xref: /illumos-gate/usr/src/uts/common/fs/zfs/sys/dmu.h (revision 9f923083)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27  * Copyright 2013 DEY Storage Systems, Inc.
28  * Copyright 2014 HybridCluster. All rights reserved.
29  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30  * Copyright 2013 Saso Kiselkov. All rights reserved.
31  * Copyright (c) 2014 Integros [integros.com]
32  */
33 
34 /* Portions Copyright 2010 Robert Milkowski */
35 
36 #ifndef	_SYS_DMU_H
37 #define	_SYS_DMU_H
38 
39 /*
40  * This file describes the interface that the DMU provides for its
41  * consumers.
42  *
43  * The DMU also interacts with the SPA.  That interface is described in
44  * dmu_spa.h.
45  */
46 
47 #include <sys/zfs_context.h>
48 #include <sys/inttypes.h>
49 #include <sys/cred.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zio_priority.h>
52 
53 #ifdef	__cplusplus
54 extern "C" {
55 #endif
56 
57 struct uio;
58 struct xuio;
59 struct page;
60 struct vnode;
61 struct spa;
62 struct zilog;
63 struct zio;
64 struct blkptr;
65 struct zap_cursor;
66 struct dsl_dataset;
67 struct dsl_pool;
68 struct dnode;
69 struct drr_begin;
70 struct drr_end;
71 struct zbookmark_phys;
72 struct spa;
73 struct nvlist;
74 struct arc_buf;
75 struct zio_prop;
76 struct sa_handle;
77 
78 typedef struct objset objset_t;
79 typedef struct dmu_tx dmu_tx_t;
80 typedef struct dsl_dir dsl_dir_t;
81 typedef struct dnode dnode_t;
82 
83 typedef enum dmu_object_byteswap {
84 	DMU_BSWAP_UINT8,
85 	DMU_BSWAP_UINT16,
86 	DMU_BSWAP_UINT32,
87 	DMU_BSWAP_UINT64,
88 	DMU_BSWAP_ZAP,
89 	DMU_BSWAP_DNODE,
90 	DMU_BSWAP_OBJSET,
91 	DMU_BSWAP_ZNODE,
92 	DMU_BSWAP_OLDACL,
93 	DMU_BSWAP_ACL,
94 	/*
95 	 * Allocating a new byteswap type number makes the on-disk format
96 	 * incompatible with any other format that uses the same number.
97 	 *
98 	 * Data can usually be structured to work with one of the
99 	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
100 	 */
101 	DMU_BSWAP_NUMFUNCS
102 } dmu_object_byteswap_t;
103 
104 #define	DMU_OT_NEWTYPE 0x80
105 #define	DMU_OT_METADATA 0x40
106 #define	DMU_OT_BYTESWAP_MASK 0x3f
107 
108 /*
109  * Defines a uint8_t object type. Object types specify if the data
110  * in the object is metadata (boolean) and how to byteswap the data
111  * (dmu_object_byteswap_t).
112  */
113 #define	DMU_OT(byteswap, metadata) \
114 	(DMU_OT_NEWTYPE | \
115 	((metadata) ? DMU_OT_METADATA : 0) | \
116 	((byteswap) & DMU_OT_BYTESWAP_MASK))
117 
118 #define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
119 	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
120 	(ot) < DMU_OT_NUMTYPES)
121 
122 #define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
123 	((ot) & DMU_OT_METADATA) : \
124 	dmu_ot[(ot)].ot_metadata)
125 
126 /*
127  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
128  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
129  * is repurposed for embedded BPs.
130  */
131 #define	DMU_OT_HAS_FILL(ot) \
132 	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
133 
134 #define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
135 	((ot) & DMU_OT_BYTESWAP_MASK) : \
136 	dmu_ot[(ot)].ot_byteswap)
137 
138 typedef enum dmu_object_type {
139 	DMU_OT_NONE,
140 	/* general: */
141 	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
142 	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
143 	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
144 	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
145 	DMU_OT_BPOBJ,			/* UINT64 */
146 	DMU_OT_BPOBJ_HDR,		/* UINT64 */
147 	/* spa: */
148 	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
149 	DMU_OT_SPACE_MAP,		/* UINT64 */
150 	/* zil: */
151 	DMU_OT_INTENT_LOG,		/* UINT64 */
152 	/* dmu: */
153 	DMU_OT_DNODE,			/* DNODE */
154 	DMU_OT_OBJSET,			/* OBJSET */
155 	/* dsl: */
156 	DMU_OT_DSL_DIR,			/* UINT64 */
157 	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
158 	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
159 	DMU_OT_DSL_PROPS,		/* ZAP */
160 	DMU_OT_DSL_DATASET,		/* UINT64 */
161 	/* zpl: */
162 	DMU_OT_ZNODE,			/* ZNODE */
163 	DMU_OT_OLDACL,			/* Old ACL */
164 	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
165 	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
166 	DMU_OT_MASTER_NODE,		/* ZAP */
167 	DMU_OT_UNLINKED_SET,		/* ZAP */
168 	/* zvol: */
169 	DMU_OT_ZVOL,			/* UINT8 */
170 	DMU_OT_ZVOL_PROP,		/* ZAP */
171 	/* other; for testing only! */
172 	DMU_OT_PLAIN_OTHER,		/* UINT8 */
173 	DMU_OT_UINT64_OTHER,		/* UINT64 */
174 	DMU_OT_ZAP_OTHER,		/* ZAP */
175 	/* new object types: */
176 	DMU_OT_ERROR_LOG,		/* ZAP */
177 	DMU_OT_SPA_HISTORY,		/* UINT8 */
178 	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
179 	DMU_OT_POOL_PROPS,		/* ZAP */
180 	DMU_OT_DSL_PERMS,		/* ZAP */
181 	DMU_OT_ACL,			/* ACL */
182 	DMU_OT_SYSACL,			/* SYSACL */
183 	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
184 	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
185 	DMU_OT_NEXT_CLONES,		/* ZAP */
186 	DMU_OT_SCAN_QUEUE,		/* ZAP */
187 	DMU_OT_USERGROUP_USED,		/* ZAP */
188 	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
189 	DMU_OT_USERREFS,		/* ZAP */
190 	DMU_OT_DDT_ZAP,			/* ZAP */
191 	DMU_OT_DDT_STATS,		/* ZAP */
192 	DMU_OT_SA,			/* System attr */
193 	DMU_OT_SA_MASTER_NODE,		/* ZAP */
194 	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
195 	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
196 	DMU_OT_SCAN_XLATE,		/* ZAP */
197 	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
198 	DMU_OT_DEADLIST,		/* ZAP */
199 	DMU_OT_DEADLIST_HDR,		/* UINT64 */
200 	DMU_OT_DSL_CLONES,		/* ZAP */
201 	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
202 	/*
203 	 * Do not allocate new object types here. Doing so makes the on-disk
204 	 * format incompatible with any other format that uses the same object
205 	 * type number.
206 	 *
207 	 * When creating an object which does not have one of the above types
208 	 * use the DMU_OTN_* type with the correct byteswap and metadata
209 	 * values.
210 	 *
211 	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
212 	 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
213 	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
214 	 * and DMU_OTN_* types).
215 	 */
216 	DMU_OT_NUMTYPES,
217 
218 	/*
219 	 * Names for valid types declared with DMU_OT().
220 	 */
221 	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
222 	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
223 	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
224 	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
225 	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
226 	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
227 	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
228 	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
229 	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
230 	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
231 } dmu_object_type_t;
232 
233 typedef enum txg_how {
234 	TXG_WAIT = 1,
235 	TXG_NOWAIT,
236 	TXG_WAITED,
237 } txg_how_t;
238 
239 void byteswap_uint64_array(void *buf, size_t size);
240 void byteswap_uint32_array(void *buf, size_t size);
241 void byteswap_uint16_array(void *buf, size_t size);
242 void byteswap_uint8_array(void *buf, size_t size);
243 void zap_byteswap(void *buf, size_t size);
244 void zfs_oldacl_byteswap(void *buf, size_t size);
245 void zfs_acl_byteswap(void *buf, size_t size);
246 void zfs_znode_byteswap(void *buf, size_t size);
247 
248 #define	DS_FIND_SNAPSHOTS	(1<<0)
249 #define	DS_FIND_CHILDREN	(1<<1)
250 #define	DS_FIND_SERIALIZE	(1<<2)
251 
252 /*
253  * The maximum number of bytes that can be accessed as part of one
254  * operation, including metadata.
255  */
256 #define	DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
257 #define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
258 
259 #define	DMU_USERUSED_OBJECT	(-1ULL)
260 #define	DMU_GROUPUSED_OBJECT	(-2ULL)
261 
262 /*
263  * artificial blkids for bonus buffer and spill blocks
264  */
265 #define	DMU_BONUS_BLKID		(-1ULL)
266 #define	DMU_SPILL_BLKID		(-2ULL)
267 /*
268  * Public routines to create, destroy, open, and close objsets.
269  */
270 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
271 int dmu_objset_own(const char *name, dmu_objset_type_t type,
272     boolean_t readonly, void *tag, objset_t **osp);
273 void dmu_objset_rele(objset_t *os, void *tag);
274 void dmu_objset_disown(objset_t *os, void *tag);
275 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
276 
277 void dmu_objset_evict_dbufs(objset_t *os);
278 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
279     void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
280 int dmu_objset_clone(const char *name, const char *origin);
281 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
282     struct nvlist *errlist);
283 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
284 int dmu_objset_snapshot_tmp(const char *, const char *, int);
285 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
286     int flags);
287 void dmu_objset_byteswap(void *buf, size_t size);
288 int dsl_dataset_rename_snapshot(const char *fsname,
289     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
290 
291 typedef struct dmu_buf {
292 	uint64_t db_object;		/* object that this buffer is part of */
293 	uint64_t db_offset;		/* byte offset in this object */
294 	uint64_t db_size;		/* size of buffer in bytes */
295 	void *db_data;			/* data in buffer */
296 } dmu_buf_t;
297 
298 /*
299  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
300  */
301 #define	DMU_POOL_DIRECTORY_OBJECT	1
302 #define	DMU_POOL_CONFIG			"config"
303 #define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
304 #define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
305 #define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
306 #define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
307 #define	DMU_POOL_ROOT_DATASET		"root_dataset"
308 #define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
309 #define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
310 #define	DMU_POOL_ERRLOG_LAST		"errlog_last"
311 #define	DMU_POOL_SPARES			"spares"
312 #define	DMU_POOL_DEFLATE		"deflate"
313 #define	DMU_POOL_HISTORY		"history"
314 #define	DMU_POOL_PROPS			"pool_props"
315 #define	DMU_POOL_L2CACHE		"l2cache"
316 #define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
317 #define	DMU_POOL_DDT			"DDT-%s-%s-%s"
318 #define	DMU_POOL_DDT_STATS		"DDT-statistics"
319 #define	DMU_POOL_CREATION_VERSION	"creation_version"
320 #define	DMU_POOL_SCAN			"scan"
321 #define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
322 #define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
323 #define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
324 #define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
325 #define	DMU_POOL_VDEV_ZAP_MAP		"com.delphix:vdev_zap_map"
326 
327 /*
328  * Allocate an object from this objset.  The range of object numbers
329  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
330  *
331  * The transaction must be assigned to a txg.  The newly allocated
332  * object will be "held" in the transaction (ie. you can modify the
333  * newly allocated object in this transaction).
334  *
335  * dmu_object_alloc() chooses an object and returns it in *objectp.
336  *
337  * dmu_object_claim() allocates a specific object number.  If that
338  * number is already allocated, it fails and returns EEXIST.
339  *
340  * Return 0 on success, or ENOSPC or EEXIST as specified above.
341  */
342 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
343     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
344 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
345     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
346 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
347     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
348 
349 /*
350  * Free an object from this objset.
351  *
352  * The object's data will be freed as well (ie. you don't need to call
353  * dmu_free(object, 0, -1, tx)).
354  *
355  * The object need not be held in the transaction.
356  *
357  * If there are any holds on this object's buffers (via dmu_buf_hold()),
358  * or tx holds on the object (via dmu_tx_hold_object()), you can not
359  * free it; it fails and returns EBUSY.
360  *
361  * If the object is not allocated, it fails and returns ENOENT.
362  *
363  * Return 0 on success, or EBUSY or ENOENT as specified above.
364  */
365 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
366 
367 /*
368  * Find the next allocated or free object.
369  *
370  * The objectp parameter is in-out.  It will be updated to be the next
371  * object which is allocated.  Ignore objects which have not been
372  * modified since txg.
373  *
374  * XXX Can only be called on a objset with no dirty data.
375  *
376  * Returns 0 on success, or ENOENT if there are no more objects.
377  */
378 int dmu_object_next(objset_t *os, uint64_t *objectp,
379     boolean_t hole, uint64_t txg);
380 
381 /*
382  * Set the data blocksize for an object.
383  *
384  * The object cannot have any blocks allcated beyond the first.  If
385  * the first block is allocated already, the new size must be greater
386  * than the current block size.  If these conditions are not met,
387  * ENOTSUP will be returned.
388  *
389  * Returns 0 on success, or EBUSY if there are any holds on the object
390  * contents, or ENOTSUP as described above.
391  */
392 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
393     int ibs, dmu_tx_t *tx);
394 
395 /*
396  * Set the checksum property on a dnode.  The new checksum algorithm will
397  * apply to all newly written blocks; existing blocks will not be affected.
398  */
399 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
400     dmu_tx_t *tx);
401 
402 /*
403  * Set the compress property on a dnode.  The new compression algorithm will
404  * apply to all newly written blocks; existing blocks will not be affected.
405  */
406 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
407     dmu_tx_t *tx);
408 
409 void
410 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
411     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
412     int compressed_size, int byteorder, dmu_tx_t *tx);
413 
414 /*
415  * Decide how to write a block: checksum, compression, number of copies, etc.
416  */
417 #define	WP_NOFILL	0x1
418 #define	WP_DMU_SYNC	0x2
419 #define	WP_SPILL	0x4
420 
421 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
422     struct zio_prop *zp);
423 /*
424  * The bonus data is accessed more or less like a regular buffer.
425  * You must dmu_bonus_hold() to get the buffer, which will give you a
426  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
427  * data.  As with any normal buffer, you must call dmu_buf_read() to
428  * read db_data, dmu_buf_will_dirty() before modifying it, and the
429  * object must be held in an assigned transaction before calling
430  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
431  * buffer as well.  You must release your hold with dmu_buf_rele().
432  *
433  * Returns ENOENT, EIO, or 0.
434  */
435 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
436 int dmu_bonus_max(void);
437 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
438 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
439 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
440 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
441 
442 /*
443  * Special spill buffer support used by "SA" framework
444  */
445 
446 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
447 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
448     void *tag, dmu_buf_t **dbp);
449 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
450 
451 /*
452  * Obtain the DMU buffer from the specified object which contains the
453  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
454  * that it will remain in memory.  You must release the hold with
455  * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
456  * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
457  *
458  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
459  * on the returned buffer before reading or writing the buffer's
460  * db_data.  The comments for those routines describe what particular
461  * operations are valid after calling them.
462  *
463  * The object number must be a valid, allocated object number.
464  */
465 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
466     void *tag, dmu_buf_t **, int flags);
467 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
468     void *tag, dmu_buf_t **dbp, int flags);
469 
470 /*
471  * Add a reference to a dmu buffer that has already been held via
472  * dmu_buf_hold() in the current context.
473  */
474 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
475 
476 /*
477  * Attempt to add a reference to a dmu buffer that is in an unknown state,
478  * using a pointer that may have been invalidated by eviction processing.
479  * The request will succeed if the passed in dbuf still represents the
480  * same os/object/blkid, is ineligible for eviction, and has at least
481  * one hold by a user other than the syncer.
482  */
483 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
484     uint64_t blkid, void *tag);
485 
486 void dmu_buf_rele(dmu_buf_t *db, void *tag);
487 uint64_t dmu_buf_refcount(dmu_buf_t *db);
488 
489 /*
490  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
491  * range of an object.  A pointer to an array of dmu_buf_t*'s is
492  * returned (in *dbpp).
493  *
494  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
495  * frees the array.  The hold on the array of buffers MUST be released
496  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
497  * individually with dmu_buf_rele.
498  */
499 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
500     uint64_t length, boolean_t read, void *tag,
501     int *numbufsp, dmu_buf_t ***dbpp);
502 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
503 
504 typedef void dmu_buf_evict_func_t(void *user_ptr);
505 
506 /*
507  * A DMU buffer user object may be associated with a dbuf for the
508  * duration of its lifetime.  This allows the user of a dbuf (client)
509  * to attach private data to a dbuf (e.g. in-core only data such as a
510  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
511  * when that dbuf has been evicted.  Clients typically respond to the
512  * eviction notification by freeing their private data, thus ensuring
513  * the same lifetime for both dbuf and private data.
514  *
515  * The mapping from a dmu_buf_user_t to any client private data is the
516  * client's responsibility.  All current consumers of the API with private
517  * data embed a dmu_buf_user_t as the first member of the structure for
518  * their private data.  This allows conversions between the two types
519  * with a simple cast.  Since the DMU buf user API never needs access
520  * to the private data, other strategies can be employed if necessary
521  * or convenient for the client (e.g. using container_of() to do the
522  * conversion for private data that cannot have the dmu_buf_user_t as
523  * its first member).
524  *
525  * Eviction callbacks are executed without the dbuf mutex held or any
526  * other type of mechanism to guarantee that the dbuf is still available.
527  * For this reason, users must assume the dbuf has already been freed
528  * and not reference the dbuf from the callback context.
529  *
530  * Users requesting "immediate eviction" are notified as soon as the dbuf
531  * is only referenced by dirty records (dirties == holds).  Otherwise the
532  * notification occurs after eviction processing for the dbuf begins.
533  */
534 typedef struct dmu_buf_user {
535 	/*
536 	 * Asynchronous user eviction callback state.
537 	 */
538 	taskq_ent_t	dbu_tqent;
539 
540 	/* This instance's eviction function pointer. */
541 	dmu_buf_evict_func_t *dbu_evict_func;
542 #ifdef ZFS_DEBUG
543 	/*
544 	 * Pointer to user's dbuf pointer.  NULL for clients that do
545 	 * not associate a dbuf with their user data.
546 	 *
547 	 * The dbuf pointer is cleared upon eviction so as to catch
548 	 * use-after-evict bugs in clients.
549 	 */
550 	dmu_buf_t **dbu_clear_on_evict_dbufp;
551 #endif
552 } dmu_buf_user_t;
553 
554 /*
555  * Initialize the given dmu_buf_user_t instance with the eviction function
556  * evict_func, to be called when the user is evicted.
557  *
558  * NOTE: This function should only be called once on a given dmu_buf_user_t.
559  *       To allow enforcement of this, dbu must already be zeroed on entry.
560  */
561 #ifdef __lint
562 /* Very ugly, but it beats issuing suppression directives in many Makefiles. */
563 extern void
564 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
565     dmu_buf_t **clear_on_evict_dbufp);
566 #else /* __lint */
567 inline void
568 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
569     dmu_buf_t **clear_on_evict_dbufp)
570 {
571 	ASSERT(dbu->dbu_evict_func == NULL);
572 	ASSERT(evict_func != NULL);
573 	dbu->dbu_evict_func = evict_func;
574 #ifdef ZFS_DEBUG
575 	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
576 #endif
577 }
578 #endif /* __lint */
579 
580 /*
581  * Attach user data to a dbuf and mark it for normal (when the dbuf's
582  * data is cleared or its reference count goes to zero) eviction processing.
583  *
584  * Returns NULL on success, or the existing user if another user currently
585  * owns the buffer.
586  */
587 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
588 
589 /*
590  * Attach user data to a dbuf and mark it for immediate (its dirty and
591  * reference counts are equal) eviction processing.
592  *
593  * Returns NULL on success, or the existing user if another user currently
594  * owns the buffer.
595  */
596 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
597 
598 /*
599  * Replace the current user of a dbuf.
600  *
601  * If given the current user of a dbuf, replaces the dbuf's user with
602  * "new_user" and returns the user data pointer that was replaced.
603  * Otherwise returns the current, and unmodified, dbuf user pointer.
604  */
605 void *dmu_buf_replace_user(dmu_buf_t *db,
606     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
607 
608 /*
609  * Remove the specified user data for a DMU buffer.
610  *
611  * Returns the user that was removed on success, or the current user if
612  * another user currently owns the buffer.
613  */
614 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
615 
616 /*
617  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
618  */
619 void *dmu_buf_get_user(dmu_buf_t *db);
620 
621 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
622 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
623 void dmu_buf_dnode_exit(dmu_buf_t *db);
624 
625 /* Block until any in-progress dmu buf user evictions complete. */
626 void dmu_buf_user_evict_wait(void);
627 
628 /*
629  * Returns the blkptr associated with this dbuf, or NULL if not set.
630  */
631 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
632 
633 /*
634  * Indicate that you are going to modify the buffer's data (db_data).
635  *
636  * The transaction (tx) must be assigned to a txg (ie. you've called
637  * dmu_tx_assign()).  The buffer's object must be held in the tx
638  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
639  */
640 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
641 
642 /*
643  * Tells if the given dbuf is freeable.
644  */
645 boolean_t dmu_buf_freeable(dmu_buf_t *);
646 
647 /*
648  * You must create a transaction, then hold the objects which you will
649  * (or might) modify as part of this transaction.  Then you must assign
650  * the transaction to a transaction group.  Once the transaction has
651  * been assigned, you can modify buffers which belong to held objects as
652  * part of this transaction.  You can't modify buffers before the
653  * transaction has been assigned; you can't modify buffers which don't
654  * belong to objects which this transaction holds; you can't hold
655  * objects once the transaction has been assigned.  You may hold an
656  * object which you are going to free (with dmu_object_free()), but you
657  * don't have to.
658  *
659  * You can abort the transaction before it has been assigned.
660  *
661  * Note that you may hold buffers (with dmu_buf_hold) at any time,
662  * regardless of transaction state.
663  */
664 
665 #define	DMU_NEW_OBJECT	(-1ULL)
666 #define	DMU_OBJECT_END	(-1ULL)
667 
668 dmu_tx_t *dmu_tx_create(objset_t *os);
669 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
670 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
671     uint64_t len);
672 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
673 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
674 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
675 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
676 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
677 void dmu_tx_abort(dmu_tx_t *tx);
678 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
679 void dmu_tx_wait(dmu_tx_t *tx);
680 void dmu_tx_commit(dmu_tx_t *tx);
681 void dmu_tx_mark_netfree(dmu_tx_t *tx);
682 
683 /*
684  * To register a commit callback, dmu_tx_callback_register() must be called.
685  *
686  * dcb_data is a pointer to caller private data that is passed on as a
687  * callback parameter. The caller is responsible for properly allocating and
688  * freeing it.
689  *
690  * When registering a callback, the transaction must be already created, but
691  * it cannot be committed or aborted. It can be assigned to a txg or not.
692  *
693  * The callback will be called after the transaction has been safely written
694  * to stable storage and will also be called if the dmu_tx is aborted.
695  * If there is any error which prevents the transaction from being committed to
696  * disk, the callback will be called with a value of error != 0.
697  */
698 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
699 
700 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
701     void *dcb_data);
702 
703 /*
704  * Free up the data blocks for a defined range of a file.  If size is
705  * -1, the range from offset to end-of-file is freed.
706  */
707 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
708 	uint64_t size, dmu_tx_t *tx);
709 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
710 	uint64_t size);
711 int dmu_free_long_object(objset_t *os, uint64_t object);
712 
713 /*
714  * Convenience functions.
715  *
716  * Canfail routines will return 0 on success, or an errno if there is a
717  * nonrecoverable I/O error.
718  */
719 #define	DMU_READ_PREFETCH	0 /* prefetch */
720 #define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
721 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
722 	void *buf, uint32_t flags);
723 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
724 	const void *buf, dmu_tx_t *tx);
725 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
726 	dmu_tx_t *tx);
727 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
728 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
729 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
730     dmu_tx_t *tx);
731 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
732     dmu_tx_t *tx);
733 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
734     uint64_t size, struct page *pp, dmu_tx_t *tx);
735 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
736 void dmu_return_arcbuf(struct arc_buf *buf);
737 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
738     dmu_tx_t *tx);
739 int dmu_xuio_init(struct xuio *uio, int niov);
740 void dmu_xuio_fini(struct xuio *uio);
741 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
742     size_t n);
743 int dmu_xuio_cnt(struct xuio *uio);
744 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
745 void dmu_xuio_clear(struct xuio *uio, int i);
746 void xuio_stat_wbuf_copied();
747 void xuio_stat_wbuf_nocopy();
748 
749 extern boolean_t zfs_prefetch_disable;
750 extern int zfs_max_recordsize;
751 
752 /*
753  * Asynchronously try to read in the data.
754  */
755 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
756     uint64_t len, enum zio_priority pri);
757 
758 typedef struct dmu_object_info {
759 	/* All sizes are in bytes unless otherwise indicated. */
760 	uint32_t doi_data_block_size;
761 	uint32_t doi_metadata_block_size;
762 	dmu_object_type_t doi_type;
763 	dmu_object_type_t doi_bonus_type;
764 	uint64_t doi_bonus_size;
765 	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
766 	uint8_t doi_checksum;
767 	uint8_t doi_compress;
768 	uint8_t doi_nblkptr;
769 	uint8_t doi_pad[4];
770 	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
771 	uint64_t doi_max_offset;
772 	uint64_t doi_fill_count;		/* number of non-empty blocks */
773 } dmu_object_info_t;
774 
775 typedef void arc_byteswap_func_t(void *buf, size_t size);
776 
777 typedef struct dmu_object_type_info {
778 	dmu_object_byteswap_t	ot_byteswap;
779 	boolean_t		ot_metadata;
780 	char			*ot_name;
781 } dmu_object_type_info_t;
782 
783 typedef struct dmu_object_byteswap_info {
784 	arc_byteswap_func_t	*ob_func;
785 	char			*ob_name;
786 } dmu_object_byteswap_info_t;
787 
788 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
789 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
790 
791 /*
792  * Get information on a DMU object.
793  *
794  * Return 0 on success or ENOENT if object is not allocated.
795  *
796  * If doi is NULL, just indicates whether the object exists.
797  */
798 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
799 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
800 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
801 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
802 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
803 /*
804  * Like dmu_object_info_from_db, but faster still when you only care about
805  * the size.  This is specifically optimized for zfs_getattr().
806  */
807 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
808     u_longlong_t *nblk512);
809 
810 typedef struct dmu_objset_stats {
811 	uint64_t dds_num_clones; /* number of clones of this */
812 	uint64_t dds_creation_txg;
813 	uint64_t dds_guid;
814 	dmu_objset_type_t dds_type;
815 	uint8_t dds_is_snapshot;
816 	uint8_t dds_inconsistent;
817 	char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
818 } dmu_objset_stats_t;
819 
820 /*
821  * Get stats on a dataset.
822  */
823 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
824 
825 /*
826  * Add entries to the nvlist for all the objset's properties.  See
827  * zfs_prop_table[] and zfs(1m) for details on the properties.
828  */
829 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
830 
831 /*
832  * Get the space usage statistics for statvfs().
833  *
834  * refdbytes is the amount of space "referenced" by this objset.
835  * availbytes is the amount of space available to this objset, taking
836  * into account quotas & reservations, assuming that no other objsets
837  * use the space first.  These values correspond to the 'referenced' and
838  * 'available' properties, described in the zfs(1m) manpage.
839  *
840  * usedobjs and availobjs are the number of objects currently allocated,
841  * and available.
842  */
843 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
844     uint64_t *usedobjsp, uint64_t *availobjsp);
845 
846 /*
847  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
848  * (Contrast with the ds_guid which is a 64-bit ID that will never
849  * change, so there is a small probability that it will collide.)
850  */
851 uint64_t dmu_objset_fsid_guid(objset_t *os);
852 
853 /*
854  * Get the [cm]time for an objset's snapshot dir
855  */
856 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
857 
858 int dmu_objset_is_snapshot(objset_t *os);
859 
860 extern struct spa *dmu_objset_spa(objset_t *os);
861 extern struct zilog *dmu_objset_zil(objset_t *os);
862 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
863 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
864 extern void dmu_objset_name(objset_t *os, char *buf);
865 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
866 extern uint64_t dmu_objset_id(objset_t *os);
867 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
868 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
869 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
870     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
871 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
872     int maxlen, boolean_t *conflict);
873 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
874     uint64_t *idp, uint64_t *offp);
875 
876 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
877     void *bonus, uint64_t *userp, uint64_t *groupp);
878 extern void dmu_objset_register_type(dmu_objset_type_t ost,
879     objset_used_cb_t *cb);
880 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
881 extern void *dmu_objset_get_user(objset_t *os);
882 
883 /*
884  * Return the txg number for the given assigned transaction.
885  */
886 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
887 
888 /*
889  * Synchronous write.
890  * If a parent zio is provided this function initiates a write on the
891  * provided buffer as a child of the parent zio.
892  * In the absence of a parent zio, the write is completed synchronously.
893  * At write completion, blk is filled with the bp of the written block.
894  * Note that while the data covered by this function will be on stable
895  * storage when the write completes this new data does not become a
896  * permanent part of the file until the associated transaction commits.
897  */
898 
899 /*
900  * {zfs,zvol,ztest}_get_done() args
901  */
902 typedef struct zgd {
903 	struct zilog	*zgd_zilog;
904 	struct blkptr	*zgd_bp;
905 	dmu_buf_t	*zgd_db;
906 	struct rl	*zgd_rl;
907 	void		*zgd_private;
908 } zgd_t;
909 
910 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
911 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
912 
913 /*
914  * Find the next hole or data block in file starting at *off
915  * Return found offset in *off. Return ESRCH for end of file.
916  */
917 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
918     uint64_t *off);
919 
920 /*
921  * Check if a DMU object has any dirty blocks. If so, sync out
922  * all pending transaction groups. Otherwise, this function
923  * does not alter DMU state. This could be improved to only sync
924  * out the necessary transaction groups for this particular
925  * object.
926  */
927 int dmu_object_wait_synced(objset_t *os, uint64_t object);
928 
929 /*
930  * Initial setup and final teardown.
931  */
932 extern void dmu_init(void);
933 extern void dmu_fini(void);
934 
935 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
936     uint64_t object, uint64_t offset, int len);
937 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
938     dmu_traverse_cb_t cb, void *arg);
939 
940 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
941     struct vnode *vp, offset_t *offp);
942 
943 /* CRC64 table */
944 #define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
945 extern uint64_t zfs_crc64_table[256];
946 
947 extern int zfs_mdcomp_disable;
948 
949 #ifdef	__cplusplus
950 }
951 #endif
952 
953 #endif	/* _SYS_DMU_H */
954