xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 43051d27)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 /*
32  * SPA: Storage Pool Allocator
33  *
34  * This file contains all the routines used when modifying on-disk SPA state.
35  * This includes opening, importing, destroying, exporting a pool, and syncing a
36  * pool.
37  */
38 
39 #include <sys/zfs_context.h>
40 #include <sys/fm/fs/zfs.h>
41 #include <sys/spa_impl.h>
42 #include <sys/zio.h>
43 #include <sys/zio_checksum.h>
44 #include <sys/dmu.h>
45 #include <sys/dmu_tx.h>
46 #include <sys/zap.h>
47 #include <sys/zil.h>
48 #include <sys/ddt.h>
49 #include <sys/vdev_impl.h>
50 #include <sys/metaslab.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/uberblock_impl.h>
53 #include <sys/txg.h>
54 #include <sys/avl.h>
55 #include <sys/dmu_traverse.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/unique.h>
58 #include <sys/dsl_pool.h>
59 #include <sys/dsl_dataset.h>
60 #include <sys/dsl_dir.h>
61 #include <sys/dsl_prop.h>
62 #include <sys/dsl_synctask.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/arc.h>
65 #include <sys/callb.h>
66 #include <sys/systeminfo.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zfs_ioctl.h>
69 #include <sys/dsl_scan.h>
70 #include <sys/zfeature.h>
71 #include <sys/dsl_destroy.h>
72 
73 #ifdef	_KERNEL
74 #include <sys/bootprops.h>
75 #include <sys/callb.h>
76 #include <sys/cpupart.h>
77 #include <sys/pool.h>
78 #include <sys/sysdc.h>
79 #include <sys/zone.h>
80 #endif	/* _KERNEL */
81 
82 #include "zfs_prop.h"
83 #include "zfs_comutil.h"
84 
85 /*
86  * The interval, in seconds, at which failed configuration cache file writes
87  * should be retried.
88  */
89 static int zfs_ccw_retry_interval = 300;
90 
91 typedef enum zti_modes {
92 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
93 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
94 	ZTI_MODE_NULL,			/* don't create a taskq */
95 	ZTI_NMODES
96 } zti_modes_t;
97 
98 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
99 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
100 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
101 
102 #define	ZTI_N(n)	ZTI_P(n, 1)
103 #define	ZTI_ONE		ZTI_N(1)
104 
105 typedef struct zio_taskq_info {
106 	zti_modes_t zti_mode;
107 	uint_t zti_value;
108 	uint_t zti_count;
109 } zio_taskq_info_t;
110 
111 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
112 	"issue", "issue_high", "intr", "intr_high"
113 };
114 
115 /*
116  * This table defines the taskq settings for each ZFS I/O type. When
117  * initializing a pool, we use this table to create an appropriately sized
118  * taskq. Some operations are low volume and therefore have a small, static
119  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
120  * macros. Other operations process a large amount of data; the ZTI_BATCH
121  * macro causes us to create a taskq oriented for throughput. Some operations
122  * are so high frequency and short-lived that the taskq itself can become a a
123  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
124  * additional degree of parallelism specified by the number of threads per-
125  * taskq and the number of taskqs; when dispatching an event in this case, the
126  * particular taskq is chosen at random.
127  *
128  * The different taskq priorities are to handle the different contexts (issue
129  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
130  * need to be handled with minimum delay.
131  */
132 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
133 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
134 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
135 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
136 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
137 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
138 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
139 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
140 };
141 
142 static void spa_sync_version(void *arg, dmu_tx_t *tx);
143 static void spa_sync_props(void *arg, dmu_tx_t *tx);
144 static boolean_t spa_has_active_shared_spare(spa_t *spa);
145 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
146     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
147     char **ereport);
148 static void spa_vdev_resilver_done(spa_t *spa);
149 
150 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
151 id_t		zio_taskq_psrset_bind = PS_NONE;
152 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
153 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
154 
155 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
156 extern int	zfs_sync_pass_deferred_free;
157 
158 /*
159  * This (illegal) pool name is used when temporarily importing a spa_t in order
160  * to get the vdev stats associated with the imported devices.
161  */
162 #define	TRYIMPORT_NAME	"$import"
163 
164 /*
165  * ==========================================================================
166  * SPA properties routines
167  * ==========================================================================
168  */
169 
170 /*
171  * Add a (source=src, propname=propval) list to an nvlist.
172  */
173 static void
174 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
175     uint64_t intval, zprop_source_t src)
176 {
177 	const char *propname = zpool_prop_to_name(prop);
178 	nvlist_t *propval;
179 
180 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
181 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
182 
183 	if (strval != NULL)
184 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
185 	else
186 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
187 
188 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
189 	nvlist_free(propval);
190 }
191 
192 /*
193  * Get property values from the spa configuration.
194  */
195 static void
196 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
197 {
198 	vdev_t *rvd = spa->spa_root_vdev;
199 	dsl_pool_t *pool = spa->spa_dsl_pool;
200 	uint64_t size, alloc, cap, version;
201 	zprop_source_t src = ZPROP_SRC_NONE;
202 	spa_config_dirent_t *dp;
203 	metaslab_class_t *mc = spa_normal_class(spa);
204 
205 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
206 
207 	if (rvd != NULL) {
208 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
209 		size = metaslab_class_get_space(spa_normal_class(spa));
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
213 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
214 		    size - alloc, src);
215 
216 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
217 		    metaslab_class_fragmentation(mc), src);
218 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
219 		    metaslab_class_expandable_space(mc), src);
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
221 		    (spa_mode(spa) == FREAD), src);
222 
223 		cap = (size == 0) ? 0 : (alloc * 100 / size);
224 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
225 
226 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
227 		    ddt_get_pool_dedup_ratio(spa), src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
230 		    rvd->vdev_state, src);
231 
232 		version = spa_version(spa);
233 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
234 			src = ZPROP_SRC_DEFAULT;
235 		else
236 			src = ZPROP_SRC_LOCAL;
237 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
238 	}
239 
240 	if (pool != NULL) {
241 		/*
242 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
243 		 * when opening pools before this version freedir will be NULL.
244 		 */
245 		if (pool->dp_free_dir != NULL) {
246 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
247 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
248 			    src);
249 		} else {
250 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
251 			    NULL, 0, src);
252 		}
253 
254 		if (pool->dp_leak_dir != NULL) {
255 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
256 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
257 			    src);
258 		} else {
259 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
260 			    NULL, 0, src);
261 		}
262 	}
263 
264 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
265 
266 	if (spa->spa_comment != NULL) {
267 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
268 		    0, ZPROP_SRC_LOCAL);
269 	}
270 
271 	if (spa->spa_root != NULL)
272 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
273 		    0, ZPROP_SRC_LOCAL);
274 
275 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
276 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
277 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
278 	} else {
279 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
280 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
281 	}
282 
283 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
284 		if (dp->scd_path == NULL) {
285 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
286 			    "none", 0, ZPROP_SRC_LOCAL);
287 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
288 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
289 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
290 		}
291 	}
292 }
293 
294 /*
295  * Get zpool property values.
296  */
297 int
298 spa_prop_get(spa_t *spa, nvlist_t **nvp)
299 {
300 	objset_t *mos = spa->spa_meta_objset;
301 	zap_cursor_t zc;
302 	zap_attribute_t za;
303 	int err;
304 
305 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
306 
307 	mutex_enter(&spa->spa_props_lock);
308 
309 	/*
310 	 * Get properties from the spa config.
311 	 */
312 	spa_prop_get_config(spa, nvp);
313 
314 	/* If no pool property object, no more prop to get. */
315 	if (mos == NULL || spa->spa_pool_props_object == 0) {
316 		mutex_exit(&spa->spa_props_lock);
317 		return (0);
318 	}
319 
320 	/*
321 	 * Get properties from the MOS pool property object.
322 	 */
323 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
324 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
325 	    zap_cursor_advance(&zc)) {
326 		uint64_t intval = 0;
327 		char *strval = NULL;
328 		zprop_source_t src = ZPROP_SRC_DEFAULT;
329 		zpool_prop_t prop;
330 
331 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
332 			continue;
333 
334 		switch (za.za_integer_length) {
335 		case 8:
336 			/* integer property */
337 			if (za.za_first_integer !=
338 			    zpool_prop_default_numeric(prop))
339 				src = ZPROP_SRC_LOCAL;
340 
341 			if (prop == ZPOOL_PROP_BOOTFS) {
342 				dsl_pool_t *dp;
343 				dsl_dataset_t *ds = NULL;
344 
345 				dp = spa_get_dsl(spa);
346 				dsl_pool_config_enter(dp, FTAG);
347 				if (err = dsl_dataset_hold_obj(dp,
348 				    za.za_first_integer, FTAG, &ds)) {
349 					dsl_pool_config_exit(dp, FTAG);
350 					break;
351 				}
352 
353 				strval = kmem_alloc(
354 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
355 				    KM_SLEEP);
356 				dsl_dataset_name(ds, strval);
357 				dsl_dataset_rele(ds, FTAG);
358 				dsl_pool_config_exit(dp, FTAG);
359 			} else {
360 				strval = NULL;
361 				intval = za.za_first_integer;
362 			}
363 
364 			spa_prop_add_list(*nvp, prop, strval, intval, src);
365 
366 			if (strval != NULL)
367 				kmem_free(strval,
368 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
369 
370 			break;
371 
372 		case 1:
373 			/* string property */
374 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
375 			err = zap_lookup(mos, spa->spa_pool_props_object,
376 			    za.za_name, 1, za.za_num_integers, strval);
377 			if (err) {
378 				kmem_free(strval, za.za_num_integers);
379 				break;
380 			}
381 			spa_prop_add_list(*nvp, prop, strval, 0, src);
382 			kmem_free(strval, za.za_num_integers);
383 			break;
384 
385 		default:
386 			break;
387 		}
388 	}
389 	zap_cursor_fini(&zc);
390 	mutex_exit(&spa->spa_props_lock);
391 out:
392 	if (err && err != ENOENT) {
393 		nvlist_free(*nvp);
394 		*nvp = NULL;
395 		return (err);
396 	}
397 
398 	return (0);
399 }
400 
401 /*
402  * Validate the given pool properties nvlist and modify the list
403  * for the property values to be set.
404  */
405 static int
406 spa_prop_validate(spa_t *spa, nvlist_t *props)
407 {
408 	nvpair_t *elem;
409 	int error = 0, reset_bootfs = 0;
410 	uint64_t objnum = 0;
411 	boolean_t has_feature = B_FALSE;
412 
413 	elem = NULL;
414 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
415 		uint64_t intval;
416 		char *strval, *slash, *check, *fname;
417 		const char *propname = nvpair_name(elem);
418 		zpool_prop_t prop = zpool_name_to_prop(propname);
419 
420 		switch (prop) {
421 		case ZPROP_INVAL:
422 			if (!zpool_prop_feature(propname)) {
423 				error = SET_ERROR(EINVAL);
424 				break;
425 			}
426 
427 			/*
428 			 * Sanitize the input.
429 			 */
430 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
431 				error = SET_ERROR(EINVAL);
432 				break;
433 			}
434 
435 			if (nvpair_value_uint64(elem, &intval) != 0) {
436 				error = SET_ERROR(EINVAL);
437 				break;
438 			}
439 
440 			if (intval != 0) {
441 				error = SET_ERROR(EINVAL);
442 				break;
443 			}
444 
445 			fname = strchr(propname, '@') + 1;
446 			if (zfeature_lookup_name(fname, NULL) != 0) {
447 				error = SET_ERROR(EINVAL);
448 				break;
449 			}
450 
451 			has_feature = B_TRUE;
452 			break;
453 
454 		case ZPOOL_PROP_VERSION:
455 			error = nvpair_value_uint64(elem, &intval);
456 			if (!error &&
457 			    (intval < spa_version(spa) ||
458 			    intval > SPA_VERSION_BEFORE_FEATURES ||
459 			    has_feature))
460 				error = SET_ERROR(EINVAL);
461 			break;
462 
463 		case ZPOOL_PROP_DELEGATION:
464 		case ZPOOL_PROP_AUTOREPLACE:
465 		case ZPOOL_PROP_LISTSNAPS:
466 		case ZPOOL_PROP_AUTOEXPAND:
467 			error = nvpair_value_uint64(elem, &intval);
468 			if (!error && intval > 1)
469 				error = SET_ERROR(EINVAL);
470 			break;
471 
472 		case ZPOOL_PROP_BOOTFS:
473 			/*
474 			 * If the pool version is less than SPA_VERSION_BOOTFS,
475 			 * or the pool is still being created (version == 0),
476 			 * the bootfs property cannot be set.
477 			 */
478 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
479 				error = SET_ERROR(ENOTSUP);
480 				break;
481 			}
482 
483 			/*
484 			 * Make sure the vdev config is bootable
485 			 */
486 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
487 				error = SET_ERROR(ENOTSUP);
488 				break;
489 			}
490 
491 			reset_bootfs = 1;
492 
493 			error = nvpair_value_string(elem, &strval);
494 
495 			if (!error) {
496 				objset_t *os;
497 				uint64_t propval;
498 
499 				if (strval == NULL || strval[0] == '\0') {
500 					objnum = zpool_prop_default_numeric(
501 					    ZPOOL_PROP_BOOTFS);
502 					break;
503 				}
504 
505 				if (error = dmu_objset_hold(strval, FTAG, &os))
506 					break;
507 
508 				/*
509 				 * Must be ZPL, and its property settings
510 				 * must be supported by GRUB (compression
511 				 * is not gzip, and large blocks are not used).
512 				 */
513 
514 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
515 					error = SET_ERROR(ENOTSUP);
516 				} else if ((error =
517 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
518 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
519 				    &propval)) == 0 &&
520 				    !BOOTFS_COMPRESS_VALID(propval)) {
521 					error = SET_ERROR(ENOTSUP);
522 				} else if ((error =
523 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
524 				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
525 				    &propval)) == 0 &&
526 				    propval > SPA_OLD_MAXBLOCKSIZE) {
527 					error = SET_ERROR(ENOTSUP);
528 				} else {
529 					objnum = dmu_objset_id(os);
530 				}
531 				dmu_objset_rele(os, FTAG);
532 			}
533 			break;
534 
535 		case ZPOOL_PROP_FAILUREMODE:
536 			error = nvpair_value_uint64(elem, &intval);
537 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
538 			    intval > ZIO_FAILURE_MODE_PANIC))
539 				error = SET_ERROR(EINVAL);
540 
541 			/*
542 			 * This is a special case which only occurs when
543 			 * the pool has completely failed. This allows
544 			 * the user to change the in-core failmode property
545 			 * without syncing it out to disk (I/Os might
546 			 * currently be blocked). We do this by returning
547 			 * EIO to the caller (spa_prop_set) to trick it
548 			 * into thinking we encountered a property validation
549 			 * error.
550 			 */
551 			if (!error && spa_suspended(spa)) {
552 				spa->spa_failmode = intval;
553 				error = SET_ERROR(EIO);
554 			}
555 			break;
556 
557 		case ZPOOL_PROP_CACHEFILE:
558 			if ((error = nvpair_value_string(elem, &strval)) != 0)
559 				break;
560 
561 			if (strval[0] == '\0')
562 				break;
563 
564 			if (strcmp(strval, "none") == 0)
565 				break;
566 
567 			if (strval[0] != '/') {
568 				error = SET_ERROR(EINVAL);
569 				break;
570 			}
571 
572 			slash = strrchr(strval, '/');
573 			ASSERT(slash != NULL);
574 
575 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
576 			    strcmp(slash, "/..") == 0)
577 				error = SET_ERROR(EINVAL);
578 			break;
579 
580 		case ZPOOL_PROP_COMMENT:
581 			if ((error = nvpair_value_string(elem, &strval)) != 0)
582 				break;
583 			for (check = strval; *check != '\0'; check++) {
584 				/*
585 				 * The kernel doesn't have an easy isprint()
586 				 * check.  For this kernel check, we merely
587 				 * check ASCII apart from DEL.  Fix this if
588 				 * there is an easy-to-use kernel isprint().
589 				 */
590 				if (*check >= 0x7f) {
591 					error = SET_ERROR(EINVAL);
592 					break;
593 				}
594 			}
595 			if (strlen(strval) > ZPROP_MAX_COMMENT)
596 				error = E2BIG;
597 			break;
598 
599 		case ZPOOL_PROP_DEDUPDITTO:
600 			if (spa_version(spa) < SPA_VERSION_DEDUP)
601 				error = SET_ERROR(ENOTSUP);
602 			else
603 				error = nvpair_value_uint64(elem, &intval);
604 			if (error == 0 &&
605 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
606 				error = SET_ERROR(EINVAL);
607 			break;
608 		}
609 
610 		if (error)
611 			break;
612 	}
613 
614 	if (!error && reset_bootfs) {
615 		error = nvlist_remove(props,
616 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
617 
618 		if (!error) {
619 			error = nvlist_add_uint64(props,
620 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
621 		}
622 	}
623 
624 	return (error);
625 }
626 
627 void
628 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
629 {
630 	char *cachefile;
631 	spa_config_dirent_t *dp;
632 
633 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
634 	    &cachefile) != 0)
635 		return;
636 
637 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
638 	    KM_SLEEP);
639 
640 	if (cachefile[0] == '\0')
641 		dp->scd_path = spa_strdup(spa_config_path);
642 	else if (strcmp(cachefile, "none") == 0)
643 		dp->scd_path = NULL;
644 	else
645 		dp->scd_path = spa_strdup(cachefile);
646 
647 	list_insert_head(&spa->spa_config_list, dp);
648 	if (need_sync)
649 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
650 }
651 
652 int
653 spa_prop_set(spa_t *spa, nvlist_t *nvp)
654 {
655 	int error;
656 	nvpair_t *elem = NULL;
657 	boolean_t need_sync = B_FALSE;
658 
659 	if ((error = spa_prop_validate(spa, nvp)) != 0)
660 		return (error);
661 
662 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
663 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
664 
665 		if (prop == ZPOOL_PROP_CACHEFILE ||
666 		    prop == ZPOOL_PROP_ALTROOT ||
667 		    prop == ZPOOL_PROP_READONLY)
668 			continue;
669 
670 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
671 			uint64_t ver;
672 
673 			if (prop == ZPOOL_PROP_VERSION) {
674 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
675 			} else {
676 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
677 				ver = SPA_VERSION_FEATURES;
678 				need_sync = B_TRUE;
679 			}
680 
681 			/* Save time if the version is already set. */
682 			if (ver == spa_version(spa))
683 				continue;
684 
685 			/*
686 			 * In addition to the pool directory object, we might
687 			 * create the pool properties object, the features for
688 			 * read object, the features for write object, or the
689 			 * feature descriptions object.
690 			 */
691 			error = dsl_sync_task(spa->spa_name, NULL,
692 			    spa_sync_version, &ver,
693 			    6, ZFS_SPACE_CHECK_RESERVED);
694 			if (error)
695 				return (error);
696 			continue;
697 		}
698 
699 		need_sync = B_TRUE;
700 		break;
701 	}
702 
703 	if (need_sync) {
704 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
705 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
706 	}
707 
708 	return (0);
709 }
710 
711 /*
712  * If the bootfs property value is dsobj, clear it.
713  */
714 void
715 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
716 {
717 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
718 		VERIFY(zap_remove(spa->spa_meta_objset,
719 		    spa->spa_pool_props_object,
720 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
721 		spa->spa_bootfs = 0;
722 	}
723 }
724 
725 /*ARGSUSED*/
726 static int
727 spa_change_guid_check(void *arg, dmu_tx_t *tx)
728 {
729 	uint64_t *newguid = arg;
730 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
731 	vdev_t *rvd = spa->spa_root_vdev;
732 	uint64_t vdev_state;
733 
734 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
735 	vdev_state = rvd->vdev_state;
736 	spa_config_exit(spa, SCL_STATE, FTAG);
737 
738 	if (vdev_state != VDEV_STATE_HEALTHY)
739 		return (SET_ERROR(ENXIO));
740 
741 	ASSERT3U(spa_guid(spa), !=, *newguid);
742 
743 	return (0);
744 }
745 
746 static void
747 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
748 {
749 	uint64_t *newguid = arg;
750 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
751 	uint64_t oldguid;
752 	vdev_t *rvd = spa->spa_root_vdev;
753 
754 	oldguid = spa_guid(spa);
755 
756 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
757 	rvd->vdev_guid = *newguid;
758 	rvd->vdev_guid_sum += (*newguid - oldguid);
759 	vdev_config_dirty(rvd);
760 	spa_config_exit(spa, SCL_STATE, FTAG);
761 
762 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
763 	    oldguid, *newguid);
764 }
765 
766 /*
767  * Change the GUID for the pool.  This is done so that we can later
768  * re-import a pool built from a clone of our own vdevs.  We will modify
769  * the root vdev's guid, our own pool guid, and then mark all of our
770  * vdevs dirty.  Note that we must make sure that all our vdevs are
771  * online when we do this, or else any vdevs that weren't present
772  * would be orphaned from our pool.  We are also going to issue a
773  * sysevent to update any watchers.
774  */
775 int
776 spa_change_guid(spa_t *spa)
777 {
778 	int error;
779 	uint64_t guid;
780 
781 	mutex_enter(&spa->spa_vdev_top_lock);
782 	mutex_enter(&spa_namespace_lock);
783 	guid = spa_generate_guid(NULL);
784 
785 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
786 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
787 
788 	if (error == 0) {
789 		spa_config_sync(spa, B_FALSE, B_TRUE);
790 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
791 	}
792 
793 	mutex_exit(&spa_namespace_lock);
794 	mutex_exit(&spa->spa_vdev_top_lock);
795 
796 	return (error);
797 }
798 
799 /*
800  * ==========================================================================
801  * SPA state manipulation (open/create/destroy/import/export)
802  * ==========================================================================
803  */
804 
805 static int
806 spa_error_entry_compare(const void *a, const void *b)
807 {
808 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
809 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
810 	int ret;
811 
812 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
813 	    sizeof (zbookmark_phys_t));
814 
815 	if (ret < 0)
816 		return (-1);
817 	else if (ret > 0)
818 		return (1);
819 	else
820 		return (0);
821 }
822 
823 /*
824  * Utility function which retrieves copies of the current logs and
825  * re-initializes them in the process.
826  */
827 void
828 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
829 {
830 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
831 
832 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
833 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
834 
835 	avl_create(&spa->spa_errlist_scrub,
836 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
837 	    offsetof(spa_error_entry_t, se_avl));
838 	avl_create(&spa->spa_errlist_last,
839 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
840 	    offsetof(spa_error_entry_t, se_avl));
841 }
842 
843 static void
844 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
845 {
846 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
847 	enum zti_modes mode = ztip->zti_mode;
848 	uint_t value = ztip->zti_value;
849 	uint_t count = ztip->zti_count;
850 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
851 	char name[32];
852 	uint_t flags = 0;
853 	boolean_t batch = B_FALSE;
854 
855 	if (mode == ZTI_MODE_NULL) {
856 		tqs->stqs_count = 0;
857 		tqs->stqs_taskq = NULL;
858 		return;
859 	}
860 
861 	ASSERT3U(count, >, 0);
862 
863 	tqs->stqs_count = count;
864 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
865 
866 	switch (mode) {
867 	case ZTI_MODE_FIXED:
868 		ASSERT3U(value, >=, 1);
869 		value = MAX(value, 1);
870 		break;
871 
872 	case ZTI_MODE_BATCH:
873 		batch = B_TRUE;
874 		flags |= TASKQ_THREADS_CPU_PCT;
875 		value = zio_taskq_batch_pct;
876 		break;
877 
878 	default:
879 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
880 		    "spa_activate()",
881 		    zio_type_name[t], zio_taskq_types[q], mode, value);
882 		break;
883 	}
884 
885 	for (uint_t i = 0; i < count; i++) {
886 		taskq_t *tq;
887 
888 		if (count > 1) {
889 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
890 			    zio_type_name[t], zio_taskq_types[q], i);
891 		} else {
892 			(void) snprintf(name, sizeof (name), "%s_%s",
893 			    zio_type_name[t], zio_taskq_types[q]);
894 		}
895 
896 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
897 			if (batch)
898 				flags |= TASKQ_DC_BATCH;
899 
900 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
901 			    spa->spa_proc, zio_taskq_basedc, flags);
902 		} else {
903 			pri_t pri = maxclsyspri;
904 			/*
905 			 * The write issue taskq can be extremely CPU
906 			 * intensive.  Run it at slightly lower priority
907 			 * than the other taskqs.
908 			 */
909 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
910 				pri--;
911 
912 			tq = taskq_create_proc(name, value, pri, 50,
913 			    INT_MAX, spa->spa_proc, flags);
914 		}
915 
916 		tqs->stqs_taskq[i] = tq;
917 	}
918 }
919 
920 static void
921 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
922 {
923 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
924 
925 	if (tqs->stqs_taskq == NULL) {
926 		ASSERT0(tqs->stqs_count);
927 		return;
928 	}
929 
930 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
931 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
932 		taskq_destroy(tqs->stqs_taskq[i]);
933 	}
934 
935 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
936 	tqs->stqs_taskq = NULL;
937 }
938 
939 /*
940  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
941  * Note that a type may have multiple discrete taskqs to avoid lock contention
942  * on the taskq itself. In that case we choose which taskq at random by using
943  * the low bits of gethrtime().
944  */
945 void
946 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
947     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
948 {
949 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
950 	taskq_t *tq;
951 
952 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
953 	ASSERT3U(tqs->stqs_count, !=, 0);
954 
955 	if (tqs->stqs_count == 1) {
956 		tq = tqs->stqs_taskq[0];
957 	} else {
958 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
959 	}
960 
961 	taskq_dispatch_ent(tq, func, arg, flags, ent);
962 }
963 
964 static void
965 spa_create_zio_taskqs(spa_t *spa)
966 {
967 	for (int t = 0; t < ZIO_TYPES; t++) {
968 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
969 			spa_taskqs_init(spa, t, q);
970 		}
971 	}
972 }
973 
974 #ifdef _KERNEL
975 static void
976 spa_thread(void *arg)
977 {
978 	callb_cpr_t cprinfo;
979 
980 	spa_t *spa = arg;
981 	user_t *pu = PTOU(curproc);
982 
983 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
984 	    spa->spa_name);
985 
986 	ASSERT(curproc != &p0);
987 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
988 	    "zpool-%s", spa->spa_name);
989 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
990 
991 	/* bind this thread to the requested psrset */
992 	if (zio_taskq_psrset_bind != PS_NONE) {
993 		pool_lock();
994 		mutex_enter(&cpu_lock);
995 		mutex_enter(&pidlock);
996 		mutex_enter(&curproc->p_lock);
997 
998 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
999 		    0, NULL, NULL) == 0)  {
1000 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1001 		} else {
1002 			cmn_err(CE_WARN,
1003 			    "Couldn't bind process for zfs pool \"%s\" to "
1004 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1005 		}
1006 
1007 		mutex_exit(&curproc->p_lock);
1008 		mutex_exit(&pidlock);
1009 		mutex_exit(&cpu_lock);
1010 		pool_unlock();
1011 	}
1012 
1013 	if (zio_taskq_sysdc) {
1014 		sysdc_thread_enter(curthread, 100, 0);
1015 	}
1016 
1017 	spa->spa_proc = curproc;
1018 	spa->spa_did = curthread->t_did;
1019 
1020 	spa_create_zio_taskqs(spa);
1021 
1022 	mutex_enter(&spa->spa_proc_lock);
1023 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1024 
1025 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1026 	cv_broadcast(&spa->spa_proc_cv);
1027 
1028 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1029 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1030 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1031 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1032 
1033 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1034 	spa->spa_proc_state = SPA_PROC_GONE;
1035 	spa->spa_proc = &p0;
1036 	cv_broadcast(&spa->spa_proc_cv);
1037 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1038 
1039 	mutex_enter(&curproc->p_lock);
1040 	lwp_exit();
1041 }
1042 #endif
1043 
1044 /*
1045  * Activate an uninitialized pool.
1046  */
1047 static void
1048 spa_activate(spa_t *spa, int mode)
1049 {
1050 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1051 
1052 	spa->spa_state = POOL_STATE_ACTIVE;
1053 	spa->spa_mode = mode;
1054 
1055 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1057 
1058 	/* Try to create a covering process */
1059 	mutex_enter(&spa->spa_proc_lock);
1060 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1061 	ASSERT(spa->spa_proc == &p0);
1062 	spa->spa_did = 0;
1063 
1064 	/* Only create a process if we're going to be around a while. */
1065 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1066 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1067 		    NULL, 0) == 0) {
1068 			spa->spa_proc_state = SPA_PROC_CREATED;
1069 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1070 				cv_wait(&spa->spa_proc_cv,
1071 				    &spa->spa_proc_lock);
1072 			}
1073 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1074 			ASSERT(spa->spa_proc != &p0);
1075 			ASSERT(spa->spa_did != 0);
1076 		} else {
1077 #ifdef _KERNEL
1078 			cmn_err(CE_WARN,
1079 			    "Couldn't create process for zfs pool \"%s\"\n",
1080 			    spa->spa_name);
1081 #endif
1082 		}
1083 	}
1084 	mutex_exit(&spa->spa_proc_lock);
1085 
1086 	/* If we didn't create a process, we need to create our taskqs. */
1087 	if (spa->spa_proc == &p0) {
1088 		spa_create_zio_taskqs(spa);
1089 	}
1090 
1091 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1092 	    offsetof(vdev_t, vdev_config_dirty_node));
1093 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1094 	    offsetof(objset_t, os_evicting_node));
1095 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1096 	    offsetof(vdev_t, vdev_state_dirty_node));
1097 
1098 	txg_list_create(&spa->spa_vdev_txg_list,
1099 	    offsetof(struct vdev, vdev_txg_node));
1100 
1101 	avl_create(&spa->spa_errlist_scrub,
1102 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1103 	    offsetof(spa_error_entry_t, se_avl));
1104 	avl_create(&spa->spa_errlist_last,
1105 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1106 	    offsetof(spa_error_entry_t, se_avl));
1107 }
1108 
1109 /*
1110  * Opposite of spa_activate().
1111  */
1112 static void
1113 spa_deactivate(spa_t *spa)
1114 {
1115 	ASSERT(spa->spa_sync_on == B_FALSE);
1116 	ASSERT(spa->spa_dsl_pool == NULL);
1117 	ASSERT(spa->spa_root_vdev == NULL);
1118 	ASSERT(spa->spa_async_zio_root == NULL);
1119 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1120 
1121 	spa_evicting_os_wait(spa);
1122 
1123 	txg_list_destroy(&spa->spa_vdev_txg_list);
1124 
1125 	list_destroy(&spa->spa_config_dirty_list);
1126 	list_destroy(&spa->spa_evicting_os_list);
1127 	list_destroy(&spa->spa_state_dirty_list);
1128 
1129 	for (int t = 0; t < ZIO_TYPES; t++) {
1130 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1131 			spa_taskqs_fini(spa, t, q);
1132 		}
1133 	}
1134 
1135 	metaslab_class_destroy(spa->spa_normal_class);
1136 	spa->spa_normal_class = NULL;
1137 
1138 	metaslab_class_destroy(spa->spa_log_class);
1139 	spa->spa_log_class = NULL;
1140 
1141 	/*
1142 	 * If this was part of an import or the open otherwise failed, we may
1143 	 * still have errors left in the queues.  Empty them just in case.
1144 	 */
1145 	spa_errlog_drain(spa);
1146 
1147 	avl_destroy(&spa->spa_errlist_scrub);
1148 	avl_destroy(&spa->spa_errlist_last);
1149 
1150 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1151 
1152 	mutex_enter(&spa->spa_proc_lock);
1153 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1154 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1155 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1156 		cv_broadcast(&spa->spa_proc_cv);
1157 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1158 			ASSERT(spa->spa_proc != &p0);
1159 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1160 		}
1161 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1162 		spa->spa_proc_state = SPA_PROC_NONE;
1163 	}
1164 	ASSERT(spa->spa_proc == &p0);
1165 	mutex_exit(&spa->spa_proc_lock);
1166 
1167 	/*
1168 	 * We want to make sure spa_thread() has actually exited the ZFS
1169 	 * module, so that the module can't be unloaded out from underneath
1170 	 * it.
1171 	 */
1172 	if (spa->spa_did != 0) {
1173 		thread_join(spa->spa_did);
1174 		spa->spa_did = 0;
1175 	}
1176 }
1177 
1178 /*
1179  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1180  * will create all the necessary vdevs in the appropriate layout, with each vdev
1181  * in the CLOSED state.  This will prep the pool before open/creation/import.
1182  * All vdev validation is done by the vdev_alloc() routine.
1183  */
1184 static int
1185 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1186     uint_t id, int atype)
1187 {
1188 	nvlist_t **child;
1189 	uint_t children;
1190 	int error;
1191 
1192 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1193 		return (error);
1194 
1195 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1196 		return (0);
1197 
1198 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1199 	    &child, &children);
1200 
1201 	if (error == ENOENT)
1202 		return (0);
1203 
1204 	if (error) {
1205 		vdev_free(*vdp);
1206 		*vdp = NULL;
1207 		return (SET_ERROR(EINVAL));
1208 	}
1209 
1210 	for (int c = 0; c < children; c++) {
1211 		vdev_t *vd;
1212 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1213 		    atype)) != 0) {
1214 			vdev_free(*vdp);
1215 			*vdp = NULL;
1216 			return (error);
1217 		}
1218 	}
1219 
1220 	ASSERT(*vdp != NULL);
1221 
1222 	return (0);
1223 }
1224 
1225 /*
1226  * Opposite of spa_load().
1227  */
1228 static void
1229 spa_unload(spa_t *spa)
1230 {
1231 	int i;
1232 
1233 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1234 
1235 	/*
1236 	 * Stop async tasks.
1237 	 */
1238 	spa_async_suspend(spa);
1239 
1240 	/*
1241 	 * Stop syncing.
1242 	 */
1243 	if (spa->spa_sync_on) {
1244 		txg_sync_stop(spa->spa_dsl_pool);
1245 		spa->spa_sync_on = B_FALSE;
1246 	}
1247 
1248 	/*
1249 	 * Wait for any outstanding async I/O to complete.
1250 	 */
1251 	if (spa->spa_async_zio_root != NULL) {
1252 		for (int i = 0; i < max_ncpus; i++)
1253 			(void) zio_wait(spa->spa_async_zio_root[i]);
1254 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1255 		spa->spa_async_zio_root = NULL;
1256 	}
1257 
1258 	bpobj_close(&spa->spa_deferred_bpobj);
1259 
1260 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1261 
1262 	/*
1263 	 * Close all vdevs.
1264 	 */
1265 	if (spa->spa_root_vdev)
1266 		vdev_free(spa->spa_root_vdev);
1267 	ASSERT(spa->spa_root_vdev == NULL);
1268 
1269 	/*
1270 	 * Close the dsl pool.
1271 	 */
1272 	if (spa->spa_dsl_pool) {
1273 		dsl_pool_close(spa->spa_dsl_pool);
1274 		spa->spa_dsl_pool = NULL;
1275 		spa->spa_meta_objset = NULL;
1276 	}
1277 
1278 	ddt_unload(spa);
1279 
1280 
1281 	/*
1282 	 * Drop and purge level 2 cache
1283 	 */
1284 	spa_l2cache_drop(spa);
1285 
1286 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1287 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1288 	if (spa->spa_spares.sav_vdevs) {
1289 		kmem_free(spa->spa_spares.sav_vdevs,
1290 		    spa->spa_spares.sav_count * sizeof (void *));
1291 		spa->spa_spares.sav_vdevs = NULL;
1292 	}
1293 	if (spa->spa_spares.sav_config) {
1294 		nvlist_free(spa->spa_spares.sav_config);
1295 		spa->spa_spares.sav_config = NULL;
1296 	}
1297 	spa->spa_spares.sav_count = 0;
1298 
1299 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1300 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1301 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1302 	}
1303 	if (spa->spa_l2cache.sav_vdevs) {
1304 		kmem_free(spa->spa_l2cache.sav_vdevs,
1305 		    spa->spa_l2cache.sav_count * sizeof (void *));
1306 		spa->spa_l2cache.sav_vdevs = NULL;
1307 	}
1308 	if (spa->spa_l2cache.sav_config) {
1309 		nvlist_free(spa->spa_l2cache.sav_config);
1310 		spa->spa_l2cache.sav_config = NULL;
1311 	}
1312 	spa->spa_l2cache.sav_count = 0;
1313 
1314 	spa->spa_async_suspended = 0;
1315 
1316 	if (spa->spa_comment != NULL) {
1317 		spa_strfree(spa->spa_comment);
1318 		spa->spa_comment = NULL;
1319 	}
1320 
1321 	spa_config_exit(spa, SCL_ALL, FTAG);
1322 }
1323 
1324 /*
1325  * Load (or re-load) the current list of vdevs describing the active spares for
1326  * this pool.  When this is called, we have some form of basic information in
1327  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1328  * then re-generate a more complete list including status information.
1329  */
1330 static void
1331 spa_load_spares(spa_t *spa)
1332 {
1333 	nvlist_t **spares;
1334 	uint_t nspares;
1335 	int i;
1336 	vdev_t *vd, *tvd;
1337 
1338 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1339 
1340 	/*
1341 	 * First, close and free any existing spare vdevs.
1342 	 */
1343 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1344 		vd = spa->spa_spares.sav_vdevs[i];
1345 
1346 		/* Undo the call to spa_activate() below */
1347 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1348 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1349 			spa_spare_remove(tvd);
1350 		vdev_close(vd);
1351 		vdev_free(vd);
1352 	}
1353 
1354 	if (spa->spa_spares.sav_vdevs)
1355 		kmem_free(spa->spa_spares.sav_vdevs,
1356 		    spa->spa_spares.sav_count * sizeof (void *));
1357 
1358 	if (spa->spa_spares.sav_config == NULL)
1359 		nspares = 0;
1360 	else
1361 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1362 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1363 
1364 	spa->spa_spares.sav_count = (int)nspares;
1365 	spa->spa_spares.sav_vdevs = NULL;
1366 
1367 	if (nspares == 0)
1368 		return;
1369 
1370 	/*
1371 	 * Construct the array of vdevs, opening them to get status in the
1372 	 * process.   For each spare, there is potentially two different vdev_t
1373 	 * structures associated with it: one in the list of spares (used only
1374 	 * for basic validation purposes) and one in the active vdev
1375 	 * configuration (if it's spared in).  During this phase we open and
1376 	 * validate each vdev on the spare list.  If the vdev also exists in the
1377 	 * active configuration, then we also mark this vdev as an active spare.
1378 	 */
1379 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1380 	    KM_SLEEP);
1381 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1382 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1383 		    VDEV_ALLOC_SPARE) == 0);
1384 		ASSERT(vd != NULL);
1385 
1386 		spa->spa_spares.sav_vdevs[i] = vd;
1387 
1388 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1389 		    B_FALSE)) != NULL) {
1390 			if (!tvd->vdev_isspare)
1391 				spa_spare_add(tvd);
1392 
1393 			/*
1394 			 * We only mark the spare active if we were successfully
1395 			 * able to load the vdev.  Otherwise, importing a pool
1396 			 * with a bad active spare would result in strange
1397 			 * behavior, because multiple pool would think the spare
1398 			 * is actively in use.
1399 			 *
1400 			 * There is a vulnerability here to an equally bizarre
1401 			 * circumstance, where a dead active spare is later
1402 			 * brought back to life (onlined or otherwise).  Given
1403 			 * the rarity of this scenario, and the extra complexity
1404 			 * it adds, we ignore the possibility.
1405 			 */
1406 			if (!vdev_is_dead(tvd))
1407 				spa_spare_activate(tvd);
1408 		}
1409 
1410 		vd->vdev_top = vd;
1411 		vd->vdev_aux = &spa->spa_spares;
1412 
1413 		if (vdev_open(vd) != 0)
1414 			continue;
1415 
1416 		if (vdev_validate_aux(vd) == 0)
1417 			spa_spare_add(vd);
1418 	}
1419 
1420 	/*
1421 	 * Recompute the stashed list of spares, with status information
1422 	 * this time.
1423 	 */
1424 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1425 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1426 
1427 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1428 	    KM_SLEEP);
1429 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1430 		spares[i] = vdev_config_generate(spa,
1431 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1432 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1433 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1434 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1435 		nvlist_free(spares[i]);
1436 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1437 }
1438 
1439 /*
1440  * Load (or re-load) the current list of vdevs describing the active l2cache for
1441  * this pool.  When this is called, we have some form of basic information in
1442  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1443  * then re-generate a more complete list including status information.
1444  * Devices which are already active have their details maintained, and are
1445  * not re-opened.
1446  */
1447 static void
1448 spa_load_l2cache(spa_t *spa)
1449 {
1450 	nvlist_t **l2cache;
1451 	uint_t nl2cache;
1452 	int i, j, oldnvdevs;
1453 	uint64_t guid;
1454 	vdev_t *vd, **oldvdevs, **newvdevs;
1455 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1456 
1457 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1458 
1459 	if (sav->sav_config != NULL) {
1460 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1461 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1462 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1463 	} else {
1464 		nl2cache = 0;
1465 		newvdevs = NULL;
1466 	}
1467 
1468 	oldvdevs = sav->sav_vdevs;
1469 	oldnvdevs = sav->sav_count;
1470 	sav->sav_vdevs = NULL;
1471 	sav->sav_count = 0;
1472 
1473 	/*
1474 	 * Process new nvlist of vdevs.
1475 	 */
1476 	for (i = 0; i < nl2cache; i++) {
1477 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1478 		    &guid) == 0);
1479 
1480 		newvdevs[i] = NULL;
1481 		for (j = 0; j < oldnvdevs; j++) {
1482 			vd = oldvdevs[j];
1483 			if (vd != NULL && guid == vd->vdev_guid) {
1484 				/*
1485 				 * Retain previous vdev for add/remove ops.
1486 				 */
1487 				newvdevs[i] = vd;
1488 				oldvdevs[j] = NULL;
1489 				break;
1490 			}
1491 		}
1492 
1493 		if (newvdevs[i] == NULL) {
1494 			/*
1495 			 * Create new vdev
1496 			 */
1497 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1498 			    VDEV_ALLOC_L2CACHE) == 0);
1499 			ASSERT(vd != NULL);
1500 			newvdevs[i] = vd;
1501 
1502 			/*
1503 			 * Commit this vdev as an l2cache device,
1504 			 * even if it fails to open.
1505 			 */
1506 			spa_l2cache_add(vd);
1507 
1508 			vd->vdev_top = vd;
1509 			vd->vdev_aux = sav;
1510 
1511 			spa_l2cache_activate(vd);
1512 
1513 			if (vdev_open(vd) != 0)
1514 				continue;
1515 
1516 			(void) vdev_validate_aux(vd);
1517 
1518 			if (!vdev_is_dead(vd))
1519 				l2arc_add_vdev(spa, vd);
1520 		}
1521 	}
1522 
1523 	/*
1524 	 * Purge vdevs that were dropped
1525 	 */
1526 	for (i = 0; i < oldnvdevs; i++) {
1527 		uint64_t pool;
1528 
1529 		vd = oldvdevs[i];
1530 		if (vd != NULL) {
1531 			ASSERT(vd->vdev_isl2cache);
1532 
1533 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1534 			    pool != 0ULL && l2arc_vdev_present(vd))
1535 				l2arc_remove_vdev(vd);
1536 			vdev_clear_stats(vd);
1537 			vdev_free(vd);
1538 		}
1539 	}
1540 
1541 	if (oldvdevs)
1542 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1543 
1544 	if (sav->sav_config == NULL)
1545 		goto out;
1546 
1547 	sav->sav_vdevs = newvdevs;
1548 	sav->sav_count = (int)nl2cache;
1549 
1550 	/*
1551 	 * Recompute the stashed list of l2cache devices, with status
1552 	 * information this time.
1553 	 */
1554 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1555 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1556 
1557 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1558 	for (i = 0; i < sav->sav_count; i++)
1559 		l2cache[i] = vdev_config_generate(spa,
1560 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1561 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1562 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1563 out:
1564 	for (i = 0; i < sav->sav_count; i++)
1565 		nvlist_free(l2cache[i]);
1566 	if (sav->sav_count)
1567 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1568 }
1569 
1570 static int
1571 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1572 {
1573 	dmu_buf_t *db;
1574 	char *packed = NULL;
1575 	size_t nvsize = 0;
1576 	int error;
1577 	*value = NULL;
1578 
1579 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1580 	if (error != 0)
1581 		return (error);
1582 
1583 	nvsize = *(uint64_t *)db->db_data;
1584 	dmu_buf_rele(db, FTAG);
1585 
1586 	packed = kmem_alloc(nvsize, KM_SLEEP);
1587 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1588 	    DMU_READ_PREFETCH);
1589 	if (error == 0)
1590 		error = nvlist_unpack(packed, nvsize, value, 0);
1591 	kmem_free(packed, nvsize);
1592 
1593 	return (error);
1594 }
1595 
1596 /*
1597  * Checks to see if the given vdev could not be opened, in which case we post a
1598  * sysevent to notify the autoreplace code that the device has been removed.
1599  */
1600 static void
1601 spa_check_removed(vdev_t *vd)
1602 {
1603 	for (int c = 0; c < vd->vdev_children; c++)
1604 		spa_check_removed(vd->vdev_child[c]);
1605 
1606 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1607 	    !vd->vdev_ishole) {
1608 		zfs_post_autoreplace(vd->vdev_spa, vd);
1609 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1610 	}
1611 }
1612 
1613 static void
1614 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1615 {
1616 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1617 
1618 	vd->vdev_top_zap = mvd->vdev_top_zap;
1619 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1620 
1621 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1622 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1623 	}
1624 }
1625 
1626 /*
1627  * Validate the current config against the MOS config
1628  */
1629 static boolean_t
1630 spa_config_valid(spa_t *spa, nvlist_t *config)
1631 {
1632 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1633 	nvlist_t *nv;
1634 
1635 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1636 
1637 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1638 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1639 
1640 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1641 
1642 	/*
1643 	 * If we're doing a normal import, then build up any additional
1644 	 * diagnostic information about missing devices in this config.
1645 	 * We'll pass this up to the user for further processing.
1646 	 */
1647 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1648 		nvlist_t **child, *nv;
1649 		uint64_t idx = 0;
1650 
1651 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1652 		    KM_SLEEP);
1653 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1654 
1655 		for (int c = 0; c < rvd->vdev_children; c++) {
1656 			vdev_t *tvd = rvd->vdev_child[c];
1657 			vdev_t *mtvd  = mrvd->vdev_child[c];
1658 
1659 			if (tvd->vdev_ops == &vdev_missing_ops &&
1660 			    mtvd->vdev_ops != &vdev_missing_ops &&
1661 			    mtvd->vdev_islog)
1662 				child[idx++] = vdev_config_generate(spa, mtvd,
1663 				    B_FALSE, 0);
1664 		}
1665 
1666 		if (idx) {
1667 			VERIFY(nvlist_add_nvlist_array(nv,
1668 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1669 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1670 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1671 
1672 			for (int i = 0; i < idx; i++)
1673 				nvlist_free(child[i]);
1674 		}
1675 		nvlist_free(nv);
1676 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1677 	}
1678 
1679 	/*
1680 	 * Compare the root vdev tree with the information we have
1681 	 * from the MOS config (mrvd). Check each top-level vdev
1682 	 * with the corresponding MOS config top-level (mtvd).
1683 	 */
1684 	for (int c = 0; c < rvd->vdev_children; c++) {
1685 		vdev_t *tvd = rvd->vdev_child[c];
1686 		vdev_t *mtvd  = mrvd->vdev_child[c];
1687 
1688 		/*
1689 		 * Resolve any "missing" vdevs in the current configuration.
1690 		 * If we find that the MOS config has more accurate information
1691 		 * about the top-level vdev then use that vdev instead.
1692 		 */
1693 		if (tvd->vdev_ops == &vdev_missing_ops &&
1694 		    mtvd->vdev_ops != &vdev_missing_ops) {
1695 
1696 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1697 				continue;
1698 
1699 			/*
1700 			 * Device specific actions.
1701 			 */
1702 			if (mtvd->vdev_islog) {
1703 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1704 			} else {
1705 				/*
1706 				 * XXX - once we have 'readonly' pool
1707 				 * support we should be able to handle
1708 				 * missing data devices by transitioning
1709 				 * the pool to readonly.
1710 				 */
1711 				continue;
1712 			}
1713 
1714 			/*
1715 			 * Swap the missing vdev with the data we were
1716 			 * able to obtain from the MOS config.
1717 			 */
1718 			vdev_remove_child(rvd, tvd);
1719 			vdev_remove_child(mrvd, mtvd);
1720 
1721 			vdev_add_child(rvd, mtvd);
1722 			vdev_add_child(mrvd, tvd);
1723 
1724 			spa_config_exit(spa, SCL_ALL, FTAG);
1725 			vdev_load(mtvd);
1726 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1727 
1728 			vdev_reopen(rvd);
1729 		} else {
1730 			if (mtvd->vdev_islog) {
1731 				/*
1732 				 * Load the slog device's state from the MOS
1733 				 * config since it's possible that the label
1734 				 * does not contain the most up-to-date
1735 				 * information.
1736 				 */
1737 				vdev_load_log_state(tvd, mtvd);
1738 				vdev_reopen(tvd);
1739 			}
1740 
1741 			/*
1742 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1743 			 */
1744 			spa_config_valid_zaps(tvd, mtvd);
1745 		}
1746 	}
1747 
1748 	vdev_free(mrvd);
1749 	spa_config_exit(spa, SCL_ALL, FTAG);
1750 
1751 	/*
1752 	 * Ensure we were able to validate the config.
1753 	 */
1754 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1755 }
1756 
1757 /*
1758  * Check for missing log devices
1759  */
1760 static boolean_t
1761 spa_check_logs(spa_t *spa)
1762 {
1763 	boolean_t rv = B_FALSE;
1764 	dsl_pool_t *dp = spa_get_dsl(spa);
1765 
1766 	switch (spa->spa_log_state) {
1767 	case SPA_LOG_MISSING:
1768 		/* need to recheck in case slog has been restored */
1769 	case SPA_LOG_UNKNOWN:
1770 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1771 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1772 		if (rv)
1773 			spa_set_log_state(spa, SPA_LOG_MISSING);
1774 		break;
1775 	}
1776 	return (rv);
1777 }
1778 
1779 static boolean_t
1780 spa_passivate_log(spa_t *spa)
1781 {
1782 	vdev_t *rvd = spa->spa_root_vdev;
1783 	boolean_t slog_found = B_FALSE;
1784 
1785 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1786 
1787 	if (!spa_has_slogs(spa))
1788 		return (B_FALSE);
1789 
1790 	for (int c = 0; c < rvd->vdev_children; c++) {
1791 		vdev_t *tvd = rvd->vdev_child[c];
1792 		metaslab_group_t *mg = tvd->vdev_mg;
1793 
1794 		if (tvd->vdev_islog) {
1795 			metaslab_group_passivate(mg);
1796 			slog_found = B_TRUE;
1797 		}
1798 	}
1799 
1800 	return (slog_found);
1801 }
1802 
1803 static void
1804 spa_activate_log(spa_t *spa)
1805 {
1806 	vdev_t *rvd = spa->spa_root_vdev;
1807 
1808 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1809 
1810 	for (int c = 0; c < rvd->vdev_children; c++) {
1811 		vdev_t *tvd = rvd->vdev_child[c];
1812 		metaslab_group_t *mg = tvd->vdev_mg;
1813 
1814 		if (tvd->vdev_islog)
1815 			metaslab_group_activate(mg);
1816 	}
1817 }
1818 
1819 int
1820 spa_offline_log(spa_t *spa)
1821 {
1822 	int error;
1823 
1824 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1825 	    NULL, DS_FIND_CHILDREN);
1826 	if (error == 0) {
1827 		/*
1828 		 * We successfully offlined the log device, sync out the
1829 		 * current txg so that the "stubby" block can be removed
1830 		 * by zil_sync().
1831 		 */
1832 		txg_wait_synced(spa->spa_dsl_pool, 0);
1833 	}
1834 	return (error);
1835 }
1836 
1837 static void
1838 spa_aux_check_removed(spa_aux_vdev_t *sav)
1839 {
1840 	for (int i = 0; i < sav->sav_count; i++)
1841 		spa_check_removed(sav->sav_vdevs[i]);
1842 }
1843 
1844 void
1845 spa_claim_notify(zio_t *zio)
1846 {
1847 	spa_t *spa = zio->io_spa;
1848 
1849 	if (zio->io_error)
1850 		return;
1851 
1852 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1853 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1854 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1855 	mutex_exit(&spa->spa_props_lock);
1856 }
1857 
1858 typedef struct spa_load_error {
1859 	uint64_t	sle_meta_count;
1860 	uint64_t	sle_data_count;
1861 } spa_load_error_t;
1862 
1863 static void
1864 spa_load_verify_done(zio_t *zio)
1865 {
1866 	blkptr_t *bp = zio->io_bp;
1867 	spa_load_error_t *sle = zio->io_private;
1868 	dmu_object_type_t type = BP_GET_TYPE(bp);
1869 	int error = zio->io_error;
1870 	spa_t *spa = zio->io_spa;
1871 
1872 	if (error) {
1873 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1874 		    type != DMU_OT_INTENT_LOG)
1875 			atomic_inc_64(&sle->sle_meta_count);
1876 		else
1877 			atomic_inc_64(&sle->sle_data_count);
1878 	}
1879 	zio_data_buf_free(zio->io_data, zio->io_size);
1880 
1881 	mutex_enter(&spa->spa_scrub_lock);
1882 	spa->spa_scrub_inflight--;
1883 	cv_broadcast(&spa->spa_scrub_io_cv);
1884 	mutex_exit(&spa->spa_scrub_lock);
1885 }
1886 
1887 /*
1888  * Maximum number of concurrent scrub i/os to create while verifying
1889  * a pool while importing it.
1890  */
1891 int spa_load_verify_maxinflight = 10000;
1892 boolean_t spa_load_verify_metadata = B_TRUE;
1893 boolean_t spa_load_verify_data = B_TRUE;
1894 
1895 /*ARGSUSED*/
1896 static int
1897 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1898     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1899 {
1900 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1901 		return (0);
1902 	/*
1903 	 * Note: normally this routine will not be called if
1904 	 * spa_load_verify_metadata is not set.  However, it may be useful
1905 	 * to manually set the flag after the traversal has begun.
1906 	 */
1907 	if (!spa_load_verify_metadata)
1908 		return (0);
1909 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1910 		return (0);
1911 
1912 	zio_t *rio = arg;
1913 	size_t size = BP_GET_PSIZE(bp);
1914 	void *data = zio_data_buf_alloc(size);
1915 
1916 	mutex_enter(&spa->spa_scrub_lock);
1917 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1918 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1919 	spa->spa_scrub_inflight++;
1920 	mutex_exit(&spa->spa_scrub_lock);
1921 
1922 	zio_nowait(zio_read(rio, spa, bp, data, size,
1923 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1924 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1925 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1926 	return (0);
1927 }
1928 
1929 static int
1930 spa_load_verify(spa_t *spa)
1931 {
1932 	zio_t *rio;
1933 	spa_load_error_t sle = { 0 };
1934 	zpool_rewind_policy_t policy;
1935 	boolean_t verify_ok = B_FALSE;
1936 	int error = 0;
1937 
1938 	zpool_get_rewind_policy(spa->spa_config, &policy);
1939 
1940 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1941 		return (0);
1942 
1943 	rio = zio_root(spa, NULL, &sle,
1944 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1945 
1946 	if (spa_load_verify_metadata) {
1947 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1948 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1949 		    spa_load_verify_cb, rio);
1950 	}
1951 
1952 	(void) zio_wait(rio);
1953 
1954 	spa->spa_load_meta_errors = sle.sle_meta_count;
1955 	spa->spa_load_data_errors = sle.sle_data_count;
1956 
1957 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1958 	    sle.sle_data_count <= policy.zrp_maxdata) {
1959 		int64_t loss = 0;
1960 
1961 		verify_ok = B_TRUE;
1962 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1963 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1964 
1965 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1966 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1967 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1968 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1969 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1970 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1971 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1972 	} else {
1973 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1974 	}
1975 
1976 	if (error) {
1977 		if (error != ENXIO && error != EIO)
1978 			error = SET_ERROR(EIO);
1979 		return (error);
1980 	}
1981 
1982 	return (verify_ok ? 0 : EIO);
1983 }
1984 
1985 /*
1986  * Find a value in the pool props object.
1987  */
1988 static void
1989 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1990 {
1991 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1992 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1993 }
1994 
1995 /*
1996  * Find a value in the pool directory object.
1997  */
1998 static int
1999 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2000 {
2001 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2002 	    name, sizeof (uint64_t), 1, val));
2003 }
2004 
2005 static int
2006 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2007 {
2008 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2009 	return (err);
2010 }
2011 
2012 /*
2013  * Fix up config after a partly-completed split.  This is done with the
2014  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2015  * pool have that entry in their config, but only the splitting one contains
2016  * a list of all the guids of the vdevs that are being split off.
2017  *
2018  * This function determines what to do with that list: either rejoin
2019  * all the disks to the pool, or complete the splitting process.  To attempt
2020  * the rejoin, each disk that is offlined is marked online again, and
2021  * we do a reopen() call.  If the vdev label for every disk that was
2022  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2023  * then we call vdev_split() on each disk, and complete the split.
2024  *
2025  * Otherwise we leave the config alone, with all the vdevs in place in
2026  * the original pool.
2027  */
2028 static void
2029 spa_try_repair(spa_t *spa, nvlist_t *config)
2030 {
2031 	uint_t extracted;
2032 	uint64_t *glist;
2033 	uint_t i, gcount;
2034 	nvlist_t *nvl;
2035 	vdev_t **vd;
2036 	boolean_t attempt_reopen;
2037 
2038 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2039 		return;
2040 
2041 	/* check that the config is complete */
2042 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2043 	    &glist, &gcount) != 0)
2044 		return;
2045 
2046 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2047 
2048 	/* attempt to online all the vdevs & validate */
2049 	attempt_reopen = B_TRUE;
2050 	for (i = 0; i < gcount; i++) {
2051 		if (glist[i] == 0)	/* vdev is hole */
2052 			continue;
2053 
2054 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2055 		if (vd[i] == NULL) {
2056 			/*
2057 			 * Don't bother attempting to reopen the disks;
2058 			 * just do the split.
2059 			 */
2060 			attempt_reopen = B_FALSE;
2061 		} else {
2062 			/* attempt to re-online it */
2063 			vd[i]->vdev_offline = B_FALSE;
2064 		}
2065 	}
2066 
2067 	if (attempt_reopen) {
2068 		vdev_reopen(spa->spa_root_vdev);
2069 
2070 		/* check each device to see what state it's in */
2071 		for (extracted = 0, i = 0; i < gcount; i++) {
2072 			if (vd[i] != NULL &&
2073 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2074 				break;
2075 			++extracted;
2076 		}
2077 	}
2078 
2079 	/*
2080 	 * If every disk has been moved to the new pool, or if we never
2081 	 * even attempted to look at them, then we split them off for
2082 	 * good.
2083 	 */
2084 	if (!attempt_reopen || gcount == extracted) {
2085 		for (i = 0; i < gcount; i++)
2086 			if (vd[i] != NULL)
2087 				vdev_split(vd[i]);
2088 		vdev_reopen(spa->spa_root_vdev);
2089 	}
2090 
2091 	kmem_free(vd, gcount * sizeof (vdev_t *));
2092 }
2093 
2094 static int
2095 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2096     boolean_t mosconfig)
2097 {
2098 	nvlist_t *config = spa->spa_config;
2099 	char *ereport = FM_EREPORT_ZFS_POOL;
2100 	char *comment;
2101 	int error;
2102 	uint64_t pool_guid;
2103 	nvlist_t *nvl;
2104 
2105 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2106 		return (SET_ERROR(EINVAL));
2107 
2108 	ASSERT(spa->spa_comment == NULL);
2109 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2110 		spa->spa_comment = spa_strdup(comment);
2111 
2112 	/*
2113 	 * Versioning wasn't explicitly added to the label until later, so if
2114 	 * it's not present treat it as the initial version.
2115 	 */
2116 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2117 	    &spa->spa_ubsync.ub_version) != 0)
2118 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2119 
2120 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2121 	    &spa->spa_config_txg);
2122 
2123 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2124 	    spa_guid_exists(pool_guid, 0)) {
2125 		error = SET_ERROR(EEXIST);
2126 	} else {
2127 		spa->spa_config_guid = pool_guid;
2128 
2129 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2130 		    &nvl) == 0) {
2131 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2132 			    KM_SLEEP) == 0);
2133 		}
2134 
2135 		nvlist_free(spa->spa_load_info);
2136 		spa->spa_load_info = fnvlist_alloc();
2137 
2138 		gethrestime(&spa->spa_loaded_ts);
2139 		error = spa_load_impl(spa, pool_guid, config, state, type,
2140 		    mosconfig, &ereport);
2141 	}
2142 
2143 	/*
2144 	 * Don't count references from objsets that are already closed
2145 	 * and are making their way through the eviction process.
2146 	 */
2147 	spa_evicting_os_wait(spa);
2148 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2149 	if (error) {
2150 		if (error != EEXIST) {
2151 			spa->spa_loaded_ts.tv_sec = 0;
2152 			spa->spa_loaded_ts.tv_nsec = 0;
2153 		}
2154 		if (error != EBADF) {
2155 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2156 		}
2157 	}
2158 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2159 	spa->spa_ena = 0;
2160 
2161 	return (error);
2162 }
2163 
2164 /*
2165  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2166  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2167  * spa's per-vdev ZAP list.
2168  */
2169 static uint64_t
2170 vdev_count_verify_zaps(vdev_t *vd)
2171 {
2172 	spa_t *spa = vd->vdev_spa;
2173 	uint64_t total = 0;
2174 	if (vd->vdev_top_zap != 0) {
2175 		total++;
2176 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2177 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2178 	}
2179 	if (vd->vdev_leaf_zap != 0) {
2180 		total++;
2181 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2182 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2183 	}
2184 
2185 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2186 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2187 	}
2188 
2189 	return (total);
2190 }
2191 
2192 /*
2193  * Load an existing storage pool, using the pool's builtin spa_config as a
2194  * source of configuration information.
2195  */
2196 static int
2197 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2198     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2199     char **ereport)
2200 {
2201 	int error = 0;
2202 	nvlist_t *nvroot = NULL;
2203 	nvlist_t *label;
2204 	vdev_t *rvd;
2205 	uberblock_t *ub = &spa->spa_uberblock;
2206 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2207 	int orig_mode = spa->spa_mode;
2208 	int parse;
2209 	uint64_t obj;
2210 	boolean_t missing_feat_write = B_FALSE;
2211 
2212 	/*
2213 	 * If this is an untrusted config, access the pool in read-only mode.
2214 	 * This prevents things like resilvering recently removed devices.
2215 	 */
2216 	if (!mosconfig)
2217 		spa->spa_mode = FREAD;
2218 
2219 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2220 
2221 	spa->spa_load_state = state;
2222 
2223 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2224 		return (SET_ERROR(EINVAL));
2225 
2226 	parse = (type == SPA_IMPORT_EXISTING ?
2227 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2228 
2229 	/*
2230 	 * Create "The Godfather" zio to hold all async IOs
2231 	 */
2232 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2233 	    KM_SLEEP);
2234 	for (int i = 0; i < max_ncpus; i++) {
2235 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2236 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2237 		    ZIO_FLAG_GODFATHER);
2238 	}
2239 
2240 	/*
2241 	 * Parse the configuration into a vdev tree.  We explicitly set the
2242 	 * value that will be returned by spa_version() since parsing the
2243 	 * configuration requires knowing the version number.
2244 	 */
2245 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2246 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2247 	spa_config_exit(spa, SCL_ALL, FTAG);
2248 
2249 	if (error != 0)
2250 		return (error);
2251 
2252 	ASSERT(spa->spa_root_vdev == rvd);
2253 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2254 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2255 
2256 	if (type != SPA_IMPORT_ASSEMBLE) {
2257 		ASSERT(spa_guid(spa) == pool_guid);
2258 	}
2259 
2260 	/*
2261 	 * Try to open all vdevs, loading each label in the process.
2262 	 */
2263 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2264 	error = vdev_open(rvd);
2265 	spa_config_exit(spa, SCL_ALL, FTAG);
2266 	if (error != 0)
2267 		return (error);
2268 
2269 	/*
2270 	 * We need to validate the vdev labels against the configuration that
2271 	 * we have in hand, which is dependent on the setting of mosconfig. If
2272 	 * mosconfig is true then we're validating the vdev labels based on
2273 	 * that config.  Otherwise, we're validating against the cached config
2274 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2275 	 * later we will recursively call spa_load() and validate against
2276 	 * the vdev config.
2277 	 *
2278 	 * If we're assembling a new pool that's been split off from an
2279 	 * existing pool, the labels haven't yet been updated so we skip
2280 	 * validation for now.
2281 	 */
2282 	if (type != SPA_IMPORT_ASSEMBLE) {
2283 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2284 		error = vdev_validate(rvd, mosconfig);
2285 		spa_config_exit(spa, SCL_ALL, FTAG);
2286 
2287 		if (error != 0)
2288 			return (error);
2289 
2290 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2291 			return (SET_ERROR(ENXIO));
2292 	}
2293 
2294 	/*
2295 	 * Find the best uberblock.
2296 	 */
2297 	vdev_uberblock_load(rvd, ub, &label);
2298 
2299 	/*
2300 	 * If we weren't able to find a single valid uberblock, return failure.
2301 	 */
2302 	if (ub->ub_txg == 0) {
2303 		nvlist_free(label);
2304 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2305 	}
2306 
2307 	/*
2308 	 * If the pool has an unsupported version we can't open it.
2309 	 */
2310 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2311 		nvlist_free(label);
2312 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2313 	}
2314 
2315 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2316 		nvlist_t *features;
2317 
2318 		/*
2319 		 * If we weren't able to find what's necessary for reading the
2320 		 * MOS in the label, return failure.
2321 		 */
2322 		if (label == NULL || nvlist_lookup_nvlist(label,
2323 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2324 			nvlist_free(label);
2325 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2326 			    ENXIO));
2327 		}
2328 
2329 		/*
2330 		 * Update our in-core representation with the definitive values
2331 		 * from the label.
2332 		 */
2333 		nvlist_free(spa->spa_label_features);
2334 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2335 	}
2336 
2337 	nvlist_free(label);
2338 
2339 	/*
2340 	 * Look through entries in the label nvlist's features_for_read. If
2341 	 * there is a feature listed there which we don't understand then we
2342 	 * cannot open a pool.
2343 	 */
2344 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2345 		nvlist_t *unsup_feat;
2346 
2347 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2348 		    0);
2349 
2350 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2351 		    NULL); nvp != NULL;
2352 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2353 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2354 				VERIFY(nvlist_add_string(unsup_feat,
2355 				    nvpair_name(nvp), "") == 0);
2356 			}
2357 		}
2358 
2359 		if (!nvlist_empty(unsup_feat)) {
2360 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2361 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2362 			nvlist_free(unsup_feat);
2363 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2364 			    ENOTSUP));
2365 		}
2366 
2367 		nvlist_free(unsup_feat);
2368 	}
2369 
2370 	/*
2371 	 * If the vdev guid sum doesn't match the uberblock, we have an
2372 	 * incomplete configuration.  We first check to see if the pool
2373 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2374 	 * If it is, defer the vdev_guid_sum check till later so we
2375 	 * can handle missing vdevs.
2376 	 */
2377 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2378 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2379 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2380 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2381 
2382 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2383 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2384 		spa_try_repair(spa, config);
2385 		spa_config_exit(spa, SCL_ALL, FTAG);
2386 		nvlist_free(spa->spa_config_splitting);
2387 		spa->spa_config_splitting = NULL;
2388 	}
2389 
2390 	/*
2391 	 * Initialize internal SPA structures.
2392 	 */
2393 	spa->spa_state = POOL_STATE_ACTIVE;
2394 	spa->spa_ubsync = spa->spa_uberblock;
2395 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2396 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2397 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2398 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2399 	spa->spa_claim_max_txg = spa->spa_first_txg;
2400 	spa->spa_prev_software_version = ub->ub_software_version;
2401 
2402 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2403 	if (error)
2404 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2405 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2406 
2407 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2408 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2409 
2410 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2411 		boolean_t missing_feat_read = B_FALSE;
2412 		nvlist_t *unsup_feat, *enabled_feat;
2413 
2414 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2415 		    &spa->spa_feat_for_read_obj) != 0) {
2416 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2417 		}
2418 
2419 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2420 		    &spa->spa_feat_for_write_obj) != 0) {
2421 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2422 		}
2423 
2424 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2425 		    &spa->spa_feat_desc_obj) != 0) {
2426 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2427 		}
2428 
2429 		enabled_feat = fnvlist_alloc();
2430 		unsup_feat = fnvlist_alloc();
2431 
2432 		if (!spa_features_check(spa, B_FALSE,
2433 		    unsup_feat, enabled_feat))
2434 			missing_feat_read = B_TRUE;
2435 
2436 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2437 			if (!spa_features_check(spa, B_TRUE,
2438 			    unsup_feat, enabled_feat)) {
2439 				missing_feat_write = B_TRUE;
2440 			}
2441 		}
2442 
2443 		fnvlist_add_nvlist(spa->spa_load_info,
2444 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2445 
2446 		if (!nvlist_empty(unsup_feat)) {
2447 			fnvlist_add_nvlist(spa->spa_load_info,
2448 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2449 		}
2450 
2451 		fnvlist_free(enabled_feat);
2452 		fnvlist_free(unsup_feat);
2453 
2454 		if (!missing_feat_read) {
2455 			fnvlist_add_boolean(spa->spa_load_info,
2456 			    ZPOOL_CONFIG_CAN_RDONLY);
2457 		}
2458 
2459 		/*
2460 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2461 		 * twofold: to determine whether the pool is available for
2462 		 * import in read-write mode and (if it is not) whether the
2463 		 * pool is available for import in read-only mode. If the pool
2464 		 * is available for import in read-write mode, it is displayed
2465 		 * as available in userland; if it is not available for import
2466 		 * in read-only mode, it is displayed as unavailable in
2467 		 * userland. If the pool is available for import in read-only
2468 		 * mode but not read-write mode, it is displayed as unavailable
2469 		 * in userland with a special note that the pool is actually
2470 		 * available for open in read-only mode.
2471 		 *
2472 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2473 		 * missing a feature for write, we must first determine whether
2474 		 * the pool can be opened read-only before returning to
2475 		 * userland in order to know whether to display the
2476 		 * abovementioned note.
2477 		 */
2478 		if (missing_feat_read || (missing_feat_write &&
2479 		    spa_writeable(spa))) {
2480 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2481 			    ENOTSUP));
2482 		}
2483 
2484 		/*
2485 		 * Load refcounts for ZFS features from disk into an in-memory
2486 		 * cache during SPA initialization.
2487 		 */
2488 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2489 			uint64_t refcount;
2490 
2491 			error = feature_get_refcount_from_disk(spa,
2492 			    &spa_feature_table[i], &refcount);
2493 			if (error == 0) {
2494 				spa->spa_feat_refcount_cache[i] = refcount;
2495 			} else if (error == ENOTSUP) {
2496 				spa->spa_feat_refcount_cache[i] =
2497 				    SPA_FEATURE_DISABLED;
2498 			} else {
2499 				return (spa_vdev_err(rvd,
2500 				    VDEV_AUX_CORRUPT_DATA, EIO));
2501 			}
2502 		}
2503 	}
2504 
2505 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2506 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2507 		    &spa->spa_feat_enabled_txg_obj) != 0)
2508 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2509 	}
2510 
2511 	spa->spa_is_initializing = B_TRUE;
2512 	error = dsl_pool_open(spa->spa_dsl_pool);
2513 	spa->spa_is_initializing = B_FALSE;
2514 	if (error != 0)
2515 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516 
2517 	if (!mosconfig) {
2518 		uint64_t hostid;
2519 		nvlist_t *policy = NULL, *nvconfig;
2520 
2521 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2522 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2523 
2524 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2525 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2526 			char *hostname;
2527 			unsigned long myhostid = 0;
2528 
2529 			VERIFY(nvlist_lookup_string(nvconfig,
2530 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2531 
2532 #ifdef	_KERNEL
2533 			myhostid = zone_get_hostid(NULL);
2534 #else	/* _KERNEL */
2535 			/*
2536 			 * We're emulating the system's hostid in userland, so
2537 			 * we can't use zone_get_hostid().
2538 			 */
2539 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2540 #endif	/* _KERNEL */
2541 			if (hostid != 0 && myhostid != 0 &&
2542 			    hostid != myhostid) {
2543 				nvlist_free(nvconfig);
2544 				cmn_err(CE_WARN, "pool '%s' could not be "
2545 				    "loaded as it was last accessed by "
2546 				    "another system (host: %s hostid: 0x%lx). "
2547 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2548 				    spa_name(spa), hostname,
2549 				    (unsigned long)hostid);
2550 				return (SET_ERROR(EBADF));
2551 			}
2552 		}
2553 		if (nvlist_lookup_nvlist(spa->spa_config,
2554 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2555 			VERIFY(nvlist_add_nvlist(nvconfig,
2556 			    ZPOOL_REWIND_POLICY, policy) == 0);
2557 
2558 		spa_config_set(spa, nvconfig);
2559 		spa_unload(spa);
2560 		spa_deactivate(spa);
2561 		spa_activate(spa, orig_mode);
2562 
2563 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2564 	}
2565 
2566 	/* Grab the secret checksum salt from the MOS. */
2567 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2568 	    DMU_POOL_CHECKSUM_SALT, 1,
2569 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2570 	    spa->spa_cksum_salt.zcs_bytes);
2571 	if (error == ENOENT) {
2572 		/* Generate a new salt for subsequent use */
2573 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2574 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2575 	} else if (error != 0) {
2576 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2577 	}
2578 
2579 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2580 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2581 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2582 	if (error != 0)
2583 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2584 
2585 	/*
2586 	 * Load the bit that tells us to use the new accounting function
2587 	 * (raid-z deflation).  If we have an older pool, this will not
2588 	 * be present.
2589 	 */
2590 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2591 	if (error != 0 && error != ENOENT)
2592 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2593 
2594 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2595 	    &spa->spa_creation_version);
2596 	if (error != 0 && error != ENOENT)
2597 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2598 
2599 	/*
2600 	 * Load the persistent error log.  If we have an older pool, this will
2601 	 * not be present.
2602 	 */
2603 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2604 	if (error != 0 && error != ENOENT)
2605 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2606 
2607 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2608 	    &spa->spa_errlog_scrub);
2609 	if (error != 0 && error != ENOENT)
2610 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2611 
2612 	/*
2613 	 * Load the history object.  If we have an older pool, this
2614 	 * will not be present.
2615 	 */
2616 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2617 	if (error != 0 && error != ENOENT)
2618 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2619 
2620 	/*
2621 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2622 	 * be present; in this case, defer its creation to a later time to
2623 	 * avoid dirtying the MOS this early / out of sync context. See
2624 	 * spa_sync_config_object.
2625 	 */
2626 
2627 	/* The sentinel is only available in the MOS config. */
2628 	nvlist_t *mos_config;
2629 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2630 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2631 
2632 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2633 	    &spa->spa_all_vdev_zaps);
2634 
2635 	if (error != ENOENT && error != 0) {
2636 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2637 	} else if (error == 0 && !nvlist_exists(mos_config,
2638 	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2639 		/*
2640 		 * An older version of ZFS overwrote the sentinel value, so
2641 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2642 		 * destruction to later; see spa_sync_config_object.
2643 		 */
2644 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2645 		/*
2646 		 * We're assuming that no vdevs have had their ZAPs created
2647 		 * before this. Better be sure of it.
2648 		 */
2649 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2650 	}
2651 	nvlist_free(mos_config);
2652 
2653 	/*
2654 	 * If we're assembling the pool from the split-off vdevs of
2655 	 * an existing pool, we don't want to attach the spares & cache
2656 	 * devices.
2657 	 */
2658 
2659 	/*
2660 	 * Load any hot spares for this pool.
2661 	 */
2662 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2663 	if (error != 0 && error != ENOENT)
2664 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2665 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2666 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2667 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2668 		    &spa->spa_spares.sav_config) != 0)
2669 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2670 
2671 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2672 		spa_load_spares(spa);
2673 		spa_config_exit(spa, SCL_ALL, FTAG);
2674 	} else if (error == 0) {
2675 		spa->spa_spares.sav_sync = B_TRUE;
2676 	}
2677 
2678 	/*
2679 	 * Load any level 2 ARC devices for this pool.
2680 	 */
2681 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2682 	    &spa->spa_l2cache.sav_object);
2683 	if (error != 0 && error != ENOENT)
2684 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2685 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2686 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2687 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2688 		    &spa->spa_l2cache.sav_config) != 0)
2689 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2690 
2691 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2692 		spa_load_l2cache(spa);
2693 		spa_config_exit(spa, SCL_ALL, FTAG);
2694 	} else if (error == 0) {
2695 		spa->spa_l2cache.sav_sync = B_TRUE;
2696 	}
2697 
2698 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2699 
2700 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2701 	if (error && error != ENOENT)
2702 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2703 
2704 	if (error == 0) {
2705 		uint64_t autoreplace;
2706 
2707 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2708 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2709 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2710 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2711 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2712 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2713 		    &spa->spa_dedup_ditto);
2714 
2715 		spa->spa_autoreplace = (autoreplace != 0);
2716 	}
2717 
2718 	/*
2719 	 * If the 'autoreplace' property is set, then post a resource notifying
2720 	 * the ZFS DE that it should not issue any faults for unopenable
2721 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2722 	 * unopenable vdevs so that the normal autoreplace handler can take
2723 	 * over.
2724 	 */
2725 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2726 		spa_check_removed(spa->spa_root_vdev);
2727 		/*
2728 		 * For the import case, this is done in spa_import(), because
2729 		 * at this point we're using the spare definitions from
2730 		 * the MOS config, not necessarily from the userland config.
2731 		 */
2732 		if (state != SPA_LOAD_IMPORT) {
2733 			spa_aux_check_removed(&spa->spa_spares);
2734 			spa_aux_check_removed(&spa->spa_l2cache);
2735 		}
2736 	}
2737 
2738 	/*
2739 	 * Load the vdev state for all toplevel vdevs.
2740 	 */
2741 	vdev_load(rvd);
2742 
2743 	/*
2744 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2745 	 */
2746 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2747 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2748 	spa_config_exit(spa, SCL_ALL, FTAG);
2749 
2750 	/*
2751 	 * Load the DDTs (dedup tables).
2752 	 */
2753 	error = ddt_load(spa);
2754 	if (error != 0)
2755 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2756 
2757 	spa_update_dspace(spa);
2758 
2759 	/*
2760 	 * Validate the config, using the MOS config to fill in any
2761 	 * information which might be missing.  If we fail to validate
2762 	 * the config then declare the pool unfit for use. If we're
2763 	 * assembling a pool from a split, the log is not transferred
2764 	 * over.
2765 	 */
2766 	if (type != SPA_IMPORT_ASSEMBLE) {
2767 		nvlist_t *nvconfig;
2768 
2769 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2770 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2771 
2772 		if (!spa_config_valid(spa, nvconfig)) {
2773 			nvlist_free(nvconfig);
2774 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2775 			    ENXIO));
2776 		}
2777 		nvlist_free(nvconfig);
2778 
2779 		/*
2780 		 * Now that we've validated the config, check the state of the
2781 		 * root vdev.  If it can't be opened, it indicates one or
2782 		 * more toplevel vdevs are faulted.
2783 		 */
2784 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2785 			return (SET_ERROR(ENXIO));
2786 
2787 		if (spa_writeable(spa) && spa_check_logs(spa)) {
2788 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2789 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2790 		}
2791 	}
2792 
2793 	if (missing_feat_write) {
2794 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2795 
2796 		/*
2797 		 * At this point, we know that we can open the pool in
2798 		 * read-only mode but not read-write mode. We now have enough
2799 		 * information and can return to userland.
2800 		 */
2801 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2802 	}
2803 
2804 	/*
2805 	 * We've successfully opened the pool, verify that we're ready
2806 	 * to start pushing transactions.
2807 	 */
2808 	if (state != SPA_LOAD_TRYIMPORT) {
2809 		if (error = spa_load_verify(spa))
2810 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2811 			    error));
2812 	}
2813 
2814 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2815 	    spa->spa_load_max_txg == UINT64_MAX)) {
2816 		dmu_tx_t *tx;
2817 		int need_update = B_FALSE;
2818 		dsl_pool_t *dp = spa_get_dsl(spa);
2819 
2820 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2821 
2822 		/*
2823 		 * Claim log blocks that haven't been committed yet.
2824 		 * This must all happen in a single txg.
2825 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2826 		 * invoked from zil_claim_log_block()'s i/o done callback.
2827 		 * Price of rollback is that we abandon the log.
2828 		 */
2829 		spa->spa_claiming = B_TRUE;
2830 
2831 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2832 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2833 		    zil_claim, tx, DS_FIND_CHILDREN);
2834 		dmu_tx_commit(tx);
2835 
2836 		spa->spa_claiming = B_FALSE;
2837 
2838 		spa_set_log_state(spa, SPA_LOG_GOOD);
2839 		spa->spa_sync_on = B_TRUE;
2840 		txg_sync_start(spa->spa_dsl_pool);
2841 
2842 		/*
2843 		 * Wait for all claims to sync.  We sync up to the highest
2844 		 * claimed log block birth time so that claimed log blocks
2845 		 * don't appear to be from the future.  spa_claim_max_txg
2846 		 * will have been set for us by either zil_check_log_chain()
2847 		 * (invoked from spa_check_logs()) or zil_claim() above.
2848 		 */
2849 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2850 
2851 		/*
2852 		 * If the config cache is stale, or we have uninitialized
2853 		 * metaslabs (see spa_vdev_add()), then update the config.
2854 		 *
2855 		 * If this is a verbatim import, trust the current
2856 		 * in-core spa_config and update the disk labels.
2857 		 */
2858 		if (config_cache_txg != spa->spa_config_txg ||
2859 		    state == SPA_LOAD_IMPORT ||
2860 		    state == SPA_LOAD_RECOVER ||
2861 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2862 			need_update = B_TRUE;
2863 
2864 		for (int c = 0; c < rvd->vdev_children; c++)
2865 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2866 				need_update = B_TRUE;
2867 
2868 		/*
2869 		 * Update the config cache asychronously in case we're the
2870 		 * root pool, in which case the config cache isn't writable yet.
2871 		 */
2872 		if (need_update)
2873 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2874 
2875 		/*
2876 		 * Check all DTLs to see if anything needs resilvering.
2877 		 */
2878 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2879 		    vdev_resilver_needed(rvd, NULL, NULL))
2880 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2881 
2882 		/*
2883 		 * Log the fact that we booted up (so that we can detect if
2884 		 * we rebooted in the middle of an operation).
2885 		 */
2886 		spa_history_log_version(spa, "open");
2887 
2888 		/*
2889 		 * Delete any inconsistent datasets.
2890 		 */
2891 		(void) dmu_objset_find(spa_name(spa),
2892 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2893 
2894 		/*
2895 		 * Clean up any stale temporary dataset userrefs.
2896 		 */
2897 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2898 	}
2899 
2900 	return (0);
2901 }
2902 
2903 static int
2904 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2905 {
2906 	int mode = spa->spa_mode;
2907 
2908 	spa_unload(spa);
2909 	spa_deactivate(spa);
2910 
2911 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2912 
2913 	spa_activate(spa, mode);
2914 	spa_async_suspend(spa);
2915 
2916 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2917 }
2918 
2919 /*
2920  * If spa_load() fails this function will try loading prior txg's. If
2921  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2922  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2923  * function will not rewind the pool and will return the same error as
2924  * spa_load().
2925  */
2926 static int
2927 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2928     uint64_t max_request, int rewind_flags)
2929 {
2930 	nvlist_t *loadinfo = NULL;
2931 	nvlist_t *config = NULL;
2932 	int load_error, rewind_error;
2933 	uint64_t safe_rewind_txg;
2934 	uint64_t min_txg;
2935 
2936 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2937 		spa->spa_load_max_txg = spa->spa_load_txg;
2938 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2939 	} else {
2940 		spa->spa_load_max_txg = max_request;
2941 		if (max_request != UINT64_MAX)
2942 			spa->spa_extreme_rewind = B_TRUE;
2943 	}
2944 
2945 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2946 	    mosconfig);
2947 	if (load_error == 0)
2948 		return (0);
2949 
2950 	if (spa->spa_root_vdev != NULL)
2951 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2952 
2953 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2954 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2955 
2956 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2957 		nvlist_free(config);
2958 		return (load_error);
2959 	}
2960 
2961 	if (state == SPA_LOAD_RECOVER) {
2962 		/* Price of rolling back is discarding txgs, including log */
2963 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2964 	} else {
2965 		/*
2966 		 * If we aren't rolling back save the load info from our first
2967 		 * import attempt so that we can restore it after attempting
2968 		 * to rewind.
2969 		 */
2970 		loadinfo = spa->spa_load_info;
2971 		spa->spa_load_info = fnvlist_alloc();
2972 	}
2973 
2974 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2975 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2976 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2977 	    TXG_INITIAL : safe_rewind_txg;
2978 
2979 	/*
2980 	 * Continue as long as we're finding errors, we're still within
2981 	 * the acceptable rewind range, and we're still finding uberblocks
2982 	 */
2983 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2984 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2985 		if (spa->spa_load_max_txg < safe_rewind_txg)
2986 			spa->spa_extreme_rewind = B_TRUE;
2987 		rewind_error = spa_load_retry(spa, state, mosconfig);
2988 	}
2989 
2990 	spa->spa_extreme_rewind = B_FALSE;
2991 	spa->spa_load_max_txg = UINT64_MAX;
2992 
2993 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2994 		spa_config_set(spa, config);
2995 
2996 	if (state == SPA_LOAD_RECOVER) {
2997 		ASSERT3P(loadinfo, ==, NULL);
2998 		return (rewind_error);
2999 	} else {
3000 		/* Store the rewind info as part of the initial load info */
3001 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3002 		    spa->spa_load_info);
3003 
3004 		/* Restore the initial load info */
3005 		fnvlist_free(spa->spa_load_info);
3006 		spa->spa_load_info = loadinfo;
3007 
3008 		return (load_error);
3009 	}
3010 }
3011 
3012 /*
3013  * Pool Open/Import
3014  *
3015  * The import case is identical to an open except that the configuration is sent
3016  * down from userland, instead of grabbed from the configuration cache.  For the
3017  * case of an open, the pool configuration will exist in the
3018  * POOL_STATE_UNINITIALIZED state.
3019  *
3020  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3021  * the same time open the pool, without having to keep around the spa_t in some
3022  * ambiguous state.
3023  */
3024 static int
3025 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3026     nvlist_t **config)
3027 {
3028 	spa_t *spa;
3029 	spa_load_state_t state = SPA_LOAD_OPEN;
3030 	int error;
3031 	int locked = B_FALSE;
3032 
3033 	*spapp = NULL;
3034 
3035 	/*
3036 	 * As disgusting as this is, we need to support recursive calls to this
3037 	 * function because dsl_dir_open() is called during spa_load(), and ends
3038 	 * up calling spa_open() again.  The real fix is to figure out how to
3039 	 * avoid dsl_dir_open() calling this in the first place.
3040 	 */
3041 	if (mutex_owner(&spa_namespace_lock) != curthread) {
3042 		mutex_enter(&spa_namespace_lock);
3043 		locked = B_TRUE;
3044 	}
3045 
3046 	if ((spa = spa_lookup(pool)) == NULL) {
3047 		if (locked)
3048 			mutex_exit(&spa_namespace_lock);
3049 		return (SET_ERROR(ENOENT));
3050 	}
3051 
3052 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3053 		zpool_rewind_policy_t policy;
3054 
3055 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3056 		    &policy);
3057 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3058 			state = SPA_LOAD_RECOVER;
3059 
3060 		spa_activate(spa, spa_mode_global);
3061 
3062 		if (state != SPA_LOAD_RECOVER)
3063 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3064 
3065 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3066 		    policy.zrp_request);
3067 
3068 		if (error == EBADF) {
3069 			/*
3070 			 * If vdev_validate() returns failure (indicated by
3071 			 * EBADF), it indicates that one of the vdevs indicates
3072 			 * that the pool has been exported or destroyed.  If
3073 			 * this is the case, the config cache is out of sync and
3074 			 * we should remove the pool from the namespace.
3075 			 */
3076 			spa_unload(spa);
3077 			spa_deactivate(spa);
3078 			spa_config_sync(spa, B_TRUE, B_TRUE);
3079 			spa_remove(spa);
3080 			if (locked)
3081 				mutex_exit(&spa_namespace_lock);
3082 			return (SET_ERROR(ENOENT));
3083 		}
3084 
3085 		if (error) {
3086 			/*
3087 			 * We can't open the pool, but we still have useful
3088 			 * information: the state of each vdev after the
3089 			 * attempted vdev_open().  Return this to the user.
3090 			 */
3091 			if (config != NULL && spa->spa_config) {
3092 				VERIFY(nvlist_dup(spa->spa_config, config,
3093 				    KM_SLEEP) == 0);
3094 				VERIFY(nvlist_add_nvlist(*config,
3095 				    ZPOOL_CONFIG_LOAD_INFO,
3096 				    spa->spa_load_info) == 0);
3097 			}
3098 			spa_unload(spa);
3099 			spa_deactivate(spa);
3100 			spa->spa_last_open_failed = error;
3101 			if (locked)
3102 				mutex_exit(&spa_namespace_lock);
3103 			*spapp = NULL;
3104 			return (error);
3105 		}
3106 	}
3107 
3108 	spa_open_ref(spa, tag);
3109 
3110 	if (config != NULL)
3111 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3112 
3113 	/*
3114 	 * If we've recovered the pool, pass back any information we
3115 	 * gathered while doing the load.
3116 	 */
3117 	if (state == SPA_LOAD_RECOVER) {
3118 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3119 		    spa->spa_load_info) == 0);
3120 	}
3121 
3122 	if (locked) {
3123 		spa->spa_last_open_failed = 0;
3124 		spa->spa_last_ubsync_txg = 0;
3125 		spa->spa_load_txg = 0;
3126 		mutex_exit(&spa_namespace_lock);
3127 	}
3128 
3129 	*spapp = spa;
3130 
3131 	return (0);
3132 }
3133 
3134 int
3135 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3136     nvlist_t **config)
3137 {
3138 	return (spa_open_common(name, spapp, tag, policy, config));
3139 }
3140 
3141 int
3142 spa_open(const char *name, spa_t **spapp, void *tag)
3143 {
3144 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3145 }
3146 
3147 /*
3148  * Lookup the given spa_t, incrementing the inject count in the process,
3149  * preventing it from being exported or destroyed.
3150  */
3151 spa_t *
3152 spa_inject_addref(char *name)
3153 {
3154 	spa_t *spa;
3155 
3156 	mutex_enter(&spa_namespace_lock);
3157 	if ((spa = spa_lookup(name)) == NULL) {
3158 		mutex_exit(&spa_namespace_lock);
3159 		return (NULL);
3160 	}
3161 	spa->spa_inject_ref++;
3162 	mutex_exit(&spa_namespace_lock);
3163 
3164 	return (spa);
3165 }
3166 
3167 void
3168 spa_inject_delref(spa_t *spa)
3169 {
3170 	mutex_enter(&spa_namespace_lock);
3171 	spa->spa_inject_ref--;
3172 	mutex_exit(&spa_namespace_lock);
3173 }
3174 
3175 /*
3176  * Add spares device information to the nvlist.
3177  */
3178 static void
3179 spa_add_spares(spa_t *spa, nvlist_t *config)
3180 {
3181 	nvlist_t **spares;
3182 	uint_t i, nspares;
3183 	nvlist_t *nvroot;
3184 	uint64_t guid;
3185 	vdev_stat_t *vs;
3186 	uint_t vsc;
3187 	uint64_t pool;
3188 
3189 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3190 
3191 	if (spa->spa_spares.sav_count == 0)
3192 		return;
3193 
3194 	VERIFY(nvlist_lookup_nvlist(config,
3195 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3196 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3197 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3198 	if (nspares != 0) {
3199 		VERIFY(nvlist_add_nvlist_array(nvroot,
3200 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3201 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3202 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3203 
3204 		/*
3205 		 * Go through and find any spares which have since been
3206 		 * repurposed as an active spare.  If this is the case, update
3207 		 * their status appropriately.
3208 		 */
3209 		for (i = 0; i < nspares; i++) {
3210 			VERIFY(nvlist_lookup_uint64(spares[i],
3211 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3212 			if (spa_spare_exists(guid, &pool, NULL) &&
3213 			    pool != 0ULL) {
3214 				VERIFY(nvlist_lookup_uint64_array(
3215 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3216 				    (uint64_t **)&vs, &vsc) == 0);
3217 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3218 				vs->vs_aux = VDEV_AUX_SPARED;
3219 			}
3220 		}
3221 	}
3222 }
3223 
3224 /*
3225  * Add l2cache device information to the nvlist, including vdev stats.
3226  */
3227 static void
3228 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3229 {
3230 	nvlist_t **l2cache;
3231 	uint_t i, j, nl2cache;
3232 	nvlist_t *nvroot;
3233 	uint64_t guid;
3234 	vdev_t *vd;
3235 	vdev_stat_t *vs;
3236 	uint_t vsc;
3237 
3238 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3239 
3240 	if (spa->spa_l2cache.sav_count == 0)
3241 		return;
3242 
3243 	VERIFY(nvlist_lookup_nvlist(config,
3244 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3245 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3246 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3247 	if (nl2cache != 0) {
3248 		VERIFY(nvlist_add_nvlist_array(nvroot,
3249 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3250 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3251 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3252 
3253 		/*
3254 		 * Update level 2 cache device stats.
3255 		 */
3256 
3257 		for (i = 0; i < nl2cache; i++) {
3258 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3259 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3260 
3261 			vd = NULL;
3262 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3263 				if (guid ==
3264 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3265 					vd = spa->spa_l2cache.sav_vdevs[j];
3266 					break;
3267 				}
3268 			}
3269 			ASSERT(vd != NULL);
3270 
3271 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3272 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3273 			    == 0);
3274 			vdev_get_stats(vd, vs);
3275 		}
3276 	}
3277 }
3278 
3279 static void
3280 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3281 {
3282 	nvlist_t *features;
3283 	zap_cursor_t zc;
3284 	zap_attribute_t za;
3285 
3286 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3287 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3288 
3289 	if (spa->spa_feat_for_read_obj != 0) {
3290 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3291 		    spa->spa_feat_for_read_obj);
3292 		    zap_cursor_retrieve(&zc, &za) == 0;
3293 		    zap_cursor_advance(&zc)) {
3294 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3295 			    za.za_num_integers == 1);
3296 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3297 			    za.za_first_integer));
3298 		}
3299 		zap_cursor_fini(&zc);
3300 	}
3301 
3302 	if (spa->spa_feat_for_write_obj != 0) {
3303 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3304 		    spa->spa_feat_for_write_obj);
3305 		    zap_cursor_retrieve(&zc, &za) == 0;
3306 		    zap_cursor_advance(&zc)) {
3307 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3308 			    za.za_num_integers == 1);
3309 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3310 			    za.za_first_integer));
3311 		}
3312 		zap_cursor_fini(&zc);
3313 	}
3314 
3315 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3316 	    features) == 0);
3317 	nvlist_free(features);
3318 }
3319 
3320 int
3321 spa_get_stats(const char *name, nvlist_t **config,
3322     char *altroot, size_t buflen)
3323 {
3324 	int error;
3325 	spa_t *spa;
3326 
3327 	*config = NULL;
3328 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3329 
3330 	if (spa != NULL) {
3331 		/*
3332 		 * This still leaves a window of inconsistency where the spares
3333 		 * or l2cache devices could change and the config would be
3334 		 * self-inconsistent.
3335 		 */
3336 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3337 
3338 		if (*config != NULL) {
3339 			uint64_t loadtimes[2];
3340 
3341 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3342 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3343 			VERIFY(nvlist_add_uint64_array(*config,
3344 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3345 
3346 			VERIFY(nvlist_add_uint64(*config,
3347 			    ZPOOL_CONFIG_ERRCOUNT,
3348 			    spa_get_errlog_size(spa)) == 0);
3349 
3350 			if (spa_suspended(spa))
3351 				VERIFY(nvlist_add_uint64(*config,
3352 				    ZPOOL_CONFIG_SUSPENDED,
3353 				    spa->spa_failmode) == 0);
3354 
3355 			spa_add_spares(spa, *config);
3356 			spa_add_l2cache(spa, *config);
3357 			spa_add_feature_stats(spa, *config);
3358 		}
3359 	}
3360 
3361 	/*
3362 	 * We want to get the alternate root even for faulted pools, so we cheat
3363 	 * and call spa_lookup() directly.
3364 	 */
3365 	if (altroot) {
3366 		if (spa == NULL) {
3367 			mutex_enter(&spa_namespace_lock);
3368 			spa = spa_lookup(name);
3369 			if (spa)
3370 				spa_altroot(spa, altroot, buflen);
3371 			else
3372 				altroot[0] = '\0';
3373 			spa = NULL;
3374 			mutex_exit(&spa_namespace_lock);
3375 		} else {
3376 			spa_altroot(spa, altroot, buflen);
3377 		}
3378 	}
3379 
3380 	if (spa != NULL) {
3381 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3382 		spa_close(spa, FTAG);
3383 	}
3384 
3385 	return (error);
3386 }
3387 
3388 /*
3389  * Validate that the auxiliary device array is well formed.  We must have an
3390  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3391  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3392  * specified, as long as they are well-formed.
3393  */
3394 static int
3395 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3396     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3397     vdev_labeltype_t label)
3398 {
3399 	nvlist_t **dev;
3400 	uint_t i, ndev;
3401 	vdev_t *vd;
3402 	int error;
3403 
3404 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3405 
3406 	/*
3407 	 * It's acceptable to have no devs specified.
3408 	 */
3409 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3410 		return (0);
3411 
3412 	if (ndev == 0)
3413 		return (SET_ERROR(EINVAL));
3414 
3415 	/*
3416 	 * Make sure the pool is formatted with a version that supports this
3417 	 * device type.
3418 	 */
3419 	if (spa_version(spa) < version)
3420 		return (SET_ERROR(ENOTSUP));
3421 
3422 	/*
3423 	 * Set the pending device list so we correctly handle device in-use
3424 	 * checking.
3425 	 */
3426 	sav->sav_pending = dev;
3427 	sav->sav_npending = ndev;
3428 
3429 	for (i = 0; i < ndev; i++) {
3430 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3431 		    mode)) != 0)
3432 			goto out;
3433 
3434 		if (!vd->vdev_ops->vdev_op_leaf) {
3435 			vdev_free(vd);
3436 			error = SET_ERROR(EINVAL);
3437 			goto out;
3438 		}
3439 
3440 		/*
3441 		 * The L2ARC currently only supports disk devices in
3442 		 * kernel context.  For user-level testing, we allow it.
3443 		 */
3444 #ifdef _KERNEL
3445 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3446 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3447 			error = SET_ERROR(ENOTBLK);
3448 			vdev_free(vd);
3449 			goto out;
3450 		}
3451 #endif
3452 		vd->vdev_top = vd;
3453 
3454 		if ((error = vdev_open(vd)) == 0 &&
3455 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3456 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3457 			    vd->vdev_guid) == 0);
3458 		}
3459 
3460 		vdev_free(vd);
3461 
3462 		if (error &&
3463 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3464 			goto out;
3465 		else
3466 			error = 0;
3467 	}
3468 
3469 out:
3470 	sav->sav_pending = NULL;
3471 	sav->sav_npending = 0;
3472 	return (error);
3473 }
3474 
3475 static int
3476 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3477 {
3478 	int error;
3479 
3480 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3481 
3482 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3483 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3484 	    VDEV_LABEL_SPARE)) != 0) {
3485 		return (error);
3486 	}
3487 
3488 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3489 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3490 	    VDEV_LABEL_L2CACHE));
3491 }
3492 
3493 static void
3494 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3495     const char *config)
3496 {
3497 	int i;
3498 
3499 	if (sav->sav_config != NULL) {
3500 		nvlist_t **olddevs;
3501 		uint_t oldndevs;
3502 		nvlist_t **newdevs;
3503 
3504 		/*
3505 		 * Generate new dev list by concatentating with the
3506 		 * current dev list.
3507 		 */
3508 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3509 		    &olddevs, &oldndevs) == 0);
3510 
3511 		newdevs = kmem_alloc(sizeof (void *) *
3512 		    (ndevs + oldndevs), KM_SLEEP);
3513 		for (i = 0; i < oldndevs; i++)
3514 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3515 			    KM_SLEEP) == 0);
3516 		for (i = 0; i < ndevs; i++)
3517 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3518 			    KM_SLEEP) == 0);
3519 
3520 		VERIFY(nvlist_remove(sav->sav_config, config,
3521 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3522 
3523 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3524 		    config, newdevs, ndevs + oldndevs) == 0);
3525 		for (i = 0; i < oldndevs + ndevs; i++)
3526 			nvlist_free(newdevs[i]);
3527 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3528 	} else {
3529 		/*
3530 		 * Generate a new dev list.
3531 		 */
3532 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3533 		    KM_SLEEP) == 0);
3534 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3535 		    devs, ndevs) == 0);
3536 	}
3537 }
3538 
3539 /*
3540  * Stop and drop level 2 ARC devices
3541  */
3542 void
3543 spa_l2cache_drop(spa_t *spa)
3544 {
3545 	vdev_t *vd;
3546 	int i;
3547 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3548 
3549 	for (i = 0; i < sav->sav_count; i++) {
3550 		uint64_t pool;
3551 
3552 		vd = sav->sav_vdevs[i];
3553 		ASSERT(vd != NULL);
3554 
3555 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3556 		    pool != 0ULL && l2arc_vdev_present(vd))
3557 			l2arc_remove_vdev(vd);
3558 	}
3559 }
3560 
3561 /*
3562  * Pool Creation
3563  */
3564 int
3565 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3566     nvlist_t *zplprops)
3567 {
3568 	spa_t *spa;
3569 	char *altroot = NULL;
3570 	vdev_t *rvd;
3571 	dsl_pool_t *dp;
3572 	dmu_tx_t *tx;
3573 	int error = 0;
3574 	uint64_t txg = TXG_INITIAL;
3575 	nvlist_t **spares, **l2cache;
3576 	uint_t nspares, nl2cache;
3577 	uint64_t version, obj;
3578 	boolean_t has_features;
3579 
3580 	/*
3581 	 * If this pool already exists, return failure.
3582 	 */
3583 	mutex_enter(&spa_namespace_lock);
3584 	if (spa_lookup(pool) != NULL) {
3585 		mutex_exit(&spa_namespace_lock);
3586 		return (SET_ERROR(EEXIST));
3587 	}
3588 
3589 	/*
3590 	 * Allocate a new spa_t structure.
3591 	 */
3592 	(void) nvlist_lookup_string(props,
3593 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3594 	spa = spa_add(pool, NULL, altroot);
3595 	spa_activate(spa, spa_mode_global);
3596 
3597 	if (props && (error = spa_prop_validate(spa, props))) {
3598 		spa_deactivate(spa);
3599 		spa_remove(spa);
3600 		mutex_exit(&spa_namespace_lock);
3601 		return (error);
3602 	}
3603 
3604 	has_features = B_FALSE;
3605 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3606 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3607 		if (zpool_prop_feature(nvpair_name(elem)))
3608 			has_features = B_TRUE;
3609 	}
3610 
3611 	if (has_features || nvlist_lookup_uint64(props,
3612 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3613 		version = SPA_VERSION;
3614 	}
3615 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3616 
3617 	spa->spa_first_txg = txg;
3618 	spa->spa_uberblock.ub_txg = txg - 1;
3619 	spa->spa_uberblock.ub_version = version;
3620 	spa->spa_ubsync = spa->spa_uberblock;
3621 
3622 	/*
3623 	 * Create "The Godfather" zio to hold all async IOs
3624 	 */
3625 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3626 	    KM_SLEEP);
3627 	for (int i = 0; i < max_ncpus; i++) {
3628 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3629 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3630 		    ZIO_FLAG_GODFATHER);
3631 	}
3632 
3633 	/*
3634 	 * Create the root vdev.
3635 	 */
3636 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3637 
3638 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3639 
3640 	ASSERT(error != 0 || rvd != NULL);
3641 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3642 
3643 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3644 		error = SET_ERROR(EINVAL);
3645 
3646 	if (error == 0 &&
3647 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3648 	    (error = spa_validate_aux(spa, nvroot, txg,
3649 	    VDEV_ALLOC_ADD)) == 0) {
3650 		for (int c = 0; c < rvd->vdev_children; c++) {
3651 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3652 			vdev_expand(rvd->vdev_child[c], txg);
3653 		}
3654 	}
3655 
3656 	spa_config_exit(spa, SCL_ALL, FTAG);
3657 
3658 	if (error != 0) {
3659 		spa_unload(spa);
3660 		spa_deactivate(spa);
3661 		spa_remove(spa);
3662 		mutex_exit(&spa_namespace_lock);
3663 		return (error);
3664 	}
3665 
3666 	/*
3667 	 * Get the list of spares, if specified.
3668 	 */
3669 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3670 	    &spares, &nspares) == 0) {
3671 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3672 		    KM_SLEEP) == 0);
3673 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3674 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3675 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3676 		spa_load_spares(spa);
3677 		spa_config_exit(spa, SCL_ALL, FTAG);
3678 		spa->spa_spares.sav_sync = B_TRUE;
3679 	}
3680 
3681 	/*
3682 	 * Get the list of level 2 cache devices, if specified.
3683 	 */
3684 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3685 	    &l2cache, &nl2cache) == 0) {
3686 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3687 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3688 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3689 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3690 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3691 		spa_load_l2cache(spa);
3692 		spa_config_exit(spa, SCL_ALL, FTAG);
3693 		spa->spa_l2cache.sav_sync = B_TRUE;
3694 	}
3695 
3696 	spa->spa_is_initializing = B_TRUE;
3697 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3698 	spa->spa_meta_objset = dp->dp_meta_objset;
3699 	spa->spa_is_initializing = B_FALSE;
3700 
3701 	/*
3702 	 * Create DDTs (dedup tables).
3703 	 */
3704 	ddt_create(spa);
3705 
3706 	spa_update_dspace(spa);
3707 
3708 	tx = dmu_tx_create_assigned(dp, txg);
3709 
3710 	/*
3711 	 * Create the pool config object.
3712 	 */
3713 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3714 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3715 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3716 
3717 	if (zap_add(spa->spa_meta_objset,
3718 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3719 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3720 		cmn_err(CE_PANIC, "failed to add pool config");
3721 	}
3722 
3723 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3724 		spa_feature_create_zap_objects(spa, tx);
3725 
3726 	if (zap_add(spa->spa_meta_objset,
3727 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3728 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3729 		cmn_err(CE_PANIC, "failed to add pool version");
3730 	}
3731 
3732 	/* Newly created pools with the right version are always deflated. */
3733 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3734 		spa->spa_deflate = TRUE;
3735 		if (zap_add(spa->spa_meta_objset,
3736 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3737 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3738 			cmn_err(CE_PANIC, "failed to add deflate");
3739 		}
3740 	}
3741 
3742 	/*
3743 	 * Create the deferred-free bpobj.  Turn off compression
3744 	 * because sync-to-convergence takes longer if the blocksize
3745 	 * keeps changing.
3746 	 */
3747 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3748 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3749 	    ZIO_COMPRESS_OFF, tx);
3750 	if (zap_add(spa->spa_meta_objset,
3751 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3752 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3753 		cmn_err(CE_PANIC, "failed to add bpobj");
3754 	}
3755 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3756 	    spa->spa_meta_objset, obj));
3757 
3758 	/*
3759 	 * Create the pool's history object.
3760 	 */
3761 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3762 		spa_history_create_obj(spa, tx);
3763 
3764 	/*
3765 	 * Generate some random noise for salted checksums to operate on.
3766 	 */
3767 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3768 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3769 
3770 	/*
3771 	 * Set pool properties.
3772 	 */
3773 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3774 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3775 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3776 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3777 
3778 	if (props != NULL) {
3779 		spa_configfile_set(spa, props, B_FALSE);
3780 		spa_sync_props(props, tx);
3781 	}
3782 
3783 	dmu_tx_commit(tx);
3784 
3785 	spa->spa_sync_on = B_TRUE;
3786 	txg_sync_start(spa->spa_dsl_pool);
3787 
3788 	/*
3789 	 * We explicitly wait for the first transaction to complete so that our
3790 	 * bean counters are appropriately updated.
3791 	 */
3792 	txg_wait_synced(spa->spa_dsl_pool, txg);
3793 
3794 	spa_config_sync(spa, B_FALSE, B_TRUE);
3795 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3796 
3797 	spa_history_log_version(spa, "create");
3798 
3799 	/*
3800 	 * Don't count references from objsets that are already closed
3801 	 * and are making their way through the eviction process.
3802 	 */
3803 	spa_evicting_os_wait(spa);
3804 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3805 
3806 	mutex_exit(&spa_namespace_lock);
3807 
3808 	return (0);
3809 }
3810 
3811 #ifdef _KERNEL
3812 /*
3813  * Get the root pool information from the root disk, then import the root pool
3814  * during the system boot up time.
3815  */
3816 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3817 
3818 static nvlist_t *
3819 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3820 {
3821 	nvlist_t *config;
3822 	nvlist_t *nvtop, *nvroot;
3823 	uint64_t pgid;
3824 
3825 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3826 		return (NULL);
3827 
3828 	/*
3829 	 * Add this top-level vdev to the child array.
3830 	 */
3831 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3832 	    &nvtop) == 0);
3833 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3834 	    &pgid) == 0);
3835 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3836 
3837 	/*
3838 	 * Put this pool's top-level vdevs into a root vdev.
3839 	 */
3840 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3841 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3842 	    VDEV_TYPE_ROOT) == 0);
3843 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3844 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3845 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3846 	    &nvtop, 1) == 0);
3847 
3848 	/*
3849 	 * Replace the existing vdev_tree with the new root vdev in
3850 	 * this pool's configuration (remove the old, add the new).
3851 	 */
3852 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3853 	nvlist_free(nvroot);
3854 	return (config);
3855 }
3856 
3857 /*
3858  * Walk the vdev tree and see if we can find a device with "better"
3859  * configuration. A configuration is "better" if the label on that
3860  * device has a more recent txg.
3861  */
3862 static void
3863 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3864 {
3865 	for (int c = 0; c < vd->vdev_children; c++)
3866 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3867 
3868 	if (vd->vdev_ops->vdev_op_leaf) {
3869 		nvlist_t *label;
3870 		uint64_t label_txg;
3871 
3872 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3873 		    &label) != 0)
3874 			return;
3875 
3876 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3877 		    &label_txg) == 0);
3878 
3879 		/*
3880 		 * Do we have a better boot device?
3881 		 */
3882 		if (label_txg > *txg) {
3883 			*txg = label_txg;
3884 			*avd = vd;
3885 		}
3886 		nvlist_free(label);
3887 	}
3888 }
3889 
3890 /*
3891  * Import a root pool.
3892  *
3893  * For x86. devpath_list will consist of devid and/or physpath name of
3894  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3895  * The GRUB "findroot" command will return the vdev we should boot.
3896  *
3897  * For Sparc, devpath_list consists the physpath name of the booting device
3898  * no matter the rootpool is a single device pool or a mirrored pool.
3899  * e.g.
3900  *	"/pci@1f,0/ide@d/disk@0,0:a"
3901  */
3902 int
3903 spa_import_rootpool(char *devpath, char *devid)
3904 {
3905 	spa_t *spa;
3906 	vdev_t *rvd, *bvd, *avd = NULL;
3907 	nvlist_t *config, *nvtop;
3908 	uint64_t guid, txg;
3909 	char *pname;
3910 	int error;
3911 
3912 	/*
3913 	 * Read the label from the boot device and generate a configuration.
3914 	 */
3915 	config = spa_generate_rootconf(devpath, devid, &guid);
3916 #if defined(_OBP) && defined(_KERNEL)
3917 	if (config == NULL) {
3918 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3919 			/* iscsi boot */
3920 			get_iscsi_bootpath_phy(devpath);
3921 			config = spa_generate_rootconf(devpath, devid, &guid);
3922 		}
3923 	}
3924 #endif
3925 	if (config == NULL) {
3926 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3927 		    devpath);
3928 		return (SET_ERROR(EIO));
3929 	}
3930 
3931 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3932 	    &pname) == 0);
3933 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3934 
3935 	mutex_enter(&spa_namespace_lock);
3936 	if ((spa = spa_lookup(pname)) != NULL) {
3937 		/*
3938 		 * Remove the existing root pool from the namespace so that we
3939 		 * can replace it with the correct config we just read in.
3940 		 */
3941 		spa_remove(spa);
3942 	}
3943 
3944 	spa = spa_add(pname, config, NULL);
3945 	spa->spa_is_root = B_TRUE;
3946 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3947 
3948 	/*
3949 	 * Build up a vdev tree based on the boot device's label config.
3950 	 */
3951 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3952 	    &nvtop) == 0);
3953 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3954 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3955 	    VDEV_ALLOC_ROOTPOOL);
3956 	spa_config_exit(spa, SCL_ALL, FTAG);
3957 	if (error) {
3958 		mutex_exit(&spa_namespace_lock);
3959 		nvlist_free(config);
3960 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3961 		    pname);
3962 		return (error);
3963 	}
3964 
3965 	/*
3966 	 * Get the boot vdev.
3967 	 */
3968 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3969 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3970 		    (u_longlong_t)guid);
3971 		error = SET_ERROR(ENOENT);
3972 		goto out;
3973 	}
3974 
3975 	/*
3976 	 * Determine if there is a better boot device.
3977 	 */
3978 	avd = bvd;
3979 	spa_alt_rootvdev(rvd, &avd, &txg);
3980 	if (avd != bvd) {
3981 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3982 		    "try booting from '%s'", avd->vdev_path);
3983 		error = SET_ERROR(EINVAL);
3984 		goto out;
3985 	}
3986 
3987 	/*
3988 	 * If the boot device is part of a spare vdev then ensure that
3989 	 * we're booting off the active spare.
3990 	 */
3991 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3992 	    !bvd->vdev_isspare) {
3993 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3994 		    "try booting from '%s'",
3995 		    bvd->vdev_parent->
3996 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3997 		error = SET_ERROR(EINVAL);
3998 		goto out;
3999 	}
4000 
4001 	error = 0;
4002 out:
4003 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4004 	vdev_free(rvd);
4005 	spa_config_exit(spa, SCL_ALL, FTAG);
4006 	mutex_exit(&spa_namespace_lock);
4007 
4008 	nvlist_free(config);
4009 	return (error);
4010 }
4011 
4012 #endif
4013 
4014 /*
4015  * Import a non-root pool into the system.
4016  */
4017 int
4018 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4019 {
4020 	spa_t *spa;
4021 	char *altroot = NULL;
4022 	spa_load_state_t state = SPA_LOAD_IMPORT;
4023 	zpool_rewind_policy_t policy;
4024 	uint64_t mode = spa_mode_global;
4025 	uint64_t readonly = B_FALSE;
4026 	int error;
4027 	nvlist_t *nvroot;
4028 	nvlist_t **spares, **l2cache;
4029 	uint_t nspares, nl2cache;
4030 
4031 	/*
4032 	 * If a pool with this name exists, return failure.
4033 	 */
4034 	mutex_enter(&spa_namespace_lock);
4035 	if (spa_lookup(pool) != NULL) {
4036 		mutex_exit(&spa_namespace_lock);
4037 		return (SET_ERROR(EEXIST));
4038 	}
4039 
4040 	/*
4041 	 * Create and initialize the spa structure.
4042 	 */
4043 	(void) nvlist_lookup_string(props,
4044 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4045 	(void) nvlist_lookup_uint64(props,
4046 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4047 	if (readonly)
4048 		mode = FREAD;
4049 	spa = spa_add(pool, config, altroot);
4050 	spa->spa_import_flags = flags;
4051 
4052 	/*
4053 	 * Verbatim import - Take a pool and insert it into the namespace
4054 	 * as if it had been loaded at boot.
4055 	 */
4056 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4057 		if (props != NULL)
4058 			spa_configfile_set(spa, props, B_FALSE);
4059 
4060 		spa_config_sync(spa, B_FALSE, B_TRUE);
4061 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4062 
4063 		mutex_exit(&spa_namespace_lock);
4064 		return (0);
4065 	}
4066 
4067 	spa_activate(spa, mode);
4068 
4069 	/*
4070 	 * Don't start async tasks until we know everything is healthy.
4071 	 */
4072 	spa_async_suspend(spa);
4073 
4074 	zpool_get_rewind_policy(config, &policy);
4075 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4076 		state = SPA_LOAD_RECOVER;
4077 
4078 	/*
4079 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4080 	 * because the user-supplied config is actually the one to trust when
4081 	 * doing an import.
4082 	 */
4083 	if (state != SPA_LOAD_RECOVER)
4084 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4085 
4086 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4087 	    policy.zrp_request);
4088 
4089 	/*
4090 	 * Propagate anything learned while loading the pool and pass it
4091 	 * back to caller (i.e. rewind info, missing devices, etc).
4092 	 */
4093 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4094 	    spa->spa_load_info) == 0);
4095 
4096 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4097 	/*
4098 	 * Toss any existing sparelist, as it doesn't have any validity
4099 	 * anymore, and conflicts with spa_has_spare().
4100 	 */
4101 	if (spa->spa_spares.sav_config) {
4102 		nvlist_free(spa->spa_spares.sav_config);
4103 		spa->spa_spares.sav_config = NULL;
4104 		spa_load_spares(spa);
4105 	}
4106 	if (spa->spa_l2cache.sav_config) {
4107 		nvlist_free(spa->spa_l2cache.sav_config);
4108 		spa->spa_l2cache.sav_config = NULL;
4109 		spa_load_l2cache(spa);
4110 	}
4111 
4112 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4113 	    &nvroot) == 0);
4114 	if (error == 0)
4115 		error = spa_validate_aux(spa, nvroot, -1ULL,
4116 		    VDEV_ALLOC_SPARE);
4117 	if (error == 0)
4118 		error = spa_validate_aux(spa, nvroot, -1ULL,
4119 		    VDEV_ALLOC_L2CACHE);
4120 	spa_config_exit(spa, SCL_ALL, FTAG);
4121 
4122 	if (props != NULL)
4123 		spa_configfile_set(spa, props, B_FALSE);
4124 
4125 	if (error != 0 || (props && spa_writeable(spa) &&
4126 	    (error = spa_prop_set(spa, props)))) {
4127 		spa_unload(spa);
4128 		spa_deactivate(spa);
4129 		spa_remove(spa);
4130 		mutex_exit(&spa_namespace_lock);
4131 		return (error);
4132 	}
4133 
4134 	spa_async_resume(spa);
4135 
4136 	/*
4137 	 * Override any spares and level 2 cache devices as specified by
4138 	 * the user, as these may have correct device names/devids, etc.
4139 	 */
4140 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4141 	    &spares, &nspares) == 0) {
4142 		if (spa->spa_spares.sav_config)
4143 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4144 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4145 		else
4146 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4147 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4148 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4149 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4150 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4151 		spa_load_spares(spa);
4152 		spa_config_exit(spa, SCL_ALL, FTAG);
4153 		spa->spa_spares.sav_sync = B_TRUE;
4154 	}
4155 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4156 	    &l2cache, &nl2cache) == 0) {
4157 		if (spa->spa_l2cache.sav_config)
4158 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4159 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4160 		else
4161 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4162 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4163 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4164 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4165 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4166 		spa_load_l2cache(spa);
4167 		spa_config_exit(spa, SCL_ALL, FTAG);
4168 		spa->spa_l2cache.sav_sync = B_TRUE;
4169 	}
4170 
4171 	/*
4172 	 * Check for any removed devices.
4173 	 */
4174 	if (spa->spa_autoreplace) {
4175 		spa_aux_check_removed(&spa->spa_spares);
4176 		spa_aux_check_removed(&spa->spa_l2cache);
4177 	}
4178 
4179 	if (spa_writeable(spa)) {
4180 		/*
4181 		 * Update the config cache to include the newly-imported pool.
4182 		 */
4183 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4184 	}
4185 
4186 	/*
4187 	 * It's possible that the pool was expanded while it was exported.
4188 	 * We kick off an async task to handle this for us.
4189 	 */
4190 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4191 
4192 	spa_history_log_version(spa, "import");
4193 
4194 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4195 
4196 	mutex_exit(&spa_namespace_lock);
4197 
4198 	return (0);
4199 }
4200 
4201 nvlist_t *
4202 spa_tryimport(nvlist_t *tryconfig)
4203 {
4204 	nvlist_t *config = NULL;
4205 	char *poolname;
4206 	spa_t *spa;
4207 	uint64_t state;
4208 	int error;
4209 
4210 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4211 		return (NULL);
4212 
4213 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4214 		return (NULL);
4215 
4216 	/*
4217 	 * Create and initialize the spa structure.
4218 	 */
4219 	mutex_enter(&spa_namespace_lock);
4220 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4221 	spa_activate(spa, FREAD);
4222 
4223 	/*
4224 	 * Pass off the heavy lifting to spa_load().
4225 	 * Pass TRUE for mosconfig because the user-supplied config
4226 	 * is actually the one to trust when doing an import.
4227 	 */
4228 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4229 
4230 	/*
4231 	 * If 'tryconfig' was at least parsable, return the current config.
4232 	 */
4233 	if (spa->spa_root_vdev != NULL) {
4234 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4235 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4236 		    poolname) == 0);
4237 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4238 		    state) == 0);
4239 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4240 		    spa->spa_uberblock.ub_timestamp) == 0);
4241 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4242 		    spa->spa_load_info) == 0);
4243 
4244 		/*
4245 		 * If the bootfs property exists on this pool then we
4246 		 * copy it out so that external consumers can tell which
4247 		 * pools are bootable.
4248 		 */
4249 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4250 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4251 
4252 			/*
4253 			 * We have to play games with the name since the
4254 			 * pool was opened as TRYIMPORT_NAME.
4255 			 */
4256 			if (dsl_dsobj_to_dsname(spa_name(spa),
4257 			    spa->spa_bootfs, tmpname) == 0) {
4258 				char *cp;
4259 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4260 
4261 				cp = strchr(tmpname, '/');
4262 				if (cp == NULL) {
4263 					(void) strlcpy(dsname, tmpname,
4264 					    MAXPATHLEN);
4265 				} else {
4266 					(void) snprintf(dsname, MAXPATHLEN,
4267 					    "%s/%s", poolname, ++cp);
4268 				}
4269 				VERIFY(nvlist_add_string(config,
4270 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4271 				kmem_free(dsname, MAXPATHLEN);
4272 			}
4273 			kmem_free(tmpname, MAXPATHLEN);
4274 		}
4275 
4276 		/*
4277 		 * Add the list of hot spares and level 2 cache devices.
4278 		 */
4279 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4280 		spa_add_spares(spa, config);
4281 		spa_add_l2cache(spa, config);
4282 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4283 	}
4284 
4285 	spa_unload(spa);
4286 	spa_deactivate(spa);
4287 	spa_remove(spa);
4288 	mutex_exit(&spa_namespace_lock);
4289 
4290 	return (config);
4291 }
4292 
4293 /*
4294  * Pool export/destroy
4295  *
4296  * The act of destroying or exporting a pool is very simple.  We make sure there
4297  * is no more pending I/O and any references to the pool are gone.  Then, we
4298  * update the pool state and sync all the labels to disk, removing the
4299  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4300  * we don't sync the labels or remove the configuration cache.
4301  */
4302 static int
4303 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4304     boolean_t force, boolean_t hardforce)
4305 {
4306 	spa_t *spa;
4307 
4308 	if (oldconfig)
4309 		*oldconfig = NULL;
4310 
4311 	if (!(spa_mode_global & FWRITE))
4312 		return (SET_ERROR(EROFS));
4313 
4314 	mutex_enter(&spa_namespace_lock);
4315 	if ((spa = spa_lookup(pool)) == NULL) {
4316 		mutex_exit(&spa_namespace_lock);
4317 		return (SET_ERROR(ENOENT));
4318 	}
4319 
4320 	/*
4321 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4322 	 * reacquire the namespace lock, and see if we can export.
4323 	 */
4324 	spa_open_ref(spa, FTAG);
4325 	mutex_exit(&spa_namespace_lock);
4326 	spa_async_suspend(spa);
4327 	mutex_enter(&spa_namespace_lock);
4328 	spa_close(spa, FTAG);
4329 
4330 	/*
4331 	 * The pool will be in core if it's openable,
4332 	 * in which case we can modify its state.
4333 	 */
4334 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4335 		/*
4336 		 * Objsets may be open only because they're dirty, so we
4337 		 * have to force it to sync before checking spa_refcnt.
4338 		 */
4339 		txg_wait_synced(spa->spa_dsl_pool, 0);
4340 		spa_evicting_os_wait(spa);
4341 
4342 		/*
4343 		 * A pool cannot be exported or destroyed if there are active
4344 		 * references.  If we are resetting a pool, allow references by
4345 		 * fault injection handlers.
4346 		 */
4347 		if (!spa_refcount_zero(spa) ||
4348 		    (spa->spa_inject_ref != 0 &&
4349 		    new_state != POOL_STATE_UNINITIALIZED)) {
4350 			spa_async_resume(spa);
4351 			mutex_exit(&spa_namespace_lock);
4352 			return (SET_ERROR(EBUSY));
4353 		}
4354 
4355 		/*
4356 		 * A pool cannot be exported if it has an active shared spare.
4357 		 * This is to prevent other pools stealing the active spare
4358 		 * from an exported pool. At user's own will, such pool can
4359 		 * be forcedly exported.
4360 		 */
4361 		if (!force && new_state == POOL_STATE_EXPORTED &&
4362 		    spa_has_active_shared_spare(spa)) {
4363 			spa_async_resume(spa);
4364 			mutex_exit(&spa_namespace_lock);
4365 			return (SET_ERROR(EXDEV));
4366 		}
4367 
4368 		/*
4369 		 * We want this to be reflected on every label,
4370 		 * so mark them all dirty.  spa_unload() will do the
4371 		 * final sync that pushes these changes out.
4372 		 */
4373 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4374 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4375 			spa->spa_state = new_state;
4376 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4377 			    TXG_DEFER_SIZE + 1;
4378 			vdev_config_dirty(spa->spa_root_vdev);
4379 			spa_config_exit(spa, SCL_ALL, FTAG);
4380 		}
4381 	}
4382 
4383 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4384 
4385 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4386 		spa_unload(spa);
4387 		spa_deactivate(spa);
4388 	}
4389 
4390 	if (oldconfig && spa->spa_config)
4391 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4392 
4393 	if (new_state != POOL_STATE_UNINITIALIZED) {
4394 		if (!hardforce)
4395 			spa_config_sync(spa, B_TRUE, B_TRUE);
4396 		spa_remove(spa);
4397 	}
4398 	mutex_exit(&spa_namespace_lock);
4399 
4400 	return (0);
4401 }
4402 
4403 /*
4404  * Destroy a storage pool.
4405  */
4406 int
4407 spa_destroy(char *pool)
4408 {
4409 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4410 	    B_FALSE, B_FALSE));
4411 }
4412 
4413 /*
4414  * Export a storage pool.
4415  */
4416 int
4417 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4418     boolean_t hardforce)
4419 {
4420 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4421 	    force, hardforce));
4422 }
4423 
4424 /*
4425  * Similar to spa_export(), this unloads the spa_t without actually removing it
4426  * from the namespace in any way.
4427  */
4428 int
4429 spa_reset(char *pool)
4430 {
4431 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4432 	    B_FALSE, B_FALSE));
4433 }
4434 
4435 /*
4436  * ==========================================================================
4437  * Device manipulation
4438  * ==========================================================================
4439  */
4440 
4441 /*
4442  * Add a device to a storage pool.
4443  */
4444 int
4445 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4446 {
4447 	uint64_t txg, id;
4448 	int error;
4449 	vdev_t *rvd = spa->spa_root_vdev;
4450 	vdev_t *vd, *tvd;
4451 	nvlist_t **spares, **l2cache;
4452 	uint_t nspares, nl2cache;
4453 
4454 	ASSERT(spa_writeable(spa));
4455 
4456 	txg = spa_vdev_enter(spa);
4457 
4458 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4459 	    VDEV_ALLOC_ADD)) != 0)
4460 		return (spa_vdev_exit(spa, NULL, txg, error));
4461 
4462 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4463 
4464 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4465 	    &nspares) != 0)
4466 		nspares = 0;
4467 
4468 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4469 	    &nl2cache) != 0)
4470 		nl2cache = 0;
4471 
4472 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4473 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4474 
4475 	if (vd->vdev_children != 0 &&
4476 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4477 		return (spa_vdev_exit(spa, vd, txg, error));
4478 
4479 	/*
4480 	 * We must validate the spares and l2cache devices after checking the
4481 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4482 	 */
4483 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4484 		return (spa_vdev_exit(spa, vd, txg, error));
4485 
4486 	/*
4487 	 * Transfer each new top-level vdev from vd to rvd.
4488 	 */
4489 	for (int c = 0; c < vd->vdev_children; c++) {
4490 
4491 		/*
4492 		 * Set the vdev id to the first hole, if one exists.
4493 		 */
4494 		for (id = 0; id < rvd->vdev_children; id++) {
4495 			if (rvd->vdev_child[id]->vdev_ishole) {
4496 				vdev_free(rvd->vdev_child[id]);
4497 				break;
4498 			}
4499 		}
4500 		tvd = vd->vdev_child[c];
4501 		vdev_remove_child(vd, tvd);
4502 		tvd->vdev_id = id;
4503 		vdev_add_child(rvd, tvd);
4504 		vdev_config_dirty(tvd);
4505 	}
4506 
4507 	if (nspares != 0) {
4508 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4509 		    ZPOOL_CONFIG_SPARES);
4510 		spa_load_spares(spa);
4511 		spa->spa_spares.sav_sync = B_TRUE;
4512 	}
4513 
4514 	if (nl2cache != 0) {
4515 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4516 		    ZPOOL_CONFIG_L2CACHE);
4517 		spa_load_l2cache(spa);
4518 		spa->spa_l2cache.sav_sync = B_TRUE;
4519 	}
4520 
4521 	/*
4522 	 * We have to be careful when adding new vdevs to an existing pool.
4523 	 * If other threads start allocating from these vdevs before we
4524 	 * sync the config cache, and we lose power, then upon reboot we may
4525 	 * fail to open the pool because there are DVAs that the config cache
4526 	 * can't translate.  Therefore, we first add the vdevs without
4527 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4528 	 * and then let spa_config_update() initialize the new metaslabs.
4529 	 *
4530 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4531 	 * if we lose power at any point in this sequence, the remaining
4532 	 * steps will be completed the next time we load the pool.
4533 	 */
4534 	(void) spa_vdev_exit(spa, vd, txg, 0);
4535 
4536 	mutex_enter(&spa_namespace_lock);
4537 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4538 	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4539 	mutex_exit(&spa_namespace_lock);
4540 
4541 	return (0);
4542 }
4543 
4544 /*
4545  * Attach a device to a mirror.  The arguments are the path to any device
4546  * in the mirror, and the nvroot for the new device.  If the path specifies
4547  * a device that is not mirrored, we automatically insert the mirror vdev.
4548  *
4549  * If 'replacing' is specified, the new device is intended to replace the
4550  * existing device; in this case the two devices are made into their own
4551  * mirror using the 'replacing' vdev, which is functionally identical to
4552  * the mirror vdev (it actually reuses all the same ops) but has a few
4553  * extra rules: you can't attach to it after it's been created, and upon
4554  * completion of resilvering, the first disk (the one being replaced)
4555  * is automatically detached.
4556  */
4557 int
4558 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4559 {
4560 	uint64_t txg, dtl_max_txg;
4561 	vdev_t *rvd = spa->spa_root_vdev;
4562 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4563 	vdev_ops_t *pvops;
4564 	char *oldvdpath, *newvdpath;
4565 	int newvd_isspare;
4566 	int error;
4567 
4568 	ASSERT(spa_writeable(spa));
4569 
4570 	txg = spa_vdev_enter(spa);
4571 
4572 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4573 
4574 	if (oldvd == NULL)
4575 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4576 
4577 	if (!oldvd->vdev_ops->vdev_op_leaf)
4578 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4579 
4580 	pvd = oldvd->vdev_parent;
4581 
4582 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4583 	    VDEV_ALLOC_ATTACH)) != 0)
4584 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4585 
4586 	if (newrootvd->vdev_children != 1)
4587 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4588 
4589 	newvd = newrootvd->vdev_child[0];
4590 
4591 	if (!newvd->vdev_ops->vdev_op_leaf)
4592 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4593 
4594 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4595 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4596 
4597 	/*
4598 	 * Spares can't replace logs
4599 	 */
4600 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4601 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4602 
4603 	if (!replacing) {
4604 		/*
4605 		 * For attach, the only allowable parent is a mirror or the root
4606 		 * vdev.
4607 		 */
4608 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4609 		    pvd->vdev_ops != &vdev_root_ops)
4610 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4611 
4612 		pvops = &vdev_mirror_ops;
4613 	} else {
4614 		/*
4615 		 * Active hot spares can only be replaced by inactive hot
4616 		 * spares.
4617 		 */
4618 		if (pvd->vdev_ops == &vdev_spare_ops &&
4619 		    oldvd->vdev_isspare &&
4620 		    !spa_has_spare(spa, newvd->vdev_guid))
4621 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4622 
4623 		/*
4624 		 * If the source is a hot spare, and the parent isn't already a
4625 		 * spare, then we want to create a new hot spare.  Otherwise, we
4626 		 * want to create a replacing vdev.  The user is not allowed to
4627 		 * attach to a spared vdev child unless the 'isspare' state is
4628 		 * the same (spare replaces spare, non-spare replaces
4629 		 * non-spare).
4630 		 */
4631 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4632 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4633 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4634 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4635 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4636 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4637 		}
4638 
4639 		if (newvd->vdev_isspare)
4640 			pvops = &vdev_spare_ops;
4641 		else
4642 			pvops = &vdev_replacing_ops;
4643 	}
4644 
4645 	/*
4646 	 * Make sure the new device is big enough.
4647 	 */
4648 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4649 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4650 
4651 	/*
4652 	 * The new device cannot have a higher alignment requirement
4653 	 * than the top-level vdev.
4654 	 */
4655 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4656 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4657 
4658 	/*
4659 	 * If this is an in-place replacement, update oldvd's path and devid
4660 	 * to make it distinguishable from newvd, and unopenable from now on.
4661 	 */
4662 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4663 		spa_strfree(oldvd->vdev_path);
4664 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4665 		    KM_SLEEP);
4666 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4667 		    newvd->vdev_path, "old");
4668 		if (oldvd->vdev_devid != NULL) {
4669 			spa_strfree(oldvd->vdev_devid);
4670 			oldvd->vdev_devid = NULL;
4671 		}
4672 	}
4673 
4674 	/* mark the device being resilvered */
4675 	newvd->vdev_resilver_txg = txg;
4676 
4677 	/*
4678 	 * If the parent is not a mirror, or if we're replacing, insert the new
4679 	 * mirror/replacing/spare vdev above oldvd.
4680 	 */
4681 	if (pvd->vdev_ops != pvops)
4682 		pvd = vdev_add_parent(oldvd, pvops);
4683 
4684 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4685 	ASSERT(pvd->vdev_ops == pvops);
4686 	ASSERT(oldvd->vdev_parent == pvd);
4687 
4688 	/*
4689 	 * Extract the new device from its root and add it to pvd.
4690 	 */
4691 	vdev_remove_child(newrootvd, newvd);
4692 	newvd->vdev_id = pvd->vdev_children;
4693 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4694 	vdev_add_child(pvd, newvd);
4695 
4696 	tvd = newvd->vdev_top;
4697 	ASSERT(pvd->vdev_top == tvd);
4698 	ASSERT(tvd->vdev_parent == rvd);
4699 
4700 	vdev_config_dirty(tvd);
4701 
4702 	/*
4703 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4704 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4705 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4706 	 */
4707 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4708 
4709 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4710 	    dtl_max_txg - TXG_INITIAL);
4711 
4712 	if (newvd->vdev_isspare) {
4713 		spa_spare_activate(newvd);
4714 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4715 	}
4716 
4717 	oldvdpath = spa_strdup(oldvd->vdev_path);
4718 	newvdpath = spa_strdup(newvd->vdev_path);
4719 	newvd_isspare = newvd->vdev_isspare;
4720 
4721 	/*
4722 	 * Mark newvd's DTL dirty in this txg.
4723 	 */
4724 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4725 
4726 	/*
4727 	 * Schedule the resilver to restart in the future. We do this to
4728 	 * ensure that dmu_sync-ed blocks have been stitched into the
4729 	 * respective datasets.
4730 	 */
4731 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4732 
4733 	if (spa->spa_bootfs)
4734 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4735 
4736 	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4737 
4738 	/*
4739 	 * Commit the config
4740 	 */
4741 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4742 
4743 	spa_history_log_internal(spa, "vdev attach", NULL,
4744 	    "%s vdev=%s %s vdev=%s",
4745 	    replacing && newvd_isspare ? "spare in" :
4746 	    replacing ? "replace" : "attach", newvdpath,
4747 	    replacing ? "for" : "to", oldvdpath);
4748 
4749 	spa_strfree(oldvdpath);
4750 	spa_strfree(newvdpath);
4751 
4752 	return (0);
4753 }
4754 
4755 /*
4756  * Detach a device from a mirror or replacing vdev.
4757  *
4758  * If 'replace_done' is specified, only detach if the parent
4759  * is a replacing vdev.
4760  */
4761 int
4762 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4763 {
4764 	uint64_t txg;
4765 	int error;
4766 	vdev_t *rvd = spa->spa_root_vdev;
4767 	vdev_t *vd, *pvd, *cvd, *tvd;
4768 	boolean_t unspare = B_FALSE;
4769 	uint64_t unspare_guid = 0;
4770 	char *vdpath;
4771 
4772 	ASSERT(spa_writeable(spa));
4773 
4774 	txg = spa_vdev_enter(spa);
4775 
4776 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4777 
4778 	if (vd == NULL)
4779 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4780 
4781 	if (!vd->vdev_ops->vdev_op_leaf)
4782 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4783 
4784 	pvd = vd->vdev_parent;
4785 
4786 	/*
4787 	 * If the parent/child relationship is not as expected, don't do it.
4788 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4789 	 * vdev that's replacing B with C.  The user's intent in replacing
4790 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4791 	 * the replace by detaching C, the expected behavior is to end up
4792 	 * M(A,B).  But suppose that right after deciding to detach C,
4793 	 * the replacement of B completes.  We would have M(A,C), and then
4794 	 * ask to detach C, which would leave us with just A -- not what
4795 	 * the user wanted.  To prevent this, we make sure that the
4796 	 * parent/child relationship hasn't changed -- in this example,
4797 	 * that C's parent is still the replacing vdev R.
4798 	 */
4799 	if (pvd->vdev_guid != pguid && pguid != 0)
4800 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4801 
4802 	/*
4803 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4804 	 */
4805 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4806 	    pvd->vdev_ops != &vdev_spare_ops)
4807 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4808 
4809 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4810 	    spa_version(spa) >= SPA_VERSION_SPARES);
4811 
4812 	/*
4813 	 * Only mirror, replacing, and spare vdevs support detach.
4814 	 */
4815 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4816 	    pvd->vdev_ops != &vdev_mirror_ops &&
4817 	    pvd->vdev_ops != &vdev_spare_ops)
4818 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4819 
4820 	/*
4821 	 * If this device has the only valid copy of some data,
4822 	 * we cannot safely detach it.
4823 	 */
4824 	if (vdev_dtl_required(vd))
4825 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4826 
4827 	ASSERT(pvd->vdev_children >= 2);
4828 
4829 	/*
4830 	 * If we are detaching the second disk from a replacing vdev, then
4831 	 * check to see if we changed the original vdev's path to have "/old"
4832 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4833 	 */
4834 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4835 	    vd->vdev_path != NULL) {
4836 		size_t len = strlen(vd->vdev_path);
4837 
4838 		for (int c = 0; c < pvd->vdev_children; c++) {
4839 			cvd = pvd->vdev_child[c];
4840 
4841 			if (cvd == vd || cvd->vdev_path == NULL)
4842 				continue;
4843 
4844 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4845 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4846 				spa_strfree(cvd->vdev_path);
4847 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4848 				break;
4849 			}
4850 		}
4851 	}
4852 
4853 	/*
4854 	 * If we are detaching the original disk from a spare, then it implies
4855 	 * that the spare should become a real disk, and be removed from the
4856 	 * active spare list for the pool.
4857 	 */
4858 	if (pvd->vdev_ops == &vdev_spare_ops &&
4859 	    vd->vdev_id == 0 &&
4860 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4861 		unspare = B_TRUE;
4862 
4863 	/*
4864 	 * Erase the disk labels so the disk can be used for other things.
4865 	 * This must be done after all other error cases are handled,
4866 	 * but before we disembowel vd (so we can still do I/O to it).
4867 	 * But if we can't do it, don't treat the error as fatal --
4868 	 * it may be that the unwritability of the disk is the reason
4869 	 * it's being detached!
4870 	 */
4871 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4872 
4873 	/*
4874 	 * Remove vd from its parent and compact the parent's children.
4875 	 */
4876 	vdev_remove_child(pvd, vd);
4877 	vdev_compact_children(pvd);
4878 
4879 	/*
4880 	 * Remember one of the remaining children so we can get tvd below.
4881 	 */
4882 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4883 
4884 	/*
4885 	 * If we need to remove the remaining child from the list of hot spares,
4886 	 * do it now, marking the vdev as no longer a spare in the process.
4887 	 * We must do this before vdev_remove_parent(), because that can
4888 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4889 	 * reason, we must remove the spare now, in the same txg as the detach;
4890 	 * otherwise someone could attach a new sibling, change the GUID, and
4891 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4892 	 */
4893 	if (unspare) {
4894 		ASSERT(cvd->vdev_isspare);
4895 		spa_spare_remove(cvd);
4896 		unspare_guid = cvd->vdev_guid;
4897 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4898 		cvd->vdev_unspare = B_TRUE;
4899 	}
4900 
4901 	/*
4902 	 * If the parent mirror/replacing vdev only has one child,
4903 	 * the parent is no longer needed.  Remove it from the tree.
4904 	 */
4905 	if (pvd->vdev_children == 1) {
4906 		if (pvd->vdev_ops == &vdev_spare_ops)
4907 			cvd->vdev_unspare = B_FALSE;
4908 		vdev_remove_parent(cvd);
4909 	}
4910 
4911 
4912 	/*
4913 	 * We don't set tvd until now because the parent we just removed
4914 	 * may have been the previous top-level vdev.
4915 	 */
4916 	tvd = cvd->vdev_top;
4917 	ASSERT(tvd->vdev_parent == rvd);
4918 
4919 	/*
4920 	 * Reevaluate the parent vdev state.
4921 	 */
4922 	vdev_propagate_state(cvd);
4923 
4924 	/*
4925 	 * If the 'autoexpand' property is set on the pool then automatically
4926 	 * try to expand the size of the pool. For example if the device we
4927 	 * just detached was smaller than the others, it may be possible to
4928 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4929 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4930 	 */
4931 	if (spa->spa_autoexpand) {
4932 		vdev_reopen(tvd);
4933 		vdev_expand(tvd, txg);
4934 	}
4935 
4936 	vdev_config_dirty(tvd);
4937 
4938 	/*
4939 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4940 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4941 	 * But first make sure we're not on any *other* txg's DTL list, to
4942 	 * prevent vd from being accessed after it's freed.
4943 	 */
4944 	vdpath = spa_strdup(vd->vdev_path);
4945 	for (int t = 0; t < TXG_SIZE; t++)
4946 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4947 	vd->vdev_detached = B_TRUE;
4948 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4949 
4950 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4951 
4952 	/* hang on to the spa before we release the lock */
4953 	spa_open_ref(spa, FTAG);
4954 
4955 	error = spa_vdev_exit(spa, vd, txg, 0);
4956 
4957 	spa_history_log_internal(spa, "detach", NULL,
4958 	    "vdev=%s", vdpath);
4959 	spa_strfree(vdpath);
4960 
4961 	/*
4962 	 * If this was the removal of the original device in a hot spare vdev,
4963 	 * then we want to go through and remove the device from the hot spare
4964 	 * list of every other pool.
4965 	 */
4966 	if (unspare) {
4967 		spa_t *altspa = NULL;
4968 
4969 		mutex_enter(&spa_namespace_lock);
4970 		while ((altspa = spa_next(altspa)) != NULL) {
4971 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4972 			    altspa == spa)
4973 				continue;
4974 
4975 			spa_open_ref(altspa, FTAG);
4976 			mutex_exit(&spa_namespace_lock);
4977 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4978 			mutex_enter(&spa_namespace_lock);
4979 			spa_close(altspa, FTAG);
4980 		}
4981 		mutex_exit(&spa_namespace_lock);
4982 
4983 		/* search the rest of the vdevs for spares to remove */
4984 		spa_vdev_resilver_done(spa);
4985 	}
4986 
4987 	/* all done with the spa; OK to release */
4988 	mutex_enter(&spa_namespace_lock);
4989 	spa_close(spa, FTAG);
4990 	mutex_exit(&spa_namespace_lock);
4991 
4992 	return (error);
4993 }
4994 
4995 /*
4996  * Split a set of devices from their mirrors, and create a new pool from them.
4997  */
4998 int
4999 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5000     nvlist_t *props, boolean_t exp)
5001 {
5002 	int error = 0;
5003 	uint64_t txg, *glist;
5004 	spa_t *newspa;
5005 	uint_t c, children, lastlog;
5006 	nvlist_t **child, *nvl, *tmp;
5007 	dmu_tx_t *tx;
5008 	char *altroot = NULL;
5009 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5010 	boolean_t activate_slog;
5011 
5012 	ASSERT(spa_writeable(spa));
5013 
5014 	txg = spa_vdev_enter(spa);
5015 
5016 	/* clear the log and flush everything up to now */
5017 	activate_slog = spa_passivate_log(spa);
5018 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5019 	error = spa_offline_log(spa);
5020 	txg = spa_vdev_config_enter(spa);
5021 
5022 	if (activate_slog)
5023 		spa_activate_log(spa);
5024 
5025 	if (error != 0)
5026 		return (spa_vdev_exit(spa, NULL, txg, error));
5027 
5028 	/* check new spa name before going any further */
5029 	if (spa_lookup(newname) != NULL)
5030 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5031 
5032 	/*
5033 	 * scan through all the children to ensure they're all mirrors
5034 	 */
5035 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5036 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5037 	    &children) != 0)
5038 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5039 
5040 	/* first, check to ensure we've got the right child count */
5041 	rvd = spa->spa_root_vdev;
5042 	lastlog = 0;
5043 	for (c = 0; c < rvd->vdev_children; c++) {
5044 		vdev_t *vd = rvd->vdev_child[c];
5045 
5046 		/* don't count the holes & logs as children */
5047 		if (vd->vdev_islog || vd->vdev_ishole) {
5048 			if (lastlog == 0)
5049 				lastlog = c;
5050 			continue;
5051 		}
5052 
5053 		lastlog = 0;
5054 	}
5055 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5056 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5057 
5058 	/* next, ensure no spare or cache devices are part of the split */
5059 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5060 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5061 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5062 
5063 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5064 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5065 
5066 	/* then, loop over each vdev and validate it */
5067 	for (c = 0; c < children; c++) {
5068 		uint64_t is_hole = 0;
5069 
5070 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5071 		    &is_hole);
5072 
5073 		if (is_hole != 0) {
5074 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5075 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5076 				continue;
5077 			} else {
5078 				error = SET_ERROR(EINVAL);
5079 				break;
5080 			}
5081 		}
5082 
5083 		/* which disk is going to be split? */
5084 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5085 		    &glist[c]) != 0) {
5086 			error = SET_ERROR(EINVAL);
5087 			break;
5088 		}
5089 
5090 		/* look it up in the spa */
5091 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5092 		if (vml[c] == NULL) {
5093 			error = SET_ERROR(ENODEV);
5094 			break;
5095 		}
5096 
5097 		/* make sure there's nothing stopping the split */
5098 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5099 		    vml[c]->vdev_islog ||
5100 		    vml[c]->vdev_ishole ||
5101 		    vml[c]->vdev_isspare ||
5102 		    vml[c]->vdev_isl2cache ||
5103 		    !vdev_writeable(vml[c]) ||
5104 		    vml[c]->vdev_children != 0 ||
5105 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5106 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5107 			error = SET_ERROR(EINVAL);
5108 			break;
5109 		}
5110 
5111 		if (vdev_dtl_required(vml[c])) {
5112 			error = SET_ERROR(EBUSY);
5113 			break;
5114 		}
5115 
5116 		/* we need certain info from the top level */
5117 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5118 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5119 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5120 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5121 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5122 		    vml[c]->vdev_top->vdev_asize) == 0);
5123 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5124 		    vml[c]->vdev_top->vdev_ashift) == 0);
5125 
5126 		/* transfer per-vdev ZAPs */
5127 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5128 		VERIFY0(nvlist_add_uint64(child[c],
5129 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5130 
5131 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5132 		VERIFY0(nvlist_add_uint64(child[c],
5133 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5134 		    vml[c]->vdev_parent->vdev_top_zap));
5135 	}
5136 
5137 	if (error != 0) {
5138 		kmem_free(vml, children * sizeof (vdev_t *));
5139 		kmem_free(glist, children * sizeof (uint64_t));
5140 		return (spa_vdev_exit(spa, NULL, txg, error));
5141 	}
5142 
5143 	/* stop writers from using the disks */
5144 	for (c = 0; c < children; c++) {
5145 		if (vml[c] != NULL)
5146 			vml[c]->vdev_offline = B_TRUE;
5147 	}
5148 	vdev_reopen(spa->spa_root_vdev);
5149 
5150 	/*
5151 	 * Temporarily record the splitting vdevs in the spa config.  This
5152 	 * will disappear once the config is regenerated.
5153 	 */
5154 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5155 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5156 	    glist, children) == 0);
5157 	kmem_free(glist, children * sizeof (uint64_t));
5158 
5159 	mutex_enter(&spa->spa_props_lock);
5160 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5161 	    nvl) == 0);
5162 	mutex_exit(&spa->spa_props_lock);
5163 	spa->spa_config_splitting = nvl;
5164 	vdev_config_dirty(spa->spa_root_vdev);
5165 
5166 	/* configure and create the new pool */
5167 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5168 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5169 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5170 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5171 	    spa_version(spa)) == 0);
5172 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5173 	    spa->spa_config_txg) == 0);
5174 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5175 	    spa_generate_guid(NULL)) == 0);
5176 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5177 	(void) nvlist_lookup_string(props,
5178 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5179 
5180 	/* add the new pool to the namespace */
5181 	newspa = spa_add(newname, config, altroot);
5182 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5183 	newspa->spa_config_txg = spa->spa_config_txg;
5184 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5185 
5186 	/* release the spa config lock, retaining the namespace lock */
5187 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5188 
5189 	if (zio_injection_enabled)
5190 		zio_handle_panic_injection(spa, FTAG, 1);
5191 
5192 	spa_activate(newspa, spa_mode_global);
5193 	spa_async_suspend(newspa);
5194 
5195 	/* create the new pool from the disks of the original pool */
5196 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5197 	if (error)
5198 		goto out;
5199 
5200 	/* if that worked, generate a real config for the new pool */
5201 	if (newspa->spa_root_vdev != NULL) {
5202 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5203 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5204 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5205 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5206 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5207 		    B_TRUE));
5208 	}
5209 
5210 	/* set the props */
5211 	if (props != NULL) {
5212 		spa_configfile_set(newspa, props, B_FALSE);
5213 		error = spa_prop_set(newspa, props);
5214 		if (error)
5215 			goto out;
5216 	}
5217 
5218 	/* flush everything */
5219 	txg = spa_vdev_config_enter(newspa);
5220 	vdev_config_dirty(newspa->spa_root_vdev);
5221 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5222 
5223 	if (zio_injection_enabled)
5224 		zio_handle_panic_injection(spa, FTAG, 2);
5225 
5226 	spa_async_resume(newspa);
5227 
5228 	/* finally, update the original pool's config */
5229 	txg = spa_vdev_config_enter(spa);
5230 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5231 	error = dmu_tx_assign(tx, TXG_WAIT);
5232 	if (error != 0)
5233 		dmu_tx_abort(tx);
5234 	for (c = 0; c < children; c++) {
5235 		if (vml[c] != NULL) {
5236 			vdev_split(vml[c]);
5237 			if (error == 0)
5238 				spa_history_log_internal(spa, "detach", tx,
5239 				    "vdev=%s", vml[c]->vdev_path);
5240 
5241 			vdev_free(vml[c]);
5242 		}
5243 	}
5244 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5245 	vdev_config_dirty(spa->spa_root_vdev);
5246 	spa->spa_config_splitting = NULL;
5247 	nvlist_free(nvl);
5248 	if (error == 0)
5249 		dmu_tx_commit(tx);
5250 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5251 
5252 	if (zio_injection_enabled)
5253 		zio_handle_panic_injection(spa, FTAG, 3);
5254 
5255 	/* split is complete; log a history record */
5256 	spa_history_log_internal(newspa, "split", NULL,
5257 	    "from pool %s", spa_name(spa));
5258 
5259 	kmem_free(vml, children * sizeof (vdev_t *));
5260 
5261 	/* if we're not going to mount the filesystems in userland, export */
5262 	if (exp)
5263 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5264 		    B_FALSE, B_FALSE);
5265 
5266 	return (error);
5267 
5268 out:
5269 	spa_unload(newspa);
5270 	spa_deactivate(newspa);
5271 	spa_remove(newspa);
5272 
5273 	txg = spa_vdev_config_enter(spa);
5274 
5275 	/* re-online all offlined disks */
5276 	for (c = 0; c < children; c++) {
5277 		if (vml[c] != NULL)
5278 			vml[c]->vdev_offline = B_FALSE;
5279 	}
5280 	vdev_reopen(spa->spa_root_vdev);
5281 
5282 	nvlist_free(spa->spa_config_splitting);
5283 	spa->spa_config_splitting = NULL;
5284 	(void) spa_vdev_exit(spa, NULL, txg, error);
5285 
5286 	kmem_free(vml, children * sizeof (vdev_t *));
5287 	return (error);
5288 }
5289 
5290 static nvlist_t *
5291 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5292 {
5293 	for (int i = 0; i < count; i++) {
5294 		uint64_t guid;
5295 
5296 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5297 		    &guid) == 0);
5298 
5299 		if (guid == target_guid)
5300 			return (nvpp[i]);
5301 	}
5302 
5303 	return (NULL);
5304 }
5305 
5306 static void
5307 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5308 	nvlist_t *dev_to_remove)
5309 {
5310 	nvlist_t **newdev = NULL;
5311 
5312 	if (count > 1)
5313 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5314 
5315 	for (int i = 0, j = 0; i < count; i++) {
5316 		if (dev[i] == dev_to_remove)
5317 			continue;
5318 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5319 	}
5320 
5321 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5322 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5323 
5324 	for (int i = 0; i < count - 1; i++)
5325 		nvlist_free(newdev[i]);
5326 
5327 	if (count > 1)
5328 		kmem_free(newdev, (count - 1) * sizeof (void *));
5329 }
5330 
5331 /*
5332  * Evacuate the device.
5333  */
5334 static int
5335 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5336 {
5337 	uint64_t txg;
5338 	int error = 0;
5339 
5340 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5341 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5342 	ASSERT(vd == vd->vdev_top);
5343 
5344 	/*
5345 	 * Evacuate the device.  We don't hold the config lock as writer
5346 	 * since we need to do I/O but we do keep the
5347 	 * spa_namespace_lock held.  Once this completes the device
5348 	 * should no longer have any blocks allocated on it.
5349 	 */
5350 	if (vd->vdev_islog) {
5351 		if (vd->vdev_stat.vs_alloc != 0)
5352 			error = spa_offline_log(spa);
5353 	} else {
5354 		error = SET_ERROR(ENOTSUP);
5355 	}
5356 
5357 	if (error)
5358 		return (error);
5359 
5360 	/*
5361 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5362 	 * associated with this vdev, and wait for these changes to sync.
5363 	 */
5364 	ASSERT0(vd->vdev_stat.vs_alloc);
5365 	txg = spa_vdev_config_enter(spa);
5366 	vd->vdev_removing = B_TRUE;
5367 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5368 	vdev_config_dirty(vd);
5369 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5370 
5371 	return (0);
5372 }
5373 
5374 /*
5375  * Complete the removal by cleaning up the namespace.
5376  */
5377 static void
5378 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5379 {
5380 	vdev_t *rvd = spa->spa_root_vdev;
5381 	uint64_t id = vd->vdev_id;
5382 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5383 
5384 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5385 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5386 	ASSERT(vd == vd->vdev_top);
5387 
5388 	/*
5389 	 * Only remove any devices which are empty.
5390 	 */
5391 	if (vd->vdev_stat.vs_alloc != 0)
5392 		return;
5393 
5394 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5395 
5396 	if (list_link_active(&vd->vdev_state_dirty_node))
5397 		vdev_state_clean(vd);
5398 	if (list_link_active(&vd->vdev_config_dirty_node))
5399 		vdev_config_clean(vd);
5400 
5401 	vdev_free(vd);
5402 
5403 	if (last_vdev) {
5404 		vdev_compact_children(rvd);
5405 	} else {
5406 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5407 		vdev_add_child(rvd, vd);
5408 	}
5409 	vdev_config_dirty(rvd);
5410 
5411 	/*
5412 	 * Reassess the health of our root vdev.
5413 	 */
5414 	vdev_reopen(rvd);
5415 }
5416 
5417 /*
5418  * Remove a device from the pool -
5419  *
5420  * Removing a device from the vdev namespace requires several steps
5421  * and can take a significant amount of time.  As a result we use
5422  * the spa_vdev_config_[enter/exit] functions which allow us to
5423  * grab and release the spa_config_lock while still holding the namespace
5424  * lock.  During each step the configuration is synced out.
5425  *
5426  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5427  * devices.
5428  */
5429 int
5430 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5431 {
5432 	vdev_t *vd;
5433 	metaslab_group_t *mg;
5434 	nvlist_t **spares, **l2cache, *nv;
5435 	uint64_t txg = 0;
5436 	uint_t nspares, nl2cache;
5437 	int error = 0;
5438 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5439 
5440 	ASSERT(spa_writeable(spa));
5441 
5442 	if (!locked)
5443 		txg = spa_vdev_enter(spa);
5444 
5445 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5446 
5447 	if (spa->spa_spares.sav_vdevs != NULL &&
5448 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5449 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5450 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5451 		/*
5452 		 * Only remove the hot spare if it's not currently in use
5453 		 * in this pool.
5454 		 */
5455 		if (vd == NULL || unspare) {
5456 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5457 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5458 			spa_load_spares(spa);
5459 			spa->spa_spares.sav_sync = B_TRUE;
5460 		} else {
5461 			error = SET_ERROR(EBUSY);
5462 		}
5463 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5464 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5465 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5466 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5467 		/*
5468 		 * Cache devices can always be removed.
5469 		 */
5470 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5471 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5472 		spa_load_l2cache(spa);
5473 		spa->spa_l2cache.sav_sync = B_TRUE;
5474 	} else if (vd != NULL && vd->vdev_islog) {
5475 		ASSERT(!locked);
5476 		ASSERT(vd == vd->vdev_top);
5477 
5478 		mg = vd->vdev_mg;
5479 
5480 		/*
5481 		 * Stop allocating from this vdev.
5482 		 */
5483 		metaslab_group_passivate(mg);
5484 
5485 		/*
5486 		 * Wait for the youngest allocations and frees to sync,
5487 		 * and then wait for the deferral of those frees to finish.
5488 		 */
5489 		spa_vdev_config_exit(spa, NULL,
5490 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5491 
5492 		/*
5493 		 * Attempt to evacuate the vdev.
5494 		 */
5495 		error = spa_vdev_remove_evacuate(spa, vd);
5496 
5497 		txg = spa_vdev_config_enter(spa);
5498 
5499 		/*
5500 		 * If we couldn't evacuate the vdev, unwind.
5501 		 */
5502 		if (error) {
5503 			metaslab_group_activate(mg);
5504 			return (spa_vdev_exit(spa, NULL, txg, error));
5505 		}
5506 
5507 		/*
5508 		 * Clean up the vdev namespace.
5509 		 */
5510 		spa_vdev_remove_from_namespace(spa, vd);
5511 
5512 	} else if (vd != NULL) {
5513 		/*
5514 		 * Normal vdevs cannot be removed (yet).
5515 		 */
5516 		error = SET_ERROR(ENOTSUP);
5517 	} else {
5518 		/*
5519 		 * There is no vdev of any kind with the specified guid.
5520 		 */
5521 		error = SET_ERROR(ENOENT);
5522 	}
5523 
5524 	if (!locked)
5525 		return (spa_vdev_exit(spa, NULL, txg, error));
5526 
5527 	return (error);
5528 }
5529 
5530 /*
5531  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5532  * currently spared, so we can detach it.
5533  */
5534 static vdev_t *
5535 spa_vdev_resilver_done_hunt(vdev_t *vd)
5536 {
5537 	vdev_t *newvd, *oldvd;
5538 
5539 	for (int c = 0; c < vd->vdev_children; c++) {
5540 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5541 		if (oldvd != NULL)
5542 			return (oldvd);
5543 	}
5544 
5545 	/*
5546 	 * Check for a completed replacement.  We always consider the first
5547 	 * vdev in the list to be the oldest vdev, and the last one to be
5548 	 * the newest (see spa_vdev_attach() for how that works).  In
5549 	 * the case where the newest vdev is faulted, we will not automatically
5550 	 * remove it after a resilver completes.  This is OK as it will require
5551 	 * user intervention to determine which disk the admin wishes to keep.
5552 	 */
5553 	if (vd->vdev_ops == &vdev_replacing_ops) {
5554 		ASSERT(vd->vdev_children > 1);
5555 
5556 		newvd = vd->vdev_child[vd->vdev_children - 1];
5557 		oldvd = vd->vdev_child[0];
5558 
5559 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5560 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5561 		    !vdev_dtl_required(oldvd))
5562 			return (oldvd);
5563 	}
5564 
5565 	/*
5566 	 * Check for a completed resilver with the 'unspare' flag set.
5567 	 */
5568 	if (vd->vdev_ops == &vdev_spare_ops) {
5569 		vdev_t *first = vd->vdev_child[0];
5570 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5571 
5572 		if (last->vdev_unspare) {
5573 			oldvd = first;
5574 			newvd = last;
5575 		} else if (first->vdev_unspare) {
5576 			oldvd = last;
5577 			newvd = first;
5578 		} else {
5579 			oldvd = NULL;
5580 		}
5581 
5582 		if (oldvd != NULL &&
5583 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5584 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5585 		    !vdev_dtl_required(oldvd))
5586 			return (oldvd);
5587 
5588 		/*
5589 		 * If there are more than two spares attached to a disk,
5590 		 * and those spares are not required, then we want to
5591 		 * attempt to free them up now so that they can be used
5592 		 * by other pools.  Once we're back down to a single
5593 		 * disk+spare, we stop removing them.
5594 		 */
5595 		if (vd->vdev_children > 2) {
5596 			newvd = vd->vdev_child[1];
5597 
5598 			if (newvd->vdev_isspare && last->vdev_isspare &&
5599 			    vdev_dtl_empty(last, DTL_MISSING) &&
5600 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5601 			    !vdev_dtl_required(newvd))
5602 				return (newvd);
5603 		}
5604 	}
5605 
5606 	return (NULL);
5607 }
5608 
5609 static void
5610 spa_vdev_resilver_done(spa_t *spa)
5611 {
5612 	vdev_t *vd, *pvd, *ppvd;
5613 	uint64_t guid, sguid, pguid, ppguid;
5614 
5615 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5616 
5617 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5618 		pvd = vd->vdev_parent;
5619 		ppvd = pvd->vdev_parent;
5620 		guid = vd->vdev_guid;
5621 		pguid = pvd->vdev_guid;
5622 		ppguid = ppvd->vdev_guid;
5623 		sguid = 0;
5624 		/*
5625 		 * If we have just finished replacing a hot spared device, then
5626 		 * we need to detach the parent's first child (the original hot
5627 		 * spare) as well.
5628 		 */
5629 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5630 		    ppvd->vdev_children == 2) {
5631 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5632 			sguid = ppvd->vdev_child[1]->vdev_guid;
5633 		}
5634 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5635 
5636 		spa_config_exit(spa, SCL_ALL, FTAG);
5637 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5638 			return;
5639 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5640 			return;
5641 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5642 	}
5643 
5644 	spa_config_exit(spa, SCL_ALL, FTAG);
5645 }
5646 
5647 /*
5648  * Update the stored path or FRU for this vdev.
5649  */
5650 int
5651 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5652     boolean_t ispath)
5653 {
5654 	vdev_t *vd;
5655 	boolean_t sync = B_FALSE;
5656 
5657 	ASSERT(spa_writeable(spa));
5658 
5659 	spa_vdev_state_enter(spa, SCL_ALL);
5660 
5661 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5662 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5663 
5664 	if (!vd->vdev_ops->vdev_op_leaf)
5665 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5666 
5667 	if (ispath) {
5668 		if (strcmp(value, vd->vdev_path) != 0) {
5669 			spa_strfree(vd->vdev_path);
5670 			vd->vdev_path = spa_strdup(value);
5671 			sync = B_TRUE;
5672 		}
5673 	} else {
5674 		if (vd->vdev_fru == NULL) {
5675 			vd->vdev_fru = spa_strdup(value);
5676 			sync = B_TRUE;
5677 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5678 			spa_strfree(vd->vdev_fru);
5679 			vd->vdev_fru = spa_strdup(value);
5680 			sync = B_TRUE;
5681 		}
5682 	}
5683 
5684 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5685 }
5686 
5687 int
5688 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5689 {
5690 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5691 }
5692 
5693 int
5694 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5695 {
5696 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5697 }
5698 
5699 /*
5700  * ==========================================================================
5701  * SPA Scanning
5702  * ==========================================================================
5703  */
5704 
5705 int
5706 spa_scan_stop(spa_t *spa)
5707 {
5708 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5709 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5710 		return (SET_ERROR(EBUSY));
5711 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5712 }
5713 
5714 int
5715 spa_scan(spa_t *spa, pool_scan_func_t func)
5716 {
5717 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5718 
5719 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5720 		return (SET_ERROR(ENOTSUP));
5721 
5722 	/*
5723 	 * If a resilver was requested, but there is no DTL on a
5724 	 * writeable leaf device, we have nothing to do.
5725 	 */
5726 	if (func == POOL_SCAN_RESILVER &&
5727 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5728 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5729 		return (0);
5730 	}
5731 
5732 	return (dsl_scan(spa->spa_dsl_pool, func));
5733 }
5734 
5735 /*
5736  * ==========================================================================
5737  * SPA async task processing
5738  * ==========================================================================
5739  */
5740 
5741 static void
5742 spa_async_remove(spa_t *spa, vdev_t *vd)
5743 {
5744 	if (vd->vdev_remove_wanted) {
5745 		vd->vdev_remove_wanted = B_FALSE;
5746 		vd->vdev_delayed_close = B_FALSE;
5747 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5748 
5749 		/*
5750 		 * We want to clear the stats, but we don't want to do a full
5751 		 * vdev_clear() as that will cause us to throw away
5752 		 * degraded/faulted state as well as attempt to reopen the
5753 		 * device, all of which is a waste.
5754 		 */
5755 		vd->vdev_stat.vs_read_errors = 0;
5756 		vd->vdev_stat.vs_write_errors = 0;
5757 		vd->vdev_stat.vs_checksum_errors = 0;
5758 
5759 		vdev_state_dirty(vd->vdev_top);
5760 	}
5761 
5762 	for (int c = 0; c < vd->vdev_children; c++)
5763 		spa_async_remove(spa, vd->vdev_child[c]);
5764 }
5765 
5766 static void
5767 spa_async_probe(spa_t *spa, vdev_t *vd)
5768 {
5769 	if (vd->vdev_probe_wanted) {
5770 		vd->vdev_probe_wanted = B_FALSE;
5771 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5772 	}
5773 
5774 	for (int c = 0; c < vd->vdev_children; c++)
5775 		spa_async_probe(spa, vd->vdev_child[c]);
5776 }
5777 
5778 static void
5779 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5780 {
5781 	sysevent_id_t eid;
5782 	nvlist_t *attr;
5783 	char *physpath;
5784 
5785 	if (!spa->spa_autoexpand)
5786 		return;
5787 
5788 	for (int c = 0; c < vd->vdev_children; c++) {
5789 		vdev_t *cvd = vd->vdev_child[c];
5790 		spa_async_autoexpand(spa, cvd);
5791 	}
5792 
5793 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5794 		return;
5795 
5796 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5797 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5798 
5799 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5800 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5801 
5802 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5803 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5804 
5805 	nvlist_free(attr);
5806 	kmem_free(physpath, MAXPATHLEN);
5807 }
5808 
5809 static void
5810 spa_async_thread(spa_t *spa)
5811 {
5812 	int tasks;
5813 
5814 	ASSERT(spa->spa_sync_on);
5815 
5816 	mutex_enter(&spa->spa_async_lock);
5817 	tasks = spa->spa_async_tasks;
5818 	spa->spa_async_tasks = 0;
5819 	mutex_exit(&spa->spa_async_lock);
5820 
5821 	/*
5822 	 * See if the config needs to be updated.
5823 	 */
5824 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5825 		uint64_t old_space, new_space;
5826 
5827 		mutex_enter(&spa_namespace_lock);
5828 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5829 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5830 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5831 		mutex_exit(&spa_namespace_lock);
5832 
5833 		/*
5834 		 * If the pool grew as a result of the config update,
5835 		 * then log an internal history event.
5836 		 */
5837 		if (new_space != old_space) {
5838 			spa_history_log_internal(spa, "vdev online", NULL,
5839 			    "pool '%s' size: %llu(+%llu)",
5840 			    spa_name(spa), new_space, new_space - old_space);
5841 		}
5842 	}
5843 
5844 	/*
5845 	 * See if any devices need to be marked REMOVED.
5846 	 */
5847 	if (tasks & SPA_ASYNC_REMOVE) {
5848 		spa_vdev_state_enter(spa, SCL_NONE);
5849 		spa_async_remove(spa, spa->spa_root_vdev);
5850 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5851 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5852 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5853 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5854 		(void) spa_vdev_state_exit(spa, NULL, 0);
5855 	}
5856 
5857 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5858 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5859 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5860 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5861 	}
5862 
5863 	/*
5864 	 * See if any devices need to be probed.
5865 	 */
5866 	if (tasks & SPA_ASYNC_PROBE) {
5867 		spa_vdev_state_enter(spa, SCL_NONE);
5868 		spa_async_probe(spa, spa->spa_root_vdev);
5869 		(void) spa_vdev_state_exit(spa, NULL, 0);
5870 	}
5871 
5872 	/*
5873 	 * If any devices are done replacing, detach them.
5874 	 */
5875 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5876 		spa_vdev_resilver_done(spa);
5877 
5878 	/*
5879 	 * Kick off a resilver.
5880 	 */
5881 	if (tasks & SPA_ASYNC_RESILVER)
5882 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5883 
5884 	/*
5885 	 * Let the world know that we're done.
5886 	 */
5887 	mutex_enter(&spa->spa_async_lock);
5888 	spa->spa_async_thread = NULL;
5889 	cv_broadcast(&spa->spa_async_cv);
5890 	mutex_exit(&spa->spa_async_lock);
5891 	thread_exit();
5892 }
5893 
5894 void
5895 spa_async_suspend(spa_t *spa)
5896 {
5897 	mutex_enter(&spa->spa_async_lock);
5898 	spa->spa_async_suspended++;
5899 	while (spa->spa_async_thread != NULL)
5900 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5901 	mutex_exit(&spa->spa_async_lock);
5902 }
5903 
5904 void
5905 spa_async_resume(spa_t *spa)
5906 {
5907 	mutex_enter(&spa->spa_async_lock);
5908 	ASSERT(spa->spa_async_suspended != 0);
5909 	spa->spa_async_suspended--;
5910 	mutex_exit(&spa->spa_async_lock);
5911 }
5912 
5913 static boolean_t
5914 spa_async_tasks_pending(spa_t *spa)
5915 {
5916 	uint_t non_config_tasks;
5917 	uint_t config_task;
5918 	boolean_t config_task_suspended;
5919 
5920 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5921 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5922 	if (spa->spa_ccw_fail_time == 0) {
5923 		config_task_suspended = B_FALSE;
5924 	} else {
5925 		config_task_suspended =
5926 		    (gethrtime() - spa->spa_ccw_fail_time) <
5927 		    (zfs_ccw_retry_interval * NANOSEC);
5928 	}
5929 
5930 	return (non_config_tasks || (config_task && !config_task_suspended));
5931 }
5932 
5933 static void
5934 spa_async_dispatch(spa_t *spa)
5935 {
5936 	mutex_enter(&spa->spa_async_lock);
5937 	if (spa_async_tasks_pending(spa) &&
5938 	    !spa->spa_async_suspended &&
5939 	    spa->spa_async_thread == NULL &&
5940 	    rootdir != NULL)
5941 		spa->spa_async_thread = thread_create(NULL, 0,
5942 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5943 	mutex_exit(&spa->spa_async_lock);
5944 }
5945 
5946 void
5947 spa_async_request(spa_t *spa, int task)
5948 {
5949 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5950 	mutex_enter(&spa->spa_async_lock);
5951 	spa->spa_async_tasks |= task;
5952 	mutex_exit(&spa->spa_async_lock);
5953 }
5954 
5955 /*
5956  * ==========================================================================
5957  * SPA syncing routines
5958  * ==========================================================================
5959  */
5960 
5961 static int
5962 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5963 {
5964 	bpobj_t *bpo = arg;
5965 	bpobj_enqueue(bpo, bp, tx);
5966 	return (0);
5967 }
5968 
5969 static int
5970 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5971 {
5972 	zio_t *zio = arg;
5973 
5974 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5975 	    zio->io_flags));
5976 	return (0);
5977 }
5978 
5979 /*
5980  * Note: this simple function is not inlined to make it easier to dtrace the
5981  * amount of time spent syncing frees.
5982  */
5983 static void
5984 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5985 {
5986 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5987 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5988 	VERIFY(zio_wait(zio) == 0);
5989 }
5990 
5991 /*
5992  * Note: this simple function is not inlined to make it easier to dtrace the
5993  * amount of time spent syncing deferred frees.
5994  */
5995 static void
5996 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5997 {
5998 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5999 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6000 	    spa_free_sync_cb, zio, tx), ==, 0);
6001 	VERIFY0(zio_wait(zio));
6002 }
6003 
6004 
6005 static void
6006 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6007 {
6008 	char *packed = NULL;
6009 	size_t bufsize;
6010 	size_t nvsize = 0;
6011 	dmu_buf_t *db;
6012 
6013 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6014 
6015 	/*
6016 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6017 	 * information.  This avoids the dmu_buf_will_dirty() path and
6018 	 * saves us a pre-read to get data we don't actually care about.
6019 	 */
6020 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6021 	packed = kmem_alloc(bufsize, KM_SLEEP);
6022 
6023 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6024 	    KM_SLEEP) == 0);
6025 	bzero(packed + nvsize, bufsize - nvsize);
6026 
6027 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6028 
6029 	kmem_free(packed, bufsize);
6030 
6031 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6032 	dmu_buf_will_dirty(db, tx);
6033 	*(uint64_t *)db->db_data = nvsize;
6034 	dmu_buf_rele(db, FTAG);
6035 }
6036 
6037 static void
6038 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6039     const char *config, const char *entry)
6040 {
6041 	nvlist_t *nvroot;
6042 	nvlist_t **list;
6043 	int i;
6044 
6045 	if (!sav->sav_sync)
6046 		return;
6047 
6048 	/*
6049 	 * Update the MOS nvlist describing the list of available devices.
6050 	 * spa_validate_aux() will have already made sure this nvlist is
6051 	 * valid and the vdevs are labeled appropriately.
6052 	 */
6053 	if (sav->sav_object == 0) {
6054 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6055 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6056 		    sizeof (uint64_t), tx);
6057 		VERIFY(zap_update(spa->spa_meta_objset,
6058 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6059 		    &sav->sav_object, tx) == 0);
6060 	}
6061 
6062 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6063 	if (sav->sav_count == 0) {
6064 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6065 	} else {
6066 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6067 		for (i = 0; i < sav->sav_count; i++)
6068 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6069 			    B_FALSE, VDEV_CONFIG_L2CACHE);
6070 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6071 		    sav->sav_count) == 0);
6072 		for (i = 0; i < sav->sav_count; i++)
6073 			nvlist_free(list[i]);
6074 		kmem_free(list, sav->sav_count * sizeof (void *));
6075 	}
6076 
6077 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6078 	nvlist_free(nvroot);
6079 
6080 	sav->sav_sync = B_FALSE;
6081 }
6082 
6083 /*
6084  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6085  * The all-vdev ZAP must be empty.
6086  */
6087 static void
6088 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6089 {
6090 	spa_t *spa = vd->vdev_spa;
6091 	if (vd->vdev_top_zap != 0) {
6092 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6093 		    vd->vdev_top_zap, tx));
6094 	}
6095 	if (vd->vdev_leaf_zap != 0) {
6096 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6097 		    vd->vdev_leaf_zap, tx));
6098 	}
6099 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6100 		spa_avz_build(vd->vdev_child[i], avz, tx);
6101 	}
6102 }
6103 
6104 static void
6105 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6106 {
6107 	nvlist_t *config;
6108 
6109 	/*
6110 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6111 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6112 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6113 	 * need to rebuild the AVZ although the config may not be dirty.
6114 	 */
6115 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6116 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6117 		return;
6118 
6119 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6120 
6121 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6122 	    spa->spa_all_vdev_zaps != 0);
6123 
6124 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6125 		/* Make and build the new AVZ */
6126 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6127 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6128 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6129 
6130 		/* Diff old AVZ with new one */
6131 		zap_cursor_t zc;
6132 		zap_attribute_t za;
6133 
6134 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6135 		    spa->spa_all_vdev_zaps);
6136 		    zap_cursor_retrieve(&zc, &za) == 0;
6137 		    zap_cursor_advance(&zc)) {
6138 			uint64_t vdzap = za.za_first_integer;
6139 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6140 			    vdzap) == ENOENT) {
6141 				/*
6142 				 * ZAP is listed in old AVZ but not in new one;
6143 				 * destroy it
6144 				 */
6145 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6146 				    tx));
6147 			}
6148 		}
6149 
6150 		zap_cursor_fini(&zc);
6151 
6152 		/* Destroy the old AVZ */
6153 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6154 		    spa->spa_all_vdev_zaps, tx));
6155 
6156 		/* Replace the old AVZ in the dir obj with the new one */
6157 		VERIFY0(zap_update(spa->spa_meta_objset,
6158 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6159 		    sizeof (new_avz), 1, &new_avz, tx));
6160 
6161 		spa->spa_all_vdev_zaps = new_avz;
6162 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6163 		zap_cursor_t zc;
6164 		zap_attribute_t za;
6165 
6166 		/* Walk through the AVZ and destroy all listed ZAPs */
6167 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6168 		    spa->spa_all_vdev_zaps);
6169 		    zap_cursor_retrieve(&zc, &za) == 0;
6170 		    zap_cursor_advance(&zc)) {
6171 			uint64_t zap = za.za_first_integer;
6172 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6173 		}
6174 
6175 		zap_cursor_fini(&zc);
6176 
6177 		/* Destroy and unlink the AVZ itself */
6178 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6179 		    spa->spa_all_vdev_zaps, tx));
6180 		VERIFY0(zap_remove(spa->spa_meta_objset,
6181 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6182 		spa->spa_all_vdev_zaps = 0;
6183 	}
6184 
6185 	if (spa->spa_all_vdev_zaps == 0) {
6186 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6187 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6188 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6189 	}
6190 	spa->spa_avz_action = AVZ_ACTION_NONE;
6191 
6192 	/* Create ZAPs for vdevs that don't have them. */
6193 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6194 
6195 	config = spa_config_generate(spa, spa->spa_root_vdev,
6196 	    dmu_tx_get_txg(tx), B_FALSE);
6197 
6198 	/*
6199 	 * If we're upgrading the spa version then make sure that
6200 	 * the config object gets updated with the correct version.
6201 	 */
6202 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6203 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6204 		    spa->spa_uberblock.ub_version);
6205 
6206 	spa_config_exit(spa, SCL_STATE, FTAG);
6207 
6208 	nvlist_free(spa->spa_config_syncing);
6209 	spa->spa_config_syncing = config;
6210 
6211 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6212 }
6213 
6214 static void
6215 spa_sync_version(void *arg, dmu_tx_t *tx)
6216 {
6217 	uint64_t *versionp = arg;
6218 	uint64_t version = *versionp;
6219 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6220 
6221 	/*
6222 	 * Setting the version is special cased when first creating the pool.
6223 	 */
6224 	ASSERT(tx->tx_txg != TXG_INITIAL);
6225 
6226 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6227 	ASSERT(version >= spa_version(spa));
6228 
6229 	spa->spa_uberblock.ub_version = version;
6230 	vdev_config_dirty(spa->spa_root_vdev);
6231 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6232 }
6233 
6234 /*
6235  * Set zpool properties.
6236  */
6237 static void
6238 spa_sync_props(void *arg, dmu_tx_t *tx)
6239 {
6240 	nvlist_t *nvp = arg;
6241 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6242 	objset_t *mos = spa->spa_meta_objset;
6243 	nvpair_t *elem = NULL;
6244 
6245 	mutex_enter(&spa->spa_props_lock);
6246 
6247 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6248 		uint64_t intval;
6249 		char *strval, *fname;
6250 		zpool_prop_t prop;
6251 		const char *propname;
6252 		zprop_type_t proptype;
6253 		spa_feature_t fid;
6254 
6255 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6256 		case ZPROP_INVAL:
6257 			/*
6258 			 * We checked this earlier in spa_prop_validate().
6259 			 */
6260 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6261 
6262 			fname = strchr(nvpair_name(elem), '@') + 1;
6263 			VERIFY0(zfeature_lookup_name(fname, &fid));
6264 
6265 			spa_feature_enable(spa, fid, tx);
6266 			spa_history_log_internal(spa, "set", tx,
6267 			    "%s=enabled", nvpair_name(elem));
6268 			break;
6269 
6270 		case ZPOOL_PROP_VERSION:
6271 			intval = fnvpair_value_uint64(elem);
6272 			/*
6273 			 * The version is synced seperatly before other
6274 			 * properties and should be correct by now.
6275 			 */
6276 			ASSERT3U(spa_version(spa), >=, intval);
6277 			break;
6278 
6279 		case ZPOOL_PROP_ALTROOT:
6280 			/*
6281 			 * 'altroot' is a non-persistent property. It should
6282 			 * have been set temporarily at creation or import time.
6283 			 */
6284 			ASSERT(spa->spa_root != NULL);
6285 			break;
6286 
6287 		case ZPOOL_PROP_READONLY:
6288 		case ZPOOL_PROP_CACHEFILE:
6289 			/*
6290 			 * 'readonly' and 'cachefile' are also non-persisitent
6291 			 * properties.
6292 			 */
6293 			break;
6294 		case ZPOOL_PROP_COMMENT:
6295 			strval = fnvpair_value_string(elem);
6296 			if (spa->spa_comment != NULL)
6297 				spa_strfree(spa->spa_comment);
6298 			spa->spa_comment = spa_strdup(strval);
6299 			/*
6300 			 * We need to dirty the configuration on all the vdevs
6301 			 * so that their labels get updated.  It's unnecessary
6302 			 * to do this for pool creation since the vdev's
6303 			 * configuratoin has already been dirtied.
6304 			 */
6305 			if (tx->tx_txg != TXG_INITIAL)
6306 				vdev_config_dirty(spa->spa_root_vdev);
6307 			spa_history_log_internal(spa, "set", tx,
6308 			    "%s=%s", nvpair_name(elem), strval);
6309 			break;
6310 		default:
6311 			/*
6312 			 * Set pool property values in the poolprops mos object.
6313 			 */
6314 			if (spa->spa_pool_props_object == 0) {
6315 				spa->spa_pool_props_object =
6316 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6317 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6318 				    tx);
6319 			}
6320 
6321 			/* normalize the property name */
6322 			propname = zpool_prop_to_name(prop);
6323 			proptype = zpool_prop_get_type(prop);
6324 
6325 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6326 				ASSERT(proptype == PROP_TYPE_STRING);
6327 				strval = fnvpair_value_string(elem);
6328 				VERIFY0(zap_update(mos,
6329 				    spa->spa_pool_props_object, propname,
6330 				    1, strlen(strval) + 1, strval, tx));
6331 				spa_history_log_internal(spa, "set", tx,
6332 				    "%s=%s", nvpair_name(elem), strval);
6333 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6334 				intval = fnvpair_value_uint64(elem);
6335 
6336 				if (proptype == PROP_TYPE_INDEX) {
6337 					const char *unused;
6338 					VERIFY0(zpool_prop_index_to_string(
6339 					    prop, intval, &unused));
6340 				}
6341 				VERIFY0(zap_update(mos,
6342 				    spa->spa_pool_props_object, propname,
6343 				    8, 1, &intval, tx));
6344 				spa_history_log_internal(spa, "set", tx,
6345 				    "%s=%lld", nvpair_name(elem), intval);
6346 			} else {
6347 				ASSERT(0); /* not allowed */
6348 			}
6349 
6350 			switch (prop) {
6351 			case ZPOOL_PROP_DELEGATION:
6352 				spa->spa_delegation = intval;
6353 				break;
6354 			case ZPOOL_PROP_BOOTFS:
6355 				spa->spa_bootfs = intval;
6356 				break;
6357 			case ZPOOL_PROP_FAILUREMODE:
6358 				spa->spa_failmode = intval;
6359 				break;
6360 			case ZPOOL_PROP_AUTOEXPAND:
6361 				spa->spa_autoexpand = intval;
6362 				if (tx->tx_txg != TXG_INITIAL)
6363 					spa_async_request(spa,
6364 					    SPA_ASYNC_AUTOEXPAND);
6365 				break;
6366 			case ZPOOL_PROP_DEDUPDITTO:
6367 				spa->spa_dedup_ditto = intval;
6368 				break;
6369 			default:
6370 				break;
6371 			}
6372 		}
6373 
6374 	}
6375 
6376 	mutex_exit(&spa->spa_props_lock);
6377 }
6378 
6379 /*
6380  * Perform one-time upgrade on-disk changes.  spa_version() does not
6381  * reflect the new version this txg, so there must be no changes this
6382  * txg to anything that the upgrade code depends on after it executes.
6383  * Therefore this must be called after dsl_pool_sync() does the sync
6384  * tasks.
6385  */
6386 static void
6387 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6388 {
6389 	dsl_pool_t *dp = spa->spa_dsl_pool;
6390 
6391 	ASSERT(spa->spa_sync_pass == 1);
6392 
6393 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6394 
6395 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6396 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6397 		dsl_pool_create_origin(dp, tx);
6398 
6399 		/* Keeping the origin open increases spa_minref */
6400 		spa->spa_minref += 3;
6401 	}
6402 
6403 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6404 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6405 		dsl_pool_upgrade_clones(dp, tx);
6406 	}
6407 
6408 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6409 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6410 		dsl_pool_upgrade_dir_clones(dp, tx);
6411 
6412 		/* Keeping the freedir open increases spa_minref */
6413 		spa->spa_minref += 3;
6414 	}
6415 
6416 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6417 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6418 		spa_feature_create_zap_objects(spa, tx);
6419 	}
6420 
6421 	/*
6422 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6423 	 * when possibility to use lz4 compression for metadata was added
6424 	 * Old pools that have this feature enabled must be upgraded to have
6425 	 * this feature active
6426 	 */
6427 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6428 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6429 		    SPA_FEATURE_LZ4_COMPRESS);
6430 		boolean_t lz4_ac = spa_feature_is_active(spa,
6431 		    SPA_FEATURE_LZ4_COMPRESS);
6432 
6433 		if (lz4_en && !lz4_ac)
6434 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6435 	}
6436 
6437 	/*
6438 	 * If we haven't written the salt, do so now.  Note that the
6439 	 * feature may not be activated yet, but that's fine since
6440 	 * the presence of this ZAP entry is backwards compatible.
6441 	 */
6442 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6443 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6444 		VERIFY0(zap_add(spa->spa_meta_objset,
6445 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6446 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6447 		    spa->spa_cksum_salt.zcs_bytes, tx));
6448 	}
6449 
6450 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6451 }
6452 
6453 /*
6454  * Sync the specified transaction group.  New blocks may be dirtied as
6455  * part of the process, so we iterate until it converges.
6456  */
6457 void
6458 spa_sync(spa_t *spa, uint64_t txg)
6459 {
6460 	dsl_pool_t *dp = spa->spa_dsl_pool;
6461 	objset_t *mos = spa->spa_meta_objset;
6462 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6463 	vdev_t *rvd = spa->spa_root_vdev;
6464 	vdev_t *vd;
6465 	dmu_tx_t *tx;
6466 	int error;
6467 
6468 	VERIFY(spa_writeable(spa));
6469 
6470 	/*
6471 	 * Lock out configuration changes.
6472 	 */
6473 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6474 
6475 	spa->spa_syncing_txg = txg;
6476 	spa->spa_sync_pass = 0;
6477 
6478 	/*
6479 	 * If there are any pending vdev state changes, convert them
6480 	 * into config changes that go out with this transaction group.
6481 	 */
6482 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6483 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6484 		/*
6485 		 * We need the write lock here because, for aux vdevs,
6486 		 * calling vdev_config_dirty() modifies sav_config.
6487 		 * This is ugly and will become unnecessary when we
6488 		 * eliminate the aux vdev wart by integrating all vdevs
6489 		 * into the root vdev tree.
6490 		 */
6491 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6492 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6493 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6494 			vdev_state_clean(vd);
6495 			vdev_config_dirty(vd);
6496 		}
6497 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6498 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6499 	}
6500 	spa_config_exit(spa, SCL_STATE, FTAG);
6501 
6502 	tx = dmu_tx_create_assigned(dp, txg);
6503 
6504 	spa->spa_sync_starttime = gethrtime();
6505 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6506 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6507 
6508 	/*
6509 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6510 	 * set spa_deflate if we have no raid-z vdevs.
6511 	 */
6512 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6513 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6514 		int i;
6515 
6516 		for (i = 0; i < rvd->vdev_children; i++) {
6517 			vd = rvd->vdev_child[i];
6518 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6519 				break;
6520 		}
6521 		if (i == rvd->vdev_children) {
6522 			spa->spa_deflate = TRUE;
6523 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6524 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6525 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6526 		}
6527 	}
6528 
6529 	/*
6530 	 * Iterate to convergence.
6531 	 */
6532 	do {
6533 		int pass = ++spa->spa_sync_pass;
6534 
6535 		spa_sync_config_object(spa, tx);
6536 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6537 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6538 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6539 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6540 		spa_errlog_sync(spa, txg);
6541 		dsl_pool_sync(dp, txg);
6542 
6543 		if (pass < zfs_sync_pass_deferred_free) {
6544 			spa_sync_frees(spa, free_bpl, tx);
6545 		} else {
6546 			/*
6547 			 * We can not defer frees in pass 1, because
6548 			 * we sync the deferred frees later in pass 1.
6549 			 */
6550 			ASSERT3U(pass, >, 1);
6551 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6552 			    &spa->spa_deferred_bpobj, tx);
6553 		}
6554 
6555 		ddt_sync(spa, txg);
6556 		dsl_scan_sync(dp, tx);
6557 
6558 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6559 			vdev_sync(vd, txg);
6560 
6561 		if (pass == 1) {
6562 			spa_sync_upgrades(spa, tx);
6563 			ASSERT3U(txg, >=,
6564 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6565 			/*
6566 			 * Note: We need to check if the MOS is dirty
6567 			 * because we could have marked the MOS dirty
6568 			 * without updating the uberblock (e.g. if we
6569 			 * have sync tasks but no dirty user data).  We
6570 			 * need to check the uberblock's rootbp because
6571 			 * it is updated if we have synced out dirty
6572 			 * data (though in this case the MOS will most
6573 			 * likely also be dirty due to second order
6574 			 * effects, we don't want to rely on that here).
6575 			 */
6576 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6577 			    !dmu_objset_is_dirty(mos, txg)) {
6578 				/*
6579 				 * Nothing changed on the first pass,
6580 				 * therefore this TXG is a no-op.  Avoid
6581 				 * syncing deferred frees, so that we
6582 				 * can keep this TXG as a no-op.
6583 				 */
6584 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6585 				    txg));
6586 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6587 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6588 				break;
6589 			}
6590 			spa_sync_deferred_frees(spa, tx);
6591 		}
6592 
6593 	} while (dmu_objset_is_dirty(mos, txg));
6594 
6595 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
6596 		/*
6597 		 * Make sure that the number of ZAPs for all the vdevs matches
6598 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
6599 		 * called if the config is dirty; otherwise there may be
6600 		 * outstanding AVZ operations that weren't completed in
6601 		 * spa_sync_config_object.
6602 		 */
6603 		uint64_t all_vdev_zap_entry_count;
6604 		ASSERT0(zap_count(spa->spa_meta_objset,
6605 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6606 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6607 		    all_vdev_zap_entry_count);
6608 	}
6609 
6610 	/*
6611 	 * Rewrite the vdev configuration (which includes the uberblock)
6612 	 * to commit the transaction group.
6613 	 *
6614 	 * If there are no dirty vdevs, we sync the uberblock to a few
6615 	 * random top-level vdevs that are known to be visible in the
6616 	 * config cache (see spa_vdev_add() for a complete description).
6617 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6618 	 */
6619 	for (;;) {
6620 		/*
6621 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6622 		 * while we're attempting to write the vdev labels.
6623 		 */
6624 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6625 
6626 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6627 			vdev_t *svd[SPA_DVAS_PER_BP];
6628 			int svdcount = 0;
6629 			int children = rvd->vdev_children;
6630 			int c0 = spa_get_random(children);
6631 
6632 			for (int c = 0; c < children; c++) {
6633 				vd = rvd->vdev_child[(c0 + c) % children];
6634 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6635 					continue;
6636 				svd[svdcount++] = vd;
6637 				if (svdcount == SPA_DVAS_PER_BP)
6638 					break;
6639 			}
6640 			error = vdev_config_sync(svd, svdcount, txg);
6641 		} else {
6642 			error = vdev_config_sync(rvd->vdev_child,
6643 			    rvd->vdev_children, txg);
6644 		}
6645 
6646 		if (error == 0)
6647 			spa->spa_last_synced_guid = rvd->vdev_guid;
6648 
6649 		spa_config_exit(spa, SCL_STATE, FTAG);
6650 
6651 		if (error == 0)
6652 			break;
6653 		zio_suspend(spa, NULL);
6654 		zio_resume_wait(spa);
6655 	}
6656 	dmu_tx_commit(tx);
6657 
6658 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6659 
6660 	/*
6661 	 * Clear the dirty config list.
6662 	 */
6663 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6664 		vdev_config_clean(vd);
6665 
6666 	/*
6667 	 * Now that the new config has synced transactionally,
6668 	 * let it become visible to the config cache.
6669 	 */
6670 	if (spa->spa_config_syncing != NULL) {
6671 		spa_config_set(spa, spa->spa_config_syncing);
6672 		spa->spa_config_txg = txg;
6673 		spa->spa_config_syncing = NULL;
6674 	}
6675 
6676 	spa->spa_ubsync = spa->spa_uberblock;
6677 
6678 	dsl_pool_sync_done(dp, txg);
6679 
6680 	/*
6681 	 * Update usable space statistics.
6682 	 */
6683 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6684 		vdev_sync_done(vd, txg);
6685 
6686 	spa_update_dspace(spa);
6687 
6688 	/*
6689 	 * It had better be the case that we didn't dirty anything
6690 	 * since vdev_config_sync().
6691 	 */
6692 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6693 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6694 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6695 
6696 	spa->spa_sync_pass = 0;
6697 
6698 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6699 
6700 	spa_handle_ignored_writes(spa);
6701 
6702 	/*
6703 	 * If any async tasks have been requested, kick them off.
6704 	 */
6705 	spa_async_dispatch(spa);
6706 }
6707 
6708 /*
6709  * Sync all pools.  We don't want to hold the namespace lock across these
6710  * operations, so we take a reference on the spa_t and drop the lock during the
6711  * sync.
6712  */
6713 void
6714 spa_sync_allpools(void)
6715 {
6716 	spa_t *spa = NULL;
6717 	mutex_enter(&spa_namespace_lock);
6718 	while ((spa = spa_next(spa)) != NULL) {
6719 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6720 		    !spa_writeable(spa) || spa_suspended(spa))
6721 			continue;
6722 		spa_open_ref(spa, FTAG);
6723 		mutex_exit(&spa_namespace_lock);
6724 		txg_wait_synced(spa_get_dsl(spa), 0);
6725 		mutex_enter(&spa_namespace_lock);
6726 		spa_close(spa, FTAG);
6727 	}
6728 	mutex_exit(&spa_namespace_lock);
6729 }
6730 
6731 /*
6732  * ==========================================================================
6733  * Miscellaneous routines
6734  * ==========================================================================
6735  */
6736 
6737 /*
6738  * Remove all pools in the system.
6739  */
6740 void
6741 spa_evict_all(void)
6742 {
6743 	spa_t *spa;
6744 
6745 	/*
6746 	 * Remove all cached state.  All pools should be closed now,
6747 	 * so every spa in the AVL tree should be unreferenced.
6748 	 */
6749 	mutex_enter(&spa_namespace_lock);
6750 	while ((spa = spa_next(NULL)) != NULL) {
6751 		/*
6752 		 * Stop async tasks.  The async thread may need to detach
6753 		 * a device that's been replaced, which requires grabbing
6754 		 * spa_namespace_lock, so we must drop it here.
6755 		 */
6756 		spa_open_ref(spa, FTAG);
6757 		mutex_exit(&spa_namespace_lock);
6758 		spa_async_suspend(spa);
6759 		mutex_enter(&spa_namespace_lock);
6760 		spa_close(spa, FTAG);
6761 
6762 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6763 			spa_unload(spa);
6764 			spa_deactivate(spa);
6765 		}
6766 		spa_remove(spa);
6767 	}
6768 	mutex_exit(&spa_namespace_lock);
6769 }
6770 
6771 vdev_t *
6772 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6773 {
6774 	vdev_t *vd;
6775 	int i;
6776 
6777 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6778 		return (vd);
6779 
6780 	if (aux) {
6781 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6782 			vd = spa->spa_l2cache.sav_vdevs[i];
6783 			if (vd->vdev_guid == guid)
6784 				return (vd);
6785 		}
6786 
6787 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6788 			vd = spa->spa_spares.sav_vdevs[i];
6789 			if (vd->vdev_guid == guid)
6790 				return (vd);
6791 		}
6792 	}
6793 
6794 	return (NULL);
6795 }
6796 
6797 void
6798 spa_upgrade(spa_t *spa, uint64_t version)
6799 {
6800 	ASSERT(spa_writeable(spa));
6801 
6802 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6803 
6804 	/*
6805 	 * This should only be called for a non-faulted pool, and since a
6806 	 * future version would result in an unopenable pool, this shouldn't be
6807 	 * possible.
6808 	 */
6809 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6810 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6811 
6812 	spa->spa_uberblock.ub_version = version;
6813 	vdev_config_dirty(spa->spa_root_vdev);
6814 
6815 	spa_config_exit(spa, SCL_ALL, FTAG);
6816 
6817 	txg_wait_synced(spa_get_dsl(spa), 0);
6818 }
6819 
6820 boolean_t
6821 spa_has_spare(spa_t *spa, uint64_t guid)
6822 {
6823 	int i;
6824 	uint64_t spareguid;
6825 	spa_aux_vdev_t *sav = &spa->spa_spares;
6826 
6827 	for (i = 0; i < sav->sav_count; i++)
6828 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6829 			return (B_TRUE);
6830 
6831 	for (i = 0; i < sav->sav_npending; i++) {
6832 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6833 		    &spareguid) == 0 && spareguid == guid)
6834 			return (B_TRUE);
6835 	}
6836 
6837 	return (B_FALSE);
6838 }
6839 
6840 /*
6841  * Check if a pool has an active shared spare device.
6842  * Note: reference count of an active spare is 2, as a spare and as a replace
6843  */
6844 static boolean_t
6845 spa_has_active_shared_spare(spa_t *spa)
6846 {
6847 	int i, refcnt;
6848 	uint64_t pool;
6849 	spa_aux_vdev_t *sav = &spa->spa_spares;
6850 
6851 	for (i = 0; i < sav->sav_count; i++) {
6852 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6853 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6854 		    refcnt > 2)
6855 			return (B_TRUE);
6856 	}
6857 
6858 	return (B_FALSE);
6859 }
6860 
6861 /*
6862  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6863  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6864  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6865  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6866  * or zdb as real changes.
6867  */
6868 void
6869 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6870 {
6871 #ifdef _KERNEL
6872 	sysevent_t		*ev;
6873 	sysevent_attr_list_t	*attr = NULL;
6874 	sysevent_value_t	value;
6875 	sysevent_id_t		eid;
6876 
6877 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6878 	    SE_SLEEP);
6879 
6880 	value.value_type = SE_DATA_TYPE_STRING;
6881 	value.value.sv_string = spa_name(spa);
6882 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6883 		goto done;
6884 
6885 	value.value_type = SE_DATA_TYPE_UINT64;
6886 	value.value.sv_uint64 = spa_guid(spa);
6887 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6888 		goto done;
6889 
6890 	if (vd) {
6891 		value.value_type = SE_DATA_TYPE_UINT64;
6892 		value.value.sv_uint64 = vd->vdev_guid;
6893 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6894 		    SE_SLEEP) != 0)
6895 			goto done;
6896 
6897 		if (vd->vdev_path) {
6898 			value.value_type = SE_DATA_TYPE_STRING;
6899 			value.value.sv_string = vd->vdev_path;
6900 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6901 			    &value, SE_SLEEP) != 0)
6902 				goto done;
6903 		}
6904 	}
6905 
6906 	if (sysevent_attach_attributes(ev, attr) != 0)
6907 		goto done;
6908 	attr = NULL;
6909 
6910 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6911 
6912 done:
6913 	if (attr)
6914 		sysevent_free_attr(attr);
6915 	sysevent_free(ev);
6916 #endif
6917 }
6918