
731 		ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
732 
733 		/*
734 		 * start the reclaim thread
735 		 */
736 		if (fsp->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) {
737 			fsp->fs_reclaim &= ~FS_RECLAIM;
738 			fsp->fs_reclaim |=  FS_RECLAIMING;
739 			ufs_thread_start(&ufsvfsp->vfs_reclaim,
740 				ufs_thread_reclaim, vfsp);
741 		}
742 	}
743 
744 	TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
745 
746 	return (0);
747 
748 remounterr:
749 	if (tpt)
750 		brelse(tpt);
751 	atomic_add_long(&ufs_quiesce_pend, -1);
752 	cv_broadcast(&ulp->ul_cv);
753 	mutex_exit(&ulp->ul_lock);
754 	return (error);
755 }
756 
757 /*
758  * If the device maxtransfer size is not available, we use ufs_maxmaxphys
759  * along with the system value for maxphys to determine the value for
760  * maxtransfer.
761  */
762 int ufs_maxmaxphys = (1024 * 1024);
763 
764 #include <sys/ddi.h>		/* for delay(9f) */
765 
766 int ufs_mount_error_delay = 20;	/* default to 20ms */
767 int ufs_mount_timeout = 60;	/* default to 1 minute */
768 
769 static int
770 mountfs(struct vfs *vfsp, enum whymountroot why, struct vnode *devvp,
771 	char *path, cred_t *cr, int isroot, void *raw_argsp, int args_len)
772 {
773 	dev_t dev = devvp->v_rdev;
774 	struct fs *fsp;
775 	struct ufsvfs *ufsvfsp = 0;
776 	struct buf *bp = 0;
777 	struct buf *tp = 0;
778 	struct dk_cinfo ci;
779 	int error = 0;
780 	size_t len;
781 	int needclose = 0;
782 	int needtrans = 0;
783 	struct inode *rip;
784 	struct vnode *rvp = NULL;
785 	int flags = 0;
786 	kmutex_t *ihm;
787 	int elapsed;
788 	int status;
789 	extern	int	maxphys;
790 
791 	if (args_len == sizeof (struct ufs_args) && raw_argsp)
792 		flags = ((struct ufs_args *)raw_argsp)->flags;
793 
794 	ASSERT(vfs_lock_held(vfsp));
795 
796 	if (why == ROOT_INIT) {
797 		/*
798 		 * Open block device mounted on.
799 		 * When bio is fixed for vnodes this can all be vnode
800 		 * operations.
801 		 */
802 		error = VOP_OPEN(&devvp,
803 		    (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, cr);
804 		if (error)
805 			goto out;
806 		needclose = 1;
807 
808 		/*
809 		 * Refuse to go any further if this
810 		 * device is being used for swapping.
811 		 */
812 		if (IS_SWAPVP(devvp)) {
813 			error = EBUSY;
814 			goto out;
815 		}
816 	}
817 
818 	/*
819 	 * check for dev already mounted on
820 	 */
821 	if (vfsp->vfs_flag & VFS_REMOUNT) {
822 		error = remountfs(vfsp, dev, raw_argsp, args_len);
823 		if (error == 0)
824 			VN_RELE(devvp);
825 		return (error);
826 	}
827 
828 	ASSERT(devvp != 0);
829 
830 	/*
831 	 * Flush back any dirty pages on the block device to
832 	 * try and keep the buffer cache in sync with the page
833 	 * cache if someone is trying to use block devices when
834 	 * they really should be using the raw device.
835 	 */
836 	(void) VOP_PUTPAGE(common_specvp(devvp), (offset_t)0,
837 	    (size_t)0, B_INVAL, cr);
838 
839 	/*
840 	 * read in superblock
841 	 */
842 	ufsvfsp = kmem_zalloc(sizeof (struct ufsvfs), KM_SLEEP);
843 	tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
844 	if (tp->b_flags & B_ERROR)
845 		goto out;
846 	fsp = (struct fs *)tp->b_un.b_addr;
847 
848 	if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) {
849 		cmn_err(CE_NOTE,
850 		    "mount: not a UFS magic number (0x%x)", fsp->fs_magic);
851 		error = EINVAL;
852 		goto out;
853 	}
854 
855 	if ((fsp->fs_magic == FS_MAGIC) &&
856 	    (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
857 	    fsp->fs_version != UFS_VERSION_MIN)) {
858 		cmn_err(CE_NOTE,
859 		    "mount: unrecognized version of UFS on-disk format: %d",
860 		    fsp->fs_version);
861 		error = EINVAL;
862 		goto out;
863 	}
864 
865 	if ((fsp->fs_magic == MTB_UFS_MAGIC) &&
866 	    (fsp->fs_version > MTB_UFS_VERSION_1 ||
867 	    fsp->fs_version < MTB_UFS_VERSION_MIN)) {
868 		cmn_err(CE_NOTE,
869 		    "mount: unrecognized version of UFS on-disk format: %d",
870 		    fsp->fs_version);
871 		error = EINVAL;
872 		goto out;
873 	}
874 
875 #ifndef _LP64
876 	if (fsp->fs_magic == MTB_UFS_MAGIC) {
877 		/*
878 		 * Find the size of the device in sectors.  If the
879 		 * the size in sectors is greater than INT_MAX, it's
880 		 * a multi-terabyte file system, which can't be
881 		 * mounted by a 32-bit kernel.  We can't use the
882 		 * fsbtodb() macro in the next line because the macro
883 		 * casts the intermediate values to daddr_t, which is
884 		 * a 32-bit quantity in a 32-bit kernel.  Here we
885 		 * really do need the intermediate values to be held
886 		 * in 64-bit quantities because we're checking for
887 		 * overflow of a 32-bit field.
888 		 */
889 		if ((((diskaddr_t)(fsp->fs_size)) << fsp->fs_fsbtodb)
890 		    > INT_MAX) {
891 			cmn_err(CE_NOTE,
892 			    "mount: multi-terabyte UFS cannot be"
893 			    " mounted by a 32-bit kernel");
894 			error = EINVAL;
895 			goto out;
896 		}
897 
898 	}
899 #endif
900 
901 	if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG ||
902 	    fsp->fs_bsize < sizeof (struct fs) || fsp->fs_bsize < PAGESIZE) {
903 		error = EINVAL;	/* also needs translation */
904 		goto out;
905 	}
906 
907 	/*
908 	 * Allocate VFS private data.
909 	 */
910 	vfsp->vfs_bcount = 0;
911 	vfsp->vfs_data = (caddr_t)ufsvfsp;
912 	vfsp->vfs_fstype = ufsfstype;
913 	vfsp->vfs_dev = dev;
914 	vfsp->vfs_flag |= VFS_NOTRUNC;
915 	vfs_make_fsid(&vfsp->vfs_fsid, dev, ufsfstype);
916 	ufsvfsp->vfs_devvp = devvp;
917 
918 	/*
919 	 * Cross-link with vfs and add to instance list.
920 	 */
921 	ufsvfsp->vfs_vfs = vfsp;
922 	ufs_vfs_add(ufsvfsp);
923 
924 	ufsvfsp->vfs_dev = dev;
925 	ufsvfsp->vfs_bufp = tp;
926 
927 	ufsvfsp->vfs_dirsize = INODESIZE + (4 * ALLOCSIZE) + fsp->fs_fsize;
928 	ufsvfsp->vfs_minfrags = (int)((int64_t)fsp->fs_dsize *
929 							fsp->fs_minfree / 100);
930 	/*
931 	 * if mount allows largefiles, indicate so in ufsvfs
932 	 */
933 	if (flags & UFSMNT_LARGEFILES)
934 		ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
935 	/*
936 	 * Initialize threads
937 	 */
938 	ufs_delete_init(ufsvfsp, 1);
939 	ufs_thread_init(&ufsvfsp->vfs_reclaim, 0);
940 
941 	/*
942 	 * Chicken and egg problem. The superblock may have deltas
943 	 * in the log.  So after the log is scanned we reread the
944 	 * superblock. We guarantee that the fields needed to
945 	 * scan the log will not be in the log.
946 	 */
947 	if (fsp->fs_logbno && fsp->fs_clean == FSLOG &&
948 	    (fsp->fs_state + fsp->fs_time == FSOKAY)) {
949 		error = lufs_snarf(ufsvfsp, fsp, (vfsp->vfs_flag & VFS_RDONLY));
950 		if (error) {
951 			/*
952 			 * Allow a ro mount to continue even if the
953 			 * log cannot be processed - yet.
954 			 */
955 			if (!(vfsp->vfs_flag & VFS_RDONLY)) {
956 				cmn_err(CE_WARN, "Error accessing ufs "
957 					"log for %s; Please run fsck(1M)",
958 					path);
959 				goto out;
960 			}
961 		}
962 		tp->b_flags |= (B_AGE | B_STALE);
963 		brelse(tp);
964 		tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
965 		fsp = (struct fs *)tp->b_un.b_addr;
966 		ufsvfsp->vfs_bufp = tp;
967 		if (tp->b_flags & B_ERROR)
968 			goto out;
969 	}
970 
971 	/*
972 	 * Set logging mounted flag used by lockfs
973 	 */
974 	ufsvfsp->vfs_validfs = UT_MOUNTED;
975 
976 	/*
977 	 * Copy the super block into a buffer in its native size.
978 	 * Use ngeteblk to allocate the buffer
979 	 */
980 	bp = ngeteblk(fsp->fs_bsize);
981 	ufsvfsp->vfs_bufp = bp;
982 	bp->b_edev = dev;
983 	bp->b_dev = cmpdev(dev);
984 	bp->b_blkno = SBLOCK;
985 	bp->b_bcount = fsp->fs_sbsize;
986 	bcopy(tp->b_un.b_addr, bp->b_un.b_addr, fsp->fs_sbsize);
987 	tp->b_flags |= B_STALE | B_AGE;
988 	brelse(tp);
989 	tp = 0;
990 
991 	fsp = (struct fs *)bp->b_un.b_addr;
992 	/*
993 	 * Mount fails if superblock flag indicates presence of large
994 	 * files and filesystem is attempted to be mounted 'nolargefiles'.
995 	 * The exception is for a read only mount of root, which we
996 	 * always want to succeed, so fsck can fix potential problems.
997 	 * The assumption is that we will remount root at some point,
998 	 * and the remount will enforce the mount option.
999 	 */
1000 	if (!(isroot & (vfsp->vfs_flag & VFS_RDONLY)) &&
1001 	    (fsp->fs_flags & FSLARGEFILES) &&
1002 	    !(flags & UFSMNT_LARGEFILES)) {
1003 		error = EFBIG;
1004 		goto out;
1005 	}
1006 
1007 	if (vfsp->vfs_flag & VFS_RDONLY) {
1008 		fsp->fs_ronly = 1;
1009 		fsp->fs_fmod = 0;
1010 		if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1011 		    ((fsp->fs_clean == FSCLEAN) ||
1012 		    (fsp->fs_clean == FSSTABLE) ||
1013 		    (fsp->fs_clean == FSLOG))) {
1014 			if (isroot) {
1015 				if (fsp->fs_clean == FSLOG) {
1016 					if (fsp->fs_rolled == FS_ALL_ROLLED) {
1017 						ufs_clean_root = 1;
1018 					}
1019 				} else {
1020 					ufs_clean_root = 1;
1021 				}
1022 			}
1023 			fsp->fs_clean = FSSTABLE;
1024 		} else {
1025 			fsp->fs_clean = FSBAD;
1026 		}
1027 	} else {
1028 
1029 		fsp->fs_fmod = 0;
1030 		fsp->fs_ronly = 0;
1031 
1032 		TRANS_DOMATAMAP(ufsvfsp);
1033 
1034 		if ((TRANS_ISERROR(ufsvfsp)) ||
1035 		    (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1036 			fsp->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp))) {
1037 			ufsvfsp->vfs_log = NULL;
1038 			ufsvfsp->vfs_domatamap = 0;
1039 			error = ENOSPC;
1040 			goto out;
1041 		}
1042 
1043 		if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1044 		    (fsp->fs_clean == FSCLEAN ||
1045 			fsp->fs_clean == FSSTABLE ||
1046 			fsp->fs_clean == FSLOG))
1047 			fsp->fs_clean = FSSTABLE;
1048 		else {
1049 			if (isroot) {
1050 				/*
1051 				 * allow root partition to be mounted even
1052 				 * when fs_state is not ok
1053 				 * will be fixed later by a remount root
1054 				 */
1055 				fsp->fs_clean = FSBAD;
1056 				ufsvfsp->vfs_log = NULL;
1057 				ufsvfsp->vfs_domatamap = 0;
1058 			} else {
1059 				error = ENOSPC;
1060 				goto out;
1061 			}
1062 		}
1063 
1064 		if (fsp->fs_clean == FSSTABLE && TRANS_ISTRANS(ufsvfsp))
1065 			fsp->fs_clean = FSLOG;
1066 	}
1067 	TRANS_MATA_MOUNT(ufsvfsp);
1068 	needtrans = 1;
1069 
1070 	vfsp->vfs_bsize = fsp->fs_bsize;
1071 
1072 	/*
1073 	 * Read in summary info
1074 	 */
1075 	if (error = ufs_getsummaryinfo(dev, ufsvfsp, fsp))
1076 		goto out;
1077 
1078 	/*
1079 	 * lastwhinetime is set to zero rather than lbolt, so that after
1080 	 * mounting if the filesystem is found to be full, then immediately the
1081 	 * "file system message" will be logged.
1082 	 */
1083 	ufsvfsp->vfs_lastwhinetime = 0L;
1084 
1085 
1086 	mutex_init(&ufsvfsp->vfs_lock, NULL, MUTEX_DEFAULT, NULL);
1087 	(void) copystr(path, fsp->fs_fsmnt, sizeof (fsp->fs_fsmnt) - 1, &len);
1088 	bzero(fsp->fs_fsmnt + len, sizeof (fsp->fs_fsmnt) - len);
1089 
1090 	/*
1091 	 * Sanity checks for old file systems
1092 	 */
1093 	if (fsp->fs_postblformat == FS_42POSTBLFMT)
1094 		ufsvfsp->vfs_nrpos = 8;
1095 	else
1096 		ufsvfsp->vfs_nrpos = fsp->fs_nrpos;
1097 
1098 	/*
1099 	 * Initialize lockfs structure to support file system locking
1100 	 */
1101 	bzero(&ufsvfsp->vfs_ulockfs.ul_lockfs,
1102 	    sizeof (struct lockfs));
1103 	ufsvfsp->vfs_ulockfs.ul_fs_lock = ULOCKFS_ULOCK;
1104 	mutex_init(&ufsvfsp->vfs_ulockfs.ul_lock, NULL,
1105 	    MUTEX_DEFAULT, NULL);
1106 	cv_init(&ufsvfsp->vfs_ulockfs.ul_cv, NULL, CV_DEFAULT, NULL);
1107 
1108 	/*
1109 	 * We don't need to grab vfs_dqrwlock for this ufs_iget() call.
1110 	 * We are in the process of mounting the file system so there
1111 	 * is no need to grab the quota lock. If a quota applies to the
1112 	 * root inode, then it will be updated when quotas are enabled.
1113 	 *
1114 	 * However, we have an ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock))
1115 	 * in getinoquota() that we want to keep so grab it anyway.
1116 	 */
1117 	rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1118 
1119 	error = ufs_iget_alloced(vfsp, UFSROOTINO, &rip, cr);
1120 
1121 	rw_exit(&ufsvfsp->vfs_dqrwlock);
1122 
1123 	if (error)
1124 		goto out;
1125 
1126 	/*
1127 	 * make sure root inode is a directory.  Returning ENOTDIR might
1128 	 * be confused with the mount point not being a directory, so
1129 	 * we use EIO instead.
1130 	 */
1131 	if ((rip->i_mode & IFMT) != IFDIR) {
1132 		/*
1133 		 * Mark this inode as subject for cleanup
1134 		 * to avoid stray inodes in the cache.
1135 		 */
1136 		rvp = ITOV(rip);
1137 		error = EIO;
1138 		goto out;
1139 	}
1140 
1141 	rvp = ITOV(rip);
1142 	mutex_enter(&rvp->v_lock);
1143 	rvp->v_flag |= VROOT;
1144 	mutex_exit(&rvp->v_lock);
1145 	ufsvfsp->vfs_root = rvp;
1146 	/* The buffer for the root inode does not contain a valid b_vp */
1147 	(void) bfinval(dev, 0);
1148 
1149 	/* options */
1150 	ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
1151 	ufsvfsp->vfs_nointr  = flags & UFSMNT_NOINTR;
1152 	ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
1153 	ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
1154 	if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
1155 		ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
1156 	else	/* dfratime, default behavior */
1157 		ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
1158 	if (flags & UFSMNT_FORCEDIRECTIO)
1159 		ufsvfsp->vfs_forcedirectio = 1;
1160 	else if (flags & UFSMNT_NOFORCEDIRECTIO)
1161 		ufsvfsp->vfs_forcedirectio = 0;
1162 	ufsvfsp->vfs_iotstamp = lbolt;
1163 
1164 	ufsvfsp->vfs_nindiroffset = fsp->fs_nindir - 1;
1165 	ufsvfsp->vfs_nindirshift = highbit(ufsvfsp->vfs_nindiroffset);
1166 	ufsvfsp->vfs_ioclustsz = fsp->fs_bsize * fsp->fs_maxcontig;
1167 
1168 	if (cdev_ioctl(dev, DKIOCINFO, (intptr_t)&ci,
1169 	    FKIOCTL|FNATIVE|FREAD, CRED(), &status) == 0) {
1170 		ufsvfsp->vfs_iotransz = ci.dki_maxtransfer * DEV_BSIZE;
1171 	} else {
1172 		ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
1173 	}
1174 
1175 	if (ufsvfsp->vfs_iotransz <= 0) {
1176 		ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
1177 	}
1178 
1179 	/*
1180 	 * When logging, used to reserve log space for writes and truncs
1181 	 */
1182 	ufsvfsp->vfs_avgbfree = fsp->fs_cstotal.cs_nbfree / fsp->fs_ncg;
1183 
1184 	/*
1185 	 * Determine whether to log cylinder group summary info.
1186 	 */
1187 	ufsvfsp->vfs_nolog_si = (fsp->fs_ncg < ufs_ncg_log);
1188 
1189 	if (TRANS_ISTRANS(ufsvfsp)) {
1190 		/*
1191 		 * start the delete thread
1192 		 */
1193 		ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
1194 
1195 		/*
1196 		 * start reclaim thread if the filesystem was not mounted
1197 		 * read only.
1198 		 */
1199 		if (!fsp->fs_ronly && (fsp->fs_reclaim &
1200 			(FS_RECLAIM|FS_RECLAIMING))) {
1201 			fsp->fs_reclaim &= ~FS_RECLAIM;
1202 			fsp->fs_reclaim |=  FS_RECLAIMING;
1203 			ufs_thread_start(&ufsvfsp->vfs_reclaim,
1204 			    ufs_thread_reclaim, vfsp);
1205 		}
1206 
1207 		/* Mark the fs as unrolled */
1208 		fsp->fs_rolled = FS_NEED_ROLL;
1209 	} else if (!fsp->fs_ronly && (fsp->fs_reclaim &
1210 	    (FS_RECLAIM|FS_RECLAIMING))) {
1211 		/*
1212 		 * If a file system that is mounted nologging, after
1213 		 * having previously been mounted logging, becomes
1214 		 * unmounted whilst the reclaim thread is in the throes
1215 		 * of reclaiming open/deleted inodes, a subsequent mount
1216 		 * of such a file system with logging disabled could lead
1217 		 * to inodes becoming lost.  So, start reclaim now, even
1218 		 * though logging was disabled for the previous mount, to
1219 		 * tidy things up.
1220 		 */
1221 		fsp->fs_reclaim &= ~FS_RECLAIM;
1222 		fsp->fs_reclaim |=  FS_RECLAIMING;
1223 		ufs_thread_start(&ufsvfsp->vfs_reclaim,
1224 		    ufs_thread_reclaim, vfsp);
1225 	}
1226 
1227 	if (!fsp->fs_ronly) {
1228 		TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
1229 		if (error = geterror(ufsvfsp->vfs_bufp))
1230 			goto out;
1231 	}
1232 
1233 	/* fix-on-panic initialization */
1234 	if (isroot && !(flags & UFSMNT_ONERROR_FLGMASK))
1235 		flags |= UFSMNT_ONERROR_PANIC;	/* XXX ..._RDONLY */
1236 
1237 	if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
1238 		goto out;
1239 
1240 	if (why == ROOT_INIT && isroot)
1241 		rootvp = devvp;
1242 
1243 	return (0);
1244 out:
1245 	if (error == 0)
1246 		error = EIO;
1247 	if (rvp) {
1248 		/* the following sequence is similar to ufs_unmount() */
1249 
1250 		/*
1251 		 * There's a problem that ufs_iget() puts inodes into
1252 		 * the inode cache before it returns them.  If someone
1253 		 * traverses that cache and gets a reference to our
1254 		 * inode, there's a chance they'll still be using it
1255 		 * after we've destroyed it.  This is a hard race to
1256 		 * hit, but it's happened (putting in a medium delay
1257 		 * here, and a large delay in ufs_scan_inodes() for
1258 		 * inodes on the device we're bailing out on, makes
1259 		 * the race easy to demonstrate).  The symptom is some
1260 		 * other part of UFS faulting on bad inode contents,
1261 		 * or when grabbing one of the locks inside the inode,
1262 		 * etc.  The usual victim is ufs_scan_inodes() or
1263 		 * someone called by it.
1264 		 */
1265 
1266 		/*
1267 		 * First, isolate it so that no new references can be
1268 		 * gotten via the inode cache.
1269 		 */
1270 		ihm = &ih_lock[INOHASH(UFSROOTINO)];
1271 		mutex_enter(ihm);
1272 		remque(rip);
1273 		mutex_exit(ihm);
1274 
1275 		/*
1276 		 * Now wait for all outstanding references except our
1277 		 * own to drain.  This could, in theory, take forever,
1278 		 * so don't wait *too* long.  If we time out, mark
1279 		 * it stale and leak it, so we don't hit the problem
1280 		 * described above.
1281 		 *
1282 		 * Note that v_count is an int, which means we can read
1283 		 * it in one operation.  Thus, there's no need to lock
1284 		 * around our tests.
1285 		 */
1286 		elapsed = 0;
1287 		while ((rvp->v_count > 1) && (elapsed < ufs_mount_timeout)) {
1288 			delay(ufs_mount_error_delay * drv_usectohz(1000));
1289 			elapsed += ufs_mount_error_delay;
1290 		}
1291 
1292 		if (rvp->v_count > 1) {
1293 			mutex_enter(&rip->i_tlock);
1294 			rip->i_flag |= ISTALE;
1295 			mutex_exit(&rip->i_tlock);
1296 			cmn_err(CE_WARN,
1297 		"Timed out while cleaning up after failed mount of %s",
1298 				path);
1299 		} else {
1300 
1301 			/*
1302 			 * Now we're the only one with a handle left, so tear
1303 			 * it down the rest of the way.
1304 			 */
1305 			if (ufs_rmidle(rip))
1306 				VN_RELE(rvp);
1307 			ufs_si_del(rip);
1308 			rip->i_ufsvfs = NULL;
1309 			rvp->v_vfsp = NULL;
1310 			rvp->v_type = VBAD;
1311 			VN_RELE(rvp);
1312 		}
1313 	}
1314 	if (needtrans) {
1315 		TRANS_MATA_UMOUNT(ufsvfsp);
1316 	}
1317 	if (ufsvfsp) {
1318 		ufs_vfs_remove(ufsvfsp);
1319 		ufs_thread_exit(&ufsvfsp->vfs_delete);
1320 		ufs_thread_exit(&ufsvfsp->vfs_reclaim);
1321 		mutex_destroy(&ufsvfsp->vfs_lock);
1322 		if (ufsvfsp->vfs_log) {
1323 			lufs_unsnarf(ufsvfsp);
1324 		}
1325 		kmem_free(ufsvfsp, sizeof (struct ufsvfs));
1326 	}
1327 	if (bp) {
1328 		bp->b_flags |= (B_STALE|B_AGE);
1329 		brelse(bp);
1330 	}
1331 	if (tp) {
1332 		tp->b_flags |= (B_STALE|B_AGE);
1333 		brelse(tp);
1334 	}
1335 	if (needclose) {
1336 		(void) VOP_CLOSE(devvp, (vfsp->vfs_flag & VFS_RDONLY) ?
1337 		    FREAD : FREAD|FWRITE, 1, (offset_t)0, cr);
1338 		bflush(dev);
1339 		(void) bfinval(dev, 1);
1340 	}
1341 	return (error);
1342 }
1343 
1344 /*
1345  * vfs operations
1346  */
1347 static int
1348 ufs_unmount(struct vfs *vfsp, int fflag, struct cred *cr)
1349 {
1350 	dev_t 		dev		= vfsp->vfs_dev;
1351 	struct ufsvfs	*ufsvfsp	= (struct ufsvfs *)vfsp->vfs_data;
1352 	struct fs	*fs		= ufsvfsp->vfs_fs;
1353 	struct ulockfs	*ulp		= &ufsvfsp->vfs_ulockfs;
1354 	struct vnode 	*bvp, *vp;
1355 	struct buf	*bp;
1356 	struct inode	*ip, *inext, *rip;
1357 	union ihead	*ih;
1358 	int 		error, flag, i;
1359 	struct lockfs	lockfs;
1360 	int		poll_events = POLLPRI;
1361 	extern struct pollhead ufs_pollhd;
1362 	refstr_t	*mountpoint;
1363 
1364 	ASSERT(vfs_lock_held(vfsp));
1365 
1366 	if (secpolicy_fs_unmount(cr, vfsp) != 0)
1367 		return (EPERM);
1368 	/*
1369 	 * Forced unmount is now supported through the
1370 	 * lockfs protocol.
1371 	 */
1372 	if (fflag & MS_FORCE) {
1373 		/*
1374 		 * Mark the filesystem as being unmounted now in
1375 		 * case of a forcible umount before we take any
1376 		 * locks inside UFS to prevent racing with a VFS_VGET()
1377 		 * request. Throw these VFS_VGET() requests away for
1378 		 * the duration of the forcible umount so they won't
1379 		 * use stale or even freed data later on when we're done.
1380 		 * It may happen that the VFS has had a additional hold
1381 		 * placed on it by someone other than UFS and thus will
1382 		 * not get freed immediately once we're done with the
1383 		 * umount by dounmount() - use VFS_UNMOUNTED to inform
1384 		 * users of this still-alive VFS that its corresponding
1385 		 * filesystem being gone so they can detect that and error
1386 		 * out.
1387 		 */
1388 		vfsp->vfs_flag |= VFS_UNMOUNTED;
1389 
1390 		ufs_thread_suspend(&ufsvfsp->vfs_delete);
1391 		mutex_enter(&ulp->ul_lock);
1392 		/*
1393 		 * If file system is already hard locked,
1394 		 * unmount the file system, otherwise
1395 		 * hard lock it before unmounting.
1396 		 */
1397 		if (!ULOCKFS_IS_HLOCK(ulp)) {
1398 			atomic_add_long(&ufs_quiesce_pend, 1);
1399 			lockfs.lf_lock = LOCKFS_HLOCK;
1400 			lockfs.lf_flags = 0;
1401 			lockfs.lf_key = ulp->ul_lockfs.lf_key + 1;
1402 			lockfs.lf_comlen = 0;
1403 			lockfs.lf_comment = NULL;
1404 			ufs_freeze(ulp, &lockfs);
1405 			ULOCKFS_SET_BUSY(ulp);
1406 			LOCKFS_SET_BUSY(&ulp->ul_lockfs);
1407 			(void) ufs_quiesce(ulp);
1408 			(void) ufs_flush(vfsp);
1409 			(void) ufs_thaw(vfsp, ufsvfsp, ulp);
1410 			atomic_add_long(&ufs_quiesce_pend, -1);
1411 			ULOCKFS_CLR_BUSY(ulp);
1412 			LOCKFS_CLR_BUSY(&ulp->ul_lockfs);
1413 			poll_events |= POLLERR;
1414 			pollwakeup(&ufs_pollhd, poll_events);
1415 		}
1416 		ufs_thread_continue(&ufsvfsp->vfs_delete);
1417 		mutex_exit(&ulp->ul_lock);
1418 	}
1419 
1420 	/* let all types of writes go through */
1421 	ufsvfsp->vfs_iotstamp = lbolt;
1422 
1423 	/* coordinate with global hlock thread */
1424 	if (TRANS_ISTRANS(ufsvfsp) && (ufsvfsp->vfs_validfs == UT_HLOCKING)) {
1425 		/*
1426 		 * last possibility for a forced umount to fail hence clear
1427 		 * VFS_UNMOUNTED if appropriate.
1428 		 */
1429 		if (fflag & MS_FORCE)
1430 			vfsp->vfs_flag &= ~VFS_UNMOUNTED;
1431 		return (EAGAIN);
1432 	}
1433 
1434 	ufsvfsp->vfs_validfs = UT_UNMOUNTED;
1435 
1436 	/* kill the reclaim thread */
1437 	ufs_thread_exit(&ufsvfsp->vfs_reclaim);
1438 
1439 	/* suspend the delete thread */
1440 	ufs_thread_suspend(&ufsvfsp->vfs_delete);
1441 
1442 	/*
1443 	 * drain the delete and idle queues
1444 	 */
1445 	ufs_delete_drain(vfsp, -1, 1);
1446 	ufs_idle_drain(vfsp);
1447 
1448 	/*
1449 	 * use the lockfs protocol to prevent new ops from starting
1450 	 * a forcible umount can not fail beyond this point as
1451 	 * we hard-locked the filesystem and drained all current consumers
1452 	 * before.
1453 	 */
1454 	mutex_enter(&ulp->ul_lock);
1455 
1456 	/*
1457 	 * if the file system is busy; return EBUSY
1458 	 */
1459 	if (ulp->ul_vnops_cnt || ULOCKFS_IS_SLOCK(ulp)) {
1460 		error = EBUSY;
1461 		goto out;
1462 	}
1463 
1464 	/*
1465 	 * if this is not a forced unmount (!hard/error locked), then
1466 	 * get rid of every inode except the root and quota inodes
1467 	 * also, commit any outstanding transactions
1468 	 */
1469 	if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp))
1470 		if (error = ufs_flush(vfsp))
1471 			goto out;
1472 
1473 	/*
1474 	 * ignore inodes in the cache if fs is hard locked or error locked
1475 	 */
1476 	rip = VTOI(ufsvfsp->vfs_root);
1477 	if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) {
1478 		/*
1479 		 * Otherwise, only the quota and root inodes are in the cache.
1480 		 *
1481 		 * Avoid racing with ufs_update() and ufs_sync().
1482 		 */
1483 		mutex_enter(&ufs_scan_lock);
1484 
1485 		for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1486 			mutex_enter(&ih_lock[i]);
1487 			for (ip = ih->ih_chain[0];
1488 					ip != (struct inode *)ih;
1489 					ip = ip->i_forw) {
1490 				if (ip->i_ufsvfs != ufsvfsp)
1491 					continue;
1492 				if (ip == ufsvfsp->vfs_qinod)
1493 					continue;
1494 				if (ip == rip && ITOV(ip)->v_count == 1)
1495 					continue;
1496 				mutex_exit(&ih_lock[i]);
1497 				mutex_exit(&ufs_scan_lock);
1498 				error = EBUSY;
1499 				goto out;
1500 			}
1501 			mutex_exit(&ih_lock[i]);
1502 		}
1503 		mutex_exit(&ufs_scan_lock);
1504 	}
1505 
1506 	/*
1507 	 * if a snapshot exists and this is a forced unmount, then delete
1508 	 * the snapshot.  Otherwise return EBUSY.  This will insure the
1509 	 * snapshot always belongs to a valid file system.
1510 	 */
1511 	if (ufsvfsp->vfs_snapshot) {
1512 		if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
1513 			(void) fssnap_delete(&ufsvfsp->vfs_snapshot);
1514 		} else {
1515 			error = EBUSY;
1516 			goto out;
1517 		}
1518 	}
1519 
1520 	/*
1521 	 * Close the quota file and invalidate anything left in the quota
1522 	 * cache for this file system.  Pass kcred to allow all quota
1523 	 * manipulations.
1524 	 */
1525 	(void) closedq(ufsvfsp, kcred);
1526 	invalidatedq(ufsvfsp);
1527 	/*
1528 	 * drain the delete and idle queues
1529 	 */
1530 	ufs_delete_drain(vfsp, -1, 0);
1531 	ufs_idle_drain(vfsp);
1532 
1533 	/*
1534 	 * discard the inodes for this fs (including root, shadow, and quota)
1535 	 */
1536 	for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1537 		mutex_enter(&ih_lock[i]);
1538 		for (inext = 0, ip = ih->ih_chain[0];
1539 				ip != (struct inode *)ih;
1540 				ip = inext) {
1541 			inext = ip->i_forw;
1542 			if (ip->i_ufsvfs != ufsvfsp)
1543 				continue;
1544 			vp = ITOV(ip);
1545 			VN_HOLD(vp)
1546 			remque(ip);
1547 			if (ufs_rmidle(ip))
1548 				VN_RELE(vp);
1549 			ufs_si_del(ip);
1550 			/*
1551 			 * rip->i_ufsvfsp is needed by bflush()
1552 			 */
1553 			if (ip != rip)
1554 				ip->i_ufsvfs = NULL;
1555 			/*
1556 			 * Set vnode's vfsops to dummy ops, which return
1557 			 * EIO. This is needed to forced unmounts to work
1558 			 * with lofs/nfs properly.
1559 			 */
1560 			if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp))
1561 				vp->v_vfsp = &EIO_vfs;
1562 			else
1563 				vp->v_vfsp = NULL;
1564 			vp->v_type = VBAD;
1565 			VN_RELE(vp);
1566 		}
1567 		mutex_exit(&ih_lock[i]);
1568 	}
1569 	ufs_si_cache_flush(dev);
1570 
1571 	/*
1572 	 * kill the delete thread and drain the idle queue
1573 	 */
1574 	ufs_thread_exit(&ufsvfsp->vfs_delete);
1575 	ufs_idle_drain(vfsp);
1576 
1577 	bp = ufsvfsp->vfs_bufp;
1578 	bvp = ufsvfsp->vfs_devvp;
1579 	flag = !fs->fs_ronly;
1580 	if (flag) {
1581 		bflush(dev);
1582 		if (fs->fs_clean != FSBAD) {
1583 			if (fs->fs_clean == FSSTABLE)
1584 				fs->fs_clean = FSCLEAN;
1585 			fs->fs_reclaim &= ~FS_RECLAIM;
1586 		}
1587 		if (TRANS_ISTRANS(ufsvfsp) &&
1588 		    !TRANS_ISERROR(ufsvfsp) &&
1589 		    !ULOCKFS_IS_HLOCK(ulp) &&
1590 		    (fs->fs_rolled == FS_NEED_ROLL)) {
1591 			/*
1592 			 * ufs_flush() above has flushed the last Moby.
1593 			 * This is needed to ensure the following superblock
1594 			 * update really is the last metadata update
1595 			 */
1596 			error = ufs_putsummaryinfo(dev, ufsvfsp, fs);
1597 			if (error == 0) {
1598 				fs->fs_rolled = FS_ALL_ROLLED;
1599 			}
1600 		}
1601 		TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UNMOUNT);
1602 		/*
1603 		 * push this last transaction
1604 		 */
1605 		curthread->t_flag |= T_DONTBLOCK;
1606 		TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UNMOUNT, TOP_COMMIT_SIZE,
1607 		    error);
1608 		if (!error)
1609 			TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UNMOUNT,
1610 			    TOP_COMMIT_SIZE);
1611 		curthread->t_flag &= ~T_DONTBLOCK;
1612 	}
1613 
1614 	TRANS_MATA_UMOUNT(ufsvfsp);
1615 	lufs_unsnarf(ufsvfsp);		/* Release the in-memory structs */
1616 	ufsfx_unmount(ufsvfsp);		/* fix-on-panic bookkeeping */
1617 	kmem_free(fs->fs_u.fs_csp, fs->fs_cssize);
1618 
1619 	bp->b_flags |= B_STALE|B_AGE;
1620 	ufsvfsp->vfs_bufp = NULL;	/* don't point at freed buf */
1621 	brelse(bp);			/* free the superblock buf */
1622 
1623 	(void) VOP_PUTPAGE(common_specvp(bvp), (offset_t)0, (size_t)0,
1624 	    B_INVAL, cr);
1625 	(void) VOP_CLOSE(bvp, flag, 1, (offset_t)0, cr);
1626 	bflush(dev);
1627 	(void) bfinval(dev, 1);
1628 	VN_RELE(bvp);
1629 
1630 	/*
1631 	 * It is now safe to NULL out the ufsvfs pointer and discard
1632 	 * the root inode.
1633 	 */
1634 	rip->i_ufsvfs = NULL;
1635 	VN_RELE(ITOV(rip));
1636 
1637 	/* free up lockfs comment structure, if any */
1638 	if (ulp->ul_lockfs.lf_comlen && ulp->ul_lockfs.lf_comment)
1639 		kmem_free(ulp->ul_lockfs.lf_comment, ulp->ul_lockfs.lf_comlen);
1640 
1641 	/*
1642 	 * Remove from instance list.
1643 	 */
1644 	ufs_vfs_remove(ufsvfsp);
1645 
1646 	/*
1647 	 * For a forcible unmount, threads may be asleep in
1648 	 * ufs_lockfs_begin/ufs_check_lockfs.  These threads will need
1649 	 * the ufsvfs structure so we don't free it, yet.  ufs_update
1650 	 * will free it up after awhile.
1651 	 */
1652 	if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
1653 		extern kmutex_t		ufsvfs_mutex;
1654 		extern struct ufsvfs	*ufsvfslist;
1655 
1656 		mutex_enter(&ufsvfs_mutex);
1657 		ufsvfsp->vfs_dontblock = 1;
1658 		ufsvfsp->vfs_next = ufsvfslist;
1659 		ufsvfslist = ufsvfsp;
1660 		mutex_exit(&ufsvfs_mutex);
1661 		/* wakeup any suspended threads */
1662 		cv_broadcast(&ulp->ul_cv);
1663 		mutex_exit(&ulp->ul_lock);
1664 	} else {
1665 		mutex_destroy(&ufsvfsp->vfs_lock);
1666 		kmem_free(ufsvfsp, sizeof (struct ufsvfs));
1667 	}
1668 
1669 	/*
1670 	 * Now mark the filesystem as unmounted since we're done with it.
1671 	 */
1672 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1673 
1674 	return (0);
1675 out:
1676 	/* open the fs to new ops */
1677 	cv_broadcast(&ulp->ul_cv);
1678 	mutex_exit(&ulp->ul_lock);
1679 
1680 	if (TRANS_ISTRANS(ufsvfsp)) {
1681 		/* allow the delete thread to continue */
1682 		ufs_thread_continue(&ufsvfsp->vfs_delete);
1683 		/* restart the reclaim thread */
1684 		ufs_thread_start(&ufsvfsp->vfs_reclaim, ufs_thread_reclaim,
1685 				vfsp);
1686 		/* coordinate with global hlock thread */
1687 		ufsvfsp->vfs_validfs = UT_MOUNTED;
1688 		/* check for trans errors during umount */
1689 		ufs_trans_onerror();
1690 
1691 		/*
1692 		 * if we have a seperate /usr it will never unmount
1693 		 * when halting. In order to not re-read all the
1694 		 * cylinder group summary info on mounting after
1695 		 * reboot the logging of summary info is re-enabled
1696 		 * and the super block written out.
1697 		 */
1698 		mountpoint = vfs_getmntpoint(vfsp);
1699 		if ((fs->fs_si == FS_SI_OK) &&
1700 		    (strcmp("/usr", refstr_value(mountpoint)) == 0)) {
1701 			ufsvfsp->vfs_nolog_si = 0;
1702 			UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
1703 		}
1704 		refstr_rele(mountpoint);
1705 	}
1706 
1707 	return (error);
1708 }
1709 
1710 static int
1711 ufs_root(struct vfs *vfsp, struct vnode **vpp)
1712 {
1713 	struct ufsvfs *ufsvfsp;
1714 	struct vnode *vp;
1715 
1716 	if (!vfsp)
1717 		return (EIO);
1718 
1719 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1720 	if (!ufsvfsp || !ufsvfsp->vfs_root)
1721 		return (EIO);	/* forced unmount */
1722 
1723 	vp = ufsvfsp->vfs_root;
1724 	VN_HOLD(vp);
1725 	*vpp = vp;
1726 	return (0);
1727 }
1728 
1729 /*
1730  * Get file system statistics.
1731  */
1732 static int
1733 ufs_statvfs(struct vfs *vfsp, struct statvfs64 *sp)
1734 {
1735 	struct fs *fsp;
1736 	struct ufsvfs *ufsvfsp;
1737 	int blk, i;
1738 	long max_avail, used;
1739 	dev32_t d32;
1740 
1741 	if (vfsp->vfs_flag & VFS_UNMOUNTED)
1742 		return (EIO);
1743 
1744 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1745 	fsp = ufsvfsp->vfs_fs;
1746 	if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC))
1747 		return (EINVAL);
1748 	if (fsp->fs_magic == FS_MAGIC &&
1749 	    (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
1750 	    fsp->fs_version != UFS_VERSION_MIN))
1751 		return (EINVAL);
1752 	if (fsp->fs_magic == MTB_UFS_MAGIC &&
1753 	    (fsp->fs_version > MTB_UFS_VERSION_1 ||
1754 	    fsp->fs_version < MTB_UFS_VERSION_MIN))
1755 		return (EINVAL);
1756 
1757 	/*
1758 	 * get the basic numbers
1759 	 */
1760 	(void) bzero(sp, sizeof (*sp));
1761 
1762 	sp->f_bsize = fsp->fs_bsize;
1763 	sp->f_frsize = fsp->fs_fsize;
1764 	sp->f_blocks = (fsblkcnt64_t)fsp->fs_dsize;
1765 	sp->f_bfree = (fsblkcnt64_t)fsp->fs_cstotal.cs_nbfree * fsp->fs_frag +
1766 	    fsp->fs_cstotal.cs_nffree;
1767 
1768 	sp->f_files = (fsfilcnt64_t)fsp->fs_ncg * fsp->fs_ipg;
1769 	sp->f_ffree = (fsfilcnt64_t)fsp->fs_cstotal.cs_nifree;
1770 
1771 	/*
1772 	 * Adjust the numbers based on things waiting to be deleted.
1773 	 * modifies f_bfree and f_ffree.  Afterwards, everything we
1774 	 * come up with will be self-consistent.  By definition, this
1775 	 * is a point-in-time snapshot, so the fact that the delete
1776 	 * thread's probably already invalidated the results is not a
1777 	 * problem.  Note that if the delete thread is ever extended to
1778 	 * non-logging ufs, this adjustment must always be made.
1779 	 */
1780 	if (TRANS_ISTRANS(ufsvfsp))
1781 		ufs_delete_adjust_stats(ufsvfsp, sp);
1782 
1783 	/*
1784 	 * avail = MAX(max_avail - used, 0)
1785 	 */
1786 	max_avail = fsp->fs_dsize - ufsvfsp->vfs_minfrags;
1787 
1788 	used = (fsp->fs_dsize - sp->f_bfree);
1789 
1790 	if (max_avail > used)
1791 		sp->f_bavail = (fsblkcnt64_t)max_avail - used;
1792 	else
1793 		sp->f_bavail = (fsblkcnt64_t)0;
1794 
1795 	sp->f_favail = sp->f_ffree;
1796 	(void) cmpldev(&d32, vfsp->vfs_dev);
1797 	sp->f_fsid = d32;
1798 	(void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1799 	sp->f_flag = vf_to_stf(vfsp->vfs_flag);
1800 
1801 	/* keep coordinated with ufs_l_pathconf() */
1802 	sp->f_namemax = MAXNAMLEN;
1803 
1804 	if (fsp->fs_cpc == 0) {
1805 		bzero(sp->f_fstr, 14);
1806 		return (0);
1807 	}
1808 	blk = fsp->fs_spc * fsp->fs_cpc / NSPF(fsp);
1809 	for (i = 0; i < blk; i += fsp->fs_frag) /* CSTYLED */
1810 		/* void */;
1811 	i -= fsp->fs_frag;
1812 	blk = i / fsp->fs_frag;
1813 	bcopy(&(fs_rotbl(fsp)[blk]), sp->f_fstr, 14);
1814 	return (0);
1815 }
1816 
1817 /*
1818  * Flush any pending I/O to file system vfsp.
1819  * The ufs_update() routine will only flush *all* ufs files.
1820  * If vfsp is non-NULL, only sync this ufs (in preparation
1821  * for a umount).
1822  */
1823 /*ARGSUSED*/
1824 static int
1825 ufs_sync(struct vfs *vfsp, short flag, struct cred *cr)
1826 {
1827 	struct ufsvfs *ufsvfsp;
1828 	struct fs *fs;
1829 	int cheap = flag & SYNC_ATTR;
1830 	int error;
1831 
1832 	/*
1833 	 * SYNC_CLOSE means we're rebooting.  Toss everything
1834 	 * on the idle queue so we don't have to slog through
1835 	 * a bunch of uninteresting inodes over and over again.
1836 	 */
1837 	if (flag & SYNC_CLOSE)
1838 		ufs_idle_drain(NULL);
1839 
1840 	if (vfsp == NULL) {
1841 		ufs_update(flag);
1842 		return (0);
1843 	}
1844 
1845 	/* Flush a single ufs */
1846 	if (!vfs_matchops(vfsp, ufs_vfsops) || vfs_lock(vfsp) != 0)
1847 		return (0);
1848 
1849 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1850 	if (!ufsvfsp)
1851 		return (EIO);
1852 	fs = ufsvfsp->vfs_fs;
1853 	mutex_enter(&ufsvfsp->vfs_lock);
1854 
1855 	if (ufsvfsp->vfs_dio &&
1856 	    fs->fs_ronly == 0 &&
1857 	    fs->fs_clean != FSBAD &&
1858 	    fs->fs_clean != FSLOG) {
1859 		/* turn off fast-io on unmount, so no fsck needed (4029401) */
1860 		ufsvfsp->vfs_dio = 0;
1861 		fs->fs_clean = FSACTIVE;
1862 		fs->fs_fmod = 1;
1863 	}
1864 
1865 	/* Write back modified superblock */
1866 	if (fs->fs_fmod == 0) {
1867 		mutex_exit(&ufsvfsp->vfs_lock);
1868 	} else {
1869 		if (fs->fs_ronly != 0) {
1870 			mutex_exit(&ufsvfsp->vfs_lock);
1871 			vfs_unlock(vfsp);
1872 			return (ufs_fault(ufsvfsp->vfs_root,
1873 					    "fs = %s update: ro fs mod\n",
1874 					    fs->fs_fsmnt));
1875 		}
1876 		fs->fs_fmod = 0;
1877 		mutex_exit(&ufsvfsp->vfs_lock);
1878 
1879 		TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UPDATE);
1880 	}
1881 	vfs_unlock(vfsp);
1882 
1883 	/*
1884 	 * Avoid racing with ufs_update() and ufs_unmount().
1885 	 *
1886 	 */
1887 	mutex_enter(&ufs_scan_lock);
1888 
1889 	(void) ufs_scan_inodes(1, ufs_sync_inode,
1890 	    (void *)(uintptr_t)cheap, ufsvfsp);
1891 
1892 	mutex_exit(&ufs_scan_lock);
1893 
1894 	bflush((dev_t)vfsp->vfs_dev);
1895 
1896 	/*
1897 	 * commit any outstanding async transactions
1898 	 */
1899 	curthread->t_flag |= T_DONTBLOCK;
1900 	TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error);
1901 	if (!error) {
1902 		TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE,
1903 		    TOP_COMMIT_SIZE);
1904 	}
1905 	curthread->t_flag &= ~T_DONTBLOCK;
1906 
1907 	return (0);
1908 }
1909 
1910 
1911 void
1912 sbupdate(struct vfs *vfsp)
1913 {
1914 	struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1915 	struct fs *fs = ufsvfsp->vfs_fs;
1916 	struct buf *bp;
1917 	int blks;
1918 	caddr_t space;
1919 	int i;
1920 	size_t size;
1921 
1922 	/*
1923 	 * for ulockfs processing, limit the superblock writes
1924 	 */
1925 	if ((ufsvfsp->vfs_ulockfs.ul_sbowner) &&
1926 	    (curthread != ufsvfsp->vfs_ulockfs.ul_sbowner)) {
1927 		/* process later */
1928 		fs->fs_fmod = 1;
1929 		return;
1930 	}
1931 	ULOCKFS_SET_MOD((&ufsvfsp->vfs_ulockfs));
1932 
1933 	if (TRANS_ISTRANS(ufsvfsp)) {
1934 		mutex_enter(&ufsvfsp->vfs_lock);
1935 		ufs_sbwrite(ufsvfsp);
1936 		mutex_exit(&ufsvfsp->vfs_lock);
1937 		return;
1938 	}
1939 
1940 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
1941 	space = (caddr_t)fs->fs_u.fs_csp;
1942 	for (i = 0; i < blks; i += fs->fs_frag) {
1943 		size = fs->fs_bsize;
1944 		if (i + fs->fs_frag > blks)
1945 			size = (blks - i) * fs->fs_fsize;
1946 		bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev,
1947 			(daddr_t)(fsbtodb(fs, fs->fs_csaddr + i)),
1948 			fs->fs_bsize);
1949 		bcopy(space, bp->b_un.b_addr, size);
1950 		space += size;
1951 		bp->b_bcount = size;
1952 		UFS_BRWRITE(ufsvfsp, bp);
1953 	}
1954 	mutex_enter(&ufsvfsp->vfs_lock);
1955 	ufs_sbwrite(ufsvfsp);
1956 	mutex_exit(&ufsvfsp->vfs_lock);
1957 }
1958 
1959 int ufs_vget_idle_count = 2;	/* Number of inodes to idle each time */
1960 static int
1961 ufs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
1962 {
1963 	int error = 0;
1964 	struct ufid *ufid;
1965 	struct inode *ip;
1966 	struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1967 	struct ulockfs *ulp;
1968 
1969 	/*
1970 	 * Check for unmounted filesystem.
1971 	 */
1972 	if (vfsp->vfs_flag & VFS_UNMOUNTED) {
1973 		error = EIO;
1974 		goto errout;
1975 	}
1976 
1977 	/*
1978 	 * Keep the idle queue from getting too long by
1979 	 * idling an inode before attempting to allocate another.
1980 	 *    This operation must be performed before entering
1981 	 *    lockfs or a transaction.
1982 	 */
1983 	if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
1984 		if ((curthread->t_flag & T_DONTBLOCK) == 0) {
1985 			ins.in_vidles.value.ul += ufs_vget_idle_count;
1986 			ufs_idle_some(ufs_vget_idle_count);
1987 		}
1988 
1989 	ufid = (struct ufid *)fidp;
1990 
1991 	if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_VGET_MASK))
1992 		goto errout;
1993 
1994 	rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1995 
1996 	error = ufs_iget(vfsp, ufid->ufid_ino, &ip, CRED());
1997 
1998 	rw_exit(&ufsvfsp->vfs_dqrwlock);
1999 
2000 	ufs_lockfs_end(ulp);
2001 
2002 	if (error)
2003 		goto errout;
2004 
2005 	/*
2006 	 * Check if the inode has been deleted or freed or is in transient state
2007 	 * since the last VFS_VGET() request for it, release it and don't return
2008 	 * it to the caller, presumably NFS, as it's no longer valid.
2009 	 */
2010 	if (ip->i_gen != ufid->ufid_gen || ip->i_mode == 0 ||
2011 	    (ip->i_flag & IDEL)) {
2012 		VN_RELE(ITOV(ip));
2013 		error = EINVAL;
2014 		goto errout;
2015 	}
2016 
2017 	*vpp = ITOV(ip);
2018 	return (0);
2019 
2020 errout:
2021 	*vpp = NULL;
2022 	return (error);
2023 }
2024 
2025 static int
2026 ufsinit(int fstype, char *name)
2027 {
2028 	static const fs_operation_def_t ufs_vfsops_template[] = {
2029 		VFSNAME_MOUNT, ufs_mount,
2030 		VFSNAME_UNMOUNT, ufs_unmount,
2031 		VFSNAME_ROOT, ufs_root,
2032 		VFSNAME_STATVFS, ufs_statvfs,
2033 		VFSNAME_SYNC, (fs_generic_func_p) ufs_sync,
2034 		VFSNAME_VGET, ufs_vget,
2035 		VFSNAME_MOUNTROOT, ufs_mountroot,
2036 		NULL, NULL
2037 	};
2038 	int error;
2039 
2040 	ufsfstype = fstype;
2041 
2042 	error = vfs_setfsops(fstype, ufs_vfsops_template, &ufs_vfsops);
2043 	if (error != 0) {
2044 		cmn_err(CE_WARN, "ufsinit: bad vfs ops template");
2045 		return (error);
2046 	}
2047 
2048 	error = vn_make_ops(name, ufs_vnodeops_template, &ufs_vnodeops);
2049 	if (error != 0) {
2050 		(void) vfs_freevfsops_by_type(fstype);
2051 		cmn_err(CE_WARN, "ufsinit: bad vnode ops template");
2052 		return (error);
2053 	}
2054 
2055 	ufs_iinit();
2056 	return (0);
2057 }
2058 
2059 #ifdef __sparc
2060 
2061 /*
2062  * Mounting a mirrored SVM volume is only supported on ufs,
2063  * this is special-case boot code to support that configuration.
2064  * At this point, we have booted and mounted root on a
2065  * single component of the mirror.  Complete the boot
2066  * by configuring SVM and converting the root to the
2067  * dev_t of the mirrored root device.  This dev_t conversion
2068  * only works because the underlying device doesn't change.
2069  */
2070 int
2071 ufs_remountroot(struct vfs *vfsp)
2072 {
2073 	struct ufsvfs *ufsvfsp;
2074 	struct ulockfs *ulp;
2075 	dev_t new_rootdev;
2076 	dev_t old_rootdev;
2077 	struct vnode *old_rootvp;
2078 	struct vnode *new_rootvp;
2079 	int error, sberror = 0;
2080 	struct inode	*ip;
2081 	union ihead	*ih;
2082 	struct buf	*bp;
2083 	int i;
2084 
2085 	old_rootdev = rootdev;
2086 	old_rootvp = rootvp;
2087 
2088 	new_rootdev = getrootdev();
2089 	if (new_rootdev == (dev_t)NODEV) {
2090 		return (ENODEV);
2091 	}
2092 
2093 	new_rootvp = makespecvp(new_rootdev, VBLK);
2094 
2095 	error = VOP_OPEN(&new_rootvp,
2096 	    (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, CRED());
2097 	if (error) {
2098 		cmn_err(CE_CONT,
2099 		    "Cannot open mirrored root device, error %d\n", error);
2100 		return (error);
2101 	}
2102 
2103 	if (vfs_lock(vfsp) != 0) {
2104 		return (EBUSY);
2105 	}
2106 
2107 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
2108 	ulp = &ufsvfsp->vfs_ulockfs;
2109 
2110 	mutex_enter(&ulp->ul_lock);
2111 	atomic_add_long(&ufs_quiesce_pend, 1);
2112 
2113 	(void) ufs_quiesce(ulp);
2114 	(void) ufs_flush(vfsp);
2115 
2116 	/*
2117 	 * Convert root vfs to new dev_t, including vfs hash
2118 	 * table and fs id.
2119 	 */
2120 	vfs_root_redev(vfsp, new_rootdev, ufsfstype);
2121 
2122 	ufsvfsp->vfs_devvp = new_rootvp;
2123 	ufsvfsp->vfs_dev = new_rootdev;
2124 
2125 	bp = ufsvfsp->vfs_bufp;
2126 	bp->b_edev = new_rootdev;
2127 	bp->b_dev = cmpdev(new_rootdev);
2128 
2129 	/*
2130 	 * The buffer for the root inode does not contain a valid b_vp
2131 	 */
2132 	(void) bfinval(new_rootdev, 0);
2133 
2134 	/*
2135 	 * Here we hand-craft inodes with old root device
2136 	 * references to refer to the new device instead.
2137 	 */
2138 	mutex_enter(&ufs_scan_lock);
2139 
2140 	for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
2141 		mutex_enter(&ih_lock[i]);
2142 		for (ip = ih->ih_chain[0];
2143 				ip != (struct inode *)ih;
2144 				ip = ip->i_forw) {
2145 			if (ip->i_ufsvfs != ufsvfsp)
2146 				continue;
2147 			if (ip == ufsvfsp->vfs_qinod)
2148 				continue;
2149 			if (ip->i_dev == old_rootdev) {
2150 				ip->i_dev = new_rootdev;
2151 			}
2152 
2153 			if (ip->i_devvp == old_rootvp) {
2154 				ip->i_devvp = new_rootvp;
2155 			}
2156 		}
2157 		mutex_exit(&ih_lock[i]);
2158 	}
2159 
2160 	mutex_exit(&ufs_scan_lock);
2161 
2162 	/*
2163 	 * Make Sure logging structures are using the new device
2164 	 * if logging is enabled.  Also start any logging thread that
2165 	 * needs to write to the device and couldn't earlier.
2166 	 */
2167 	if (ufsvfsp->vfs_log) {
2168 		buf_t		*bp, *tbp;
2169 		ml_unit_t	*ul = ufsvfsp->vfs_log;
2170 		struct fs	*fsp = ufsvfsp->vfs_fs;
2171 
2172 		/*
2173 		 * Update the main logging structure.
2174 		 */
2175 		ul->un_dev = new_rootdev;
2176 
2177 		/*
2178 		 * Get a new bp for the on disk structures.
2179 		 */
2180 		bp = ul->un_bp;
2181 		tbp = ngeteblk(dbtob(LS_SECTORS));
2182 		tbp->b_edev = new_rootdev;
2183 		tbp->b_dev = cmpdev(new_rootdev);
2184 		tbp->b_blkno = bp->b_blkno;
2185 		bcopy(bp->b_un.b_addr, tbp->b_un.b_addr, DEV_BSIZE);
2186 		bcopy(bp->b_un.b_addr, tbp->b_un.b_addr + DEV_BSIZE, DEV_BSIZE);
2187 		bp->b_flags |= (B_STALE | B_AGE);
2188 		brelse(bp);
2189 		ul->un_bp = tbp;
2190 
2191 		/*
2192 		 * Allocate new circular buffers.
2193 		 */
2194 		alloc_rdbuf(&ul->un_rdbuf, MAPBLOCKSIZE, MAPBLOCKSIZE);
2195 		alloc_wrbuf(&ul->un_wrbuf, ldl_bufsize(ul));
2196 
2197 		/*
2198 		 * Clear the noroll bit which indicates that logging
2199 		 * can't roll the log yet.
2200 		 */
2201 		ASSERT(ul->un_flags & LDL_NOROLL);
2202 		ul->un_flags &= ~LDL_NOROLL;
2203 
2204 		/*
2205 		 * Start the logmap roll thread.
2206 		 */
2207 		logmap_start_roll(ul);
2208 
2209 		/*
2210 		 * Start the reclaim thread if needed.
2211 		 */
2212 		if (!fsp->fs_ronly && (fsp->fs_reclaim &
2213 			(FS_RECLAIM|FS_RECLAIMING))) {
2214 			fsp->fs_reclaim &= ~FS_RECLAIM;
2215 			fsp->fs_reclaim |= FS_RECLAIMING;
2216 			ufs_thread_start(&ufsvfsp->vfs_reclaim,
2217 				ufs_thread_reclaim, vfsp);
2218 			TRANS_SBWRITE(ufsvfsp, TOP_SBUPDATE_UPDATE);
2219 			if (sberror = geterror(ufsvfsp->vfs_bufp)) {
2220 				refstr_t	*mntpt;
2221 				mntpt = vfs_getmntpoint(vfsp);
2222 				cmn_err(CE_WARN,
2223 					"Remountroot failed to update Reclaim"
2224 					"state for filesystem %s "
2225 					"Error writing SuperBlock %d",
2226 					refstr_value(mntpt), error);
2227 				refstr_rele(mntpt);
2228 			}
2229 		}
2230 	}
2231 
2232 	rootdev = new_rootdev;
2233 	rootvp = new_rootvp;
2234 
2235 	atomic_add_long(&ufs_quiesce_pend, -1);
2236 	cv_broadcast(&ulp->ul_cv);
2237 	mutex_exit(&ulp->ul_lock);
2238 
2239 	vfs_unlock(vfsp);
2240 
2241 	error = VOP_CLOSE(old_rootvp, FREAD, 1, (offset_t)0, CRED());
2242 	if (error) {
2243 		cmn_err(CE_CONT,
2244 		    "close of root device component failed, error %d\n",
2245 		    error);
2246 	}
2247 	VN_RELE(old_rootvp);
2248 
2249 	return (sberror ? sberror : error);
2250 }
2251 
2252 #endif	/* __sparc */
2253