1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #ifdef _KERNEL 50 #include <sys/vmsystm.h> 51 #include <sys/zfs_znode.h> 52 #endif 53 54 /* 55 * Enable/disable nopwrite feature. 56 */ 57 int zfs_nopwrite_enabled = 1; 58 59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 60 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 61 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 62 { DMU_BSWAP_UINT64, TRUE, "object array" }, 63 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 64 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 65 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 66 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 67 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 68 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 69 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 70 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 71 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 72 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 74 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 75 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 76 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 77 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 78 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 79 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 81 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 82 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 83 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 84 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 85 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 86 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 87 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 88 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 89 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 90 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 91 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 92 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 93 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 94 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 95 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 96 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 97 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 98 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 99 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 100 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 101 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 102 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 103 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 104 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 106 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 107 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 108 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 109 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 111 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 112 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 113 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 114 }; 115 116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 117 { byteswap_uint8_array, "uint8" }, 118 { byteswap_uint16_array, "uint16" }, 119 { byteswap_uint32_array, "uint32" }, 120 { byteswap_uint64_array, "uint64" }, 121 { zap_byteswap, "zap" }, 122 { dnode_buf_byteswap, "dnode" }, 123 { dmu_objset_byteswap, "objset" }, 124 { zfs_znode_byteswap, "znode" }, 125 { zfs_oldacl_byteswap, "oldacl" }, 126 { zfs_acl_byteswap, "acl" } 127 }; 128 129 int 130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 131 void *tag, dmu_buf_t **dbp) 132 { 133 dnode_t *dn; 134 uint64_t blkid; 135 dmu_buf_impl_t *db; 136 int err; 137 138 err = dnode_hold(os, object, FTAG, &dn); 139 if (err) 140 return (err); 141 blkid = dbuf_whichblock(dn, offset); 142 rw_enter(&dn->dn_struct_rwlock, RW_READER); 143 db = dbuf_hold(dn, blkid, tag); 144 rw_exit(&dn->dn_struct_rwlock); 145 dnode_rele(dn, FTAG); 146 147 if (db == NULL) { 148 *dbp = NULL; 149 return (SET_ERROR(EIO)); 150 } 151 152 *dbp = &db->db; 153 return (err); 154 } 155 156 int 157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 158 void *tag, dmu_buf_t **dbp, int flags) 159 { 160 int err; 161 int db_flags = DB_RF_CANFAIL; 162 163 if (flags & DMU_READ_NO_PREFETCH) 164 db_flags |= DB_RF_NOPREFETCH; 165 166 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 167 if (err == 0) { 168 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 169 err = dbuf_read(db, NULL, db_flags); 170 if (err != 0) { 171 dbuf_rele(db, tag); 172 *dbp = NULL; 173 } 174 } 175 176 return (err); 177 } 178 179 int 180 dmu_bonus_max(void) 181 { 182 return (DN_MAX_BONUSLEN); 183 } 184 185 int 186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 187 { 188 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 189 dnode_t *dn; 190 int error; 191 192 DB_DNODE_ENTER(db); 193 dn = DB_DNODE(db); 194 195 if (dn->dn_bonus != db) { 196 error = SET_ERROR(EINVAL); 197 } else if (newsize < 0 || newsize > db_fake->db_size) { 198 error = SET_ERROR(EINVAL); 199 } else { 200 dnode_setbonuslen(dn, newsize, tx); 201 error = 0; 202 } 203 204 DB_DNODE_EXIT(db); 205 return (error); 206 } 207 208 int 209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 210 { 211 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 212 dnode_t *dn; 213 int error; 214 215 DB_DNODE_ENTER(db); 216 dn = DB_DNODE(db); 217 218 if (!DMU_OT_IS_VALID(type)) { 219 error = SET_ERROR(EINVAL); 220 } else if (dn->dn_bonus != db) { 221 error = SET_ERROR(EINVAL); 222 } else { 223 dnode_setbonus_type(dn, type, tx); 224 error = 0; 225 } 226 227 DB_DNODE_EXIT(db); 228 return (error); 229 } 230 231 dmu_object_type_t 232 dmu_get_bonustype(dmu_buf_t *db_fake) 233 { 234 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 235 dnode_t *dn; 236 dmu_object_type_t type; 237 238 DB_DNODE_ENTER(db); 239 dn = DB_DNODE(db); 240 type = dn->dn_bonustype; 241 DB_DNODE_EXIT(db); 242 243 return (type); 244 } 245 246 int 247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 248 { 249 dnode_t *dn; 250 int error; 251 252 error = dnode_hold(os, object, FTAG, &dn); 253 dbuf_rm_spill(dn, tx); 254 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 255 dnode_rm_spill(dn, tx); 256 rw_exit(&dn->dn_struct_rwlock); 257 dnode_rele(dn, FTAG); 258 return (error); 259 } 260 261 /* 262 * returns ENOENT, EIO, or 0. 263 */ 264 int 265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 266 { 267 dnode_t *dn; 268 dmu_buf_impl_t *db; 269 int error; 270 271 error = dnode_hold(os, object, FTAG, &dn); 272 if (error) 273 return (error); 274 275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 276 if (dn->dn_bonus == NULL) { 277 rw_exit(&dn->dn_struct_rwlock); 278 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 279 if (dn->dn_bonus == NULL) 280 dbuf_create_bonus(dn); 281 } 282 db = dn->dn_bonus; 283 284 /* as long as the bonus buf is held, the dnode will be held */ 285 if (refcount_add(&db->db_holds, tag) == 1) { 286 VERIFY(dnode_add_ref(dn, db)); 287 atomic_inc_32(&dn->dn_dbufs_count); 288 } 289 290 /* 291 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 292 * hold and incrementing the dbuf count to ensure that dnode_move() sees 293 * a dnode hold for every dbuf. 294 */ 295 rw_exit(&dn->dn_struct_rwlock); 296 297 dnode_rele(dn, FTAG); 298 299 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 300 301 *dbp = &db->db; 302 return (0); 303 } 304 305 /* 306 * returns ENOENT, EIO, or 0. 307 * 308 * This interface will allocate a blank spill dbuf when a spill blk 309 * doesn't already exist on the dnode. 310 * 311 * if you only want to find an already existing spill db, then 312 * dmu_spill_hold_existing() should be used. 313 */ 314 int 315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 316 { 317 dmu_buf_impl_t *db = NULL; 318 int err; 319 320 if ((flags & DB_RF_HAVESTRUCT) == 0) 321 rw_enter(&dn->dn_struct_rwlock, RW_READER); 322 323 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 324 325 if ((flags & DB_RF_HAVESTRUCT) == 0) 326 rw_exit(&dn->dn_struct_rwlock); 327 328 ASSERT(db != NULL); 329 err = dbuf_read(db, NULL, flags); 330 if (err == 0) 331 *dbp = &db->db; 332 else 333 dbuf_rele(db, tag); 334 return (err); 335 } 336 337 int 338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 339 { 340 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 341 dnode_t *dn; 342 int err; 343 344 DB_DNODE_ENTER(db); 345 dn = DB_DNODE(db); 346 347 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 348 err = SET_ERROR(EINVAL); 349 } else { 350 rw_enter(&dn->dn_struct_rwlock, RW_READER); 351 352 if (!dn->dn_have_spill) { 353 err = SET_ERROR(ENOENT); 354 } else { 355 err = dmu_spill_hold_by_dnode(dn, 356 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 357 } 358 359 rw_exit(&dn->dn_struct_rwlock); 360 } 361 362 DB_DNODE_EXIT(db); 363 return (err); 364 } 365 366 int 367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 368 { 369 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 370 dnode_t *dn; 371 int err; 372 373 DB_DNODE_ENTER(db); 374 dn = DB_DNODE(db); 375 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 376 DB_DNODE_EXIT(db); 377 378 return (err); 379 } 380 381 /* 382 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 383 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 384 * and can induce severe lock contention when writing to several files 385 * whose dnodes are in the same block. 386 */ 387 static int 388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 389 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 390 { 391 dmu_buf_t **dbp; 392 uint64_t blkid, nblks, i; 393 uint32_t dbuf_flags; 394 int err; 395 zio_t *zio; 396 397 ASSERT(length <= DMU_MAX_ACCESS); 398 399 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 400 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 401 dbuf_flags |= DB_RF_NOPREFETCH; 402 403 rw_enter(&dn->dn_struct_rwlock, RW_READER); 404 if (dn->dn_datablkshift) { 405 int blkshift = dn->dn_datablkshift; 406 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 407 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 408 } else { 409 if (offset + length > dn->dn_datablksz) { 410 zfs_panic_recover("zfs: accessing past end of object " 411 "%llx/%llx (size=%u access=%llu+%llu)", 412 (longlong_t)dn->dn_objset-> 413 os_dsl_dataset->ds_object, 414 (longlong_t)dn->dn_object, dn->dn_datablksz, 415 (longlong_t)offset, (longlong_t)length); 416 rw_exit(&dn->dn_struct_rwlock); 417 return (SET_ERROR(EIO)); 418 } 419 nblks = 1; 420 } 421 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 422 423 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 424 blkid = dbuf_whichblock(dn, offset); 425 for (i = 0; i < nblks; i++) { 426 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 427 if (db == NULL) { 428 rw_exit(&dn->dn_struct_rwlock); 429 dmu_buf_rele_array(dbp, nblks, tag); 430 zio_nowait(zio); 431 return (SET_ERROR(EIO)); 432 } 433 /* initiate async i/o */ 434 if (read) { 435 (void) dbuf_read(db, zio, dbuf_flags); 436 } 437 dbp[i] = &db->db; 438 } 439 rw_exit(&dn->dn_struct_rwlock); 440 441 /* wait for async i/o */ 442 err = zio_wait(zio); 443 if (err) { 444 dmu_buf_rele_array(dbp, nblks, tag); 445 return (err); 446 } 447 448 /* wait for other io to complete */ 449 if (read) { 450 for (i = 0; i < nblks; i++) { 451 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 452 mutex_enter(&db->db_mtx); 453 while (db->db_state == DB_READ || 454 db->db_state == DB_FILL) 455 cv_wait(&db->db_changed, &db->db_mtx); 456 if (db->db_state == DB_UNCACHED) 457 err = SET_ERROR(EIO); 458 mutex_exit(&db->db_mtx); 459 if (err) { 460 dmu_buf_rele_array(dbp, nblks, tag); 461 return (err); 462 } 463 } 464 } 465 466 *numbufsp = nblks; 467 *dbpp = dbp; 468 return (0); 469 } 470 471 static int 472 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 473 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 474 { 475 dnode_t *dn; 476 int err; 477 478 err = dnode_hold(os, object, FTAG, &dn); 479 if (err) 480 return (err); 481 482 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 483 numbufsp, dbpp, DMU_READ_PREFETCH); 484 485 dnode_rele(dn, FTAG); 486 487 return (err); 488 } 489 490 int 491 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 492 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 493 { 494 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 495 dnode_t *dn; 496 int err; 497 498 DB_DNODE_ENTER(db); 499 dn = DB_DNODE(db); 500 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 501 numbufsp, dbpp, DMU_READ_PREFETCH); 502 DB_DNODE_EXIT(db); 503 504 return (err); 505 } 506 507 void 508 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 509 { 510 int i; 511 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 512 513 if (numbufs == 0) 514 return; 515 516 for (i = 0; i < numbufs; i++) { 517 if (dbp[i]) 518 dbuf_rele(dbp[i], tag); 519 } 520 521 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 522 } 523 524 /* 525 * Issue prefetch i/os for the given blocks. 526 * 527 * Note: The assumption is that we *know* these blocks will be needed 528 * almost immediately. Therefore, the prefetch i/os will be issued at 529 * ZIO_PRIORITY_SYNC_READ 530 * 531 * Note: indirect blocks and other metadata will be read synchronously, 532 * causing this function to block if they are not already cached. 533 */ 534 void 535 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 536 { 537 dnode_t *dn; 538 uint64_t blkid; 539 int nblks, err; 540 541 if (zfs_prefetch_disable) 542 return; 543 544 if (len == 0) { /* they're interested in the bonus buffer */ 545 dn = DMU_META_DNODE(os); 546 547 if (object == 0 || object >= DN_MAX_OBJECT) 548 return; 549 550 rw_enter(&dn->dn_struct_rwlock, RW_READER); 551 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 552 dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ); 553 rw_exit(&dn->dn_struct_rwlock); 554 return; 555 } 556 557 /* 558 * XXX - Note, if the dnode for the requested object is not 559 * already cached, we will do a *synchronous* read in the 560 * dnode_hold() call. The same is true for any indirects. 561 */ 562 err = dnode_hold(os, object, FTAG, &dn); 563 if (err != 0) 564 return; 565 566 rw_enter(&dn->dn_struct_rwlock, RW_READER); 567 if (dn->dn_datablkshift) { 568 int blkshift = dn->dn_datablkshift; 569 nblks = (P2ROUNDUP(offset + len, 1 << blkshift) - 570 P2ALIGN(offset, 1 << blkshift)) >> blkshift; 571 } else { 572 nblks = (offset < dn->dn_datablksz); 573 } 574 575 if (nblks != 0) { 576 blkid = dbuf_whichblock(dn, offset); 577 for (int i = 0; i < nblks; i++) 578 dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ); 579 } 580 581 rw_exit(&dn->dn_struct_rwlock); 582 583 dnode_rele(dn, FTAG); 584 } 585 586 /* 587 * Get the next "chunk" of file data to free. We traverse the file from 588 * the end so that the file gets shorter over time (if we crashes in the 589 * middle, this will leave us in a better state). We find allocated file 590 * data by simply searching the allocated level 1 indirects. 591 * 592 * On input, *start should be the first offset that does not need to be 593 * freed (e.g. "offset + length"). On return, *start will be the first 594 * offset that should be freed. 595 */ 596 static int 597 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 598 { 599 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 600 /* bytes of data covered by a level-1 indirect block */ 601 uint64_t iblkrange = 602 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 603 604 ASSERT3U(minimum, <=, *start); 605 606 if (*start - minimum <= iblkrange * maxblks) { 607 *start = minimum; 608 return (0); 609 } 610 ASSERT(ISP2(iblkrange)); 611 612 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 613 int err; 614 615 /* 616 * dnode_next_offset(BACKWARDS) will find an allocated L1 617 * indirect block at or before the input offset. We must 618 * decrement *start so that it is at the end of the region 619 * to search. 620 */ 621 (*start)--; 622 err = dnode_next_offset(dn, 623 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 624 625 /* if there are no indirect blocks before start, we are done */ 626 if (err == ESRCH) { 627 *start = minimum; 628 break; 629 } else if (err != 0) { 630 return (err); 631 } 632 633 /* set start to the beginning of this L1 indirect */ 634 *start = P2ALIGN(*start, iblkrange); 635 } 636 if (*start < minimum) 637 *start = minimum; 638 return (0); 639 } 640 641 static int 642 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 643 uint64_t length) 644 { 645 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 646 int err; 647 648 if (offset >= object_size) 649 return (0); 650 651 if (length == DMU_OBJECT_END || offset + length > object_size) 652 length = object_size - offset; 653 654 while (length != 0) { 655 uint64_t chunk_end, chunk_begin; 656 657 chunk_end = chunk_begin = offset + length; 658 659 /* move chunk_begin backwards to the beginning of this chunk */ 660 err = get_next_chunk(dn, &chunk_begin, offset); 661 if (err) 662 return (err); 663 ASSERT3U(chunk_begin, >=, offset); 664 ASSERT3U(chunk_begin, <=, chunk_end); 665 666 dmu_tx_t *tx = dmu_tx_create(os); 667 dmu_tx_hold_free(tx, dn->dn_object, 668 chunk_begin, chunk_end - chunk_begin); 669 670 /* 671 * Mark this transaction as typically resulting in a net 672 * reduction in space used. 673 */ 674 dmu_tx_mark_netfree(tx); 675 err = dmu_tx_assign(tx, TXG_WAIT); 676 if (err) { 677 dmu_tx_abort(tx); 678 return (err); 679 } 680 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 681 dmu_tx_commit(tx); 682 683 length -= chunk_end - chunk_begin; 684 } 685 return (0); 686 } 687 688 int 689 dmu_free_long_range(objset_t *os, uint64_t object, 690 uint64_t offset, uint64_t length) 691 { 692 dnode_t *dn; 693 int err; 694 695 err = dnode_hold(os, object, FTAG, &dn); 696 if (err != 0) 697 return (err); 698 err = dmu_free_long_range_impl(os, dn, offset, length); 699 700 /* 701 * It is important to zero out the maxblkid when freeing the entire 702 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 703 * will take the fast path, and (b) dnode_reallocate() can verify 704 * that the entire file has been freed. 705 */ 706 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 707 dn->dn_maxblkid = 0; 708 709 dnode_rele(dn, FTAG); 710 return (err); 711 } 712 713 int 714 dmu_free_long_object(objset_t *os, uint64_t object) 715 { 716 dmu_tx_t *tx; 717 int err; 718 719 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 720 if (err != 0) 721 return (err); 722 723 tx = dmu_tx_create(os); 724 dmu_tx_hold_bonus(tx, object); 725 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 726 dmu_tx_mark_netfree(tx); 727 err = dmu_tx_assign(tx, TXG_WAIT); 728 if (err == 0) { 729 err = dmu_object_free(os, object, tx); 730 dmu_tx_commit(tx); 731 } else { 732 dmu_tx_abort(tx); 733 } 734 735 return (err); 736 } 737 738 int 739 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 740 uint64_t size, dmu_tx_t *tx) 741 { 742 dnode_t *dn; 743 int err = dnode_hold(os, object, FTAG, &dn); 744 if (err) 745 return (err); 746 ASSERT(offset < UINT64_MAX); 747 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 748 dnode_free_range(dn, offset, size, tx); 749 dnode_rele(dn, FTAG); 750 return (0); 751 } 752 753 int 754 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 755 void *buf, uint32_t flags) 756 { 757 dnode_t *dn; 758 dmu_buf_t **dbp; 759 int numbufs, err; 760 761 err = dnode_hold(os, object, FTAG, &dn); 762 if (err) 763 return (err); 764 765 /* 766 * Deal with odd block sizes, where there can't be data past the first 767 * block. If we ever do the tail block optimization, we will need to 768 * handle that here as well. 769 */ 770 if (dn->dn_maxblkid == 0) { 771 int newsz = offset > dn->dn_datablksz ? 0 : 772 MIN(size, dn->dn_datablksz - offset); 773 bzero((char *)buf + newsz, size - newsz); 774 size = newsz; 775 } 776 777 while (size > 0) { 778 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 779 int i; 780 781 /* 782 * NB: we could do this block-at-a-time, but it's nice 783 * to be reading in parallel. 784 */ 785 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 786 TRUE, FTAG, &numbufs, &dbp, flags); 787 if (err) 788 break; 789 790 for (i = 0; i < numbufs; i++) { 791 int tocpy; 792 int bufoff; 793 dmu_buf_t *db = dbp[i]; 794 795 ASSERT(size > 0); 796 797 bufoff = offset - db->db_offset; 798 tocpy = (int)MIN(db->db_size - bufoff, size); 799 800 bcopy((char *)db->db_data + bufoff, buf, tocpy); 801 802 offset += tocpy; 803 size -= tocpy; 804 buf = (char *)buf + tocpy; 805 } 806 dmu_buf_rele_array(dbp, numbufs, FTAG); 807 } 808 dnode_rele(dn, FTAG); 809 return (err); 810 } 811 812 void 813 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 814 const void *buf, dmu_tx_t *tx) 815 { 816 dmu_buf_t **dbp; 817 int numbufs, i; 818 819 if (size == 0) 820 return; 821 822 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 823 FALSE, FTAG, &numbufs, &dbp)); 824 825 for (i = 0; i < numbufs; i++) { 826 int tocpy; 827 int bufoff; 828 dmu_buf_t *db = dbp[i]; 829 830 ASSERT(size > 0); 831 832 bufoff = offset - db->db_offset; 833 tocpy = (int)MIN(db->db_size - bufoff, size); 834 835 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 836 837 if (tocpy == db->db_size) 838 dmu_buf_will_fill(db, tx); 839 else 840 dmu_buf_will_dirty(db, tx); 841 842 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 843 844 if (tocpy == db->db_size) 845 dmu_buf_fill_done(db, tx); 846 847 offset += tocpy; 848 size -= tocpy; 849 buf = (char *)buf + tocpy; 850 } 851 dmu_buf_rele_array(dbp, numbufs, FTAG); 852 } 853 854 void 855 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 856 dmu_tx_t *tx) 857 { 858 dmu_buf_t **dbp; 859 int numbufs, i; 860 861 if (size == 0) 862 return; 863 864 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 865 FALSE, FTAG, &numbufs, &dbp)); 866 867 for (i = 0; i < numbufs; i++) { 868 dmu_buf_t *db = dbp[i]; 869 870 dmu_buf_will_not_fill(db, tx); 871 } 872 dmu_buf_rele_array(dbp, numbufs, FTAG); 873 } 874 875 void 876 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 877 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 878 int compressed_size, int byteorder, dmu_tx_t *tx) 879 { 880 dmu_buf_t *db; 881 882 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 883 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 884 VERIFY0(dmu_buf_hold_noread(os, object, offset, 885 FTAG, &db)); 886 887 dmu_buf_write_embedded(db, 888 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 889 uncompressed_size, compressed_size, byteorder, tx); 890 891 dmu_buf_rele(db, FTAG); 892 } 893 894 /* 895 * DMU support for xuio 896 */ 897 kstat_t *xuio_ksp = NULL; 898 899 int 900 dmu_xuio_init(xuio_t *xuio, int nblk) 901 { 902 dmu_xuio_t *priv; 903 uio_t *uio = &xuio->xu_uio; 904 905 uio->uio_iovcnt = nblk; 906 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 907 908 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 909 priv->cnt = nblk; 910 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 911 priv->iovp = uio->uio_iov; 912 XUIO_XUZC_PRIV(xuio) = priv; 913 914 if (XUIO_XUZC_RW(xuio) == UIO_READ) 915 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 916 else 917 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 918 919 return (0); 920 } 921 922 void 923 dmu_xuio_fini(xuio_t *xuio) 924 { 925 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 926 int nblk = priv->cnt; 927 928 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 929 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 930 kmem_free(priv, sizeof (dmu_xuio_t)); 931 932 if (XUIO_XUZC_RW(xuio) == UIO_READ) 933 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 934 else 935 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 936 } 937 938 /* 939 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 940 * and increase priv->next by 1. 941 */ 942 int 943 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 944 { 945 struct iovec *iov; 946 uio_t *uio = &xuio->xu_uio; 947 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 948 int i = priv->next++; 949 950 ASSERT(i < priv->cnt); 951 ASSERT(off + n <= arc_buf_size(abuf)); 952 iov = uio->uio_iov + i; 953 iov->iov_base = (char *)abuf->b_data + off; 954 iov->iov_len = n; 955 priv->bufs[i] = abuf; 956 return (0); 957 } 958 959 int 960 dmu_xuio_cnt(xuio_t *xuio) 961 { 962 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 963 return (priv->cnt); 964 } 965 966 arc_buf_t * 967 dmu_xuio_arcbuf(xuio_t *xuio, int i) 968 { 969 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 970 971 ASSERT(i < priv->cnt); 972 return (priv->bufs[i]); 973 } 974 975 void 976 dmu_xuio_clear(xuio_t *xuio, int i) 977 { 978 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 979 980 ASSERT(i < priv->cnt); 981 priv->bufs[i] = NULL; 982 } 983 984 static void 985 xuio_stat_init(void) 986 { 987 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 988 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 989 KSTAT_FLAG_VIRTUAL); 990 if (xuio_ksp != NULL) { 991 xuio_ksp->ks_data = &xuio_stats; 992 kstat_install(xuio_ksp); 993 } 994 } 995 996 static void 997 xuio_stat_fini(void) 998 { 999 if (xuio_ksp != NULL) { 1000 kstat_delete(xuio_ksp); 1001 xuio_ksp = NULL; 1002 } 1003 } 1004 1005 void 1006 xuio_stat_wbuf_copied() 1007 { 1008 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1009 } 1010 1011 void 1012 xuio_stat_wbuf_nocopy() 1013 { 1014 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1015 } 1016 1017 #ifdef _KERNEL 1018 static int 1019 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1020 { 1021 dmu_buf_t **dbp; 1022 int numbufs, i, err; 1023 xuio_t *xuio = NULL; 1024 1025 /* 1026 * NB: we could do this block-at-a-time, but it's nice 1027 * to be reading in parallel. 1028 */ 1029 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1030 TRUE, FTAG, &numbufs, &dbp, 0); 1031 if (err) 1032 return (err); 1033 1034 if (uio->uio_extflg == UIO_XUIO) 1035 xuio = (xuio_t *)uio; 1036 1037 for (i = 0; i < numbufs; i++) { 1038 int tocpy; 1039 int bufoff; 1040 dmu_buf_t *db = dbp[i]; 1041 1042 ASSERT(size > 0); 1043 1044 bufoff = uio->uio_loffset - db->db_offset; 1045 tocpy = (int)MIN(db->db_size - bufoff, size); 1046 1047 if (xuio) { 1048 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1049 arc_buf_t *dbuf_abuf = dbi->db_buf; 1050 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1051 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1052 if (!err) { 1053 uio->uio_resid -= tocpy; 1054 uio->uio_loffset += tocpy; 1055 } 1056 1057 if (abuf == dbuf_abuf) 1058 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1059 else 1060 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1061 } else { 1062 err = uiomove((char *)db->db_data + bufoff, tocpy, 1063 UIO_READ, uio); 1064 } 1065 if (err) 1066 break; 1067 1068 size -= tocpy; 1069 } 1070 dmu_buf_rele_array(dbp, numbufs, FTAG); 1071 1072 return (err); 1073 } 1074 1075 /* 1076 * Read 'size' bytes into the uio buffer. 1077 * From object zdb->db_object. 1078 * Starting at offset uio->uio_loffset. 1079 * 1080 * If the caller already has a dbuf in the target object 1081 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1082 * because we don't have to find the dnode_t for the object. 1083 */ 1084 int 1085 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1086 { 1087 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1088 dnode_t *dn; 1089 int err; 1090 1091 if (size == 0) 1092 return (0); 1093 1094 DB_DNODE_ENTER(db); 1095 dn = DB_DNODE(db); 1096 err = dmu_read_uio_dnode(dn, uio, size); 1097 DB_DNODE_EXIT(db); 1098 1099 return (err); 1100 } 1101 1102 /* 1103 * Read 'size' bytes into the uio buffer. 1104 * From the specified object 1105 * Starting at offset uio->uio_loffset. 1106 */ 1107 int 1108 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1109 { 1110 dnode_t *dn; 1111 int err; 1112 1113 if (size == 0) 1114 return (0); 1115 1116 err = dnode_hold(os, object, FTAG, &dn); 1117 if (err) 1118 return (err); 1119 1120 err = dmu_read_uio_dnode(dn, uio, size); 1121 1122 dnode_rele(dn, FTAG); 1123 1124 return (err); 1125 } 1126 1127 static int 1128 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1129 { 1130 dmu_buf_t **dbp; 1131 int numbufs; 1132 int err = 0; 1133 int i; 1134 1135 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1136 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1137 if (err) 1138 return (err); 1139 1140 for (i = 0; i < numbufs; i++) { 1141 int tocpy; 1142 int bufoff; 1143 dmu_buf_t *db = dbp[i]; 1144 1145 ASSERT(size > 0); 1146 1147 bufoff = uio->uio_loffset - db->db_offset; 1148 tocpy = (int)MIN(db->db_size - bufoff, size); 1149 1150 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1151 1152 if (tocpy == db->db_size) 1153 dmu_buf_will_fill(db, tx); 1154 else 1155 dmu_buf_will_dirty(db, tx); 1156 1157 /* 1158 * XXX uiomove could block forever (eg. nfs-backed 1159 * pages). There needs to be a uiolockdown() function 1160 * to lock the pages in memory, so that uiomove won't 1161 * block. 1162 */ 1163 err = uiomove((char *)db->db_data + bufoff, tocpy, 1164 UIO_WRITE, uio); 1165 1166 if (tocpy == db->db_size) 1167 dmu_buf_fill_done(db, tx); 1168 1169 if (err) 1170 break; 1171 1172 size -= tocpy; 1173 } 1174 1175 dmu_buf_rele_array(dbp, numbufs, FTAG); 1176 return (err); 1177 } 1178 1179 /* 1180 * Write 'size' bytes from the uio buffer. 1181 * To object zdb->db_object. 1182 * Starting at offset uio->uio_loffset. 1183 * 1184 * If the caller already has a dbuf in the target object 1185 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1186 * because we don't have to find the dnode_t for the object. 1187 */ 1188 int 1189 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1190 dmu_tx_t *tx) 1191 { 1192 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1193 dnode_t *dn; 1194 int err; 1195 1196 if (size == 0) 1197 return (0); 1198 1199 DB_DNODE_ENTER(db); 1200 dn = DB_DNODE(db); 1201 err = dmu_write_uio_dnode(dn, uio, size, tx); 1202 DB_DNODE_EXIT(db); 1203 1204 return (err); 1205 } 1206 1207 /* 1208 * Write 'size' bytes from the uio buffer. 1209 * To the specified object. 1210 * Starting at offset uio->uio_loffset. 1211 */ 1212 int 1213 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1214 dmu_tx_t *tx) 1215 { 1216 dnode_t *dn; 1217 int err; 1218 1219 if (size == 0) 1220 return (0); 1221 1222 err = dnode_hold(os, object, FTAG, &dn); 1223 if (err) 1224 return (err); 1225 1226 err = dmu_write_uio_dnode(dn, uio, size, tx); 1227 1228 dnode_rele(dn, FTAG); 1229 1230 return (err); 1231 } 1232 1233 int 1234 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1235 page_t *pp, dmu_tx_t *tx) 1236 { 1237 dmu_buf_t **dbp; 1238 int numbufs, i; 1239 int err; 1240 1241 if (size == 0) 1242 return (0); 1243 1244 err = dmu_buf_hold_array(os, object, offset, size, 1245 FALSE, FTAG, &numbufs, &dbp); 1246 if (err) 1247 return (err); 1248 1249 for (i = 0; i < numbufs; i++) { 1250 int tocpy, copied, thiscpy; 1251 int bufoff; 1252 dmu_buf_t *db = dbp[i]; 1253 caddr_t va; 1254 1255 ASSERT(size > 0); 1256 ASSERT3U(db->db_size, >=, PAGESIZE); 1257 1258 bufoff = offset - db->db_offset; 1259 tocpy = (int)MIN(db->db_size - bufoff, size); 1260 1261 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1262 1263 if (tocpy == db->db_size) 1264 dmu_buf_will_fill(db, tx); 1265 else 1266 dmu_buf_will_dirty(db, tx); 1267 1268 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1269 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1270 thiscpy = MIN(PAGESIZE, tocpy - copied); 1271 va = zfs_map_page(pp, S_READ); 1272 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1273 zfs_unmap_page(pp, va); 1274 pp = pp->p_next; 1275 bufoff += PAGESIZE; 1276 } 1277 1278 if (tocpy == db->db_size) 1279 dmu_buf_fill_done(db, tx); 1280 1281 offset += tocpy; 1282 size -= tocpy; 1283 } 1284 dmu_buf_rele_array(dbp, numbufs, FTAG); 1285 return (err); 1286 } 1287 #endif 1288 1289 /* 1290 * Allocate a loaned anonymous arc buffer. 1291 */ 1292 arc_buf_t * 1293 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1294 { 1295 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1296 1297 return (arc_loan_buf(db->db_objset->os_spa, size)); 1298 } 1299 1300 /* 1301 * Free a loaned arc buffer. 1302 */ 1303 void 1304 dmu_return_arcbuf(arc_buf_t *buf) 1305 { 1306 arc_return_buf(buf, FTAG); 1307 VERIFY(arc_buf_remove_ref(buf, FTAG)); 1308 } 1309 1310 /* 1311 * When possible directly assign passed loaned arc buffer to a dbuf. 1312 * If this is not possible copy the contents of passed arc buf via 1313 * dmu_write(). 1314 */ 1315 void 1316 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1317 dmu_tx_t *tx) 1318 { 1319 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1320 dnode_t *dn; 1321 dmu_buf_impl_t *db; 1322 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1323 uint64_t blkid; 1324 1325 DB_DNODE_ENTER(dbuf); 1326 dn = DB_DNODE(dbuf); 1327 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1328 blkid = dbuf_whichblock(dn, offset); 1329 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1330 rw_exit(&dn->dn_struct_rwlock); 1331 DB_DNODE_EXIT(dbuf); 1332 1333 /* 1334 * We can only assign if the offset is aligned, the arc buf is the 1335 * same size as the dbuf, and the dbuf is not metadata. It 1336 * can't be metadata because the loaned arc buf comes from the 1337 * user-data kmem arena. 1338 */ 1339 if (offset == db->db.db_offset && blksz == db->db.db_size && 1340 DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) { 1341 dbuf_assign_arcbuf(db, buf, tx); 1342 dbuf_rele(db, FTAG); 1343 } else { 1344 objset_t *os; 1345 uint64_t object; 1346 1347 DB_DNODE_ENTER(dbuf); 1348 dn = DB_DNODE(dbuf); 1349 os = dn->dn_objset; 1350 object = dn->dn_object; 1351 DB_DNODE_EXIT(dbuf); 1352 1353 dbuf_rele(db, FTAG); 1354 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1355 dmu_return_arcbuf(buf); 1356 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1357 } 1358 } 1359 1360 typedef struct { 1361 dbuf_dirty_record_t *dsa_dr; 1362 dmu_sync_cb_t *dsa_done; 1363 zgd_t *dsa_zgd; 1364 dmu_tx_t *dsa_tx; 1365 } dmu_sync_arg_t; 1366 1367 /* ARGSUSED */ 1368 static void 1369 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1370 { 1371 dmu_sync_arg_t *dsa = varg; 1372 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1373 blkptr_t *bp = zio->io_bp; 1374 1375 if (zio->io_error == 0) { 1376 if (BP_IS_HOLE(bp)) { 1377 /* 1378 * A block of zeros may compress to a hole, but the 1379 * block size still needs to be known for replay. 1380 */ 1381 BP_SET_LSIZE(bp, db->db_size); 1382 } else if (!BP_IS_EMBEDDED(bp)) { 1383 ASSERT(BP_GET_LEVEL(bp) == 0); 1384 bp->blk_fill = 1; 1385 } 1386 } 1387 } 1388 1389 static void 1390 dmu_sync_late_arrival_ready(zio_t *zio) 1391 { 1392 dmu_sync_ready(zio, NULL, zio->io_private); 1393 } 1394 1395 /* ARGSUSED */ 1396 static void 1397 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1398 { 1399 dmu_sync_arg_t *dsa = varg; 1400 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1401 dmu_buf_impl_t *db = dr->dr_dbuf; 1402 1403 mutex_enter(&db->db_mtx); 1404 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1405 if (zio->io_error == 0) { 1406 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1407 if (dr->dt.dl.dr_nopwrite) { 1408 blkptr_t *bp = zio->io_bp; 1409 blkptr_t *bp_orig = &zio->io_bp_orig; 1410 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1411 1412 ASSERT(BP_EQUAL(bp, bp_orig)); 1413 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1414 ASSERT(zio_checksum_table[chksum].ci_dedup); 1415 } 1416 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1417 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1418 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1419 1420 /* 1421 * Old style holes are filled with all zeros, whereas 1422 * new-style holes maintain their lsize, type, level, 1423 * and birth time (see zio_write_compress). While we 1424 * need to reset the BP_SET_LSIZE() call that happened 1425 * in dmu_sync_ready for old style holes, we do *not* 1426 * want to wipe out the information contained in new 1427 * style holes. Thus, only zero out the block pointer if 1428 * it's an old style hole. 1429 */ 1430 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1431 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1432 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1433 } else { 1434 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1435 } 1436 cv_broadcast(&db->db_changed); 1437 mutex_exit(&db->db_mtx); 1438 1439 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1440 1441 kmem_free(dsa, sizeof (*dsa)); 1442 } 1443 1444 static void 1445 dmu_sync_late_arrival_done(zio_t *zio) 1446 { 1447 blkptr_t *bp = zio->io_bp; 1448 dmu_sync_arg_t *dsa = zio->io_private; 1449 blkptr_t *bp_orig = &zio->io_bp_orig; 1450 1451 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1452 /* 1453 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1454 * then there is nothing to do here. Otherwise, free the 1455 * newly allocated block in this txg. 1456 */ 1457 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1458 ASSERT(BP_EQUAL(bp, bp_orig)); 1459 } else { 1460 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1461 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1462 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1463 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1464 } 1465 } 1466 1467 dmu_tx_commit(dsa->dsa_tx); 1468 1469 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1470 1471 kmem_free(dsa, sizeof (*dsa)); 1472 } 1473 1474 static int 1475 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1476 zio_prop_t *zp, zbookmark_phys_t *zb) 1477 { 1478 dmu_sync_arg_t *dsa; 1479 dmu_tx_t *tx; 1480 1481 tx = dmu_tx_create(os); 1482 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1483 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1484 dmu_tx_abort(tx); 1485 /* Make zl_get_data do txg_waited_synced() */ 1486 return (SET_ERROR(EIO)); 1487 } 1488 1489 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1490 dsa->dsa_dr = NULL; 1491 dsa->dsa_done = done; 1492 dsa->dsa_zgd = zgd; 1493 dsa->dsa_tx = tx; 1494 1495 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1496 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1497 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa, 1498 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1499 1500 return (0); 1501 } 1502 1503 /* 1504 * Intent log support: sync the block associated with db to disk. 1505 * N.B. and XXX: the caller is responsible for making sure that the 1506 * data isn't changing while dmu_sync() is writing it. 1507 * 1508 * Return values: 1509 * 1510 * EEXIST: this txg has already been synced, so there's nothing to do. 1511 * The caller should not log the write. 1512 * 1513 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1514 * The caller should not log the write. 1515 * 1516 * EALREADY: this block is already in the process of being synced. 1517 * The caller should track its progress (somehow). 1518 * 1519 * EIO: could not do the I/O. 1520 * The caller should do a txg_wait_synced(). 1521 * 1522 * 0: the I/O has been initiated. 1523 * The caller should log this blkptr in the done callback. 1524 * It is possible that the I/O will fail, in which case 1525 * the error will be reported to the done callback and 1526 * propagated to pio from zio_done(). 1527 */ 1528 int 1529 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1530 { 1531 blkptr_t *bp = zgd->zgd_bp; 1532 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1533 objset_t *os = db->db_objset; 1534 dsl_dataset_t *ds = os->os_dsl_dataset; 1535 dbuf_dirty_record_t *dr; 1536 dmu_sync_arg_t *dsa; 1537 zbookmark_phys_t zb; 1538 zio_prop_t zp; 1539 dnode_t *dn; 1540 1541 ASSERT(pio != NULL); 1542 ASSERT(txg != 0); 1543 1544 SET_BOOKMARK(&zb, ds->ds_object, 1545 db->db.db_object, db->db_level, db->db_blkid); 1546 1547 DB_DNODE_ENTER(db); 1548 dn = DB_DNODE(db); 1549 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1550 DB_DNODE_EXIT(db); 1551 1552 /* 1553 * If we're frozen (running ziltest), we always need to generate a bp. 1554 */ 1555 if (txg > spa_freeze_txg(os->os_spa)) 1556 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1557 1558 /* 1559 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1560 * and us. If we determine that this txg is not yet syncing, 1561 * but it begins to sync a moment later, that's OK because the 1562 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1563 */ 1564 mutex_enter(&db->db_mtx); 1565 1566 if (txg <= spa_last_synced_txg(os->os_spa)) { 1567 /* 1568 * This txg has already synced. There's nothing to do. 1569 */ 1570 mutex_exit(&db->db_mtx); 1571 return (SET_ERROR(EEXIST)); 1572 } 1573 1574 if (txg <= spa_syncing_txg(os->os_spa)) { 1575 /* 1576 * This txg is currently syncing, so we can't mess with 1577 * the dirty record anymore; just write a new log block. 1578 */ 1579 mutex_exit(&db->db_mtx); 1580 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1581 } 1582 1583 dr = db->db_last_dirty; 1584 while (dr && dr->dr_txg != txg) 1585 dr = dr->dr_next; 1586 1587 if (dr == NULL) { 1588 /* 1589 * There's no dr for this dbuf, so it must have been freed. 1590 * There's no need to log writes to freed blocks, so we're done. 1591 */ 1592 mutex_exit(&db->db_mtx); 1593 return (SET_ERROR(ENOENT)); 1594 } 1595 1596 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1597 1598 /* 1599 * Assume the on-disk data is X, the current syncing data (in 1600 * txg - 1) is Y, and the current in-memory data is Z (currently 1601 * in dmu_sync). 1602 * 1603 * We usually want to perform a nopwrite if X and Z are the 1604 * same. However, if Y is different (i.e. the BP is going to 1605 * change before this write takes effect), then a nopwrite will 1606 * be incorrect - we would override with X, which could have 1607 * been freed when Y was written. 1608 * 1609 * (Note that this is not a concern when we are nop-writing from 1610 * syncing context, because X and Y must be identical, because 1611 * all previous txgs have been synced.) 1612 * 1613 * Therefore, we disable nopwrite if the current BP could change 1614 * before this TXG. There are two ways it could change: by 1615 * being dirty (dr_next is non-NULL), or by being freed 1616 * (dnode_block_freed()). This behavior is verified by 1617 * zio_done(), which VERIFYs that the override BP is identical 1618 * to the on-disk BP. 1619 */ 1620 DB_DNODE_ENTER(db); 1621 dn = DB_DNODE(db); 1622 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1623 zp.zp_nopwrite = B_FALSE; 1624 DB_DNODE_EXIT(db); 1625 1626 ASSERT(dr->dr_txg == txg); 1627 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1628 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1629 /* 1630 * We have already issued a sync write for this buffer, 1631 * or this buffer has already been synced. It could not 1632 * have been dirtied since, or we would have cleared the state. 1633 */ 1634 mutex_exit(&db->db_mtx); 1635 return (SET_ERROR(EALREADY)); 1636 } 1637 1638 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1639 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1640 mutex_exit(&db->db_mtx); 1641 1642 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1643 dsa->dsa_dr = dr; 1644 dsa->dsa_done = done; 1645 dsa->dsa_zgd = zgd; 1646 dsa->dsa_tx = NULL; 1647 1648 zio_nowait(arc_write(pio, os->os_spa, txg, 1649 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1650 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, 1651 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1652 ZIO_FLAG_CANFAIL, &zb)); 1653 1654 return (0); 1655 } 1656 1657 int 1658 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1659 dmu_tx_t *tx) 1660 { 1661 dnode_t *dn; 1662 int err; 1663 1664 err = dnode_hold(os, object, FTAG, &dn); 1665 if (err) 1666 return (err); 1667 err = dnode_set_blksz(dn, size, ibs, tx); 1668 dnode_rele(dn, FTAG); 1669 return (err); 1670 } 1671 1672 void 1673 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1674 dmu_tx_t *tx) 1675 { 1676 dnode_t *dn; 1677 1678 /* 1679 * Send streams include each object's checksum function. This 1680 * check ensures that the receiving system can understand the 1681 * checksum function transmitted. 1682 */ 1683 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1684 1685 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1686 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1687 dn->dn_checksum = checksum; 1688 dnode_setdirty(dn, tx); 1689 dnode_rele(dn, FTAG); 1690 } 1691 1692 void 1693 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1694 dmu_tx_t *tx) 1695 { 1696 dnode_t *dn; 1697 1698 /* 1699 * Send streams include each object's compression function. This 1700 * check ensures that the receiving system can understand the 1701 * compression function transmitted. 1702 */ 1703 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1704 1705 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1706 dn->dn_compress = compress; 1707 dnode_setdirty(dn, tx); 1708 dnode_rele(dn, FTAG); 1709 } 1710 1711 int zfs_mdcomp_disable = 0; 1712 1713 /* 1714 * When the "redundant_metadata" property is set to "most", only indirect 1715 * blocks of this level and higher will have an additional ditto block. 1716 */ 1717 int zfs_redundant_metadata_most_ditto_level = 2; 1718 1719 void 1720 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1721 { 1722 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1723 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1724 (wp & WP_SPILL)); 1725 enum zio_checksum checksum = os->os_checksum; 1726 enum zio_compress compress = os->os_compress; 1727 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1728 boolean_t dedup = B_FALSE; 1729 boolean_t nopwrite = B_FALSE; 1730 boolean_t dedup_verify = os->os_dedup_verify; 1731 int copies = os->os_copies; 1732 1733 /* 1734 * We maintain different write policies for each of the following 1735 * types of data: 1736 * 1. metadata 1737 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1738 * 3. all other level 0 blocks 1739 */ 1740 if (ismd) { 1741 if (zfs_mdcomp_disable) { 1742 compress = ZIO_COMPRESS_EMPTY; 1743 } else { 1744 /* 1745 * XXX -- we should design a compression algorithm 1746 * that specializes in arrays of bps. 1747 */ 1748 compress = zio_compress_select(os->os_spa, 1749 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1750 } 1751 1752 /* 1753 * Metadata always gets checksummed. If the data 1754 * checksum is multi-bit correctable, and it's not a 1755 * ZBT-style checksum, then it's suitable for metadata 1756 * as well. Otherwise, the metadata checksum defaults 1757 * to fletcher4. 1758 */ 1759 if (zio_checksum_table[checksum].ci_correctable < 1 || 1760 zio_checksum_table[checksum].ci_eck) 1761 checksum = ZIO_CHECKSUM_FLETCHER_4; 1762 1763 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1764 (os->os_redundant_metadata == 1765 ZFS_REDUNDANT_METADATA_MOST && 1766 (level >= zfs_redundant_metadata_most_ditto_level || 1767 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1768 copies++; 1769 } else if (wp & WP_NOFILL) { 1770 ASSERT(level == 0); 1771 1772 /* 1773 * If we're writing preallocated blocks, we aren't actually 1774 * writing them so don't set any policy properties. These 1775 * blocks are currently only used by an external subsystem 1776 * outside of zfs (i.e. dump) and not written by the zio 1777 * pipeline. 1778 */ 1779 compress = ZIO_COMPRESS_OFF; 1780 checksum = ZIO_CHECKSUM_NOPARITY; 1781 } else { 1782 compress = zio_compress_select(os->os_spa, dn->dn_compress, 1783 compress); 1784 1785 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1786 zio_checksum_select(dn->dn_checksum, checksum) : 1787 dedup_checksum; 1788 1789 /* 1790 * Determine dedup setting. If we are in dmu_sync(), 1791 * we won't actually dedup now because that's all 1792 * done in syncing context; but we do want to use the 1793 * dedup checkum. If the checksum is not strong 1794 * enough to ensure unique signatures, force 1795 * dedup_verify. 1796 */ 1797 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1798 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1799 if (!zio_checksum_table[checksum].ci_dedup) 1800 dedup_verify = B_TRUE; 1801 } 1802 1803 /* 1804 * Enable nopwrite if we have a cryptographically secure 1805 * checksum that has no known collisions (i.e. SHA-256) 1806 * and compression is enabled. We don't enable nopwrite if 1807 * dedup is enabled as the two features are mutually exclusive. 1808 */ 1809 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup && 1810 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1811 } 1812 1813 zp->zp_checksum = checksum; 1814 zp->zp_compress = compress; 1815 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1816 zp->zp_level = level; 1817 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 1818 zp->zp_dedup = dedup; 1819 zp->zp_dedup_verify = dedup && dedup_verify; 1820 zp->zp_nopwrite = nopwrite; 1821 } 1822 1823 int 1824 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1825 { 1826 dnode_t *dn; 1827 int err; 1828 1829 /* 1830 * Sync any current changes before 1831 * we go trundling through the block pointers. 1832 */ 1833 err = dmu_object_wait_synced(os, object); 1834 if (err) { 1835 return (err); 1836 } 1837 1838 err = dnode_hold(os, object, FTAG, &dn); 1839 if (err) { 1840 return (err); 1841 } 1842 1843 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1844 dnode_rele(dn, FTAG); 1845 1846 return (err); 1847 } 1848 1849 /* 1850 * Given the ZFS object, if it contains any dirty nodes 1851 * this function flushes all dirty blocks to disk. This 1852 * ensures the DMU object info is updated. A more efficient 1853 * future version might just find the TXG with the maximum 1854 * ID and wait for that to be synced. 1855 */ 1856 int 1857 dmu_object_wait_synced(objset_t *os, uint64_t object) { 1858 dnode_t *dn; 1859 int error, i; 1860 1861 error = dnode_hold(os, object, FTAG, &dn); 1862 if (error) { 1863 return (error); 1864 } 1865 1866 for (i = 0; i < TXG_SIZE; i++) { 1867 if (list_link_active(&dn->dn_dirty_link[i])) { 1868 break; 1869 } 1870 } 1871 dnode_rele(dn, FTAG); 1872 if (i != TXG_SIZE) { 1873 txg_wait_synced(dmu_objset_pool(os), 0); 1874 } 1875 1876 return (0); 1877 } 1878 1879 void 1880 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1881 { 1882 dnode_phys_t *dnp; 1883 1884 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1885 mutex_enter(&dn->dn_mtx); 1886 1887 dnp = dn->dn_phys; 1888 1889 doi->doi_data_block_size = dn->dn_datablksz; 1890 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1891 1ULL << dn->dn_indblkshift : 0; 1892 doi->doi_type = dn->dn_type; 1893 doi->doi_bonus_type = dn->dn_bonustype; 1894 doi->doi_bonus_size = dn->dn_bonuslen; 1895 doi->doi_indirection = dn->dn_nlevels; 1896 doi->doi_checksum = dn->dn_checksum; 1897 doi->doi_compress = dn->dn_compress; 1898 doi->doi_nblkptr = dn->dn_nblkptr; 1899 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1900 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1901 doi->doi_fill_count = 0; 1902 for (int i = 0; i < dnp->dn_nblkptr; i++) 1903 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 1904 1905 mutex_exit(&dn->dn_mtx); 1906 rw_exit(&dn->dn_struct_rwlock); 1907 } 1908 1909 /* 1910 * Get information on a DMU object. 1911 * If doi is NULL, just indicates whether the object exists. 1912 */ 1913 int 1914 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1915 { 1916 dnode_t *dn; 1917 int err = dnode_hold(os, object, FTAG, &dn); 1918 1919 if (err) 1920 return (err); 1921 1922 if (doi != NULL) 1923 dmu_object_info_from_dnode(dn, doi); 1924 1925 dnode_rele(dn, FTAG); 1926 return (0); 1927 } 1928 1929 /* 1930 * As above, but faster; can be used when you have a held dbuf in hand. 1931 */ 1932 void 1933 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1934 { 1935 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1936 1937 DB_DNODE_ENTER(db); 1938 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1939 DB_DNODE_EXIT(db); 1940 } 1941 1942 /* 1943 * Faster still when you only care about the size. 1944 * This is specifically optimized for zfs_getattr(). 1945 */ 1946 void 1947 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1948 u_longlong_t *nblk512) 1949 { 1950 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1951 dnode_t *dn; 1952 1953 DB_DNODE_ENTER(db); 1954 dn = DB_DNODE(db); 1955 1956 *blksize = dn->dn_datablksz; 1957 /* add 1 for dnode space */ 1958 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1959 SPA_MINBLOCKSHIFT) + 1; 1960 DB_DNODE_EXIT(db); 1961 } 1962 1963 void 1964 byteswap_uint64_array(void *vbuf, size_t size) 1965 { 1966 uint64_t *buf = vbuf; 1967 size_t count = size >> 3; 1968 int i; 1969 1970 ASSERT((size & 7) == 0); 1971 1972 for (i = 0; i < count; i++) 1973 buf[i] = BSWAP_64(buf[i]); 1974 } 1975 1976 void 1977 byteswap_uint32_array(void *vbuf, size_t size) 1978 { 1979 uint32_t *buf = vbuf; 1980 size_t count = size >> 2; 1981 int i; 1982 1983 ASSERT((size & 3) == 0); 1984 1985 for (i = 0; i < count; i++) 1986 buf[i] = BSWAP_32(buf[i]); 1987 } 1988 1989 void 1990 byteswap_uint16_array(void *vbuf, size_t size) 1991 { 1992 uint16_t *buf = vbuf; 1993 size_t count = size >> 1; 1994 int i; 1995 1996 ASSERT((size & 1) == 0); 1997 1998 for (i = 0; i < count; i++) 1999 buf[i] = BSWAP_16(buf[i]); 2000 } 2001 2002 /* ARGSUSED */ 2003 void 2004 byteswap_uint8_array(void *vbuf, size_t size) 2005 { 2006 } 2007 2008 void 2009 dmu_init(void) 2010 { 2011 zfs_dbgmsg_init(); 2012 sa_cache_init(); 2013 xuio_stat_init(); 2014 dmu_objset_init(); 2015 dnode_init(); 2016 dbuf_init(); 2017 zfetch_init(); 2018 l2arc_init(); 2019 arc_init(); 2020 } 2021 2022 void 2023 dmu_fini(void) 2024 { 2025 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2026 l2arc_fini(); 2027 zfetch_fini(); 2028 dbuf_fini(); 2029 dnode_fini(); 2030 dmu_objset_fini(); 2031 xuio_stat_fini(); 2032 sa_cache_fini(); 2033 zfs_dbgmsg_fini(); 2034 } 2035