xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision b106467f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  */
31 
32 /*
33  * SPA: Storage Pool Allocator
34  *
35  * This file contains all the routines used when modifying on-disk SPA state.
36  * This includes opening, importing, destroying, exporting a pool, and syncing a
37  * pool.
38  */
39 
40 #include <sys/zfs_context.h>
41 #include <sys/fm/fs/zfs.h>
42 #include <sys/spa_impl.h>
43 #include <sys/zio.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/dmu.h>
46 #include <sys/dmu_tx.h>
47 #include <sys/zap.h>
48 #include <sys/zil.h>
49 #include <sys/ddt.h>
50 #include <sys/vdev_impl.h>
51 #include <sys/metaslab.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/uberblock_impl.h>
54 #include <sys/txg.h>
55 #include <sys/avl.h>
56 #include <sys/dmu_traverse.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/unique.h>
59 #include <sys/dsl_pool.h>
60 #include <sys/dsl_dataset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_prop.h>
63 #include <sys/dsl_synctask.h>
64 #include <sys/fs/zfs.h>
65 #include <sys/arc.h>
66 #include <sys/callb.h>
67 #include <sys/systeminfo.h>
68 #include <sys/spa_boot.h>
69 #include <sys/zfs_ioctl.h>
70 #include <sys/dsl_scan.h>
71 #include <sys/zfeature.h>
72 #include <sys/dsl_destroy.h>
73 
74 #ifdef	_KERNEL
75 #include <sys/bootprops.h>
76 #include <sys/callb.h>
77 #include <sys/cpupart.h>
78 #include <sys/pool.h>
79 #include <sys/sysdc.h>
80 #include <sys/zone.h>
81 #endif	/* _KERNEL */
82 
83 #include "zfs_prop.h"
84 #include "zfs_comutil.h"
85 
86 /*
87  * The interval, in seconds, at which failed configuration cache file writes
88  * should be retried.
89  */
90 static int zfs_ccw_retry_interval = 300;
91 
92 typedef enum zti_modes {
93 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
94 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
95 	ZTI_MODE_NULL,			/* don't create a taskq */
96 	ZTI_NMODES
97 } zti_modes_t;
98 
99 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
100 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
101 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
102 
103 #define	ZTI_N(n)	ZTI_P(n, 1)
104 #define	ZTI_ONE		ZTI_N(1)
105 
106 typedef struct zio_taskq_info {
107 	zti_modes_t zti_mode;
108 	uint_t zti_value;
109 	uint_t zti_count;
110 } zio_taskq_info_t;
111 
112 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
113 	"issue", "issue_high", "intr", "intr_high"
114 };
115 
116 /*
117  * This table defines the taskq settings for each ZFS I/O type. When
118  * initializing a pool, we use this table to create an appropriately sized
119  * taskq. Some operations are low volume and therefore have a small, static
120  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
121  * macros. Other operations process a large amount of data; the ZTI_BATCH
122  * macro causes us to create a taskq oriented for throughput. Some operations
123  * are so high frequency and short-lived that the taskq itself can become a a
124  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
125  * additional degree of parallelism specified by the number of threads per-
126  * taskq and the number of taskqs; when dispatching an event in this case, the
127  * particular taskq is chosen at random.
128  *
129  * The different taskq priorities are to handle the different contexts (issue
130  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
131  * need to be handled with minimum delay.
132  */
133 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
134 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
135 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
136 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
137 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
138 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
139 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
140 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
141 };
142 
143 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name);
144 static void spa_event_post(sysevent_t *ev);
145 static void spa_sync_version(void *arg, dmu_tx_t *tx);
146 static void spa_sync_props(void *arg, dmu_tx_t *tx);
147 static boolean_t spa_has_active_shared_spare(spa_t *spa);
148 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
149     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
150     char **ereport);
151 static void spa_vdev_resilver_done(spa_t *spa);
152 
153 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
154 id_t		zio_taskq_psrset_bind = PS_NONE;
155 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
156 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
157 
158 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
159 extern int	zfs_sync_pass_deferred_free;
160 
161 /*
162  * This (illegal) pool name is used when temporarily importing a spa_t in order
163  * to get the vdev stats associated with the imported devices.
164  */
165 #define	TRYIMPORT_NAME	"$import"
166 
167 /*
168  * ==========================================================================
169  * SPA properties routines
170  * ==========================================================================
171  */
172 
173 /*
174  * Add a (source=src, propname=propval) list to an nvlist.
175  */
176 static void
177 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
178     uint64_t intval, zprop_source_t src)
179 {
180 	const char *propname = zpool_prop_to_name(prop);
181 	nvlist_t *propval;
182 
183 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
184 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
185 
186 	if (strval != NULL)
187 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
188 	else
189 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
190 
191 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
192 	nvlist_free(propval);
193 }
194 
195 /*
196  * Get property values from the spa configuration.
197  */
198 static void
199 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
200 {
201 	vdev_t *rvd = spa->spa_root_vdev;
202 	dsl_pool_t *pool = spa->spa_dsl_pool;
203 	uint64_t size, alloc, cap, version;
204 	zprop_source_t src = ZPROP_SRC_NONE;
205 	spa_config_dirent_t *dp;
206 	metaslab_class_t *mc = spa_normal_class(spa);
207 
208 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
209 
210 	if (rvd != NULL) {
211 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
212 		size = metaslab_class_get_space(spa_normal_class(spa));
213 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
214 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
215 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
216 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
217 		    size - alloc, src);
218 
219 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
220 		    metaslab_class_fragmentation(mc), src);
221 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
222 		    metaslab_class_expandable_space(mc), src);
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 		    (spa_mode(spa) == FREAD), src);
225 
226 		cap = (size == 0) ? 0 : (alloc * 100 / size);
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 		    ddt_get_pool_dedup_ratio(spa), src);
231 
232 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 		    rvd->vdev_state, src);
234 
235 		version = spa_version(spa);
236 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 			src = ZPROP_SRC_DEFAULT;
238 		else
239 			src = ZPROP_SRC_LOCAL;
240 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 	}
242 
243 	if (pool != NULL) {
244 		/*
245 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
246 		 * when opening pools before this version freedir will be NULL.
247 		 */
248 		if (pool->dp_free_dir != NULL) {
249 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
250 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
251 			    src);
252 		} else {
253 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
254 			    NULL, 0, src);
255 		}
256 
257 		if (pool->dp_leak_dir != NULL) {
258 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
259 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
260 			    src);
261 		} else {
262 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
263 			    NULL, 0, src);
264 		}
265 	}
266 
267 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
268 
269 	if (spa->spa_comment != NULL) {
270 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
271 		    0, ZPROP_SRC_LOCAL);
272 	}
273 
274 	if (spa->spa_root != NULL)
275 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
276 		    0, ZPROP_SRC_LOCAL);
277 
278 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
279 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
280 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
281 	} else {
282 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
283 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
284 	}
285 
286 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
287 		if (dp->scd_path == NULL) {
288 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
289 			    "none", 0, ZPROP_SRC_LOCAL);
290 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
291 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
292 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
293 		}
294 	}
295 }
296 
297 /*
298  * Get zpool property values.
299  */
300 int
301 spa_prop_get(spa_t *spa, nvlist_t **nvp)
302 {
303 	objset_t *mos = spa->spa_meta_objset;
304 	zap_cursor_t zc;
305 	zap_attribute_t za;
306 	int err;
307 
308 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
309 
310 	mutex_enter(&spa->spa_props_lock);
311 
312 	/*
313 	 * Get properties from the spa config.
314 	 */
315 	spa_prop_get_config(spa, nvp);
316 
317 	/* If no pool property object, no more prop to get. */
318 	if (mos == NULL || spa->spa_pool_props_object == 0) {
319 		mutex_exit(&spa->spa_props_lock);
320 		return (0);
321 	}
322 
323 	/*
324 	 * Get properties from the MOS pool property object.
325 	 */
326 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
327 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
328 	    zap_cursor_advance(&zc)) {
329 		uint64_t intval = 0;
330 		char *strval = NULL;
331 		zprop_source_t src = ZPROP_SRC_DEFAULT;
332 		zpool_prop_t prop;
333 
334 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
335 			continue;
336 
337 		switch (za.za_integer_length) {
338 		case 8:
339 			/* integer property */
340 			if (za.za_first_integer !=
341 			    zpool_prop_default_numeric(prop))
342 				src = ZPROP_SRC_LOCAL;
343 
344 			if (prop == ZPOOL_PROP_BOOTFS) {
345 				dsl_pool_t *dp;
346 				dsl_dataset_t *ds = NULL;
347 
348 				dp = spa_get_dsl(spa);
349 				dsl_pool_config_enter(dp, FTAG);
350 				if (err = dsl_dataset_hold_obj(dp,
351 				    za.za_first_integer, FTAG, &ds)) {
352 					dsl_pool_config_exit(dp, FTAG);
353 					break;
354 				}
355 
356 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
357 				    KM_SLEEP);
358 				dsl_dataset_name(ds, strval);
359 				dsl_dataset_rele(ds, FTAG);
360 				dsl_pool_config_exit(dp, FTAG);
361 			} else {
362 				strval = NULL;
363 				intval = za.za_first_integer;
364 			}
365 
366 			spa_prop_add_list(*nvp, prop, strval, intval, src);
367 
368 			if (strval != NULL)
369 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
370 
371 			break;
372 
373 		case 1:
374 			/* string property */
375 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
376 			err = zap_lookup(mos, spa->spa_pool_props_object,
377 			    za.za_name, 1, za.za_num_integers, strval);
378 			if (err) {
379 				kmem_free(strval, za.za_num_integers);
380 				break;
381 			}
382 			spa_prop_add_list(*nvp, prop, strval, 0, src);
383 			kmem_free(strval, za.za_num_integers);
384 			break;
385 
386 		default:
387 			break;
388 		}
389 	}
390 	zap_cursor_fini(&zc);
391 	mutex_exit(&spa->spa_props_lock);
392 out:
393 	if (err && err != ENOENT) {
394 		nvlist_free(*nvp);
395 		*nvp = NULL;
396 		return (err);
397 	}
398 
399 	return (0);
400 }
401 
402 /*
403  * Validate the given pool properties nvlist and modify the list
404  * for the property values to be set.
405  */
406 static int
407 spa_prop_validate(spa_t *spa, nvlist_t *props)
408 {
409 	nvpair_t *elem;
410 	int error = 0, reset_bootfs = 0;
411 	uint64_t objnum = 0;
412 	boolean_t has_feature = B_FALSE;
413 
414 	elem = NULL;
415 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
416 		uint64_t intval;
417 		char *strval, *slash, *check, *fname;
418 		const char *propname = nvpair_name(elem);
419 		zpool_prop_t prop = zpool_name_to_prop(propname);
420 
421 		switch (prop) {
422 		case ZPROP_INVAL:
423 			if (!zpool_prop_feature(propname)) {
424 				error = SET_ERROR(EINVAL);
425 				break;
426 			}
427 
428 			/*
429 			 * Sanitize the input.
430 			 */
431 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
432 				error = SET_ERROR(EINVAL);
433 				break;
434 			}
435 
436 			if (nvpair_value_uint64(elem, &intval) != 0) {
437 				error = SET_ERROR(EINVAL);
438 				break;
439 			}
440 
441 			if (intval != 0) {
442 				error = SET_ERROR(EINVAL);
443 				break;
444 			}
445 
446 			fname = strchr(propname, '@') + 1;
447 			if (zfeature_lookup_name(fname, NULL) != 0) {
448 				error = SET_ERROR(EINVAL);
449 				break;
450 			}
451 
452 			has_feature = B_TRUE;
453 			break;
454 
455 		case ZPOOL_PROP_VERSION:
456 			error = nvpair_value_uint64(elem, &intval);
457 			if (!error &&
458 			    (intval < spa_version(spa) ||
459 			    intval > SPA_VERSION_BEFORE_FEATURES ||
460 			    has_feature))
461 				error = SET_ERROR(EINVAL);
462 			break;
463 
464 		case ZPOOL_PROP_DELEGATION:
465 		case ZPOOL_PROP_AUTOREPLACE:
466 		case ZPOOL_PROP_LISTSNAPS:
467 		case ZPOOL_PROP_AUTOEXPAND:
468 			error = nvpair_value_uint64(elem, &intval);
469 			if (!error && intval > 1)
470 				error = SET_ERROR(EINVAL);
471 			break;
472 
473 		case ZPOOL_PROP_BOOTFS:
474 			/*
475 			 * If the pool version is less than SPA_VERSION_BOOTFS,
476 			 * or the pool is still being created (version == 0),
477 			 * the bootfs property cannot be set.
478 			 */
479 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
480 				error = SET_ERROR(ENOTSUP);
481 				break;
482 			}
483 
484 			/*
485 			 * Make sure the vdev config is bootable
486 			 */
487 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
488 				error = SET_ERROR(ENOTSUP);
489 				break;
490 			}
491 
492 			reset_bootfs = 1;
493 
494 			error = nvpair_value_string(elem, &strval);
495 
496 			if (!error) {
497 				objset_t *os;
498 				uint64_t propval;
499 
500 				if (strval == NULL || strval[0] == '\0') {
501 					objnum = zpool_prop_default_numeric(
502 					    ZPOOL_PROP_BOOTFS);
503 					break;
504 				}
505 
506 				if (error = dmu_objset_hold(strval, FTAG, &os))
507 					break;
508 
509 				/*
510 				 * Must be ZPL, and its property settings
511 				 * must be supported by GRUB (compression
512 				 * is not gzip, and large blocks are not used).
513 				 */
514 
515 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
516 					error = SET_ERROR(ENOTSUP);
517 				} else if ((error =
518 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
519 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
520 				    &propval)) == 0 &&
521 				    !BOOTFS_COMPRESS_VALID(propval)) {
522 					error = SET_ERROR(ENOTSUP);
523 				} else {
524 					objnum = dmu_objset_id(os);
525 				}
526 				dmu_objset_rele(os, FTAG);
527 			}
528 			break;
529 
530 		case ZPOOL_PROP_FAILUREMODE:
531 			error = nvpair_value_uint64(elem, &intval);
532 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
533 			    intval > ZIO_FAILURE_MODE_PANIC))
534 				error = SET_ERROR(EINVAL);
535 
536 			/*
537 			 * This is a special case which only occurs when
538 			 * the pool has completely failed. This allows
539 			 * the user to change the in-core failmode property
540 			 * without syncing it out to disk (I/Os might
541 			 * currently be blocked). We do this by returning
542 			 * EIO to the caller (spa_prop_set) to trick it
543 			 * into thinking we encountered a property validation
544 			 * error.
545 			 */
546 			if (!error && spa_suspended(spa)) {
547 				spa->spa_failmode = intval;
548 				error = SET_ERROR(EIO);
549 			}
550 			break;
551 
552 		case ZPOOL_PROP_CACHEFILE:
553 			if ((error = nvpair_value_string(elem, &strval)) != 0)
554 				break;
555 
556 			if (strval[0] == '\0')
557 				break;
558 
559 			if (strcmp(strval, "none") == 0)
560 				break;
561 
562 			if (strval[0] != '/') {
563 				error = SET_ERROR(EINVAL);
564 				break;
565 			}
566 
567 			slash = strrchr(strval, '/');
568 			ASSERT(slash != NULL);
569 
570 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
571 			    strcmp(slash, "/..") == 0)
572 				error = SET_ERROR(EINVAL);
573 			break;
574 
575 		case ZPOOL_PROP_COMMENT:
576 			if ((error = nvpair_value_string(elem, &strval)) != 0)
577 				break;
578 			for (check = strval; *check != '\0'; check++) {
579 				/*
580 				 * The kernel doesn't have an easy isprint()
581 				 * check.  For this kernel check, we merely
582 				 * check ASCII apart from DEL.  Fix this if
583 				 * there is an easy-to-use kernel isprint().
584 				 */
585 				if (*check >= 0x7f) {
586 					error = SET_ERROR(EINVAL);
587 					break;
588 				}
589 			}
590 			if (strlen(strval) > ZPROP_MAX_COMMENT)
591 				error = E2BIG;
592 			break;
593 
594 		case ZPOOL_PROP_DEDUPDITTO:
595 			if (spa_version(spa) < SPA_VERSION_DEDUP)
596 				error = SET_ERROR(ENOTSUP);
597 			else
598 				error = nvpair_value_uint64(elem, &intval);
599 			if (error == 0 &&
600 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
601 				error = SET_ERROR(EINVAL);
602 			break;
603 		}
604 
605 		if (error)
606 			break;
607 	}
608 
609 	if (!error && reset_bootfs) {
610 		error = nvlist_remove(props,
611 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
612 
613 		if (!error) {
614 			error = nvlist_add_uint64(props,
615 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
616 		}
617 	}
618 
619 	return (error);
620 }
621 
622 void
623 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
624 {
625 	char *cachefile;
626 	spa_config_dirent_t *dp;
627 
628 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
629 	    &cachefile) != 0)
630 		return;
631 
632 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
633 	    KM_SLEEP);
634 
635 	if (cachefile[0] == '\0')
636 		dp->scd_path = spa_strdup(spa_config_path);
637 	else if (strcmp(cachefile, "none") == 0)
638 		dp->scd_path = NULL;
639 	else
640 		dp->scd_path = spa_strdup(cachefile);
641 
642 	list_insert_head(&spa->spa_config_list, dp);
643 	if (need_sync)
644 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
645 }
646 
647 int
648 spa_prop_set(spa_t *spa, nvlist_t *nvp)
649 {
650 	int error;
651 	nvpair_t *elem = NULL;
652 	boolean_t need_sync = B_FALSE;
653 
654 	if ((error = spa_prop_validate(spa, nvp)) != 0)
655 		return (error);
656 
657 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
658 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
659 
660 		if (prop == ZPOOL_PROP_CACHEFILE ||
661 		    prop == ZPOOL_PROP_ALTROOT ||
662 		    prop == ZPOOL_PROP_READONLY)
663 			continue;
664 
665 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
666 			uint64_t ver;
667 
668 			if (prop == ZPOOL_PROP_VERSION) {
669 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
670 			} else {
671 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
672 				ver = SPA_VERSION_FEATURES;
673 				need_sync = B_TRUE;
674 			}
675 
676 			/* Save time if the version is already set. */
677 			if (ver == spa_version(spa))
678 				continue;
679 
680 			/*
681 			 * In addition to the pool directory object, we might
682 			 * create the pool properties object, the features for
683 			 * read object, the features for write object, or the
684 			 * feature descriptions object.
685 			 */
686 			error = dsl_sync_task(spa->spa_name, NULL,
687 			    spa_sync_version, &ver,
688 			    6, ZFS_SPACE_CHECK_RESERVED);
689 			if (error)
690 				return (error);
691 			continue;
692 		}
693 
694 		need_sync = B_TRUE;
695 		break;
696 	}
697 
698 	if (need_sync) {
699 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
700 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
701 	}
702 
703 	return (0);
704 }
705 
706 /*
707  * If the bootfs property value is dsobj, clear it.
708  */
709 void
710 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
711 {
712 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
713 		VERIFY(zap_remove(spa->spa_meta_objset,
714 		    spa->spa_pool_props_object,
715 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
716 		spa->spa_bootfs = 0;
717 	}
718 }
719 
720 /*ARGSUSED*/
721 static int
722 spa_change_guid_check(void *arg, dmu_tx_t *tx)
723 {
724 	uint64_t *newguid = arg;
725 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
726 	vdev_t *rvd = spa->spa_root_vdev;
727 	uint64_t vdev_state;
728 
729 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
730 	vdev_state = rvd->vdev_state;
731 	spa_config_exit(spa, SCL_STATE, FTAG);
732 
733 	if (vdev_state != VDEV_STATE_HEALTHY)
734 		return (SET_ERROR(ENXIO));
735 
736 	ASSERT3U(spa_guid(spa), !=, *newguid);
737 
738 	return (0);
739 }
740 
741 static void
742 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
743 {
744 	uint64_t *newguid = arg;
745 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
746 	uint64_t oldguid;
747 	vdev_t *rvd = spa->spa_root_vdev;
748 
749 	oldguid = spa_guid(spa);
750 
751 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
752 	rvd->vdev_guid = *newguid;
753 	rvd->vdev_guid_sum += (*newguid - oldguid);
754 	vdev_config_dirty(rvd);
755 	spa_config_exit(spa, SCL_STATE, FTAG);
756 
757 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
758 	    oldguid, *newguid);
759 }
760 
761 /*
762  * Change the GUID for the pool.  This is done so that we can later
763  * re-import a pool built from a clone of our own vdevs.  We will modify
764  * the root vdev's guid, our own pool guid, and then mark all of our
765  * vdevs dirty.  Note that we must make sure that all our vdevs are
766  * online when we do this, or else any vdevs that weren't present
767  * would be orphaned from our pool.  We are also going to issue a
768  * sysevent to update any watchers.
769  */
770 int
771 spa_change_guid(spa_t *spa)
772 {
773 	int error;
774 	uint64_t guid;
775 
776 	mutex_enter(&spa->spa_vdev_top_lock);
777 	mutex_enter(&spa_namespace_lock);
778 	guid = spa_generate_guid(NULL);
779 
780 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
781 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
782 
783 	if (error == 0) {
784 		spa_config_sync(spa, B_FALSE, B_TRUE);
785 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
786 	}
787 
788 	mutex_exit(&spa_namespace_lock);
789 	mutex_exit(&spa->spa_vdev_top_lock);
790 
791 	return (error);
792 }
793 
794 /*
795  * ==========================================================================
796  * SPA state manipulation (open/create/destroy/import/export)
797  * ==========================================================================
798  */
799 
800 static int
801 spa_error_entry_compare(const void *a, const void *b)
802 {
803 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
804 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
805 	int ret;
806 
807 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
808 	    sizeof (zbookmark_phys_t));
809 
810 	if (ret < 0)
811 		return (-1);
812 	else if (ret > 0)
813 		return (1);
814 	else
815 		return (0);
816 }
817 
818 /*
819  * Utility function which retrieves copies of the current logs and
820  * re-initializes them in the process.
821  */
822 void
823 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
824 {
825 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
826 
827 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
828 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
829 
830 	avl_create(&spa->spa_errlist_scrub,
831 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
832 	    offsetof(spa_error_entry_t, se_avl));
833 	avl_create(&spa->spa_errlist_last,
834 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
835 	    offsetof(spa_error_entry_t, se_avl));
836 }
837 
838 static void
839 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
840 {
841 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
842 	enum zti_modes mode = ztip->zti_mode;
843 	uint_t value = ztip->zti_value;
844 	uint_t count = ztip->zti_count;
845 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
846 	char name[32];
847 	uint_t flags = 0;
848 	boolean_t batch = B_FALSE;
849 
850 	if (mode == ZTI_MODE_NULL) {
851 		tqs->stqs_count = 0;
852 		tqs->stqs_taskq = NULL;
853 		return;
854 	}
855 
856 	ASSERT3U(count, >, 0);
857 
858 	tqs->stqs_count = count;
859 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
860 
861 	switch (mode) {
862 	case ZTI_MODE_FIXED:
863 		ASSERT3U(value, >=, 1);
864 		value = MAX(value, 1);
865 		break;
866 
867 	case ZTI_MODE_BATCH:
868 		batch = B_TRUE;
869 		flags |= TASKQ_THREADS_CPU_PCT;
870 		value = zio_taskq_batch_pct;
871 		break;
872 
873 	default:
874 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
875 		    "spa_activate()",
876 		    zio_type_name[t], zio_taskq_types[q], mode, value);
877 		break;
878 	}
879 
880 	for (uint_t i = 0; i < count; i++) {
881 		taskq_t *tq;
882 
883 		if (count > 1) {
884 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
885 			    zio_type_name[t], zio_taskq_types[q], i);
886 		} else {
887 			(void) snprintf(name, sizeof (name), "%s_%s",
888 			    zio_type_name[t], zio_taskq_types[q]);
889 		}
890 
891 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
892 			if (batch)
893 				flags |= TASKQ_DC_BATCH;
894 
895 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
896 			    spa->spa_proc, zio_taskq_basedc, flags);
897 		} else {
898 			pri_t pri = maxclsyspri;
899 			/*
900 			 * The write issue taskq can be extremely CPU
901 			 * intensive.  Run it at slightly lower priority
902 			 * than the other taskqs.
903 			 */
904 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
905 				pri--;
906 
907 			tq = taskq_create_proc(name, value, pri, 50,
908 			    INT_MAX, spa->spa_proc, flags);
909 		}
910 
911 		tqs->stqs_taskq[i] = tq;
912 	}
913 }
914 
915 static void
916 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
917 {
918 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
919 
920 	if (tqs->stqs_taskq == NULL) {
921 		ASSERT0(tqs->stqs_count);
922 		return;
923 	}
924 
925 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
926 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
927 		taskq_destroy(tqs->stqs_taskq[i]);
928 	}
929 
930 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
931 	tqs->stqs_taskq = NULL;
932 }
933 
934 /*
935  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
936  * Note that a type may have multiple discrete taskqs to avoid lock contention
937  * on the taskq itself. In that case we choose which taskq at random by using
938  * the low bits of gethrtime().
939  */
940 void
941 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
942     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
943 {
944 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
945 	taskq_t *tq;
946 
947 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
948 	ASSERT3U(tqs->stqs_count, !=, 0);
949 
950 	if (tqs->stqs_count == 1) {
951 		tq = tqs->stqs_taskq[0];
952 	} else {
953 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
954 	}
955 
956 	taskq_dispatch_ent(tq, func, arg, flags, ent);
957 }
958 
959 static void
960 spa_create_zio_taskqs(spa_t *spa)
961 {
962 	for (int t = 0; t < ZIO_TYPES; t++) {
963 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
964 			spa_taskqs_init(spa, t, q);
965 		}
966 	}
967 }
968 
969 #ifdef _KERNEL
970 static void
971 spa_thread(void *arg)
972 {
973 	callb_cpr_t cprinfo;
974 
975 	spa_t *spa = arg;
976 	user_t *pu = PTOU(curproc);
977 
978 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
979 	    spa->spa_name);
980 
981 	ASSERT(curproc != &p0);
982 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
983 	    "zpool-%s", spa->spa_name);
984 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
985 
986 	/* bind this thread to the requested psrset */
987 	if (zio_taskq_psrset_bind != PS_NONE) {
988 		pool_lock();
989 		mutex_enter(&cpu_lock);
990 		mutex_enter(&pidlock);
991 		mutex_enter(&curproc->p_lock);
992 
993 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
994 		    0, NULL, NULL) == 0)  {
995 			curthread->t_bind_pset = zio_taskq_psrset_bind;
996 		} else {
997 			cmn_err(CE_WARN,
998 			    "Couldn't bind process for zfs pool \"%s\" to "
999 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1000 		}
1001 
1002 		mutex_exit(&curproc->p_lock);
1003 		mutex_exit(&pidlock);
1004 		mutex_exit(&cpu_lock);
1005 		pool_unlock();
1006 	}
1007 
1008 	if (zio_taskq_sysdc) {
1009 		sysdc_thread_enter(curthread, 100, 0);
1010 	}
1011 
1012 	spa->spa_proc = curproc;
1013 	spa->spa_did = curthread->t_did;
1014 
1015 	spa_create_zio_taskqs(spa);
1016 
1017 	mutex_enter(&spa->spa_proc_lock);
1018 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1019 
1020 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1021 	cv_broadcast(&spa->spa_proc_cv);
1022 
1023 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1024 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1025 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1026 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1027 
1028 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1029 	spa->spa_proc_state = SPA_PROC_GONE;
1030 	spa->spa_proc = &p0;
1031 	cv_broadcast(&spa->spa_proc_cv);
1032 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1033 
1034 	mutex_enter(&curproc->p_lock);
1035 	lwp_exit();
1036 }
1037 #endif
1038 
1039 /*
1040  * Activate an uninitialized pool.
1041  */
1042 static void
1043 spa_activate(spa_t *spa, int mode)
1044 {
1045 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1046 
1047 	spa->spa_state = POOL_STATE_ACTIVE;
1048 	spa->spa_mode = mode;
1049 
1050 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1051 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1052 
1053 	/* Try to create a covering process */
1054 	mutex_enter(&spa->spa_proc_lock);
1055 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1056 	ASSERT(spa->spa_proc == &p0);
1057 	spa->spa_did = 0;
1058 
1059 	/* Only create a process if we're going to be around a while. */
1060 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1061 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1062 		    NULL, 0) == 0) {
1063 			spa->spa_proc_state = SPA_PROC_CREATED;
1064 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1065 				cv_wait(&spa->spa_proc_cv,
1066 				    &spa->spa_proc_lock);
1067 			}
1068 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1069 			ASSERT(spa->spa_proc != &p0);
1070 			ASSERT(spa->spa_did != 0);
1071 		} else {
1072 #ifdef _KERNEL
1073 			cmn_err(CE_WARN,
1074 			    "Couldn't create process for zfs pool \"%s\"\n",
1075 			    spa->spa_name);
1076 #endif
1077 		}
1078 	}
1079 	mutex_exit(&spa->spa_proc_lock);
1080 
1081 	/* If we didn't create a process, we need to create our taskqs. */
1082 	if (spa->spa_proc == &p0) {
1083 		spa_create_zio_taskqs(spa);
1084 	}
1085 
1086 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1087 	    offsetof(vdev_t, vdev_config_dirty_node));
1088 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1089 	    offsetof(objset_t, os_evicting_node));
1090 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1091 	    offsetof(vdev_t, vdev_state_dirty_node));
1092 
1093 	txg_list_create(&spa->spa_vdev_txg_list,
1094 	    offsetof(struct vdev, vdev_txg_node));
1095 
1096 	avl_create(&spa->spa_errlist_scrub,
1097 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1098 	    offsetof(spa_error_entry_t, se_avl));
1099 	avl_create(&spa->spa_errlist_last,
1100 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1101 	    offsetof(spa_error_entry_t, se_avl));
1102 }
1103 
1104 /*
1105  * Opposite of spa_activate().
1106  */
1107 static void
1108 spa_deactivate(spa_t *spa)
1109 {
1110 	ASSERT(spa->spa_sync_on == B_FALSE);
1111 	ASSERT(spa->spa_dsl_pool == NULL);
1112 	ASSERT(spa->spa_root_vdev == NULL);
1113 	ASSERT(spa->spa_async_zio_root == NULL);
1114 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1115 
1116 	spa_evicting_os_wait(spa);
1117 
1118 	txg_list_destroy(&spa->spa_vdev_txg_list);
1119 
1120 	list_destroy(&spa->spa_config_dirty_list);
1121 	list_destroy(&spa->spa_evicting_os_list);
1122 	list_destroy(&spa->spa_state_dirty_list);
1123 
1124 	for (int t = 0; t < ZIO_TYPES; t++) {
1125 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1126 			spa_taskqs_fini(spa, t, q);
1127 		}
1128 	}
1129 
1130 	metaslab_class_destroy(spa->spa_normal_class);
1131 	spa->spa_normal_class = NULL;
1132 
1133 	metaslab_class_destroy(spa->spa_log_class);
1134 	spa->spa_log_class = NULL;
1135 
1136 	/*
1137 	 * If this was part of an import or the open otherwise failed, we may
1138 	 * still have errors left in the queues.  Empty them just in case.
1139 	 */
1140 	spa_errlog_drain(spa);
1141 
1142 	avl_destroy(&spa->spa_errlist_scrub);
1143 	avl_destroy(&spa->spa_errlist_last);
1144 
1145 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1146 
1147 	mutex_enter(&spa->spa_proc_lock);
1148 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1149 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1150 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1151 		cv_broadcast(&spa->spa_proc_cv);
1152 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1153 			ASSERT(spa->spa_proc != &p0);
1154 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1155 		}
1156 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1157 		spa->spa_proc_state = SPA_PROC_NONE;
1158 	}
1159 	ASSERT(spa->spa_proc == &p0);
1160 	mutex_exit(&spa->spa_proc_lock);
1161 
1162 	/*
1163 	 * We want to make sure spa_thread() has actually exited the ZFS
1164 	 * module, so that the module can't be unloaded out from underneath
1165 	 * it.
1166 	 */
1167 	if (spa->spa_did != 0) {
1168 		thread_join(spa->spa_did);
1169 		spa->spa_did = 0;
1170 	}
1171 }
1172 
1173 /*
1174  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1175  * will create all the necessary vdevs in the appropriate layout, with each vdev
1176  * in the CLOSED state.  This will prep the pool before open/creation/import.
1177  * All vdev validation is done by the vdev_alloc() routine.
1178  */
1179 static int
1180 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1181     uint_t id, int atype)
1182 {
1183 	nvlist_t **child;
1184 	uint_t children;
1185 	int error;
1186 
1187 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1188 		return (error);
1189 
1190 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1191 		return (0);
1192 
1193 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1194 	    &child, &children);
1195 
1196 	if (error == ENOENT)
1197 		return (0);
1198 
1199 	if (error) {
1200 		vdev_free(*vdp);
1201 		*vdp = NULL;
1202 		return (SET_ERROR(EINVAL));
1203 	}
1204 
1205 	for (int c = 0; c < children; c++) {
1206 		vdev_t *vd;
1207 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1208 		    atype)) != 0) {
1209 			vdev_free(*vdp);
1210 			*vdp = NULL;
1211 			return (error);
1212 		}
1213 	}
1214 
1215 	ASSERT(*vdp != NULL);
1216 
1217 	return (0);
1218 }
1219 
1220 /*
1221  * Opposite of spa_load().
1222  */
1223 static void
1224 spa_unload(spa_t *spa)
1225 {
1226 	int i;
1227 
1228 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1229 
1230 	/*
1231 	 * Stop async tasks.
1232 	 */
1233 	spa_async_suspend(spa);
1234 
1235 	/*
1236 	 * Stop syncing.
1237 	 */
1238 	if (spa->spa_sync_on) {
1239 		txg_sync_stop(spa->spa_dsl_pool);
1240 		spa->spa_sync_on = B_FALSE;
1241 	}
1242 
1243 	/*
1244 	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1245 	 * to call it earlier, before we wait for async i/o to complete.
1246 	 * This ensures that there is no async metaslab prefetching, by
1247 	 * calling taskq_wait(mg_taskq).
1248 	 */
1249 	if (spa->spa_root_vdev != NULL) {
1250 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1251 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1252 			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1253 		spa_config_exit(spa, SCL_ALL, FTAG);
1254 	}
1255 
1256 	/*
1257 	 * Wait for any outstanding async I/O to complete.
1258 	 */
1259 	if (spa->spa_async_zio_root != NULL) {
1260 		for (int i = 0; i < max_ncpus; i++)
1261 			(void) zio_wait(spa->spa_async_zio_root[i]);
1262 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1263 		spa->spa_async_zio_root = NULL;
1264 	}
1265 
1266 	bpobj_close(&spa->spa_deferred_bpobj);
1267 
1268 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1269 
1270 	/*
1271 	 * Close all vdevs.
1272 	 */
1273 	if (spa->spa_root_vdev)
1274 		vdev_free(spa->spa_root_vdev);
1275 	ASSERT(spa->spa_root_vdev == NULL);
1276 
1277 	/*
1278 	 * Close the dsl pool.
1279 	 */
1280 	if (spa->spa_dsl_pool) {
1281 		dsl_pool_close(spa->spa_dsl_pool);
1282 		spa->spa_dsl_pool = NULL;
1283 		spa->spa_meta_objset = NULL;
1284 	}
1285 
1286 	ddt_unload(spa);
1287 
1288 	/*
1289 	 * Drop and purge level 2 cache
1290 	 */
1291 	spa_l2cache_drop(spa);
1292 
1293 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1294 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1295 	if (spa->spa_spares.sav_vdevs) {
1296 		kmem_free(spa->spa_spares.sav_vdevs,
1297 		    spa->spa_spares.sav_count * sizeof (void *));
1298 		spa->spa_spares.sav_vdevs = NULL;
1299 	}
1300 	if (spa->spa_spares.sav_config) {
1301 		nvlist_free(spa->spa_spares.sav_config);
1302 		spa->spa_spares.sav_config = NULL;
1303 	}
1304 	spa->spa_spares.sav_count = 0;
1305 
1306 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1307 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1308 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1309 	}
1310 	if (spa->spa_l2cache.sav_vdevs) {
1311 		kmem_free(spa->spa_l2cache.sav_vdevs,
1312 		    spa->spa_l2cache.sav_count * sizeof (void *));
1313 		spa->spa_l2cache.sav_vdevs = NULL;
1314 	}
1315 	if (spa->spa_l2cache.sav_config) {
1316 		nvlist_free(spa->spa_l2cache.sav_config);
1317 		spa->spa_l2cache.sav_config = NULL;
1318 	}
1319 	spa->spa_l2cache.sav_count = 0;
1320 
1321 	spa->spa_async_suspended = 0;
1322 
1323 	if (spa->spa_comment != NULL) {
1324 		spa_strfree(spa->spa_comment);
1325 		spa->spa_comment = NULL;
1326 	}
1327 
1328 	spa_config_exit(spa, SCL_ALL, FTAG);
1329 }
1330 
1331 /*
1332  * Load (or re-load) the current list of vdevs describing the active spares for
1333  * this pool.  When this is called, we have some form of basic information in
1334  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1335  * then re-generate a more complete list including status information.
1336  */
1337 static void
1338 spa_load_spares(spa_t *spa)
1339 {
1340 	nvlist_t **spares;
1341 	uint_t nspares;
1342 	int i;
1343 	vdev_t *vd, *tvd;
1344 
1345 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1346 
1347 	/*
1348 	 * First, close and free any existing spare vdevs.
1349 	 */
1350 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1351 		vd = spa->spa_spares.sav_vdevs[i];
1352 
1353 		/* Undo the call to spa_activate() below */
1354 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1355 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1356 			spa_spare_remove(tvd);
1357 		vdev_close(vd);
1358 		vdev_free(vd);
1359 	}
1360 
1361 	if (spa->spa_spares.sav_vdevs)
1362 		kmem_free(spa->spa_spares.sav_vdevs,
1363 		    spa->spa_spares.sav_count * sizeof (void *));
1364 
1365 	if (spa->spa_spares.sav_config == NULL)
1366 		nspares = 0;
1367 	else
1368 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1369 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1370 
1371 	spa->spa_spares.sav_count = (int)nspares;
1372 	spa->spa_spares.sav_vdevs = NULL;
1373 
1374 	if (nspares == 0)
1375 		return;
1376 
1377 	/*
1378 	 * Construct the array of vdevs, opening them to get status in the
1379 	 * process.   For each spare, there is potentially two different vdev_t
1380 	 * structures associated with it: one in the list of spares (used only
1381 	 * for basic validation purposes) and one in the active vdev
1382 	 * configuration (if it's spared in).  During this phase we open and
1383 	 * validate each vdev on the spare list.  If the vdev also exists in the
1384 	 * active configuration, then we also mark this vdev as an active spare.
1385 	 */
1386 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1387 	    KM_SLEEP);
1388 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1389 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1390 		    VDEV_ALLOC_SPARE) == 0);
1391 		ASSERT(vd != NULL);
1392 
1393 		spa->spa_spares.sav_vdevs[i] = vd;
1394 
1395 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1396 		    B_FALSE)) != NULL) {
1397 			if (!tvd->vdev_isspare)
1398 				spa_spare_add(tvd);
1399 
1400 			/*
1401 			 * We only mark the spare active if we were successfully
1402 			 * able to load the vdev.  Otherwise, importing a pool
1403 			 * with a bad active spare would result in strange
1404 			 * behavior, because multiple pool would think the spare
1405 			 * is actively in use.
1406 			 *
1407 			 * There is a vulnerability here to an equally bizarre
1408 			 * circumstance, where a dead active spare is later
1409 			 * brought back to life (onlined or otherwise).  Given
1410 			 * the rarity of this scenario, and the extra complexity
1411 			 * it adds, we ignore the possibility.
1412 			 */
1413 			if (!vdev_is_dead(tvd))
1414 				spa_spare_activate(tvd);
1415 		}
1416 
1417 		vd->vdev_top = vd;
1418 		vd->vdev_aux = &spa->spa_spares;
1419 
1420 		if (vdev_open(vd) != 0)
1421 			continue;
1422 
1423 		if (vdev_validate_aux(vd) == 0)
1424 			spa_spare_add(vd);
1425 	}
1426 
1427 	/*
1428 	 * Recompute the stashed list of spares, with status information
1429 	 * this time.
1430 	 */
1431 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1432 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1433 
1434 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1435 	    KM_SLEEP);
1436 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1437 		spares[i] = vdev_config_generate(spa,
1438 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1439 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1440 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1441 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1442 		nvlist_free(spares[i]);
1443 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1444 }
1445 
1446 /*
1447  * Load (or re-load) the current list of vdevs describing the active l2cache for
1448  * this pool.  When this is called, we have some form of basic information in
1449  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1450  * then re-generate a more complete list including status information.
1451  * Devices which are already active have their details maintained, and are
1452  * not re-opened.
1453  */
1454 static void
1455 spa_load_l2cache(spa_t *spa)
1456 {
1457 	nvlist_t **l2cache;
1458 	uint_t nl2cache;
1459 	int i, j, oldnvdevs;
1460 	uint64_t guid;
1461 	vdev_t *vd, **oldvdevs, **newvdevs;
1462 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1463 
1464 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1465 
1466 	if (sav->sav_config != NULL) {
1467 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1468 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1469 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1470 	} else {
1471 		nl2cache = 0;
1472 		newvdevs = NULL;
1473 	}
1474 
1475 	oldvdevs = sav->sav_vdevs;
1476 	oldnvdevs = sav->sav_count;
1477 	sav->sav_vdevs = NULL;
1478 	sav->sav_count = 0;
1479 
1480 	/*
1481 	 * Process new nvlist of vdevs.
1482 	 */
1483 	for (i = 0; i < nl2cache; i++) {
1484 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1485 		    &guid) == 0);
1486 
1487 		newvdevs[i] = NULL;
1488 		for (j = 0; j < oldnvdevs; j++) {
1489 			vd = oldvdevs[j];
1490 			if (vd != NULL && guid == vd->vdev_guid) {
1491 				/*
1492 				 * Retain previous vdev for add/remove ops.
1493 				 */
1494 				newvdevs[i] = vd;
1495 				oldvdevs[j] = NULL;
1496 				break;
1497 			}
1498 		}
1499 
1500 		if (newvdevs[i] == NULL) {
1501 			/*
1502 			 * Create new vdev
1503 			 */
1504 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1505 			    VDEV_ALLOC_L2CACHE) == 0);
1506 			ASSERT(vd != NULL);
1507 			newvdevs[i] = vd;
1508 
1509 			/*
1510 			 * Commit this vdev as an l2cache device,
1511 			 * even if it fails to open.
1512 			 */
1513 			spa_l2cache_add(vd);
1514 
1515 			vd->vdev_top = vd;
1516 			vd->vdev_aux = sav;
1517 
1518 			spa_l2cache_activate(vd);
1519 
1520 			if (vdev_open(vd) != 0)
1521 				continue;
1522 
1523 			(void) vdev_validate_aux(vd);
1524 
1525 			if (!vdev_is_dead(vd))
1526 				l2arc_add_vdev(spa, vd);
1527 		}
1528 	}
1529 
1530 	/*
1531 	 * Purge vdevs that were dropped
1532 	 */
1533 	for (i = 0; i < oldnvdevs; i++) {
1534 		uint64_t pool;
1535 
1536 		vd = oldvdevs[i];
1537 		if (vd != NULL) {
1538 			ASSERT(vd->vdev_isl2cache);
1539 
1540 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1541 			    pool != 0ULL && l2arc_vdev_present(vd))
1542 				l2arc_remove_vdev(vd);
1543 			vdev_clear_stats(vd);
1544 			vdev_free(vd);
1545 		}
1546 	}
1547 
1548 	if (oldvdevs)
1549 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1550 
1551 	if (sav->sav_config == NULL)
1552 		goto out;
1553 
1554 	sav->sav_vdevs = newvdevs;
1555 	sav->sav_count = (int)nl2cache;
1556 
1557 	/*
1558 	 * Recompute the stashed list of l2cache devices, with status
1559 	 * information this time.
1560 	 */
1561 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1562 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1563 
1564 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1565 	for (i = 0; i < sav->sav_count; i++)
1566 		l2cache[i] = vdev_config_generate(spa,
1567 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1568 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1569 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1570 out:
1571 	for (i = 0; i < sav->sav_count; i++)
1572 		nvlist_free(l2cache[i]);
1573 	if (sav->sav_count)
1574 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1575 }
1576 
1577 static int
1578 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1579 {
1580 	dmu_buf_t *db;
1581 	char *packed = NULL;
1582 	size_t nvsize = 0;
1583 	int error;
1584 	*value = NULL;
1585 
1586 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1587 	if (error != 0)
1588 		return (error);
1589 
1590 	nvsize = *(uint64_t *)db->db_data;
1591 	dmu_buf_rele(db, FTAG);
1592 
1593 	packed = kmem_alloc(nvsize, KM_SLEEP);
1594 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1595 	    DMU_READ_PREFETCH);
1596 	if (error == 0)
1597 		error = nvlist_unpack(packed, nvsize, value, 0);
1598 	kmem_free(packed, nvsize);
1599 
1600 	return (error);
1601 }
1602 
1603 /*
1604  * Checks to see if the given vdev could not be opened, in which case we post a
1605  * sysevent to notify the autoreplace code that the device has been removed.
1606  */
1607 static void
1608 spa_check_removed(vdev_t *vd)
1609 {
1610 	for (int c = 0; c < vd->vdev_children; c++)
1611 		spa_check_removed(vd->vdev_child[c]);
1612 
1613 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1614 	    !vd->vdev_ishole) {
1615 		zfs_post_autoreplace(vd->vdev_spa, vd);
1616 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1617 	}
1618 }
1619 
1620 static void
1621 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1622 {
1623 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1624 
1625 	vd->vdev_top_zap = mvd->vdev_top_zap;
1626 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1627 
1628 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1629 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1630 	}
1631 }
1632 
1633 /*
1634  * Validate the current config against the MOS config
1635  */
1636 static boolean_t
1637 spa_config_valid(spa_t *spa, nvlist_t *config)
1638 {
1639 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1640 	nvlist_t *nv;
1641 
1642 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1643 
1644 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1645 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1646 
1647 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1648 
1649 	/*
1650 	 * If we're doing a normal import, then build up any additional
1651 	 * diagnostic information about missing devices in this config.
1652 	 * We'll pass this up to the user for further processing.
1653 	 */
1654 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1655 		nvlist_t **child, *nv;
1656 		uint64_t idx = 0;
1657 
1658 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1659 		    KM_SLEEP);
1660 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1661 
1662 		for (int c = 0; c < rvd->vdev_children; c++) {
1663 			vdev_t *tvd = rvd->vdev_child[c];
1664 			vdev_t *mtvd  = mrvd->vdev_child[c];
1665 
1666 			if (tvd->vdev_ops == &vdev_missing_ops &&
1667 			    mtvd->vdev_ops != &vdev_missing_ops &&
1668 			    mtvd->vdev_islog)
1669 				child[idx++] = vdev_config_generate(spa, mtvd,
1670 				    B_FALSE, 0);
1671 		}
1672 
1673 		if (idx) {
1674 			VERIFY(nvlist_add_nvlist_array(nv,
1675 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1676 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1677 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1678 
1679 			for (int i = 0; i < idx; i++)
1680 				nvlist_free(child[i]);
1681 		}
1682 		nvlist_free(nv);
1683 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1684 	}
1685 
1686 	/*
1687 	 * Compare the root vdev tree with the information we have
1688 	 * from the MOS config (mrvd). Check each top-level vdev
1689 	 * with the corresponding MOS config top-level (mtvd).
1690 	 */
1691 	for (int c = 0; c < rvd->vdev_children; c++) {
1692 		vdev_t *tvd = rvd->vdev_child[c];
1693 		vdev_t *mtvd  = mrvd->vdev_child[c];
1694 
1695 		/*
1696 		 * Resolve any "missing" vdevs in the current configuration.
1697 		 * If we find that the MOS config has more accurate information
1698 		 * about the top-level vdev then use that vdev instead.
1699 		 */
1700 		if (tvd->vdev_ops == &vdev_missing_ops &&
1701 		    mtvd->vdev_ops != &vdev_missing_ops) {
1702 
1703 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1704 				continue;
1705 
1706 			/*
1707 			 * Device specific actions.
1708 			 */
1709 			if (mtvd->vdev_islog) {
1710 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1711 			} else {
1712 				/*
1713 				 * XXX - once we have 'readonly' pool
1714 				 * support we should be able to handle
1715 				 * missing data devices by transitioning
1716 				 * the pool to readonly.
1717 				 */
1718 				continue;
1719 			}
1720 
1721 			/*
1722 			 * Swap the missing vdev with the data we were
1723 			 * able to obtain from the MOS config.
1724 			 */
1725 			vdev_remove_child(rvd, tvd);
1726 			vdev_remove_child(mrvd, mtvd);
1727 
1728 			vdev_add_child(rvd, mtvd);
1729 			vdev_add_child(mrvd, tvd);
1730 
1731 			spa_config_exit(spa, SCL_ALL, FTAG);
1732 			vdev_load(mtvd);
1733 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1734 
1735 			vdev_reopen(rvd);
1736 		} else {
1737 			if (mtvd->vdev_islog) {
1738 				/*
1739 				 * Load the slog device's state from the MOS
1740 				 * config since it's possible that the label
1741 				 * does not contain the most up-to-date
1742 				 * information.
1743 				 */
1744 				vdev_load_log_state(tvd, mtvd);
1745 				vdev_reopen(tvd);
1746 			}
1747 
1748 			/*
1749 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1750 			 */
1751 			spa_config_valid_zaps(tvd, mtvd);
1752 		}
1753 	}
1754 
1755 	vdev_free(mrvd);
1756 	spa_config_exit(spa, SCL_ALL, FTAG);
1757 
1758 	/*
1759 	 * Ensure we were able to validate the config.
1760 	 */
1761 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1762 }
1763 
1764 /*
1765  * Check for missing log devices
1766  */
1767 static boolean_t
1768 spa_check_logs(spa_t *spa)
1769 {
1770 	boolean_t rv = B_FALSE;
1771 	dsl_pool_t *dp = spa_get_dsl(spa);
1772 
1773 	switch (spa->spa_log_state) {
1774 	case SPA_LOG_MISSING:
1775 		/* need to recheck in case slog has been restored */
1776 	case SPA_LOG_UNKNOWN:
1777 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1778 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1779 		if (rv)
1780 			spa_set_log_state(spa, SPA_LOG_MISSING);
1781 		break;
1782 	}
1783 	return (rv);
1784 }
1785 
1786 static boolean_t
1787 spa_passivate_log(spa_t *spa)
1788 {
1789 	vdev_t *rvd = spa->spa_root_vdev;
1790 	boolean_t slog_found = B_FALSE;
1791 
1792 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1793 
1794 	if (!spa_has_slogs(spa))
1795 		return (B_FALSE);
1796 
1797 	for (int c = 0; c < rvd->vdev_children; c++) {
1798 		vdev_t *tvd = rvd->vdev_child[c];
1799 		metaslab_group_t *mg = tvd->vdev_mg;
1800 
1801 		if (tvd->vdev_islog) {
1802 			metaslab_group_passivate(mg);
1803 			slog_found = B_TRUE;
1804 		}
1805 	}
1806 
1807 	return (slog_found);
1808 }
1809 
1810 static void
1811 spa_activate_log(spa_t *spa)
1812 {
1813 	vdev_t *rvd = spa->spa_root_vdev;
1814 
1815 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1816 
1817 	for (int c = 0; c < rvd->vdev_children; c++) {
1818 		vdev_t *tvd = rvd->vdev_child[c];
1819 		metaslab_group_t *mg = tvd->vdev_mg;
1820 
1821 		if (tvd->vdev_islog)
1822 			metaslab_group_activate(mg);
1823 	}
1824 }
1825 
1826 int
1827 spa_offline_log(spa_t *spa)
1828 {
1829 	int error;
1830 
1831 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1832 	    NULL, DS_FIND_CHILDREN);
1833 	if (error == 0) {
1834 		/*
1835 		 * We successfully offlined the log device, sync out the
1836 		 * current txg so that the "stubby" block can be removed
1837 		 * by zil_sync().
1838 		 */
1839 		txg_wait_synced(spa->spa_dsl_pool, 0);
1840 	}
1841 	return (error);
1842 }
1843 
1844 static void
1845 spa_aux_check_removed(spa_aux_vdev_t *sav)
1846 {
1847 	for (int i = 0; i < sav->sav_count; i++)
1848 		spa_check_removed(sav->sav_vdevs[i]);
1849 }
1850 
1851 void
1852 spa_claim_notify(zio_t *zio)
1853 {
1854 	spa_t *spa = zio->io_spa;
1855 
1856 	if (zio->io_error)
1857 		return;
1858 
1859 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1860 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1861 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1862 	mutex_exit(&spa->spa_props_lock);
1863 }
1864 
1865 typedef struct spa_load_error {
1866 	uint64_t	sle_meta_count;
1867 	uint64_t	sle_data_count;
1868 } spa_load_error_t;
1869 
1870 static void
1871 spa_load_verify_done(zio_t *zio)
1872 {
1873 	blkptr_t *bp = zio->io_bp;
1874 	spa_load_error_t *sle = zio->io_private;
1875 	dmu_object_type_t type = BP_GET_TYPE(bp);
1876 	int error = zio->io_error;
1877 	spa_t *spa = zio->io_spa;
1878 
1879 	if (error) {
1880 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1881 		    type != DMU_OT_INTENT_LOG)
1882 			atomic_inc_64(&sle->sle_meta_count);
1883 		else
1884 			atomic_inc_64(&sle->sle_data_count);
1885 	}
1886 	zio_data_buf_free(zio->io_data, zio->io_size);
1887 
1888 	mutex_enter(&spa->spa_scrub_lock);
1889 	spa->spa_scrub_inflight--;
1890 	cv_broadcast(&spa->spa_scrub_io_cv);
1891 	mutex_exit(&spa->spa_scrub_lock);
1892 }
1893 
1894 /*
1895  * Maximum number of concurrent scrub i/os to create while verifying
1896  * a pool while importing it.
1897  */
1898 int spa_load_verify_maxinflight = 10000;
1899 boolean_t spa_load_verify_metadata = B_TRUE;
1900 boolean_t spa_load_verify_data = B_TRUE;
1901 
1902 /*ARGSUSED*/
1903 static int
1904 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1905     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1906 {
1907 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1908 		return (0);
1909 	/*
1910 	 * Note: normally this routine will not be called if
1911 	 * spa_load_verify_metadata is not set.  However, it may be useful
1912 	 * to manually set the flag after the traversal has begun.
1913 	 */
1914 	if (!spa_load_verify_metadata)
1915 		return (0);
1916 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1917 		return (0);
1918 
1919 	zio_t *rio = arg;
1920 	size_t size = BP_GET_PSIZE(bp);
1921 	void *data = zio_data_buf_alloc(size);
1922 
1923 	mutex_enter(&spa->spa_scrub_lock);
1924 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1925 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1926 	spa->spa_scrub_inflight++;
1927 	mutex_exit(&spa->spa_scrub_lock);
1928 
1929 	zio_nowait(zio_read(rio, spa, bp, data, size,
1930 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1931 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1932 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1933 	return (0);
1934 }
1935 
1936 /* ARGSUSED */
1937 int
1938 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1939 {
1940 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1941 		return (SET_ERROR(ENAMETOOLONG));
1942 
1943 	return (0);
1944 }
1945 
1946 static int
1947 spa_load_verify(spa_t *spa)
1948 {
1949 	zio_t *rio;
1950 	spa_load_error_t sle = { 0 };
1951 	zpool_rewind_policy_t policy;
1952 	boolean_t verify_ok = B_FALSE;
1953 	int error = 0;
1954 
1955 	zpool_get_rewind_policy(spa->spa_config, &policy);
1956 
1957 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1958 		return (0);
1959 
1960 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1961 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
1962 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1963 	    DS_FIND_CHILDREN);
1964 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1965 	if (error != 0)
1966 		return (error);
1967 
1968 	rio = zio_root(spa, NULL, &sle,
1969 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1970 
1971 	if (spa_load_verify_metadata) {
1972 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1973 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1974 		    spa_load_verify_cb, rio);
1975 	}
1976 
1977 	(void) zio_wait(rio);
1978 
1979 	spa->spa_load_meta_errors = sle.sle_meta_count;
1980 	spa->spa_load_data_errors = sle.sle_data_count;
1981 
1982 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1983 	    sle.sle_data_count <= policy.zrp_maxdata) {
1984 		int64_t loss = 0;
1985 
1986 		verify_ok = B_TRUE;
1987 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1988 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1989 
1990 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1991 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1992 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1993 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1994 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1995 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1996 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1997 	} else {
1998 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1999 	}
2000 
2001 	if (error) {
2002 		if (error != ENXIO && error != EIO)
2003 			error = SET_ERROR(EIO);
2004 		return (error);
2005 	}
2006 
2007 	return (verify_ok ? 0 : EIO);
2008 }
2009 
2010 /*
2011  * Find a value in the pool props object.
2012  */
2013 static void
2014 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2015 {
2016 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2017 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2018 }
2019 
2020 /*
2021  * Find a value in the pool directory object.
2022  */
2023 static int
2024 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2025 {
2026 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2027 	    name, sizeof (uint64_t), 1, val));
2028 }
2029 
2030 static int
2031 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2032 {
2033 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2034 	return (err);
2035 }
2036 
2037 /*
2038  * Fix up config after a partly-completed split.  This is done with the
2039  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2040  * pool have that entry in their config, but only the splitting one contains
2041  * a list of all the guids of the vdevs that are being split off.
2042  *
2043  * This function determines what to do with that list: either rejoin
2044  * all the disks to the pool, or complete the splitting process.  To attempt
2045  * the rejoin, each disk that is offlined is marked online again, and
2046  * we do a reopen() call.  If the vdev label for every disk that was
2047  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2048  * then we call vdev_split() on each disk, and complete the split.
2049  *
2050  * Otherwise we leave the config alone, with all the vdevs in place in
2051  * the original pool.
2052  */
2053 static void
2054 spa_try_repair(spa_t *spa, nvlist_t *config)
2055 {
2056 	uint_t extracted;
2057 	uint64_t *glist;
2058 	uint_t i, gcount;
2059 	nvlist_t *nvl;
2060 	vdev_t **vd;
2061 	boolean_t attempt_reopen;
2062 
2063 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2064 		return;
2065 
2066 	/* check that the config is complete */
2067 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2068 	    &glist, &gcount) != 0)
2069 		return;
2070 
2071 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2072 
2073 	/* attempt to online all the vdevs & validate */
2074 	attempt_reopen = B_TRUE;
2075 	for (i = 0; i < gcount; i++) {
2076 		if (glist[i] == 0)	/* vdev is hole */
2077 			continue;
2078 
2079 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2080 		if (vd[i] == NULL) {
2081 			/*
2082 			 * Don't bother attempting to reopen the disks;
2083 			 * just do the split.
2084 			 */
2085 			attempt_reopen = B_FALSE;
2086 		} else {
2087 			/* attempt to re-online it */
2088 			vd[i]->vdev_offline = B_FALSE;
2089 		}
2090 	}
2091 
2092 	if (attempt_reopen) {
2093 		vdev_reopen(spa->spa_root_vdev);
2094 
2095 		/* check each device to see what state it's in */
2096 		for (extracted = 0, i = 0; i < gcount; i++) {
2097 			if (vd[i] != NULL &&
2098 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2099 				break;
2100 			++extracted;
2101 		}
2102 	}
2103 
2104 	/*
2105 	 * If every disk has been moved to the new pool, or if we never
2106 	 * even attempted to look at them, then we split them off for
2107 	 * good.
2108 	 */
2109 	if (!attempt_reopen || gcount == extracted) {
2110 		for (i = 0; i < gcount; i++)
2111 			if (vd[i] != NULL)
2112 				vdev_split(vd[i]);
2113 		vdev_reopen(spa->spa_root_vdev);
2114 	}
2115 
2116 	kmem_free(vd, gcount * sizeof (vdev_t *));
2117 }
2118 
2119 static int
2120 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2121     boolean_t mosconfig)
2122 {
2123 	nvlist_t *config = spa->spa_config;
2124 	char *ereport = FM_EREPORT_ZFS_POOL;
2125 	char *comment;
2126 	int error;
2127 	uint64_t pool_guid;
2128 	nvlist_t *nvl;
2129 
2130 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2131 		return (SET_ERROR(EINVAL));
2132 
2133 	ASSERT(spa->spa_comment == NULL);
2134 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2135 		spa->spa_comment = spa_strdup(comment);
2136 
2137 	/*
2138 	 * Versioning wasn't explicitly added to the label until later, so if
2139 	 * it's not present treat it as the initial version.
2140 	 */
2141 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2142 	    &spa->spa_ubsync.ub_version) != 0)
2143 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2144 
2145 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2146 	    &spa->spa_config_txg);
2147 
2148 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2149 	    spa_guid_exists(pool_guid, 0)) {
2150 		error = SET_ERROR(EEXIST);
2151 	} else {
2152 		spa->spa_config_guid = pool_guid;
2153 
2154 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2155 		    &nvl) == 0) {
2156 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2157 			    KM_SLEEP) == 0);
2158 		}
2159 
2160 		nvlist_free(spa->spa_load_info);
2161 		spa->spa_load_info = fnvlist_alloc();
2162 
2163 		gethrestime(&spa->spa_loaded_ts);
2164 		error = spa_load_impl(spa, pool_guid, config, state, type,
2165 		    mosconfig, &ereport);
2166 	}
2167 
2168 	/*
2169 	 * Don't count references from objsets that are already closed
2170 	 * and are making their way through the eviction process.
2171 	 */
2172 	spa_evicting_os_wait(spa);
2173 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2174 	if (error) {
2175 		if (error != EEXIST) {
2176 			spa->spa_loaded_ts.tv_sec = 0;
2177 			spa->spa_loaded_ts.tv_nsec = 0;
2178 		}
2179 		if (error != EBADF) {
2180 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2181 		}
2182 	}
2183 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2184 	spa->spa_ena = 0;
2185 
2186 	return (error);
2187 }
2188 
2189 /*
2190  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2191  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2192  * spa's per-vdev ZAP list.
2193  */
2194 static uint64_t
2195 vdev_count_verify_zaps(vdev_t *vd)
2196 {
2197 	spa_t *spa = vd->vdev_spa;
2198 	uint64_t total = 0;
2199 	if (vd->vdev_top_zap != 0) {
2200 		total++;
2201 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2202 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2203 	}
2204 	if (vd->vdev_leaf_zap != 0) {
2205 		total++;
2206 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2207 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2208 	}
2209 
2210 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2211 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2212 	}
2213 
2214 	return (total);
2215 }
2216 
2217 /*
2218  * Load an existing storage pool, using the pool's builtin spa_config as a
2219  * source of configuration information.
2220  */
2221 static int
2222 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2223     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2224     char **ereport)
2225 {
2226 	int error = 0;
2227 	nvlist_t *nvroot = NULL;
2228 	nvlist_t *label;
2229 	vdev_t *rvd;
2230 	uberblock_t *ub = &spa->spa_uberblock;
2231 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2232 	int orig_mode = spa->spa_mode;
2233 	int parse;
2234 	uint64_t obj;
2235 	boolean_t missing_feat_write = B_FALSE;
2236 
2237 	/*
2238 	 * If this is an untrusted config, access the pool in read-only mode.
2239 	 * This prevents things like resilvering recently removed devices.
2240 	 */
2241 	if (!mosconfig)
2242 		spa->spa_mode = FREAD;
2243 
2244 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2245 
2246 	spa->spa_load_state = state;
2247 
2248 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2249 		return (SET_ERROR(EINVAL));
2250 
2251 	parse = (type == SPA_IMPORT_EXISTING ?
2252 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2253 
2254 	/*
2255 	 * Create "The Godfather" zio to hold all async IOs
2256 	 */
2257 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2258 	    KM_SLEEP);
2259 	for (int i = 0; i < max_ncpus; i++) {
2260 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2261 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2262 		    ZIO_FLAG_GODFATHER);
2263 	}
2264 
2265 	/*
2266 	 * Parse the configuration into a vdev tree.  We explicitly set the
2267 	 * value that will be returned by spa_version() since parsing the
2268 	 * configuration requires knowing the version number.
2269 	 */
2270 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2271 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2272 	spa_config_exit(spa, SCL_ALL, FTAG);
2273 
2274 	if (error != 0)
2275 		return (error);
2276 
2277 	ASSERT(spa->spa_root_vdev == rvd);
2278 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2279 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2280 
2281 	if (type != SPA_IMPORT_ASSEMBLE) {
2282 		ASSERT(spa_guid(spa) == pool_guid);
2283 	}
2284 
2285 	/*
2286 	 * Try to open all vdevs, loading each label in the process.
2287 	 */
2288 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2289 	error = vdev_open(rvd);
2290 	spa_config_exit(spa, SCL_ALL, FTAG);
2291 	if (error != 0)
2292 		return (error);
2293 
2294 	/*
2295 	 * We need to validate the vdev labels against the configuration that
2296 	 * we have in hand, which is dependent on the setting of mosconfig. If
2297 	 * mosconfig is true then we're validating the vdev labels based on
2298 	 * that config.  Otherwise, we're validating against the cached config
2299 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2300 	 * later we will recursively call spa_load() and validate against
2301 	 * the vdev config.
2302 	 *
2303 	 * If we're assembling a new pool that's been split off from an
2304 	 * existing pool, the labels haven't yet been updated so we skip
2305 	 * validation for now.
2306 	 */
2307 	if (type != SPA_IMPORT_ASSEMBLE) {
2308 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2309 		error = vdev_validate(rvd, mosconfig);
2310 		spa_config_exit(spa, SCL_ALL, FTAG);
2311 
2312 		if (error != 0)
2313 			return (error);
2314 
2315 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2316 			return (SET_ERROR(ENXIO));
2317 	}
2318 
2319 	/*
2320 	 * Find the best uberblock.
2321 	 */
2322 	vdev_uberblock_load(rvd, ub, &label);
2323 
2324 	/*
2325 	 * If we weren't able to find a single valid uberblock, return failure.
2326 	 */
2327 	if (ub->ub_txg == 0) {
2328 		nvlist_free(label);
2329 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2330 	}
2331 
2332 	/*
2333 	 * If the pool has an unsupported version we can't open it.
2334 	 */
2335 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2336 		nvlist_free(label);
2337 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2338 	}
2339 
2340 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2341 		nvlist_t *features;
2342 
2343 		/*
2344 		 * If we weren't able to find what's necessary for reading the
2345 		 * MOS in the label, return failure.
2346 		 */
2347 		if (label == NULL || nvlist_lookup_nvlist(label,
2348 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2349 			nvlist_free(label);
2350 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2351 			    ENXIO));
2352 		}
2353 
2354 		/*
2355 		 * Update our in-core representation with the definitive values
2356 		 * from the label.
2357 		 */
2358 		nvlist_free(spa->spa_label_features);
2359 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2360 	}
2361 
2362 	nvlist_free(label);
2363 
2364 	/*
2365 	 * Look through entries in the label nvlist's features_for_read. If
2366 	 * there is a feature listed there which we don't understand then we
2367 	 * cannot open a pool.
2368 	 */
2369 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2370 		nvlist_t *unsup_feat;
2371 
2372 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2373 		    0);
2374 
2375 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2376 		    NULL); nvp != NULL;
2377 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2378 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2379 				VERIFY(nvlist_add_string(unsup_feat,
2380 				    nvpair_name(nvp), "") == 0);
2381 			}
2382 		}
2383 
2384 		if (!nvlist_empty(unsup_feat)) {
2385 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2386 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2387 			nvlist_free(unsup_feat);
2388 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2389 			    ENOTSUP));
2390 		}
2391 
2392 		nvlist_free(unsup_feat);
2393 	}
2394 
2395 	/*
2396 	 * If the vdev guid sum doesn't match the uberblock, we have an
2397 	 * incomplete configuration.  We first check to see if the pool
2398 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2399 	 * If it is, defer the vdev_guid_sum check till later so we
2400 	 * can handle missing vdevs.
2401 	 */
2402 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2403 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2404 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2405 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2406 
2407 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2408 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2409 		spa_try_repair(spa, config);
2410 		spa_config_exit(spa, SCL_ALL, FTAG);
2411 		nvlist_free(spa->spa_config_splitting);
2412 		spa->spa_config_splitting = NULL;
2413 	}
2414 
2415 	/*
2416 	 * Initialize internal SPA structures.
2417 	 */
2418 	spa->spa_state = POOL_STATE_ACTIVE;
2419 	spa->spa_ubsync = spa->spa_uberblock;
2420 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2421 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2422 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2423 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2424 	spa->spa_claim_max_txg = spa->spa_first_txg;
2425 	spa->spa_prev_software_version = ub->ub_software_version;
2426 
2427 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2428 	if (error)
2429 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2430 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2431 
2432 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2433 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2434 
2435 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2436 		boolean_t missing_feat_read = B_FALSE;
2437 		nvlist_t *unsup_feat, *enabled_feat;
2438 
2439 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2440 		    &spa->spa_feat_for_read_obj) != 0) {
2441 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2442 		}
2443 
2444 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2445 		    &spa->spa_feat_for_write_obj) != 0) {
2446 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447 		}
2448 
2449 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2450 		    &spa->spa_feat_desc_obj) != 0) {
2451 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 		}
2453 
2454 		enabled_feat = fnvlist_alloc();
2455 		unsup_feat = fnvlist_alloc();
2456 
2457 		if (!spa_features_check(spa, B_FALSE,
2458 		    unsup_feat, enabled_feat))
2459 			missing_feat_read = B_TRUE;
2460 
2461 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2462 			if (!spa_features_check(spa, B_TRUE,
2463 			    unsup_feat, enabled_feat)) {
2464 				missing_feat_write = B_TRUE;
2465 			}
2466 		}
2467 
2468 		fnvlist_add_nvlist(spa->spa_load_info,
2469 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2470 
2471 		if (!nvlist_empty(unsup_feat)) {
2472 			fnvlist_add_nvlist(spa->spa_load_info,
2473 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2474 		}
2475 
2476 		fnvlist_free(enabled_feat);
2477 		fnvlist_free(unsup_feat);
2478 
2479 		if (!missing_feat_read) {
2480 			fnvlist_add_boolean(spa->spa_load_info,
2481 			    ZPOOL_CONFIG_CAN_RDONLY);
2482 		}
2483 
2484 		/*
2485 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2486 		 * twofold: to determine whether the pool is available for
2487 		 * import in read-write mode and (if it is not) whether the
2488 		 * pool is available for import in read-only mode. If the pool
2489 		 * is available for import in read-write mode, it is displayed
2490 		 * as available in userland; if it is not available for import
2491 		 * in read-only mode, it is displayed as unavailable in
2492 		 * userland. If the pool is available for import in read-only
2493 		 * mode but not read-write mode, it is displayed as unavailable
2494 		 * in userland with a special note that the pool is actually
2495 		 * available for open in read-only mode.
2496 		 *
2497 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2498 		 * missing a feature for write, we must first determine whether
2499 		 * the pool can be opened read-only before returning to
2500 		 * userland in order to know whether to display the
2501 		 * abovementioned note.
2502 		 */
2503 		if (missing_feat_read || (missing_feat_write &&
2504 		    spa_writeable(spa))) {
2505 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2506 			    ENOTSUP));
2507 		}
2508 
2509 		/*
2510 		 * Load refcounts for ZFS features from disk into an in-memory
2511 		 * cache during SPA initialization.
2512 		 */
2513 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2514 			uint64_t refcount;
2515 
2516 			error = feature_get_refcount_from_disk(spa,
2517 			    &spa_feature_table[i], &refcount);
2518 			if (error == 0) {
2519 				spa->spa_feat_refcount_cache[i] = refcount;
2520 			} else if (error == ENOTSUP) {
2521 				spa->spa_feat_refcount_cache[i] =
2522 				    SPA_FEATURE_DISABLED;
2523 			} else {
2524 				return (spa_vdev_err(rvd,
2525 				    VDEV_AUX_CORRUPT_DATA, EIO));
2526 			}
2527 		}
2528 	}
2529 
2530 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2531 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2532 		    &spa->spa_feat_enabled_txg_obj) != 0)
2533 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2534 	}
2535 
2536 	spa->spa_is_initializing = B_TRUE;
2537 	error = dsl_pool_open(spa->spa_dsl_pool);
2538 	spa->spa_is_initializing = B_FALSE;
2539 	if (error != 0)
2540 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2541 
2542 	if (!mosconfig) {
2543 		uint64_t hostid;
2544 		nvlist_t *policy = NULL, *nvconfig;
2545 
2546 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2547 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2548 
2549 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2550 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2551 			char *hostname;
2552 			unsigned long myhostid = 0;
2553 
2554 			VERIFY(nvlist_lookup_string(nvconfig,
2555 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2556 
2557 #ifdef	_KERNEL
2558 			myhostid = zone_get_hostid(NULL);
2559 #else	/* _KERNEL */
2560 			/*
2561 			 * We're emulating the system's hostid in userland, so
2562 			 * we can't use zone_get_hostid().
2563 			 */
2564 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2565 #endif	/* _KERNEL */
2566 			if (hostid != 0 && myhostid != 0 &&
2567 			    hostid != myhostid) {
2568 				nvlist_free(nvconfig);
2569 				cmn_err(CE_WARN, "pool '%s' could not be "
2570 				    "loaded as it was last accessed by "
2571 				    "another system (host: %s hostid: 0x%lx). "
2572 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2573 				    spa_name(spa), hostname,
2574 				    (unsigned long)hostid);
2575 				return (SET_ERROR(EBADF));
2576 			}
2577 		}
2578 		if (nvlist_lookup_nvlist(spa->spa_config,
2579 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2580 			VERIFY(nvlist_add_nvlist(nvconfig,
2581 			    ZPOOL_REWIND_POLICY, policy) == 0);
2582 
2583 		spa_config_set(spa, nvconfig);
2584 		spa_unload(spa);
2585 		spa_deactivate(spa);
2586 		spa_activate(spa, orig_mode);
2587 
2588 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2589 	}
2590 
2591 	/* Grab the secret checksum salt from the MOS. */
2592 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2593 	    DMU_POOL_CHECKSUM_SALT, 1,
2594 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2595 	    spa->spa_cksum_salt.zcs_bytes);
2596 	if (error == ENOENT) {
2597 		/* Generate a new salt for subsequent use */
2598 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2599 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2600 	} else if (error != 0) {
2601 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2602 	}
2603 
2604 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2605 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2606 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2607 	if (error != 0)
2608 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2609 
2610 	/*
2611 	 * Load the bit that tells us to use the new accounting function
2612 	 * (raid-z deflation).  If we have an older pool, this will not
2613 	 * be present.
2614 	 */
2615 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2616 	if (error != 0 && error != ENOENT)
2617 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2618 
2619 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2620 	    &spa->spa_creation_version);
2621 	if (error != 0 && error != ENOENT)
2622 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2623 
2624 	/*
2625 	 * Load the persistent error log.  If we have an older pool, this will
2626 	 * not be present.
2627 	 */
2628 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2629 	if (error != 0 && error != ENOENT)
2630 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2631 
2632 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2633 	    &spa->spa_errlog_scrub);
2634 	if (error != 0 && error != ENOENT)
2635 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2636 
2637 	/*
2638 	 * Load the history object.  If we have an older pool, this
2639 	 * will not be present.
2640 	 */
2641 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2642 	if (error != 0 && error != ENOENT)
2643 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2644 
2645 	/*
2646 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2647 	 * be present; in this case, defer its creation to a later time to
2648 	 * avoid dirtying the MOS this early / out of sync context. See
2649 	 * spa_sync_config_object.
2650 	 */
2651 
2652 	/* The sentinel is only available in the MOS config. */
2653 	nvlist_t *mos_config;
2654 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2655 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2656 
2657 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2658 	    &spa->spa_all_vdev_zaps);
2659 
2660 	if (error != ENOENT && error != 0) {
2661 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2662 	} else if (error == 0 && !nvlist_exists(mos_config,
2663 	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2664 		/*
2665 		 * An older version of ZFS overwrote the sentinel value, so
2666 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2667 		 * destruction to later; see spa_sync_config_object.
2668 		 */
2669 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2670 		/*
2671 		 * We're assuming that no vdevs have had their ZAPs created
2672 		 * before this. Better be sure of it.
2673 		 */
2674 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2675 	}
2676 	nvlist_free(mos_config);
2677 
2678 	/*
2679 	 * If we're assembling the pool from the split-off vdevs of
2680 	 * an existing pool, we don't want to attach the spares & cache
2681 	 * devices.
2682 	 */
2683 
2684 	/*
2685 	 * Load any hot spares for this pool.
2686 	 */
2687 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2688 	if (error != 0 && error != ENOENT)
2689 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2690 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2691 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2692 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2693 		    &spa->spa_spares.sav_config) != 0)
2694 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2695 
2696 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2697 		spa_load_spares(spa);
2698 		spa_config_exit(spa, SCL_ALL, FTAG);
2699 	} else if (error == 0) {
2700 		spa->spa_spares.sav_sync = B_TRUE;
2701 	}
2702 
2703 	/*
2704 	 * Load any level 2 ARC devices for this pool.
2705 	 */
2706 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2707 	    &spa->spa_l2cache.sav_object);
2708 	if (error != 0 && error != ENOENT)
2709 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2710 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2711 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2712 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2713 		    &spa->spa_l2cache.sav_config) != 0)
2714 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2715 
2716 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2717 		spa_load_l2cache(spa);
2718 		spa_config_exit(spa, SCL_ALL, FTAG);
2719 	} else if (error == 0) {
2720 		spa->spa_l2cache.sav_sync = B_TRUE;
2721 	}
2722 
2723 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2724 
2725 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2726 	if (error && error != ENOENT)
2727 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2728 
2729 	if (error == 0) {
2730 		uint64_t autoreplace;
2731 
2732 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2733 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2734 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2735 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2736 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2737 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2738 		    &spa->spa_dedup_ditto);
2739 
2740 		spa->spa_autoreplace = (autoreplace != 0);
2741 	}
2742 
2743 	/*
2744 	 * If the 'autoreplace' property is set, then post a resource notifying
2745 	 * the ZFS DE that it should not issue any faults for unopenable
2746 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2747 	 * unopenable vdevs so that the normal autoreplace handler can take
2748 	 * over.
2749 	 */
2750 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2751 		spa_check_removed(spa->spa_root_vdev);
2752 		/*
2753 		 * For the import case, this is done in spa_import(), because
2754 		 * at this point we're using the spare definitions from
2755 		 * the MOS config, not necessarily from the userland config.
2756 		 */
2757 		if (state != SPA_LOAD_IMPORT) {
2758 			spa_aux_check_removed(&spa->spa_spares);
2759 			spa_aux_check_removed(&spa->spa_l2cache);
2760 		}
2761 	}
2762 
2763 	/*
2764 	 * Load the vdev state for all toplevel vdevs.
2765 	 */
2766 	vdev_load(rvd);
2767 
2768 	/*
2769 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2770 	 */
2771 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2772 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2773 	spa_config_exit(spa, SCL_ALL, FTAG);
2774 
2775 	/*
2776 	 * Load the DDTs (dedup tables).
2777 	 */
2778 	error = ddt_load(spa);
2779 	if (error != 0)
2780 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2781 
2782 	spa_update_dspace(spa);
2783 
2784 	/*
2785 	 * Validate the config, using the MOS config to fill in any
2786 	 * information which might be missing.  If we fail to validate
2787 	 * the config then declare the pool unfit for use. If we're
2788 	 * assembling a pool from a split, the log is not transferred
2789 	 * over.
2790 	 */
2791 	if (type != SPA_IMPORT_ASSEMBLE) {
2792 		nvlist_t *nvconfig;
2793 
2794 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2795 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2796 
2797 		if (!spa_config_valid(spa, nvconfig)) {
2798 			nvlist_free(nvconfig);
2799 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2800 			    ENXIO));
2801 		}
2802 		nvlist_free(nvconfig);
2803 
2804 		/*
2805 		 * Now that we've validated the config, check the state of the
2806 		 * root vdev.  If it can't be opened, it indicates one or
2807 		 * more toplevel vdevs are faulted.
2808 		 */
2809 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2810 			return (SET_ERROR(ENXIO));
2811 
2812 		if (spa_writeable(spa) && spa_check_logs(spa)) {
2813 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2814 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2815 		}
2816 	}
2817 
2818 	if (missing_feat_write) {
2819 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2820 
2821 		/*
2822 		 * At this point, we know that we can open the pool in
2823 		 * read-only mode but not read-write mode. We now have enough
2824 		 * information and can return to userland.
2825 		 */
2826 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2827 	}
2828 
2829 	/*
2830 	 * We've successfully opened the pool, verify that we're ready
2831 	 * to start pushing transactions.
2832 	 */
2833 	if (state != SPA_LOAD_TRYIMPORT) {
2834 		if (error = spa_load_verify(spa))
2835 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2836 			    error));
2837 	}
2838 
2839 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2840 	    spa->spa_load_max_txg == UINT64_MAX)) {
2841 		dmu_tx_t *tx;
2842 		int need_update = B_FALSE;
2843 		dsl_pool_t *dp = spa_get_dsl(spa);
2844 
2845 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2846 
2847 		/*
2848 		 * Claim log blocks that haven't been committed yet.
2849 		 * This must all happen in a single txg.
2850 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2851 		 * invoked from zil_claim_log_block()'s i/o done callback.
2852 		 * Price of rollback is that we abandon the log.
2853 		 */
2854 		spa->spa_claiming = B_TRUE;
2855 
2856 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2857 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2858 		    zil_claim, tx, DS_FIND_CHILDREN);
2859 		dmu_tx_commit(tx);
2860 
2861 		spa->spa_claiming = B_FALSE;
2862 
2863 		spa_set_log_state(spa, SPA_LOG_GOOD);
2864 		spa->spa_sync_on = B_TRUE;
2865 		txg_sync_start(spa->spa_dsl_pool);
2866 
2867 		/*
2868 		 * Wait for all claims to sync.  We sync up to the highest
2869 		 * claimed log block birth time so that claimed log blocks
2870 		 * don't appear to be from the future.  spa_claim_max_txg
2871 		 * will have been set for us by either zil_check_log_chain()
2872 		 * (invoked from spa_check_logs()) or zil_claim() above.
2873 		 */
2874 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2875 
2876 		/*
2877 		 * If the config cache is stale, or we have uninitialized
2878 		 * metaslabs (see spa_vdev_add()), then update the config.
2879 		 *
2880 		 * If this is a verbatim import, trust the current
2881 		 * in-core spa_config and update the disk labels.
2882 		 */
2883 		if (config_cache_txg != spa->spa_config_txg ||
2884 		    state == SPA_LOAD_IMPORT ||
2885 		    state == SPA_LOAD_RECOVER ||
2886 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2887 			need_update = B_TRUE;
2888 
2889 		for (int c = 0; c < rvd->vdev_children; c++)
2890 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2891 				need_update = B_TRUE;
2892 
2893 		/*
2894 		 * Update the config cache asychronously in case we're the
2895 		 * root pool, in which case the config cache isn't writable yet.
2896 		 */
2897 		if (need_update)
2898 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2899 
2900 		/*
2901 		 * Check all DTLs to see if anything needs resilvering.
2902 		 */
2903 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2904 		    vdev_resilver_needed(rvd, NULL, NULL))
2905 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2906 
2907 		/*
2908 		 * Log the fact that we booted up (so that we can detect if
2909 		 * we rebooted in the middle of an operation).
2910 		 */
2911 		spa_history_log_version(spa, "open");
2912 
2913 		/*
2914 		 * Delete any inconsistent datasets.
2915 		 */
2916 		(void) dmu_objset_find(spa_name(spa),
2917 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2918 
2919 		/*
2920 		 * Clean up any stale temporary dataset userrefs.
2921 		 */
2922 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2923 	}
2924 
2925 	return (0);
2926 }
2927 
2928 static int
2929 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2930 {
2931 	int mode = spa->spa_mode;
2932 
2933 	spa_unload(spa);
2934 	spa_deactivate(spa);
2935 
2936 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2937 
2938 	spa_activate(spa, mode);
2939 	spa_async_suspend(spa);
2940 
2941 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2942 }
2943 
2944 /*
2945  * If spa_load() fails this function will try loading prior txg's. If
2946  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2947  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2948  * function will not rewind the pool and will return the same error as
2949  * spa_load().
2950  */
2951 static int
2952 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2953     uint64_t max_request, int rewind_flags)
2954 {
2955 	nvlist_t *loadinfo = NULL;
2956 	nvlist_t *config = NULL;
2957 	int load_error, rewind_error;
2958 	uint64_t safe_rewind_txg;
2959 	uint64_t min_txg;
2960 
2961 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2962 		spa->spa_load_max_txg = spa->spa_load_txg;
2963 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2964 	} else {
2965 		spa->spa_load_max_txg = max_request;
2966 		if (max_request != UINT64_MAX)
2967 			spa->spa_extreme_rewind = B_TRUE;
2968 	}
2969 
2970 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2971 	    mosconfig);
2972 	if (load_error == 0)
2973 		return (0);
2974 
2975 	if (spa->spa_root_vdev != NULL)
2976 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2977 
2978 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2979 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2980 
2981 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2982 		nvlist_free(config);
2983 		return (load_error);
2984 	}
2985 
2986 	if (state == SPA_LOAD_RECOVER) {
2987 		/* Price of rolling back is discarding txgs, including log */
2988 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2989 	} else {
2990 		/*
2991 		 * If we aren't rolling back save the load info from our first
2992 		 * import attempt so that we can restore it after attempting
2993 		 * to rewind.
2994 		 */
2995 		loadinfo = spa->spa_load_info;
2996 		spa->spa_load_info = fnvlist_alloc();
2997 	}
2998 
2999 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3000 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3001 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3002 	    TXG_INITIAL : safe_rewind_txg;
3003 
3004 	/*
3005 	 * Continue as long as we're finding errors, we're still within
3006 	 * the acceptable rewind range, and we're still finding uberblocks
3007 	 */
3008 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3009 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3010 		if (spa->spa_load_max_txg < safe_rewind_txg)
3011 			spa->spa_extreme_rewind = B_TRUE;
3012 		rewind_error = spa_load_retry(spa, state, mosconfig);
3013 	}
3014 
3015 	spa->spa_extreme_rewind = B_FALSE;
3016 	spa->spa_load_max_txg = UINT64_MAX;
3017 
3018 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3019 		spa_config_set(spa, config);
3020 
3021 	if (state == SPA_LOAD_RECOVER) {
3022 		ASSERT3P(loadinfo, ==, NULL);
3023 		return (rewind_error);
3024 	} else {
3025 		/* Store the rewind info as part of the initial load info */
3026 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3027 		    spa->spa_load_info);
3028 
3029 		/* Restore the initial load info */
3030 		fnvlist_free(spa->spa_load_info);
3031 		spa->spa_load_info = loadinfo;
3032 
3033 		return (load_error);
3034 	}
3035 }
3036 
3037 /*
3038  * Pool Open/Import
3039  *
3040  * The import case is identical to an open except that the configuration is sent
3041  * down from userland, instead of grabbed from the configuration cache.  For the
3042  * case of an open, the pool configuration will exist in the
3043  * POOL_STATE_UNINITIALIZED state.
3044  *
3045  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3046  * the same time open the pool, without having to keep around the spa_t in some
3047  * ambiguous state.
3048  */
3049 static int
3050 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3051     nvlist_t **config)
3052 {
3053 	spa_t *spa;
3054 	spa_load_state_t state = SPA_LOAD_OPEN;
3055 	int error;
3056 	int locked = B_FALSE;
3057 
3058 	*spapp = NULL;
3059 
3060 	/*
3061 	 * As disgusting as this is, we need to support recursive calls to this
3062 	 * function because dsl_dir_open() is called during spa_load(), and ends
3063 	 * up calling spa_open() again.  The real fix is to figure out how to
3064 	 * avoid dsl_dir_open() calling this in the first place.
3065 	 */
3066 	if (mutex_owner(&spa_namespace_lock) != curthread) {
3067 		mutex_enter(&spa_namespace_lock);
3068 		locked = B_TRUE;
3069 	}
3070 
3071 	if ((spa = spa_lookup(pool)) == NULL) {
3072 		if (locked)
3073 			mutex_exit(&spa_namespace_lock);
3074 		return (SET_ERROR(ENOENT));
3075 	}
3076 
3077 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3078 		zpool_rewind_policy_t policy;
3079 
3080 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3081 		    &policy);
3082 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3083 			state = SPA_LOAD_RECOVER;
3084 
3085 		spa_activate(spa, spa_mode_global);
3086 
3087 		if (state != SPA_LOAD_RECOVER)
3088 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3089 
3090 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3091 		    policy.zrp_request);
3092 
3093 		if (error == EBADF) {
3094 			/*
3095 			 * If vdev_validate() returns failure (indicated by
3096 			 * EBADF), it indicates that one of the vdevs indicates
3097 			 * that the pool has been exported or destroyed.  If
3098 			 * this is the case, the config cache is out of sync and
3099 			 * we should remove the pool from the namespace.
3100 			 */
3101 			spa_unload(spa);
3102 			spa_deactivate(spa);
3103 			spa_config_sync(spa, B_TRUE, B_TRUE);
3104 			spa_remove(spa);
3105 			if (locked)
3106 				mutex_exit(&spa_namespace_lock);
3107 			return (SET_ERROR(ENOENT));
3108 		}
3109 
3110 		if (error) {
3111 			/*
3112 			 * We can't open the pool, but we still have useful
3113 			 * information: the state of each vdev after the
3114 			 * attempted vdev_open().  Return this to the user.
3115 			 */
3116 			if (config != NULL && spa->spa_config) {
3117 				VERIFY(nvlist_dup(spa->spa_config, config,
3118 				    KM_SLEEP) == 0);
3119 				VERIFY(nvlist_add_nvlist(*config,
3120 				    ZPOOL_CONFIG_LOAD_INFO,
3121 				    spa->spa_load_info) == 0);
3122 			}
3123 			spa_unload(spa);
3124 			spa_deactivate(spa);
3125 			spa->spa_last_open_failed = error;
3126 			if (locked)
3127 				mutex_exit(&spa_namespace_lock);
3128 			*spapp = NULL;
3129 			return (error);
3130 		}
3131 	}
3132 
3133 	spa_open_ref(spa, tag);
3134 
3135 	if (config != NULL)
3136 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3137 
3138 	/*
3139 	 * If we've recovered the pool, pass back any information we
3140 	 * gathered while doing the load.
3141 	 */
3142 	if (state == SPA_LOAD_RECOVER) {
3143 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3144 		    spa->spa_load_info) == 0);
3145 	}
3146 
3147 	if (locked) {
3148 		spa->spa_last_open_failed = 0;
3149 		spa->spa_last_ubsync_txg = 0;
3150 		spa->spa_load_txg = 0;
3151 		mutex_exit(&spa_namespace_lock);
3152 	}
3153 
3154 	*spapp = spa;
3155 
3156 	return (0);
3157 }
3158 
3159 int
3160 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3161     nvlist_t **config)
3162 {
3163 	return (spa_open_common(name, spapp, tag, policy, config));
3164 }
3165 
3166 int
3167 spa_open(const char *name, spa_t **spapp, void *tag)
3168 {
3169 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3170 }
3171 
3172 /*
3173  * Lookup the given spa_t, incrementing the inject count in the process,
3174  * preventing it from being exported or destroyed.
3175  */
3176 spa_t *
3177 spa_inject_addref(char *name)
3178 {
3179 	spa_t *spa;
3180 
3181 	mutex_enter(&spa_namespace_lock);
3182 	if ((spa = spa_lookup(name)) == NULL) {
3183 		mutex_exit(&spa_namespace_lock);
3184 		return (NULL);
3185 	}
3186 	spa->spa_inject_ref++;
3187 	mutex_exit(&spa_namespace_lock);
3188 
3189 	return (spa);
3190 }
3191 
3192 void
3193 spa_inject_delref(spa_t *spa)
3194 {
3195 	mutex_enter(&spa_namespace_lock);
3196 	spa->spa_inject_ref--;
3197 	mutex_exit(&spa_namespace_lock);
3198 }
3199 
3200 /*
3201  * Add spares device information to the nvlist.
3202  */
3203 static void
3204 spa_add_spares(spa_t *spa, nvlist_t *config)
3205 {
3206 	nvlist_t **spares;
3207 	uint_t i, nspares;
3208 	nvlist_t *nvroot;
3209 	uint64_t guid;
3210 	vdev_stat_t *vs;
3211 	uint_t vsc;
3212 	uint64_t pool;
3213 
3214 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3215 
3216 	if (spa->spa_spares.sav_count == 0)
3217 		return;
3218 
3219 	VERIFY(nvlist_lookup_nvlist(config,
3220 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3221 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3222 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3223 	if (nspares != 0) {
3224 		VERIFY(nvlist_add_nvlist_array(nvroot,
3225 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3226 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3227 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3228 
3229 		/*
3230 		 * Go through and find any spares which have since been
3231 		 * repurposed as an active spare.  If this is the case, update
3232 		 * their status appropriately.
3233 		 */
3234 		for (i = 0; i < nspares; i++) {
3235 			VERIFY(nvlist_lookup_uint64(spares[i],
3236 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3237 			if (spa_spare_exists(guid, &pool, NULL) &&
3238 			    pool != 0ULL) {
3239 				VERIFY(nvlist_lookup_uint64_array(
3240 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3241 				    (uint64_t **)&vs, &vsc) == 0);
3242 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3243 				vs->vs_aux = VDEV_AUX_SPARED;
3244 			}
3245 		}
3246 	}
3247 }
3248 
3249 /*
3250  * Add l2cache device information to the nvlist, including vdev stats.
3251  */
3252 static void
3253 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3254 {
3255 	nvlist_t **l2cache;
3256 	uint_t i, j, nl2cache;
3257 	nvlist_t *nvroot;
3258 	uint64_t guid;
3259 	vdev_t *vd;
3260 	vdev_stat_t *vs;
3261 	uint_t vsc;
3262 
3263 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3264 
3265 	if (spa->spa_l2cache.sav_count == 0)
3266 		return;
3267 
3268 	VERIFY(nvlist_lookup_nvlist(config,
3269 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3270 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3271 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3272 	if (nl2cache != 0) {
3273 		VERIFY(nvlist_add_nvlist_array(nvroot,
3274 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3275 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3276 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3277 
3278 		/*
3279 		 * Update level 2 cache device stats.
3280 		 */
3281 
3282 		for (i = 0; i < nl2cache; i++) {
3283 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3284 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3285 
3286 			vd = NULL;
3287 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3288 				if (guid ==
3289 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3290 					vd = spa->spa_l2cache.sav_vdevs[j];
3291 					break;
3292 				}
3293 			}
3294 			ASSERT(vd != NULL);
3295 
3296 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3297 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3298 			    == 0);
3299 			vdev_get_stats(vd, vs);
3300 		}
3301 	}
3302 }
3303 
3304 static void
3305 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3306 {
3307 	nvlist_t *features;
3308 	zap_cursor_t zc;
3309 	zap_attribute_t za;
3310 
3311 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3312 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3313 
3314 	if (spa->spa_feat_for_read_obj != 0) {
3315 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3316 		    spa->spa_feat_for_read_obj);
3317 		    zap_cursor_retrieve(&zc, &za) == 0;
3318 		    zap_cursor_advance(&zc)) {
3319 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3320 			    za.za_num_integers == 1);
3321 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3322 			    za.za_first_integer));
3323 		}
3324 		zap_cursor_fini(&zc);
3325 	}
3326 
3327 	if (spa->spa_feat_for_write_obj != 0) {
3328 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3329 		    spa->spa_feat_for_write_obj);
3330 		    zap_cursor_retrieve(&zc, &za) == 0;
3331 		    zap_cursor_advance(&zc)) {
3332 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3333 			    za.za_num_integers == 1);
3334 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3335 			    za.za_first_integer));
3336 		}
3337 		zap_cursor_fini(&zc);
3338 	}
3339 
3340 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3341 	    features) == 0);
3342 	nvlist_free(features);
3343 }
3344 
3345 int
3346 spa_get_stats(const char *name, nvlist_t **config,
3347     char *altroot, size_t buflen)
3348 {
3349 	int error;
3350 	spa_t *spa;
3351 
3352 	*config = NULL;
3353 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3354 
3355 	if (spa != NULL) {
3356 		/*
3357 		 * This still leaves a window of inconsistency where the spares
3358 		 * or l2cache devices could change and the config would be
3359 		 * self-inconsistent.
3360 		 */
3361 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3362 
3363 		if (*config != NULL) {
3364 			uint64_t loadtimes[2];
3365 
3366 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3367 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3368 			VERIFY(nvlist_add_uint64_array(*config,
3369 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3370 
3371 			VERIFY(nvlist_add_uint64(*config,
3372 			    ZPOOL_CONFIG_ERRCOUNT,
3373 			    spa_get_errlog_size(spa)) == 0);
3374 
3375 			if (spa_suspended(spa))
3376 				VERIFY(nvlist_add_uint64(*config,
3377 				    ZPOOL_CONFIG_SUSPENDED,
3378 				    spa->spa_failmode) == 0);
3379 
3380 			spa_add_spares(spa, *config);
3381 			spa_add_l2cache(spa, *config);
3382 			spa_add_feature_stats(spa, *config);
3383 		}
3384 	}
3385 
3386 	/*
3387 	 * We want to get the alternate root even for faulted pools, so we cheat
3388 	 * and call spa_lookup() directly.
3389 	 */
3390 	if (altroot) {
3391 		if (spa == NULL) {
3392 			mutex_enter(&spa_namespace_lock);
3393 			spa = spa_lookup(name);
3394 			if (spa)
3395 				spa_altroot(spa, altroot, buflen);
3396 			else
3397 				altroot[0] = '\0';
3398 			spa = NULL;
3399 			mutex_exit(&spa_namespace_lock);
3400 		} else {
3401 			spa_altroot(spa, altroot, buflen);
3402 		}
3403 	}
3404 
3405 	if (spa != NULL) {
3406 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3407 		spa_close(spa, FTAG);
3408 	}
3409 
3410 	return (error);
3411 }
3412 
3413 /*
3414  * Validate that the auxiliary device array is well formed.  We must have an
3415  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3416  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3417  * specified, as long as they are well-formed.
3418  */
3419 static int
3420 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3421     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3422     vdev_labeltype_t label)
3423 {
3424 	nvlist_t **dev;
3425 	uint_t i, ndev;
3426 	vdev_t *vd;
3427 	int error;
3428 
3429 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3430 
3431 	/*
3432 	 * It's acceptable to have no devs specified.
3433 	 */
3434 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3435 		return (0);
3436 
3437 	if (ndev == 0)
3438 		return (SET_ERROR(EINVAL));
3439 
3440 	/*
3441 	 * Make sure the pool is formatted with a version that supports this
3442 	 * device type.
3443 	 */
3444 	if (spa_version(spa) < version)
3445 		return (SET_ERROR(ENOTSUP));
3446 
3447 	/*
3448 	 * Set the pending device list so we correctly handle device in-use
3449 	 * checking.
3450 	 */
3451 	sav->sav_pending = dev;
3452 	sav->sav_npending = ndev;
3453 
3454 	for (i = 0; i < ndev; i++) {
3455 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3456 		    mode)) != 0)
3457 			goto out;
3458 
3459 		if (!vd->vdev_ops->vdev_op_leaf) {
3460 			vdev_free(vd);
3461 			error = SET_ERROR(EINVAL);
3462 			goto out;
3463 		}
3464 
3465 		/*
3466 		 * The L2ARC currently only supports disk devices in
3467 		 * kernel context.  For user-level testing, we allow it.
3468 		 */
3469 #ifdef _KERNEL
3470 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3471 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3472 			error = SET_ERROR(ENOTBLK);
3473 			vdev_free(vd);
3474 			goto out;
3475 		}
3476 #endif
3477 		vd->vdev_top = vd;
3478 
3479 		if ((error = vdev_open(vd)) == 0 &&
3480 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3481 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3482 			    vd->vdev_guid) == 0);
3483 		}
3484 
3485 		vdev_free(vd);
3486 
3487 		if (error &&
3488 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3489 			goto out;
3490 		else
3491 			error = 0;
3492 	}
3493 
3494 out:
3495 	sav->sav_pending = NULL;
3496 	sav->sav_npending = 0;
3497 	return (error);
3498 }
3499 
3500 static int
3501 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3502 {
3503 	int error;
3504 
3505 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3506 
3507 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3508 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3509 	    VDEV_LABEL_SPARE)) != 0) {
3510 		return (error);
3511 	}
3512 
3513 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3514 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3515 	    VDEV_LABEL_L2CACHE));
3516 }
3517 
3518 static void
3519 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3520     const char *config)
3521 {
3522 	int i;
3523 
3524 	if (sav->sav_config != NULL) {
3525 		nvlist_t **olddevs;
3526 		uint_t oldndevs;
3527 		nvlist_t **newdevs;
3528 
3529 		/*
3530 		 * Generate new dev list by concatentating with the
3531 		 * current dev list.
3532 		 */
3533 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3534 		    &olddevs, &oldndevs) == 0);
3535 
3536 		newdevs = kmem_alloc(sizeof (void *) *
3537 		    (ndevs + oldndevs), KM_SLEEP);
3538 		for (i = 0; i < oldndevs; i++)
3539 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3540 			    KM_SLEEP) == 0);
3541 		for (i = 0; i < ndevs; i++)
3542 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3543 			    KM_SLEEP) == 0);
3544 
3545 		VERIFY(nvlist_remove(sav->sav_config, config,
3546 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3547 
3548 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3549 		    config, newdevs, ndevs + oldndevs) == 0);
3550 		for (i = 0; i < oldndevs + ndevs; i++)
3551 			nvlist_free(newdevs[i]);
3552 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3553 	} else {
3554 		/*
3555 		 * Generate a new dev list.
3556 		 */
3557 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3558 		    KM_SLEEP) == 0);
3559 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3560 		    devs, ndevs) == 0);
3561 	}
3562 }
3563 
3564 /*
3565  * Stop and drop level 2 ARC devices
3566  */
3567 void
3568 spa_l2cache_drop(spa_t *spa)
3569 {
3570 	vdev_t *vd;
3571 	int i;
3572 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3573 
3574 	for (i = 0; i < sav->sav_count; i++) {
3575 		uint64_t pool;
3576 
3577 		vd = sav->sav_vdevs[i];
3578 		ASSERT(vd != NULL);
3579 
3580 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3581 		    pool != 0ULL && l2arc_vdev_present(vd))
3582 			l2arc_remove_vdev(vd);
3583 	}
3584 }
3585 
3586 /*
3587  * Pool Creation
3588  */
3589 int
3590 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3591     nvlist_t *zplprops)
3592 {
3593 	spa_t *spa;
3594 	char *altroot = NULL;
3595 	vdev_t *rvd;
3596 	dsl_pool_t *dp;
3597 	dmu_tx_t *tx;
3598 	int error = 0;
3599 	uint64_t txg = TXG_INITIAL;
3600 	nvlist_t **spares, **l2cache;
3601 	uint_t nspares, nl2cache;
3602 	uint64_t version, obj;
3603 	boolean_t has_features;
3604 
3605 	/*
3606 	 * If this pool already exists, return failure.
3607 	 */
3608 	mutex_enter(&spa_namespace_lock);
3609 	if (spa_lookup(pool) != NULL) {
3610 		mutex_exit(&spa_namespace_lock);
3611 		return (SET_ERROR(EEXIST));
3612 	}
3613 
3614 	/*
3615 	 * Allocate a new spa_t structure.
3616 	 */
3617 	(void) nvlist_lookup_string(props,
3618 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3619 	spa = spa_add(pool, NULL, altroot);
3620 	spa_activate(spa, spa_mode_global);
3621 
3622 	if (props && (error = spa_prop_validate(spa, props))) {
3623 		spa_deactivate(spa);
3624 		spa_remove(spa);
3625 		mutex_exit(&spa_namespace_lock);
3626 		return (error);
3627 	}
3628 
3629 	has_features = B_FALSE;
3630 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3631 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3632 		if (zpool_prop_feature(nvpair_name(elem)))
3633 			has_features = B_TRUE;
3634 	}
3635 
3636 	if (has_features || nvlist_lookup_uint64(props,
3637 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3638 		version = SPA_VERSION;
3639 	}
3640 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3641 
3642 	spa->spa_first_txg = txg;
3643 	spa->spa_uberblock.ub_txg = txg - 1;
3644 	spa->spa_uberblock.ub_version = version;
3645 	spa->spa_ubsync = spa->spa_uberblock;
3646 	spa->spa_load_state = SPA_LOAD_CREATE;
3647 
3648 	/*
3649 	 * Create "The Godfather" zio to hold all async IOs
3650 	 */
3651 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3652 	    KM_SLEEP);
3653 	for (int i = 0; i < max_ncpus; i++) {
3654 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3655 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3656 		    ZIO_FLAG_GODFATHER);
3657 	}
3658 
3659 	/*
3660 	 * Create the root vdev.
3661 	 */
3662 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3663 
3664 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3665 
3666 	ASSERT(error != 0 || rvd != NULL);
3667 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3668 
3669 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3670 		error = SET_ERROR(EINVAL);
3671 
3672 	if (error == 0 &&
3673 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3674 	    (error = spa_validate_aux(spa, nvroot, txg,
3675 	    VDEV_ALLOC_ADD)) == 0) {
3676 		for (int c = 0; c < rvd->vdev_children; c++) {
3677 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3678 			vdev_expand(rvd->vdev_child[c], txg);
3679 		}
3680 	}
3681 
3682 	spa_config_exit(spa, SCL_ALL, FTAG);
3683 
3684 	if (error != 0) {
3685 		spa_unload(spa);
3686 		spa_deactivate(spa);
3687 		spa_remove(spa);
3688 		mutex_exit(&spa_namespace_lock);
3689 		return (error);
3690 	}
3691 
3692 	/*
3693 	 * Get the list of spares, if specified.
3694 	 */
3695 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3696 	    &spares, &nspares) == 0) {
3697 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3698 		    KM_SLEEP) == 0);
3699 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3700 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3701 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3702 		spa_load_spares(spa);
3703 		spa_config_exit(spa, SCL_ALL, FTAG);
3704 		spa->spa_spares.sav_sync = B_TRUE;
3705 	}
3706 
3707 	/*
3708 	 * Get the list of level 2 cache devices, if specified.
3709 	 */
3710 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3711 	    &l2cache, &nl2cache) == 0) {
3712 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3713 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3714 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3715 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3716 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3717 		spa_load_l2cache(spa);
3718 		spa_config_exit(spa, SCL_ALL, FTAG);
3719 		spa->spa_l2cache.sav_sync = B_TRUE;
3720 	}
3721 
3722 	spa->spa_is_initializing = B_TRUE;
3723 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3724 	spa->spa_meta_objset = dp->dp_meta_objset;
3725 	spa->spa_is_initializing = B_FALSE;
3726 
3727 	/*
3728 	 * Create DDTs (dedup tables).
3729 	 */
3730 	ddt_create(spa);
3731 
3732 	spa_update_dspace(spa);
3733 
3734 	tx = dmu_tx_create_assigned(dp, txg);
3735 
3736 	/*
3737 	 * Create the pool config object.
3738 	 */
3739 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3740 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3741 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3742 
3743 	if (zap_add(spa->spa_meta_objset,
3744 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3745 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3746 		cmn_err(CE_PANIC, "failed to add pool config");
3747 	}
3748 
3749 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3750 		spa_feature_create_zap_objects(spa, tx);
3751 
3752 	if (zap_add(spa->spa_meta_objset,
3753 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3754 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3755 		cmn_err(CE_PANIC, "failed to add pool version");
3756 	}
3757 
3758 	/* Newly created pools with the right version are always deflated. */
3759 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3760 		spa->spa_deflate = TRUE;
3761 		if (zap_add(spa->spa_meta_objset,
3762 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3763 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3764 			cmn_err(CE_PANIC, "failed to add deflate");
3765 		}
3766 	}
3767 
3768 	/*
3769 	 * Create the deferred-free bpobj.  Turn off compression
3770 	 * because sync-to-convergence takes longer if the blocksize
3771 	 * keeps changing.
3772 	 */
3773 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3774 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3775 	    ZIO_COMPRESS_OFF, tx);
3776 	if (zap_add(spa->spa_meta_objset,
3777 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3778 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3779 		cmn_err(CE_PANIC, "failed to add bpobj");
3780 	}
3781 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3782 	    spa->spa_meta_objset, obj));
3783 
3784 	/*
3785 	 * Create the pool's history object.
3786 	 */
3787 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3788 		spa_history_create_obj(spa, tx);
3789 
3790 	/*
3791 	 * Generate some random noise for salted checksums to operate on.
3792 	 */
3793 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3794 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3795 
3796 	/*
3797 	 * Set pool properties.
3798 	 */
3799 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3800 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3801 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3802 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3803 
3804 	if (props != NULL) {
3805 		spa_configfile_set(spa, props, B_FALSE);
3806 		spa_sync_props(props, tx);
3807 	}
3808 
3809 	dmu_tx_commit(tx);
3810 
3811 	spa->spa_sync_on = B_TRUE;
3812 	txg_sync_start(spa->spa_dsl_pool);
3813 
3814 	/*
3815 	 * We explicitly wait for the first transaction to complete so that our
3816 	 * bean counters are appropriately updated.
3817 	 */
3818 	txg_wait_synced(spa->spa_dsl_pool, txg);
3819 
3820 	spa_config_sync(spa, B_FALSE, B_TRUE);
3821 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3822 
3823 	spa_history_log_version(spa, "create");
3824 
3825 	/*
3826 	 * Don't count references from objsets that are already closed
3827 	 * and are making their way through the eviction process.
3828 	 */
3829 	spa_evicting_os_wait(spa);
3830 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3831 	spa->spa_load_state = SPA_LOAD_NONE;
3832 
3833 	mutex_exit(&spa_namespace_lock);
3834 
3835 	return (0);
3836 }
3837 
3838 #ifdef _KERNEL
3839 /*
3840  * Get the root pool information from the root disk, then import the root pool
3841  * during the system boot up time.
3842  */
3843 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3844 
3845 static nvlist_t *
3846 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3847 {
3848 	nvlist_t *config;
3849 	nvlist_t *nvtop, *nvroot;
3850 	uint64_t pgid;
3851 
3852 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3853 		return (NULL);
3854 
3855 	/*
3856 	 * Add this top-level vdev to the child array.
3857 	 */
3858 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3859 	    &nvtop) == 0);
3860 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3861 	    &pgid) == 0);
3862 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3863 
3864 	/*
3865 	 * Put this pool's top-level vdevs into a root vdev.
3866 	 */
3867 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3868 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3869 	    VDEV_TYPE_ROOT) == 0);
3870 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3871 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3872 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3873 	    &nvtop, 1) == 0);
3874 
3875 	/*
3876 	 * Replace the existing vdev_tree with the new root vdev in
3877 	 * this pool's configuration (remove the old, add the new).
3878 	 */
3879 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3880 	nvlist_free(nvroot);
3881 	return (config);
3882 }
3883 
3884 /*
3885  * Walk the vdev tree and see if we can find a device with "better"
3886  * configuration. A configuration is "better" if the label on that
3887  * device has a more recent txg.
3888  */
3889 static void
3890 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3891 {
3892 	for (int c = 0; c < vd->vdev_children; c++)
3893 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3894 
3895 	if (vd->vdev_ops->vdev_op_leaf) {
3896 		nvlist_t *label;
3897 		uint64_t label_txg;
3898 
3899 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3900 		    &label) != 0)
3901 			return;
3902 
3903 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3904 		    &label_txg) == 0);
3905 
3906 		/*
3907 		 * Do we have a better boot device?
3908 		 */
3909 		if (label_txg > *txg) {
3910 			*txg = label_txg;
3911 			*avd = vd;
3912 		}
3913 		nvlist_free(label);
3914 	}
3915 }
3916 
3917 /*
3918  * Import a root pool.
3919  *
3920  * For x86. devpath_list will consist of devid and/or physpath name of
3921  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3922  * The GRUB "findroot" command will return the vdev we should boot.
3923  *
3924  * For Sparc, devpath_list consists the physpath name of the booting device
3925  * no matter the rootpool is a single device pool or a mirrored pool.
3926  * e.g.
3927  *	"/pci@1f,0/ide@d/disk@0,0:a"
3928  */
3929 int
3930 spa_import_rootpool(char *devpath, char *devid)
3931 {
3932 	spa_t *spa;
3933 	vdev_t *rvd, *bvd, *avd = NULL;
3934 	nvlist_t *config, *nvtop;
3935 	uint64_t guid, txg;
3936 	char *pname;
3937 	int error;
3938 
3939 	/*
3940 	 * Read the label from the boot device and generate a configuration.
3941 	 */
3942 	config = spa_generate_rootconf(devpath, devid, &guid);
3943 #if defined(_OBP) && defined(_KERNEL)
3944 	if (config == NULL) {
3945 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3946 			/* iscsi boot */
3947 			get_iscsi_bootpath_phy(devpath);
3948 			config = spa_generate_rootconf(devpath, devid, &guid);
3949 		}
3950 	}
3951 #endif
3952 	if (config == NULL) {
3953 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3954 		    devpath);
3955 		return (SET_ERROR(EIO));
3956 	}
3957 
3958 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3959 	    &pname) == 0);
3960 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3961 
3962 	mutex_enter(&spa_namespace_lock);
3963 	if ((spa = spa_lookup(pname)) != NULL) {
3964 		/*
3965 		 * Remove the existing root pool from the namespace so that we
3966 		 * can replace it with the correct config we just read in.
3967 		 */
3968 		spa_remove(spa);
3969 	}
3970 
3971 	spa = spa_add(pname, config, NULL);
3972 	spa->spa_is_root = B_TRUE;
3973 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3974 
3975 	/*
3976 	 * Build up a vdev tree based on the boot device's label config.
3977 	 */
3978 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3979 	    &nvtop) == 0);
3980 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3981 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3982 	    VDEV_ALLOC_ROOTPOOL);
3983 	spa_config_exit(spa, SCL_ALL, FTAG);
3984 	if (error) {
3985 		mutex_exit(&spa_namespace_lock);
3986 		nvlist_free(config);
3987 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3988 		    pname);
3989 		return (error);
3990 	}
3991 
3992 	/*
3993 	 * Get the boot vdev.
3994 	 */
3995 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3996 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3997 		    (u_longlong_t)guid);
3998 		error = SET_ERROR(ENOENT);
3999 		goto out;
4000 	}
4001 
4002 	/*
4003 	 * Determine if there is a better boot device.
4004 	 */
4005 	avd = bvd;
4006 	spa_alt_rootvdev(rvd, &avd, &txg);
4007 	if (avd != bvd) {
4008 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4009 		    "try booting from '%s'", avd->vdev_path);
4010 		error = SET_ERROR(EINVAL);
4011 		goto out;
4012 	}
4013 
4014 	/*
4015 	 * If the boot device is part of a spare vdev then ensure that
4016 	 * we're booting off the active spare.
4017 	 */
4018 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4019 	    !bvd->vdev_isspare) {
4020 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4021 		    "try booting from '%s'",
4022 		    bvd->vdev_parent->
4023 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4024 		error = SET_ERROR(EINVAL);
4025 		goto out;
4026 	}
4027 
4028 	error = 0;
4029 out:
4030 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4031 	vdev_free(rvd);
4032 	spa_config_exit(spa, SCL_ALL, FTAG);
4033 	mutex_exit(&spa_namespace_lock);
4034 
4035 	nvlist_free(config);
4036 	return (error);
4037 }
4038 
4039 #endif
4040 
4041 /*
4042  * Import a non-root pool into the system.
4043  */
4044 int
4045 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4046 {
4047 	spa_t *spa;
4048 	char *altroot = NULL;
4049 	spa_load_state_t state = SPA_LOAD_IMPORT;
4050 	zpool_rewind_policy_t policy;
4051 	uint64_t mode = spa_mode_global;
4052 	uint64_t readonly = B_FALSE;
4053 	int error;
4054 	nvlist_t *nvroot;
4055 	nvlist_t **spares, **l2cache;
4056 	uint_t nspares, nl2cache;
4057 
4058 	/*
4059 	 * If a pool with this name exists, return failure.
4060 	 */
4061 	mutex_enter(&spa_namespace_lock);
4062 	if (spa_lookup(pool) != NULL) {
4063 		mutex_exit(&spa_namespace_lock);
4064 		return (SET_ERROR(EEXIST));
4065 	}
4066 
4067 	/*
4068 	 * Create and initialize the spa structure.
4069 	 */
4070 	(void) nvlist_lookup_string(props,
4071 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4072 	(void) nvlist_lookup_uint64(props,
4073 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4074 	if (readonly)
4075 		mode = FREAD;
4076 	spa = spa_add(pool, config, altroot);
4077 	spa->spa_import_flags = flags;
4078 
4079 	/*
4080 	 * Verbatim import - Take a pool and insert it into the namespace
4081 	 * as if it had been loaded at boot.
4082 	 */
4083 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4084 		if (props != NULL)
4085 			spa_configfile_set(spa, props, B_FALSE);
4086 
4087 		spa_config_sync(spa, B_FALSE, B_TRUE);
4088 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4089 
4090 		mutex_exit(&spa_namespace_lock);
4091 		return (0);
4092 	}
4093 
4094 	spa_activate(spa, mode);
4095 
4096 	/*
4097 	 * Don't start async tasks until we know everything is healthy.
4098 	 */
4099 	spa_async_suspend(spa);
4100 
4101 	zpool_get_rewind_policy(config, &policy);
4102 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4103 		state = SPA_LOAD_RECOVER;
4104 
4105 	/*
4106 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4107 	 * because the user-supplied config is actually the one to trust when
4108 	 * doing an import.
4109 	 */
4110 	if (state != SPA_LOAD_RECOVER)
4111 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4112 
4113 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4114 	    policy.zrp_request);
4115 
4116 	/*
4117 	 * Propagate anything learned while loading the pool and pass it
4118 	 * back to caller (i.e. rewind info, missing devices, etc).
4119 	 */
4120 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4121 	    spa->spa_load_info) == 0);
4122 
4123 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4124 	/*
4125 	 * Toss any existing sparelist, as it doesn't have any validity
4126 	 * anymore, and conflicts with spa_has_spare().
4127 	 */
4128 	if (spa->spa_spares.sav_config) {
4129 		nvlist_free(spa->spa_spares.sav_config);
4130 		spa->spa_spares.sav_config = NULL;
4131 		spa_load_spares(spa);
4132 	}
4133 	if (spa->spa_l2cache.sav_config) {
4134 		nvlist_free(spa->spa_l2cache.sav_config);
4135 		spa->spa_l2cache.sav_config = NULL;
4136 		spa_load_l2cache(spa);
4137 	}
4138 
4139 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4140 	    &nvroot) == 0);
4141 	if (error == 0)
4142 		error = spa_validate_aux(spa, nvroot, -1ULL,
4143 		    VDEV_ALLOC_SPARE);
4144 	if (error == 0)
4145 		error = spa_validate_aux(spa, nvroot, -1ULL,
4146 		    VDEV_ALLOC_L2CACHE);
4147 	spa_config_exit(spa, SCL_ALL, FTAG);
4148 
4149 	if (props != NULL)
4150 		spa_configfile_set(spa, props, B_FALSE);
4151 
4152 	if (error != 0 || (props && spa_writeable(spa) &&
4153 	    (error = spa_prop_set(spa, props)))) {
4154 		spa_unload(spa);
4155 		spa_deactivate(spa);
4156 		spa_remove(spa);
4157 		mutex_exit(&spa_namespace_lock);
4158 		return (error);
4159 	}
4160 
4161 	spa_async_resume(spa);
4162 
4163 	/*
4164 	 * Override any spares and level 2 cache devices as specified by
4165 	 * the user, as these may have correct device names/devids, etc.
4166 	 */
4167 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4168 	    &spares, &nspares) == 0) {
4169 		if (spa->spa_spares.sav_config)
4170 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4171 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4172 		else
4173 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4174 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4175 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4176 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4177 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4178 		spa_load_spares(spa);
4179 		spa_config_exit(spa, SCL_ALL, FTAG);
4180 		spa->spa_spares.sav_sync = B_TRUE;
4181 	}
4182 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4183 	    &l2cache, &nl2cache) == 0) {
4184 		if (spa->spa_l2cache.sav_config)
4185 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4186 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4187 		else
4188 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4189 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4190 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4191 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4192 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4193 		spa_load_l2cache(spa);
4194 		spa_config_exit(spa, SCL_ALL, FTAG);
4195 		spa->spa_l2cache.sav_sync = B_TRUE;
4196 	}
4197 
4198 	/*
4199 	 * Check for any removed devices.
4200 	 */
4201 	if (spa->spa_autoreplace) {
4202 		spa_aux_check_removed(&spa->spa_spares);
4203 		spa_aux_check_removed(&spa->spa_l2cache);
4204 	}
4205 
4206 	if (spa_writeable(spa)) {
4207 		/*
4208 		 * Update the config cache to include the newly-imported pool.
4209 		 */
4210 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4211 	}
4212 
4213 	/*
4214 	 * It's possible that the pool was expanded while it was exported.
4215 	 * We kick off an async task to handle this for us.
4216 	 */
4217 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4218 
4219 	spa_history_log_version(spa, "import");
4220 
4221 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4222 
4223 	mutex_exit(&spa_namespace_lock);
4224 
4225 	return (0);
4226 }
4227 
4228 nvlist_t *
4229 spa_tryimport(nvlist_t *tryconfig)
4230 {
4231 	nvlist_t *config = NULL;
4232 	char *poolname;
4233 	spa_t *spa;
4234 	uint64_t state;
4235 	int error;
4236 
4237 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4238 		return (NULL);
4239 
4240 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4241 		return (NULL);
4242 
4243 	/*
4244 	 * Create and initialize the spa structure.
4245 	 */
4246 	mutex_enter(&spa_namespace_lock);
4247 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4248 	spa_activate(spa, FREAD);
4249 
4250 	/*
4251 	 * Pass off the heavy lifting to spa_load().
4252 	 * Pass TRUE for mosconfig because the user-supplied config
4253 	 * is actually the one to trust when doing an import.
4254 	 */
4255 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4256 
4257 	/*
4258 	 * If 'tryconfig' was at least parsable, return the current config.
4259 	 */
4260 	if (spa->spa_root_vdev != NULL) {
4261 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4262 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4263 		    poolname) == 0);
4264 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4265 		    state) == 0);
4266 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4267 		    spa->spa_uberblock.ub_timestamp) == 0);
4268 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4269 		    spa->spa_load_info) == 0);
4270 
4271 		/*
4272 		 * If the bootfs property exists on this pool then we
4273 		 * copy it out so that external consumers can tell which
4274 		 * pools are bootable.
4275 		 */
4276 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4277 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4278 
4279 			/*
4280 			 * We have to play games with the name since the
4281 			 * pool was opened as TRYIMPORT_NAME.
4282 			 */
4283 			if (dsl_dsobj_to_dsname(spa_name(spa),
4284 			    spa->spa_bootfs, tmpname) == 0) {
4285 				char *cp;
4286 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4287 
4288 				cp = strchr(tmpname, '/');
4289 				if (cp == NULL) {
4290 					(void) strlcpy(dsname, tmpname,
4291 					    MAXPATHLEN);
4292 				} else {
4293 					(void) snprintf(dsname, MAXPATHLEN,
4294 					    "%s/%s", poolname, ++cp);
4295 				}
4296 				VERIFY(nvlist_add_string(config,
4297 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4298 				kmem_free(dsname, MAXPATHLEN);
4299 			}
4300 			kmem_free(tmpname, MAXPATHLEN);
4301 		}
4302 
4303 		/*
4304 		 * Add the list of hot spares and level 2 cache devices.
4305 		 */
4306 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4307 		spa_add_spares(spa, config);
4308 		spa_add_l2cache(spa, config);
4309 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4310 	}
4311 
4312 	spa_unload(spa);
4313 	spa_deactivate(spa);
4314 	spa_remove(spa);
4315 	mutex_exit(&spa_namespace_lock);
4316 
4317 	return (config);
4318 }
4319 
4320 /*
4321  * Pool export/destroy
4322  *
4323  * The act of destroying or exporting a pool is very simple.  We make sure there
4324  * is no more pending I/O and any references to the pool are gone.  Then, we
4325  * update the pool state and sync all the labels to disk, removing the
4326  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4327  * we don't sync the labels or remove the configuration cache.
4328  */
4329 static int
4330 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4331     boolean_t force, boolean_t hardforce)
4332 {
4333 	spa_t *spa;
4334 
4335 	if (oldconfig)
4336 		*oldconfig = NULL;
4337 
4338 	if (!(spa_mode_global & FWRITE))
4339 		return (SET_ERROR(EROFS));
4340 
4341 	mutex_enter(&spa_namespace_lock);
4342 	if ((spa = spa_lookup(pool)) == NULL) {
4343 		mutex_exit(&spa_namespace_lock);
4344 		return (SET_ERROR(ENOENT));
4345 	}
4346 
4347 	/*
4348 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4349 	 * reacquire the namespace lock, and see if we can export.
4350 	 */
4351 	spa_open_ref(spa, FTAG);
4352 	mutex_exit(&spa_namespace_lock);
4353 	spa_async_suspend(spa);
4354 	mutex_enter(&spa_namespace_lock);
4355 	spa_close(spa, FTAG);
4356 
4357 	/*
4358 	 * The pool will be in core if it's openable,
4359 	 * in which case we can modify its state.
4360 	 */
4361 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4362 		/*
4363 		 * Objsets may be open only because they're dirty, so we
4364 		 * have to force it to sync before checking spa_refcnt.
4365 		 */
4366 		txg_wait_synced(spa->spa_dsl_pool, 0);
4367 		spa_evicting_os_wait(spa);
4368 
4369 		/*
4370 		 * A pool cannot be exported or destroyed if there are active
4371 		 * references.  If we are resetting a pool, allow references by
4372 		 * fault injection handlers.
4373 		 */
4374 		if (!spa_refcount_zero(spa) ||
4375 		    (spa->spa_inject_ref != 0 &&
4376 		    new_state != POOL_STATE_UNINITIALIZED)) {
4377 			spa_async_resume(spa);
4378 			mutex_exit(&spa_namespace_lock);
4379 			return (SET_ERROR(EBUSY));
4380 		}
4381 
4382 		/*
4383 		 * A pool cannot be exported if it has an active shared spare.
4384 		 * This is to prevent other pools stealing the active spare
4385 		 * from an exported pool. At user's own will, such pool can
4386 		 * be forcedly exported.
4387 		 */
4388 		if (!force && new_state == POOL_STATE_EXPORTED &&
4389 		    spa_has_active_shared_spare(spa)) {
4390 			spa_async_resume(spa);
4391 			mutex_exit(&spa_namespace_lock);
4392 			return (SET_ERROR(EXDEV));
4393 		}
4394 
4395 		/*
4396 		 * We want this to be reflected on every label,
4397 		 * so mark them all dirty.  spa_unload() will do the
4398 		 * final sync that pushes these changes out.
4399 		 */
4400 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4401 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4402 			spa->spa_state = new_state;
4403 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4404 			    TXG_DEFER_SIZE + 1;
4405 			vdev_config_dirty(spa->spa_root_vdev);
4406 			spa_config_exit(spa, SCL_ALL, FTAG);
4407 		}
4408 	}
4409 
4410 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4411 
4412 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4413 		spa_unload(spa);
4414 		spa_deactivate(spa);
4415 	}
4416 
4417 	if (oldconfig && spa->spa_config)
4418 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4419 
4420 	if (new_state != POOL_STATE_UNINITIALIZED) {
4421 		if (!hardforce)
4422 			spa_config_sync(spa, B_TRUE, B_TRUE);
4423 		spa_remove(spa);
4424 	}
4425 	mutex_exit(&spa_namespace_lock);
4426 
4427 	return (0);
4428 }
4429 
4430 /*
4431  * Destroy a storage pool.
4432  */
4433 int
4434 spa_destroy(char *pool)
4435 {
4436 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4437 	    B_FALSE, B_FALSE));
4438 }
4439 
4440 /*
4441  * Export a storage pool.
4442  */
4443 int
4444 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4445     boolean_t hardforce)
4446 {
4447 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4448 	    force, hardforce));
4449 }
4450 
4451 /*
4452  * Similar to spa_export(), this unloads the spa_t without actually removing it
4453  * from the namespace in any way.
4454  */
4455 int
4456 spa_reset(char *pool)
4457 {
4458 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4459 	    B_FALSE, B_FALSE));
4460 }
4461 
4462 /*
4463  * ==========================================================================
4464  * Device manipulation
4465  * ==========================================================================
4466  */
4467 
4468 /*
4469  * Add a device to a storage pool.
4470  */
4471 int
4472 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4473 {
4474 	uint64_t txg, id;
4475 	int error;
4476 	vdev_t *rvd = spa->spa_root_vdev;
4477 	vdev_t *vd, *tvd;
4478 	nvlist_t **spares, **l2cache;
4479 	uint_t nspares, nl2cache;
4480 
4481 	ASSERT(spa_writeable(spa));
4482 
4483 	txg = spa_vdev_enter(spa);
4484 
4485 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4486 	    VDEV_ALLOC_ADD)) != 0)
4487 		return (spa_vdev_exit(spa, NULL, txg, error));
4488 
4489 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4490 
4491 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4492 	    &nspares) != 0)
4493 		nspares = 0;
4494 
4495 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4496 	    &nl2cache) != 0)
4497 		nl2cache = 0;
4498 
4499 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4500 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4501 
4502 	if (vd->vdev_children != 0 &&
4503 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4504 		return (spa_vdev_exit(spa, vd, txg, error));
4505 
4506 	/*
4507 	 * We must validate the spares and l2cache devices after checking the
4508 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4509 	 */
4510 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4511 		return (spa_vdev_exit(spa, vd, txg, error));
4512 
4513 	/*
4514 	 * Transfer each new top-level vdev from vd to rvd.
4515 	 */
4516 	for (int c = 0; c < vd->vdev_children; c++) {
4517 
4518 		/*
4519 		 * Set the vdev id to the first hole, if one exists.
4520 		 */
4521 		for (id = 0; id < rvd->vdev_children; id++) {
4522 			if (rvd->vdev_child[id]->vdev_ishole) {
4523 				vdev_free(rvd->vdev_child[id]);
4524 				break;
4525 			}
4526 		}
4527 		tvd = vd->vdev_child[c];
4528 		vdev_remove_child(vd, tvd);
4529 		tvd->vdev_id = id;
4530 		vdev_add_child(rvd, tvd);
4531 		vdev_config_dirty(tvd);
4532 	}
4533 
4534 	if (nspares != 0) {
4535 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4536 		    ZPOOL_CONFIG_SPARES);
4537 		spa_load_spares(spa);
4538 		spa->spa_spares.sav_sync = B_TRUE;
4539 	}
4540 
4541 	if (nl2cache != 0) {
4542 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4543 		    ZPOOL_CONFIG_L2CACHE);
4544 		spa_load_l2cache(spa);
4545 		spa->spa_l2cache.sav_sync = B_TRUE;
4546 	}
4547 
4548 	/*
4549 	 * We have to be careful when adding new vdevs to an existing pool.
4550 	 * If other threads start allocating from these vdevs before we
4551 	 * sync the config cache, and we lose power, then upon reboot we may
4552 	 * fail to open the pool because there are DVAs that the config cache
4553 	 * can't translate.  Therefore, we first add the vdevs without
4554 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4555 	 * and then let spa_config_update() initialize the new metaslabs.
4556 	 *
4557 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4558 	 * if we lose power at any point in this sequence, the remaining
4559 	 * steps will be completed the next time we load the pool.
4560 	 */
4561 	(void) spa_vdev_exit(spa, vd, txg, 0);
4562 
4563 	mutex_enter(&spa_namespace_lock);
4564 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4565 	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4566 	mutex_exit(&spa_namespace_lock);
4567 
4568 	return (0);
4569 }
4570 
4571 /*
4572  * Attach a device to a mirror.  The arguments are the path to any device
4573  * in the mirror, and the nvroot for the new device.  If the path specifies
4574  * a device that is not mirrored, we automatically insert the mirror vdev.
4575  *
4576  * If 'replacing' is specified, the new device is intended to replace the
4577  * existing device; in this case the two devices are made into their own
4578  * mirror using the 'replacing' vdev, which is functionally identical to
4579  * the mirror vdev (it actually reuses all the same ops) but has a few
4580  * extra rules: you can't attach to it after it's been created, and upon
4581  * completion of resilvering, the first disk (the one being replaced)
4582  * is automatically detached.
4583  */
4584 int
4585 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4586 {
4587 	uint64_t txg, dtl_max_txg;
4588 	vdev_t *rvd = spa->spa_root_vdev;
4589 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4590 	vdev_ops_t *pvops;
4591 	char *oldvdpath, *newvdpath;
4592 	int newvd_isspare;
4593 	int error;
4594 
4595 	ASSERT(spa_writeable(spa));
4596 
4597 	txg = spa_vdev_enter(spa);
4598 
4599 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4600 
4601 	if (oldvd == NULL)
4602 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4603 
4604 	if (!oldvd->vdev_ops->vdev_op_leaf)
4605 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4606 
4607 	pvd = oldvd->vdev_parent;
4608 
4609 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4610 	    VDEV_ALLOC_ATTACH)) != 0)
4611 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4612 
4613 	if (newrootvd->vdev_children != 1)
4614 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4615 
4616 	newvd = newrootvd->vdev_child[0];
4617 
4618 	if (!newvd->vdev_ops->vdev_op_leaf)
4619 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4620 
4621 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4622 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4623 
4624 	/*
4625 	 * Spares can't replace logs
4626 	 */
4627 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4628 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4629 
4630 	if (!replacing) {
4631 		/*
4632 		 * For attach, the only allowable parent is a mirror or the root
4633 		 * vdev.
4634 		 */
4635 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4636 		    pvd->vdev_ops != &vdev_root_ops)
4637 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4638 
4639 		pvops = &vdev_mirror_ops;
4640 	} else {
4641 		/*
4642 		 * Active hot spares can only be replaced by inactive hot
4643 		 * spares.
4644 		 */
4645 		if (pvd->vdev_ops == &vdev_spare_ops &&
4646 		    oldvd->vdev_isspare &&
4647 		    !spa_has_spare(spa, newvd->vdev_guid))
4648 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4649 
4650 		/*
4651 		 * If the source is a hot spare, and the parent isn't already a
4652 		 * spare, then we want to create a new hot spare.  Otherwise, we
4653 		 * want to create a replacing vdev.  The user is not allowed to
4654 		 * attach to a spared vdev child unless the 'isspare' state is
4655 		 * the same (spare replaces spare, non-spare replaces
4656 		 * non-spare).
4657 		 */
4658 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4659 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4660 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4661 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4662 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4663 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4664 		}
4665 
4666 		if (newvd->vdev_isspare)
4667 			pvops = &vdev_spare_ops;
4668 		else
4669 			pvops = &vdev_replacing_ops;
4670 	}
4671 
4672 	/*
4673 	 * Make sure the new device is big enough.
4674 	 */
4675 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4676 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4677 
4678 	/*
4679 	 * The new device cannot have a higher alignment requirement
4680 	 * than the top-level vdev.
4681 	 */
4682 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4683 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4684 
4685 	/*
4686 	 * If this is an in-place replacement, update oldvd's path and devid
4687 	 * to make it distinguishable from newvd, and unopenable from now on.
4688 	 */
4689 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4690 		spa_strfree(oldvd->vdev_path);
4691 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4692 		    KM_SLEEP);
4693 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4694 		    newvd->vdev_path, "old");
4695 		if (oldvd->vdev_devid != NULL) {
4696 			spa_strfree(oldvd->vdev_devid);
4697 			oldvd->vdev_devid = NULL;
4698 		}
4699 	}
4700 
4701 	/* mark the device being resilvered */
4702 	newvd->vdev_resilver_txg = txg;
4703 
4704 	/*
4705 	 * If the parent is not a mirror, or if we're replacing, insert the new
4706 	 * mirror/replacing/spare vdev above oldvd.
4707 	 */
4708 	if (pvd->vdev_ops != pvops)
4709 		pvd = vdev_add_parent(oldvd, pvops);
4710 
4711 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4712 	ASSERT(pvd->vdev_ops == pvops);
4713 	ASSERT(oldvd->vdev_parent == pvd);
4714 
4715 	/*
4716 	 * Extract the new device from its root and add it to pvd.
4717 	 */
4718 	vdev_remove_child(newrootvd, newvd);
4719 	newvd->vdev_id = pvd->vdev_children;
4720 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4721 	vdev_add_child(pvd, newvd);
4722 
4723 	tvd = newvd->vdev_top;
4724 	ASSERT(pvd->vdev_top == tvd);
4725 	ASSERT(tvd->vdev_parent == rvd);
4726 
4727 	vdev_config_dirty(tvd);
4728 
4729 	/*
4730 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4731 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4732 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4733 	 */
4734 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4735 
4736 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4737 	    dtl_max_txg - TXG_INITIAL);
4738 
4739 	if (newvd->vdev_isspare) {
4740 		spa_spare_activate(newvd);
4741 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4742 	}
4743 
4744 	oldvdpath = spa_strdup(oldvd->vdev_path);
4745 	newvdpath = spa_strdup(newvd->vdev_path);
4746 	newvd_isspare = newvd->vdev_isspare;
4747 
4748 	/*
4749 	 * Mark newvd's DTL dirty in this txg.
4750 	 */
4751 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4752 
4753 	/*
4754 	 * Schedule the resilver to restart in the future. We do this to
4755 	 * ensure that dmu_sync-ed blocks have been stitched into the
4756 	 * respective datasets.
4757 	 */
4758 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4759 
4760 	if (spa->spa_bootfs)
4761 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4762 
4763 	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4764 
4765 	/*
4766 	 * Commit the config
4767 	 */
4768 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4769 
4770 	spa_history_log_internal(spa, "vdev attach", NULL,
4771 	    "%s vdev=%s %s vdev=%s",
4772 	    replacing && newvd_isspare ? "spare in" :
4773 	    replacing ? "replace" : "attach", newvdpath,
4774 	    replacing ? "for" : "to", oldvdpath);
4775 
4776 	spa_strfree(oldvdpath);
4777 	spa_strfree(newvdpath);
4778 
4779 	return (0);
4780 }
4781 
4782 /*
4783  * Detach a device from a mirror or replacing vdev.
4784  *
4785  * If 'replace_done' is specified, only detach if the parent
4786  * is a replacing vdev.
4787  */
4788 int
4789 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4790 {
4791 	uint64_t txg;
4792 	int error;
4793 	vdev_t *rvd = spa->spa_root_vdev;
4794 	vdev_t *vd, *pvd, *cvd, *tvd;
4795 	boolean_t unspare = B_FALSE;
4796 	uint64_t unspare_guid = 0;
4797 	char *vdpath;
4798 
4799 	ASSERT(spa_writeable(spa));
4800 
4801 	txg = spa_vdev_enter(spa);
4802 
4803 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4804 
4805 	if (vd == NULL)
4806 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4807 
4808 	if (!vd->vdev_ops->vdev_op_leaf)
4809 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4810 
4811 	pvd = vd->vdev_parent;
4812 
4813 	/*
4814 	 * If the parent/child relationship is not as expected, don't do it.
4815 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4816 	 * vdev that's replacing B with C.  The user's intent in replacing
4817 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4818 	 * the replace by detaching C, the expected behavior is to end up
4819 	 * M(A,B).  But suppose that right after deciding to detach C,
4820 	 * the replacement of B completes.  We would have M(A,C), and then
4821 	 * ask to detach C, which would leave us with just A -- not what
4822 	 * the user wanted.  To prevent this, we make sure that the
4823 	 * parent/child relationship hasn't changed -- in this example,
4824 	 * that C's parent is still the replacing vdev R.
4825 	 */
4826 	if (pvd->vdev_guid != pguid && pguid != 0)
4827 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4828 
4829 	/*
4830 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4831 	 */
4832 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4833 	    pvd->vdev_ops != &vdev_spare_ops)
4834 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4835 
4836 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4837 	    spa_version(spa) >= SPA_VERSION_SPARES);
4838 
4839 	/*
4840 	 * Only mirror, replacing, and spare vdevs support detach.
4841 	 */
4842 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4843 	    pvd->vdev_ops != &vdev_mirror_ops &&
4844 	    pvd->vdev_ops != &vdev_spare_ops)
4845 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4846 
4847 	/*
4848 	 * If this device has the only valid copy of some data,
4849 	 * we cannot safely detach it.
4850 	 */
4851 	if (vdev_dtl_required(vd))
4852 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4853 
4854 	ASSERT(pvd->vdev_children >= 2);
4855 
4856 	/*
4857 	 * If we are detaching the second disk from a replacing vdev, then
4858 	 * check to see if we changed the original vdev's path to have "/old"
4859 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4860 	 */
4861 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4862 	    vd->vdev_path != NULL) {
4863 		size_t len = strlen(vd->vdev_path);
4864 
4865 		for (int c = 0; c < pvd->vdev_children; c++) {
4866 			cvd = pvd->vdev_child[c];
4867 
4868 			if (cvd == vd || cvd->vdev_path == NULL)
4869 				continue;
4870 
4871 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4872 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4873 				spa_strfree(cvd->vdev_path);
4874 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4875 				break;
4876 			}
4877 		}
4878 	}
4879 
4880 	/*
4881 	 * If we are detaching the original disk from a spare, then it implies
4882 	 * that the spare should become a real disk, and be removed from the
4883 	 * active spare list for the pool.
4884 	 */
4885 	if (pvd->vdev_ops == &vdev_spare_ops &&
4886 	    vd->vdev_id == 0 &&
4887 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4888 		unspare = B_TRUE;
4889 
4890 	/*
4891 	 * Erase the disk labels so the disk can be used for other things.
4892 	 * This must be done after all other error cases are handled,
4893 	 * but before we disembowel vd (so we can still do I/O to it).
4894 	 * But if we can't do it, don't treat the error as fatal --
4895 	 * it may be that the unwritability of the disk is the reason
4896 	 * it's being detached!
4897 	 */
4898 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4899 
4900 	/*
4901 	 * Remove vd from its parent and compact the parent's children.
4902 	 */
4903 	vdev_remove_child(pvd, vd);
4904 	vdev_compact_children(pvd);
4905 
4906 	/*
4907 	 * Remember one of the remaining children so we can get tvd below.
4908 	 */
4909 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4910 
4911 	/*
4912 	 * If we need to remove the remaining child from the list of hot spares,
4913 	 * do it now, marking the vdev as no longer a spare in the process.
4914 	 * We must do this before vdev_remove_parent(), because that can
4915 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4916 	 * reason, we must remove the spare now, in the same txg as the detach;
4917 	 * otherwise someone could attach a new sibling, change the GUID, and
4918 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4919 	 */
4920 	if (unspare) {
4921 		ASSERT(cvd->vdev_isspare);
4922 		spa_spare_remove(cvd);
4923 		unspare_guid = cvd->vdev_guid;
4924 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4925 		cvd->vdev_unspare = B_TRUE;
4926 	}
4927 
4928 	/*
4929 	 * If the parent mirror/replacing vdev only has one child,
4930 	 * the parent is no longer needed.  Remove it from the tree.
4931 	 */
4932 	if (pvd->vdev_children == 1) {
4933 		if (pvd->vdev_ops == &vdev_spare_ops)
4934 			cvd->vdev_unspare = B_FALSE;
4935 		vdev_remove_parent(cvd);
4936 	}
4937 
4938 
4939 	/*
4940 	 * We don't set tvd until now because the parent we just removed
4941 	 * may have been the previous top-level vdev.
4942 	 */
4943 	tvd = cvd->vdev_top;
4944 	ASSERT(tvd->vdev_parent == rvd);
4945 
4946 	/*
4947 	 * Reevaluate the parent vdev state.
4948 	 */
4949 	vdev_propagate_state(cvd);
4950 
4951 	/*
4952 	 * If the 'autoexpand' property is set on the pool then automatically
4953 	 * try to expand the size of the pool. For example if the device we
4954 	 * just detached was smaller than the others, it may be possible to
4955 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4956 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4957 	 */
4958 	if (spa->spa_autoexpand) {
4959 		vdev_reopen(tvd);
4960 		vdev_expand(tvd, txg);
4961 	}
4962 
4963 	vdev_config_dirty(tvd);
4964 
4965 	/*
4966 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4967 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4968 	 * But first make sure we're not on any *other* txg's DTL list, to
4969 	 * prevent vd from being accessed after it's freed.
4970 	 */
4971 	vdpath = spa_strdup(vd->vdev_path);
4972 	for (int t = 0; t < TXG_SIZE; t++)
4973 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4974 	vd->vdev_detached = B_TRUE;
4975 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4976 
4977 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4978 
4979 	/* hang on to the spa before we release the lock */
4980 	spa_open_ref(spa, FTAG);
4981 
4982 	error = spa_vdev_exit(spa, vd, txg, 0);
4983 
4984 	spa_history_log_internal(spa, "detach", NULL,
4985 	    "vdev=%s", vdpath);
4986 	spa_strfree(vdpath);
4987 
4988 	/*
4989 	 * If this was the removal of the original device in a hot spare vdev,
4990 	 * then we want to go through and remove the device from the hot spare
4991 	 * list of every other pool.
4992 	 */
4993 	if (unspare) {
4994 		spa_t *altspa = NULL;
4995 
4996 		mutex_enter(&spa_namespace_lock);
4997 		while ((altspa = spa_next(altspa)) != NULL) {
4998 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4999 			    altspa == spa)
5000 				continue;
5001 
5002 			spa_open_ref(altspa, FTAG);
5003 			mutex_exit(&spa_namespace_lock);
5004 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5005 			mutex_enter(&spa_namespace_lock);
5006 			spa_close(altspa, FTAG);
5007 		}
5008 		mutex_exit(&spa_namespace_lock);
5009 
5010 		/* search the rest of the vdevs for spares to remove */
5011 		spa_vdev_resilver_done(spa);
5012 	}
5013 
5014 	/* all done with the spa; OK to release */
5015 	mutex_enter(&spa_namespace_lock);
5016 	spa_close(spa, FTAG);
5017 	mutex_exit(&spa_namespace_lock);
5018 
5019 	return (error);
5020 }
5021 
5022 /*
5023  * Split a set of devices from their mirrors, and create a new pool from them.
5024  */
5025 int
5026 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5027     nvlist_t *props, boolean_t exp)
5028 {
5029 	int error = 0;
5030 	uint64_t txg, *glist;
5031 	spa_t *newspa;
5032 	uint_t c, children, lastlog;
5033 	nvlist_t **child, *nvl, *tmp;
5034 	dmu_tx_t *tx;
5035 	char *altroot = NULL;
5036 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5037 	boolean_t activate_slog;
5038 
5039 	ASSERT(spa_writeable(spa));
5040 
5041 	txg = spa_vdev_enter(spa);
5042 
5043 	/* clear the log and flush everything up to now */
5044 	activate_slog = spa_passivate_log(spa);
5045 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5046 	error = spa_offline_log(spa);
5047 	txg = spa_vdev_config_enter(spa);
5048 
5049 	if (activate_slog)
5050 		spa_activate_log(spa);
5051 
5052 	if (error != 0)
5053 		return (spa_vdev_exit(spa, NULL, txg, error));
5054 
5055 	/* check new spa name before going any further */
5056 	if (spa_lookup(newname) != NULL)
5057 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5058 
5059 	/*
5060 	 * scan through all the children to ensure they're all mirrors
5061 	 */
5062 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5063 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5064 	    &children) != 0)
5065 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5066 
5067 	/* first, check to ensure we've got the right child count */
5068 	rvd = spa->spa_root_vdev;
5069 	lastlog = 0;
5070 	for (c = 0; c < rvd->vdev_children; c++) {
5071 		vdev_t *vd = rvd->vdev_child[c];
5072 
5073 		/* don't count the holes & logs as children */
5074 		if (vd->vdev_islog || vd->vdev_ishole) {
5075 			if (lastlog == 0)
5076 				lastlog = c;
5077 			continue;
5078 		}
5079 
5080 		lastlog = 0;
5081 	}
5082 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5083 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5084 
5085 	/* next, ensure no spare or cache devices are part of the split */
5086 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5087 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5088 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5089 
5090 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5091 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5092 
5093 	/* then, loop over each vdev and validate it */
5094 	for (c = 0; c < children; c++) {
5095 		uint64_t is_hole = 0;
5096 
5097 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5098 		    &is_hole);
5099 
5100 		if (is_hole != 0) {
5101 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5102 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5103 				continue;
5104 			} else {
5105 				error = SET_ERROR(EINVAL);
5106 				break;
5107 			}
5108 		}
5109 
5110 		/* which disk is going to be split? */
5111 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5112 		    &glist[c]) != 0) {
5113 			error = SET_ERROR(EINVAL);
5114 			break;
5115 		}
5116 
5117 		/* look it up in the spa */
5118 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5119 		if (vml[c] == NULL) {
5120 			error = SET_ERROR(ENODEV);
5121 			break;
5122 		}
5123 
5124 		/* make sure there's nothing stopping the split */
5125 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5126 		    vml[c]->vdev_islog ||
5127 		    vml[c]->vdev_ishole ||
5128 		    vml[c]->vdev_isspare ||
5129 		    vml[c]->vdev_isl2cache ||
5130 		    !vdev_writeable(vml[c]) ||
5131 		    vml[c]->vdev_children != 0 ||
5132 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5133 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5134 			error = SET_ERROR(EINVAL);
5135 			break;
5136 		}
5137 
5138 		if (vdev_dtl_required(vml[c])) {
5139 			error = SET_ERROR(EBUSY);
5140 			break;
5141 		}
5142 
5143 		/* we need certain info from the top level */
5144 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5145 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5146 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5147 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5148 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5149 		    vml[c]->vdev_top->vdev_asize) == 0);
5150 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5151 		    vml[c]->vdev_top->vdev_ashift) == 0);
5152 
5153 		/* transfer per-vdev ZAPs */
5154 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5155 		VERIFY0(nvlist_add_uint64(child[c],
5156 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5157 
5158 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5159 		VERIFY0(nvlist_add_uint64(child[c],
5160 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5161 		    vml[c]->vdev_parent->vdev_top_zap));
5162 	}
5163 
5164 	if (error != 0) {
5165 		kmem_free(vml, children * sizeof (vdev_t *));
5166 		kmem_free(glist, children * sizeof (uint64_t));
5167 		return (spa_vdev_exit(spa, NULL, txg, error));
5168 	}
5169 
5170 	/* stop writers from using the disks */
5171 	for (c = 0; c < children; c++) {
5172 		if (vml[c] != NULL)
5173 			vml[c]->vdev_offline = B_TRUE;
5174 	}
5175 	vdev_reopen(spa->spa_root_vdev);
5176 
5177 	/*
5178 	 * Temporarily record the splitting vdevs in the spa config.  This
5179 	 * will disappear once the config is regenerated.
5180 	 */
5181 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5182 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5183 	    glist, children) == 0);
5184 	kmem_free(glist, children * sizeof (uint64_t));
5185 
5186 	mutex_enter(&spa->spa_props_lock);
5187 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5188 	    nvl) == 0);
5189 	mutex_exit(&spa->spa_props_lock);
5190 	spa->spa_config_splitting = nvl;
5191 	vdev_config_dirty(spa->spa_root_vdev);
5192 
5193 	/* configure and create the new pool */
5194 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5195 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5196 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5197 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5198 	    spa_version(spa)) == 0);
5199 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5200 	    spa->spa_config_txg) == 0);
5201 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5202 	    spa_generate_guid(NULL)) == 0);
5203 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5204 	(void) nvlist_lookup_string(props,
5205 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5206 
5207 	/* add the new pool to the namespace */
5208 	newspa = spa_add(newname, config, altroot);
5209 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5210 	newspa->spa_config_txg = spa->spa_config_txg;
5211 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5212 
5213 	/* release the spa config lock, retaining the namespace lock */
5214 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5215 
5216 	if (zio_injection_enabled)
5217 		zio_handle_panic_injection(spa, FTAG, 1);
5218 
5219 	spa_activate(newspa, spa_mode_global);
5220 	spa_async_suspend(newspa);
5221 
5222 	/* create the new pool from the disks of the original pool */
5223 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5224 	if (error)
5225 		goto out;
5226 
5227 	/* if that worked, generate a real config for the new pool */
5228 	if (newspa->spa_root_vdev != NULL) {
5229 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5230 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5231 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5232 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5233 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5234 		    B_TRUE));
5235 	}
5236 
5237 	/* set the props */
5238 	if (props != NULL) {
5239 		spa_configfile_set(newspa, props, B_FALSE);
5240 		error = spa_prop_set(newspa, props);
5241 		if (error)
5242 			goto out;
5243 	}
5244 
5245 	/* flush everything */
5246 	txg = spa_vdev_config_enter(newspa);
5247 	vdev_config_dirty(newspa->spa_root_vdev);
5248 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5249 
5250 	if (zio_injection_enabled)
5251 		zio_handle_panic_injection(spa, FTAG, 2);
5252 
5253 	spa_async_resume(newspa);
5254 
5255 	/* finally, update the original pool's config */
5256 	txg = spa_vdev_config_enter(spa);
5257 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5258 	error = dmu_tx_assign(tx, TXG_WAIT);
5259 	if (error != 0)
5260 		dmu_tx_abort(tx);
5261 	for (c = 0; c < children; c++) {
5262 		if (vml[c] != NULL) {
5263 			vdev_split(vml[c]);
5264 			if (error == 0)
5265 				spa_history_log_internal(spa, "detach", tx,
5266 				    "vdev=%s", vml[c]->vdev_path);
5267 
5268 			vdev_free(vml[c]);
5269 		}
5270 	}
5271 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5272 	vdev_config_dirty(spa->spa_root_vdev);
5273 	spa->spa_config_splitting = NULL;
5274 	nvlist_free(nvl);
5275 	if (error == 0)
5276 		dmu_tx_commit(tx);
5277 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5278 
5279 	if (zio_injection_enabled)
5280 		zio_handle_panic_injection(spa, FTAG, 3);
5281 
5282 	/* split is complete; log a history record */
5283 	spa_history_log_internal(newspa, "split", NULL,
5284 	    "from pool %s", spa_name(spa));
5285 
5286 	kmem_free(vml, children * sizeof (vdev_t *));
5287 
5288 	/* if we're not going to mount the filesystems in userland, export */
5289 	if (exp)
5290 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5291 		    B_FALSE, B_FALSE);
5292 
5293 	return (error);
5294 
5295 out:
5296 	spa_unload(newspa);
5297 	spa_deactivate(newspa);
5298 	spa_remove(newspa);
5299 
5300 	txg = spa_vdev_config_enter(spa);
5301 
5302 	/* re-online all offlined disks */
5303 	for (c = 0; c < children; c++) {
5304 		if (vml[c] != NULL)
5305 			vml[c]->vdev_offline = B_FALSE;
5306 	}
5307 	vdev_reopen(spa->spa_root_vdev);
5308 
5309 	nvlist_free(spa->spa_config_splitting);
5310 	spa->spa_config_splitting = NULL;
5311 	(void) spa_vdev_exit(spa, NULL, txg, error);
5312 
5313 	kmem_free(vml, children * sizeof (vdev_t *));
5314 	return (error);
5315 }
5316 
5317 static nvlist_t *
5318 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5319 {
5320 	for (int i = 0; i < count; i++) {
5321 		uint64_t guid;
5322 
5323 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5324 		    &guid) == 0);
5325 
5326 		if (guid == target_guid)
5327 			return (nvpp[i]);
5328 	}
5329 
5330 	return (NULL);
5331 }
5332 
5333 static void
5334 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5335     nvlist_t *dev_to_remove)
5336 {
5337 	nvlist_t **newdev = NULL;
5338 
5339 	if (count > 1)
5340 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5341 
5342 	for (int i = 0, j = 0; i < count; i++) {
5343 		if (dev[i] == dev_to_remove)
5344 			continue;
5345 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5346 	}
5347 
5348 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5349 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5350 
5351 	for (int i = 0; i < count - 1; i++)
5352 		nvlist_free(newdev[i]);
5353 
5354 	if (count > 1)
5355 		kmem_free(newdev, (count - 1) * sizeof (void *));
5356 }
5357 
5358 /*
5359  * Evacuate the device.
5360  */
5361 static int
5362 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5363 {
5364 	uint64_t txg;
5365 	int error = 0;
5366 
5367 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5368 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5369 	ASSERT(vd == vd->vdev_top);
5370 
5371 	/*
5372 	 * Evacuate the device.  We don't hold the config lock as writer
5373 	 * since we need to do I/O but we do keep the
5374 	 * spa_namespace_lock held.  Once this completes the device
5375 	 * should no longer have any blocks allocated on it.
5376 	 */
5377 	if (vd->vdev_islog) {
5378 		if (vd->vdev_stat.vs_alloc != 0)
5379 			error = spa_offline_log(spa);
5380 	} else {
5381 		error = SET_ERROR(ENOTSUP);
5382 	}
5383 
5384 	if (error)
5385 		return (error);
5386 
5387 	/*
5388 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5389 	 * associated with this vdev, and wait for these changes to sync.
5390 	 */
5391 	ASSERT0(vd->vdev_stat.vs_alloc);
5392 	txg = spa_vdev_config_enter(spa);
5393 	vd->vdev_removing = B_TRUE;
5394 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5395 	vdev_config_dirty(vd);
5396 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5397 
5398 	return (0);
5399 }
5400 
5401 /*
5402  * Complete the removal by cleaning up the namespace.
5403  */
5404 static void
5405 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5406 {
5407 	vdev_t *rvd = spa->spa_root_vdev;
5408 	uint64_t id = vd->vdev_id;
5409 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5410 
5411 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5412 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5413 	ASSERT(vd == vd->vdev_top);
5414 
5415 	/*
5416 	 * Only remove any devices which are empty.
5417 	 */
5418 	if (vd->vdev_stat.vs_alloc != 0)
5419 		return;
5420 
5421 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5422 
5423 	if (list_link_active(&vd->vdev_state_dirty_node))
5424 		vdev_state_clean(vd);
5425 	if (list_link_active(&vd->vdev_config_dirty_node))
5426 		vdev_config_clean(vd);
5427 
5428 	vdev_free(vd);
5429 
5430 	if (last_vdev) {
5431 		vdev_compact_children(rvd);
5432 	} else {
5433 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5434 		vdev_add_child(rvd, vd);
5435 	}
5436 	vdev_config_dirty(rvd);
5437 
5438 	/*
5439 	 * Reassess the health of our root vdev.
5440 	 */
5441 	vdev_reopen(rvd);
5442 }
5443 
5444 /*
5445  * Remove a device from the pool -
5446  *
5447  * Removing a device from the vdev namespace requires several steps
5448  * and can take a significant amount of time.  As a result we use
5449  * the spa_vdev_config_[enter/exit] functions which allow us to
5450  * grab and release the spa_config_lock while still holding the namespace
5451  * lock.  During each step the configuration is synced out.
5452  *
5453  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5454  * devices.
5455  */
5456 int
5457 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5458 {
5459 	vdev_t *vd;
5460 	sysevent_t *ev = NULL;
5461 	metaslab_group_t *mg;
5462 	nvlist_t **spares, **l2cache, *nv;
5463 	uint64_t txg = 0;
5464 	uint_t nspares, nl2cache;
5465 	int error = 0;
5466 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5467 
5468 	ASSERT(spa_writeable(spa));
5469 
5470 	if (!locked)
5471 		txg = spa_vdev_enter(spa);
5472 
5473 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5474 
5475 	if (spa->spa_spares.sav_vdevs != NULL &&
5476 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5477 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5478 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5479 		/*
5480 		 * Only remove the hot spare if it's not currently in use
5481 		 * in this pool.
5482 		 */
5483 		if (vd == NULL || unspare) {
5484 			if (vd == NULL)
5485 				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5486 			ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5487 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5488 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5489 			spa_load_spares(spa);
5490 			spa->spa_spares.sav_sync = B_TRUE;
5491 		} else {
5492 			error = SET_ERROR(EBUSY);
5493 		}
5494 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5495 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5496 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5497 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5498 		/*
5499 		 * Cache devices can always be removed.
5500 		 */
5501 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5502 		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5503 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5504 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5505 		spa_load_l2cache(spa);
5506 		spa->spa_l2cache.sav_sync = B_TRUE;
5507 	} else if (vd != NULL && vd->vdev_islog) {
5508 		ASSERT(!locked);
5509 		ASSERT(vd == vd->vdev_top);
5510 
5511 		mg = vd->vdev_mg;
5512 
5513 		/*
5514 		 * Stop allocating from this vdev.
5515 		 */
5516 		metaslab_group_passivate(mg);
5517 
5518 		/*
5519 		 * Wait for the youngest allocations and frees to sync,
5520 		 * and then wait for the deferral of those frees to finish.
5521 		 */
5522 		spa_vdev_config_exit(spa, NULL,
5523 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5524 
5525 		/*
5526 		 * Attempt to evacuate the vdev.
5527 		 */
5528 		error = spa_vdev_remove_evacuate(spa, vd);
5529 
5530 		txg = spa_vdev_config_enter(spa);
5531 
5532 		/*
5533 		 * If we couldn't evacuate the vdev, unwind.
5534 		 */
5535 		if (error) {
5536 			metaslab_group_activate(mg);
5537 			return (spa_vdev_exit(spa, NULL, txg, error));
5538 		}
5539 
5540 		/*
5541 		 * Clean up the vdev namespace.
5542 		 */
5543 		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5544 		spa_vdev_remove_from_namespace(spa, vd);
5545 
5546 	} else if (vd != NULL) {
5547 		/*
5548 		 * Normal vdevs cannot be removed (yet).
5549 		 */
5550 		error = SET_ERROR(ENOTSUP);
5551 	} else {
5552 		/*
5553 		 * There is no vdev of any kind with the specified guid.
5554 		 */
5555 		error = SET_ERROR(ENOENT);
5556 	}
5557 
5558 	if (!locked)
5559 		error = spa_vdev_exit(spa, NULL, txg, error);
5560 
5561 	if (ev)
5562 		spa_event_post(ev);
5563 
5564 	return (error);
5565 }
5566 
5567 /*
5568  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5569  * currently spared, so we can detach it.
5570  */
5571 static vdev_t *
5572 spa_vdev_resilver_done_hunt(vdev_t *vd)
5573 {
5574 	vdev_t *newvd, *oldvd;
5575 
5576 	for (int c = 0; c < vd->vdev_children; c++) {
5577 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5578 		if (oldvd != NULL)
5579 			return (oldvd);
5580 	}
5581 
5582 	/*
5583 	 * Check for a completed replacement.  We always consider the first
5584 	 * vdev in the list to be the oldest vdev, and the last one to be
5585 	 * the newest (see spa_vdev_attach() for how that works).  In
5586 	 * the case where the newest vdev is faulted, we will not automatically
5587 	 * remove it after a resilver completes.  This is OK as it will require
5588 	 * user intervention to determine which disk the admin wishes to keep.
5589 	 */
5590 	if (vd->vdev_ops == &vdev_replacing_ops) {
5591 		ASSERT(vd->vdev_children > 1);
5592 
5593 		newvd = vd->vdev_child[vd->vdev_children - 1];
5594 		oldvd = vd->vdev_child[0];
5595 
5596 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5597 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5598 		    !vdev_dtl_required(oldvd))
5599 			return (oldvd);
5600 	}
5601 
5602 	/*
5603 	 * Check for a completed resilver with the 'unspare' flag set.
5604 	 */
5605 	if (vd->vdev_ops == &vdev_spare_ops) {
5606 		vdev_t *first = vd->vdev_child[0];
5607 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5608 
5609 		if (last->vdev_unspare) {
5610 			oldvd = first;
5611 			newvd = last;
5612 		} else if (first->vdev_unspare) {
5613 			oldvd = last;
5614 			newvd = first;
5615 		} else {
5616 			oldvd = NULL;
5617 		}
5618 
5619 		if (oldvd != NULL &&
5620 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5621 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5622 		    !vdev_dtl_required(oldvd))
5623 			return (oldvd);
5624 
5625 		/*
5626 		 * If there are more than two spares attached to a disk,
5627 		 * and those spares are not required, then we want to
5628 		 * attempt to free them up now so that they can be used
5629 		 * by other pools.  Once we're back down to a single
5630 		 * disk+spare, we stop removing them.
5631 		 */
5632 		if (vd->vdev_children > 2) {
5633 			newvd = vd->vdev_child[1];
5634 
5635 			if (newvd->vdev_isspare && last->vdev_isspare &&
5636 			    vdev_dtl_empty(last, DTL_MISSING) &&
5637 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5638 			    !vdev_dtl_required(newvd))
5639 				return (newvd);
5640 		}
5641 	}
5642 
5643 	return (NULL);
5644 }
5645 
5646 static void
5647 spa_vdev_resilver_done(spa_t *spa)
5648 {
5649 	vdev_t *vd, *pvd, *ppvd;
5650 	uint64_t guid, sguid, pguid, ppguid;
5651 
5652 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5653 
5654 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5655 		pvd = vd->vdev_parent;
5656 		ppvd = pvd->vdev_parent;
5657 		guid = vd->vdev_guid;
5658 		pguid = pvd->vdev_guid;
5659 		ppguid = ppvd->vdev_guid;
5660 		sguid = 0;
5661 		/*
5662 		 * If we have just finished replacing a hot spared device, then
5663 		 * we need to detach the parent's first child (the original hot
5664 		 * spare) as well.
5665 		 */
5666 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5667 		    ppvd->vdev_children == 2) {
5668 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5669 			sguid = ppvd->vdev_child[1]->vdev_guid;
5670 		}
5671 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5672 
5673 		spa_config_exit(spa, SCL_ALL, FTAG);
5674 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5675 			return;
5676 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5677 			return;
5678 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5679 	}
5680 
5681 	spa_config_exit(spa, SCL_ALL, FTAG);
5682 }
5683 
5684 /*
5685  * Update the stored path or FRU for this vdev.
5686  */
5687 int
5688 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5689     boolean_t ispath)
5690 {
5691 	vdev_t *vd;
5692 	boolean_t sync = B_FALSE;
5693 
5694 	ASSERT(spa_writeable(spa));
5695 
5696 	spa_vdev_state_enter(spa, SCL_ALL);
5697 
5698 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5699 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5700 
5701 	if (!vd->vdev_ops->vdev_op_leaf)
5702 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5703 
5704 	if (ispath) {
5705 		if (strcmp(value, vd->vdev_path) != 0) {
5706 			spa_strfree(vd->vdev_path);
5707 			vd->vdev_path = spa_strdup(value);
5708 			sync = B_TRUE;
5709 		}
5710 	} else {
5711 		if (vd->vdev_fru == NULL) {
5712 			vd->vdev_fru = spa_strdup(value);
5713 			sync = B_TRUE;
5714 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5715 			spa_strfree(vd->vdev_fru);
5716 			vd->vdev_fru = spa_strdup(value);
5717 			sync = B_TRUE;
5718 		}
5719 	}
5720 
5721 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5722 }
5723 
5724 int
5725 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5726 {
5727 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5728 }
5729 
5730 int
5731 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5732 {
5733 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5734 }
5735 
5736 /*
5737  * ==========================================================================
5738  * SPA Scanning
5739  * ==========================================================================
5740  */
5741 
5742 int
5743 spa_scan_stop(spa_t *spa)
5744 {
5745 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5746 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5747 		return (SET_ERROR(EBUSY));
5748 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5749 }
5750 
5751 int
5752 spa_scan(spa_t *spa, pool_scan_func_t func)
5753 {
5754 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5755 
5756 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5757 		return (SET_ERROR(ENOTSUP));
5758 
5759 	/*
5760 	 * If a resilver was requested, but there is no DTL on a
5761 	 * writeable leaf device, we have nothing to do.
5762 	 */
5763 	if (func == POOL_SCAN_RESILVER &&
5764 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5765 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5766 		return (0);
5767 	}
5768 
5769 	return (dsl_scan(spa->spa_dsl_pool, func));
5770 }
5771 
5772 /*
5773  * ==========================================================================
5774  * SPA async task processing
5775  * ==========================================================================
5776  */
5777 
5778 static void
5779 spa_async_remove(spa_t *spa, vdev_t *vd)
5780 {
5781 	if (vd->vdev_remove_wanted) {
5782 		vd->vdev_remove_wanted = B_FALSE;
5783 		vd->vdev_delayed_close = B_FALSE;
5784 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5785 
5786 		/*
5787 		 * We want to clear the stats, but we don't want to do a full
5788 		 * vdev_clear() as that will cause us to throw away
5789 		 * degraded/faulted state as well as attempt to reopen the
5790 		 * device, all of which is a waste.
5791 		 */
5792 		vd->vdev_stat.vs_read_errors = 0;
5793 		vd->vdev_stat.vs_write_errors = 0;
5794 		vd->vdev_stat.vs_checksum_errors = 0;
5795 
5796 		vdev_state_dirty(vd->vdev_top);
5797 	}
5798 
5799 	for (int c = 0; c < vd->vdev_children; c++)
5800 		spa_async_remove(spa, vd->vdev_child[c]);
5801 }
5802 
5803 static void
5804 spa_async_probe(spa_t *spa, vdev_t *vd)
5805 {
5806 	if (vd->vdev_probe_wanted) {
5807 		vd->vdev_probe_wanted = B_FALSE;
5808 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5809 	}
5810 
5811 	for (int c = 0; c < vd->vdev_children; c++)
5812 		spa_async_probe(spa, vd->vdev_child[c]);
5813 }
5814 
5815 static void
5816 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5817 {
5818 	sysevent_id_t eid;
5819 	nvlist_t *attr;
5820 	char *physpath;
5821 
5822 	if (!spa->spa_autoexpand)
5823 		return;
5824 
5825 	for (int c = 0; c < vd->vdev_children; c++) {
5826 		vdev_t *cvd = vd->vdev_child[c];
5827 		spa_async_autoexpand(spa, cvd);
5828 	}
5829 
5830 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5831 		return;
5832 
5833 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5834 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5835 
5836 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5837 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5838 
5839 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5840 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5841 
5842 	nvlist_free(attr);
5843 	kmem_free(physpath, MAXPATHLEN);
5844 }
5845 
5846 static void
5847 spa_async_thread(spa_t *spa)
5848 {
5849 	int tasks;
5850 
5851 	ASSERT(spa->spa_sync_on);
5852 
5853 	mutex_enter(&spa->spa_async_lock);
5854 	tasks = spa->spa_async_tasks;
5855 	spa->spa_async_tasks = 0;
5856 	mutex_exit(&spa->spa_async_lock);
5857 
5858 	/*
5859 	 * See if the config needs to be updated.
5860 	 */
5861 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5862 		uint64_t old_space, new_space;
5863 
5864 		mutex_enter(&spa_namespace_lock);
5865 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5866 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5867 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5868 		mutex_exit(&spa_namespace_lock);
5869 
5870 		/*
5871 		 * If the pool grew as a result of the config update,
5872 		 * then log an internal history event.
5873 		 */
5874 		if (new_space != old_space) {
5875 			spa_history_log_internal(spa, "vdev online", NULL,
5876 			    "pool '%s' size: %llu(+%llu)",
5877 			    spa_name(spa), new_space, new_space - old_space);
5878 		}
5879 	}
5880 
5881 	/*
5882 	 * See if any devices need to be marked REMOVED.
5883 	 */
5884 	if (tasks & SPA_ASYNC_REMOVE) {
5885 		spa_vdev_state_enter(spa, SCL_NONE);
5886 		spa_async_remove(spa, spa->spa_root_vdev);
5887 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5888 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5889 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5890 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5891 		(void) spa_vdev_state_exit(spa, NULL, 0);
5892 	}
5893 
5894 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5895 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5896 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5897 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5898 	}
5899 
5900 	/*
5901 	 * See if any devices need to be probed.
5902 	 */
5903 	if (tasks & SPA_ASYNC_PROBE) {
5904 		spa_vdev_state_enter(spa, SCL_NONE);
5905 		spa_async_probe(spa, spa->spa_root_vdev);
5906 		(void) spa_vdev_state_exit(spa, NULL, 0);
5907 	}
5908 
5909 	/*
5910 	 * If any devices are done replacing, detach them.
5911 	 */
5912 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5913 		spa_vdev_resilver_done(spa);
5914 
5915 	/*
5916 	 * Kick off a resilver.
5917 	 */
5918 	if (tasks & SPA_ASYNC_RESILVER)
5919 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5920 
5921 	/*
5922 	 * Let the world know that we're done.
5923 	 */
5924 	mutex_enter(&spa->spa_async_lock);
5925 	spa->spa_async_thread = NULL;
5926 	cv_broadcast(&spa->spa_async_cv);
5927 	mutex_exit(&spa->spa_async_lock);
5928 	thread_exit();
5929 }
5930 
5931 void
5932 spa_async_suspend(spa_t *spa)
5933 {
5934 	mutex_enter(&spa->spa_async_lock);
5935 	spa->spa_async_suspended++;
5936 	while (spa->spa_async_thread != NULL)
5937 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5938 	mutex_exit(&spa->spa_async_lock);
5939 }
5940 
5941 void
5942 spa_async_resume(spa_t *spa)
5943 {
5944 	mutex_enter(&spa->spa_async_lock);
5945 	ASSERT(spa->spa_async_suspended != 0);
5946 	spa->spa_async_suspended--;
5947 	mutex_exit(&spa->spa_async_lock);
5948 }
5949 
5950 static boolean_t
5951 spa_async_tasks_pending(spa_t *spa)
5952 {
5953 	uint_t non_config_tasks;
5954 	uint_t config_task;
5955 	boolean_t config_task_suspended;
5956 
5957 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5958 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5959 	if (spa->spa_ccw_fail_time == 0) {
5960 		config_task_suspended = B_FALSE;
5961 	} else {
5962 		config_task_suspended =
5963 		    (gethrtime() - spa->spa_ccw_fail_time) <
5964 		    (zfs_ccw_retry_interval * NANOSEC);
5965 	}
5966 
5967 	return (non_config_tasks || (config_task && !config_task_suspended));
5968 }
5969 
5970 static void
5971 spa_async_dispatch(spa_t *spa)
5972 {
5973 	mutex_enter(&spa->spa_async_lock);
5974 	if (spa_async_tasks_pending(spa) &&
5975 	    !spa->spa_async_suspended &&
5976 	    spa->spa_async_thread == NULL &&
5977 	    rootdir != NULL)
5978 		spa->spa_async_thread = thread_create(NULL, 0,
5979 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5980 	mutex_exit(&spa->spa_async_lock);
5981 }
5982 
5983 void
5984 spa_async_request(spa_t *spa, int task)
5985 {
5986 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5987 	mutex_enter(&spa->spa_async_lock);
5988 	spa->spa_async_tasks |= task;
5989 	mutex_exit(&spa->spa_async_lock);
5990 }
5991 
5992 /*
5993  * ==========================================================================
5994  * SPA syncing routines
5995  * ==========================================================================
5996  */
5997 
5998 static int
5999 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6000 {
6001 	bpobj_t *bpo = arg;
6002 	bpobj_enqueue(bpo, bp, tx);
6003 	return (0);
6004 }
6005 
6006 static int
6007 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6008 {
6009 	zio_t *zio = arg;
6010 
6011 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6012 	    zio->io_flags));
6013 	return (0);
6014 }
6015 
6016 /*
6017  * Note: this simple function is not inlined to make it easier to dtrace the
6018  * amount of time spent syncing frees.
6019  */
6020 static void
6021 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6022 {
6023 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6024 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6025 	VERIFY(zio_wait(zio) == 0);
6026 }
6027 
6028 /*
6029  * Note: this simple function is not inlined to make it easier to dtrace the
6030  * amount of time spent syncing deferred frees.
6031  */
6032 static void
6033 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6034 {
6035 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6036 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6037 	    spa_free_sync_cb, zio, tx), ==, 0);
6038 	VERIFY0(zio_wait(zio));
6039 }
6040 
6041 
6042 static void
6043 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6044 {
6045 	char *packed = NULL;
6046 	size_t bufsize;
6047 	size_t nvsize = 0;
6048 	dmu_buf_t *db;
6049 
6050 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6051 
6052 	/*
6053 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6054 	 * information.  This avoids the dmu_buf_will_dirty() path and
6055 	 * saves us a pre-read to get data we don't actually care about.
6056 	 */
6057 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6058 	packed = kmem_alloc(bufsize, KM_SLEEP);
6059 
6060 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6061 	    KM_SLEEP) == 0);
6062 	bzero(packed + nvsize, bufsize - nvsize);
6063 
6064 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6065 
6066 	kmem_free(packed, bufsize);
6067 
6068 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6069 	dmu_buf_will_dirty(db, tx);
6070 	*(uint64_t *)db->db_data = nvsize;
6071 	dmu_buf_rele(db, FTAG);
6072 }
6073 
6074 static void
6075 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6076     const char *config, const char *entry)
6077 {
6078 	nvlist_t *nvroot;
6079 	nvlist_t **list;
6080 	int i;
6081 
6082 	if (!sav->sav_sync)
6083 		return;
6084 
6085 	/*
6086 	 * Update the MOS nvlist describing the list of available devices.
6087 	 * spa_validate_aux() will have already made sure this nvlist is
6088 	 * valid and the vdevs are labeled appropriately.
6089 	 */
6090 	if (sav->sav_object == 0) {
6091 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6092 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6093 		    sizeof (uint64_t), tx);
6094 		VERIFY(zap_update(spa->spa_meta_objset,
6095 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6096 		    &sav->sav_object, tx) == 0);
6097 	}
6098 
6099 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6100 	if (sav->sav_count == 0) {
6101 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6102 	} else {
6103 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6104 		for (i = 0; i < sav->sav_count; i++)
6105 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6106 			    B_FALSE, VDEV_CONFIG_L2CACHE);
6107 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6108 		    sav->sav_count) == 0);
6109 		for (i = 0; i < sav->sav_count; i++)
6110 			nvlist_free(list[i]);
6111 		kmem_free(list, sav->sav_count * sizeof (void *));
6112 	}
6113 
6114 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6115 	nvlist_free(nvroot);
6116 
6117 	sav->sav_sync = B_FALSE;
6118 }
6119 
6120 /*
6121  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6122  * The all-vdev ZAP must be empty.
6123  */
6124 static void
6125 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6126 {
6127 	spa_t *spa = vd->vdev_spa;
6128 	if (vd->vdev_top_zap != 0) {
6129 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6130 		    vd->vdev_top_zap, tx));
6131 	}
6132 	if (vd->vdev_leaf_zap != 0) {
6133 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6134 		    vd->vdev_leaf_zap, tx));
6135 	}
6136 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6137 		spa_avz_build(vd->vdev_child[i], avz, tx);
6138 	}
6139 }
6140 
6141 static void
6142 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6143 {
6144 	nvlist_t *config;
6145 
6146 	/*
6147 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6148 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6149 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6150 	 * need to rebuild the AVZ although the config may not be dirty.
6151 	 */
6152 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6153 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6154 		return;
6155 
6156 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6157 
6158 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6159 	    spa->spa_all_vdev_zaps != 0);
6160 
6161 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6162 		/* Make and build the new AVZ */
6163 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6164 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6165 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6166 
6167 		/* Diff old AVZ with new one */
6168 		zap_cursor_t zc;
6169 		zap_attribute_t za;
6170 
6171 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6172 		    spa->spa_all_vdev_zaps);
6173 		    zap_cursor_retrieve(&zc, &za) == 0;
6174 		    zap_cursor_advance(&zc)) {
6175 			uint64_t vdzap = za.za_first_integer;
6176 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6177 			    vdzap) == ENOENT) {
6178 				/*
6179 				 * ZAP is listed in old AVZ but not in new one;
6180 				 * destroy it
6181 				 */
6182 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6183 				    tx));
6184 			}
6185 		}
6186 
6187 		zap_cursor_fini(&zc);
6188 
6189 		/* Destroy the old AVZ */
6190 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6191 		    spa->spa_all_vdev_zaps, tx));
6192 
6193 		/* Replace the old AVZ in the dir obj with the new one */
6194 		VERIFY0(zap_update(spa->spa_meta_objset,
6195 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6196 		    sizeof (new_avz), 1, &new_avz, tx));
6197 
6198 		spa->spa_all_vdev_zaps = new_avz;
6199 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6200 		zap_cursor_t zc;
6201 		zap_attribute_t za;
6202 
6203 		/* Walk through the AVZ and destroy all listed ZAPs */
6204 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6205 		    spa->spa_all_vdev_zaps);
6206 		    zap_cursor_retrieve(&zc, &za) == 0;
6207 		    zap_cursor_advance(&zc)) {
6208 			uint64_t zap = za.za_first_integer;
6209 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6210 		}
6211 
6212 		zap_cursor_fini(&zc);
6213 
6214 		/* Destroy and unlink the AVZ itself */
6215 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6216 		    spa->spa_all_vdev_zaps, tx));
6217 		VERIFY0(zap_remove(spa->spa_meta_objset,
6218 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6219 		spa->spa_all_vdev_zaps = 0;
6220 	}
6221 
6222 	if (spa->spa_all_vdev_zaps == 0) {
6223 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6224 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6225 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6226 	}
6227 	spa->spa_avz_action = AVZ_ACTION_NONE;
6228 
6229 	/* Create ZAPs for vdevs that don't have them. */
6230 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6231 
6232 	config = spa_config_generate(spa, spa->spa_root_vdev,
6233 	    dmu_tx_get_txg(tx), B_FALSE);
6234 
6235 	/*
6236 	 * If we're upgrading the spa version then make sure that
6237 	 * the config object gets updated with the correct version.
6238 	 */
6239 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6240 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6241 		    spa->spa_uberblock.ub_version);
6242 
6243 	spa_config_exit(spa, SCL_STATE, FTAG);
6244 
6245 	nvlist_free(spa->spa_config_syncing);
6246 	spa->spa_config_syncing = config;
6247 
6248 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6249 }
6250 
6251 static void
6252 spa_sync_version(void *arg, dmu_tx_t *tx)
6253 {
6254 	uint64_t *versionp = arg;
6255 	uint64_t version = *versionp;
6256 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6257 
6258 	/*
6259 	 * Setting the version is special cased when first creating the pool.
6260 	 */
6261 	ASSERT(tx->tx_txg != TXG_INITIAL);
6262 
6263 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6264 	ASSERT(version >= spa_version(spa));
6265 
6266 	spa->spa_uberblock.ub_version = version;
6267 	vdev_config_dirty(spa->spa_root_vdev);
6268 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6269 }
6270 
6271 /*
6272  * Set zpool properties.
6273  */
6274 static void
6275 spa_sync_props(void *arg, dmu_tx_t *tx)
6276 {
6277 	nvlist_t *nvp = arg;
6278 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6279 	objset_t *mos = spa->spa_meta_objset;
6280 	nvpair_t *elem = NULL;
6281 
6282 	mutex_enter(&spa->spa_props_lock);
6283 
6284 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6285 		uint64_t intval;
6286 		char *strval, *fname;
6287 		zpool_prop_t prop;
6288 		const char *propname;
6289 		zprop_type_t proptype;
6290 		spa_feature_t fid;
6291 
6292 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6293 		case ZPROP_INVAL:
6294 			/*
6295 			 * We checked this earlier in spa_prop_validate().
6296 			 */
6297 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6298 
6299 			fname = strchr(nvpair_name(elem), '@') + 1;
6300 			VERIFY0(zfeature_lookup_name(fname, &fid));
6301 
6302 			spa_feature_enable(spa, fid, tx);
6303 			spa_history_log_internal(spa, "set", tx,
6304 			    "%s=enabled", nvpair_name(elem));
6305 			break;
6306 
6307 		case ZPOOL_PROP_VERSION:
6308 			intval = fnvpair_value_uint64(elem);
6309 			/*
6310 			 * The version is synced seperatly before other
6311 			 * properties and should be correct by now.
6312 			 */
6313 			ASSERT3U(spa_version(spa), >=, intval);
6314 			break;
6315 
6316 		case ZPOOL_PROP_ALTROOT:
6317 			/*
6318 			 * 'altroot' is a non-persistent property. It should
6319 			 * have been set temporarily at creation or import time.
6320 			 */
6321 			ASSERT(spa->spa_root != NULL);
6322 			break;
6323 
6324 		case ZPOOL_PROP_READONLY:
6325 		case ZPOOL_PROP_CACHEFILE:
6326 			/*
6327 			 * 'readonly' and 'cachefile' are also non-persisitent
6328 			 * properties.
6329 			 */
6330 			break;
6331 		case ZPOOL_PROP_COMMENT:
6332 			strval = fnvpair_value_string(elem);
6333 			if (spa->spa_comment != NULL)
6334 				spa_strfree(spa->spa_comment);
6335 			spa->spa_comment = spa_strdup(strval);
6336 			/*
6337 			 * We need to dirty the configuration on all the vdevs
6338 			 * so that their labels get updated.  It's unnecessary
6339 			 * to do this for pool creation since the vdev's
6340 			 * configuratoin has already been dirtied.
6341 			 */
6342 			if (tx->tx_txg != TXG_INITIAL)
6343 				vdev_config_dirty(spa->spa_root_vdev);
6344 			spa_history_log_internal(spa, "set", tx,
6345 			    "%s=%s", nvpair_name(elem), strval);
6346 			break;
6347 		default:
6348 			/*
6349 			 * Set pool property values in the poolprops mos object.
6350 			 */
6351 			if (spa->spa_pool_props_object == 0) {
6352 				spa->spa_pool_props_object =
6353 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6354 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6355 				    tx);
6356 			}
6357 
6358 			/* normalize the property name */
6359 			propname = zpool_prop_to_name(prop);
6360 			proptype = zpool_prop_get_type(prop);
6361 
6362 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6363 				ASSERT(proptype == PROP_TYPE_STRING);
6364 				strval = fnvpair_value_string(elem);
6365 				VERIFY0(zap_update(mos,
6366 				    spa->spa_pool_props_object, propname,
6367 				    1, strlen(strval) + 1, strval, tx));
6368 				spa_history_log_internal(spa, "set", tx,
6369 				    "%s=%s", nvpair_name(elem), strval);
6370 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6371 				intval = fnvpair_value_uint64(elem);
6372 
6373 				if (proptype == PROP_TYPE_INDEX) {
6374 					const char *unused;
6375 					VERIFY0(zpool_prop_index_to_string(
6376 					    prop, intval, &unused));
6377 				}
6378 				VERIFY0(zap_update(mos,
6379 				    spa->spa_pool_props_object, propname,
6380 				    8, 1, &intval, tx));
6381 				spa_history_log_internal(spa, "set", tx,
6382 				    "%s=%lld", nvpair_name(elem), intval);
6383 			} else {
6384 				ASSERT(0); /* not allowed */
6385 			}
6386 
6387 			switch (prop) {
6388 			case ZPOOL_PROP_DELEGATION:
6389 				spa->spa_delegation = intval;
6390 				break;
6391 			case ZPOOL_PROP_BOOTFS:
6392 				spa->spa_bootfs = intval;
6393 				break;
6394 			case ZPOOL_PROP_FAILUREMODE:
6395 				spa->spa_failmode = intval;
6396 				break;
6397 			case ZPOOL_PROP_AUTOEXPAND:
6398 				spa->spa_autoexpand = intval;
6399 				if (tx->tx_txg != TXG_INITIAL)
6400 					spa_async_request(spa,
6401 					    SPA_ASYNC_AUTOEXPAND);
6402 				break;
6403 			case ZPOOL_PROP_DEDUPDITTO:
6404 				spa->spa_dedup_ditto = intval;
6405 				break;
6406 			default:
6407 				break;
6408 			}
6409 		}
6410 
6411 	}
6412 
6413 	mutex_exit(&spa->spa_props_lock);
6414 }
6415 
6416 /*
6417  * Perform one-time upgrade on-disk changes.  spa_version() does not
6418  * reflect the new version this txg, so there must be no changes this
6419  * txg to anything that the upgrade code depends on after it executes.
6420  * Therefore this must be called after dsl_pool_sync() does the sync
6421  * tasks.
6422  */
6423 static void
6424 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6425 {
6426 	dsl_pool_t *dp = spa->spa_dsl_pool;
6427 
6428 	ASSERT(spa->spa_sync_pass == 1);
6429 
6430 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6431 
6432 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6433 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6434 		dsl_pool_create_origin(dp, tx);
6435 
6436 		/* Keeping the origin open increases spa_minref */
6437 		spa->spa_minref += 3;
6438 	}
6439 
6440 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6441 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6442 		dsl_pool_upgrade_clones(dp, tx);
6443 	}
6444 
6445 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6446 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6447 		dsl_pool_upgrade_dir_clones(dp, tx);
6448 
6449 		/* Keeping the freedir open increases spa_minref */
6450 		spa->spa_minref += 3;
6451 	}
6452 
6453 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6454 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6455 		spa_feature_create_zap_objects(spa, tx);
6456 	}
6457 
6458 	/*
6459 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6460 	 * when possibility to use lz4 compression for metadata was added
6461 	 * Old pools that have this feature enabled must be upgraded to have
6462 	 * this feature active
6463 	 */
6464 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6465 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6466 		    SPA_FEATURE_LZ4_COMPRESS);
6467 		boolean_t lz4_ac = spa_feature_is_active(spa,
6468 		    SPA_FEATURE_LZ4_COMPRESS);
6469 
6470 		if (lz4_en && !lz4_ac)
6471 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6472 	}
6473 
6474 	/*
6475 	 * If we haven't written the salt, do so now.  Note that the
6476 	 * feature may not be activated yet, but that's fine since
6477 	 * the presence of this ZAP entry is backwards compatible.
6478 	 */
6479 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6480 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6481 		VERIFY0(zap_add(spa->spa_meta_objset,
6482 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6483 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6484 		    spa->spa_cksum_salt.zcs_bytes, tx));
6485 	}
6486 
6487 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6488 }
6489 
6490 /*
6491  * Sync the specified transaction group.  New blocks may be dirtied as
6492  * part of the process, so we iterate until it converges.
6493  */
6494 void
6495 spa_sync(spa_t *spa, uint64_t txg)
6496 {
6497 	dsl_pool_t *dp = spa->spa_dsl_pool;
6498 	objset_t *mos = spa->spa_meta_objset;
6499 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6500 	vdev_t *rvd = spa->spa_root_vdev;
6501 	vdev_t *vd;
6502 	dmu_tx_t *tx;
6503 	int error;
6504 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6505 	    zfs_vdev_queue_depth_pct / 100;
6506 
6507 	VERIFY(spa_writeable(spa));
6508 
6509 	/*
6510 	 * Lock out configuration changes.
6511 	 */
6512 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6513 
6514 	spa->spa_syncing_txg = txg;
6515 	spa->spa_sync_pass = 0;
6516 
6517 	mutex_enter(&spa->spa_alloc_lock);
6518 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6519 	mutex_exit(&spa->spa_alloc_lock);
6520 
6521 	/*
6522 	 * If there are any pending vdev state changes, convert them
6523 	 * into config changes that go out with this transaction group.
6524 	 */
6525 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6526 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6527 		/*
6528 		 * We need the write lock here because, for aux vdevs,
6529 		 * calling vdev_config_dirty() modifies sav_config.
6530 		 * This is ugly and will become unnecessary when we
6531 		 * eliminate the aux vdev wart by integrating all vdevs
6532 		 * into the root vdev tree.
6533 		 */
6534 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6535 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6536 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6537 			vdev_state_clean(vd);
6538 			vdev_config_dirty(vd);
6539 		}
6540 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6541 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6542 	}
6543 	spa_config_exit(spa, SCL_STATE, FTAG);
6544 
6545 	tx = dmu_tx_create_assigned(dp, txg);
6546 
6547 	spa->spa_sync_starttime = gethrtime();
6548 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6549 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6550 
6551 	/*
6552 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6553 	 * set spa_deflate if we have no raid-z vdevs.
6554 	 */
6555 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6556 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6557 		int i;
6558 
6559 		for (i = 0; i < rvd->vdev_children; i++) {
6560 			vd = rvd->vdev_child[i];
6561 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6562 				break;
6563 		}
6564 		if (i == rvd->vdev_children) {
6565 			spa->spa_deflate = TRUE;
6566 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6567 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6568 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6569 		}
6570 	}
6571 
6572 	/*
6573 	 * Set the top-level vdev's max queue depth. Evaluate each
6574 	 * top-level's async write queue depth in case it changed.
6575 	 * The max queue depth will not change in the middle of syncing
6576 	 * out this txg.
6577 	 */
6578 	uint64_t queue_depth_total = 0;
6579 	for (int c = 0; c < rvd->vdev_children; c++) {
6580 		vdev_t *tvd = rvd->vdev_child[c];
6581 		metaslab_group_t *mg = tvd->vdev_mg;
6582 
6583 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6584 		    !metaslab_group_initialized(mg))
6585 			continue;
6586 
6587 		/*
6588 		 * It is safe to do a lock-free check here because only async
6589 		 * allocations look at mg_max_alloc_queue_depth, and async
6590 		 * allocations all happen from spa_sync().
6591 		 */
6592 		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6593 		mg->mg_max_alloc_queue_depth = max_queue_depth;
6594 		queue_depth_total += mg->mg_max_alloc_queue_depth;
6595 	}
6596 	metaslab_class_t *mc = spa_normal_class(spa);
6597 	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6598 	mc->mc_alloc_max_slots = queue_depth_total;
6599 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6600 
6601 	ASSERT3U(mc->mc_alloc_max_slots, <=,
6602 	    max_queue_depth * rvd->vdev_children);
6603 
6604 	/*
6605 	 * Iterate to convergence.
6606 	 */
6607 	do {
6608 		int pass = ++spa->spa_sync_pass;
6609 
6610 		spa_sync_config_object(spa, tx);
6611 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6612 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6613 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6614 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6615 		spa_errlog_sync(spa, txg);
6616 		dsl_pool_sync(dp, txg);
6617 
6618 		if (pass < zfs_sync_pass_deferred_free) {
6619 			spa_sync_frees(spa, free_bpl, tx);
6620 		} else {
6621 			/*
6622 			 * We can not defer frees in pass 1, because
6623 			 * we sync the deferred frees later in pass 1.
6624 			 */
6625 			ASSERT3U(pass, >, 1);
6626 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6627 			    &spa->spa_deferred_bpobj, tx);
6628 		}
6629 
6630 		ddt_sync(spa, txg);
6631 		dsl_scan_sync(dp, tx);
6632 
6633 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6634 			vdev_sync(vd, txg);
6635 
6636 		if (pass == 1) {
6637 			spa_sync_upgrades(spa, tx);
6638 			ASSERT3U(txg, >=,
6639 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6640 			/*
6641 			 * Note: We need to check if the MOS is dirty
6642 			 * because we could have marked the MOS dirty
6643 			 * without updating the uberblock (e.g. if we
6644 			 * have sync tasks but no dirty user data).  We
6645 			 * need to check the uberblock's rootbp because
6646 			 * it is updated if we have synced out dirty
6647 			 * data (though in this case the MOS will most
6648 			 * likely also be dirty due to second order
6649 			 * effects, we don't want to rely on that here).
6650 			 */
6651 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6652 			    !dmu_objset_is_dirty(mos, txg)) {
6653 				/*
6654 				 * Nothing changed on the first pass,
6655 				 * therefore this TXG is a no-op.  Avoid
6656 				 * syncing deferred frees, so that we
6657 				 * can keep this TXG as a no-op.
6658 				 */
6659 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6660 				    txg));
6661 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6662 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6663 				break;
6664 			}
6665 			spa_sync_deferred_frees(spa, tx);
6666 		}
6667 
6668 	} while (dmu_objset_is_dirty(mos, txg));
6669 
6670 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
6671 		/*
6672 		 * Make sure that the number of ZAPs for all the vdevs matches
6673 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
6674 		 * called if the config is dirty; otherwise there may be
6675 		 * outstanding AVZ operations that weren't completed in
6676 		 * spa_sync_config_object.
6677 		 */
6678 		uint64_t all_vdev_zap_entry_count;
6679 		ASSERT0(zap_count(spa->spa_meta_objset,
6680 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6681 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6682 		    all_vdev_zap_entry_count);
6683 	}
6684 
6685 	/*
6686 	 * Rewrite the vdev configuration (which includes the uberblock)
6687 	 * to commit the transaction group.
6688 	 *
6689 	 * If there are no dirty vdevs, we sync the uberblock to a few
6690 	 * random top-level vdevs that are known to be visible in the
6691 	 * config cache (see spa_vdev_add() for a complete description).
6692 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6693 	 */
6694 	for (;;) {
6695 		/*
6696 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6697 		 * while we're attempting to write the vdev labels.
6698 		 */
6699 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6700 
6701 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6702 			vdev_t *svd[SPA_DVAS_PER_BP];
6703 			int svdcount = 0;
6704 			int children = rvd->vdev_children;
6705 			int c0 = spa_get_random(children);
6706 
6707 			for (int c = 0; c < children; c++) {
6708 				vd = rvd->vdev_child[(c0 + c) % children];
6709 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6710 					continue;
6711 				svd[svdcount++] = vd;
6712 				if (svdcount == SPA_DVAS_PER_BP)
6713 					break;
6714 			}
6715 			error = vdev_config_sync(svd, svdcount, txg);
6716 		} else {
6717 			error = vdev_config_sync(rvd->vdev_child,
6718 			    rvd->vdev_children, txg);
6719 		}
6720 
6721 		if (error == 0)
6722 			spa->spa_last_synced_guid = rvd->vdev_guid;
6723 
6724 		spa_config_exit(spa, SCL_STATE, FTAG);
6725 
6726 		if (error == 0)
6727 			break;
6728 		zio_suspend(spa, NULL);
6729 		zio_resume_wait(spa);
6730 	}
6731 	dmu_tx_commit(tx);
6732 
6733 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6734 
6735 	/*
6736 	 * Clear the dirty config list.
6737 	 */
6738 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6739 		vdev_config_clean(vd);
6740 
6741 	/*
6742 	 * Now that the new config has synced transactionally,
6743 	 * let it become visible to the config cache.
6744 	 */
6745 	if (spa->spa_config_syncing != NULL) {
6746 		spa_config_set(spa, spa->spa_config_syncing);
6747 		spa->spa_config_txg = txg;
6748 		spa->spa_config_syncing = NULL;
6749 	}
6750 
6751 	dsl_pool_sync_done(dp, txg);
6752 
6753 	mutex_enter(&spa->spa_alloc_lock);
6754 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6755 	mutex_exit(&spa->spa_alloc_lock);
6756 
6757 	/*
6758 	 * Update usable space statistics.
6759 	 */
6760 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6761 		vdev_sync_done(vd, txg);
6762 
6763 	spa_update_dspace(spa);
6764 
6765 	/*
6766 	 * It had better be the case that we didn't dirty anything
6767 	 * since vdev_config_sync().
6768 	 */
6769 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6770 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6771 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6772 
6773 	spa->spa_sync_pass = 0;
6774 
6775 	/*
6776 	 * Update the last synced uberblock here. We want to do this at
6777 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
6778 	 * will be guaranteed that all the processing associated with
6779 	 * that txg has been completed.
6780 	 */
6781 	spa->spa_ubsync = spa->spa_uberblock;
6782 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6783 
6784 	spa_handle_ignored_writes(spa);
6785 
6786 	/*
6787 	 * If any async tasks have been requested, kick them off.
6788 	 */
6789 	spa_async_dispatch(spa);
6790 }
6791 
6792 /*
6793  * Sync all pools.  We don't want to hold the namespace lock across these
6794  * operations, so we take a reference on the spa_t and drop the lock during the
6795  * sync.
6796  */
6797 void
6798 spa_sync_allpools(void)
6799 {
6800 	spa_t *spa = NULL;
6801 	mutex_enter(&spa_namespace_lock);
6802 	while ((spa = spa_next(spa)) != NULL) {
6803 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6804 		    !spa_writeable(spa) || spa_suspended(spa))
6805 			continue;
6806 		spa_open_ref(spa, FTAG);
6807 		mutex_exit(&spa_namespace_lock);
6808 		txg_wait_synced(spa_get_dsl(spa), 0);
6809 		mutex_enter(&spa_namespace_lock);
6810 		spa_close(spa, FTAG);
6811 	}
6812 	mutex_exit(&spa_namespace_lock);
6813 }
6814 
6815 /*
6816  * ==========================================================================
6817  * Miscellaneous routines
6818  * ==========================================================================
6819  */
6820 
6821 /*
6822  * Remove all pools in the system.
6823  */
6824 void
6825 spa_evict_all(void)
6826 {
6827 	spa_t *spa;
6828 
6829 	/*
6830 	 * Remove all cached state.  All pools should be closed now,
6831 	 * so every spa in the AVL tree should be unreferenced.
6832 	 */
6833 	mutex_enter(&spa_namespace_lock);
6834 	while ((spa = spa_next(NULL)) != NULL) {
6835 		/*
6836 		 * Stop async tasks.  The async thread may need to detach
6837 		 * a device that's been replaced, which requires grabbing
6838 		 * spa_namespace_lock, so we must drop it here.
6839 		 */
6840 		spa_open_ref(spa, FTAG);
6841 		mutex_exit(&spa_namespace_lock);
6842 		spa_async_suspend(spa);
6843 		mutex_enter(&spa_namespace_lock);
6844 		spa_close(spa, FTAG);
6845 
6846 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6847 			spa_unload(spa);
6848 			spa_deactivate(spa);
6849 		}
6850 		spa_remove(spa);
6851 	}
6852 	mutex_exit(&spa_namespace_lock);
6853 }
6854 
6855 vdev_t *
6856 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6857 {
6858 	vdev_t *vd;
6859 	int i;
6860 
6861 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6862 		return (vd);
6863 
6864 	if (aux) {
6865 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6866 			vd = spa->spa_l2cache.sav_vdevs[i];
6867 			if (vd->vdev_guid == guid)
6868 				return (vd);
6869 		}
6870 
6871 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6872 			vd = spa->spa_spares.sav_vdevs[i];
6873 			if (vd->vdev_guid == guid)
6874 				return (vd);
6875 		}
6876 	}
6877 
6878 	return (NULL);
6879 }
6880 
6881 void
6882 spa_upgrade(spa_t *spa, uint64_t version)
6883 {
6884 	ASSERT(spa_writeable(spa));
6885 
6886 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6887 
6888 	/*
6889 	 * This should only be called for a non-faulted pool, and since a
6890 	 * future version would result in an unopenable pool, this shouldn't be
6891 	 * possible.
6892 	 */
6893 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6894 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6895 
6896 	spa->spa_uberblock.ub_version = version;
6897 	vdev_config_dirty(spa->spa_root_vdev);
6898 
6899 	spa_config_exit(spa, SCL_ALL, FTAG);
6900 
6901 	txg_wait_synced(spa_get_dsl(spa), 0);
6902 }
6903 
6904 boolean_t
6905 spa_has_spare(spa_t *spa, uint64_t guid)
6906 {
6907 	int i;
6908 	uint64_t spareguid;
6909 	spa_aux_vdev_t *sav = &spa->spa_spares;
6910 
6911 	for (i = 0; i < sav->sav_count; i++)
6912 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6913 			return (B_TRUE);
6914 
6915 	for (i = 0; i < sav->sav_npending; i++) {
6916 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6917 		    &spareguid) == 0 && spareguid == guid)
6918 			return (B_TRUE);
6919 	}
6920 
6921 	return (B_FALSE);
6922 }
6923 
6924 /*
6925  * Check if a pool has an active shared spare device.
6926  * Note: reference count of an active spare is 2, as a spare and as a replace
6927  */
6928 static boolean_t
6929 spa_has_active_shared_spare(spa_t *spa)
6930 {
6931 	int i, refcnt;
6932 	uint64_t pool;
6933 	spa_aux_vdev_t *sav = &spa->spa_spares;
6934 
6935 	for (i = 0; i < sav->sav_count; i++) {
6936 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6937 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6938 		    refcnt > 2)
6939 			return (B_TRUE);
6940 	}
6941 
6942 	return (B_FALSE);
6943 }
6944 
6945 static sysevent_t *
6946 spa_event_create(spa_t *spa, vdev_t *vd, const char *name)
6947 {
6948 	sysevent_t		*ev = NULL;
6949 #ifdef _KERNEL
6950 	sysevent_attr_list_t	*attr = NULL;
6951 	sysevent_value_t	value;
6952 
6953 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6954 	    SE_SLEEP);
6955 	ASSERT(ev != NULL);
6956 
6957 	value.value_type = SE_DATA_TYPE_STRING;
6958 	value.value.sv_string = spa_name(spa);
6959 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6960 		goto done;
6961 
6962 	value.value_type = SE_DATA_TYPE_UINT64;
6963 	value.value.sv_uint64 = spa_guid(spa);
6964 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6965 		goto done;
6966 
6967 	if (vd) {
6968 		value.value_type = SE_DATA_TYPE_UINT64;
6969 		value.value.sv_uint64 = vd->vdev_guid;
6970 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6971 		    SE_SLEEP) != 0)
6972 			goto done;
6973 
6974 		if (vd->vdev_path) {
6975 			value.value_type = SE_DATA_TYPE_STRING;
6976 			value.value.sv_string = vd->vdev_path;
6977 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6978 			    &value, SE_SLEEP) != 0)
6979 				goto done;
6980 		}
6981 	}
6982 
6983 	if (sysevent_attach_attributes(ev, attr) != 0)
6984 		goto done;
6985 	attr = NULL;
6986 
6987 done:
6988 	if (attr)
6989 		sysevent_free_attr(attr);
6990 
6991 #endif
6992 	return (ev);
6993 }
6994 
6995 static void
6996 spa_event_post(sysevent_t *ev)
6997 {
6998 #ifdef _KERNEL
6999 	sysevent_id_t		eid;
7000 
7001 	(void) log_sysevent(ev, SE_SLEEP, &eid);
7002 	sysevent_free(ev);
7003 #endif
7004 }
7005 
7006 /*
7007  * Post a sysevent corresponding to the given event.  The 'name' must be one of
7008  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7009  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7010  * in the userland libzpool, as we don't want consumers to misinterpret ztest
7011  * or zdb as real changes.
7012  */
7013 void
7014 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7015 {
7016 	spa_event_post(spa_event_create(spa, vd, name));
7017 }
7018