xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_pool.c (revision 72d3dbb9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
28  */
29 
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dsl_scan.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dsl_deadlist.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 
52 /*
53  * ZFS Write Throttle
54  * ------------------
55  *
56  * ZFS must limit the rate of incoming writes to the rate at which it is able
57  * to sync data modifications to the backend storage. Throttling by too much
58  * creates an artificial limit; throttling by too little can only be sustained
59  * for short periods and would lead to highly lumpy performance. On a per-pool
60  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
61  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
62  * of dirty data decreases. When the amount of dirty data exceeds a
63  * predetermined threshold further modifications are blocked until the amount
64  * of dirty data decreases (as data is synced out).
65  *
66  * The limit on dirty data is tunable, and should be adjusted according to
67  * both the IO capacity and available memory of the system. The larger the
68  * window, the more ZFS is able to aggregate and amortize metadata (and data)
69  * changes. However, memory is a limited resource, and allowing for more dirty
70  * data comes at the cost of keeping other useful data in memory (for example
71  * ZFS data cached by the ARC).
72  *
73  * Implementation
74  *
75  * As buffers are modified dsl_pool_willuse_space() increments both the per-
76  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
77  * dirty space used; dsl_pool_dirty_space() decrements those values as data
78  * is synced out from dsl_pool_sync(). While only the poolwide value is
79  * relevant, the per-txg value is useful for debugging. The tunable
80  * zfs_dirty_data_max determines the dirty space limit. Once that value is
81  * exceeded, new writes are halted until space frees up.
82  *
83  * The zfs_dirty_data_sync tunable dictates the threshold at which we
84  * ensure that there is a txg syncing (see the comment in txg.c for a full
85  * description of transaction group stages).
86  *
87  * The IO scheduler uses both the dirty space limit and current amount of
88  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
89  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
90  *
91  * The delay is also calculated based on the amount of dirty data.  See the
92  * comment above dmu_tx_delay() for details.
93  */
94 
95 /*
96  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
97  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
98  */
99 uint64_t zfs_dirty_data_max;
100 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
101 int zfs_dirty_data_max_percent = 10;
102 
103 /*
104  * If there is at least this much dirty data, push out a txg.
105  */
106 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
107 
108 /*
109  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
110  * and delay each transaction.
111  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
112  */
113 int zfs_delay_min_dirty_percent = 60;
114 
115 /*
116  * This controls how quickly the delay approaches infinity.
117  * Larger values cause it to delay more for a given amount of dirty data.
118  * Therefore larger values will cause there to be less dirty data for a
119  * given throughput.
120  *
121  * For the smoothest delay, this value should be about 1 billion divided
122  * by the maximum number of operations per second.  This will smoothly
123  * handle between 10x and 1/10th this number.
124  *
125  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
126  * multiply in dmu_tx_delay().
127  */
128 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
129 
130 /*
131  * This determines the number of threads used by the dp_sync_taskq.
132  */
133 int zfs_sync_taskq_batch_pct = 75;
134 
135 int
136 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
137 {
138 	uint64_t obj;
139 	int err;
140 
141 	err = zap_lookup(dp->dp_meta_objset,
142 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
143 	    name, sizeof (obj), 1, &obj);
144 	if (err)
145 		return (err);
146 
147 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
148 }
149 
150 static dsl_pool_t *
151 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
152 {
153 	dsl_pool_t *dp;
154 	blkptr_t *bp = spa_get_rootblkptr(spa);
155 
156 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
157 	dp->dp_spa = spa;
158 	dp->dp_meta_rootbp = *bp;
159 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
160 	txg_init(dp, txg);
161 
162 	txg_list_create(&dp->dp_dirty_datasets, spa,
163 	    offsetof(dsl_dataset_t, ds_dirty_link));
164 	txg_list_create(&dp->dp_dirty_zilogs, spa,
165 	    offsetof(zilog_t, zl_dirty_link));
166 	txg_list_create(&dp->dp_dirty_dirs, spa,
167 	    offsetof(dsl_dir_t, dd_dirty_link));
168 	txg_list_create(&dp->dp_sync_tasks, spa,
169 	    offsetof(dsl_sync_task_t, dst_node));
170 
171 	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
172 	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
173 	    TASKQ_THREADS_CPU_PCT);
174 
175 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
176 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
177 
178 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
179 	    1, 4, 0);
180 
181 	return (dp);
182 }
183 
184 int
185 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
186 {
187 	int err;
188 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
189 
190 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
191 	    &dp->dp_meta_objset);
192 	if (err != 0)
193 		dsl_pool_close(dp);
194 	else
195 		*dpp = dp;
196 
197 	return (err);
198 }
199 
200 int
201 dsl_pool_open(dsl_pool_t *dp)
202 {
203 	int err;
204 	dsl_dir_t *dd;
205 	dsl_dataset_t *ds;
206 	uint64_t obj;
207 
208 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
209 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
210 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
211 	    &dp->dp_root_dir_obj);
212 	if (err)
213 		goto out;
214 
215 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
216 	    NULL, dp, &dp->dp_root_dir);
217 	if (err)
218 		goto out;
219 
220 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
221 	if (err)
222 		goto out;
223 
224 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
225 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
226 		if (err)
227 			goto out;
228 		err = dsl_dataset_hold_obj(dp,
229 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
230 		if (err == 0) {
231 			err = dsl_dataset_hold_obj(dp,
232 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
233 			    &dp->dp_origin_snap);
234 			dsl_dataset_rele(ds, FTAG);
235 		}
236 		dsl_dir_rele(dd, dp);
237 		if (err)
238 			goto out;
239 	}
240 
241 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
242 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
243 		    &dp->dp_free_dir);
244 		if (err)
245 			goto out;
246 
247 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
248 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
249 		if (err)
250 			goto out;
251 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
252 		    dp->dp_meta_objset, obj));
253 	}
254 
255 	/*
256 	 * Note: errors ignored, because the leak dir will not exist if we
257 	 * have not encountered a leak yet.
258 	 */
259 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
260 	    &dp->dp_leak_dir);
261 
262 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
263 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
264 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
265 		    &dp->dp_bptree_obj);
266 		if (err != 0)
267 			goto out;
268 	}
269 
270 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
271 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
273 		    &dp->dp_empty_bpobj);
274 		if (err != 0)
275 			goto out;
276 	}
277 
278 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
279 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
280 	    &dp->dp_tmp_userrefs_obj);
281 	if (err == ENOENT)
282 		err = 0;
283 	if (err)
284 		goto out;
285 
286 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
287 
288 out:
289 	rrw_exit(&dp->dp_config_rwlock, FTAG);
290 	return (err);
291 }
292 
293 void
294 dsl_pool_close(dsl_pool_t *dp)
295 {
296 	/*
297 	 * Drop our references from dsl_pool_open().
298 	 *
299 	 * Since we held the origin_snap from "syncing" context (which
300 	 * includes pool-opening context), it actually only got a "ref"
301 	 * and not a hold, so just drop that here.
302 	 */
303 	if (dp->dp_origin_snap)
304 		dsl_dataset_rele(dp->dp_origin_snap, dp);
305 	if (dp->dp_mos_dir)
306 		dsl_dir_rele(dp->dp_mos_dir, dp);
307 	if (dp->dp_free_dir)
308 		dsl_dir_rele(dp->dp_free_dir, dp);
309 	if (dp->dp_leak_dir)
310 		dsl_dir_rele(dp->dp_leak_dir, dp);
311 	if (dp->dp_root_dir)
312 		dsl_dir_rele(dp->dp_root_dir, dp);
313 
314 	bpobj_close(&dp->dp_free_bpobj);
315 
316 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
317 	if (dp->dp_meta_objset)
318 		dmu_objset_evict(dp->dp_meta_objset);
319 
320 	txg_list_destroy(&dp->dp_dirty_datasets);
321 	txg_list_destroy(&dp->dp_dirty_zilogs);
322 	txg_list_destroy(&dp->dp_sync_tasks);
323 	txg_list_destroy(&dp->dp_dirty_dirs);
324 
325 	taskq_destroy(dp->dp_sync_taskq);
326 
327 	/*
328 	 * We can't set retry to TRUE since we're explicitly specifying
329 	 * a spa to flush. This is good enough; any missed buffers for
330 	 * this spa won't cause trouble, and they'll eventually fall
331 	 * out of the ARC just like any other unused buffer.
332 	 */
333 	arc_flush(dp->dp_spa, FALSE);
334 
335 	txg_fini(dp);
336 	dsl_scan_fini(dp);
337 	dmu_buf_user_evict_wait();
338 
339 	rrw_destroy(&dp->dp_config_rwlock);
340 	mutex_destroy(&dp->dp_lock);
341 	taskq_destroy(dp->dp_vnrele_taskq);
342 	if (dp->dp_blkstats)
343 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
344 	kmem_free(dp, sizeof (dsl_pool_t));
345 }
346 
347 dsl_pool_t *
348 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
349 {
350 	int err;
351 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
352 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
353 	objset_t *os;
354 	dsl_dataset_t *ds;
355 	uint64_t obj;
356 
357 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
358 
359 	/* create and open the MOS (meta-objset) */
360 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
361 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
362 
363 	/* create the pool directory */
364 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
365 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
366 	ASSERT0(err);
367 
368 	/* Initialize scan structures */
369 	VERIFY0(dsl_scan_init(dp, txg));
370 
371 	/* create and open the root dir */
372 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
373 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
374 	    NULL, dp, &dp->dp_root_dir));
375 
376 	/* create and open the meta-objset dir */
377 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
378 	VERIFY0(dsl_pool_open_special_dir(dp,
379 	    MOS_DIR_NAME, &dp->dp_mos_dir));
380 
381 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
382 		/* create and open the free dir */
383 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
384 		    FREE_DIR_NAME, tx);
385 		VERIFY0(dsl_pool_open_special_dir(dp,
386 		    FREE_DIR_NAME, &dp->dp_free_dir));
387 
388 		/* create and open the free_bplist */
389 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
390 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
391 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
392 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
393 		    dp->dp_meta_objset, obj));
394 	}
395 
396 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
397 		dsl_pool_create_origin(dp, tx);
398 
399 	/* create the root dataset */
400 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
401 
402 	/* create the root objset */
403 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
404 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
405 	os = dmu_objset_create_impl(dp->dp_spa, ds,
406 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
407 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
408 #ifdef _KERNEL
409 	zfs_create_fs(os, kcred, zplprops, tx);
410 #endif
411 	dsl_dataset_rele(ds, FTAG);
412 
413 	dmu_tx_commit(tx);
414 
415 	rrw_exit(&dp->dp_config_rwlock, FTAG);
416 
417 	return (dp);
418 }
419 
420 /*
421  * Account for the meta-objset space in its placeholder dsl_dir.
422  */
423 void
424 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
425     int64_t used, int64_t comp, int64_t uncomp)
426 {
427 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
428 	mutex_enter(&dp->dp_lock);
429 	dp->dp_mos_used_delta += used;
430 	dp->dp_mos_compressed_delta += comp;
431 	dp->dp_mos_uncompressed_delta += uncomp;
432 	mutex_exit(&dp->dp_lock);
433 }
434 
435 static void
436 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
437 {
438 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
439 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
440 	VERIFY0(zio_wait(zio));
441 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
442 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
443 }
444 
445 static void
446 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
447 {
448 	ASSERT(MUTEX_HELD(&dp->dp_lock));
449 
450 	if (delta < 0)
451 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
452 
453 	dp->dp_dirty_total += delta;
454 
455 	/*
456 	 * Note: we signal even when increasing dp_dirty_total.
457 	 * This ensures forward progress -- each thread wakes the next waiter.
458 	 */
459 	if (dp->dp_dirty_total < zfs_dirty_data_max)
460 		cv_signal(&dp->dp_spaceavail_cv);
461 }
462 
463 void
464 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
465 {
466 	zio_t *zio;
467 	dmu_tx_t *tx;
468 	dsl_dir_t *dd;
469 	dsl_dataset_t *ds;
470 	objset_t *mos = dp->dp_meta_objset;
471 	list_t synced_datasets;
472 
473 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
474 	    offsetof(dsl_dataset_t, ds_synced_link));
475 
476 	tx = dmu_tx_create_assigned(dp, txg);
477 
478 	/*
479 	 * Write out all dirty blocks of dirty datasets.
480 	 */
481 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
482 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
483 		/*
484 		 * We must not sync any non-MOS datasets twice, because
485 		 * we may have taken a snapshot of them.  However, we
486 		 * may sync newly-created datasets on pass 2.
487 		 */
488 		ASSERT(!list_link_active(&ds->ds_synced_link));
489 		list_insert_tail(&synced_datasets, ds);
490 		dsl_dataset_sync(ds, zio, tx);
491 	}
492 	VERIFY0(zio_wait(zio));
493 
494 	/*
495 	 * We have written all of the accounted dirty data, so our
496 	 * dp_space_towrite should now be zero.  However, some seldom-used
497 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
498 	 * rounding error in dbuf_write_physdone).
499 	 * Shore up the accounting of any dirtied space now.
500 	 */
501 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
502 
503 	/*
504 	 * Update the long range free counter after
505 	 * we're done syncing user data
506 	 */
507 	mutex_enter(&dp->dp_lock);
508 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
509 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
510 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
511 	mutex_exit(&dp->dp_lock);
512 
513 	/*
514 	 * After the data blocks have been written (ensured by the zio_wait()
515 	 * above), update the user/group space accounting.  This happens
516 	 * in tasks dispatched to dp_sync_taskq, so wait for them before
517 	 * continuing.
518 	 */
519 	for (ds = list_head(&synced_datasets); ds != NULL;
520 	    ds = list_next(&synced_datasets, ds)) {
521 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
522 	}
523 	taskq_wait(dp->dp_sync_taskq);
524 
525 	/*
526 	 * Sync the datasets again to push out the changes due to
527 	 * userspace updates.  This must be done before we process the
528 	 * sync tasks, so that any snapshots will have the correct
529 	 * user accounting information (and we won't get confused
530 	 * about which blocks are part of the snapshot).
531 	 */
532 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
533 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
534 		ASSERT(list_link_active(&ds->ds_synced_link));
535 		dmu_buf_rele(ds->ds_dbuf, ds);
536 		dsl_dataset_sync(ds, zio, tx);
537 	}
538 	VERIFY0(zio_wait(zio));
539 
540 	/*
541 	 * Now that the datasets have been completely synced, we can
542 	 * clean up our in-memory structures accumulated while syncing:
543 	 *
544 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
545 	 *  - release hold from dsl_dataset_dirty()
546 	 */
547 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
548 		dsl_dataset_sync_done(ds, tx);
549 	}
550 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
551 		dsl_dir_sync(dd, tx);
552 	}
553 
554 	/*
555 	 * The MOS's space is accounted for in the pool/$MOS
556 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
557 	 * it, so we remember the deltas and apply them here.
558 	 */
559 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
560 	    dp->dp_mos_uncompressed_delta != 0) {
561 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
562 		    dp->dp_mos_used_delta,
563 		    dp->dp_mos_compressed_delta,
564 		    dp->dp_mos_uncompressed_delta, tx);
565 		dp->dp_mos_used_delta = 0;
566 		dp->dp_mos_compressed_delta = 0;
567 		dp->dp_mos_uncompressed_delta = 0;
568 	}
569 
570 	if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
571 		dsl_pool_sync_mos(dp, tx);
572 	}
573 
574 	/*
575 	 * If we modify a dataset in the same txg that we want to destroy it,
576 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
577 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
578 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
579 	 * and clearing the hold on it) before we process the sync_tasks.
580 	 * The MOS data dirtied by the sync_tasks will be synced on the next
581 	 * pass.
582 	 */
583 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
584 		dsl_sync_task_t *dst;
585 		/*
586 		 * No more sync tasks should have been added while we
587 		 * were syncing.
588 		 */
589 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
590 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
591 			dsl_sync_task_sync(dst, tx);
592 	}
593 
594 	dmu_tx_commit(tx);
595 
596 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
597 }
598 
599 void
600 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
601 {
602 	zilog_t *zilog;
603 
604 	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
605 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
606 		/*
607 		 * We don't remove the zilog from the dp_dirty_zilogs
608 		 * list until after we've cleaned it. This ensures that
609 		 * callers of zilog_is_dirty() receive an accurate
610 		 * answer when they are racing with the spa sync thread.
611 		 */
612 		zil_clean(zilog, txg);
613 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
614 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
615 		dmu_buf_rele(ds->ds_dbuf, zilog);
616 	}
617 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
618 }
619 
620 /*
621  * TRUE if the current thread is the tx_sync_thread or if we
622  * are being called from SPA context during pool initialization.
623  */
624 int
625 dsl_pool_sync_context(dsl_pool_t *dp)
626 {
627 	return (curthread == dp->dp_tx.tx_sync_thread ||
628 	    spa_is_initializing(dp->dp_spa) ||
629 	    taskq_member(dp->dp_sync_taskq, curthread));
630 }
631 
632 uint64_t
633 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
634 {
635 	uint64_t space, resv;
636 
637 	/*
638 	 * If we're trying to assess whether it's OK to do a free,
639 	 * cut the reservation in half to allow forward progress
640 	 * (e.g. make it possible to rm(1) files from a full pool).
641 	 */
642 	space = spa_get_dspace(dp->dp_spa);
643 	resv = spa_get_slop_space(dp->dp_spa);
644 	if (netfree)
645 		resv >>= 1;
646 
647 	return (space - resv);
648 }
649 
650 boolean_t
651 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
652 {
653 	uint64_t delay_min_bytes =
654 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
655 	boolean_t rv;
656 
657 	mutex_enter(&dp->dp_lock);
658 	if (dp->dp_dirty_total > zfs_dirty_data_sync)
659 		txg_kick(dp);
660 	rv = (dp->dp_dirty_total > delay_min_bytes);
661 	mutex_exit(&dp->dp_lock);
662 	return (rv);
663 }
664 
665 void
666 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
667 {
668 	if (space > 0) {
669 		mutex_enter(&dp->dp_lock);
670 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
671 		dsl_pool_dirty_delta(dp, space);
672 		mutex_exit(&dp->dp_lock);
673 	}
674 }
675 
676 void
677 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
678 {
679 	ASSERT3S(space, >=, 0);
680 	if (space == 0)
681 		return;
682 	mutex_enter(&dp->dp_lock);
683 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
684 		/* XXX writing something we didn't dirty? */
685 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
686 	}
687 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
688 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
689 	ASSERT3U(dp->dp_dirty_total, >=, space);
690 	dsl_pool_dirty_delta(dp, -space);
691 	mutex_exit(&dp->dp_lock);
692 }
693 
694 /* ARGSUSED */
695 static int
696 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
697 {
698 	dmu_tx_t *tx = arg;
699 	dsl_dataset_t *ds, *prev = NULL;
700 	int err;
701 
702 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
703 	if (err)
704 		return (err);
705 
706 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
707 		err = dsl_dataset_hold_obj(dp,
708 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
709 		if (err) {
710 			dsl_dataset_rele(ds, FTAG);
711 			return (err);
712 		}
713 
714 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
715 			break;
716 		dsl_dataset_rele(ds, FTAG);
717 		ds = prev;
718 		prev = NULL;
719 	}
720 
721 	if (prev == NULL) {
722 		prev = dp->dp_origin_snap;
723 
724 		/*
725 		 * The $ORIGIN can't have any data, or the accounting
726 		 * will be wrong.
727 		 */
728 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
729 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
730 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
731 
732 		/* The origin doesn't get attached to itself */
733 		if (ds->ds_object == prev->ds_object) {
734 			dsl_dataset_rele(ds, FTAG);
735 			return (0);
736 		}
737 
738 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
739 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
740 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
741 		    dsl_dataset_phys(prev)->ds_creation_txg;
742 
743 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
744 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
745 
746 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
747 		dsl_dataset_phys(prev)->ds_num_children++;
748 
749 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
750 			ASSERT(ds->ds_prev == NULL);
751 			VERIFY0(dsl_dataset_hold_obj(dp,
752 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
753 			    ds, &ds->ds_prev));
754 		}
755 	}
756 
757 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
758 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
759 
760 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
761 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
762 		dsl_dataset_phys(prev)->ds_next_clones_obj =
763 		    zap_create(dp->dp_meta_objset,
764 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
765 	}
766 	VERIFY0(zap_add_int(dp->dp_meta_objset,
767 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
768 
769 	dsl_dataset_rele(ds, FTAG);
770 	if (prev != dp->dp_origin_snap)
771 		dsl_dataset_rele(prev, FTAG);
772 	return (0);
773 }
774 
775 void
776 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
777 {
778 	ASSERT(dmu_tx_is_syncing(tx));
779 	ASSERT(dp->dp_origin_snap != NULL);
780 
781 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
782 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
783 }
784 
785 /* ARGSUSED */
786 static int
787 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
788 {
789 	dmu_tx_t *tx = arg;
790 	objset_t *mos = dp->dp_meta_objset;
791 
792 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
793 		dsl_dataset_t *origin;
794 
795 		VERIFY0(dsl_dataset_hold_obj(dp,
796 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
797 
798 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
799 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
800 			dsl_dir_phys(origin->ds_dir)->dd_clones =
801 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
802 			    0, tx);
803 		}
804 
805 		VERIFY0(zap_add_int(dp->dp_meta_objset,
806 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
807 		    ds->ds_object, tx));
808 
809 		dsl_dataset_rele(origin, FTAG);
810 	}
811 	return (0);
812 }
813 
814 void
815 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
816 {
817 	ASSERT(dmu_tx_is_syncing(tx));
818 	uint64_t obj;
819 
820 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
821 	VERIFY0(dsl_pool_open_special_dir(dp,
822 	    FREE_DIR_NAME, &dp->dp_free_dir));
823 
824 	/*
825 	 * We can't use bpobj_alloc(), because spa_version() still
826 	 * returns the old version, and we need a new-version bpobj with
827 	 * subobj support.  So call dmu_object_alloc() directly.
828 	 */
829 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
830 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
831 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
832 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
833 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
834 
835 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
836 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
837 }
838 
839 void
840 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
841 {
842 	uint64_t dsobj;
843 	dsl_dataset_t *ds;
844 
845 	ASSERT(dmu_tx_is_syncing(tx));
846 	ASSERT(dp->dp_origin_snap == NULL);
847 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
848 
849 	/* create the origin dir, ds, & snap-ds */
850 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
851 	    NULL, 0, kcred, tx);
852 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
853 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
854 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
855 	    dp, &dp->dp_origin_snap));
856 	dsl_dataset_rele(ds, FTAG);
857 }
858 
859 taskq_t *
860 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
861 {
862 	return (dp->dp_vnrele_taskq);
863 }
864 
865 /*
866  * Walk through the pool-wide zap object of temporary snapshot user holds
867  * and release them.
868  */
869 void
870 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
871 {
872 	zap_attribute_t za;
873 	zap_cursor_t zc;
874 	objset_t *mos = dp->dp_meta_objset;
875 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
876 	nvlist_t *holds;
877 
878 	if (zapobj == 0)
879 		return;
880 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
881 
882 	holds = fnvlist_alloc();
883 
884 	for (zap_cursor_init(&zc, mos, zapobj);
885 	    zap_cursor_retrieve(&zc, &za) == 0;
886 	    zap_cursor_advance(&zc)) {
887 		char *htag;
888 		nvlist_t *tags;
889 
890 		htag = strchr(za.za_name, '-');
891 		*htag = '\0';
892 		++htag;
893 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
894 			tags = fnvlist_alloc();
895 			fnvlist_add_boolean(tags, htag);
896 			fnvlist_add_nvlist(holds, za.za_name, tags);
897 			fnvlist_free(tags);
898 		} else {
899 			fnvlist_add_boolean(tags, htag);
900 		}
901 	}
902 	dsl_dataset_user_release_tmp(dp, holds);
903 	fnvlist_free(holds);
904 	zap_cursor_fini(&zc);
905 }
906 
907 /*
908  * Create the pool-wide zap object for storing temporary snapshot holds.
909  */
910 void
911 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
912 {
913 	objset_t *mos = dp->dp_meta_objset;
914 
915 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
916 	ASSERT(dmu_tx_is_syncing(tx));
917 
918 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
919 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
920 }
921 
922 static int
923 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
924     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
925 {
926 	objset_t *mos = dp->dp_meta_objset;
927 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
928 	char *name;
929 	int error;
930 
931 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
932 	ASSERT(dmu_tx_is_syncing(tx));
933 
934 	/*
935 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
936 	 * zap object for temporary holds might not exist yet.
937 	 */
938 	if (zapobj == 0) {
939 		if (holding) {
940 			dsl_pool_user_hold_create_obj(dp, tx);
941 			zapobj = dp->dp_tmp_userrefs_obj;
942 		} else {
943 			return (SET_ERROR(ENOENT));
944 		}
945 	}
946 
947 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
948 	if (holding)
949 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
950 	else
951 		error = zap_remove(mos, zapobj, name, tx);
952 	strfree(name);
953 
954 	return (error);
955 }
956 
957 /*
958  * Add a temporary hold for the given dataset object and tag.
959  */
960 int
961 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
962     uint64_t now, dmu_tx_t *tx)
963 {
964 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
965 }
966 
967 /*
968  * Release a temporary hold for the given dataset object and tag.
969  */
970 int
971 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
972     dmu_tx_t *tx)
973 {
974 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
975 	    tx, B_FALSE));
976 }
977 
978 /*
979  * DSL Pool Configuration Lock
980  *
981  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
982  * creation / destruction / rename / property setting).  It must be held for
983  * read to hold a dataset or dsl_dir.  I.e. you must call
984  * dsl_pool_config_enter() or dsl_pool_hold() before calling
985  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
986  * must be held continuously until all datasets and dsl_dirs are released.
987  *
988  * The only exception to this rule is that if a "long hold" is placed on
989  * a dataset, then the dp_config_rwlock may be dropped while the dataset
990  * is still held.  The long hold will prevent the dataset from being
991  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
992  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
993  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
994  *
995  * Legitimate long-holders (including owners) should be long-running, cancelable
996  * tasks that should cause "zfs destroy" to fail.  This includes DMU
997  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
998  * "zfs send", and "zfs diff".  There are several other long-holders whose
999  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1000  *
1001  * The usual formula for long-holding would be:
1002  * dsl_pool_hold()
1003  * dsl_dataset_hold()
1004  * ... perform checks ...
1005  * dsl_dataset_long_hold()
1006  * dsl_pool_rele()
1007  * ... perform long-running task ...
1008  * dsl_dataset_long_rele()
1009  * dsl_dataset_rele()
1010  *
1011  * Note that when the long hold is released, the dataset is still held but
1012  * the pool is not held.  The dataset may change arbitrarily during this time
1013  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1014  * dataset except release it.
1015  *
1016  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1017  * or modifying operations.
1018  *
1019  * Modifying operations should generally use dsl_sync_task().  The synctask
1020  * infrastructure enforces proper locking strategy with respect to the
1021  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1022  *
1023  * Read-only operations will manually hold the pool, then the dataset, obtain
1024  * information from the dataset, then release the pool and dataset.
1025  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1026  * hold/rele.
1027  */
1028 
1029 int
1030 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1031 {
1032 	spa_t *spa;
1033 	int error;
1034 
1035 	error = spa_open(name, &spa, tag);
1036 	if (error == 0) {
1037 		*dp = spa_get_dsl(spa);
1038 		dsl_pool_config_enter(*dp, tag);
1039 	}
1040 	return (error);
1041 }
1042 
1043 void
1044 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1045 {
1046 	dsl_pool_config_exit(dp, tag);
1047 	spa_close(dp->dp_spa, tag);
1048 }
1049 
1050 void
1051 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1052 {
1053 	/*
1054 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1055 	 *
1056 	 * The rrwlock can (with the track_all flag) track all reading threads,
1057 	 * which is very useful for debugging which code path failed to release
1058 	 * the lock, and for verifying that the *current* thread does hold
1059 	 * the lock.
1060 	 *
1061 	 * (Unlike a rwlock, which knows that N threads hold it for
1062 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1063 	 * if any thread holds it for read, even if this thread doesn't).
1064 	 */
1065 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1066 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1067 }
1068 
1069 void
1070 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1071 {
1072 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1073 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1074 }
1075 
1076 void
1077 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1078 {
1079 	rrw_exit(&dp->dp_config_rwlock, tag);
1080 }
1081 
1082 boolean_t
1083 dsl_pool_config_held(dsl_pool_t *dp)
1084 {
1085 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1086 }
1087 
1088 boolean_t
1089 dsl_pool_config_held_writer(dsl_pool_t *dp)
1090 {
1091 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1092 }
1093