1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
28  */
29 
30 #ifndef _SYS_METASLAB_IMPL_H
31 #define	_SYS_METASLAB_IMPL_H
32 
33 #include <sys/metaslab.h>
34 #include <sys/space_map.h>
35 #include <sys/range_tree.h>
36 #include <sys/vdev.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 
40 #ifdef	__cplusplus
41 extern "C" {
42 #endif
43 
44 struct metaslab_class {
45 	spa_t			*mc_spa;
46 	metaslab_group_t	*mc_rotor;
47 	metaslab_ops_t		*mc_ops;
48 	uint64_t		mc_aliquot;
49 	uint64_t		mc_alloc_groups; /* # of allocatable groups */
50 	uint64_t		mc_alloc;	/* total allocated space */
51 	uint64_t		mc_deferred;	/* total deferred frees */
52 	uint64_t		mc_space;	/* total space (alloc + free) */
53 	uint64_t		mc_dspace;	/* total deflated space */
54 };
55 
56 struct metaslab_group {
57 	kmutex_t		mg_lock;
58 	avl_tree_t		mg_metaslab_tree;
59 	uint64_t		mg_aliquot;
60 	boolean_t		mg_allocatable;		/* can we allocate? */
61 	uint64_t		mg_free_capacity;	/* percentage free */
62 	int64_t			mg_bias;
63 	int64_t			mg_activation_count;
64 	metaslab_class_t	*mg_class;
65 	vdev_t			*mg_vd;
66 	taskq_t			*mg_taskq;
67 	metaslab_group_t	*mg_prev;
68 	metaslab_group_t	*mg_next;
69 };
70 
71 /*
72  * This value defines the number of elements in the ms_lbas array. The value
73  * of 64 was chosen as it covers to cover all power of 2 buckets up to
74  * UINT64_MAX. This is the equivalent of highbit(UINT64_MAX).
75  */
76 #define	MAX_LBAS	64
77 
78 /*
79  * Each metaslab maintains a set of in-core trees to track metaslab operations.
80  * The in-core free tree (ms_tree) contains the current list of free segments.
81  * As blocks are allocated, the allocated segment are removed from the ms_tree
82  * and added to a per txg allocation tree (ms_alloctree). As blocks are freed,
83  * they are added to the per txg free tree (ms_freetree). These per txg
84  * trees allow us to process all allocations and frees in syncing context
85  * where it is safe to update the on-disk space maps. One additional in-core
86  * tree is maintained to track deferred frees (ms_defertree). Once a block
87  * is freed it will move from the ms_freetree to the ms_defertree. A deferred
88  * free means that a block has been freed but cannot be used by the pool
89  * until TXG_DEFER_SIZE transactions groups later. For example, a block
90  * that is freed in txg 50 will not be available for reallocation until
91  * txg 52 (50 + TXG_DEFER_SIZE).  This provides a safety net for uberblock
92  * rollback. A pool could be safely rolled back TXG_DEFERS_SIZE
93  * transactions groups and ensure that no block has been reallocated.
94  *
95  * The simplified transition diagram looks like this:
96  *
97  *
98  *      ALLOCATE
99  *         |
100  *         V
101  *    free segment (ms_tree) --------> ms_alloctree ----> (write to space map)
102  *         ^
103  *         |
104  *         |                           ms_freetree <--- FREE
105  *         |                                 |
106  *         |                                 |
107  *         |                                 |
108  *         +----------- ms_defertree <-------+---------> (write to space map)
109  *
110  *
111  * Each metaslab's space is tracked in a single space map in the MOS,
112  * which is only updated in syncing context. Each time we sync a txg,
113  * we append the allocs and frees from that txg to the space map.
114  * The pool space is only updated once all metaslabs have finished syncing.
115  *
116  * To load the in-core free tree we read the space map from disk.
117  * This object contains a series of alloc and free records that are
118  * combined to make up the list of all free segments in this metaslab. These
119  * segments are represented in-core by the ms_tree and are stored in an
120  * AVL tree.
121  *
122  * As the space map grows (as a result of the appends) it will
123  * eventually become space-inefficient. When the metaslab's in-core free tree
124  * is zfs_condense_pct/100 times the size of the minimal on-disk
125  * representation, we rewrite it in its minimized form. If a metaslab
126  * needs to condense then we must set the ms_condensing flag to ensure
127  * that allocations are not performed on the metaslab that is being written.
128  */
129 struct metaslab {
130 	kmutex_t	ms_lock;
131 	kcondvar_t	ms_load_cv;
132 	space_map_t	*ms_sm;
133 	metaslab_ops_t	*ms_ops;
134 	uint64_t	ms_id;
135 	uint64_t	ms_start;
136 	uint64_t	ms_size;
137 
138 	range_tree_t	*ms_alloctree[TXG_SIZE];
139 	range_tree_t	*ms_freetree[TXG_SIZE];
140 	range_tree_t	*ms_defertree[TXG_DEFER_SIZE];
141 	range_tree_t	*ms_tree;
142 
143 	boolean_t	ms_condensing;	/* condensing? */
144 	boolean_t	ms_loaded;
145 	boolean_t	ms_loading;
146 
147 	int64_t		ms_deferspace;	/* sum of ms_defermap[] space	*/
148 	uint64_t	ms_weight;	/* weight vs. others in group	*/
149 	uint64_t	ms_factor;
150 	uint64_t	ms_access_txg;
151 
152 	/*
153 	 * The metaslab block allocators can optionally use a size-ordered
154 	 * range tree and/or an array of LBAs. Not all allocators use
155 	 * this functionality. The ms_size_tree should always contain the
156 	 * same number of segments as the ms_tree. The only difference
157 	 * is that the ms_size_tree is ordered by segment sizes.
158 	 */
159 	avl_tree_t	ms_size_tree;
160 	uint64_t	ms_lbas[MAX_LBAS];
161 
162 	metaslab_group_t *ms_group;	/* metaslab group		*/
163 	avl_node_t	ms_group_node;	/* node in metaslab group tree	*/
164 	txg_node_t	ms_txg_node;	/* per-txg dirty metaslab links	*/
165 };
166 
167 #ifdef	__cplusplus
168 }
169 #endif
170 
171 #endif	/* _SYS_METASLAB_IMPL_H */
172