1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2017 RackTop Systems. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/range_tree.h> 42 43 static kmem_cache_t *dnode_cache; 44 /* 45 * Define DNODE_STATS to turn on statistic gathering. By default, it is only 46 * turned on when DEBUG is also defined. 47 */ 48 #ifdef DEBUG 49 #define DNODE_STATS 50 #endif /* DEBUG */ 51 52 #ifdef DNODE_STATS 53 #define DNODE_STAT_ADD(stat) ((stat)++) 54 #else 55 #define DNODE_STAT_ADD(stat) /* nothing */ 56 #endif /* DNODE_STATS */ 57 58 static dnode_phys_t dnode_phys_zero; 59 60 int zfs_default_bs = SPA_MINBLOCKSHIFT; 61 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 62 63 #ifdef _KERNEL 64 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 65 #endif /* _KERNEL */ 66 67 static int 68 dbuf_compare(const void *x1, const void *x2) 69 { 70 const dmu_buf_impl_t *d1 = x1; 71 const dmu_buf_impl_t *d2 = x2; 72 73 if (d1->db_level < d2->db_level) { 74 return (-1); 75 } 76 if (d1->db_level > d2->db_level) { 77 return (1); 78 } 79 80 if (d1->db_blkid < d2->db_blkid) { 81 return (-1); 82 } 83 if (d1->db_blkid > d2->db_blkid) { 84 return (1); 85 } 86 87 if (d1->db_state == DB_SEARCH) { 88 ASSERT3S(d2->db_state, !=, DB_SEARCH); 89 return (-1); 90 } else if (d2->db_state == DB_SEARCH) { 91 ASSERT3S(d1->db_state, !=, DB_SEARCH); 92 return (1); 93 } 94 95 if ((uintptr_t)d1 < (uintptr_t)d2) { 96 return (-1); 97 } 98 if ((uintptr_t)d1 > (uintptr_t)d2) { 99 return (1); 100 } 101 return (0); 102 } 103 104 /* ARGSUSED */ 105 static int 106 dnode_cons(void *arg, void *unused, int kmflag) 107 { 108 dnode_t *dn = arg; 109 int i; 110 111 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 112 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 113 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 114 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 115 116 /* 117 * Every dbuf has a reference, and dropping a tracked reference is 118 * O(number of references), so don't track dn_holds. 119 */ 120 refcount_create_untracked(&dn->dn_holds); 121 refcount_create(&dn->dn_tx_holds); 122 list_link_init(&dn->dn_link); 123 124 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 125 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 126 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 127 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 128 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 129 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 130 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 131 132 for (i = 0; i < TXG_SIZE; i++) { 133 list_link_init(&dn->dn_dirty_link[i]); 134 dn->dn_free_ranges[i] = NULL; 135 list_create(&dn->dn_dirty_records[i], 136 sizeof (dbuf_dirty_record_t), 137 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 138 } 139 140 dn->dn_allocated_txg = 0; 141 dn->dn_free_txg = 0; 142 dn->dn_assigned_txg = 0; 143 dn->dn_dirtyctx = 0; 144 dn->dn_dirtyctx_firstset = NULL; 145 dn->dn_bonus = NULL; 146 dn->dn_have_spill = B_FALSE; 147 dn->dn_zio = NULL; 148 dn->dn_oldused = 0; 149 dn->dn_oldflags = 0; 150 dn->dn_olduid = 0; 151 dn->dn_oldgid = 0; 152 dn->dn_newuid = 0; 153 dn->dn_newgid = 0; 154 dn->dn_id_flags = 0; 155 156 dn->dn_dbufs_count = 0; 157 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 158 offsetof(dmu_buf_impl_t, db_link)); 159 160 dn->dn_moved = 0; 161 return (0); 162 } 163 164 /* ARGSUSED */ 165 static void 166 dnode_dest(void *arg, void *unused) 167 { 168 int i; 169 dnode_t *dn = arg; 170 171 rw_destroy(&dn->dn_struct_rwlock); 172 mutex_destroy(&dn->dn_mtx); 173 mutex_destroy(&dn->dn_dbufs_mtx); 174 cv_destroy(&dn->dn_notxholds); 175 refcount_destroy(&dn->dn_holds); 176 refcount_destroy(&dn->dn_tx_holds); 177 ASSERT(!list_link_active(&dn->dn_link)); 178 179 for (i = 0; i < TXG_SIZE; i++) { 180 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 181 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 182 list_destroy(&dn->dn_dirty_records[i]); 183 ASSERT0(dn->dn_next_nblkptr[i]); 184 ASSERT0(dn->dn_next_nlevels[i]); 185 ASSERT0(dn->dn_next_indblkshift[i]); 186 ASSERT0(dn->dn_next_bonustype[i]); 187 ASSERT0(dn->dn_rm_spillblk[i]); 188 ASSERT0(dn->dn_next_bonuslen[i]); 189 ASSERT0(dn->dn_next_blksz[i]); 190 } 191 192 ASSERT0(dn->dn_allocated_txg); 193 ASSERT0(dn->dn_free_txg); 194 ASSERT0(dn->dn_assigned_txg); 195 ASSERT0(dn->dn_dirtyctx); 196 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 197 ASSERT3P(dn->dn_bonus, ==, NULL); 198 ASSERT(!dn->dn_have_spill); 199 ASSERT3P(dn->dn_zio, ==, NULL); 200 ASSERT0(dn->dn_oldused); 201 ASSERT0(dn->dn_oldflags); 202 ASSERT0(dn->dn_olduid); 203 ASSERT0(dn->dn_oldgid); 204 ASSERT0(dn->dn_newuid); 205 ASSERT0(dn->dn_newgid); 206 ASSERT0(dn->dn_id_flags); 207 208 ASSERT0(dn->dn_dbufs_count); 209 avl_destroy(&dn->dn_dbufs); 210 } 211 212 void 213 dnode_init(void) 214 { 215 ASSERT(dnode_cache == NULL); 216 dnode_cache = kmem_cache_create("dnode_t", 217 sizeof (dnode_t), 218 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 219 #ifdef _KERNEL 220 kmem_cache_set_move(dnode_cache, dnode_move); 221 #endif /* _KERNEL */ 222 } 223 224 void 225 dnode_fini(void) 226 { 227 kmem_cache_destroy(dnode_cache); 228 dnode_cache = NULL; 229 } 230 231 232 #ifdef ZFS_DEBUG 233 void 234 dnode_verify(dnode_t *dn) 235 { 236 int drop_struct_lock = FALSE; 237 238 ASSERT(dn->dn_phys); 239 ASSERT(dn->dn_objset); 240 ASSERT(dn->dn_handle->dnh_dnode == dn); 241 242 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 243 244 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 245 return; 246 247 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 248 rw_enter(&dn->dn_struct_rwlock, RW_READER); 249 drop_struct_lock = TRUE; 250 } 251 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 252 int i; 253 ASSERT3U(dn->dn_indblkshift, >=, 0); 254 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 255 if (dn->dn_datablkshift) { 256 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 257 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 258 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 259 } 260 ASSERT3U(dn->dn_nlevels, <=, 30); 261 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 262 ASSERT3U(dn->dn_nblkptr, >=, 1); 263 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 264 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 265 ASSERT3U(dn->dn_datablksz, ==, 266 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 267 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 268 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 269 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 270 for (i = 0; i < TXG_SIZE; i++) { 271 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 272 } 273 } 274 if (dn->dn_phys->dn_type != DMU_OT_NONE) 275 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 276 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 277 if (dn->dn_dbuf != NULL) { 278 ASSERT3P(dn->dn_phys, ==, 279 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 280 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 281 } 282 if (drop_struct_lock) 283 rw_exit(&dn->dn_struct_rwlock); 284 } 285 #endif 286 287 void 288 dnode_byteswap(dnode_phys_t *dnp) 289 { 290 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 291 int i; 292 293 if (dnp->dn_type == DMU_OT_NONE) { 294 bzero(dnp, sizeof (dnode_phys_t)); 295 return; 296 } 297 298 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 299 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 300 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 301 dnp->dn_used = BSWAP_64(dnp->dn_used); 302 303 /* 304 * dn_nblkptr is only one byte, so it's OK to read it in either 305 * byte order. We can't read dn_bouslen. 306 */ 307 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 308 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 309 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 310 buf64[i] = BSWAP_64(buf64[i]); 311 312 /* 313 * OK to check dn_bonuslen for zero, because it won't matter if 314 * we have the wrong byte order. This is necessary because the 315 * dnode dnode is smaller than a regular dnode. 316 */ 317 if (dnp->dn_bonuslen != 0) { 318 /* 319 * Note that the bonus length calculated here may be 320 * longer than the actual bonus buffer. This is because 321 * we always put the bonus buffer after the last block 322 * pointer (instead of packing it against the end of the 323 * dnode buffer). 324 */ 325 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 326 size_t len = DN_MAX_BONUSLEN - off; 327 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 328 dmu_object_byteswap_t byteswap = 329 DMU_OT_BYTESWAP(dnp->dn_bonustype); 330 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 331 } 332 333 /* Swap SPILL block if we have one */ 334 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 335 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t)); 336 337 } 338 339 void 340 dnode_buf_byteswap(void *vbuf, size_t size) 341 { 342 dnode_phys_t *buf = vbuf; 343 int i; 344 345 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 346 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 347 348 size >>= DNODE_SHIFT; 349 for (i = 0; i < size; i++) { 350 dnode_byteswap(buf); 351 buf++; 352 } 353 } 354 355 void 356 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 357 { 358 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 359 360 dnode_setdirty(dn, tx); 361 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 362 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - 363 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 364 dn->dn_bonuslen = newsize; 365 if (newsize == 0) 366 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 367 else 368 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 369 rw_exit(&dn->dn_struct_rwlock); 370 } 371 372 void 373 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 374 { 375 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 376 dnode_setdirty(dn, tx); 377 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 378 dn->dn_bonustype = newtype; 379 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 380 rw_exit(&dn->dn_struct_rwlock); 381 } 382 383 void 384 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 385 { 386 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 387 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 388 dnode_setdirty(dn, tx); 389 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 390 dn->dn_have_spill = B_FALSE; 391 } 392 393 static void 394 dnode_setdblksz(dnode_t *dn, int size) 395 { 396 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 397 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 398 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 399 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 400 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 401 dn->dn_datablksz = size; 402 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 403 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 404 } 405 406 static dnode_t * 407 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 408 uint64_t object, dnode_handle_t *dnh) 409 { 410 dnode_t *dn; 411 412 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 413 #ifdef _KERNEL 414 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 415 #endif /* _KERNEL */ 416 dn->dn_moved = 0; 417 418 /* 419 * Defer setting dn_objset until the dnode is ready to be a candidate 420 * for the dnode_move() callback. 421 */ 422 dn->dn_object = object; 423 dn->dn_dbuf = db; 424 dn->dn_handle = dnh; 425 dn->dn_phys = dnp; 426 427 if (dnp->dn_datablkszsec) { 428 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 429 } else { 430 dn->dn_datablksz = 0; 431 dn->dn_datablkszsec = 0; 432 dn->dn_datablkshift = 0; 433 } 434 dn->dn_indblkshift = dnp->dn_indblkshift; 435 dn->dn_nlevels = dnp->dn_nlevels; 436 dn->dn_type = dnp->dn_type; 437 dn->dn_nblkptr = dnp->dn_nblkptr; 438 dn->dn_checksum = dnp->dn_checksum; 439 dn->dn_compress = dnp->dn_compress; 440 dn->dn_bonustype = dnp->dn_bonustype; 441 dn->dn_bonuslen = dnp->dn_bonuslen; 442 dn->dn_maxblkid = dnp->dn_maxblkid; 443 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 444 dn->dn_id_flags = 0; 445 446 dmu_zfetch_init(&dn->dn_zfetch, dn); 447 448 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 449 450 mutex_enter(&os->os_lock); 451 if (dnh->dnh_dnode != NULL) { 452 /* Lost the allocation race. */ 453 mutex_exit(&os->os_lock); 454 kmem_cache_free(dnode_cache, dn); 455 return (dnh->dnh_dnode); 456 } 457 458 /* 459 * Exclude special dnodes from os_dnodes so an empty os_dnodes 460 * signifies that the special dnodes have no references from 461 * their children (the entries in os_dnodes). This allows 462 * dnode_destroy() to easily determine if the last child has 463 * been removed and then complete eviction of the objset. 464 */ 465 if (!DMU_OBJECT_IS_SPECIAL(object)) 466 list_insert_head(&os->os_dnodes, dn); 467 membar_producer(); 468 469 /* 470 * Everything else must be valid before assigning dn_objset 471 * makes the dnode eligible for dnode_move(). 472 */ 473 dn->dn_objset = os; 474 475 dnh->dnh_dnode = dn; 476 mutex_exit(&os->os_lock); 477 478 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 479 return (dn); 480 } 481 482 /* 483 * Caller must be holding the dnode handle, which is released upon return. 484 */ 485 static void 486 dnode_destroy(dnode_t *dn) 487 { 488 objset_t *os = dn->dn_objset; 489 boolean_t complete_os_eviction = B_FALSE; 490 491 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 492 493 mutex_enter(&os->os_lock); 494 POINTER_INVALIDATE(&dn->dn_objset); 495 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 496 list_remove(&os->os_dnodes, dn); 497 complete_os_eviction = 498 list_is_empty(&os->os_dnodes) && 499 list_link_active(&os->os_evicting_node); 500 } 501 mutex_exit(&os->os_lock); 502 503 /* the dnode can no longer move, so we can release the handle */ 504 zrl_remove(&dn->dn_handle->dnh_zrlock); 505 506 dn->dn_allocated_txg = 0; 507 dn->dn_free_txg = 0; 508 dn->dn_assigned_txg = 0; 509 510 dn->dn_dirtyctx = 0; 511 if (dn->dn_dirtyctx_firstset != NULL) { 512 kmem_free(dn->dn_dirtyctx_firstset, 1); 513 dn->dn_dirtyctx_firstset = NULL; 514 } 515 if (dn->dn_bonus != NULL) { 516 mutex_enter(&dn->dn_bonus->db_mtx); 517 dbuf_destroy(dn->dn_bonus); 518 dn->dn_bonus = NULL; 519 } 520 dn->dn_zio = NULL; 521 522 dn->dn_have_spill = B_FALSE; 523 dn->dn_oldused = 0; 524 dn->dn_oldflags = 0; 525 dn->dn_olduid = 0; 526 dn->dn_oldgid = 0; 527 dn->dn_newuid = 0; 528 dn->dn_newgid = 0; 529 dn->dn_id_flags = 0; 530 531 dmu_zfetch_fini(&dn->dn_zfetch); 532 kmem_cache_free(dnode_cache, dn); 533 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 534 535 if (complete_os_eviction) 536 dmu_objset_evict_done(os); 537 } 538 539 void 540 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 541 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 542 { 543 int i; 544 545 ASSERT3U(blocksize, <=, 546 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 547 if (blocksize == 0) 548 blocksize = 1 << zfs_default_bs; 549 else 550 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 551 552 if (ibs == 0) 553 ibs = zfs_default_ibs; 554 555 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 556 557 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, 558 dn->dn_object, tx->tx_txg, blocksize, ibs); 559 560 ASSERT(dn->dn_type == DMU_OT_NONE); 561 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 562 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 563 ASSERT(ot != DMU_OT_NONE); 564 ASSERT(DMU_OT_IS_VALID(ot)); 565 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 566 (bonustype == DMU_OT_SA && bonuslen == 0) || 567 (bonustype != DMU_OT_NONE && bonuslen != 0)); 568 ASSERT(DMU_OT_IS_VALID(bonustype)); 569 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 570 ASSERT(dn->dn_type == DMU_OT_NONE); 571 ASSERT0(dn->dn_maxblkid); 572 ASSERT0(dn->dn_allocated_txg); 573 ASSERT0(dn->dn_assigned_txg); 574 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 575 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); 576 ASSERT(avl_is_empty(&dn->dn_dbufs)); 577 578 for (i = 0; i < TXG_SIZE; i++) { 579 ASSERT0(dn->dn_next_nblkptr[i]); 580 ASSERT0(dn->dn_next_nlevels[i]); 581 ASSERT0(dn->dn_next_indblkshift[i]); 582 ASSERT0(dn->dn_next_bonuslen[i]); 583 ASSERT0(dn->dn_next_bonustype[i]); 584 ASSERT0(dn->dn_rm_spillblk[i]); 585 ASSERT0(dn->dn_next_blksz[i]); 586 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 587 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 588 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 589 } 590 591 dn->dn_type = ot; 592 dnode_setdblksz(dn, blocksize); 593 dn->dn_indblkshift = ibs; 594 dn->dn_nlevels = 1; 595 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 596 dn->dn_nblkptr = 1; 597 else 598 dn->dn_nblkptr = 1 + 599 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 600 dn->dn_bonustype = bonustype; 601 dn->dn_bonuslen = bonuslen; 602 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 603 dn->dn_compress = ZIO_COMPRESS_INHERIT; 604 dn->dn_dirtyctx = 0; 605 606 dn->dn_free_txg = 0; 607 if (dn->dn_dirtyctx_firstset) { 608 kmem_free(dn->dn_dirtyctx_firstset, 1); 609 dn->dn_dirtyctx_firstset = NULL; 610 } 611 612 dn->dn_allocated_txg = tx->tx_txg; 613 dn->dn_id_flags = 0; 614 615 dnode_setdirty(dn, tx); 616 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 617 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 618 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 619 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 620 } 621 622 void 623 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 624 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 625 { 626 int nblkptr; 627 628 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 629 ASSERT3U(blocksize, <=, 630 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 631 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 632 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 633 ASSERT(tx->tx_txg != 0); 634 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 635 (bonustype != DMU_OT_NONE && bonuslen != 0) || 636 (bonustype == DMU_OT_SA && bonuslen == 0)); 637 ASSERT(DMU_OT_IS_VALID(bonustype)); 638 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 639 640 /* clean up any unreferenced dbufs */ 641 dnode_evict_dbufs(dn); 642 643 dn->dn_id_flags = 0; 644 645 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 646 dnode_setdirty(dn, tx); 647 if (dn->dn_datablksz != blocksize) { 648 /* change blocksize */ 649 ASSERT(dn->dn_maxblkid == 0 && 650 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 651 dnode_block_freed(dn, 0))); 652 dnode_setdblksz(dn, blocksize); 653 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 654 } 655 if (dn->dn_bonuslen != bonuslen) 656 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 657 658 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 659 nblkptr = 1; 660 else 661 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 662 if (dn->dn_bonustype != bonustype) 663 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 664 if (dn->dn_nblkptr != nblkptr) 665 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 666 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 667 dbuf_rm_spill(dn, tx); 668 dnode_rm_spill(dn, tx); 669 } 670 rw_exit(&dn->dn_struct_rwlock); 671 672 /* change type */ 673 dn->dn_type = ot; 674 675 /* change bonus size and type */ 676 mutex_enter(&dn->dn_mtx); 677 dn->dn_bonustype = bonustype; 678 dn->dn_bonuslen = bonuslen; 679 dn->dn_nblkptr = nblkptr; 680 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 681 dn->dn_compress = ZIO_COMPRESS_INHERIT; 682 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 683 684 /* fix up the bonus db_size */ 685 if (dn->dn_bonus) { 686 dn->dn_bonus->db.db_size = 687 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); 688 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 689 } 690 691 dn->dn_allocated_txg = tx->tx_txg; 692 mutex_exit(&dn->dn_mtx); 693 } 694 695 #ifdef DNODE_STATS 696 static struct { 697 uint64_t dms_dnode_invalid; 698 uint64_t dms_dnode_recheck1; 699 uint64_t dms_dnode_recheck2; 700 uint64_t dms_dnode_special; 701 uint64_t dms_dnode_handle; 702 uint64_t dms_dnode_rwlock; 703 uint64_t dms_dnode_active; 704 } dnode_move_stats; 705 #endif /* DNODE_STATS */ 706 707 #ifdef _KERNEL 708 static void 709 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 710 { 711 int i; 712 713 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 714 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 715 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 716 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 717 718 /* Copy fields. */ 719 ndn->dn_objset = odn->dn_objset; 720 ndn->dn_object = odn->dn_object; 721 ndn->dn_dbuf = odn->dn_dbuf; 722 ndn->dn_handle = odn->dn_handle; 723 ndn->dn_phys = odn->dn_phys; 724 ndn->dn_type = odn->dn_type; 725 ndn->dn_bonuslen = odn->dn_bonuslen; 726 ndn->dn_bonustype = odn->dn_bonustype; 727 ndn->dn_nblkptr = odn->dn_nblkptr; 728 ndn->dn_checksum = odn->dn_checksum; 729 ndn->dn_compress = odn->dn_compress; 730 ndn->dn_nlevels = odn->dn_nlevels; 731 ndn->dn_indblkshift = odn->dn_indblkshift; 732 ndn->dn_datablkshift = odn->dn_datablkshift; 733 ndn->dn_datablkszsec = odn->dn_datablkszsec; 734 ndn->dn_datablksz = odn->dn_datablksz; 735 ndn->dn_maxblkid = odn->dn_maxblkid; 736 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 737 sizeof (odn->dn_next_nblkptr)); 738 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 739 sizeof (odn->dn_next_nlevels)); 740 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 741 sizeof (odn->dn_next_indblkshift)); 742 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 743 sizeof (odn->dn_next_bonustype)); 744 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 745 sizeof (odn->dn_rm_spillblk)); 746 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 747 sizeof (odn->dn_next_bonuslen)); 748 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 749 sizeof (odn->dn_next_blksz)); 750 for (i = 0; i < TXG_SIZE; i++) { 751 list_move_tail(&ndn->dn_dirty_records[i], 752 &odn->dn_dirty_records[i]); 753 } 754 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 755 sizeof (odn->dn_free_ranges)); 756 ndn->dn_allocated_txg = odn->dn_allocated_txg; 757 ndn->dn_free_txg = odn->dn_free_txg; 758 ndn->dn_assigned_txg = odn->dn_assigned_txg; 759 ndn->dn_dirtyctx = odn->dn_dirtyctx; 760 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 761 ASSERT(refcount_count(&odn->dn_tx_holds) == 0); 762 refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 763 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 764 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 765 ndn->dn_dbufs_count = odn->dn_dbufs_count; 766 ndn->dn_bonus = odn->dn_bonus; 767 ndn->dn_have_spill = odn->dn_have_spill; 768 ndn->dn_zio = odn->dn_zio; 769 ndn->dn_oldused = odn->dn_oldused; 770 ndn->dn_oldflags = odn->dn_oldflags; 771 ndn->dn_olduid = odn->dn_olduid; 772 ndn->dn_oldgid = odn->dn_oldgid; 773 ndn->dn_newuid = odn->dn_newuid; 774 ndn->dn_newgid = odn->dn_newgid; 775 ndn->dn_id_flags = odn->dn_id_flags; 776 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 777 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 778 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 779 780 /* 781 * Update back pointers. Updating the handle fixes the back pointer of 782 * every descendant dbuf as well as the bonus dbuf. 783 */ 784 ASSERT(ndn->dn_handle->dnh_dnode == odn); 785 ndn->dn_handle->dnh_dnode = ndn; 786 if (ndn->dn_zfetch.zf_dnode == odn) { 787 ndn->dn_zfetch.zf_dnode = ndn; 788 } 789 790 /* 791 * Invalidate the original dnode by clearing all of its back pointers. 792 */ 793 odn->dn_dbuf = NULL; 794 odn->dn_handle = NULL; 795 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 796 offsetof(dmu_buf_impl_t, db_link)); 797 odn->dn_dbufs_count = 0; 798 odn->dn_bonus = NULL; 799 odn->dn_zfetch.zf_dnode = NULL; 800 801 /* 802 * Set the low bit of the objset pointer to ensure that dnode_move() 803 * recognizes the dnode as invalid in any subsequent callback. 804 */ 805 POINTER_INVALIDATE(&odn->dn_objset); 806 807 /* 808 * Satisfy the destructor. 809 */ 810 for (i = 0; i < TXG_SIZE; i++) { 811 list_create(&odn->dn_dirty_records[i], 812 sizeof (dbuf_dirty_record_t), 813 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 814 odn->dn_free_ranges[i] = NULL; 815 odn->dn_next_nlevels[i] = 0; 816 odn->dn_next_indblkshift[i] = 0; 817 odn->dn_next_bonustype[i] = 0; 818 odn->dn_rm_spillblk[i] = 0; 819 odn->dn_next_bonuslen[i] = 0; 820 odn->dn_next_blksz[i] = 0; 821 } 822 odn->dn_allocated_txg = 0; 823 odn->dn_free_txg = 0; 824 odn->dn_assigned_txg = 0; 825 odn->dn_dirtyctx = 0; 826 odn->dn_dirtyctx_firstset = NULL; 827 odn->dn_have_spill = B_FALSE; 828 odn->dn_zio = NULL; 829 odn->dn_oldused = 0; 830 odn->dn_oldflags = 0; 831 odn->dn_olduid = 0; 832 odn->dn_oldgid = 0; 833 odn->dn_newuid = 0; 834 odn->dn_newgid = 0; 835 odn->dn_id_flags = 0; 836 837 /* 838 * Mark the dnode. 839 */ 840 ndn->dn_moved = 1; 841 odn->dn_moved = (uint8_t)-1; 842 } 843 844 /*ARGSUSED*/ 845 static kmem_cbrc_t 846 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 847 { 848 dnode_t *odn = buf, *ndn = newbuf; 849 objset_t *os; 850 int64_t refcount; 851 uint32_t dbufs; 852 853 /* 854 * The dnode is on the objset's list of known dnodes if the objset 855 * pointer is valid. We set the low bit of the objset pointer when 856 * freeing the dnode to invalidate it, and the memory patterns written 857 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 858 * A newly created dnode sets the objset pointer last of all to indicate 859 * that the dnode is known and in a valid state to be moved by this 860 * function. 861 */ 862 os = odn->dn_objset; 863 if (!POINTER_IS_VALID(os)) { 864 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid); 865 return (KMEM_CBRC_DONT_KNOW); 866 } 867 868 /* 869 * Ensure that the objset does not go away during the move. 870 */ 871 rw_enter(&os_lock, RW_WRITER); 872 if (os != odn->dn_objset) { 873 rw_exit(&os_lock); 874 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1); 875 return (KMEM_CBRC_DONT_KNOW); 876 } 877 878 /* 879 * If the dnode is still valid, then so is the objset. We know that no 880 * valid objset can be freed while we hold os_lock, so we can safely 881 * ensure that the objset remains in use. 882 */ 883 mutex_enter(&os->os_lock); 884 885 /* 886 * Recheck the objset pointer in case the dnode was removed just before 887 * acquiring the lock. 888 */ 889 if (os != odn->dn_objset) { 890 mutex_exit(&os->os_lock); 891 rw_exit(&os_lock); 892 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2); 893 return (KMEM_CBRC_DONT_KNOW); 894 } 895 896 /* 897 * At this point we know that as long as we hold os->os_lock, the dnode 898 * cannot be freed and fields within the dnode can be safely accessed. 899 * The objset listing this dnode cannot go away as long as this dnode is 900 * on its list. 901 */ 902 rw_exit(&os_lock); 903 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 904 mutex_exit(&os->os_lock); 905 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special); 906 return (KMEM_CBRC_NO); 907 } 908 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 909 910 /* 911 * Lock the dnode handle to prevent the dnode from obtaining any new 912 * holds. This also prevents the descendant dbufs and the bonus dbuf 913 * from accessing the dnode, so that we can discount their holds. The 914 * handle is safe to access because we know that while the dnode cannot 915 * go away, neither can its handle. Once we hold dnh_zrlock, we can 916 * safely move any dnode referenced only by dbufs. 917 */ 918 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 919 mutex_exit(&os->os_lock); 920 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle); 921 return (KMEM_CBRC_LATER); 922 } 923 924 /* 925 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 926 * We need to guarantee that there is a hold for every dbuf in order to 927 * determine whether the dnode is actively referenced. Falsely matching 928 * a dbuf to an active hold would lead to an unsafe move. It's possible 929 * that a thread already having an active dnode hold is about to add a 930 * dbuf, and we can't compare hold and dbuf counts while the add is in 931 * progress. 932 */ 933 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 934 zrl_exit(&odn->dn_handle->dnh_zrlock); 935 mutex_exit(&os->os_lock); 936 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock); 937 return (KMEM_CBRC_LATER); 938 } 939 940 /* 941 * A dbuf may be removed (evicted) without an active dnode hold. In that 942 * case, the dbuf count is decremented under the handle lock before the 943 * dbuf's hold is released. This order ensures that if we count the hold 944 * after the dbuf is removed but before its hold is released, we will 945 * treat the unmatched hold as active and exit safely. If we count the 946 * hold before the dbuf is removed, the hold is discounted, and the 947 * removal is blocked until the move completes. 948 */ 949 refcount = refcount_count(&odn->dn_holds); 950 ASSERT(refcount >= 0); 951 dbufs = odn->dn_dbufs_count; 952 953 /* We can't have more dbufs than dnode holds. */ 954 ASSERT3U(dbufs, <=, refcount); 955 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 956 uint32_t, dbufs); 957 958 if (refcount > dbufs) { 959 rw_exit(&odn->dn_struct_rwlock); 960 zrl_exit(&odn->dn_handle->dnh_zrlock); 961 mutex_exit(&os->os_lock); 962 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active); 963 return (KMEM_CBRC_LATER); 964 } 965 966 rw_exit(&odn->dn_struct_rwlock); 967 968 /* 969 * At this point we know that anyone with a hold on the dnode is not 970 * actively referencing it. The dnode is known and in a valid state to 971 * move. We're holding the locks needed to execute the critical section. 972 */ 973 dnode_move_impl(odn, ndn); 974 975 list_link_replace(&odn->dn_link, &ndn->dn_link); 976 /* If the dnode was safe to move, the refcount cannot have changed. */ 977 ASSERT(refcount == refcount_count(&ndn->dn_holds)); 978 ASSERT(dbufs == ndn->dn_dbufs_count); 979 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 980 mutex_exit(&os->os_lock); 981 982 return (KMEM_CBRC_YES); 983 } 984 #endif /* _KERNEL */ 985 986 void 987 dnode_special_close(dnode_handle_t *dnh) 988 { 989 dnode_t *dn = dnh->dnh_dnode; 990 991 /* 992 * Wait for final references to the dnode to clear. This can 993 * only happen if the arc is asyncronously evicting state that 994 * has a hold on this dnode while we are trying to evict this 995 * dnode. 996 */ 997 while (refcount_count(&dn->dn_holds) > 0) 998 delay(1); 999 ASSERT(dn->dn_dbuf == NULL || 1000 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1001 zrl_add(&dnh->dnh_zrlock); 1002 dnode_destroy(dn); /* implicit zrl_remove() */ 1003 zrl_destroy(&dnh->dnh_zrlock); 1004 dnh->dnh_dnode = NULL; 1005 } 1006 1007 void 1008 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1009 dnode_handle_t *dnh) 1010 { 1011 dnode_t *dn; 1012 1013 dn = dnode_create(os, dnp, NULL, object, dnh); 1014 zrl_init(&dnh->dnh_zrlock); 1015 DNODE_VERIFY(dn); 1016 } 1017 1018 static void 1019 dnode_buf_evict_async(void *dbu) 1020 { 1021 dnode_children_t *children_dnodes = dbu; 1022 int i; 1023 1024 for (i = 0; i < children_dnodes->dnc_count; i++) { 1025 dnode_handle_t *dnh = &children_dnodes->dnc_children[i]; 1026 dnode_t *dn; 1027 1028 /* 1029 * The dnode handle lock guards against the dnode moving to 1030 * another valid address, so there is no need here to guard 1031 * against changes to or from NULL. 1032 */ 1033 if (dnh->dnh_dnode == NULL) { 1034 zrl_destroy(&dnh->dnh_zrlock); 1035 continue; 1036 } 1037 1038 zrl_add(&dnh->dnh_zrlock); 1039 dn = dnh->dnh_dnode; 1040 /* 1041 * If there are holds on this dnode, then there should 1042 * be holds on the dnode's containing dbuf as well; thus 1043 * it wouldn't be eligible for eviction and this function 1044 * would not have been called. 1045 */ 1046 ASSERT(refcount_is_zero(&dn->dn_holds)); 1047 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 1048 1049 dnode_destroy(dn); /* implicit zrl_remove() */ 1050 zrl_destroy(&dnh->dnh_zrlock); 1051 dnh->dnh_dnode = NULL; 1052 } 1053 kmem_free(children_dnodes, sizeof (dnode_children_t) + 1054 children_dnodes->dnc_count * sizeof (dnode_handle_t)); 1055 } 1056 1057 /* 1058 * errors: 1059 * EINVAL - invalid object number. 1060 * EIO - i/o error. 1061 * succeeds even for free dnodes. 1062 */ 1063 int 1064 dnode_hold_impl(objset_t *os, uint64_t object, int flag, 1065 void *tag, dnode_t **dnp) 1066 { 1067 int epb, idx, err; 1068 int drop_struct_lock = FALSE; 1069 int type; 1070 uint64_t blk; 1071 dnode_t *mdn, *dn; 1072 dmu_buf_impl_t *db; 1073 dnode_children_t *children_dnodes; 1074 dnode_handle_t *dnh; 1075 1076 /* 1077 * If you are holding the spa config lock as writer, you shouldn't 1078 * be asking the DMU to do *anything* unless it's the root pool 1079 * which may require us to read from the root filesystem while 1080 * holding some (not all) of the locks as writer. 1081 */ 1082 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1083 (spa_is_root(os->os_spa) && 1084 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1085 1086 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1087 1088 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { 1089 dn = (object == DMU_USERUSED_OBJECT) ? 1090 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os); 1091 if (dn == NULL) 1092 return (SET_ERROR(ENOENT)); 1093 type = dn->dn_type; 1094 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1095 return (SET_ERROR(ENOENT)); 1096 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1097 return (SET_ERROR(EEXIST)); 1098 DNODE_VERIFY(dn); 1099 (void) refcount_add(&dn->dn_holds, tag); 1100 *dnp = dn; 1101 return (0); 1102 } 1103 1104 if (object == 0 || object >= DN_MAX_OBJECT) 1105 return (SET_ERROR(EINVAL)); 1106 1107 mdn = DMU_META_DNODE(os); 1108 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1109 1110 DNODE_VERIFY(mdn); 1111 1112 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1113 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1114 drop_struct_lock = TRUE; 1115 } 1116 1117 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1118 1119 db = dbuf_hold(mdn, blk, FTAG); 1120 if (drop_struct_lock) 1121 rw_exit(&mdn->dn_struct_rwlock); 1122 if (db == NULL) 1123 return (SET_ERROR(EIO)); 1124 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 1125 if (err) { 1126 dbuf_rele(db, FTAG); 1127 return (err); 1128 } 1129 1130 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1131 epb = db->db.db_size >> DNODE_SHIFT; 1132 1133 idx = object & (epb-1); 1134 1135 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1136 children_dnodes = dmu_buf_get_user(&db->db); 1137 if (children_dnodes == NULL) { 1138 int i; 1139 dnode_children_t *winner; 1140 children_dnodes = kmem_zalloc(sizeof (dnode_children_t) + 1141 epb * sizeof (dnode_handle_t), KM_SLEEP); 1142 children_dnodes->dnc_count = epb; 1143 dnh = &children_dnodes->dnc_children[0]; 1144 for (i = 0; i < epb; i++) { 1145 zrl_init(&dnh[i].dnh_zrlock); 1146 } 1147 dmu_buf_init_user(&children_dnodes->dnc_dbu, NULL, 1148 dnode_buf_evict_async, NULL); 1149 winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu); 1150 if (winner != NULL) { 1151 1152 for (i = 0; i < epb; i++) { 1153 zrl_destroy(&dnh[i].dnh_zrlock); 1154 } 1155 1156 kmem_free(children_dnodes, sizeof (dnode_children_t) + 1157 epb * sizeof (dnode_handle_t)); 1158 children_dnodes = winner; 1159 } 1160 } 1161 ASSERT(children_dnodes->dnc_count == epb); 1162 1163 dnh = &children_dnodes->dnc_children[idx]; 1164 zrl_add(&dnh->dnh_zrlock); 1165 dn = dnh->dnh_dnode; 1166 if (dn == NULL) { 1167 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx; 1168 1169 dn = dnode_create(os, phys, db, object, dnh); 1170 } 1171 1172 mutex_enter(&dn->dn_mtx); 1173 type = dn->dn_type; 1174 if (dn->dn_free_txg || 1175 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || 1176 ((flag & DNODE_MUST_BE_FREE) && 1177 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) { 1178 mutex_exit(&dn->dn_mtx); 1179 zrl_remove(&dnh->dnh_zrlock); 1180 dbuf_rele(db, FTAG); 1181 return ((flag & DNODE_MUST_BE_ALLOCATED) ? ENOENT : EEXIST); 1182 } 1183 if (refcount_add(&dn->dn_holds, tag) == 1) 1184 dbuf_add_ref(db, dnh); 1185 mutex_exit(&dn->dn_mtx); 1186 1187 /* Now we can rely on the hold to prevent the dnode from moving. */ 1188 zrl_remove(&dnh->dnh_zrlock); 1189 1190 DNODE_VERIFY(dn); 1191 ASSERT3P(dn->dn_dbuf, ==, db); 1192 ASSERT3U(dn->dn_object, ==, object); 1193 dbuf_rele(db, FTAG); 1194 1195 *dnp = dn; 1196 return (0); 1197 } 1198 1199 /* 1200 * Return held dnode if the object is allocated, NULL if not. 1201 */ 1202 int 1203 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1204 { 1205 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); 1206 } 1207 1208 /* 1209 * Can only add a reference if there is already at least one 1210 * reference on the dnode. Returns FALSE if unable to add a 1211 * new reference. 1212 */ 1213 boolean_t 1214 dnode_add_ref(dnode_t *dn, void *tag) 1215 { 1216 mutex_enter(&dn->dn_mtx); 1217 if (refcount_is_zero(&dn->dn_holds)) { 1218 mutex_exit(&dn->dn_mtx); 1219 return (FALSE); 1220 } 1221 VERIFY(1 < refcount_add(&dn->dn_holds, tag)); 1222 mutex_exit(&dn->dn_mtx); 1223 return (TRUE); 1224 } 1225 1226 void 1227 dnode_rele(dnode_t *dn, void *tag) 1228 { 1229 mutex_enter(&dn->dn_mtx); 1230 dnode_rele_and_unlock(dn, tag); 1231 } 1232 1233 void 1234 dnode_rele_and_unlock(dnode_t *dn, void *tag) 1235 { 1236 uint64_t refs; 1237 /* Get while the hold prevents the dnode from moving. */ 1238 dmu_buf_impl_t *db = dn->dn_dbuf; 1239 dnode_handle_t *dnh = dn->dn_handle; 1240 1241 refs = refcount_remove(&dn->dn_holds, tag); 1242 mutex_exit(&dn->dn_mtx); 1243 1244 /* 1245 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1246 * indirectly by dbuf_rele() while relying on the dnode handle to 1247 * prevent the dnode from moving, since releasing the last hold could 1248 * result in the dnode's parent dbuf evicting its dnode handles. For 1249 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1250 * other direct or indirect hold on the dnode must first drop the dnode 1251 * handle. 1252 */ 1253 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1254 1255 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1256 if (refs == 0 && db != NULL) { 1257 /* 1258 * Another thread could add a hold to the dnode handle in 1259 * dnode_hold_impl() while holding the parent dbuf. Since the 1260 * hold on the parent dbuf prevents the handle from being 1261 * destroyed, the hold on the handle is OK. We can't yet assert 1262 * that the handle has zero references, but that will be 1263 * asserted anyway when the handle gets destroyed. 1264 */ 1265 dbuf_rele(db, dnh); 1266 } 1267 } 1268 1269 void 1270 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1271 { 1272 objset_t *os = dn->dn_objset; 1273 uint64_t txg = tx->tx_txg; 1274 1275 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1276 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1277 return; 1278 } 1279 1280 DNODE_VERIFY(dn); 1281 1282 #ifdef ZFS_DEBUG 1283 mutex_enter(&dn->dn_mtx); 1284 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1285 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1286 mutex_exit(&dn->dn_mtx); 1287 #endif 1288 1289 /* 1290 * Determine old uid/gid when necessary 1291 */ 1292 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1293 1294 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1295 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1296 1297 /* 1298 * If we are already marked dirty, we're done. 1299 */ 1300 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1301 multilist_sublist_unlock(mls); 1302 return; 1303 } 1304 1305 ASSERT(!refcount_is_zero(&dn->dn_holds) || 1306 !avl_is_empty(&dn->dn_dbufs)); 1307 ASSERT(dn->dn_datablksz != 0); 1308 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1309 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1310 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1311 1312 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1313 dn->dn_object, txg); 1314 1315 multilist_sublist_insert_head(mls, dn); 1316 1317 multilist_sublist_unlock(mls); 1318 1319 /* 1320 * The dnode maintains a hold on its containing dbuf as 1321 * long as there are holds on it. Each instantiated child 1322 * dbuf maintains a hold on the dnode. When the last child 1323 * drops its hold, the dnode will drop its hold on the 1324 * containing dbuf. We add a "dirty hold" here so that the 1325 * dnode will hang around after we finish processing its 1326 * children. 1327 */ 1328 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1329 1330 (void) dbuf_dirty(dn->dn_dbuf, tx); 1331 1332 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1333 } 1334 1335 void 1336 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1337 { 1338 mutex_enter(&dn->dn_mtx); 1339 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1340 mutex_exit(&dn->dn_mtx); 1341 return; 1342 } 1343 dn->dn_free_txg = tx->tx_txg; 1344 mutex_exit(&dn->dn_mtx); 1345 1346 dnode_setdirty(dn, tx); 1347 } 1348 1349 /* 1350 * Try to change the block size for the indicated dnode. This can only 1351 * succeed if there are no blocks allocated or dirty beyond first block 1352 */ 1353 int 1354 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1355 { 1356 dmu_buf_impl_t *db; 1357 int err; 1358 1359 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1360 if (size == 0) 1361 size = SPA_MINBLOCKSIZE; 1362 else 1363 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1364 1365 if (ibs == dn->dn_indblkshift) 1366 ibs = 0; 1367 1368 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1369 return (0); 1370 1371 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1372 1373 /* Check for any allocated blocks beyond the first */ 1374 if (dn->dn_maxblkid != 0) 1375 goto fail; 1376 1377 mutex_enter(&dn->dn_dbufs_mtx); 1378 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1379 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1380 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1381 db->db_blkid != DMU_SPILL_BLKID) { 1382 mutex_exit(&dn->dn_dbufs_mtx); 1383 goto fail; 1384 } 1385 } 1386 mutex_exit(&dn->dn_dbufs_mtx); 1387 1388 if (ibs && dn->dn_nlevels != 1) 1389 goto fail; 1390 1391 /* resize the old block */ 1392 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1393 if (err == 0) 1394 dbuf_new_size(db, size, tx); 1395 else if (err != ENOENT) 1396 goto fail; 1397 1398 dnode_setdblksz(dn, size); 1399 dnode_setdirty(dn, tx); 1400 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1401 if (ibs) { 1402 dn->dn_indblkshift = ibs; 1403 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1404 } 1405 /* rele after we have fixed the blocksize in the dnode */ 1406 if (db) 1407 dbuf_rele(db, FTAG); 1408 1409 rw_exit(&dn->dn_struct_rwlock); 1410 return (0); 1411 1412 fail: 1413 rw_exit(&dn->dn_struct_rwlock); 1414 return (SET_ERROR(ENOTSUP)); 1415 } 1416 1417 /* read-holding callers must not rely on the lock being continuously held */ 1418 void 1419 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) 1420 { 1421 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1422 int epbs, new_nlevels; 1423 uint64_t sz; 1424 1425 ASSERT(blkid != DMU_BONUS_BLKID); 1426 1427 ASSERT(have_read ? 1428 RW_READ_HELD(&dn->dn_struct_rwlock) : 1429 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1430 1431 /* 1432 * if we have a read-lock, check to see if we need to do any work 1433 * before upgrading to a write-lock. 1434 */ 1435 if (have_read) { 1436 if (blkid <= dn->dn_maxblkid) 1437 return; 1438 1439 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1440 rw_exit(&dn->dn_struct_rwlock); 1441 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1442 } 1443 } 1444 1445 if (blkid <= dn->dn_maxblkid) 1446 goto out; 1447 1448 dn->dn_maxblkid = blkid; 1449 1450 /* 1451 * Compute the number of levels necessary to support the new maxblkid. 1452 */ 1453 new_nlevels = 1; 1454 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1455 for (sz = dn->dn_nblkptr; 1456 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1457 new_nlevels++; 1458 1459 if (new_nlevels > dn->dn_nlevels) { 1460 int old_nlevels = dn->dn_nlevels; 1461 dmu_buf_impl_t *db; 1462 list_t *list; 1463 dbuf_dirty_record_t *new, *dr, *dr_next; 1464 1465 dn->dn_nlevels = new_nlevels; 1466 1467 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1468 dn->dn_next_nlevels[txgoff] = new_nlevels; 1469 1470 /* dirty the left indirects */ 1471 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1472 ASSERT(db != NULL); 1473 new = dbuf_dirty(db, tx); 1474 dbuf_rele(db, FTAG); 1475 1476 /* transfer the dirty records to the new indirect */ 1477 mutex_enter(&dn->dn_mtx); 1478 mutex_enter(&new->dt.di.dr_mtx); 1479 list = &dn->dn_dirty_records[txgoff]; 1480 for (dr = list_head(list); dr; dr = dr_next) { 1481 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1482 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1483 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1484 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1485 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1486 list_remove(&dn->dn_dirty_records[txgoff], dr); 1487 list_insert_tail(&new->dt.di.dr_children, dr); 1488 dr->dr_parent = new; 1489 } 1490 } 1491 mutex_exit(&new->dt.di.dr_mtx); 1492 mutex_exit(&dn->dn_mtx); 1493 } 1494 1495 out: 1496 if (have_read) 1497 rw_downgrade(&dn->dn_struct_rwlock); 1498 } 1499 1500 static void 1501 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1502 { 1503 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1504 if (db != NULL) { 1505 dmu_buf_will_dirty(&db->db, tx); 1506 dbuf_rele(db, FTAG); 1507 } 1508 } 1509 1510 void 1511 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 1512 { 1513 dmu_buf_impl_t *db; 1514 uint64_t blkoff, blkid, nblks; 1515 int blksz, blkshift, head, tail; 1516 int trunc = FALSE; 1517 int epbs; 1518 1519 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1520 blksz = dn->dn_datablksz; 1521 blkshift = dn->dn_datablkshift; 1522 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1523 1524 if (len == DMU_OBJECT_END) { 1525 len = UINT64_MAX - off; 1526 trunc = TRUE; 1527 } 1528 1529 /* 1530 * First, block align the region to free: 1531 */ 1532 if (ISP2(blksz)) { 1533 head = P2NPHASE(off, blksz); 1534 blkoff = P2PHASE(off, blksz); 1535 if ((off >> blkshift) > dn->dn_maxblkid) 1536 goto out; 1537 } else { 1538 ASSERT(dn->dn_maxblkid == 0); 1539 if (off == 0 && len >= blksz) { 1540 /* 1541 * Freeing the whole block; fast-track this request. 1542 * Note that we won't dirty any indirect blocks, 1543 * which is fine because we will be freeing the entire 1544 * file and thus all indirect blocks will be freed 1545 * by free_children(). 1546 */ 1547 blkid = 0; 1548 nblks = 1; 1549 goto done; 1550 } else if (off >= blksz) { 1551 /* Freeing past end-of-data */ 1552 goto out; 1553 } else { 1554 /* Freeing part of the block. */ 1555 head = blksz - off; 1556 ASSERT3U(head, >, 0); 1557 } 1558 blkoff = off; 1559 } 1560 /* zero out any partial block data at the start of the range */ 1561 if (head) { 1562 ASSERT3U(blkoff + head, ==, blksz); 1563 if (len < head) 1564 head = len; 1565 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 1566 TRUE, FALSE, FTAG, &db) == 0) { 1567 caddr_t data; 1568 1569 /* don't dirty if it isn't on disk and isn't dirty */ 1570 if (db->db_last_dirty || 1571 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1572 rw_exit(&dn->dn_struct_rwlock); 1573 dmu_buf_will_dirty(&db->db, tx); 1574 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1575 data = db->db.db_data; 1576 bzero(data + blkoff, head); 1577 } 1578 dbuf_rele(db, FTAG); 1579 } 1580 off += head; 1581 len -= head; 1582 } 1583 1584 /* If the range was less than one block, we're done */ 1585 if (len == 0) 1586 goto out; 1587 1588 /* If the remaining range is past end of file, we're done */ 1589 if ((off >> blkshift) > dn->dn_maxblkid) 1590 goto out; 1591 1592 ASSERT(ISP2(blksz)); 1593 if (trunc) 1594 tail = 0; 1595 else 1596 tail = P2PHASE(len, blksz); 1597 1598 ASSERT0(P2PHASE(off, blksz)); 1599 /* zero out any partial block data at the end of the range */ 1600 if (tail) { 1601 if (len < tail) 1602 tail = len; 1603 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 1604 TRUE, FALSE, FTAG, &db) == 0) { 1605 /* don't dirty if not on disk and not dirty */ 1606 if (db->db_last_dirty || 1607 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1608 rw_exit(&dn->dn_struct_rwlock); 1609 dmu_buf_will_dirty(&db->db, tx); 1610 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1611 bzero(db->db.db_data, tail); 1612 } 1613 dbuf_rele(db, FTAG); 1614 } 1615 len -= tail; 1616 } 1617 1618 /* If the range did not include a full block, we are done */ 1619 if (len == 0) 1620 goto out; 1621 1622 ASSERT(IS_P2ALIGNED(off, blksz)); 1623 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 1624 blkid = off >> blkshift; 1625 nblks = len >> blkshift; 1626 if (trunc) 1627 nblks += 1; 1628 1629 /* 1630 * Dirty all the indirect blocks in this range. Note that only 1631 * the first and last indirect blocks can actually be written 1632 * (if they were partially freed) -- they must be dirtied, even if 1633 * they do not exist on disk yet. The interior blocks will 1634 * be freed by free_children(), so they will not actually be written. 1635 * Even though these interior blocks will not be written, we 1636 * dirty them for two reasons: 1637 * 1638 * - It ensures that the indirect blocks remain in memory until 1639 * syncing context. (They have already been prefetched by 1640 * dmu_tx_hold_free(), so we don't have to worry about reading 1641 * them serially here.) 1642 * 1643 * - The dirty space accounting will put pressure on the txg sync 1644 * mechanism to begin syncing, and to delay transactions if there 1645 * is a large amount of freeing. Even though these indirect 1646 * blocks will not be written, we could need to write the same 1647 * amount of space if we copy the freed BPs into deadlists. 1648 */ 1649 if (dn->dn_nlevels > 1) { 1650 uint64_t first, last; 1651 1652 first = blkid >> epbs; 1653 dnode_dirty_l1(dn, first, tx); 1654 if (trunc) 1655 last = dn->dn_maxblkid >> epbs; 1656 else 1657 last = (blkid + nblks - 1) >> epbs; 1658 if (last != first) 1659 dnode_dirty_l1(dn, last, tx); 1660 1661 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 1662 SPA_BLKPTRSHIFT; 1663 for (uint64_t i = first + 1; i < last; i++) { 1664 /* 1665 * Set i to the blockid of the next non-hole 1666 * level-1 indirect block at or after i. Note 1667 * that dnode_next_offset() operates in terms of 1668 * level-0-equivalent bytes. 1669 */ 1670 uint64_t ibyte = i << shift; 1671 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 1672 &ibyte, 2, 1, 0); 1673 i = ibyte >> shift; 1674 if (i >= last) 1675 break; 1676 1677 /* 1678 * Normally we should not see an error, either 1679 * from dnode_next_offset() or dbuf_hold_level() 1680 * (except for ESRCH from dnode_next_offset). 1681 * If there is an i/o error, then when we read 1682 * this block in syncing context, it will use 1683 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 1684 * to the "failmode" property. dnode_next_offset() 1685 * doesn't have a flag to indicate MUSTSUCCEED. 1686 */ 1687 if (err != 0) 1688 break; 1689 1690 dnode_dirty_l1(dn, i, tx); 1691 } 1692 } 1693 1694 done: 1695 /* 1696 * Add this range to the dnode range list. 1697 * We will finish up this free operation in the syncing phase. 1698 */ 1699 mutex_enter(&dn->dn_mtx); 1700 int txgoff = tx->tx_txg & TXG_MASK; 1701 if (dn->dn_free_ranges[txgoff] == NULL) { 1702 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL); 1703 } 1704 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 1705 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 1706 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 1707 blkid, nblks, tx->tx_txg); 1708 mutex_exit(&dn->dn_mtx); 1709 1710 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 1711 dnode_setdirty(dn, tx); 1712 out: 1713 1714 rw_exit(&dn->dn_struct_rwlock); 1715 } 1716 1717 static boolean_t 1718 dnode_spill_freed(dnode_t *dn) 1719 { 1720 int i; 1721 1722 mutex_enter(&dn->dn_mtx); 1723 for (i = 0; i < TXG_SIZE; i++) { 1724 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 1725 break; 1726 } 1727 mutex_exit(&dn->dn_mtx); 1728 return (i < TXG_SIZE); 1729 } 1730 1731 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 1732 uint64_t 1733 dnode_block_freed(dnode_t *dn, uint64_t blkid) 1734 { 1735 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 1736 int i; 1737 1738 if (blkid == DMU_BONUS_BLKID) 1739 return (FALSE); 1740 1741 /* 1742 * If we're in the process of opening the pool, dp will not be 1743 * set yet, but there shouldn't be anything dirty. 1744 */ 1745 if (dp == NULL) 1746 return (FALSE); 1747 1748 if (dn->dn_free_txg) 1749 return (TRUE); 1750 1751 if (blkid == DMU_SPILL_BLKID) 1752 return (dnode_spill_freed(dn)); 1753 1754 mutex_enter(&dn->dn_mtx); 1755 for (i = 0; i < TXG_SIZE; i++) { 1756 if (dn->dn_free_ranges[i] != NULL && 1757 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 1758 break; 1759 } 1760 mutex_exit(&dn->dn_mtx); 1761 return (i < TXG_SIZE); 1762 } 1763 1764 /* call from syncing context when we actually write/free space for this dnode */ 1765 void 1766 dnode_diduse_space(dnode_t *dn, int64_t delta) 1767 { 1768 uint64_t space; 1769 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 1770 dn, dn->dn_phys, 1771 (u_longlong_t)dn->dn_phys->dn_used, 1772 (longlong_t)delta); 1773 1774 mutex_enter(&dn->dn_mtx); 1775 space = DN_USED_BYTES(dn->dn_phys); 1776 if (delta > 0) { 1777 ASSERT3U(space + delta, >=, space); /* no overflow */ 1778 } else { 1779 ASSERT3U(space, >=, -delta); /* no underflow */ 1780 } 1781 space += delta; 1782 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 1783 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 1784 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 1785 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 1786 } else { 1787 dn->dn_phys->dn_used = space; 1788 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 1789 } 1790 mutex_exit(&dn->dn_mtx); 1791 } 1792 1793 /* 1794 * Scans a block at the indicated "level" looking for a hole or data, 1795 * depending on 'flags'. 1796 * 1797 * If level > 0, then we are scanning an indirect block looking at its 1798 * pointers. If level == 0, then we are looking at a block of dnodes. 1799 * 1800 * If we don't find what we are looking for in the block, we return ESRCH. 1801 * Otherwise, return with *offset pointing to the beginning (if searching 1802 * forwards) or end (if searching backwards) of the range covered by the 1803 * block pointer we matched on (or dnode). 1804 * 1805 * The basic search algorithm used below by dnode_next_offset() is to 1806 * use this function to search up the block tree (widen the search) until 1807 * we find something (i.e., we don't return ESRCH) and then search back 1808 * down the tree (narrow the search) until we reach our original search 1809 * level. 1810 */ 1811 static int 1812 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 1813 int lvl, uint64_t blkfill, uint64_t txg) 1814 { 1815 dmu_buf_impl_t *db = NULL; 1816 void *data = NULL; 1817 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1818 uint64_t epb = 1ULL << epbs; 1819 uint64_t minfill, maxfill; 1820 boolean_t hole; 1821 int i, inc, error, span; 1822 1823 dprintf("probing object %llu offset %llx level %d of %u\n", 1824 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 1825 1826 hole = ((flags & DNODE_FIND_HOLE) != 0); 1827 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 1828 ASSERT(txg == 0 || !hole); 1829 1830 if (lvl == dn->dn_phys->dn_nlevels) { 1831 error = 0; 1832 epb = dn->dn_phys->dn_nblkptr; 1833 data = dn->dn_phys->dn_blkptr; 1834 } else { 1835 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 1836 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 1837 if (error) { 1838 if (error != ENOENT) 1839 return (error); 1840 if (hole) 1841 return (0); 1842 /* 1843 * This can only happen when we are searching up 1844 * the block tree for data. We don't really need to 1845 * adjust the offset, as we will just end up looking 1846 * at the pointer to this block in its parent, and its 1847 * going to be unallocated, so we will skip over it. 1848 */ 1849 return (SET_ERROR(ESRCH)); 1850 } 1851 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); 1852 if (error) { 1853 dbuf_rele(db, FTAG); 1854 return (error); 1855 } 1856 data = db->db.db_data; 1857 } 1858 1859 1860 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 1861 db->db_blkptr->blk_birth <= txg || 1862 BP_IS_HOLE(db->db_blkptr))) { 1863 /* 1864 * This can only happen when we are searching up the tree 1865 * and these conditions mean that we need to keep climbing. 1866 */ 1867 error = SET_ERROR(ESRCH); 1868 } else if (lvl == 0) { 1869 dnode_phys_t *dnp = data; 1870 span = DNODE_SHIFT; 1871 ASSERT(dn->dn_type == DMU_OT_DNODE); 1872 1873 for (i = (*offset >> span) & (blkfill - 1); 1874 i >= 0 && i < blkfill; i += inc) { 1875 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 1876 break; 1877 *offset += (1ULL << span) * inc; 1878 } 1879 if (i < 0 || i == blkfill) 1880 error = SET_ERROR(ESRCH); 1881 } else { 1882 blkptr_t *bp = data; 1883 uint64_t start = *offset; 1884 span = (lvl - 1) * epbs + dn->dn_datablkshift; 1885 minfill = 0; 1886 maxfill = blkfill << ((lvl - 1) * epbs); 1887 1888 if (hole) 1889 maxfill--; 1890 else 1891 minfill++; 1892 1893 *offset = *offset >> span; 1894 for (i = BF64_GET(*offset, 0, epbs); 1895 i >= 0 && i < epb; i += inc) { 1896 if (BP_GET_FILL(&bp[i]) >= minfill && 1897 BP_GET_FILL(&bp[i]) <= maxfill && 1898 (hole || bp[i].blk_birth > txg)) 1899 break; 1900 if (inc > 0 || *offset > 0) 1901 *offset += inc; 1902 } 1903 *offset = *offset << span; 1904 if (inc < 0) { 1905 /* traversing backwards; position offset at the end */ 1906 ASSERT3U(*offset, <=, start); 1907 *offset = MIN(*offset + (1ULL << span) - 1, start); 1908 } else if (*offset < start) { 1909 *offset = start; 1910 } 1911 if (i < 0 || i >= epb) 1912 error = SET_ERROR(ESRCH); 1913 } 1914 1915 if (db) 1916 dbuf_rele(db, FTAG); 1917 1918 return (error); 1919 } 1920 1921 /* 1922 * Find the next hole, data, or sparse region at or after *offset. 1923 * The value 'blkfill' tells us how many items we expect to find 1924 * in an L0 data block; this value is 1 for normal objects, 1925 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 1926 * DNODES_PER_BLOCK when searching for sparse regions thereof. 1927 * 1928 * Examples: 1929 * 1930 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 1931 * Finds the next/previous hole/data in a file. 1932 * Used in dmu_offset_next(). 1933 * 1934 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 1935 * Finds the next free/allocated dnode an objset's meta-dnode. 1936 * Only finds objects that have new contents since txg (ie. 1937 * bonus buffer changes and content removal are ignored). 1938 * Used in dmu_object_next(). 1939 * 1940 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 1941 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 1942 * Used in dmu_object_alloc(). 1943 */ 1944 int 1945 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 1946 int minlvl, uint64_t blkfill, uint64_t txg) 1947 { 1948 uint64_t initial_offset = *offset; 1949 int lvl, maxlvl; 1950 int error = 0; 1951 1952 if (!(flags & DNODE_FIND_HAVELOCK)) 1953 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1954 1955 if (dn->dn_phys->dn_nlevels == 0) { 1956 error = SET_ERROR(ESRCH); 1957 goto out; 1958 } 1959 1960 if (dn->dn_datablkshift == 0) { 1961 if (*offset < dn->dn_datablksz) { 1962 if (flags & DNODE_FIND_HOLE) 1963 *offset = dn->dn_datablksz; 1964 } else { 1965 error = SET_ERROR(ESRCH); 1966 } 1967 goto out; 1968 } 1969 1970 maxlvl = dn->dn_phys->dn_nlevels; 1971 1972 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 1973 error = dnode_next_offset_level(dn, 1974 flags, offset, lvl, blkfill, txg); 1975 if (error != ESRCH) 1976 break; 1977 } 1978 1979 while (error == 0 && --lvl >= minlvl) { 1980 error = dnode_next_offset_level(dn, 1981 flags, offset, lvl, blkfill, txg); 1982 } 1983 1984 /* 1985 * There's always a "virtual hole" at the end of the object, even 1986 * if all BP's which physically exist are non-holes. 1987 */ 1988 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 1989 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 1990 error = 0; 1991 } 1992 1993 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 1994 initial_offset < *offset : initial_offset > *offset)) 1995 error = SET_ERROR(ESRCH); 1996 out: 1997 if (!(flags & DNODE_FIND_HAVELOCK)) 1998 rw_exit(&dn->dn_struct_rwlock); 1999 2000 return (error); 2001 } 2002